WorldWideScience

Sample records for non-intrusive flow measurements

  1. Non-intrusive accurate and traceable flow measurements in nuclear power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Kanda, V.; Sharp, B.; Lopez, A. [Advanced Measurement and Analysis Group Inc., ON (Canada); Gurevich, Y. [Daystar Technologies Inc., ON (Canada)

    2014-07-01

    Ultrasonic cross correlation flow meters, are a non-intrusive flow measurement technology based on measurement of the transport velocity of turbulent structures, and have many advantages over other ultrasonic flow measurement methods. The cross correlation flow meter CROSSFLOW, produced and operated by the Canadian company Advanced Measurement and Analysis Group Inc., is used in nuclear power plants around the world, for various application. This paper describes the operating principals of the ultrasonic cross correlation flow meter, its advantages over other ultrasonic flow measurement methods, its application around the world. (author)

  2. Reactor core flow measurements during plant start-up using non-intrusive flow meter CROSSFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, V.; Sharp, B.; Gurevich, A., E-mail: vkanda@amag-inc.com, E-mail: bsharp@amag-inc.com, E-mail: agurevich@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada); Gurevich, Y., E-mail: yuri.gurevich@daystartech.ca [Daystar Technologies Inc., Ontario (Canada); Selvaratnarajah, S.; Lopez, A., E-mail: sselvaratnarajah@amag-inc.com, E-mail: alopez@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada)

    2013-07-01

    For the first time, direct measurements of the total reactor coolant flow and the flow distribution between the inner reactor zone and the outer zone were conducted using the non-intrusive clamp on ultrasonic cross-correlation flow meter, CROSSFLOW, developed and manufactured by Advanced Measurement & Analysis Group Inc. (AMAG). The measurements were performed at Bruce Power A Unit 1 on the Pump Discharge piping of the Primary Heat Transport (PHT) system during start-up. This paper describes installation processes, hydraulic testing, uncertainty analysis and traceability of the measurements to certified standards. (author)

  3. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    Science.gov (United States)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-10-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results.

  4. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    International Nuclear Information System (INIS)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-01-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results. (paper)

  5. Multi-Use Non-Intrusive Flow Characterization System (FCS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic flows, capable of...

  6. Techniques de débitmétrie polyphasique non intrusive. Revue bibliographique Non Intrusive Multiphase Flow Measurement Techniques. Bibliographic Review

    Directory of Open Access Journals (Sweden)

    Lynch J.

    2006-11-01

    Full Text Available Cet article présente les différentes techniques de débitmétrie polyphasique non intrusive décrites dans la littérature du domaine public. Ces techniques sont considérées du point de vue de leur application dans le cadre de la production pétrolière sous-marine (mélange eau/huile/gaz. A partir d'une analyse des différentes méthodes physiques qui peuvent être utilisées, des perspectives d'avenir sont proposées. Several operations in the oil reservoir exploitation industry call for flowmeters capable of delivering information on the quantity and rate of flow of the different phases (gas, oil, water, solids . . . present in a pipeline. Amongst these are the estimation of remaining reserves and of well performance, control of production units such as multiphase pumping systems and fiscal monitoring in the case of pipeline networking. Existing methods, based on phase separation, require separate test lines and thus tend to be cumbersome, give only intermittent values of flow parameters and need to be calibrated due to the intrusive nature of the measurements. These drawbacks are seen to be all the more critical in subsea production where the ideal flowmeter would be compact, require little maintenance and supply precise real time data for network and multiphase pump control. In recent years flow measurement in two or more phase systems has received increasing attention both in laboratory studies and for applications in a variety of industries (for example : nuclear power production and food processing as well as of course oil production. We review here the many methods considered for non-intrusive flow metering with two or more components from the point of view of an industrial (in particular subsea oil production application. The situation is rendered delicate, in particular for density measurement, by the uncontrolled nature of the flow which may occur in any of several regimes with differing spatial distributions of the components

  7. Semi-non-intrusive objective intelligibility measure using spatial filtering in hearing aids

    DEFF Research Database (Denmark)

    Sørensen, Charlotte; Boldt, Jesper Bünsow; Gran, Frederik

    2016-01-01

    -intrusive metrics have not been able to achieve acceptable intelligibility predictions. This paper presents a new semi-non-intrusive intelligibility measure based on an existing intrusive measure, STOI, where an estimate of the clean speech is extracted using spatial filtering in the hearing aid. The results......Reliable non-intrusive online assessment of speech intelligibility can play a key role for the functioning of hearing aids, e.g. as guidance for adjusting the hearing aid settings to the environment. While existing intrusive metrics can provide a precise and reliable measure, the current non...

  8. Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: a review

    Science.gov (United States)

    Sun, Jingyuan; Yan, Yong

    2016-11-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is, therefore, essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive techniques have been developed or proposed for measuring the fluidization dynamic parameters and monitoring the flow status without disturbing or distorting the flow fields. This paper presents a comprehensive review of the non-intrusive measurement techniques and the current state of knowledge and experience in the characterization and monitoring of gas-solid fluidized beds. These techniques are classified into six main categories as per sensing principles, electrostatic, acoustic emission and vibration, visualization, particle tracking, laser Doppler anemometry and phase Doppler anemometry as well as pressure-fluctuation methods. Trends and future developments in this field are also discussed.

  9. Non-intrusive measurement and hydrodynamics characterization of gas–solid fluidized beds: a review

    International Nuclear Information System (INIS)

    Sun, Jingyuan; Yan, Yong

    2016-01-01

    Gas–solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is, therefore, essential to characterize the two-phase flow behaviours in gas–solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive techniques have been developed or proposed for measuring the fluidization dynamic parameters and monitoring the flow status without disturbing or distorting the flow fields. This paper presents a comprehensive review of the non-intrusive measurement techniques and the current state of knowledge and experience in the characterization and monitoring of gas–solid fluidized beds. These techniques are classified into six main categories as per sensing principles, electrostatic, acoustic emission and vibration, visualization, particle tracking, laser Doppler anemometry and phase Doppler anemometry as well as pressure-fluctuation methods. Trends and future developments in this field are also discussed. (topical review)

  10. EU-project AEROJET. Non-intrusive measurements of aircraft engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, K.; Heland, J. [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany); Burrows, R. [Rolls-Royce Ltd. (United Kingdom). Engine Support Lab.; Bernard, M. [AUXITROL, S.A. (France). Aerospace Equipment Div.; Bishop, G. [British Aerospace (United Kingdom). Sowerby Research Centre; Lindermeir, E. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e. V. (DLR), Bonn (Germany). Inst. fuer Optoelektronik; Lister, D.H. [Defence and Research Agency, Hants (United Kingdom). Propulsion and Development Dept.; Wiesen, P. [Bergische Univ. Wuppertal (Gesamthochshule) (Germany); Hilton, M. [University of Reading (United Kingdom). Dept. of Physics

    1997-12-31

    The main goal of the AEROJET programme is to demonstrate the equivalence of remote measurement techniques to conventional extractive methods for both gaseous and particulate measurements. The different remote measurement techniques are compared and calibrated. A demonstrator measurement system for exhaust gases, temperature and particulates including data-analysis software is regarded as result of this project. Non-intrusive measurements are the method of choice within the AEROJET project promising to avoid the disadvantages of the gas sampling techniques which are currently used. Different ground based non-intrusive measurement methods are demonstrated during a final evaluation phase. Several non-intrusive techniques are compared with conventional gas sampling and analysis techniques. (R.P.) 3 refs.

  11. EU-project AEROJET. Non-intrusive measurements of aircraft engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, K; Heland, J [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany); Burrows, R [Rolls-Royce Ltd. (United Kingdom). Engine Support Lab.; Bernard, M [AUXITROL, S.A. (France). Aerospace Equipment Div.; Bishop, G [British Aerospace (United Kingdom). Sowerby Research Centre; Lindermeir, E [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e. V. (DLR), Bonn (Germany). Inst. fuer Optoelektronik; Lister, D H [Defence and Research Agency, Hants (United Kingdom). Propulsion and Development Dept.; Wiesen, P [Bergische Univ. Wuppertal (Gesamthochshule) (Germany); Hilton, M [University of Reading (United Kingdom). Dept. of Physics

    1998-12-31

    The main goal of the AEROJET programme is to demonstrate the equivalence of remote measurement techniques to conventional extractive methods for both gaseous and particulate measurements. The different remote measurement techniques are compared and calibrated. A demonstrator measurement system for exhaust gases, temperature and particulates including data-analysis software is regarded as result of this project. Non-intrusive measurements are the method of choice within the AEROJET project promising to avoid the disadvantages of the gas sampling techniques which are currently used. Different ground based non-intrusive measurement methods are demonstrated during a final evaluation phase. Several non-intrusive techniques are compared with conventional gas sampling and analysis techniques. (R.P.) 3 refs.

  12. Non-Intrusive Optical Diagnostic Methods for Flowfield Characterization

    Science.gov (United States)

    Tabibi, Bagher M.; Terrell, Charles A.; Spraggins, Darrell; Lee, Ja. H.; Weinstein, Leonard M.

    1997-01-01

    Non-intrusive optical diagnostic techniques such as Electron Beam Fluorescence (EBF), Laser-Induced Fluorescence (LIF), and Focusing Schlieren (FS) have been setup for high-speed flow characterization and large flowfield visualization, respectively. Fluorescence emission from the First Negative band of N2(+) with the (0,0) vibration transition (at lambda =391.44 nm) was obtained using the EBF technique and a quenching rate of N2(+)* molecules by argon gas was reported. A very high sensitivity FS system was built and applied in the High-Speed Flow Generator (HFG) at NASA LaRC. A LIF system is available at the Advanced Propulsion Laboratory (APL) on campus and a plume exhaust velocity measurement, measuring the Doppler shift from lambda = 728.7 nm of argon gas, is under way.

  13. Non-intrusive measurement and hydrodynamics characterization of gas–solid fluidized beds: a review

    OpenAIRE

    Sun, Jingyuan; Yan, Yong

    2016-01-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is therefore essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive t...

  14. Non-intrusive refractometer sensor

    Indian Academy of Sciences (India)

    An experimental realization of a simple non-intrusive refractometer sensor .... and after amplification is finally read by a digital multimeter (Fluke make: 179 true ... To study the response of the present FO refractometer, propylene glycol has been ... values of all the samples were initially measured by Abbe's refractometer.

  15. A review on measuring methods of gas-liquid flow rates

    International Nuclear Information System (INIS)

    Minemura, Kiyoshi; Yamashita, Masato

    2000-01-01

    This paper presents a review on the state of current measuring techniques for gas-liquid multiphase flow rates. After briefly discussing the basic idea on measuring methods for single-phase and two-phase flows, existing methods for the two-phase flow rates are classified into several types, that is, with or without a homogenizing device, single or combined method of several techniques, with intrusive or non-intrusive sensors, and physical or software method. Each methods are comparatively reviewed in view of measuring accuracy and manageability. Its scope also contains the techniques developed for petroleum-gas-water flow rates. (author)

  16. Appraisal and control of sexual and non-sexual intrusive thoughts in university students.

    Science.gov (United States)

    Clark, D A; Purdon, C; Byers, E S

    2000-05-01

    This study examined differences in the appraisal and thought control strategies associated with the perceived control of unwanted sexual and non-sexual intrusive thoughts. Eleven appraisal dimensions, subjective physiological arousal and 10 thought control strategies were measured in 171 university students who were administered the Revised Obsessive Intrusions Inventory-Sex Version, a self-report measure of unwanted intrusive thoughts. Thought-action fusion (TAF) likelihood was a significant unique predictor of the perceived controllability of respondents' most upsetting sexual and non-sexual intrusive thought. Moreover greater subjective physiological arousal was a significant predictor of reduced control over sexual intrusions, whereas worry that one might act on an intrusive thought and greater effort to control the intrusion were significant unique predictors of the control of non-sexual intrusive thoughts. Various thought control strategies were more often used in response to non-sexual than sexual cognitions. The results are discussed in terms of the differential role of various appraisal processes in the control of unwanted sexual and non-sexual thoughts.

  17. Non intrusive check valve diagnostics at Bruce A

    International Nuclear Information System (INIS)

    Marsch, S.P.

    1997-01-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  18. Non intrusive check valve diagnostics at Bruce A

    Energy Technology Data Exchange (ETDEWEB)

    Marsch, S.P. [Ontario Hydro, Bruce Nuclear Generating Station A, Tiverton, ON (Canada)

    1997-07-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  19. Non-intrusive Quality Analysis of Monitoring Data

    CERN Document Server

    Brightwell, M; Suwalska, Anna

    2010-01-01

    Any large-scale operational system running over a variety of devices requires a monitoring mechanism to assess the health of the overall system. The Technical Infrastructure Monitoring System (TIM) at CERN is one such system, and monitors a wide variety of devices and their properties, such as electricity supplies, device temperatures, liquid flows etc. Without adequate quality assurance, the data collected from such devices leads to false-positives and false-negatives, reducing the effectiveness of the monitoring system. The quality must, however, be measured in a non-intrusive way, so that the critical path of the data flow is not affected by the quality computation. The quality computation should also scale to large volumes of incoming data. To address these challenges, we develop a new statistical module, which monitors the data collected by TIM and reports its quality to the operators. The statistical module uses Oracle RDBMS as the underlying store, and builds hierarchical summaries on the basic events ...

  20. Non-intrusive measurement of tritium activity in waste drums by modelling a 3He leak quantified by mass spectrometry

    International Nuclear Information System (INIS)

    Demange, D.

    2002-01-01

    This study deals with a new method that makes it possible to measure very low tritium quantities inside radioactive waste drums. This indirect method is based on measuring the decaying product, 3 He, and requires a study of its behaviour inside the drum. Our model considers 3 He as totally free and its leak through the polymeric joint of the drum as two distinct phenomena: permeation and laminar flow. The numerical simulations show that a pseudo-stationary state takes place. Thus, the 3 He leak corresponds to the tritium activity inside the drum but it appears, however, that the leak peaks when the atmospheric pressure variations induce an overpressure in the drum. Nevertheless, the confinement of a drum in a tight chamber makes it possible to quantify the 3 He leak. This is a non-intrusive measurement of its activity, which was experimentally checked by using reduced models, representing the drum and its confinement chamber. The drum's confinement was optimised to obtain a reproducible 3 He leak measurement. The gaseous samples taken from the chamber were purified using selective adsorption onto activated charcoals at 77 K to remove the tritium and pre-concentrate the 3 He. The samples were measured using a leak detector mass spectrometer. The adaptation of the signal acquisition and the optimisation of the analysis parameters made it possible to reach the stability of the external calibrations using standard gases with a 3 He detection limit of 0.05 ppb. Repeated confinement of the reference drums demonstrated the accuracy of this method. The uncertainty of this non-intrusive measurement of the tritium activity in 200-liter drums is 15% and the detection limit is about 1 GBq after a 24 h confinement. These results led to the definition of an automated tool able to systematically measure the tritium activity of all storage waste drums. (authors)

  1. Visual Observations of Bubbly Flow in a Subchannel by using Optical Measurement Methods

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Choo, Yeon Jun; Kim, B. D.; Song, Chul Hwa

    2008-01-01

    PIV (Particle Image Velocimetry) measurement technique is widely used in the experimental study on the fluid flow in many industrial fields. In the study of the subchannel mixing in a nuclear reactor, there have been many works by using optical measurement techniques and almost of these were limited to the single phase flow. But many occasions of safety issues in a nuclear power plant are in a condition of two phase flow. In an application of two phase flow in subchannels, intrusive probes i.e., a conductivity sensor or an optical sensor were generally used. But these probes cause breaks or distortions of bubbles when contact. PIV technique is one of the non-intrusive measurement methods which can avoid the problem of intrusive probes. This study presents an applicability of the PIV technique on an experimental study of a bubbly flow in the subchannel geometry. The bubble peaking in a subchannel according to the bubble sizes was demonstrated. The HSC (high speed camera) was also used to confirm the PIV measurement results

  2. Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection

    International Nuclear Information System (INIS)

    Vries, H.S.M. de; Harren, F.J.M.; Wyers, G.P.; Otjes, R.P.; Slanina, J.; Reuss, J.

    1995-01-01

    A recently developed non-intrusive photothermal deflection (PTD) instrument allows sensitive, rapid and quantitative detection of local ammonia concentrations in the air. Ammonia is vibrationally excited by an infrared CO 2 laser in an intracavity configuration. A HeNe beam passing over the CO 2 laser beam (multipass arrangement) is deflected by the induced refractive index gradient. The detection limit for ammonia in ambient air is 0.5 ppbv with a spatial resolution of a few mm 3 . The time resolution is 0.1 s (single line) or 15 s (multi line). The system is fully automated and suited for non-stop measuring periods of at least one week. Results were compared to those obtained with a continuous-flow denuder (CFD). (author)

  3. multiUQ: An intrusive uncertainty quantification tool for gas-liquid multiphase flows

    Science.gov (United States)

    Turnquist, Brian; Owkes, Mark

    2017-11-01

    Uncertainty quantification (UQ) can improve our understanding of the sensitivity of gas-liquid multiphase flows to variability about inflow conditions and fluid properties, creating a valuable tool for engineers. While non-intrusive UQ methods (e.g., Monte Carlo) are simple and robust, the cost associated with these techniques can render them unrealistic. In contrast, intrusive UQ techniques modify the governing equations by replacing deterministic variables with stochastic variables, adding complexity, but making UQ cost effective. Our numerical framework, called multiUQ, introduces an intrusive UQ approach for gas-liquid flows, leveraging a polynomial chaos expansion of the stochastic variables: density, momentum, pressure, viscosity, and surface tension. The gas-liquid interface is captured using a conservative level set approach, including a modified reinitialization equation which is robust and quadrature free. A least-squares method is leveraged to compute the stochastic interface normal and curvature needed in the continuum surface force method for surface tension. The solver is tested by applying uncertainty to one or two variables and verifying results against the Monte Carlo approach. NSF Grant #1511325.

  4. Hydroelectric plant turbine, stream and spillway flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lampa, J.; Lemon, D.; Buermans, J. [ASL AQ Flow Inc., Sidney, BC (Canada)

    2004-07-01

    This presentation provided schematics of the turbine flow measurements and typical bulb installations at the Kootenay Canal and Wells hydroelectric power facilities in British Columbia. A typical arrangement for measuring stream flow using acoustic scintillation was also illustrated. Acoustic scintillation is portable, non-intrusive, suitable for short intakes, requires minimal maintenance and is cost effective and accurate. A comparison between current meters and acoustic scintillation was also presented. Stream flow measurement is valuable in evaluating downstream areas that are environmentally important for fish habitat. Stream flow measurement makes it possible to define circulation. The effects of any changes can be assessed by combining field measurements and numerical modelling. The presentation also demonstrated that computational fluid dynamics modelling appears promising in determining stream flow and turbulent flow at spillways. tabs., figs.

  5. Novel Non-Intrusive Vibration Monitoring System for Turbopumps, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AI Signal Research, Inc. proposes to develop a Non-Intrusive Vibration Measurement System (NI-VMS) for turbopumps which will provide effective on-board/off-board...

  6. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    Science.gov (United States)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  7. On the non-intrusive evaluation of fluid forces with the momentum equation approach

    International Nuclear Information System (INIS)

    David, L; Jardin, T; Farcy, A

    2009-01-01

    The aim of this paper is to discuss the advantages and difficulties linked with the experimental application of the momentum equation approach as a non-intrusive way to predict the unsteady loads experienced by an airfoil in motion. First, in order to evaluate the influence of the varying parameters relative to the calculation of the corresponding drag and lift coefficients, numerical flow fields obtained by means of DNS are used. The comprehension of the impact of the spatial and temporal resolutions, velocity accuracy or third velocity component on the estimation of forces allows us to quantify the accuracy of the approach and helps in specifying the parameters setting which could lead to a consistent experimental application. In a second step, the approach is applied to experimental flow fields measured through the use of time resolved particle image velocimetry (TR-PIV). A low Reynolds number flow around an impulsively started airfoil is considered. The loads and vorticity flow fields are correlated and compared with those obtained by DNS

  8. Non intrusive measurement of residual moisture rate of plutonium oxide powder in sealed boxes; Mesure non intrusive du taux d`humidite residuel de la poudre d`oxyde de plutonium contenue dans des boites scellees

    Energy Technology Data Exchange (ETDEWEB)

    Pochet, T.; Edeline, J.C.; Domenech, T.

    1993-12-31

    This document deals with the best method to create a non intrusive measurement of residual moisture of plutonium oxide in stainless steel sealed boxes (sensibility, precision, reproducibility and feasibility in laboratory). This method is the neutron spectrometry by {sup 3}He (n,p) {sup 3}He reaction. (TEC). 16 refs., 16 figs., 2 tabs.

  9. Fluid flow measurements by means of vibration monitoring

    International Nuclear Information System (INIS)

    Campagna, Mauro M; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-01-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology. (paper)

  10. Fluid flow measurements by means of vibration monitoring

    Science.gov (United States)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  11. Ultrasonic downcomer flow measurements for recirculating steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Janzen, Victor, E-mail: Victor.Janzen@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON, Canada K0 J 1J0 (Canada); Luloff, Brian [Canadian Nuclear Laboratories, Chalk River, ON, Canada K0 J 1J0 (Canada); Sedman, Ken [Nuclear Safety Analysis & Support Department, Bruce Power, Toronto, ON, Canada M5G 1X6 (Canada)

    2015-08-15

    Highlights: • Measuring recirculating flow in nuclear steam generators provides useful information. • Flow measurements shed light on component performance and degradation mechanisms. • Commonly used ultrasonic technology and application methods are described. • Results of measurements at several power reactors are summarized. • Potential improvements in reliability and flexibility of application are suggested. - Abstract: Measurements of downcomer flow in nuclear steam generators can provide unique fitness for service and performance indicators related to overall thermalhydraulic performance, safety related secondary-side setpoints and certain forms of degradation. This paper reviews the benefits of downcomer-flow measurements to nuclear power–plant operators, and describes methods that are commonly used. It summarizes the history and state-of-the-art of the most widely used technology, non-intrusive ultrasonic systems, including field applications at several nuclear power plants. It also describes the technical challenges that remain, and summarizes recent technical developments and future improvements.

  12. A Labeled Data Set For Flow-based Intrusion Detection

    NARCIS (Netherlands)

    Sperotto, Anna; Sadre, R.; van Vliet, Frank; Pras, Aiko; Nunzi, Giorgio; Scoglio, Caterina; Li, Xing

    2009-01-01

    Flow-based intrusion detection has recently become a promising security mechanism in high speed networks (1-10 Gbps). Despite the richness in contributions in this field, benchmarking of flow-based IDS is still an open issue. In this paper, we propose the first publicly available, labeled data set

  13. Contributions of non-intrusive coupling in nonlinear structural mechanics

    International Nuclear Information System (INIS)

    Duval, Mickael

    2016-01-01

    This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patches situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear re-localization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh

  14. Real-Time and Resilient Intrusion Detection: A Flow-Based Approach

    NARCIS (Netherlands)

    Hofstede, R.J.; Pras, Aiko

    Due to the demanding performance requirements of packet-based monitoring solutions on network equipment, flow-based intrusion detection systems will play an increasingly important role in current high-speed networks. The required technologies are already available and widely deployed: NetFlow and

  15. Non-Intrusive Intelligibility Prediction Using a Codebook-Based Approach

    DEFF Research Database (Denmark)

    Sørensen, Charlotte; Kavalekalam, Mathew Shaji; Xenaki, Angeliki

    2017-01-01

    It could be beneficial for users of hearing aids if these were able to automatically adjust the processing according to the speech intelligibility in the specific acoustic environment. Most speech intelligibility metrics are intrusive, i.e., they require a clean reference signal, which is rarely...... a high correlation between the proposed non-intrusive codebookbased STOI (NIC-STOI) and the intrusive STOI indicating that NIC-STOI is a suitable metric for automatic classification of speech signals...

  16. Impedance void-meter and neural networks for vertical two-phase flows

    International Nuclear Information System (INIS)

    Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.

    1998-01-01

    Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)

  17. Methodology for interpretation of fissile mass flow measurements

    International Nuclear Information System (INIS)

    March-Leuba, J.; Mattingly, J.K.; Mullens, J.A.

    1997-01-01

    This paper describes a non-intrusive measurement technique to monitor the mass flow rate of fissile material in gaseous or liquid streams. This fissile mass flow monitoring system determines the fissile mass flow rate by relying on two independent measurements: (1) a time delay along a given length of pipe, which is inversely proportional to the fissile material flow velocity, and (2) an amplitude measurement, which is proportional to the fissile concentration (e.g., grams of 235 U per length of pipe). The development of this flow monitor was first funded by DOE/NE in September 95, and initial experimental demonstration by ORNL was described in the 37th INMM meeting held in July 1996. This methodology was chosen by DOE/NE for implementation in November 1996; it has been implemented in hardware/software and is ready for installation. This paper describes the methodology used to interpret the data measured by the fissile mass flow monitoring system and the models used to simulate the transport of fission fragments from the source location to the detectors

  18. Intrusive and Non-Intrusive Load Monitoring (A Survey

    Directory of Open Access Journals (Sweden)

    Marco Danilo Burbano Acuña

    2015-05-01

    Full Text Available There is not discussion about the need of energyconservation, it is well known that energy resources are limitedmoreover the global energy demands will double by the end of2030, which certainly will bring implications on theenvironment and hence to all of us.Non-Intrusive load monitoring (NILM is the process ofrecognize electrical devices and its energy consumption basedon whole home electric signals, where this aggregated load datais acquired from a single point of measurement outside thehousehold. The aim of this approach is to get optimal energyconsumption and avoid energy wastage. Intrusive loadmonitoring (ILM is the process of identify and locate singledevices through the use of sensing systems to support control,monitor and intervention of such devices. The aim of thisapproach is to offer a base for the development of importantapplications for remote and automatic intervention of energyconsumption inside buildings and homes as well. For generalpurposes this paper states a general framework of NILM andILM approaches.Appliance discerns can be tackled using approaches fromdata mining and machine learning, finding out the techniquesthat fit the best this requirements, is a key factor for achievingfeasible and suitable appliance load monitoring solutions. Thispaper presents common and interesting methods used.Privacy concerns have been one of the bigger obstacles forimplementing a widespread adoption of these solutions; despitethis fact, developed countries like those inside the EU and theUK have established a deadline for the implementation ofsmart meters in the whole country, whereas USA governmentstill struggles with the acceptance of this solution by itscitizens.The implementation of security over these approachesalong with fine-grained energy monitoring would lead to abetter public agreement of these solutions and hence a fasteradoption of such approaches. This paper reveals a lack ofsecurity over these approaches with a real scenario.

  19. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  20. A two-stage flow-based intrusion detection model for next-generation networks.

    Science.gov (United States)

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  1. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    Science.gov (United States)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the

  2. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    Directory of Open Access Journals (Sweden)

    Minho Choi

    2016-05-01

    Full Text Available Non-intrusive electrocardiogram (ECG monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements.

  3. Effects of heat-flow and hydrothermal fluids from volcanic intrusions on authigenic mineralization in sandstone formations

    Directory of Open Access Journals (Sweden)

    Wolela Ahmed

    2002-06-01

    Full Text Available Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar overgrowths. However, clay mineral-transformation, illite-smectite to illite and chlorite was documented near the volcanic intrusions. Abundant actinolite, illite, chlorite, albite and laumontite cementation of the sand grains were also documented near the volcanic intrusions. The abundance of these cementing minerals decreases away from the volcanic intrusions.In the Hartford Basin, USA, the emplacement of the volcanic intrusions took place simultaneous with sedimentation. The heat-flow from the volcanic intrusions and hydrothermal activity related to the volcanics modified the texture of authigenic minerals. Microcrystalline mosaic albite and quartz developed rather than overgrowths and crystals near the intrusions. Chlorite clumps and masses were also documented with microcrystalline mosaic albite and quartz. These features are localized near the basaltic intrusions. Laumontite is also documented near the volcanic intrusions. The reservoir characteristics of the studied sandstone formations are highly affected by the volcanic and hydrothermal fluids in the Hartford and the Ulster Basin. The porosity dropped from 27.4 to zero percent and permeability from 1350 mD to 1 mD.

  4. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  5. Non-intrusive measurement of tritium activity in waste drums by modelling a {sup 3}He leak quantified by mass spectrometry; Mesure non intrusive de l'activite de futs de dechets trities par modelisation d'une fuite {sup 3}He et sa quantification par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D

    2002-07-03

    This study deals with a new method that makes it possible to measure very low tritium quantities inside radioactive waste drums. This indirect method is based on measuring the decaying product, {sup 3}He, and requires a study of its behaviour inside the drum. Our model considers {sup 3}He as totally free and its leak through the polymeric joint of the drum as two distinct phenomena: permeation and laminar flow. The numerical simulations show that a pseudo-stationary state takes place. Thus, the {sup 3}He leak corresponds to the tritium activity inside the drum but it appears, however, that the leak peaks when the atmospheric pressure variations induce an overpressure in the drum. Nevertheless, the confinement of a drum in a tight chamber makes it possible to quantify the {sup 3}He leak. This is a non-intrusive measurement of its activity, which was experimentally checked by using reduced models, representing the drum and its confinement chamber. The drum's confinement was optimised to obtain a reproducible {sup 3}He leak measurement. The gaseous samples taken from the chamber were purified using selective adsorption onto activated charcoals at 77 K to remove the tritium and pre-concentrate the {sup 3}He. The samples were measured using a leak detector mass spectrometer. The adaptation of the signal acquisition and the optimisation of the analysis parameters made it possible to reach the stability of the external calibrations using standard gases with a {sup 3}He detection limit of 0.05 ppb. Repeated confinement of the reference drums demonstrated the accuracy of this method. The uncertainty of this non-intrusive measurement of the tritium activity in 200-liter drums is 15% and the detection limit is about 1 GBq after a 24 h confinement. These results led to the definition of an automated tool able to systematically measure the tritium activity of all storage waste drums. (authors)

  6. Advanced inspection technology for non intrusive inspection (NII) program

    International Nuclear Information System (INIS)

    Zamir Mohamed Daud

    2003-01-01

    In the current economic environment, plants and facilities are under pressure to introduced cost saving as well as profit maximising measures. Among the many changes in the way things are run is a move towards Risk Based Inspection (RBI), with an emphasis on longer operating periods between shutdowns as well as to utilise components to their maximum capability. Underpinning and RBI program requires good data from an effective online inspections program, which would not require the shutdown of critical components. One methodology of online inspection is known as Non Intrusive Inspection (NII), an inspection philosophy with the objective of replacing internal inspection of a vessel by doing Non Destructive Testing (NDT) and inspections externally. To this end, a variety of advanced NDT techniques are needed to provide accurate online measurements. (Author)

  7. Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins

    Science.gov (United States)

    Senger, Kim; Buckley, Simon J.; Chevallier, Luc; Fagereng, Åke; Galland, Olivier; Kurz, Tobias H.; Ogata, Kei; Planke, Sverre; Tveranger, Jan

    2015-02-01

    Igneous intrusions act as both carriers and barriers to subsurface fluid flow and are therefore expected to significantly influence the distribution and migration of groundwater and hydrocarbons in volcanic basins. Given the low matrix permeability of igneous rocks, the effective permeability in- and around intrusions is intimately linked to the characteristics of their associated fracture networks. Natural fracturing is caused by numerous processes including magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock. Fracturing may be locally enhanced along intrusion-host rock interfaces, at dyke-sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features. In order to improve our understanding of fractures associated with intrusive bodies emplaced in sedimentary host rocks, we have investigated a series of outcrops from the Karoo Basin of the Eastern Cape province of South Africa, where the siliciclastic Burgersdorp Formation has been intruded by various intrusions (thin dykes, mid-sized sheet intrusions and thick sills) belonging to the Karoo dolerite. We present a quantified analysis of fracturing in- and around these igneous intrusions based on five outcrops at three individual study sites, utilizing a combination of field data, high-resolution lidar virtual outcrop models and image processing. Our results show a significant difference between the three sites in terms of fracture orientation. The observed differences can be attributed to contrasting intrusion geometries, outcrop geometry (for lidar data) and tectonic setting. Two main fracture sets were identified in the dolerite at two of the sites, oriented parallel and perpendicular to the contact respectively. Fracture spacing was consistent between the three sites, and exhibits a higher degree of variation in the dolerites compared to the host rock. At one of the study sites, fracture frequency in the

  8. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    National Research Council Canada - National Science Library

    Meents, Steven M

    2008-01-01

    Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images...

  9. Towards real-time intrusion detection for NetFlow and IPFIX

    NARCIS (Netherlands)

    Hofstede, R.J.; Bartos, Vaclav; Sperotto, Anna; Pras, Aiko

    2013-01-01

    DDoS attacks bring serious economic and technical damage to networks and enterprises. Timely detection and mitigation are therefore of great importance. However, when flow monitoring systems are used for intrusion detection, as it is often the case in campus, enterprise and backbone networks, timely

  10. Non-intrusive measurement of tritium activity in waste drums by modelling a {sup 3}He leak quantified by mass spectrometry; Mesure non intrusive de l'activite de futs de dechets trities par modelisation d'une fuite {sup 3}He et sa quantification par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D

    2002-07-03

    This study deals with a new method that makes it possible to measure very low tritium quantities inside radioactive waste drums. This indirect method is based on measuring the decaying product, {sup 3}He, and requires a study of its behaviour inside the drum. Our model considers {sup 3}He as totally free and its leak through the polymeric joint of the drum as two distinct phenomena: permeation and laminar flow. The numerical simulations show that a pseudo-stationary state takes place. Thus, the {sup 3}He leak corresponds to the tritium activity inside the drum but it appears, however, that the leak peaks when the atmospheric pressure variations induce an overpressure in the drum. Nevertheless, the confinement of a drum in a tight chamber makes it possible to quantify the {sup 3}He leak. This is a non-intrusive measurement of its activity, which was experimentally checked by using reduced models, representing the drum and its confinement chamber. The drum's confinement was optimised to obtain a reproducible {sup 3}He leak measurement. The gaseous samples taken from the chamber were purified using selective adsorption onto activated charcoals at 77 K to remove the tritium and pre-concentrate the {sup 3}He. The samples were measured using a leak detector mass spectrometer. The adaptation of the signal acquisition and the optimisation of the analysis parameters made it possible to reach the stability of the external calibrations using standard gases with a {sup 3}He detection limit of 0.05 ppb. Repeated confinement of the reference drums demonstrated the accuracy of this method. The uncertainty of this non-intrusive measurement of the tritium activity in 200-liter drums is 15% and the detection limit is about 1 GBq after a 24 h confinement. These results led to the definition of an automated tool able to systematically measure the tritium activity of all storage waste drums. (authors)

  11. A method to screen obstructive sleep apnea using multi-variable non-intrusive measurements

    International Nuclear Information System (INIS)

    De Silva, S; Abeyratne, U R; Hukins, C

    2011-01-01

    Obstructive sleep apnea (OSA) is a serious sleep disorder. The current standard OSA diagnosis method is polysomnography (PSG) testing. PSG requires an overnight hospital stay while physically connected to 10–15 channels of measurement. PSG is expensive, inconvenient and requires the extensive involvement of a sleep technologist. As such, it is not suitable for community screening. OSA is a widespread disease and more than 80% of sufferers remain undiagnosed. Simplified, unattended and cheap OSA screening methods are urgently needed. Snoring is commonly associated with OSA but is not fully utilized in clinical diagnosis. Snoring contains pseudo-periodic packets of energy that produce characteristic vibrating sounds familiar to humans. In this paper, we propose a multi-feature vector that represents pitch information, formant information, a measure of periodic structure existence in snore episodes and the neck circumference of the subject to characterize OSA condition. Snore features were estimated from snore signals recorded in a sleep laboratory. The multi-feature vector was applied to a neural network for OSA/non-OSA classification and K-fold cross-validated using a random sub-sampling technique. We also propose a simple method to remove a specific class of background interference. Our method resulted in a sensitivity of 91 ± 6% and a specificity of 89 ± 5% for test data for AHI THRESHOLD = 15 for a database consisting of 51 subjects. This method has the potential as a non-intrusive, unattended technique to screen OSA using snore sound as the primary signal

  12. Two-phase flow measurements using a photochromic dye activation technique

    International Nuclear Information System (INIS)

    Kawaji, M.

    1998-01-01

    A novel flow visualization method called photochromic dye activation (PDA) technique has been used to investigate flow structures and mechanisms in various two-phase flow regimes. This non-intrusive flow visualization technique utilizes light activation of a photochromic dye material dissolved in a clear liquid and is a molecular tagging technique, requiring no seed particles. It has been used to yield both quantitative and qualitative flow data in the liquid phase in annular flow, slug flow and stratified-wavy flows. (author)

  13. Nuclear data needs for non-intrusive inspection

    International Nuclear Information System (INIS)

    Smith, D. L.; Michlich, B. J.

    2000-01-01

    Various nuclear-based techniques are being explored for use in non-intrusive inspection. Their development is motivated by the need to prevent the proliferation of nuclear weapons, to thwart trafficking in illicit narcotics, to stop the transport of explosives by terrorist organizations, to characterize nuclear waste, and to deal with various other societal concerns. Non-intrusive methods are sought in order to optimize inspection speed, to minimize damage to packages and containers, to satisfy environmental, health and safety requirements, to adhere to legal requirements, and to avoid inconveniencing the innocent. These inspection techniques can be grouped into two major categories: active and passive. They almost always require the use of highly penetrating radiation and therefore are generally limited to neutrons and gamma rays. Although x-rays are widely employed for these purposes, their use does not constitute nuclear technology and therefore is not discussed here. This paper examines briefly the basic concepts associated with nuclear inspection and investigates the related nuclear data needs. These needs are illustrated by considering four of the methods currently being developed and tested

  14. Nuclear data needs for non-intrusive inspection

    International Nuclear Information System (INIS)

    Smith, D.L.; Micklich, B.J.

    2001-01-01

    Various nuclear-based techniques are being explored for use in non-intrusive inspection. Their development is motivated by the need to prevent the proliferation of nuclear weapons, to thwart trafficking in illicit narcotics, to stop the transport of explosives by terrorist organizations, to characterize nuclear waste, and to deal with various other societal concerns. Non-intrusive methods are sought in order to optimize inspection speed, to minimize damage to packages and containers, to satisfy environmental, health and safety requirements, to adhere to legal requirements, and to avoid inconveniencing the innocent. These inspection techniques can be grouped into two major categories: active and passive. They almost always require the use of highly penetrating radiation and therefore are generally limited to neutrons and gamma rays. Although x-rays are widely employed for these purposes, their use does not constitute 'nuclear technology' and therefore is not discussed here. This paper examines briefly the basic concepts associated with nuclear inspection and investigates the related nuclear data needs. These needs are illustrated by considering four of the methods currently being developed and tested. (author)

  15. A web-based non-intrusive ambient system to measure and classify activities of daily living.

    Science.gov (United States)

    Stucki, Reto A; Urwyler, Prabitha; Rampa, Luca; Müri, René; Mosimann, Urs P; Nef, Tobias

    2014-07-21

    , 4 men; mean age 48.8 years; SD 20.0 years; age range 28-79 years) were included. For explorative purposes, one female Alzheimer patient (Montreal Cognitive Assessment score=23, Timed Up and Go=19.8 seconds, Trail Making Test A=84.3 seconds, Trail Making Test B=146 seconds) was measured in parallel with the healthy subjects. In total, 1317 ADL were performed by the participants, 1211 ADL were classified correctly, and 106 ADL were missed. This led to an overall sensitivity of 91.27% and a specificity of 92.52%. Each subject performed an average of 134.8 ADL (SD 75). The non-intrusive wireless sensor system can acquire environmental data essential for the classification of activities of daily living. By analyzing retrieved data, it is possible to distinguish and assign data patterns to subjects' specific activities and to identify eight different activities in daily living. The Web-based technology allows the system to improve care and provides valuable information about the patient in real-time.

  16. Local measurements in turbulent bubbly flows

    International Nuclear Information System (INIS)

    Suzanne, C.; Ellingsen, K.; Risso, F.; Roig, V.

    1998-01-01

    Local measurements methods in bubbly flows are discussed. Concerning liquid velocity measurement, problems linked to HFA and LDA are first analysed. Then simultaneously recorded velocity signals obtained by both anemometers are compared. New signal processing are developed for the two techniques. Bubble sizes and velocities measurements methods using intrusive double optical sensor probe are presented. Plane bubbly mixing layer has been investigated. Local measurements using the described methods are presented as examples. (author)

  17. Non-intrusive load monitoring based on low frequency active power measurements

    Directory of Open Access Journals (Sweden)

    Chinthaka Dinesh

    2016-03-01

    Full Text Available A Non-Intrusive Load Monitoring (NILM method for residential appliances based on active power signal is presented. This method works effectively with a single active power measurement taken at a low sampling rate (1 s. The proposed method utilizes the Karhunen Loéve (KL expansion to decompose windows of active power signals into subspace components in order to construct a unique set of features, referred to as signatures, from individual and aggregated active power signals. Similar signal windows were clustered in to one group prior to feature extraction. The clustering was performed using a modified mean shift algorithm. After the feature extraction, energy levels of signal windows and power levels of subspace components were utilized to reduce the number of possible appliance combinations and their energy level combinations. Then, the turned on appliance combination and the energy contribution from individual appliances were determined through the Maximum a Posteriori (MAP estimation. Finally, the proposed method was modified to adaptively accommodate the usage patterns of appliances at each residence. The proposed NILM method was validated using data from two public databases: tracebase and reference energy disaggregation data set (REDD. The presented results demonstrate the ability of the proposed method to accurately identify and disaggregate individual energy contributions of turned on appliance combinations in real households. Furthermore, the results emphasise the importance of clustering and the integration of the usage behaviour pattern in the proposed NILM method for real households.

  18. Pulsed neutron measurement of single and two-phase liquid flow

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    Use of radioactive tracers for flow velocity measurements is well developed and documented. Measurement techniques involving pulsed sources of fast (14 MeV) neutrons for in-situ production of tracers can be considered as extensions of the old methods. Improvements offered by these Pulsed Neutron Activation (PNA) techniques over conventional radioisotope techniques are (1) non-intrusion into the system, (2) easier introduction and better mixing of the tracer, and (3) no requirement to handle large amounts of relatively long lived radioactive materials. Just as in conventional tracer techniques, flow velocity measurements by PNA methods can be based on the transit-time or the total-count method. A very significant difference of the PNA technique from conventional methods is that the induced activity is proportional to the density of the fluid, and that PNA techniques can be used for density measurements (of two-phase flows) in addition to flow velocity measurement. Original equations were derived that relate experimental data to the mass flow velocity and the average density. The accuracy of these equations is not effected by the flow regime. Experimental results are presented for tests performed on liquid sodium loops, on air--water loops, on the EBR-II reactor and on the LOFT reactor. Current instrumentation development programs (detectors, pulsed neutron sources) are discussed

  19. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring.

    Science.gov (United States)

    Alcalá, José M; Ureña, Jesús; Hernández, Álvaro; Gualda, David

    2017-02-11

    The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people' demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.

  20. Non-intrusive optical study of gas and its exchange in human maxillary sinuses

    Science.gov (United States)

    Persson, L.; Andersson, M.; Svensson, T.; Cassel-Engquist, M.; Svanberg, K.; Svanberg, S.

    2007-07-01

    We demonstrate a novel non-intrusive technique based on tunable diode laser absorption spectroscopy to investigate human maxillary sinuses in vivo. The technique relies on the fact that free gases have much sharper absorption features (typical a few GHz) than the surrounding tissue. Molecular oxygen was detected at 760 nm. Volunteers have been investigated by injecting near-infrared light fibre-optically in contact with the palate inside the mouth. The multiply scattered light was detected externally by a handheld probe on and around the cheek bone. A significant signal difference in oxygen imprint was observed when comparing volunteers with widely different anamnesis regarding maxillary sinus status. Control measurements through the hand and through the cheek below the cheekbone were also performed to investigate any possible oxygen offset in the setup. These provided a consistently non-detectable signal level. The passages between the nasal cavity and the maxillary sinuses were also non-intrusively optically studied, to the best of our knowledge for the first time. These measurements provide information on the channel conductivity which may prove useful in facial sinus diagnostics. The results suggest that a clinical trial together with an ear-nose-throat (ENT) clinic should be carried out to investigate the clinical use of the new technique.

  1. Test of an Hypothesis of Magnetization, Tilt and Flow in an Hypabyssal Intrusion, Colombian Andes

    Science.gov (United States)

    Muggleton, S.; MacDonald, W. D.; Estrada, J. J.; Sierra, G. M.

    2002-05-01

    Magnetic remanence in the Miocene Clavijo intrusion in the Cauca Valley, adjacent to the Cordillera Central, plunges steeply northward (MacDonald et al., 1996). Assuming magnetization in a normal magnetic field, the expected remanence direction is approximately I= 10o, D= 000o; the observed remanence is I=84o, D=003o. The discrepancy could be explained by a 74o rotation about a horizontal E-W axis, i.e., about an axis normal to the nearby N-S trending Romeral fault zone. If the intrusion is the shallow feeder of a now-eroded andesitic volcano, then perhaps the paleovertical direction is preserved in flow lineations and provides a test of the tilt/rotation of the remanence. In combination, the steep remanence direction, vertical flow, and the inferred rotation of the volcanic neck lead to the hypothesis of a shallow-plunging southward lineation for this body. Using anisotropy of magnetic susceptibility (AMS) as a proxy for the flow lineation, it is predicted that the K1 (maximum susceptibility) axis in this body plunges gently south. This hypothesis was tested using approximately 50 oriented cores from 5 sites near the west margin of the Clavijo intrusion. The results suggest a NW plunging lineation, inconsistent with the initial hypothesis. However, a relatively consistent flow lineation is suggested by the K1 axes. If this flow axis represents paleovertical, it suggests moderate tilting of the Clavijo body towards the southeast. The results are encouraging enough to suggest that AMS may be useful for determining paleo-vertical in shallow volcanic necks and hypabyssal intrusions, and might ultimately be useful in a tilt-correction for such bodies. Other implications of the results will be discussed. MacDonald, WD, Estrada, JJ, Sierra, GM, Gonzalez, H, 1996, Late Cenozoic tectonics and paleomagnetism of North Cauca Basin intrusions, Colombian Andes: Dual rotation modes: Tectonophysics, v 261, p. 277-289.

  2. Successive reactive liquid flow episodes in a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

    Science.gov (United States)

    Leuthold, Julien; Blundy, Jon; Holness, Marian

    2014-05-01

    We will present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion. In the study region, Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the major wavy horizon). Higher in the stratigraphy is another, similar, horizon (the minor wavy horizon) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite, to equigranular crystals in gabbro, to oikocrysts in the poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt.% Cr2O3), anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt.% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt.% Cr2O3) and REE-poor to moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A further partial melting event stripped out almost all clinopyroxene from the lowest allivalite, to form a troctolite, with the major wavy horizon marking the extent of melting during this second episode. The poikilitic gabbro formed from clinopyroxene-saturated melt

  3. Novel Non-Intrusive Vibration Monitoring System for Turbopumps, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ASRI proposes to develop an advanced and commercially viable Non-Intrusive Vibration Monitoring System (NI-VMS) which can provide effective on-line/off-line engine...

  4. Particle image velocimetry measurements of the flow in the converging region of two parallel jets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huhu, E-mail: huhuwang@tamu.edu; Lee, Saya, E-mail: sayalee@tamu.edu; Hassan, Yassin A., E-mail: y-hassan@tamu.edu

    2016-09-15

    Highlights: • The flow behaviors in the converging region were non-intrusively investigated using PIV. • The PIV results using two measuring scales and LDV data matched very well. • Significant momentum transfer was observed in the merging region right after the merging point. • Instantaneous vector field revealed characteristic interacting patterns of the jets. - Abstract: The interaction between parallel jets plays a critical role in determining the characteristics of the momentum and heat transfer in the flow. Specifically for next generation VHTR, the output temperature will be about 900 °C, and any thermal oscillations will create safety issues. The mixing variations of the coolants in the reactor core may influence these power oscillations. Numerous numerical tools such as computational fluid dynamics (CFD) simulations have been used to support the reactor design. The validation of CFD method is important to ensure the fidelity of the calculations. This requires high-fidelity, qualified benchmark data. Particle image velocimetry (PIV), a non-intrusive measuring technique, was used to provide benchmark data for resolving a simultaneous flow field in the converging region of two submerged parallel jets issued from rectangular channels. The jets studied in this work had an equal discharge velocity at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses and z-component vorticity were studied. The streamwise mean velocity measured by PIV and LDV were compared, and they agreed very well.

  5. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring

    Directory of Open Access Journals (Sweden)

    José M. Alcalá

    2017-02-01

    Full Text Available The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs, which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM, is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people’ demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.

  6. Medication Adherence using Non-intrusive Wearable Sensors

    Directory of Open Access Journals (Sweden)

    T. H. Lim

    2017-12-01

    Full Text Available Activity recognition approaches have been applied in home ambient systems to monitor the status and well- being of occupant especially for home care systems. With the advancement of embedded wireless sensing devices, various applications have been proposed to monitor user´s activities and maintain a healthy lifestyle. In this paper, we propose and evaluate a Smart Medication Alert and Treatment Electronic Systems (SmartMATES using a non-intrusive wearable activity recognition sensing system to monitor and alert an user for missing medication prescription. Two sensors are used to collect data from the accelerometer and radio transceiver. Based on the data collected, SmartMATES processes the data and generate a model for the various actions including taking medication. We have evaluated the SmartMATES on 9 participants. The results show that the SmartMATES can identify and prevent missing dosage in a less intrusive way than existing mobile application and traditional approaches.

  7. Non-intrusive measurements of frictional forces between micro-spheres and flat surfaces

    Science.gov (United States)

    Lin, Wei-Hsun; Daraio, Chiara; Daraio's Group Team

    2014-03-01

    We report a novel, optical pump-probe experimental setup to study micro-friction phenomena between micro-particles and a flat surface. We present a case study of stainless steel microspheres, of diameter near 250 μm, in contact with different surfaces of variable roughness. In these experiments, the contact area between the particles and the substrates is only a few nanometers wide. To excite the particles, we deliver an impulse using a pulsed, high-power laser. The reaction force resulting from the surface ablation induced by the laser imparts a controlled initial velocity to the target particle. This initial velocity can be varied between 10-5 to 1 m/s. We investigate the vibrating and rolling motions of the micro-particles by detecting their velocity and displacement with a laser vibrometer and a high-speed microscope camera. We calculate the effective Hamaker constant from the vibrating motion of a particle, and study its relation to the substrate's surface roughness. We analyze the relation between rolling friction and the minimum momentum required to break surface bonding forces. This non-contact and non-intrusive technique could be employed to study a variety of contact and tribology problems at the microscale.

  8. Uncertainty quantification for criticality problems using non-intrusive and adaptive Polynomial Chaos techniques

    International Nuclear Information System (INIS)

    Gilli, L.; Lathouwers, D.; Kloosterman, J.L.; Hagen, T.H.J.J. van der; Koning, A.J.; Rochman, D.

    2013-01-01

    Highlights: ► Non-intrusive spectral techniques are applied to perform UQ of criticality problems. ► A new adaptive algorithm based on the definition of sparse grid is derived. ► The method is applied to two reference criticality problems. - Abstract: In this paper we present the implementation and the application of non-intrusive spectral techniques for uncertainty analysis of criticality problems. Spectral techniques can be used to reconstruct stochastic quantities of interest by means of a Fourier-like expansion. Their application to uncertainty propagation problems can be performed in a non-intrusive fashion by evaluating a set of projection integrals that are used to reconstruct the spectral expansion. This can be done either by using standard Monte Carlo integration approaches or by adopting numerical quadrature rules. We present the derivation of a new adaptive quadrature algorithm, based on the definition of a sparse grid, which can be used to reduce the computational cost associated with non-intrusive spectral techniques. This new adaptive algorithm and the Monte Carlo integration alternative are then applied to two reference problems. First, a stochastic multigroup diffusion problem is introduced by considering the microscopic cross-sections of the system to be random quantities. Then a criticality benchmark is defined for which a set of resonance parameters in the resolved region are assumed to be stochastic

  9. Flow measurements in a model centrifugal pump by 3-D PIV

    International Nuclear Information System (INIS)

    Yang, H; Xu, H R; Liu, C

    2012-01-01

    PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity W r appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity W r moves from the pressure side to the suction side. At the same time, the tangential component velocity W θ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable.

  10. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  11. New Non-Intrusive Inspection Technologies for Nuclear Security and Nonproliferation

    Science.gov (United States)

    Ledoux, Robert J.

    2015-10-01

    Comprehensive monitoring of the supply chain for nuclear materials has historically been hampered by non-intrusive inspection systems that have such large false alarm rates that they are impractical in the flow of commerce. Passport Systems, Inc. (Passport) has developed an active interrogation system which detects fissionable material, high Z material, and other contraband in land, sea and air cargo. Passport's design utilizes several detection modalities including high resolution imaging, passive radiation detection, effective-Z (EZ-3D™) anomaly detection, Prompt Neutrons from Photofission (PNPF), and Nuclear Resonance Fluorescence (NRF) isotopic identification. These technologies combine to: detect fissionable, high-Z, radioactive and contraband materials, differentiate fissionable materials from high-Z shielding materials, and isotopically identify actinides, Special Nuclear Materials (SNM), and other contraband (e.g. explosives, drugs, nerve agents). Passport's system generates a 3-D image of the scanned object which contains information such as effective-Z and density, as well as a 2-D image and isotopic and fissionable information for regions of interest.

  12. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-31

    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  13. Diagnostic Indicators for Shipboard Mechanical Systems Using Non-Intrusive Load Monitoring

    National Research Council Canada - National Science Library

    McKay, Thomas D

    2006-01-01

    This thesis examines the use of Non-intrusive Load Monitoring (NILM) in auxiliary shipboard systems, such as a low pressure air system, to determine the state of equipment in larger connected systems, such as the main propulsion engines...

  14. Non-intrusive reduced order modeling of nonlinear problems using neural networks

    Science.gov (United States)

    Hesthaven, J. S.; Ubbiali, S.

    2018-06-01

    We develop a non-intrusive reduced basis (RB) method for parametrized steady-state partial differential equations (PDEs). The method extracts a reduced basis from a collection of high-fidelity solutions via a proper orthogonal decomposition (POD) and employs artificial neural networks (ANNs), particularly multi-layer perceptrons (MLPs), to accurately approximate the coefficients of the reduced model. The search for the optimal number of neurons and the minimum amount of training samples to avoid overfitting is carried out in the offline phase through an automatic routine, relying upon a joint use of the Latin hypercube sampling (LHS) and the Levenberg-Marquardt (LM) training algorithm. This guarantees a complete offline-online decoupling, leading to an efficient RB method - referred to as POD-NN - suitable also for general nonlinear problems with a non-affine parametric dependence. Numerical studies are presented for the nonlinear Poisson equation and for driven cavity viscous flows, modeled through the steady incompressible Navier-Stokes equations. Both physical and geometrical parametrizations are considered. Several results confirm the accuracy of the POD-NN method and show the substantial speed-up enabled at the online stage as compared to a traditional RB strategy.

  15. A Proposal for Non-Intrusive Namespaces in OCaml

    OpenAIRE

    Couderc , Pierrick; Canou , Benjamin; Chambart , Pierre; Le Fessant , Fabrice

    2014-01-01

    International audience; We present a work-in-progress about adding namespaces to OCaml. Inspired by other lan-guages such as Scala or C++, our aim is to de-sign and formalize a simple and non-intrusive namespace mechanism without complexifying the core language. Namespaces in our ap-proach are a simple way to define libraries while avoiding name clashes. They are also meant to simplify the build process, clarify-ing and reducing (to zero whenever possible) the responsibility of external tools.

  16. CHARACTERISATION OF MULTIPHASE FLUID-STRUCTURE INTERACTION USING NON-INTRUSIVE OPTICAL TECHNIQUES

    Directory of Open Access Journals (Sweden)

    M. AL-ATABI

    2011-04-01

    Full Text Available The purpose of this study is to determine experimentally the effectiveness of passive drag reduction techniques (which involve adjusting surface geometry within a chaotic multiphase flow system. To quantify the intrusion and disturbance caused, a liquid-air blast atomiser continuously discharges within a test section of air at atmospheric pressure, with a circular cylinder placed 25 cylinder diameters (250 mm downstream of the nozzle. This cylinder is then replaced with other cylinders which have modified surface geometry. The data was obtained using Particle Image Velocimetry (PIV and determines the fluid motion resulting from spray structure interaction of a liquid spray with a circular cylinder. Subtraction of non intruded spray images from intruded spray images at the same locations, using the time averaged analysis allows the direct comparison of the amount of disturbance each geometric variant has on the spray. Using this data alongside velocity profiles time averaged trends were compared. Drag reduction from V-shaped grooves provides the greatest disturbance reduction. This is due to the reduced shear stress around its cross section and the addition of small liquid eddies within each V-groove creates a gliding surface. These features proved to be most effective when monitoring drag reduction in multiphase flow-structure interaction.

  17. Flow mapping of multiphase flows using a novel single stem endoscopic particle image velocimetry instrument

    International Nuclear Information System (INIS)

    Lad, N; Adebayo, D; Aroussi, A

    2011-01-01

    Particle image velocimetry (PIV) is a successful flow mapping technique which can optically quantify large portions of a flow regime. This enables the method to be completely non-intrusive. The ability to be non-intrusive to any flow has allowed PIV to be used in a large range of industrial sectors for many applications. However, a fundamental disadvantage of the conventional PIV technique is that it cannot easily be used with flows which have no or limited optical access. Flows which have limited optical access for PIV measurement have been addressed using endoscopic PIV techniques. This system uses two separate probes which relay a light sheet and imaging optics to a planar position within the desired flow regime. This system is effective in medical and engineering applications. The present study has been involved in the development of a new endoscopic PIV system which integrates the illumination and imaging optics into one rigid probe. This paper focuses on the validation of the images taken from the novel single stem endoscopic PIV system. The probe is used within atomized spray flow and is compared with conventional PIV measurement and also pitot-static data. The endoscopic PIV system provides images which create localized velocity maps that are comparable with the global measurement of the conventional PIV system. The velocity information for both systems clearly show similar results for the spray characterization and are also validated using the pitot-static data

  18. [INVITED] Non-intrusive optical imaging of face to probe physiological traits in Autism Spectrum Disorder

    Science.gov (United States)

    Samad, Manar D.; Bobzien, Jonna L.; Harrington, John W.; Iftekharuddin, Khan M.

    2016-03-01

    Autism Spectrum Disorders (ASD) can impair non-verbal communication including the variety and extent of facial expressions in social and interpersonal communication. These impairments may appear as differential traits in the physiology of facial muscles of an individual with ASD when compared to a typically developing individual. The differential traits in the facial expressions as shown by facial muscle-specific changes (also known as 'facial oddity' for subjects with ASD) may be measured visually. However, this mode of measurement may not discern the subtlety in facial oddity distinctive to ASD. Earlier studies have used intrusive electrophysiological sensors on the facial skin to gauge facial muscle actions from quantitative physiological data. This study demonstrates, for the first time in the literature, novel quantitative measures for facial oddity recognition using non-intrusive facial imaging sensors such as video and 3D optical cameras. An Institutional Review Board (IRB) approved that pilot study has been conducted on a group of individuals consisting of eight participants with ASD and eight typically developing participants in a control group to capture their facial images in response to visual stimuli. The proposed computational techniques and statistical analyses reveal higher mean of actions in the facial muscles of the ASD group versus the control group. The facial muscle-specific evaluation reveals intense yet asymmetric facial responses as facial oddity in participants with ASD. This finding about the facial oddity may objectively define measurable differential markers in the facial expressions of individuals with ASD.

  19. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  20. Cyclone, Salinity Intrusion and Adaptation and Coping Measures in Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Sebak Kumar Saha

    2017-06-01

    Full Text Available Although households in the coastal areas of Bangladesh undertake various adaptation and coping measures to minimise their vulnerability to cyclone hazards and salinity intrusion, these autonomous measures have received little attention in the past. However, the Government of Bangladesh has recently emphasised the importance of understanding these measures so that necessary interventions to make households more resilient to natural hazards and the adverse impacts of climate change can be introduced. This paper, based on secondary sources, explores adaptation and coping measures that households in the coastal areas of Bangladesh undertake to minimise their vulnerability to cyclone hazards and salinity intrusion. This paper shows that many of the adaptation and coping measures contribute to making households less vulnerable and more resilient to cyclone hazards and salinity intrusion, although some coping measures do the opposite as they reduce households’ adaptive capacities instead of improving them. This paper argues that the adaptation and coping measures that contribute to reducing households’ vulnerability to natural hazards need to be supported and guided by the government and NGOs to make them more effective. Additionally, measures that make households more vulnerable also need to be addressed by the government and NGOs, as most of these measures are related to and constrained by both poverty, and because the households have little or no access to economic opportunities.

  1. Expansion tunnel characterization and development of non-intrusive microwave plasma diagnostics

    Science.gov (United States)

    Dufrene, Aaron T.

    The focus of this research is the development of non-intrusive microwave diagnostics for characterization of expansion tunnels. The main objectives of this research are to accurately characterize the LENS XX expansion tunnel facility, develop non-intrusive RF diagnostics that will work in short-duration expansion tunnel testing, and to determine plasma properties and other information that might otherwise be unknown, less accurate, intrusive, or more difficult to determine through conventional methods. Testing was completed in LENS XX, a new large-scale expansion tunnel facility at CUBRC, Inc. This facility is the largest known expansion tunnel in the world with an inner diameter of 24 inches, a 96 inch test section, and an end-to-end length of more than 240 ft. Expansion tunnels are currently the only facilities capable of generating high-enthalpy test conditions with minimal or no freestream dissociation or ionization. However, short test times and freestream noise at some conditions have limited development of these facilities. To characterize the LENS XX facility, the first step is to evaluate the facility pressure, vacuum, temperature, and other mechanical restrictions to derive a theoretical testing parameter space. Test condition maps are presented for a variety of parameters and gases based on 1D perfect gas dynamics. Test conditions well beyond 10 km/s or 50 MJ/kg are identified with minimum test times of 200 us. Additionally, a four-chamber expansion tube configuration is considered for extending the stagnation enthalpy range of the facility even further. A microwave shock speed diagnostic measures primary and secondary shock speeds accurately every 30 in. down the entire length of the facility resulting in a more accurate determination of freestream conditions required for computational comparisons. The high resolution of this measurement is used to assess shock speed attenuation as well as secondary diaphragm performance. Negligible shock attenuation is

  2. Automatic, non-intrusive, flame detection in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.D.; Mehta, S.A.; Moore, R.G. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Al-Himyary, T.J. [Al-Himyary Consulting Inc., Calgary, AB (Canada)

    2004-07-01

    Flames have been known to occur within small diameter pipes operating under conditions of high turbulent flow. Although there are several methods of flame detection, few offer remote, non-line-of-site detection. In particular, combustion cannot be detected in cases where flammable mixtures are carried in flare lines, storage tank vents, air drilling or improperly designed purging operations. Combustion noise is being examined as a means to address this problem. A study was conducted in which flames within a small diameter tube were automatically detected using high speed pressure measurements and a newly developed algorithm. Commercially available, high-pressure, dynamic-pressure transducers were used for the measurements. The results of an experimental study showed that combustion noise can be distinguished from other sources of noise by its inverse power law relationship with frequency. This paper presented a newly developed algorithm which provides early detection of flames when combined with high-speed pressure measurements. The algorithm can also separate combustion noise automatically from other sources of noise when combined with other filters. In this study, the noise generated by a fluttering check valve was attenuated using a stop band filter. This detection method was found to be very reliable under the conditions tests, as long as there was no flow restriction between the sensor and the flame. A flow restriction would have resulted in the detection of only the strongest flame noise. It was shown that acoustic flame detection can be applied successfully in flare stacks, industrial burners and turbine combustors. It can be 15 times more sensitive than optical or electrical methods in diagnosing combustion problems with lean burning combustors. It may also be the only method available in applications that require remote, non-line-of-sight detection. 11 refs., 3 tabs., 15 figs.

  3. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-09-15

    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  4. The electrical self-potential method is a non-intrusive snow-hydrological sensor

    Science.gov (United States)

    Thompson, S. S.; Kulessa, B.; Essery, R. L. H.; Lüthi, M. P.

    2015-08-01

    Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.

  5. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  6. A non-intrusive and continuous-in-space technique to investigate the wave transformation and breaking over a breakwater

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2016-01-01

    Full Text Available To design longshore breakwaters, the evaluation of the wave motion transformations over the structures and of the energy they are able to absorb, dissipate and reflect is necessary. To characterize features and transformations of monochromatic wave trains above a breakwater, both submerged and emerged, we have designed and developed a non-intrusive and continuous-in-space technique, based on Image Analysis, and carried out an experimental campaign, in a laboratory flume equipped with a wave-maker, in order to test it. The investigation area was lighted with a light sheet and images were recorded by a video-camera. The working fluid was seeded with non buoyant particles to make it bright and clearly distinct from dark background and breakwater. The technique, that is based on a robust algorithm to identify the free surface, has showed to properly work also in prohibitive situations for traditional resistive probes (e.g., very shallow waters and/or breaking waves and to be able to measure the free surface all over the investigation field in a non-intrusive way. Two kind of analysis were mainly performed, a statistical and a spectral one. The peculiarities of the measurement technique allowed to describe the whole wave transformation and to supply useful information for design purposes.

  7. Flow visualization of two-phase flows using photochromic dye activation method

    International Nuclear Information System (INIS)

    Kawaji, M.; Ahmad, W.; DeJesus, J.M.; Sutharshan, B.; Lorencez, C.; Ojha, M.

    1993-01-01

    A non-intrusive flow visualization technique based on light activation of photochromic dye material has been used to obtain velocity profiles in gas-liquid flows including annular, slug and stratified flows. The preliminary results revealed several important two-phase flow mechanisms that have not been clearly seen previously. (orig.)

  8. RF sensor for multiphase flow measurement through an oil pipeline

    Science.gov (United States)

    Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2006-08-01

    We have developed, in conjunction with Solartron ISA, an electromagnetic cavity resonator based sensor for multiphase flow measurement through an oil pipeline. This sensor is non-intrusive and transmits low power (10 mW) radio frequencies (RF) in the range of 100-350 MHz and detects the pipeline contents using resonant peaks captured instantaneously. The multiple resonances from each captured RF spectrum are analysed to determine the phase fractions in the pipeline. An industrial version of the sensor for a 102 mm (4 inch) diameter pipe has been constructed and results from this sensor are compared to those given by simulations performed using the electromagnetic high frequency structure simulator software package HFSS. This paper was presented at the 13th International Conference on Sensors and held in Chatham, Kent, on 6-7 September 2005.

  9. Indian program for development of technologies relevant to reliable, non-intrusive, concealed-contraband detection

    International Nuclear Information System (INIS)

    Auluck, S.K.H.

    2007-01-01

    Generating capability for reliable, non-intrusive detection of concealed-contraband, particularly, organic contraband like explosives and narcotics, has become a national priority. This capability spans a spectrum of technologies. If a technology mission addressing the needs of a highly sophisticated technology like PFNA is set up, the capabilities acquired would be adequate to meet the requirements of many other sets of technologies. This forms the background of the Indian program for development of technologies relevant to reliable, non-intrusive, concealed contraband detection. One of the central themes of the technology development programs would be modularization of the neutron source and detector technologies, so that common elements can be combined in different ways for meeting a variety of application requirements. (author)

  10. Two-phase PIV of bubbly flows: status and trends

    NARCIS (Netherlands)

    Deen, N.G.; Westerweel, Jerry; Delnoij, E.

    2002-01-01

    Particle Image Velocimetry (PIV) is a measurement technique that has received a lot of attention for this purpose in the last decade. PIV is an optical and thus non-intrusive measurement technique that gives instantaneous 2D velocity data for a whole plane in a 3D flow field. In this paper we will

  11. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  12. Primary flow and temperature measurements in PWRS using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1995-08-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N1 type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit time of primary water between the two detectors; primary flow-rate is then deduced Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed (diameter over time of flight) is then converted into temperature, by use of a calibration formula relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWRs is also presented. (author). 4 refs., 13 figs

  13. Non-intrusive telemetry applications in the oilsands: from visible light and x-ray video to acoustic imaging and spectroscopy

    Science.gov (United States)

    Shaw, John M.

    2013-06-01

    While the production, transport and refining of oils from the oilsands of Alberta, and comparable resources elsewhere is performed at industrial scales, numerous technical and technological challenges and opportunities persist due to the ill defined nature of the resource. For example, bitumen and heavy oil comprise multiple bulk phases, self-organizing constituents at the microscale (liquid crystals) and the nano scale. There are no quantitative measures available at the molecular level. Non-intrusive telemetry is providing promising paths toward solutions, be they enabling technologies targeting process design, development or optimization, or more prosaic process control or process monitoring applications. Operation examples include automated large object and poor quality ore during mining, and monitoring the thickness and location of oil water interfacial zones within separation vessels. These applications involve real-time video image processing. X-ray transmission video imaging is used to enumerate organic phases present within a vessel, and to detect individual phase volumes, densities and elemental compositions. This is an enabling technology that provides phase equilibrium and phase composition data for production and refining process development, and fluid property myth debunking. A high-resolution two-dimensional acoustic mapping technique now at the proof of concept stage is expected to provide simultaneous fluid flow and fluid composition data within porous inorganic media. Again this is an enabling technology targeting visualization of diverse oil production process fundamentals at the pore scale. Far infrared spectroscopy coupled with detailed quantum mechanical calculations, may provide characteristic molecular motifs and intermolecular association data required for fluid characterization and process modeling. X-ray scattering (SAXS/WAXS/USAXS) provides characteristic supramolecular structure information that impacts fluid rheology and process

  14. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    Science.gov (United States)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  15. Non-intrusive load characterization of an airfoil using PIV

    Energy Technology Data Exchange (ETDEWEB)

    Oudheusden, B.W. van; Scarano, F.; Casimiri, E.W.F. [Dept. of Aerospace Engineering, Delft Univ. of Tech., Delft (Netherlands)

    2006-06-15

    An assessment is made of the feasibility of using PIV velocity data for the non-intrusive aerodynamic force characterization (lift, drag and pitching moment) of an airfoil. The method relies upon the application of control-volume approaches in combination with the deduction of the pressure from the PIV experimental data, by making use of the momentum equation. First, the consistency of the method is verified by means of synthetic data obtained from CFD. Subsequently, the procedure was applied in an experimental investigation, in which the PIV approach is validated against standard pressure-based methods (surface pressure distribution and wake rake). (orig.)

  16. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    Science.gov (United States)

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  17. Evaluation of flow hood measurements for residential register flows; TOPICAL

    International Nuclear Information System (INIS)

    Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

    2001-01-01

    Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large-on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue

  18. Video imaging measurement of interfacial wave velocity in air-water flow through a horizontal elbow

    Science.gov (United States)

    Al-Wazzan, Amir; Than, Cheok F.; Moghavvemi, Mahmoud; Yew, Chia W.

    2001-10-01

    Two-phase flow in pipelines containing elbows represents a common situation in the oil and gas industries. This study deals with the stratified flow regime between the gas and liquid phase through an elbow. It is of interest to study the change in wave characteristics by measuring the wave velocity and wavelength at the inlet and outlet of the elbow. The experiments were performed under concurrent air-water stratified flow in a horizontal transparent polycarbonate pipe of 0.05m diameter and superficial air and water velocities up to 8.97 and 0.0778 m/s respectively. A non-intrusive video imaging technique was applied to capture the waves. For image analysis, a frame by frame direct overlapping method was used to detect for pulsating flow and a pixel shifting method based on the detection of minimum values in the overlap function was used to determine wave velocity and wavelength. Under superficial gas velocity of less than 4.44 m/s, the results suggest a regular pulsating outflow produced by the elbow. At higher gas velocities, more random pulsation was found and the emergence of localized interfacial waves was detected. Wave velocities measured by this technique were found to produce satisfactory agreement with direct measurements.

  19. Non-intrusive investigation of flow and heat transfer characteristics of a channel with a built-in circular cylinder

    Science.gov (United States)

    Vyas, Apoorv; Mishra, Biswajit; Agrawal, Atul; Srivastava, Atul

    2018-03-01

    Interferometry-based experimental investigation of heat transfer phenomena associated with a channel fitted with a circular cylinder has been reported. Experiments have been performed with water as the working fluid, and the range of Reynolds number considered is 75 ≤ Re ≤ 165. The circular cylinder, placed at the inlet section of the channel, provides a blockage ratio of 0.5. The experimental methodology has been benchmarked against the results of transient numerical simulations. In order to assess the performance of the channel fitted with a circular cylinder for possible heat transfer enhancement from the channel wall(s), experiments have also been performed on a plane channel (without a cylinder). The interferometry-based experiments clearly highlighted the influence of the built-in cylinder in generating the flow instabilities and alterations in the thermal boundary layer profile along the heated wall of the channel. The phenomenon of vortex shedding behind the cylinder was successfully captured. A gradual increase in the vortex shedding frequency was observed with increasing Reynolds number. Quantitative data in the form of two-dimensional temperature distributions revealed an increase in the strength of wall thermal gradients in the wake region of the cylinder due to the periodic shedding of the vortices. In turn, a clear enhancement in the wall heat transfer rates was observed for the case of the channel fitted with a cylinder vis-à-vis the plane channel. To the best of the knowledge of the authors, the work reported is one of the first attempts to provide the planar field experimental data for a channel configuration with a built-in circular cylinder using non-intrusive imaging techniques and has the potential to serve as one of the benchmark studies for validating the existing as well as future numerical studies in the related area.

  20. Individual differences in experiencing intrusive memories : The role of the ability to resist proactive interference

    NARCIS (Netherlands)

    Verwoerd, Johan; Wessel, Ineke; de Jong, Peter J.

    This study explored whether a relatively poor ability to resist or inhibit interference from irrelevant information in working memory is associated with experiencing undesirable intrusive memories. Non-selected participants (N = 91) completed a self-report measure of intrusive memories, and carried

  1. Active Learning Framework for Non-Intrusive Load Monitoring: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin

    2016-05-16

    Non-Intrusive Load Monitoring (NILM) is a set of techniques that estimate the electricity usage of individual appliances from power measurements taken at a limited number of locations in a building. One of the key challenges in NILM is having too much data without class labels yet being unable to label the data manually for cost or time constraints. This paper presents an active learning framework that helps existing NILM techniques to overcome this challenge. Active learning is an advanced machine learning method that interactively queries a user for the class label information. Unlike most existing NILM systems that heuristically request user inputs, the proposed method only needs minimally sufficient information from a user to build a compact and yet highly representative load signature library. Initial results indicate the proposed method can reduce the user inputs by up to 90% while still achieving similar disaggregation performance compared to a heuristic method. Thus, the proposed method can substantially reduce the burden on the user, improve the performance of a NILM system with limited user inputs, and overcome the key market barriers to the wide adoption of NILM technologies.

  2. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Seawater intrusion; coastal aquifers; density-dependent flow and ... The seawater intrusion mechanism in coastal aquifers generally causes the occurrence of ... (4) The dynamic viscosity of the fluid does not change with respect to salinity and.

  3. Research of non-uniform multiple hole straighteners for measuring flow rate

    International Nuclear Information System (INIS)

    Wen Duanzhong; Zhong Dezhen; Cai Zhuti

    1989-01-01

    Standard throttling flowmeters are widely used in process flow rate measurement. Enough upstream and downstream straight pipe are necessary for it. If not, the error will be increased. Mounting straightener is an effective way for solving this problem. Advantages of non-uniform multiple hole straighteners studied by authors are good results for straighting, simple in Structure, convenient for mounting and low cost. So it can be popularized in many applications

  4. A reactive transport investigation of a seawater intrusion experiment in a shallow aquifer, Skansehage Denmark

    DEFF Research Database (Denmark)

    Christensen, Flemming Damgaard; Engesgaard, Peter Knudegaard; Kipp, K.L.

    2001-01-01

    Previous investigations on seawater intrusion have mainly focused on either the physical density flow system with transport of a single non-reactive species or focused on the geochemical aspects neglecting density effects. This study focuses on both the geochemical and physical aspects of seawate...

  5. Development of high-frame rate neutron radiography and quantitative measurement method for multiphase flow research

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.

    1998-01-01

    Neutron radiography (NR) is one of the radiographic techniques which makes use of the difference in attenuation characteristics of neutrons in materials. Fluid measurement using the NR technique is a non-intrusive method which enables visualization of dynamic images of multiphase flow of opaque fluids and/or in a metallic duct. To apply the NR technique to multiphase flow research, high frame-rate NR was developed by combining up-to-date technologies for neutron sources, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and there is no need for a triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at recording speeds of 250, 500 and 1000 frames/s. The qualities of the consequent images were sufficient to observe the flow pattern and behavior. It was also demonstrated that some characteristics of two-phase flow could be measured from these images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, bubble rise velocity, and wave height and interfacial area in annular flow were obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction were performed. It was confirmed that this new technique may have significant advantages both in visualizing and measuring high-speed fluid phenomena when other methods, such as an optical method and X-ray radiography, cannot be applied. (author)

  6. Research on IPv6 intrusion detection system Snort-based

    Science.gov (United States)

    Shen, Zihao; Wang, Hui

    2010-07-01

    This paper introduces the common intrusion detection technologies, discusses the work flow of Snort intrusion detection system, and analyzes IPv6 data packet encapsulation and protocol decoding technology. We propose the expanding Snort architecture to support IPv6 intrusion detection in accordance with CIDF standard combined with protocol analysis technology and pattern matching technology, and present its composition. The research indicates that the expanding Snort system can effectively detect various intrusion attacks; it is high in detection efficiency and detection accuracy and reduces false alarm and omission report, which effectively solves the problem of IPv6 intrusion detection.

  7. The Sonju Lake layered intrusion, northeast Minnesota: Internal structure and emplacement history inferred from magnetic fabrics

    Science.gov (United States)

    Maes, S.M.; Tikoff, B.; Ferre, E.C.; Brown, P.E.; Miller, J.D.

    2007-01-01

    The Sonju Lake intrusion (SLI), in northeastern Minnesota, is a layered mafic complex of Keweenawan age (1096.1 ?? 0.8 Ma) related to the Midcontinent rift. The cumulate paragenesis of the intrusion is recognized as broadly similar to the Skaergaard intrusion, a classic example of closed-system differentiation of a tholeiitic mafic magma. The SLI represents nearly closed-system differentiation through bottom-up fractional crystallization. Geochemical studies have identified the presence of a stratabound, 50-100 m thick zone anomalously enriched in Au + PGE. Similar to the PGE reefs of the Skaergaard intrusion, this PGE-enriched zone is hosted within oxide gabbro cumulates, about two-third of the way up from the base of the intrusion. We present a petrofabric study using the anisotropy of magnetic susceptibility (AMS) to investigate the emplacement and flow patterns within the Sonju Lake intrusion. Petrographic and electron microprobe studies, combined with AMS and hysteresis measurements indicate the primary source of the magnetic signal is pseudo-single domain (PSD) magnetite or titanomagnetite. Low field AMS was measured at 32 sites within the Sonju Lake intrusion, which provided information about primary igneous fabrics. The magnetic fabrics in the layered series of the Sonju Lake intrusion are consistent with sub-horizontal to inclined emplacement of the intrusion and show evidence that the cumulate layers were deposited in a dynamic environment. Well-aligned magnetic lineations, consistently plunging shallowly toward the southwest, indicate the source of the magma is a vertical sill-like feeder, presumably located beneath the Finland granite. The Finland granite acted as a density trap for the Sonju Lake magmas, forcing lateral flow of magma to the northeast. The strongly oblate magnetic shape fabrics indicate the shallowly dipping planar fabrics were enhanced by compaction of the crystal mush. ?? 2007 Elsevier B.V. All rights reserved.

  8. Non-intrusive uncertainty quantification of computational fluid dynamics simulations: notes on the accuracy and efficiency

    Science.gov (United States)

    Zimoń, Małgorzata; Sawko, Robert; Emerson, David; Thompson, Christopher

    2017-11-01

    Uncertainty quantification (UQ) is increasingly becoming an indispensable tool for assessing the reliability of computational modelling. Efficient handling of stochastic inputs, such as boundary conditions, physical properties or geometry, increases the utility of model results significantly. We discuss the application of non-intrusive generalised polynomial chaos techniques in the context of fluid engineering simulations. Deterministic and Monte Carlo integration rules are applied to a set of problems, including ordinary differential equations and the computation of aerodynamic parameters subject to random perturbations. In particular, we analyse acoustic wave propagation in a heterogeneous medium to study the effects of mesh resolution, transients, number and variability of stochastic inputs. We consider variants of multi-level Monte Carlo and perform a novel comparison of the methods with respect to numerical and parametric errors, as well as computational cost. The results provide a comprehensive view of the necessary steps in UQ analysis and demonstrate some key features of stochastic fluid flow systems.

  9. Application of non-intrusive geophysical techniques at the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Peace, J.L.; Goering, T.J.

    1996-03-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessment and remediation of the Mixed Waste Landfill in Technical Area 3. The Mixed Waste Landfill is an inactive radioactive and mixed waste disposal site. The landfill contains disposal pits and trenches of questionable location and dimension. Non-intrusive geophysical techniques were utilized to provide an effective means of determining the location and dimension of suspected waste disposal trenches before Resource Conservation and Recovery Act intrusive assessment activities were initiated. Geophysical instruments selected for this investigation included a Geonics EM-31 ground conductivity meter, the new Geonics EM-61 high precision, time-domain metal detector, and a Geometrics 856 total field magnetometer. The results of these non-intrusive geophysical techniques were evaluated to enhance the efficiency and cost-effectiveness of future waste-site investigations at Environmental Restoration Project sites

  10. assessment of Seawater Intrusion in Concrete by Measuring Chlorine Concentration

    International Nuclear Information System (INIS)

    Abdel-Monem, A.M.; Kansouh, W.A.; Osman, A.M.; Bashter, I.I.

    2011-01-01

    The object of this work is to measure water intrusion in concrete using a new methodology based on neutron activation technique. The applied method depends on measuring the activated gamma energy lines emitted from 38 Cl using a gamma spectrometer with Ge(Li) and HPGe detectors. Concrete samples with different percentages of silica fume (SF), up to 20 % submerged in seawater for different period of time were used to perform the investigation. Samples of concrete taken from different positions along the direction of water intrusion in concrete block were irradiated by thermal neutrons using the irradiation cell of 252 Cf neutron source and one of the vertical channels of search reactor at Delft University. The measured 38 Cl concentrations of the irradiated samples were used to plot groups of water profiles distribution in concrete samples with different SF % and submerged in seawater for different periods. These profiles were compared with the others which use here measured by neutron back emitted method where a satisfactory agreement was observed between the two. Further, the displayed measured results; show that the diffusivity for all water contents decreases with increasing the silica fume percentage up to 15 %. However, for concrete samples with silica fume 20 % the observed phenomenon is reversed due to the deterioration of concrete physical and mechanical properties

  11. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

    Science.gov (United States)

    Dai, Jian; Yu, NanJia; Cai, GuoBiao

    2015-12-01

    Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

  12. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kuntoro, Hadiyan Yusuf, E-mail: hadiyan.y.kuntoro@mail.ugm.ac.id; Majid, Akmal Irfan; Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Center for Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281 (Indonesia); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia); Hudaya, Akhmad Zidni; Dinaryanto, Okto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia)

    2016-06-03

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (h{sub L}) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.

  13. Heat flow measurements in the vicinity of Great Meteor East, Madeira Abyssal Plain, during Darwin Cruise CD9B

    International Nuclear Information System (INIS)

    Noel, M.; Hounslow, M.W.

    1986-12-01

    This report describes 37 new measurements of heat flow in the Madeira Abyssal Plain. These have comprised 22 values in the Great Meteor East Study Area and 15 measurements in the newly defined ''10 km Box'' to the southeast of this region. The aim of the project has been to examine in more detail than hitherto the thermal and fluid processes operating in the oceanic crust. For this purpose, a new thermistor string, with 1/2 m sensor spacing was used. Also, the heat flux data have been compared to the output from a finite element model for heat conduction. No non-linear sediment temperature profiles were discovered indicating that vertical advection of water through the sediment is absent or slow. The results of numerical modelling imply that the variability of measured heat flow cannot be explained entirely on the basis of basement topography. It is necessary to invoke either vertical basement intrusions of differing conductivity or basement hydrothermal circulation. (author)

  14. Full-Volume, Three-Dimensional, Transient Measurements of Bubbly Flows Using Particle Tracking Velocimetry and Shadow Image Velocimetry Coupled with Pattern Recognition Techniques

    International Nuclear Information System (INIS)

    Yassin Hassan

    2001-01-01

    Develop a state-of-the-art non-intrusive diagnostic tool to perform simultaneous measurements of both the temporal and three-dimensional spatial velocity of the two phases of a bubbly flow. These measurements are required to provide a foundation for studying the constitutive closure relations needed in computational fluid dynamics and best-estimate thermal hydraulic codes employed in nuclear reactor safety analysis and severe accident simulation. Such kinds of full-field measurements are not achievable through the commonly used point-measurement techniques, such as hot wire, conductance probe, laser Doppler anemometry, etc. The results can also be used in several other applications, such as the dynamic transport of pollutants in water or studies of the dispersion of hazardous waste

  15. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  16. [Analysis of intrusion errors in free recall].

    Science.gov (United States)

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  17. Non-unique inclusion in a flow and vast centralizer of a generic measure-preserving transformation

    International Nuclear Information System (INIS)

    Stepin, A M; Eremenko, A M

    2004-01-01

    The problem of the inclusion in a flow is considered for a measure-preserving transformation. It is shown that if a transformation T has a simple spectrum, then the set of flows including T - provided that it is not empty - consists either of a unique element or of infinitely many spectrally non-equivalent flows. It is proved that, generically, inclusions in a flow are maximally non-unique in the following sense: the centralizer of a generic transformation contains a subgroup isomorphic to an infinite-dimensional torus. The corresponding proof is based on the so-called dynamical alternative, a topological analogue of Fubini's theorem, a fundamental fact from descriptive set theory about the almost openness of analytic sets, and Dougherty's lemma describing conditions ensuring that the image of a separable metric space is a second-category set.

  18. Jurassic ash-flow sheets, calderas, and related intrusions of the Cordilleran volcanic arc in southeastern Arizona: implications for regional tectonics and ore deposits

    Science.gov (United States)

    Lipman, P.W.; Hagstrum, J.T.

    1992-01-01

    Volcanologic, petrologic, and paleomagnetic studies of widespread Jurassic ash-flow sheets in the Huachuca-southern Dragoon Mountains area have led to identification of four large source calderas and associated comagnetic intracaldera intrusions. Stratigraphic, facies, and contact features of the caldera-related tuffs also provide constraints on the locations, lateral displacements, and very existence for some major northwest-trending faults and inferred regional thrusts in southeastern Arizona. Silicic alkalic compositions of the Jurassic caldera-related, ash-flow tuffs; bimodal associated mafic magmatism; and interstratified coarse sedimentary deposits provide evidence for synvolcanic extension and rifting within the Cordilleran magmatic arc. Gold-copper mineralization is associated with subvolcanic intrusions at several of the Jurassic calderas. -from Authors

  19. Rapid laccolith intrusion driven by explosive volcanic eruption.

    Science.gov (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves

    2016-11-23

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  20. Non-Intrusive Solution of Stochastic and Parametric Equations

    KAUST Repository

    Matthies, Hermann

    2015-01-07

    the subspace spanned by the approximating functions. Usually this will involve minimising some norm of the difference between the true parametric solution and the approximation. Such methods are sometimes called pseudo-spectral projections, or regression solutions. On the other hand, methods which try to ensure that the approximation satisfies the parametric equation as well as possible are often based on a Rayleigh-Ritz or Galerkin type of “ansatz”, which leads to a coupled system for the unknown coefficients. This is often taken as an indication that the original solver can not be used, i.e. that these methods are “intrusive”. But in many circumstances these methods may as well be used in a non-intrusive fashion. Some very effective new methods based on low-rank approximations fall in the class of “not obviously non-intrusive” methods; hence it is important to show here how this may be computed non-intrusively.

  1. Non-Intrusive Solution of Stochastic and Parametric Equations

    KAUST Repository

    Matthies, Hermann

    2015-01-01

    the subspace spanned by the approximating functions. Usually this will involve minimising some norm of the difference between the true parametric solution and the approximation. Such methods are sometimes called pseudo-spectral projections, or regression solutions. On the other hand, methods which try to ensure that the approximation satisfies the parametric equation as well as possible are often based on a Rayleigh-Ritz or Galerkin type of “ansatz”, which leads to a coupled system for the unknown coefficients. This is often taken as an indication that the original solver can not be used, i.e. that these methods are “intrusive”. But in many circumstances these methods may as well be used in a non-intrusive fashion. Some very effective new methods based on low-rank approximations fall in the class of “not obviously non-intrusive” methods; hence it is important to show here how this may be computed non-intrusively.

  2. The Electrical Self-Potential Method as a Non-Intrusive Snow-Hydrological Sensor

    Science.gov (United States)

    Kulessa, B.; Thompson, S. S.; Luethi, M. P.; Essery, R.

    2015-12-01

    Building on growing momentum in the application of geophysical techniques to snow problems and, specifically, on new theory and an electrical geophysical snow hydrological model published recently; we demonstrate for the first time that the electrical self-potential geophysical technique can sense in-situ bulk meltwater fluxes. This has broad and immediate implications for snow measurement practice, modelling and operational snow forecasting. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.

  3. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1997-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is used to measure the time varying full field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. PIV can be used to study turbulence structures if a sufficient amount of data can be acquired and analyzed, and it can also be extended to study two-phase flows if both phases can be distinguished. In this study, the flow structure around a bubble rising in a pipe filled with water was studied in three-dimensions. The velocity of the rising bubble and the velocity field of the surrounding water was measured. Then the turbulence intensities and Reynolds stresses were calculated from the experimental data. (author)

  4. Resident Load Influence Analysis Method for Price Based on Non-intrusive Load Monitoring and Decomposition Data

    Science.gov (United States)

    Jiang, Wenqian; Zeng, Bo; Yang, Zhou; Li, Gang

    2018-01-01

    In the non-invasive load monitoring mode, the load decomposition can reflect the running state of each load, which will help the user reduce unnecessary energy costs. With the demand side management measures of time of using price, a resident load influence analysis method for time of using price (TOU) based on non-intrusive load monitoring data are proposed in the paper. Relying on the current signal of the resident load classification, the user equipment type, and different time series of self-elasticity and cross-elasticity of the situation could be obtained. Through the actual household load data test with the impact of TOU, part of the equipment will be transferred to the working hours, and users in the peak price of electricity has been reduced, and in the electricity at the time of the increase Electrical equipment, with a certain regularity.

  5. Multiscale Pore Throat Network Reconstruction of Tight Porous Media Constrained by Mercury Intrusion Capillary Pressure and Nuclear Magnetic Resonance Measurements

    Science.gov (United States)

    Xu, R.; Prodanovic, M.

    2017-12-01

    Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable

  6. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  7. Characterization of mixed waste for sorting and inspection using non-intrusive methods

    International Nuclear Information System (INIS)

    Roberson, G.P.; Ryon, R.W.; Bull, N.L.

    1994-12-01

    Characterization of mixed wastes (that is, radioactive and otherwise hazardous) requires that all hazardous, non-conforming, and radioactive materials be identified, localized, and quantified. With such information, decisions can be made regarding whether the item is treatable or has been adequately treated. Much of the required information can be gained without taking representative samples and analyzing them in a chemistry laboratory. Non-intrusive methods can be used to provide this information on-line at the waste treatment facility. Ideally, the characterization would be done robotically, and either automatically or semi-automatically in order to improve efficiency and safety. For the FY94 Mixed Waste Operations (MWO) project, a treatable waste item is defined as a homogeneous metal object that has external radioactive or heavy metal hazardous contamination. Surface treatment of some kind would therefore be the treatment method to be investigated. The authors developed sorting and inspection requirements, and assessed viable non-intrusive techniques to meet these requirements. They selected radiography, computed tomography and X-ray fluorescence. They have characterized selected mock waste items, and determined minimum detectable amounts of materials. They have demonstrated the efficiency possible by integrating radiographic with tomographic data. Here, they developed a technique to only use radiographic data where the material is homogeneous (fast), and then switching to tomography in those areas where heterogeneity is detected (slower). They also developed a tomographic technique to quantify the volume of each component of a mixed material. This is useful for such things as determining ash content. Lastly, they have developed a document in MOSAIC, an Internet multi-media browser. This document is used to demonstrate the ability to share data and information world-wide

  8. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.

    Science.gov (United States)

    Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth

    2012-10-01

    Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.

  9. Our experience of blood flow measurements using radioactive tracers

    International Nuclear Information System (INIS)

    Danet, Bernard.

    1974-01-01

    A critical study of blood flow measuring methods is proposed. After a review of the various diffusible and non-diffusible radioactive tracers and the corresponding detector systems, the principles which allow to measure blood flow from the data so obtained, are studied. There is a different principle of flow measurement for each type of tracer. The theory of flow measurement using non-diffusible tracers (human serum albumin labelled with 131 I or sup(99m)Tc, 113 In-labelled siderophiline) and its application to cardiac flow measurement are described first. Then the theory of flow measurement using diffusible tracers ( 133 Xe, 85 Kr) and its application to measurement of blood flow through tissues (muscles and kidney particularly) are described. A personal experience of this various flow measurements is reported. The results obtained, the difficulties encountered and the improvments proposed are developed [fr

  10. Non-intrusive uncertainty quantification in structural-acoustic systems using polynomial chaos expansion method

    Directory of Open Access Journals (Sweden)

    Wang Mingjie

    2017-01-01

    Full Text Available A framework of non-intrusive polynomial chaos expansion method (PC was proposed to investigate the statistic characteristics of the response of structural-acoustic system containing random uncertainty. The PC method does not need to reformulate model equations, and the statistics of the response can be evaluated directly. The results show that compared to the direct Monte Carlo method (MCM based on the original numerical model, the PC method is effective and more efficient.

  11. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Hengl, St.

    1996-09-01

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  12. Orthodontic intrusion : Conventional and mini-implant assisted intrusion mechanics

    Directory of Open Access Journals (Sweden)

    Anup Belludi

    2012-01-01

    intrusion has revolutionized orthodontic anchorage and biomechanics by making anchorage perfectly stable. This article addresses various conventional clinical intrusion mechanics and especially intrusion using mini-implants that have proven effective over the years for intrusion of maxillary anteriors.

  13. Real time EM waves monitoring system for oil industry three phase flow measurement

    International Nuclear Information System (INIS)

    Al-Hajeri, S; Wylie, S R; Shaw, A; Al-Shamma'a, A I

    2009-01-01

    Monitoring fluid flow in a dynamic pipeline is a significant problem in the oil industry. In order to manage oil field wells efficiently, the oil industry requires accurate on line sensors to monitor the oil, gas, and water flow in the production pipelines. This paper describes a non-intrusive sensor that is based on an EM Waves cavity resonator. It determines and monitors the percentage volumes of each phase of three phase (oil, gas, and water) in the pipeline, using the resonant frequencies shifts that occur within an electromagnetic cavity resonator. A laboratory prototype version of the sensor system was constructed, and the experimental results were compared to the simulation results which were obtained by the use of High Frequency Structure Simulation (HFSS) software package.

  14. Measurement of acoustic velocity components in a turbulent flow using LDV and high-repetition rate PIV

    Science.gov (United States)

    Léon, Olivier; Piot, Estelle; Sebbane, Delphine; Simon, Frank

    2017-06-01

    The present study provides theoretical details and experimental validation results to the approach proposed by Minotti et al. (Aerosp Sci Technol 12(5):398-407, 2008) for measuring amplitudes and phases of acoustic velocity components (AVC) that are waveform parameters of each component of velocity induced by an acoustic wave, in fully turbulent duct flows carrying multi-tone acoustic waves. Theoretical results support that the turbulence rejection method proposed, based on the estimation of cross power spectra between velocity measurements and a reference signal such as a wall pressure measurement, provides asymptotically efficient estimators with respect to the number of samples. Furthermore, it is shown that the estimator uncertainties can be simply estimated, accounting for the characteristics of the measured flow turbulence spectra. Two laser-based measurement campaigns were conducted in order to validate the acoustic velocity estimation approach and the uncertainty estimates derived. While in previous studies estimates were obtained using laser Doppler velocimetry (LDV), it is demonstrated that high-repetition rate particle image velocimetry (PIV) can also be successfully employed. The two measurement techniques provide very similar acoustic velocity amplitude and phase estimates for the cases investigated, that are of practical interest for acoustic liner studies. In a broader sense, this approach may be beneficial for non-intrusive sound emission studies in wind tunnel testings.

  15. Potential for saltwater intrusion into the lower Tamiami aquifer near Bonita Springs, southwestern Florida

    Science.gov (United States)

    Shoemaker, W. Barclay; Edwards, K. Michelle

    2003-01-01

    A study was conducted to examine the potential for saltwater intrusion into the lower Tamiami aquifer beneath Bonita Springs in southwestern Florida. Field data were collected, and constant- and variable-density ground-water flow simulations were performed that: (1) spatially quantified modern and seasonal stresses, (2) identified potential mechanisms of saltwater intrusion, and (3) estimated the potential extent of saltwater intrusion for the area of concern. MODFLOW and the inverse modeling routine UCODE were used to spatially quantify modern and seasonal stresses by calibrating a constant-density ground-water flow model to field data collected in 1996. The model was calibrated by assuming hydraulic conductivity parameters were accurate and by estimating unmonitored ground-water pumpage and potential evapotranspiration with UCODE. Uncertainty in these estimated parameters was quantified with 95-percent confidence intervals. These confidence intervals indicate more uncertainty (or less reliability) in the estimates of unmonitored ground-water pumpage than estimates of pan-evaporation multipliers, because of the nature and distribution of observations used during calibration. Comparison of simulated water levels, streamflows, and net recharge with field data suggests the model is a good representation of field conditions. Potential mechanisms of saltwater intrusion into the lower Tamiami aquifer include: (1) lateral inland movement of the freshwater-saltwater interface from the southwestern coast of Florida; (2) upward leakage from deeper saline water-bearing zones through natural upwelling and upconing, both of which could occur as diffuse upward flow through semiconfining layers, conduit flow through karst features, or pipe flow through leaky artesian wells; (3) downward leakage of saltwater from surface-water channels; and (4) movement of unflushed pockets of relict seawater. Of the many potential mechanisms of saltwater intrusion, field data and variable

  16. Non-intrusive long-term monitoring approaches

    International Nuclear Information System (INIS)

    Smathers, D.; Mangan, D.

    1998-01-01

    In order to promote internatinal confidence that the US and Russia are disarming per their commitments under Article 6 of the Non-Proliferation Treaty, an international verification regime may be applied to US and Russian excess fissile materials. Initially, it is envisioned that this verification regime would be applied at storage facilities; however, it should be anticipated that the verification regime would continue throughout any material disposition activities, should such activities be pursued. once the materials are accepted into the verification regime, it is assumed that long term monitoring will be used to maintain continuity of knowledge. The requirements for long term storage monitoring include unattended operation for extended periods of time, minimal intrusiveness on the host nation's safety and security activities, data collection incorporating data authentication, and monitoring redundancy to allow resolution of anomalies and to continue coverage in the event of equipment failures. Additional requirements include effective data review and analysis processes, operation during storage facility loading, procedure for removal of inventory items for safety-related surveillance, and low cost, reliable equipment. A monitoring system might include both continuous monitoring of storagecontainers and continuous area monitoring. These would be complemented with periodic on-site inspections. A fissile material storage facility is not a static operation. The initial studies have shown there are a number of valid reasons why a host nation may need them to remove material from the storage facility. A practical monitoring system must be able to accommodate necessary material movements

  17. A Non-Intrusive Cyber Physical Social Sensing Solution to People Behavior Tracking: Mechanism, Prototype, and Field Experiments.

    Science.gov (United States)

    Jia, Yunjian; Zhou, Zhenyu; Chen, Fei; Duan, Peng; Guo, Zhen; Mumtaz, Shahid

    2017-01-13

    Tracking people's behaviors is a main category of cyber physical social sensing (CPSS)-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS) and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi)-based tracking method. To show the feasibility, we target tracking people's access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC)-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people's access behaviors can be correctly tracked within a one-second delay.

  18. NMRI Measurements of Flow of Granular Mixtures

    Science.gov (United States)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  19. Human intrusion

    International Nuclear Information System (INIS)

    Hora, S.; Neill, R.; Williams, R.; Bauser, M.; Channell, J.

    1993-01-01

    This paper focused on the possible approaches to evaluating the impacts of human intrusion on nuclear waste disposal. Several major issues were reviewed. First, it was noted that human intrusion could be addressed either quantitatively through performance assessments or qualitatively through design requirements. Second, it was decided that it was impossible to construct a complete set of possible future human intrusion scenarios. Third, the question of when the effect of possible human intrusion should be considered, before or after site selection was reviewed. Finally, the time frame over which human intrusion should be considered was discussed

  20. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C

    1989-01-01

    , corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...... arrest. The mean T2 of non-flowing blood was found to be 105 +/- 31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate......Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve...

  1. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-04-01

    High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.

  2. Multifidelity, Multidisciplinary Design Under Uncertainty with Non-Intrusive Polynomial Chaos

    Science.gov (United States)

    West, Thomas K., IV; Gumbert, Clyde

    2017-01-01

    The primary objective of this work is to develop an approach for multifidelity uncertainty quantification and to lay the framework for future design under uncertainty efforts. In this study, multifidelity is used to describe both the fidelity of the modeling of the physical systems, as well as the difference in the uncertainty in each of the models. For computational efficiency, a multifidelity surrogate modeling approach based on non-intrusive polynomial chaos using the point-collocation technique is developed for the treatment of both multifidelity modeling and multifidelity uncertainty modeling. Two stochastic model problems are used to demonstrate the developed methodologies: a transonic airfoil model and multidisciplinary aircraft analysis model. The results of both showed the multifidelity modeling approach was able to predict the output uncertainty predicted by the high-fidelity model as a significant reduction in computational cost.

  3. Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)

    2008-07-01

    Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.

  4. Approach for Assessing Human Intrusion into a Radwaste Repository

    International Nuclear Information System (INIS)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon

    2016-01-01

    An approach to assess human intrusion into radwaste repository resulting from future human actions was proposed based on the common principals, requirements, and recommendations from IAEA, ICRP, and OECD/NEA, with the assumption that the intrusion occurs after loss of knowledge of the hazardous nature of the disposal facility. At first, the essential boundary conditions were derived on the basis of international recommendations, followed by overall approach to deal with inadvertent human intrusion. The essential premises were derived on the basis of international recommendations, followed by overall approach to deal with inadvertent human intrusion. The procedure to derive protective measures was also explained with four steps regarding how to derive safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be effectively used to reduce the potential for and/or consequence of human intrusion during entire processes of realization of disposal facility.

  5. Microstructure in hardened cement pastes measured by mercury intrusion porosimetry and low temperature microcalorimetry

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Baroghel, V.B.; Künzel, H.M.

    1996-01-01

    The present paper is presenting some of the results on microstructure from the CEC-Science Project CT91-0737 "Characterization of microstructure as a tool for prediction of moisture transfer in porous media". In the Project the microstructure for the porous media is studied by absorption isotherms......, image analysis, mercury intrusion porosimetry and low temperature microcalorimetry.The present paper is dealing with cumulated pore size distributions measured by mercury intrusion porosimetry (MIP) from two laboratories (LCPC, IBP) and low temperature microcalorimetry (CAL) from one laboratory (BKM......). The materials are five different hardened cement pastes. The materials, the preparation procedure for the samples, the experiments and the experimental results are described. Finally, the results are compared and discussed....

  6. A 3D imaging system for the non-intrusive in-flight measurement of the deformation of an aircraft propeller and a helicopter rotor

    Science.gov (United States)

    Stasicki, Bolesław; Boden, Fritz; Ludwikowski, Krzysztof

    2017-02-01

    The non-intrusive in-flight deformation measurement and the resulting local pitch of an aircraft propeller or helicopter rotor blade is a demanding task. The idea of an imaging system integrated and rotating with the air-craft propeller has already been presented at the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been designed, constructed and tested in the laboratory as well as in-flight on the Cobra VUT100 of Evektor Aerotechnik, Kunovice (CZ). The major aim of the EU FP7 project AIM2 ("Advanced In-flight Measurement techniques 2" - contract No. 266107) was to ascertain the feasibility of this technique under extreme conditions - vibration and large centrifugal forces - to real flight testing. Based on the gained experience a new rotating system for the application on helicopter rotors has recently been constructed and tested on the whirl tower of Airbus Helicopters, Donauwoerth (D). In this paper the principle of the applied Image Pattern Correlation Technique (IPCT), a specialized type of Digital Image Correlation (DIC), is outlined and the construction of both rotating 3D image acquisition systems dedicated to the in-flight deformation measurement of the aircraft propeller and helicopter rotor are described. Furthermore, the results of the ground and in-flight tests of these systems will be shown and discussed. The obtained results will be helpful for manufacturers in the design of their future aircrafts.

  7. In vivo evaluation of femoral blood flow measured with magnetic resonance

    International Nuclear Information System (INIS)

    Henriksen, O.; Staahlberg, F.; Thomsen, C.; Moegelvang, J.; Persson, B.; Lund Univ.

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve, corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory arrest. The mean T2 of non-flowing blood was found to be 105±31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate that in vivo blood flow measurements made with MRI based on wash-out effects, commonly used in multiple spin echo imaging, do not give reliable absolute values for blood flow in the femoral artery or vein. (orig.)

  8. Synergy of climate change and local pressures on saltwater intrusion in heterogeneous coastal aquifers

    Science.gov (United States)

    Abou Najm, M.; Safi, A.; El-Fadel, M.; Doummar, J.; Alameddine, I.

    2016-12-01

    The relative importance of climate change induced sea level rise on the salinization of a highly urbanized karstified coastal aquifers were compared with non-sustainable pumping. A 3D variable-density groundwater flow and solute transport model was used to predict the displacement of the saltwater-freshwater interface in a pilot aquifer located along the Eastern Mediterranean. The results showed that the influence of sea level rise was marginal when compared with the encroachment of salinity associated with anthropogenic abstraction. Model predictions of salinity mass and volumetric displacement of the interface corresponding to a long-term monthly transient model showed that the saltwater intrusion dynamic is highly sensitive to change in the abstraction rates which were estimated based on combinations of water consumption rates and population growth rates. Salinity encroachment, however, appeared to be more sensitive to water consumption rates in comparison to population growth rates, where a 50% increase in the rate of former led to four times more intrusion as compared to an equivalent increase in population growth rate over 20 years. Coupling both increase in population growth and increased consumption rates had a synergistic effect that aggravated the intrusion beyond the sum of the individual impacts. Adaptation strategies targeting a decrease in groundwater exploitation proved to be effective in retarding the intrusion.

  9. Chain-computerisation for better privacy protection : a new approach to developing non-intrusive information infrastructures that improve privacy protection

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    1999-01-01

    This is the second of a series of two articles in which the author presents some key elements from his recently completed thesis about functional, non-intrusive information infrastructures for interorganisational public policy implementation. The development of these information infrastructures

  10. A Non-Intrusive Cyber Physical Social Sensing Solution to People Behavior Tracking: Mechanism, Prototype, and Field Experiments

    Directory of Open Access Journals (Sweden)

    Yunjian Jia

    2017-01-01

    Full Text Available Tracking people’s behaviors is a main category of cyber physical social sensing (CPSS-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi-based tracking method. To show the feasibility, we target tracking people’s access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people’s access behaviors can be correctly tracked within a one-second delay.

  11. Effective use of surface-water management to control saltwater intrusion

    Science.gov (United States)

    Hughes, J. D.; White, J.

    2012-12-01

    The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control

  12. Development of an Assessment Procedure for Seawater Intrusion Mitigation

    Science.gov (United States)

    Hsi Ting, F.; Yih Chi, T.

    2017-12-01

    The Pingtung Plain is one of the areas with extremely plentiful groundwater resources in Taiwan. Due to that the application of the water resource is restricted by significant variation of precipitation between wet and dry seasons, groundwater must be used as a recharge source to implement the insufficient surface water resource during dry seasons. In recent years, the coastal aquaculture rises, and the over withdrawn of groundwater by private well results in fast drop of groundwater level. Then it causes imbalance of groundwater supply and leads to serious seawater intrusion in the coastal areas. The purpose of this study is to develop an integrated numerical model of groundwater resources and seawater intrusion. Soil and Water Assessment Tool (SWAT), MODFLOW and MT3D models were applied to analyze the variation of the groundwater levels and salinity concentration to investigate the correlation of parameters, which are used to the model applications in order to disposal saltwater intrusion. The data of groundwater levels, pumping capacity and hydrogeological data to were collected to build an integrated numerical model. Firstly, we will collect the information of layered aquifer and the data of hydrological parameters to build the groundwater numerical model at Pingtung Plain, and identify the amount of the groundwater which flow into the sea. In order to deal with the future climate change conditions or extreme weather conditions, we will consider the recharge with groundwater model to improve the seawater intrusion problem. The integrated numerical model which describes that seawater intrusion to deep confined aquifers and shallow unsaturated aquifers. Secondly, we will use the above model to investigate the weights influenced by different factors to the amount area of seawater intrusion, and predict the salinity concentration distribution of evaluation at coastal area of Pingtung Plain. Finally, we will simulate groundwater recharge/ injection at the coastal

  13. Status and challenges of residential and industrial non-intrusive load monitoring

    DEFF Research Database (Denmark)

    Adabi, Ali; Mantey, Patrick; Holmegaard, Emil

    2015-01-01

    in recent years due to improvement in algorithms and methodologies. Currently, the important challenges facing residential NILM are inaccessibility of electricity meter high sampling data, and lack of reliable high resolution datasets. For industrial NILM the identification is more challenging due......Non-Intrusive Load Monitoring (NILM) is the process of identification of loads from an aggregate power interface using disaggregation algorithms. This paper identifies the current status, methodologies and challenges of NILM in residential and industrial settings. NILM has advanced substantially...... to increased number of loads and the variability of equipment type, temporal patterns and industrial secrecy. From our examination of data and its use in NILM, we observe that the number of devices that can be recognized and the training period required to achiever recognition is not only a function...

  14. Monitoring and Assessment of Saltwater Intrusion using Geographic Information Systems (GIS), Remote Sensing and Geophysical measurements of Guimaras Island, Philippines

    Science.gov (United States)

    Hernandez, B. C. B.

    2015-12-01

    Degrading groundwater quality due to saltwater intrusion is one of the key challenges affecting many island aquifers. These islands hold limited capacity for groundwater storage and highly dependent on recharge due to precipitation. But its ease of use, natural storage and accessibility make it more vulnerable to exploitation and more susceptible to encroachment from its surrounding oceanic waters. Estimating the extent of saltwater intrusion and the state of groundwater resources are important in predicting and managing water supply options for the community. In Guimaras island, central Philippines, increasing settlements, agriculture and tourism are causing stresses on its groundwater resource. Indications of saltwater intrusion have already been found at various coastal areas in the island. A Geographic Information Systems (GIS)-based approach using the GALDIT index was carried out. This includes six parameters assessing the seawater intrusion vulnerability of each hydrogeologic setting: Groundwater occurrence, Aquifer hydraulic conductivity, Groundwater Level above sea, Distance to shore, Impact of existing intrusion and Thickness of Aquifer. To further determine the extent of intrusion, Landsat images of various thematic layers were stacked and processed for unsupervised classification and electrical resistivity tomography using a 28-electrode system with array lengths of 150 and 300 meters was conducted. The GIS index showed where the vulnerable areas are located, while the geophysical measurements and images revealed extent of seawater encroachment along the monitoring wells. These results are further confirmed by the measurements collected from the monitoring wells. This study presents baseline information on the state of groundwater resources and increase understanding of saltwater intrusion dynamics in island ecosystems by providing a guideline for better water resource management in the Philippines.

  15. Human intrusion: issues concerning its assessment

    International Nuclear Information System (INIS)

    Grimwood, P.D.; Smith, G.M.

    1989-01-01

    The potential significance of human intrusion in the performance assessment of radioactive waste repositories has been increasingly recognized in recent years. It is however an area of assessment in which subjective judgments dominate. This paper identifies some of the issues involved. These include regulatory criteria, scenario development, probability assignment, consequence assessment and measures to mitigate human intrusion

  16. Wave Induced Saline Intrusion in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Burrows, Richard

    1989-01-01

    Experimental and numerical studies have shown that the influence of wave increases the tendency of saline intrusion in multi-riser sea outfalls. The flow field in the diffusor under such unsteady and inhomogeneous circumstances is in general very complex, but when sufficient wave energy is dissip...

  17. Multi-scale full-field measurements and near-wall modeling of turbulent subcooled boiling flow using innovative experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin A., E-mail: y-hassan@tamu.edu

    2016-04-01

    Highlights: • Near wall full-field velocity components under subcooled boiling were measured. • Simultaneous shadowgraphy, infrared thermometry wall temperature and particle-tracking velocimetry techniques were combined. • Near wall velocity modifications under subcooling boiling were observed. - Abstract: Multi-phase flows are one of the challenges on which the CFD simulation community has been working extensively with a relatively low success. The phenomena associated behind the momentum and heat transfer mechanisms associated to multi-phase flows are highly complex requiring resolving simultaneously for multiple scales on time and space. Part of the reasons behind the low predictive capability of CFD when studying multi-phase flows, is the scarcity of CFD-grade experimental data for validation. The complexity of the phenomena and its sensitivity to small sources of perturbations makes its measurements a difficult task. Non-intrusive and innovative measuring techniques are required to accurately measure multi-phase flow parameters while at the same time satisfying the high resolution required to validate CFD simulations. In this context, this work explores the feasible implementation of innovative measuring techniques that can provide whole-field and multi-scale measurements of two-phase flow turbulence, heat transfer, and boiling parameters. To this end, three visualization techniques are simultaneously implemented to study subcooled boiling flow through a vertical rectangular channel with a single heated wall. These techniques are listed next and are used as follow: (1) High-speed infrared thermometry (IR-T) is used to study the impact of the boiling level on the heat transfer coefficients at the heated wall, (2) Particle Tracking Velocimetry (PTV) is used to analyze the influence that boiling parameters have on the liquid phase turbulence statistics, (3) High-speed shadowgraphy with LED illumination is used to obtain the gas phase dynamics. To account

  18. Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-03-01

    This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.

  19. Trial on MR portal blood flow measurement with phase contrast technique

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Togami, Izumi

    1991-01-01

    Portal blood flow measurement is considered to be important for the analysis of hemodynamics in various liver diseases. The Doppler ultrasound method has been used extensively during the past several years for measuring portal blood flow, as a non-invasive method. However, the Doppler ultrasound technique do not allow the portal blood flow to be measured in cases of obesity, with much intestinal gas, and so on. In this study, we attempted to measure the blood flow in the main trunk of portal vein as an application of MR phase contrast technique to the abdominal region. In the flow phantom study, the flow volumes and the velocities measured by phase contrast technique showed a close correlation with those measured by electromagnetic flowmeter. In the clinical study with 10 healthy volunteers, various values of portal blood flow were obtained. Mean portal blood flow could be measured within the measuring time (about 8 minutes) under natural breathing conditions. Phase contrast technique is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  20. Chain-computerisation for interorganisational public policy implementation : A new approach to developing non-intrusive information infrastructures that improve public policy implementation

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    1999-01-01

    In two articles the author presents some key elements from his recently completed thesis about functional, non-intrusive information infrastructures for interorganisational public policy implementation. The development of these information infrastructures requires a new approach,

  1. The contribution of thought-action fusion and thought suppression in the development of obsession-like intrusions in normal participants.

    Science.gov (United States)

    Rassin, E

    2001-09-01

    Both thought-action fusion (TAF: i.e., a cognitive bias implying an inflated sense of responsibility for one's own thoughts) and thought suppression have been claimed to contribute to the development of obsession-like intrusions. Therefore, it seems plausible that conjunction of these phenomena results in highly intense intrusions. However, possible interactions between TAF and thought suppression have not yet been investigated experimentally. In the current study, healthy volunteers were exposed to a TAF-like intrusion. They were, then, randomly assigned to a suppression (n=21) or non-suppression condition (n=19). Next, visual analogue scales (VASs) were completed measuring anxiety, feelings of responsibility and guilt, urge to neutralise and so on. Contrary to expectation, several VAS scores were lower for participants in the suppression group than for those in the non-suppression group. Hence, it is concluded that thought suppression may, at least in the short term, alleviate discomfort caused by TAF-like intrusions.

  2. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  3. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza; Validi, AbdoulAhad; Iaccarino, Gianluca

    2013-01-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  4. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza

    2013-08-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  5. Intelligent Position Aware Mobile Services for Seamless and Non-Intrusive Clocking-in

    Directory of Open Access Journals (Sweden)

    Sergio Ríos Aguilar

    2014-03-01

    Full Text Available This paper analyzes the viability of the use of employees smartphones as a valid tool for companies in order to conduct presence control. A Mobile Location Aware Information System is also proposed for a non intrusive Presence Control using exclusively terminal-based reactive location technologies, meeting cost minimization, and universal access criteria. The focus is providing trust to the employees, so that they feel safe and in control of when the location data is gathered while satisfying the control needs of the employer. LAMS platform is a state-of-the-art framework for synchronous mobile location-aware content personalization, using A-GPS terminal-based/network assisted mobile positioning techniques and UAProf data processing at the origin server.

  6. Saltwater intrusion monitoring in Florida

    Science.gov (United States)

    Prinos, Scott T.

    2016-01-01

    Florida's communities are largely dependent on freshwater from groundwater aquifers. Existing saltwater in the aquifers, or seawater that intrudes parts of the aquifers that were fresh, can make the water unusable without additional processing. The quality of Florida's saltwater intrusion monitoring networks varies. In Miami-Dade and Broward Counties, for example, there is a well-designed network with recently constructed short open-interval monitoring wells that bracket the saltwater interface in the Biscayne aquifer. Geochemical analyses of water samples from the network help scientists evaluate pathways of saltwater intrusion and movement of the saltwater interface. Geophysical measurements, collected in these counties, aid the mapping of the saltwater interface and the design of monitoring networks. In comparison, deficiencies in the Collier County monitoring network include the positioning of monitoring wells, reliance on wells with long open intervals that when sampled might provide questionable results, and the inability of existing analyses to differentiate between multiple pathways of saltwater intrusion. A state-wide saltwater intrusion monitoring network is being planned; the planned network could improve saltwater intrusion monitoring by adopting the applicable strategies of the networks of Miami-Dade and Broward Counties, and by addressing deficiencies such as those described for the Collier County network.

  7. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  8. Aero-Optical Wavefront Propagation and Refractive Fluid Interfaces in Large-Reynolds-Number Compressible Turbulent Flows

    National Research Council Canada - National Science Library

    Catrakis, Haris J; Jefferies, Rhett

    2005-01-01

    ... of the refractive field and interfaces. Direct, non-intrusive, and non-integrated imaging of the refractive index field in purely gaseous flows is achieved using laser induced fluorescence of acetone vapor molecularly premixed in air...

  9. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    International Nuclear Information System (INIS)

    Brugiere, O; Balarac, G; Corre, C; Metais, O; Flores, E; Pleroy

    2012-01-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  10. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    Science.gov (United States)

    Brugiere, O.; Balarac, G.; Corre, C.; Metais, O.; Flores, E.; Pleroy

    2012-11-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  11. Preliminary experimental results for a non-intrusive scheme for the detection of flaws in metal pipelines

    Science.gov (United States)

    Aydin, K.; Shinde, S.; Suhail, M.; Vyas, A.; Zieher, K. W.

    2002-05-01

    An acoustic pulse echo scheme for non-intrusive detection of flaws in metal pipelines has been investigated in the laboratory. The primary pulse is generated by a pulsed magnetic field enclosing a short section of a free pipe. The detection is by an electrostatic detector surrounding a short section of the pipe. Reflected pulses from thin areas, with a longitudinal extension of about one pipe radius and a reduction of the wall thickness of 40%, can be detected clearly.

  12. The appraisal of intrusive thoughts in relation to obsessional-compulsive symptoms.

    Science.gov (United States)

    Barrera, Terri L; Norton, Peter J

    2011-01-01

    Research has shown that although intrusive thoughts occur universally, the majority of individuals do not view intrusive thoughts as being problematic (Freeston, Ladouceur, Thibodeau, & Gagnon, 1991; Rachman & de Silva, 1978; Salkovskis & Harrison, 1984). Thus, it is not the presence of intrusive thoughts that leads to obsessional problems but rather some other factor that plays a role in the development of abnormal obsessions. According to the cognitive model of obsessive-compulsive disorder (OCD) put forth by Salkovskis (1985), the crucial factor that differentiates between individuals with OCD and those without is the individual's appraisal of the naturally occurring intrusive thoughts. This study aimed to test Salkovskis's model by examining the role of cognitive biases (responsibility, thought-action fusion, and thought control) as well as distress in the relationship between intrusive thoughts and obsessive-compulsive symptoms in an undergraduate sample of 326 students. An existing measure of intrusive thoughts (the Revised Obsessional Intrusions Inventory) was modified for this study to include a scale of distress associated with each intrusive thought in addition to the current frequency scale. When the Yale-Brown Obsessive-Compulsive Scale was used as the measure of OCD symptoms, a significant interaction effect of frequency and distress of intrusive thoughts resulted. Additionally, a significant three-way interaction of Frequency × Distress × Responsibility was found when the Obsessive Compulsive Inventory-Revised was used as the measure of OCD symptoms. These results indicate that the appraisal of intrusive thoughts is important in predicting OCD symptoms, thus providing support for Salkovskis's model of OCD.

  13. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  14. Review on assessment methodology for human intrusion into a repository for radioactive waste

    International Nuclear Information System (INIS)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon

    2016-01-01

    An approach to assess inadvertent human intrusion into radwaste repository was proposed with the assumption that the intrusion occurs after a loss of knowledge of the hazardous nature of the disposal facility. The essential boundary conditions were derived on the basis of international recommendations, followed by an overall approach to deal with inadvertent human intrusion. The interrelation between societal factors, human intrusion scenarios, and protective measures is described to provide a concrete explanation of the approach, including the detailed procedures to set up the human intrusion scenario. The procedure for deriving protective measures is also explained with four steps, including how to derive a safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be used effectively to reduce the potential for and/or the consequences of human intrusion during the entire process of realizing a disposal facility

  15. Review on assessment methodology for human intrusion into a repository for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    An approach to assess inadvertent human intrusion into radwaste repository was proposed with the assumption that the intrusion occurs after a loss of knowledge of the hazardous nature of the disposal facility. The essential boundary conditions were derived on the basis of international recommendations, followed by an overall approach to deal with inadvertent human intrusion. The interrelation between societal factors, human intrusion scenarios, and protective measures is described to provide a concrete explanation of the approach, including the detailed procedures to set up the human intrusion scenario. The procedure for deriving protective measures is also explained with four steps, including how to derive a safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be used effectively to reduce the potential for and/or the consequences of human intrusion during the entire process of realizing a disposal facility.

  16. Evolution of optically nondestructive and data-non-intrusive credit card verifiers

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2010-04-01

    Since the deployment of the credit card, the number of credit card fraud cases has grown rapidly with a huge amount of loss in millions of US dollars. Instead of asking more information from the credit card's holder or taking risk through payment approval, a nondestructive and data-non-intrusive credit card verifier is highly desirable before transaction begins. In this paper, we review optical techniques that have been proposed and invented in order to make the genuine credit card more distinguishable than the counterfeit credit card. Several optical approaches for the implementation of credit card verifiers are also included. In particular, we highlight our invention on a hyperspectral-imaging based portable credit card verifier structure that offers a very low false error rate of 0.79%. Other key features include low cost, simplicity in design and implementation, no moving part, no need of an additional decoding key, and adaptive learning.

  17. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  18. Performance analysis of flow lines with non-linear flow of material

    CERN Document Server

    Helber, Stefan

    1999-01-01

    Flow line design is one of the major tasks in production management. The decision to install a set of machines and buffers is often highly irreversible. It determines both cost and revenue to a large extent. In order to assess the economic impact of any possible flow line design, production rates and inventory levels have to be estimated. These performance measures depend on the allocation of buffers whenever the flow of material is occasionally disrupted, for example due to machine failures or quality problems. The book describes analytical methods that can be used to evaluate flow lines much faster than with simulation techniques. Based on these fast analytical techniques, it is possible to determine a flow line design that maximizes the net present value of the flow line investment. The flow of material through the line may be non-linear, for example due to assembly operations or quality inspections.

  19. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2018-01-01

    Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of

  20. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.

    Science.gov (United States)

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-06-10

    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  1. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    Science.gov (United States)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  2. Local and integral ulrasonic gauges for two-phase flow instrumentation in nuclear reactor and safety technology. Final report

    International Nuclear Information System (INIS)

    Chochlov, V.N.; Duncev, A.V.; Ivanov, V.V.; Kontelev, V.V.; Melnikov, V.I.; Stoppel, L.K.; Prasser, H.M.; Zippe, W.; Zschau, J.; Zboray, R.

    2000-11-01

    The present project was executed in the frame of a co-operation agreement between FZR and the scientific group of Prof. Melnikov of the technical University of Nishny Novgorod (TUNN) in the Russian Federation. It is part of the Federal Government's programme for the provision of advice for Eastern Europe on the building up of democracy and social market economy (TRANSFORM Programme). New methods of two-phase flow instrumentation were developed: Intrusive wave-guide probes can be used for local void fraction measurements. The new ultrasonic mesh sensors allow a fast two-phase flow visualisation with about 250 frames per second. Experiments carried out at the test loop in Rossendorf, but also the tests at the DESIRE facility in Delft have shown that both local wave-guide probes and ultrasonic mesh sensors can be successfully applied under the conditions of high pressure and temperature steam-water mixture, as well as in organic liquids and refrigerants. Furthermore, non-intrusive wave-guide sensors as well as density sensors based on the measurement of the wave propagation velocity in wave-guides immersed into the measuring liquid were developed and tested. In the present stage of the development, the non-intrusive sensors can rather be used for a qualitative gas respectively level detection than for void fraction measurements. The wave-guide density sensor was successfully demonstrated that it is able to measure densities of single-phase liquids. It requires further development of the electronic circuitry. The main innovation was achieved by the development of the ultrasonic mesh sensor, the resoluting capability of which is comparable to methods like electrical wire-mesh sensors and ultra-fast X-ray tomography, while the device itself is robust and low expensive. (orig.) [de

  3. A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers

    Science.gov (United States)

    Koussis, Antonis D.; Mazi, Katerina; Riou, Fabien; Destouni, Georgia

    2015-06-01

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by ∼20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  4. Efficient cooling of rocky planets by intrusive magmatism

    Science.gov (United States)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.

    2018-05-01

    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  5. Young women's experiences of intrusive behavior in 12 countries.

    Science.gov (United States)

    Sheridan, Lorraine; Scott, Adrian J; Roberts, Karl

    2016-01-01

    The present study provides international comparisons of young women's (N = 1,734) self-reported experiences of intrusive activities enacted by men. Undergraduate psychology students from 12 countries (Armenia, Australia, England, Egypt, Finland, India, Indonesia, Italy, Japan, Portugal, Scotland, and Trinidad) indicated which of 47 intrusive activities they had personally experienced. Intrusive behavior was not uncommon overall, although large differences were apparent between countries when women's personal experiences of specific intrusive activities were compared. Correlations were carried out between self-reported intrusive experiences, the Gender Empowerment Measure (GEM), and Hofstede's dimensions of national cultures. The primary associations were between women's experiences of intrusive behavior and the level of power they are afforded within the 12 countries. Women from countries with higher GEM scores reported experiencing more intrusive activities relating to courtship and requests for sex, while the experiences of women from countries with lower GEM scores related more to monitoring and ownership. Intrusive activities, many of them constituent of harassment and stalking, would appear to be widespread and universal, and their incidence and particular form reflect national level gender inequalities. © 2015 Wiley Periodicals, Inc.

  6. The Effects of Saltwater Intrusion to Flood Mitigation Project

    Science.gov (United States)

    Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad

    2018-03-01

    The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.

  7. Investigation of cavitating flows by X-ray and optical imaging

    Science.gov (United States)

    Coutier-Delgosha, Olivier; Fuzier, Sylvie; Khlifa, Ilyass; Fezzaa, Kamel

    2015-11-01

    Hydrodynamic cavitation is the partial vaporization of high speed liquid flows. The turbulent, compressible and unsteady character of these flows makes their study unusually complex and challenging. Instabilities generated by the occurrence of cavitation have been investigated in the last years in the LML laboratory by various non-intrusive measurements including X-ray imaging (to obtain the fields of void fraction and velocity in both phases), and PIV with fluorescent particles (to obtain the velocity fields in both phases). It has been shown that cavitation is characterized by significant slip velocities between liquid and vapor, especially in the re-entrant jet area and the cavity wake. This results suggests some possible improvements in the numerical models currently used for CFD of cavitating flows. Professor at Arts et Metiers ParisTech, Director of the LML laboratory.

  8. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Science.gov (United States)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  9. Human intrusion: New ideas?

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    Inadvertent human intrusion has been an issue for the disposal of solid radioactive waste for many years. This paper discusses proposals for an approach for evaluating the radiological significance of human intrusion as put forward by ICRP with contribution from work at IAEA. The approach focuses on the consequences of the intrusion. Protective actions could, however, include steps to reduce the probability of human intrusion as well as the consequences. (author)

  10. Innovative methods to reduce salt water intrusion in harbours

    Science.gov (United States)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  11. Using Crossflow for Flow Measurements and Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)

    2016-10-15

    Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.

  12. Measurement of local heat transfer coefficient during gas–liquid Taylor bubble train flow by infra-red thermography

    International Nuclear Information System (INIS)

    Mehta, Balkrishna; Khandekar, Sameer

    2014-01-01

    Highlights: • Infra-red thermographic study of Taylor bubble train flow in square mini-channel. • Design of experiments for measurement of local streamwise Nusselt number. • Minimizing conjugate heat transfer effects and resulting errors in data reduction. • Benchmarking against single-phase flow and three-dimensional computations. • Local heat transfer enhancement up to two times due to Taylor bubble train flow. -- Abstract: In mini/micro confined internal flow systems, Taylor bubble train flow takes place within specific range of respective volume flow ratios, wherein the liquid slugs get separated by elongated Taylor bubbles, resulting in an intermittent flow situation. This unique flow characteristic requires understanding of transport phenomena on global, as well as on local spatio-temporal scales. In this context, an experimental design methodology and its validation are presented in this work, with an aim of measuring the local heat transfer coefficient by employing high-resolution InfraRed Thermography. The effect of conjugate heat transfer on the true estimate of local transport coefficients, and subsequent data reduction technique, is discerned. Local heat transfer coefficient for (i) hydrodynamically fully developed and thermally developing single-phase flow in three-side heated channel and, (ii) non-boiling, air–water Taylor bubble train flow is measured and compared in a mini-channel of square cross-section (5 mm × 5 mm; D h = 5 mm, Bo ≈ 3.4) machined on a stainless steel substrate (300 mm × 25 mm × 11 mm). The design of the setup ensures near uniform heat flux condition at the solid–fluid interface; the conjugate effects arising from the axial back conduction in the substrate are thus minimized. For benchmarking, the data from single-phase flow is also compared with three-dimensional computational simulations. Depending on the employed volume flow ratio, it is concluded that enhancement of nearly 1.2–2.0 times in time

  13. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  14. Measurement of fluid velocity development behind a circular cylinder using particle image velocimetry (PIV)

    International Nuclear Information System (INIS)

    Goharzadeh, Afshin; Molki, Arman

    2015-01-01

    In this paper we present a non-intrusive experimental approach for obtaining a two-dimensional velocity distribution around a 22 mm diameter circular cylinder mounted in a water tunnel. Measurements were performed for a constant Reynolds number of 7670 using a commercial standard particle image velocimetry (PIV) system. Different flow patterns generated behind the circular cylinder are discussed. Both instantaneous and time-averaged velocity distributions with corresponding streamlines are obtained. Key concepts in fluid mechanics, such as contra-rotating vortices, von Kármán vortex street, and laminar-turbulent flow, are discussed. In addition, brief historical information pertaining to the development of flow measurement techniques—in particular, PIV—is described. (paper)

  15. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    Science.gov (United States)

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate

  16. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    Science.gov (United States)

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only

  17. Non-intrusive gesture recognition system combining with face detection based on Hidden Markov Model

    Science.gov (United States)

    Jin, Jing; Wang, Yuanqing; Xu, Liujing; Cao, Liqun; Han, Lei; Zhou, Biye; Li, Minggao

    2014-11-01

    A non-intrusive gesture recognition human-machine interaction system is proposed in this paper. In order to solve the hand positioning problem which is a difficulty in current algorithms, face detection is used for the pre-processing to narrow the search area and find user's hand quickly and accurately. Hidden Markov Model (HMM) is used for gesture recognition. A certain number of basic gesture units are trained as HMM models. At the same time, an improved 8-direction feature vector is proposed and used to quantify characteristics in order to improve the detection accuracy. The proposed system can be applied in interaction equipments without special training for users, such as household interactive television

  18. Measurement of air distribution and void fraction of an upwards air–water flow using electrical resistance tomography and a wire-mesh sensor

    International Nuclear Information System (INIS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-01-01

    Measurements on an upwards air–water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air–water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air–water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed. (paper)

  19. Modern challenges for flow investigations in model hydraulic turbines on classical test rig

    International Nuclear Information System (INIS)

    Deschênes, C; Houde, S; Aeschlimann, V; Fraser, R; Ciocan, G D

    2014-01-01

    The BulbT project involved several investigations of flow phenomena in different parts of a model bulb turbine installed on the test rig of Laval University Laboratory. The aim is to create a comprehensive data base in order to increase the knowledge of the flow phenomena in this type of turbines and to validate or improve numerical flow simulation strategies. This validation being based on a kinematic comparison between experimental and numerical data, the project had to overcome challenges to facilitate the use of the experimental data for that purpose. Many parameters were checked, such as the test bench repeatability, the intrusiveness of a priori non-intrusive methods, the geometry of the runner and draft tube. This paper illustrates how some of those problematic were solved

  20. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    International Nuclear Information System (INIS)

    Finn, John M.

    2015-01-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  1. Integral Analysis of Field Work and Laboratory Electrical Resistivity Imaging for Saline Water Intrusion Prediction in Groundwater

    Science.gov (United States)

    Zawawi, M. H.; Zahar, M. F.; Hashim, M. M. M.; Hazreek, Z. A. M.; Zahari, N. M.; Kamaruddin, M. A.

    2018-04-01

    Saline water intrusion is a serious threat to the groundwater as many part of the world utilize groundwater as their main source of fresh water supply. The usage of high salinity level of water as drinking water can lead to a very serious health hazard towards human. Saline water intrusion is a process by which induced flow of seawater into freshwater aquifer along the coastal area. It might happen due to human action and/or by natural event. The climate change and rise up of sea level may speed up the saline water intrusion process. The conventional method for distinguishing and checking saltwater interference to groundwater along the coast aquifers is to gather and test the groundwater from series of observation wells (borehole) with an end goal to give the important information about the hydrochemistry data to conclude whether the water in the well are safe to consume or not. An integrated approach of field and laboratory electrical resistivity investigation is proposed for indicating the contact region between saline and fresh groundwater. It was found that correlation for both soilbox produced almost identical curvilinear trends for 2% increment of seawater tested using sand sample. This project contributes towards predicting the saline water intrusion to the groundwater by non-destructive test that can replaced the conventional method of groundwater monitoring using series of boreholes in the coastal area

  2. Non-stationary flow of hydraulic oil in long pipe

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.

  3. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  4. Real-Time Recognition Non-Intrusive Electrical Appliance Monitoring Algorithm for a Residential Building Energy Management System

    Directory of Open Access Journals (Sweden)

    Kofi Afrifa Agyeman

    2015-08-01

    Full Text Available The concern of energy price hikes and the impact of climate change because of energy generation and usage forms the basis for residential building energy conservation. Existing energy meters do not provide much information about the energy usage of the individual appliance apart from its power rating. The detection of the appliance energy usage will not only help in energy conservation, but also facilitate the demand response (DR market participation as well as being one way of building energy conservation. However, energy usage by individual appliance is quite difficult to estimate. This paper proposes a novel approach: an unsupervised disaggregation method, which is a variant of the hidden Markov model (HMM, to detect an appliance and its operation state based on practicable measurable parameters from the household energy meter. Performing experiments in a practical environment validates our proposed method. Our results show that our model can provide appliance detection and power usage information in a non-intrusive manner, which is ideal for enabling power conservation efforts and participation in the demand response market.

  5. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  6. On Numerical Methods in Non-Newtonian Flows

    International Nuclear Information System (INIS)

    Fileas, G.

    1982-12-01

    The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)

  7. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Directory of Open Access Journals (Sweden)

    W. Gong

    2018-02-01

    Full Text Available Salt intrusion in the Pearl River estuary (PRE is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  8. Active, Non-Intrusive Inspection Technologies for Homeland Defense

    International Nuclear Information System (INIS)

    James L. Jones

    2003-01-01

    Active, non-intrusive inspection or interrogation technologies have been used for 100 years - with the primary focus being radiographic imaging. During the last 50 years, various active interrogation systems have been investigated and most have revealed many unique and interesting capabilities and advantages that have already benefited the general public. Unfortunately, except for medical and specific industrial applications, these unique capabilities have not been widely adopted, largely due to the complexity of the technology, the overconfident reliance on passive detection systems to handle most challenges, and the unrealistic public concerns regarding radiation safety issues for a given active inspection deployment. The unique homeland security challenges facing the United States today are inviting more ''out-of-the-box'' solutions and are demanding the effective technological solutions that only active interrogation systems can provide. While revolutionary new solutions are always desired, these technology advancements are rare, and when found, usually take a long time to fully understand and implement for a given application. What's becoming more evident is that focusing on under-developed, but well-understood, active inspection technologies can provide many of the needed ''out-of-the-box'' solutions. This paper presents a brief historical overview of active interrogation. It identifies some of the major homeland defense challenges being confronted and the commercial and research technologies presently available and being pursued. Finally, the paper addresses the role of the Idaho National Engineering and Environmental Laboratory and its partner, the Idaho Accelerator Center at Idaho State University, in promoting and developing active inspection technologies for homeland defense

  9. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.

    Science.gov (United States)

    Chen, Xingyuan; Miller, Gretchen R; Rubin, Yoram; Baldocchi, Dennis D

    2012-12-01

    The heat pulse method is widely used to measure water flux through plants; it works by using the speed at which a heat pulse is propagated through the system to infer the velocity of water through a porous medium. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale and subsequently to upscale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for sampling and simultaneously estimating the tree's thermal diffusivity and probe spacing from in situ heat response curves collected by the implanted probes of a heat ratio measurement device. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require knowledge of probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential for obtaining reliable and accurate solutions. When applied to field conditions, these tests can be obtained in different seasons and can be automated using the existing data logging system. Empirical factors are introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and are estimated in this study as well. The proposed methodology may be tested for its applicability to realistic field conditions, with an ultimate goal of calibrating heat ratio sap flow systems in practical applications.

  10. Measurement of Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... at the centerline of the jet are carried out for mass loadings of 0.5, 1, 1.6 and particle sizes 880μm, 1350μm, 1820μm for spherical particles. For each non-spherical shape only a single size and loading are considered. The turbulence modulation of the carrier phase is found to highly dependent on the turbulence......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...

  11. Intrusion-Aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Young-Jae Song

    2009-07-01

    Full Text Available Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.

  12. Investigation of fluid flow in various geometries related to nuclear reactor using PIV system

    International Nuclear Information System (INIS)

    Kansal, A.K.; Maheshwari, N.K.; Singh, R.K.; Vijayan, P.K.; Saha, D.; Singh, R.K.; Joshi, V.M.

    2011-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive technique for simultaneously measuring the velocities at many points in a fluid flow. The PIV system used is comprised of Nd:YAG laser source, CCD (Charged Coupled Device) camera, timing controller (to control the laser and camera) and software used for analyzing the flow velocities. Several case studies related to nuclear reactor were performed with the PIV system. Some of the cases like flow in circular tube, submerged jet, natural convection in a water pool, flow field of moderator inlet diffuser of 500 MWe Pressurised Heavy Water Reactor (PHWR) and fluidic flow control device (FFCD) used in advanced accumulator of Emergency Core Cooling System (ECCS) have been studied using PIV system. Theoretical studies have been performed and comparisons with PIV results are also given in the present studies. (author)

  13. Non-hydrostatic layered flows over a sill

    International Nuclear Information System (INIS)

    Jamali, Mirmosadegh

    2013-01-01

    This work takes a new approach to solving non-hydrostatic equations of layered flows over bottom topography. A perturbation technique is used to find explicit expressions for a flow for different regimes of single- and two-layer flows over a sill. Excellent agreement with previous solutions and experimental data is obtained, and more details of the non-hydrostatic flow over a sill are revealed. The proposed method is simple and compact and removes the need for complex numerical techniques to solve the non-hydrostatic equations. It is shown that in the approach-controlled regime of two-layer flow over a sill, the flow upstream and farther downstream the sill crest can be described by the hydrostatic theory, and the flow is non-hydrostatic over only a short distance on the downstream side of the crest. (paper)

  14. Measurement invariance of the Illness Intrusiveness Ratings Scale's three-factor structure in men and women with cancer.

    Science.gov (United States)

    Mah, Kenneth; Bezjak, Andrea; Loblaw, D Andrew; Gotowiec, Andrew; Devins, Gerald M

    2011-02-01

    Illness- and treatment-related disruptions to valued activities and interests (illness intrusiveness) are central to quality of life in chronic disease and are captured by three subscales of the Illness Intrusiveness Ratings Scale (IIRS): the Instrumental, Intimacy, and Relationships and Personal Development subscales. Using individual (CFA) and multisample confirmatory factor analyses (MSCFA), we evaluated measurement invariance of the IIRS's 3-factor structure in men and women with cancer. Men (n = 210) and women (n = 206) with 1 of 4 cancer diagnoses (gastrointestinal, head and neck, lymphoma, lung) recruited from outpatient clinics completed the IIRS. In the MSCFA, we applied an analysis of means and covariance structures approach to test increasingly stringent equality constraints on factor structure parameters to evaluate weak, strong, and strict measurement invariance of the 3-factor structure between men and women. Individual CFAs demonstrated fit of the hypothesized 3-factor structure for men and women, although more consistently for men. The 3-factor structure was superior to an alternative 1-factor structure. MSCFA results indicated that parameters of the 3-factor structure could be considered equivalent between the sexes up to the level of strong invariance. Strict invariance was not supported. Overall, IIRS scores can be interpreted similarly for men and women with cancer. Illness intrusiveness can be considered as important in the psychosocial adaptation of people with cancer as it is for people affected by other chronic conditions. (c) 2011 APA, all rights reserved

  15. Non-intrusive Packet-Layer Model for Monitoring Video Quality of IPTV Services

    Science.gov (United States)

    Yamagishi, Kazuhisa; Hayashi, Takanori

    Developing a non-intrusive packet-layer model is required to passively monitor the quality of experience (QoE) during service. We propose a packet-layer model that can be used to estimate the video quality of IPTV using quality parameters derived from transmitted packet headers. The computational load of the model is lighter than that of the model that takes video signals and/or video-related bitstream information such as motion vectors as input. This model is applicable even if the transmitted bitstream information is encrypted because it uses transmitted packet headers rather than bitstream information. For developing the model, we conducted three extensive subjective quality assessments for different encoders and decoders (codecs), and video content. Then, we modeled the subjective video quality assessment characteristics based on objective features affected by coding and packet loss. Finally, we verified the model's validity by applying our model to unknown data sets different from training data sets used above.

  16. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  17. Network Intrusion Forensic Analysis Using Intrusion Detection System

    OpenAIRE

    Manish Kumar; Dr. M. Hanumanthappa; Dr. T.V. Suresh Kumar

    2011-01-01

    The need for computer intrusion forensics arises from the alarming increase in the number of computer crimes that are committed annually. After a computer system has been breached and an intrusion has been detected, there is a need for a computer forensics investigation to follow. Computer forensics is used to bring to justice, those responsible for conducting attacks on computer systems throughout the world. Because of this the law must be follow precisely when conducting a forensics investi...

  18. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    Science.gov (United States)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  19. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    Science.gov (United States)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  20. Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current

    Science.gov (United States)

    Yang, De-Zhou; Huang, Rui Xin; Yin, Bao-shu; Feng, Xing-Ru; Chen, Hai-ying; Qi, Ji-Feng; Xu, Ling-jing; Shi, Yun-long; Cui, Xuan; Gao, Guan-Dong; Benthuysen, Jessica A.

    2018-01-01

    The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas. However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general circulation theory and shelf dynamic theory.

  1. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine.

    Directory of Open Access Journals (Sweden)

    Anke M Mulder

    Full Text Available BACKGROUND: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg VLP-based vaccine. METHODOLOGY: The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA. The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM and in-solution atomic force microscopy (AFM. PRINCIPAL FINDINGS: SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images--confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing. SIGNIFICANCE: Together, the methods presented here comprise a novel

  2. Non-intrusive Assessment of Photosystem II and Photosystem I in Whole Coral Tissues

    Directory of Open Access Journals (Sweden)

    Milán Szabó

    2017-08-01

    Full Text Available Reef building corals (phylum Cnidaria harbor endosymbiotic dinoflagellate algae (genus Symbiodinium that generate photosynthetic products to fuel their host's metabolism. Non-invasive techniques such as chlorophyll (Chl fluorescence analyses of Photosystem II (PSII have been widely used to estimate the photosynthetic performance of Symbiodinium in hospite. However, since the spatial origin of PSII chlorophyll fluorescence in coral tissues is uncertain, such signals give limited information on depth-integrated photosynthetic performance of the whole tissue. In contrast, detection of absorbance changes in the near infrared (NIR region integrates signals from deeper tissue layers due to weak absorption and multiple scattering of NIR light. While extensively utilized in higher plants, NIR bio-optical techniques are seldom applied to corals. We have developed a non-intrusive measurement method to examine photochemistry of intact corals, based on redox kinetics of the primary electron donor in Photosystem I (P700 and chlorophyll fluorescence kinetics (Fast-Repetition Rate fluorometry, FRRf. Since the redox state of P700 depends on the operation of both PSI and PSII, important information can be obtained on the PSII-PSI intersystem electron transfer kinetics. Under moderate, sub-lethal heat stress treatments (33°C for ~20 min, the coral Pavona decussata exhibited down-regulation of PSII electron transfer kinetics, indicated by slower rates of electron transport from QA to plastoquinone (PQ pool, and smaller relative size of oxidized PQ with concomitant decrease of a specifically-defined P700 kinetics area, which represents the active pool of PSII. The maximum quantum efficiency of PSII (Fv/Fm and functional absorption cross-section of PSII (σPSII remained unchanged. Based on the coordinated response of P700 parameters and PSII-PSI electron transport properties, we propose that simple P700 kinetics parameters as employed here serve as indicators of

  3. Power-Aware Intrusion Detection in Mobile Ad Hoc Networks

    Science.gov (United States)

    Şen, Sevil; Clark, John A.; Tapiador, Juan E.

    Mobile ad hoc networks (MANETs) are a highly promising new form of networking. However they are more vulnerable to attacks than wired networks. In addition, conventional intrusion detection systems (IDS) are ineffective and inefficient for highly dynamic and resource-constrained environments. Achieving an effective operational MANET requires tradeoffs to be made between functional and non-functional criteria. In this paper we show how Genetic Programming (GP) together with a Multi-Objective Evolutionary Algorithm (MOEA) can be used to synthesise intrusion detection programs that make optimal tradeoffs between security criteria and the power they consume.

  4. Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests.

    Science.gov (United States)

    Felipo, Vicente; Urios, Amparo; Giménez-Garzó, Carla; Cauli, Omar; Andrés-Costa, Maria-Jesús; González, Olga; Serra, Miguel A; Sánchez-González, Javier; Aliaga, Roberto; Giner-Durán, Remedios; Belloch, Vicente; Montoliu, Carmina

    2014-09-07

    To assess whether non invasive blood flow measurement by arterial spin labeling in several brain regions detects minimal hepatic encephalopathy. Blood flow (BF) was analyzed by arterial spin labeling (ASL) in different brain areas of 14 controls, 24 cirrhotic patients without and 16 cirrhotic patients with minimal hepatic encephalopathy (MHE). Images were collected using a 3 Tesla MR scanner (Achieva 3T-TX, Philips, Netherlands). Pulsed ASL was performed. Patients showing MHE were detected using the battery Psychometric Hepatic Encephalopathy Score (PHES) consisting of five tests. Different cognitive and motor functions were also assessed: alterations in selective attention were evaluated using the Stroop test. Patients and controls also performed visuo-motor and bimanual coordination tests. Several biochemical parameters were measured: serum pro-inflammatory interleukins (IL-6 and IL-18), 3-nitrotyrosine, cGMP and nitrates+nitrites in plasma, and blood ammonia. Bivariate correlations were evaluated. In patients with MHE, BF was increased in cerebellar hemisphere (P = 0.03) and vermis (P = 0.012) and reduced in occipital lobe (P = 0.017). BF in cerebellar hemisphere was also increased in patients without MHE (P = 0.02). Bimanual coordination was impaired in patients without MHE (P = 0.05) and much more in patients with MHE (P battery and with CFF. BF in cerebellar hemisphere correlates with plasma cGMP and nitric oxide (NO) metabolites. BF in vermis cerebellar also correlates with NO metabolites and with 3-nitrotyrosine. IL-18 in plasma correlates with BF in thalamus and occipital lobe. Non invasive BF determination in cerebellum using ASL may detect MHE earlier than the PHES. Altered NO-cGMP pathway seems to be associated to altered BF in cerebellum.

  5. Morphologic and hemodynamic analysis of dental pulp in dogs after molar intrusion with the skeletal anchorage system.

    Science.gov (United States)

    Konno, Yuichi; Daimaruya, Takayoshi; Iikubo, Masahiro; Kanzaki, Reiko; Takahashi, Ichiro; Sugawara, Junji; Sasano, Takashi

    2007-08-01

    We have successfully treated skeletal open bite by intruding posterior teeth with the skeletal anchorage system. Our aim in this study was to morphologically and hemodynamically evaluate the changes in pulp tissues when molars are radically intruded. The mandibular fourth premolars of 9 adult beagle dogs were divided into 3 groups: a sham operated group (n = 6, 3 dogs), 4-month intrusion group (n = 6, 3 dogs), and a further 4-month retention group (n = 6, 3 dogs). We evaluated the morphological changes of the pulp and dentin-the amount of vacuolar degeneration in the odontoblast layer, the predentin width and nervous continuity in the pulp tissue, and the pulpal blood-flow response evoked by electrical stimulation in the dental pulp. Extreme molar intrusion with the skeletal anchorage system caused slight degenerative changes in the pulp tissue, followed by recovery after the orthodontic force was released. Circulatory system and nervous functions were basically maintained during the intrusion, although a certain level of downregulation was observed. These morphologic and functional regressive changes in the pulp tissue after molar intrusion improved during the retention period. Histologic changes and changes in pulpal blood flow and function are reversible, even during radical intrusion of molars.

  6. Count out your intrusions: Effects of verbal encoding on intrusive memories

    NARCIS (Netherlands)

    Krans, J.; Näring, G.W.B.; Becker, E.S.

    2009-01-01

    Peri-traumatic information processing is thought to affect the development of intrusive trauma memories. This study aimed to replicate and improve the study by Holmes, Brewin, and Hennessy (2004, Exp. 3) on the role of peri-traumatic verbal processing in analogue traumatic intrusion development.

  7. Number of Waste Package Hit by Igneous Intrusion

    International Nuclear Information System (INIS)

    M. Wallace

    2004-01-01

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios

  8. Options for human intrusion

    International Nuclear Information System (INIS)

    Bauser, M.; Williams, R.

    1993-01-01

    This paper addresses options for dealing with human intrusion in terms of performance requirements and repository siting and design requirements. Options are presented, along with the advantages and disadvantages of certain approaches. At the conclusion, a conceptual approach is offered emphasizing both the minimization of subjective judgements concerning future human activity, and specification of repository requirements to minimize the likelihood of human intrusion and any resulting, harmful effects should intrusion occur

  9. Experimental investigation of a flow-induced oscillating cylinder with two degrees-of-freedom

    International Nuclear Information System (INIS)

    Someya, Satoshi; Kuwabara, Joji; Li, YanRong; Okamoto, Koji

    2010-01-01

    The phenomenon of flow-induced vibration of bluff bodies has been studied extensively. The vast majority of these studies have concentrated solely on one degree-of-freedom oscillation in the inline or cross-flow directions. Herein, experiments were carried out with a cylinder in a water channel with two degrees-of-freedom. The cylinder was cantilever mounted with a low natural frequency (typically 65 Hz) in the inline and cross-flow directions. The Reynolds number fell in the range 1.17 x 10 3 4 . The oscillating frequency of the cylinder and the surrounding flow were measured simultaneously using high temporal resolution particle image velocimetry (PIV), which is non-intrusive with respect to the flow and has high spatial and temporal resolutions. The vibration of the cylinder was found to be anisotropic. There was a discrepancy between the vibration frequencies in the inline and cross-flow directions, the difference being a function of reduced velocity.

  10. Measurement and control systems for an imaging electromagnetic flow metre.

    Science.gov (United States)

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  11. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Science.gov (United States)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  12. New Observations of the Gulf of Aden Intermediate Water Intrusion into the Red Sea.

    Science.gov (United States)

    Bower, A.; Abualnaja, Y.

    2012-04-01

    The three-layer exchange flow between the Red Sea and the Indian Ocean during summer is characterized by a thick, northward intrusion of relatively cold, low-salinity and low in dissolved oxygen (Water (GAIW), sandwiched between two thin layers of outflow water. The flux of GAIW into the Red Sea is important in the heat, freshwater and nutrient budgets of the Red Sea, but the structure and pathways of the intrusion are not well-known due to a paucity of hydrographic and direct velocity observations. A research cruise was executed at the eastern side of the Red Sea during September-October 2011 to conduct the first large-scale survey of the intrusion. This mission is part of a series of expeditions in the Red Sea designed to investigate the seasonal Red Sea circulation. Surprisingly, the GAIW intrusion was observed to stretch nearly the entire length of the Red Sea (~1500 km) as a narrow eastern boundary current with subsurface velocity maximum of 0.1-0.3 m/s in the depth range 50-100 m. The intruding layer is weakly stratified compared to the background, possibly an indication of strong vertical mixing as it flows through the strait. Some GAIW was observed to enter deep channels in a coral reef bank (Farasan Banks) located in the southeastern Red Sea, and to enter the Red Sea interior, the latter possibly due to interactions between the boundary current and mesoscale eddies. The pathways and erosion of the GAIW intrusion will likely have major implications for the spatial distribution of biological productivity.

  13. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  14. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    Science.gov (United States)

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal.

  15. Individual differences in spatial configuration learning predict the occurrence of intrusive memories.

    Science.gov (United States)

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W E M; Girardelli, Marta M; Mackay, Georgina R N; Merckelbach, Harald

    2013-03-01

    The dual-representation model of posttraumatic stress disorder (PTSD; Brewin, Gregory, Lipton, & Burgess, Psychological Review, 117, 210-232 2010) argues that intrusions occur when people fail to construct context-based representations during adverse experiences. The present study tested a specific prediction flowing from this model. In particular, we investigated whether the efficiency of temporal-lobe-based spatial configuration learning would account for individual differences in intrusive experiences and physiological reactivity in the laboratory. Participants (N = 82) completed the contextual cuing paradigm, which assesses spatial configuration learning that is believed to depend on associative encoding in the parahippocampus. They were then shown a trauma film. Afterward, startle responses were quantified during presentation of trauma reminder pictures versus unrelated neutral and emotional pictures. PTSD symptoms were recorded in the week following participation. Better configuration learning performance was associated with fewer perceptual intrusions, r = -.33, p .46) and had no direct effect on intrusion-related distress and overall PTSD symptoms, rs > -.12, ps > .29. However, configuration learning performance tended to be associated with reduced physiological responses to unrelated negative images, r = -.20, p = .07. Thus, while spatial configuration learning appears to be unrelated to affective responding to trauma reminders, our overall findings support the idea that the context-based memory system helps to reduce intrusions.

  16. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan

    Science.gov (United States)

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.

    2007-01-01

    A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  17. Water jet intrusion into hot melt concomitant with direct-contact boiling of water

    Energy Technology Data Exchange (ETDEWEB)

    Sibamoto, Yasuteru [Japan Atomic Energy Research Inst., Tokai Research Establishment, Tokai, Ibaraki (Japan)

    2005-08-01

    Boiling of water poured on surface of high-temperature melt (molten metal or metal oxide) provides an efficient means for heat exchange or cooling of melt. The heat transfer surface area can be extended by forcing water into melt. Objectives of the present study are to elucidate key factors of the thermal and hydrodynamic interactions for the water jet injection into melt (Coolant Injection mode). Proposed applications include in in-vessel heat exchangers for liquid metal reactor and emergency measures for cooling of molten core debris in severe accidents of light water reactor. Water penetration into melt may occurs also as a result of fuel-coolant interaction (FCI) in modes other than CI, it is anticipated that the present study contributes to understand the fundamental mechanism of the FCI process. The previous works have been limited on understanding the melt-water interaction phenomena in the water-injection mode because of difficulty in experimental measurement where boiling occurs in opaque invisible hot melt unlike the melt-injection mode. We conducted visualization and measurement of melt-water-vapor multiphase flow phenomena by using a high-frame-rate neutron radiography technique and newly-developed probes. Although limited knowledge, however, has been gained even such an approach, the experimental data were analyzed deeply by comparing with the knowledge obtained from relevant matters. As a result, we succeeded in revealing several key phenomena and validity in the conditions under which stable heat transfer is established. Moreover, a non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving free surface is developed. The technique is based on the measurement of fluid surface profile, which is useful for elucidation of flow mechanism accompanied by a free surface like the present phenomena. (author)

  18. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  19. Research on the technology of detecting the SQL injection attack and non-intrusive prevention in WEB system

    Science.gov (United States)

    Hu, Haibin

    2017-05-01

    Among numerous WEB security issues, SQL injection is the most notable and dangerous. In this study, characteristics and procedures of SQL injection are analyzed, and the method for detecting the SQL injection attack is illustrated. The defense resistance and remedy model of SQL injection attack is established from the perspective of non-intrusive SQL injection attack and defense. Moreover, the ability of resisting the SQL injection attack of the server has been comprehensively improved through the security strategies on operation system, IIS and database, etc.. Corresponding codes are realized. The method is well applied in the actual projects.

  20. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  1. A Non-Equilibrium Sediment Transport Model for Dam Break Flow over Moveable Bed Based on Non-Uniform Rectangular Mesh

    Directory of Open Access Journals (Sweden)

    Gangfeng Wu

    2018-05-01

    Full Text Available The use of multiple-level non-uniform rectangular mesh in coupled flow and sediment transport modeling is preferred to achieve high accuracy in important region without increasing computational cost greatly. Here, a robust coupled hydrodynamic and non-equilibrium sediment transport model is developed on non-uniform rectangular mesh to simulate dam break flow over movable beds. The enhanced shallow water and sediment transport equations are adopted to consider the mass and momentum exchange between the flow phase and sediment phase. The flux at the interface is calculated by the positivity preserving central upwind scheme, which belongs to Godunov-type Riemann-problem-solver-free central schemes and is less expensive than other popular Riemann solvers while still capable of tracking wet/dry fronts accurately. The nonnegative water depth reconstruction method is used to achieve second-order accuracy in space. The model was first verified against two laboratory experiments of dam break flow over irregular fixed bed. Then the quantitative performance of the model was further investigated by comparing the computational results with measurement data of dam break flow over movable bed. The good agreements between the measurements and the numerical simulations are found for the flow depth, velocity and bed changes.

  2. Evaluation of the radiological consequences of a human intrusion in a granite formation

    International Nuclear Information System (INIS)

    Mejon-Goula, M.J.; Cernes, A.

    1989-07-01

    The methodology used in France for the evaluation of the radiological consequences associated to a nuclear waste repository in a deep geological formation is the deterministic one. This means that, in addition to the calculations in connection with the ''normal'' scenario, a limited number of ''altered'' scenarios, representing the different families of plausible scenarios and corresponding to the most important consequences resulting from there families, have to be taken into account. Among them, the human intrusion scenario is an important one. In a study performed inside the CEC PAGIS project and also for a french expert group (Goguel group) which carried out a methodologic work for the national site selection procedure, results concerning the quantification of the radiological consequences of a human intrusion have been obtained without attempting at the evaluation of its probability. The intrusion time ranged from 1 000 to 100 000 years and different contamination scenarios were taken into account. It was assumed that the intrusion led to the creation of a 100 cubic meters edge cubic cavity in the immediate vicinity to the repository. Using the description of the Auriat site realized for PAGIS, the calculation was performed in three steps: - calculation of the evolution of the repository until the intrusion time, - computation of the supposed instantaneous new flow distribution after the intrusion, - computation of the dose rate, using the mean volumic activity in the cavity walls and the outgoing flow rate. Three exposure scenarios were considered: - a worker in the mine exposed to by external irradiation and contaminated by inhalation of radioactive materials, -an animal drinking in the vicinity during the mining operation, - gardening after the closure of the mine. With the exception of the worker scenario (the dose rate may reach 10 -2 Sv/year, which is comparable with the normal exposure in a granite mine), the other dose rates were found to be quite low

  3. An energy estimation framework for event-based methods in Non-Intrusive Load Monitoring

    International Nuclear Information System (INIS)

    Giri, Suman; Bergés, Mario

    2015-01-01

    Highlights: • Energy estimation is NILM has not yet accounted for complexity of appliance models. • We present a data-driven framework for appliance modeling in supervised NILM. • We test the framework on 3 houses and report average accuracies of 5.9–22.4%. • Appliance models facilitate the estimation of energy consumed by the appliance. - Abstract: Non-Intrusive Load Monitoring (NILM) is a set of techniques used to estimate the electricity consumed by individual appliances in a building from measurements of the total electrical consumption. Most commonly, NILM works by first attributing any significant change in the total power consumption (also known as an event) to a specific load and subsequently using these attributions (i.e. the labels for the events) to estimate energy for each load. For this last step, most published work in the field makes simplifying assumptions to make the problem more tractable. In this paper, we present a framework for creating appliance models based on classification labels and aggregate power measurements that can help to relax many of these assumptions. Our framework automatically builds models for appliances to perform energy estimation. The model relies on feature extraction, clustering via affinity propagation, perturbation of extracted states to ensure that they mimic appliance behavior, creation of finite state models, correction of any errors in classification that might violate the model, and estimation of energy based on corrected labels. We evaluate our framework on 3 houses from standard datasets in the field and show that the framework can learn data-driven models based on event labels and use that to estimate energy with lower error margins (e.g., 1.1–42.3%) than when using the heuristic models used by others

  4. Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P.; Porcheron, E. [Institut de Radioprotection et de Surete Nucleaire, Saclay (France)

    2008-08-15

    During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B{sub M}, which is useful in describing heat transfer associated with two-phase flow. (orig.)

  5. Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques

    International Nuclear Information System (INIS)

    Lemaitre, P.; Porcheron, E.

    2008-01-01

    During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B M , which is useful in describing heat transfer associated with two-phase flow. (orig.)

  6. Interior intrusion detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.R.; Matter, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Dry, B. (BE, Inc., Barnwell, SC (United States))

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  7. Interior intrusion detection systems

    International Nuclear Information System (INIS)

    Rodriguez, J.R.; Matter, J.C.; Dry, B.

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs

  8. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    Science.gov (United States)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  9. Real-time monitoring and measurement of wax deposition in pipelines via non-invasive electrical capacitance tomography

    Science.gov (United States)

    Lock Sow Mei, Irene; Ismail, Idris; Shafquet, Areeba; Abdullah, Bawadi

    2016-02-01

    Tomographic analysis of the behavior of waxy crude oil in pipelines is important to permit appropriate corrective actions to be taken to remediate the wax deposit layer before pipelines are entirely plugged. In this study, a non-invasive/non-intrusive electrical capacitance tomography (ECT) system has been applied to provide real-time visualization of the formation of paraffin waxes and to measure the amount of wax fraction from the Malay Basin waxy crude oil sample under the static condition. Analogous expressions to estimate the wax fraction of the waxy crude oil across the temperatures range of 30-50 °C was obtained by using Otsu’s and Kuo’s threshold algorithms. Otsu’s method suggested that the wax fraction can be estimated by the correlation coefficient β =0.0459{{T}3}-5.3535{{T}2}+200.36T-2353.7 while Kuo’s method provides a similar correlation with β =0.0741{{T}3}-8.4915{{T}2}+314.96T-3721.2 . These correlations show good agreements with the results which are obtained from the conventional weighting method. This study suggested that Kuo’s threshold algorithm is more promising when integrated into the ECT system compared to Otsu’s algorithm because the former provides higher accuracy wax fraction measurement results below the wax appearance temperature for waxy crude oil. This study is significant because it serves as a preliminary investigation for the application of ECT in the oil and gas industry for online measurement and detection of wax fraction without causing disturbance to the process flow.

  10. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  11. Cultural and Personality Predictors of Facebook Intrusion: A Cross-Cultural Study

    Directory of Open Access Journals (Sweden)

    Agata Błachnio

    2016-12-01

    Full Text Available The increase in the number of users of social networking sites has inspired intense efforts to determine intercultural differences between them. The main aim of the study was to investigate the cultural and personal predictors of Facebook intrusion. A total of 2,628 Facebook users from eight countries took part in the study. The Facebook Intrusion Questionnaire, the Ten-Item Personality Measure, and the Singelis Scale were used. We found that two variables related to Country were significantly related to Facebook intrusion: uniqueness (negatively and low context (positively; of the personality variables, conscientiousness and emotional stability were negatively related to the dependent variable of Facebook intrusion across different countries, which may indicate the universal pattern of Facebook intrusion. The results of the study will contribute to the international debate on the phenomenon of social networking sites (SNS.

  12. Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    Science.gov (United States)

    Huang, P. S.; Chiu, Y.

    2015-12-01

    In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution

  13. Evapotranspiration versus oxygen intrusion: which is the main force in alleviating bioclogging of vertical-flow constructed wetlands during a resting operation?

    Science.gov (United States)

    Hua, Guofen; Chen, Qiuwen; Kong, Jun; Li, Man

    2017-08-01

    Clogging is the most significant challenge limiting the application of constructed wetlands. Application of a forced resting period is a practical way to relieve clogging, particularly bioclogging. To reveal the alleviation mechanisms behind such a resting operation, evapotranspiration and oxygen flux were studied during a resting period in a laboratory vertical-flow constructed wetland model through physical simulation and numerical model analysis. In addition, the optimum theoretical resting duration was determined based on the time required for oxygen to completely fill the pores, i.e., formation of a sufficiently thick and completely dry layer. The results indicated that (1) evapotranspiration was not the key factor, but was a driving force in the alleviation of bioclogging; (2) the rate of oxygen diffusion into the pores was sufficient to oxidize and disperse the flocculant biofilm, which was essential to alleviate bioclogging. This study provides important insights into understanding how clogging/bioclogging can be alleviated in vertical-flow constructed wetlands. Graphical abstract Evapotranspiration versus oxygen intrusion in alleviating bioclogging in vertical flow constructed wetlands.

  14. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  15. Measurement of 235U content and flow of UF6 using delayed neutrons or gamma rays following induced fission

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF 6 gas streams. A 252 Cf neutron source was used to induce 235 U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved open-quotes down-stream.close quotes The experiments used a UO 2 powder that was transported down the pipe to simulate the flowing UF 6 gas. Computer modeling and analytic calculation extended the test results to a flowing UF 6 gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the 235 U content and UF 6 flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF 6 provides an approximate measure of the 235 U content without using a neutron source to induce fission

  16. Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow

    Science.gov (United States)

    Taher, R.; Abid, C.

    2018-05-01

    This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.

  17. Non-invasive multilevel groundwater samplers

    International Nuclear Information System (INIS)

    Kaplan, E.; Heiser, J.

    1993-01-01

    Two non-intrusive, passive multilayer groundwater sampling devices are described which collect data simultaneously at small vertical intervals in the same well, without disturbing the geohydrological environment. One system uses membranes, the other uses remotely operated stainless steel cylinders connected in tandem. When used in several wells sufficient information is collected to allow a three dimensional characterization of contaminants and flow in the aquifer. The systems were used during field trials at Savannah River Laboratory in November 1991 and June 1992, and collected water quality and flow data over a 3 meter interval below the water table in each of two wells. Data from 1991 indicate weak vertical profiles in temperature, dissolved oxygen, and pH over the 3 m sampling interval. Other measurements indicated a relatively uniform horizontal specific discharge of about 6 cm/year over the same sampling interval. No statistically significant vertical structure was evident for discharge. This presentation will compare this information with data obtained from field trials in June 1992

  18. Hysteretic behavior in seawater intrusion in response to discontinuous drought periods

    Science.gov (United States)

    Salandin, P.; Darvini, G.

    2017-12-01

    The seawater intrusion (SWI) represents a relevant problem for communities living in many coastal regions and in small islands, where the amount of fresh water available for human consumption or irrigation purposes depends on the equilibrium between the natural groundwater recharge from precipitations and the surrounding sea. This issue is exacerbated by climate changes, and, as a consequence, the reduction of natural groundwater recharge and the decrease the seaward flows of fresh water rather than sea level rise, as recently demonstrated by Ketabchi et al. (2016), leads to magnify the seawater intrusion into coastal aquifers. The temporal fluctuation of the fresh water table level are a natural consequence of the interaction of the aquifer with a water body or due to the seasonal replenishment of the water table. The severe and prolonged drought phenomena as that observed in last years in some areas of the Mediterranean, as over the central western Mediterranean basin, Italy and Spain, where a decreasing trend in total precipitation was detected (Alpert et al., 2002) in addition to the rise in temperature, enlarges the variation of the freshwater flux and can magnify the progression of the saline wedge. In the present study we demonstrate that the presence of varying boundary constraints or forcing factors may lead to hysteretic behavior in saltwater intrusion, showing dependence of the saline wedge on historic conditions. Therefore, the dynamic behavior of SWI may depend on both the present and past forcing conditions. To this aim different transient simulations supported by evidences deduced from a physical model are carried out to assess the presence of the hysteretic effects in the SWI phenomenon and to evaluate its influence in the management of the coastal aquifers for both the rational exploitation and the corrected management of water resources. About 70% of the world's population dwells in coastal zones. Therefore the optimal exploitation of fresh

  19. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  20. Reactive and multiphase modelling for the identification of monitoring parameters to detect CO2 intrusion into freshwater aquifers

    Science.gov (United States)

    Fahrner, S.; Schaefer, D.; Wiegers, C.; Köber, R.; Dahmke, A.

    2011-12-01

    A monitoring at geological CO2 storage sites has to meet environmental, regulative, financial and public demands and thus has to enable the detection of CO2 leakages. Current monitoring concepts for the detection of CO2 intrusion into freshwater aquifers located above saline storage formations in course of leakage events lack the identification of monitoring parameters. Their response to CO2 intrusion still has to be enlightened. Scenario simulations of CO2 intrusion in virtual synthetic aquifers are performed using the simulators PhreeqC and TOUGH2 to reveal relevant CO2-water-mineral interactions and multiphase behaviour on potential monitoring parameters. The focus is set on pH, total dissolved inorganic carbon (TIC) and the hydroelectric conductivity (EC). The study aims at identifying at which conditions the parameters react rapidly, durable and in a measurable degree. The depth of the aquifer, the mineralogy, the intrusion rates, the sorption specification and capacities, and groundwater flow velocities are varied in the course of the scenario modelling. All three parameters have been found suited in most scenarios. However, in case of a lack of calcite combined with low saturation of the water with respect to CO2 and shallow conditions, changes are close to the measurement resolution. Predicted changes in EC result from the interplay between carbonic acid production and its dissociation, and pH buffering by mineral dissolution. The formation of a discrete gas phase in cases of full saturation of the groundwater in confined aquifers illustrates the potential bipartite resistivity response: An increased hydroelectric conductivity at locations with dissolved CO2, and a high resistivity where the gas phase dominates the pore volume occupation. Increased hydrostatic pressure with depth and enhanced groundwater flow velocities enforce gas dissolution and diminish the formation of a discrete gas phase. Based on the results, a monitoring strategy is proposed which

  1. Tomographic multiphase flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saetre, C., E-mail: camilla@ift.uib.no [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Johansen, G.A. [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Tjugum, S.A. [Michelsen Centre for Industrial Measurement Science and Technology (Norway); Roxar Flow Measurement, Bergen (Norway)

    2012-07-15

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: Black-Right-Pointing-Pointer Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. Black-Right-Pointing-Pointer High-speed gamma ray tomograph as reference for the flow

  2. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  3. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    Science.gov (United States)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  4. Flow measurement in bubbly and slug flow regimes using the electromagnetic flowmeter developed

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Ahn, Yeh Chan; Seo, Kyung Woo; Kim, Moo Hwan

    2002-01-01

    In order to investigate the characteristics of electromagnetic flowmeter in two-phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two-phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation ΔU TP = ΔU SP /(1-α) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux j f . Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes

  5. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO 2 TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed

  6. EFFECTS OF HEAT-FLOW AND HYDROTHERMAL FLUIDS FROM ...

    African Journals Online (AJOL)

    Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar ...

  7. Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Enderlin, Carl W.

    2013-11-15

    Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.

  8. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  9. X-ray PIV measurements of blood flows without tracer particles

    International Nuclear Information System (INIS)

    Kim, Guk Bae; Lee, Sang Joon

    2006-01-01

    We analyzed the non-Newtonian flow characteristics of blood moving in a circular tube flow using an X-ray PIV method and compared the experimental results with hemodynamic models. The X-ray PIV method was improved for measuring quantitative velocity fields of blood flows using a coherent synchrotron X-ray. Without using any contrast media, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells. The enhanced X-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit in detail. The quantitative velocity fields of blood flows inside opaque conduits were obtained by applying a two-frame PIV algorithm to the X-ray images of the blood flows. The measured velocity data show typical features of blood flow such as the yield stress and shear-thinning effects. (orig.)

  10. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong; Henze, Gregor P.; Sarkar, Soumik

    2018-02-01

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shown to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.

  11. Toddler inhibited temperament, maternal cortisol reactivity and embarrassment, and intrusive parenting.

    Science.gov (United States)

    Kiel, Elizabeth J; Buss, Kristin A

    2013-06-01

    The relevance of parenting behavior to toddlers' development necessitates a better understanding of the influences on parents during parent-child interactions. Toddlers' inhibited temperament may relate to parenting behaviors, such as intrusiveness, that predict outcomes later in childhood. The conditions under which inhibited temperament relates to intrusiveness, however, remain understudied. A multimethod approach would acknowledge that several levels of processes determine mothers' experiences during situations in which they witness their toddlers interacting with novelty. As such, the current study examined maternal cortisol reactivity and embarrassment about shyness as moderators of the relation between toddlers' inhibited temperament and maternal intrusive behavior. Participants included 92 24-month-old toddlers and their mothers. Toddlers' inhibited temperament and maternal intrusiveness were measured observationally in the laboratory. Mothers supplied saliva samples at the beginning of the laboratory visit and 20 minutes after observation. Maternal cortisol reactivity interacted with inhibited temperament in relation to intrusive behavior, such that mothers with higher levels of cortisol reactivity were observed to be more intrusive with more highly inhibited toddlers. Embarrassment related to intrusive behavior as a main effect. These results highlight the importance of considering child characteristics and psychobiological processes in relation to parenting behavior. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. Development of non-intrusive monitoring techniques - ESDRED and TEM projects at Mont Terri and the Grimsel test site

    International Nuclear Information System (INIS)

    Breen, B.; Johnson, M.; Frieg, B.; Blechschmidt, I.; Manukyan, E.; Marelli, S.; Maurer, H.R.

    2008-01-01

    The EC Integrated Project, IP ESDRED (Engineering Studies and Demonstration of Repository Designs) was commissioned to establish a sound technical basis for demonstrating the safety of disposing of spent fuel and long-lived radioactive wastes in deep geological formations and to underpin the development of a common European view on the main issues related to the management and disposal of radioactive waste. The in situ development of non-intrusive monitoring techniques is included within the programme as an important component of the overall ESDRED programme. Monitoring will play an important role in providing information to the repository operator and to society in general and to support decision-making about if and when, to move from one phase to the next. The challenges, when constructing engineered barrier systems (EBS) to isolate the waste, is the ability to monitor the waste and the barriers, once isolated. Conventional monitoring systems depend upon wires or cable s to transfer information from the monitoring sensors outside the barriers. Monitoring sensors also have a limited lifetime and new sensors cannot be emplaced without disturbing the barrier. The development of non-intrusive monitoring systems which do not rely upon 'hard-wired' connection, thus providing the opportunity for continued monitoring after isolation. The ESDRED partners developed a programme utilising cross-hole seismic tomography to monitor an experimental demonstration by Nagra at Mont Terri Underground Research Laboratory (URL). The work programme includes PhD studies to conduct full seismic waveform analysis and to develop algorithms to address natural anisotropy in the Opalinus clay at Mont Terri. Following on from the ESDRED developments, some of ESDRED partner organisations identified a further opportunity for developing in situ monitoring techniques utilising the construction and testing programme of a low pH shotcrete plug being constructed in granite at the Grimsel Test Site

  13. Intrusive luxation of 60 permanent incisors

    DEFF Research Database (Denmark)

    Tsilingaridis, Georgios; Malmgren, Barbro; Andreasen, Jens O

    2012-01-01

    Intrusive luxation in the permanent dentition is an uncommon injury but it is considered one of the most severe types of dental trauma because of the risk for damage to the periodontal ligament, pulp and alveolar bone. Management of intrusive luxation in the permanent dentition is controversial....... The purpose of this study was to evaluate pulp survival and periodontal healing in intrusive luxated permanent teeth in relation to treatment alternatives, degree of intrusion and root development....

  14. Water flow measurements with the pulsed neutron activation method

    International Nuclear Information System (INIS)

    Linden, P.

    1997-05-01

    The objective of this work was to develop and study the feasibility of a flow-meter, based on the pulsed neutron activation method. It is a non-invasive method with good potential regarding accuracy. However, the ultimate accuracy has not been fully investigated before. Two series of flow rate measurements have been performed and analysed. The first series was done under moderately accurate flow calibration conditions to get sufficient confidence in the method and to get indication of the obtainable accuracy. The results were encouraging and further measurements with high accuracy flow calibration were planned. A dedicated loop was designed and built, and it was used with satisfactory performance. Two models have been used for analysis of recorded data; time weighting method and a fit to Taylor diffusion theory. The results show that the accuracy in mean flow velocity obtained from the used analysis models is in the range of 2-4% for Reynolds numbers greater than 10,000. Data recorded from high calibration measurements will also be used for validation of future calculations. 19 refs, 4 figs

  15. Intrusion detection in Mobile Ad-hoc Networks: Bayesian game formulation

    Directory of Open Access Journals (Sweden)

    Basant Subba

    2016-06-01

    Full Text Available Present Intrusion Detection Systems (IDSs for MANETs require continuous monitoring which leads to rapid depletion of a node's battery life. To address this issue, we propose a new IDS scheme comprising a novel cluster leader election process and a hybrid IDS. The cluster leader election process uses the Vickrey–Clarke–Groves mechanism to elect the cluster leader which provides the intrusion detection service. The hybrid IDS comprises a threshold based lightweight module and a powerful anomaly based heavyweight module. Initially, only the lightweight module is activated. The decision to activate the heavyweight module is taken by modeling the intrusion detection process as an incomplete information non-cooperative game between the elected leader node and the potential malicious node. Simulation results show that the proposed scheme significantly reduces the IDS traffic and overall power consumption in addition to maintaining a high detection rate and accuracy.

  16. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  17. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Guogang; Dong Jinlong; Liu Wanying; Geng Yingsan

    2014-01-01

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc. (low temperature plasma)

  18. Development of a multi-path ultrasonic flow meter for the application to feedwater flow measurement in nuclear power plants

    International Nuclear Information System (INIS)

    Jong, J. C.; Ha, J. H.; Kim, Y. H.; Jang, W. H.; Park, K. S.; Park, M. S.; Park, M. H.

    2002-01-01

    In this work, we propose a method to measure the feedwater flow using multi-path ultrasonic flow meter (UFM). Since the UFM measures a path velocity at which the ultrasonic wave is propagated, the flow profile may be important to convey the path velocity to the velocity averaged over the entire cross section of the flowing medium. The conventional UFM has used the smooth-wall circular pipe model presented by Nikurades. However, this model covers a lower range which is less than 3.2 million while the Reynolds number of the feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we proposed the non-linear correlation model that combines the ratio between the DP output and proposed the non-linear correlation model that combines the ratio between the DP output and UFM output. Experiments were performed using both computer simulation and newly constructed NPPs' test data. The uncertainty analysis result shows that the proposed method has reasonably lower uncertainty than conventional UFM

  19. The use of gamma radiation in fluid flow measurements

    International Nuclear Information System (INIS)

    Tjugum, S.A.; Johansen, G.A.

    2000-01-01

    The use of gamma radiation in densitometry measurements is a well known principle. These measurements are often used in the oil industry where there is a need for finding the gas fraction of an oil/water/gas flow. The traditional gamma densitometer has a simple construction, where the measured parameter is the attenuation of a single gamma beam. High reliability, robustness and the clamp-on possibility are advantages that this type of instruments offer. More information can be found by studying how radiation is scattered and absorbed by matter. This information is needed in new multiphase flow meters. Problems to be solved in these instruments are how to find volume fractions of more than two components, how to handle different flow regimes in non-homogeneous flow, and how to do measurements independent of the salinity of the water. The new technology involves multi-energy, multi-mode and multi-sensor systems. At the University of Bergen the focus has been on how to do flow regime and salinity independent measurements by using multi-sensor and multi-mode systems. This paper gives an overview of the different techniques, and presents the latest results within this field of research at the University of Bergen. (author)

  20. Measurements of wall-shear-stress distribution on an NACA0018 airfoil by liquid-crystal coating and near-wall particle image velocimetry (PIV)

    International Nuclear Information System (INIS)

    Fujisawa, N; Oguma, Y; Nakano, T

    2009-01-01

    Measurements of wall-shear-stress distributions along curved surfaces are carried out using non-intrusive experimental methods, such as liquid-crystal coating and near-wall particle image velocimetry (PIV). The former method relies on the color change of the liquid-crystal coating sensitive to the wall shear stress, while the latter is based on the direct evaluation of shear stresses through the near-wall PIV measurement in combination with the image deformation technique. These experimental methods are applied to the measurement of wall-shear-stress distributions of air flow at a free-stream velocity of 15 m s −1 on a flat plate and an NACA0018 airfoil. The experiments are carried out at zero angle of attack for the flat plate and at 0° and ±6° angles of attack for the airfoil, and then the variations of shear-stress distribution along these surfaces are studied. These measurements in wall shear stresses agree with each other within their experimental uncertainties, suggesting the validity of experimental methods for non-intrusive shear-stress measurements. It is found that the wall-shear-stress distribution shows a small negative value upstream of the reattachment point on the NACA0018 airfoil, which is followed by an increase in shear stresses downstream due to laminar–turbulent transition of boundary layers. Such behavior of wall-shear-stress distribution is well correlated with the mean flow and turbulence characteristics along the airfoil surfaces, which are measured by PIV

  1. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  2. Non-contact flow gauging for the extension and development of rating curves

    Science.gov (United States)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves

  3. An intrusion detection system based on fiber hydrophone

    Science.gov (United States)

    Liu, Junrong; Qiu, Xiufen; Shen, Heping

    2017-10-01

    This paper provides a new intrusion detection system based on fiber hydrophone, focusing beam forming figure positioning according to the near field and high precision sound source location algorithm which can accurately position the intrusion; obtaining its behavior path , obtaining the intrusion events related information such as speed form tracking intrusion trace; And analyze identification the detected intrusion behavior. If the monitor area is larger, the algorithm will take too much time once, and influence the system response time, for reduce the calculating time. This paper provides way that coarse location first, and then scanned for accuracy, so as to realize the intrusion events (such as car, etc.) the remote monitoring of positioning. The system makes up the blank in process capture of the fiber optic intrusion detection technology, and improves the understanding of the invasion. Through the capture of the process of intrusion behavior, and the fusion detection of intrusion behavior itself, thus analysis, judgment, identification of the intrusion information can greatly reduce the rate of false positives, greatly improved the reliability and practicability of the perimeter security system.

  4. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility.

    Science.gov (United States)

    Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky

    2014-06-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.

  5. Adaptive Queue Management with Restraint on Non-Responsive Flows

    Directory of Open Access Journals (Sweden)

    Lan Li

    2003-12-01

    Full Text Available This paper proposes an adaptive queue management scheme (adaptive RED to improve Random Early Detection (RED on restraining non-responsive flows. Due to a lack of flow control mechanism, non-responsive flows can starve responsive flows for buffer and bandwidth at the gateway. In order to solve the disproportionate resource problem, RED framework is modified in this way: on detecting when the non-responsive flows starve the queue, packet-drop intensity (Max_p in RED can be adaptively adjusted to curb non-responsive flows for resource fair-sharing, such as buffer and bandwidth fair-sharing. Based on detection of traffic behaviors, intentionally restraining nonresponsive flows is to increase the throughput and decrease the drop rate of responsive flows. Our experimental results based on adaptive RED shows that the enhancement of responsive traffic and the better sharing of buffer and bandwidth can be achieved under a variety of traffic scenarios.

  6. Nocturnal insomnia symptoms and stress-induced cognitive intrusions in risk for depression: A 2-year prospective study

    Science.gov (United States)

    Pillai, Vivek; Drake, Christopher L.

    2018-01-01

    Nearly half of US adults endorse insomnia symptoms. Sleep problems increase risk for depression during stress, but the mechanisms are unclear. During high stress, individuals having difficulty falling or staying asleep may be vulnerable to cognitive intrusions after stressful events, given that the inability to sleep creates a period of unstructured and socially isolated time in bed. We investigated the unique and combined effects of insomnia symptoms and stress-induced cognitive intrusions on risk for incident depression. 1126 non-depressed US adults with no history of DSM-5 insomnia disorder completed 3 annual web-based surveys on sleep, stress, and depression. We examined whether nocturnal insomnia symptoms and stress-induced cognitive intrusions predicted depression 1y and 2y later. Finally, we compared depression-risk across four groups: non-perseverators with good sleep, non-perseverators with insomnia symptoms, perseverators with good sleep, and perseverators with insomnia symptoms. Insomnia symptoms (β = .10–.13, p insomnia had the highest rates of depression (13.0%), whereas good sleeping non-perseverators had the lowest rates (3.3%, Relative Risk = 3.94). Perseverators with sleep latency >30 m reported greater depression than good sleeping perseverators (t = 2.09, p < .04). Cognitive intrusions following stress creates a depressogenic mindset, and nocturnal wakefulness may augment the effects of cognitive arousal on depression development. Poor sleepers may be especially vulnerable to cognitive intrusions when having difficulty initiating sleep. As treatable behaviors, nighttime wakefulness and cognitive arousal may be targeted to reduce risk for depression in poor sleepers. PMID:29438400

  7. Large scale applicability of a Fully Adaptive Non-Intrusive Spectral Projection technique: Sensitivity and uncertainty analysis of a transient

    International Nuclear Information System (INIS)

    Perkó, Zoltán; Lathouwers, Danny; Kloosterman, Jan Leen; Hagen, Tim van der

    2014-01-01

    Highlights: • Grid and basis adaptive Polynomial Chaos techniques are presented for S and U analysis. • Dimensionality reduction and incremental polynomial order reduce computational costs. • An unprotected loss of flow transient is investigated in a Gas Cooled Fast Reactor. • S and U analysis is performed with MC and adaptive PC methods, for 42 input parameters. • PC accurately estimates means, variances, PDFs, sensitivities and uncertainties. - Abstract: Since the early years of reactor physics the most prominent sensitivity and uncertainty (S and U) analysis methods in the nuclear community have been adjoint based techniques. While these are very effective for pure neutronics problems due to the linearity of the transport equation, they become complicated when coupled non-linear systems are involved. With the continuous increase in computational power such complicated multi-physics problems are becoming progressively tractable, hence affordable and easily applicable S and U analysis tools also have to be developed in parallel. For reactor physics problems for which adjoint methods are prohibitive Polynomial Chaos (PC) techniques offer an attractive alternative to traditional random sampling based approaches. At TU Delft such PC methods have been studied for a number of years and this paper presents a large scale application of our Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm for performing the sensitivity and uncertainty analysis of a Gas Cooled Fast Reactor (GFR) Unprotected Loss Of Flow (ULOF) transient. The transient was simulated using the Cathare 2 code system and a fully detailed model of the GFR2400 reactor design that was investigated in the European FP7 GoFastR project. Several sources of uncertainty were taken into account amounting to an unusually high number of stochastic input parameters (42) and numerous output quantities were investigated. The results show consistently good performance of the applied adaptive PC

  8. Microbial enhancement of non-Darcy flow: Theoretical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.

  9. An international perspective on Facebook intrusion.

    Science.gov (United States)

    Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela Magdalena; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N; Mazzoni, Elvis; Pappas, Ilias O; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M S; Ben-Ezra, Menachem

    2016-08-30

    Facebook has become one of the most popular social networking websites in the world. The main aim of the study was to present an international comparison of Facebook intrusion and Internet penetration while examining possible gender differences. The study consisted of 2589 participants from eight countries: China, Greece, Israel, Italy, Poland, Romania, Turkey, USA. Facebook intrusion and Internet penetration were taken into consideration. In this study the relationship between Facebook intrusion and Internet penetration was demonstrated. Facebook intrusion was slightly negatively related to Internet penetration in each country. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Preliminary evaluation of solution-mining intrusion into a salt-dome repository

    International Nuclear Information System (INIS)

    1981-06-01

    This report is the product of the work of an ONWI task force to evaluate inadvertant human intrusion into a salt dome repository by solution mining. It summarizes the work in the following areas: a general review of the levels of defense that could reduce both the likelihood and potential consequences of human intrusion into a salt dome repository; evaluation of a hypothetical intrusion scenario and its consequences; recommendation for further studies. The conclusions of this task force report can be summarized as follows: (1) it is not possible at present to establish with certainty that solution mining is credible as a human-intrusion event. The likelihood of such an intrusion will depend on the effectiveness of the preventive measures; (2) an example analysis based on the realistic approach is presented in this report; it concluded that the radiological consequences are strongly dependent upon the mode of radionuclide release from the waste form, time after emplacement, package design, impurities in the host salt, the amount of a repository intercepted, the solution mining cavity form, the length of time over which solution mining occurs, the proportion of contaminated salt source for human consumption compared to other sources, and the method of salt purification for culinary purposes; (3) worst case scenarios done by other studies suggest considerable potential for exposures to man while preliminary evaluations of more realistic cases suggest significantly reduced potential consequences. Mathematical model applications to process systems, guided by more advanced assumptions about human intrusion into geomedia, will shed more light on the potential for concerns and the degree to which mitigative measures will be required

  11. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    Science.gov (United States)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  12. Evidence of non-Darcy flow and non-Fickian transport in fractured media at laboratory scale

    Directory of Open Access Journals (Sweden)

    C. Cherubini

    2013-07-01

    Full Text Available During a risk assessment procedure as well as when dealing with cleanup and monitoring strategies, accurate predictions of solute propagation in fractured rocks are of particular importance when assessing exposure pathways through which contaminants reach receptors. Experimental data obtained under controlled conditions such as in a laboratory allow to increase the understanding of the fundamental physics of fluid flow and solute transport in fractures. In this study, laboratory hydraulic and tracer tests have been carried out on an artificially created fractured rock sample. The tests regard the analysis of the hydraulic loss and the measurement of breakthrough curves for saline tracer pulse inside a rock sample of parallelepiped shape (0.60 × 0.40 × 0.08 m. The convolution theory has been applied in order to remove the effect of the acquisition apparatus on tracer experiments. The experimental results have shown evidence of a non-Darcy relationship between flow rate and hydraulic loss that is best described by Forchheimer's law. Furthermore, in the flow experiments both inertial and viscous flow terms are not negligible. The observed experimental breakthrough curves of solute transport have been modeled by the classical one-dimensional analytical solution for the advection–dispersion equation (ADE and the single rate mobile–immobile model (MIM. The former model does not properly fit the first arrival and the tail while the latter, which recognizes the existence of mobile and immobile domains for transport, provides a very decent fit. The carried out experiments show that there exists a pronounced mobile–immobile zone interaction that cannot be neglected and that leads to a non-equilibrium behavior of solute transport. The existence of a non-Darcian flow regime has showed to influence the velocity field in that it gives rise to a delay in solute migration with respect to the predicted value assuming linear flow. Furthermore, the

  13. Long-term consequences of non-intentional flows of substances: Modelling non-intentional flows of lead in the Dutch economic system and evaluating their environmental consequences

    International Nuclear Information System (INIS)

    Elshkaki, Ayman; Voet, Ester van der; Holderbeke, Mirja van; Timmermans, Veerle

    2009-01-01

    Substances may enter the economy and the environment through both intentional and non-intentional flows. These non-intentional flows, including the occurrence of substances as pollutants in mixed primary resources (metal ores, phosphate ores and fossil fuels) and their presence in re-used waste streams from intentional use may have environmental and economic consequences in terms of pollution and resource availability. On the one hand, these non-intentional flows may cause pollution problems. On the other hand, these flows have the potential to be a secondary source of substances. This article aims to quantify and model the non-intentional flows of lead, to evaluate their long-term environmental consequences, and compare these consequences to those of the intentional flows of lead. To meet this goal, the model combines all the sources of non-intentional flows of lead within one model, which also includes the intentional flows. Application of the model shows that the non-intentional flows of lead related to waste streams associated with intentional use are decreasing over time, due to the increased attention given to waste management. However, as contaminants in mixed primary resources application, lead flows are increasing as demand for these applications is increasing.

  14. Effects of climate variability on saltwater intrusions in coastal aquifers in Southern Denmark

    Science.gov (United States)

    Meyer, Rena; Sonnenborg, Torben; Engesgaard, Peter; Høyer, Anne-Sophie; Jørgensen, Flemming; Hisnby, Klaus; Hansen, Birgitte; Jensen, Jørn Bo; Piotrowski, Jan A.

    2016-04-01

    As in many other regions of the world fresh water supply in Denmark is based on groundwater resources. Aquifers in the low-lying areas in the south-west of Jutland are particularly vulnerable to saltwater intrusions which are likely to intensify due to relative sea level rise. To understand the dynamics and development of this complex flow system, the initial hydrodynamic conditions imposed by the last Scandinavian Ice Sheet (SIS) must be taken into account. The whole region has undergone changes in climatic and hydraulic conditions within the last 15000 years that may show influence on the present flow conditions. It is likely that the groundwater-flow dynamics, driven by the postglacial hydraulic head drop and the relative sea level rise are not yet equilibrated. Enhanced by the potential future sea level rise due to climate change, contamination of fresh-water aquifers will continue. The 2800-km2 - large coast-to-coast study area located in the southern part of Jutland was partly overridden by the Weichselian ice sheet. Geophysical and geological mapping shows salt water intrusions up to 20 km inland from the present coast. Based on a geological voxel model spanning Miocene through Quaternary deposits a large-scale 3D numerical groundwater flow and salt water transport model has been developed. It includes density-driven flow and simulates the distribution of the current saltwater intrusions and their evolution during the last 15000 years. Particle tracking and direct age simulations are performed to identify recharge areas and constrain groundwater ages. The simulated ages are compared to ages derived from isotope analysis of groundwater samples both from Miocene and Quaternary aquifers. The origin of the groundwater is determined based on isotopic and chemical composition. Additionally, heavy noble gas analysis is carried out to estimate recharge temperatures and mechanisms at locations where groundwater recharge during the last glaciation is indicated. This

  15. Balanced Flow Meters without Moving Parts

    Science.gov (United States)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  16. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  17. Non-intrusive aerodynamic loads analysis of an aircraft propeller blade

    Energy Technology Data Exchange (ETDEWEB)

    Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2011-08-15

    The flow field in a cross-sectional plane of a scaled Beaver DHC aircraft propeller has been measured by means of a stereoscopic PIV setup. Phase-locked measurements are obtained in a rotational frequency range from 18,900 to 21,000 rpm, at a relative Mach number of 0.6 at 3/4 propeller radius. The use of an adapted formulation of the momentum equation in differential form for rotating frame of references, integrated with isentropic relations as boundary conditions, allowed to compute the pressure field around the blade and the surface pressure distribution directly from the velocity data in the compressible regime. The procedure, extended to the computation of the aerodynamic lift and drag coefficients by a momentum contour integral approach, proved to be able to couple the aerodynamical loads to the flow field on the moving propeller blade, comparing favorably with a numerical simulation of the entire scaled model. Results are presented for two propeller rotation speeds and three different yawing angles. (orig.)

  18. Non-intrusive aerodynamic loads analysis of an aircraft propeller blade

    Science.gov (United States)

    Ragni, D.; van Oudheusden, B. W.; Scarano, F.

    2011-08-01

    The flow field in a cross-sectional plane of a scaled Beaver DHC aircraft propeller has been measured by means of a stereoscopic PIV setup. Phase-locked measurements are obtained in a rotational frequency range from 18,900 to 21,000 rpm, at a relative Mach number of 0.6 at ¾ propeller radius. The use of an adapted formulation of the momentum equation in differential form for rotating frame of references, integrated with isentropic relations as boundary conditions, allowed to compute the pressure field around the blade and the surface pressure distribution directly from the velocity data in the compressible regime. The procedure, extended to the computation of the aerodynamic lift and drag coefficients by a momentum contour integral approach, proved to be able to couple the aerodynamical loads to the flow field on the moving propeller blade, comparing favorably with a numerical simulation of the entire scaled model. Results are presented for two propeller rotation speeds and three different yawing angles.

  19. Executive functions in adolescents with spina bifida: relations with autonomy development and parental intrusiveness.

    Science.gov (United States)

    Tuminello, Elizabeth R; Holmbeck, Grayson N; Olson, Rick

    2012-01-01

    The current study was part of a larger longitudinal investigation and examined the relation of parent-report and performance measures of executive functioning (EF) with measures of behavioral and emotional autonomy and parental intrusiveness in adolescents with and without spina bifida (SB; n=65 in a comparison sample and 61 in an SB sample; M age=14.55, SD=0.63). For both groups, higher levels of parent-reported EF problems predicted higher levels of observed child dependency and lower levels of teacher-reported intrinsic motivation. Higher scores on performance EF measures predicted lower levels of observed child dependency and observed maternal intrusiveness for both groups. In adolescents with SB only, higher performance EF scores predicted higher intrinsic motivation and emotional autonomy from both mother and father and predicted lower levels of observed paternal intrusiveness. While causal conclusions cannot be drawn, EFs appear to be closely related to autonomy development and parental intrusiveness, particularly for adolescents with SB. These results suggest that the inclusion of EF training in interventions targeting adolescents with SB may be beneficial for autonomy development.

  20. A Frequency-Based Approach to Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Mian Zhou

    2004-06-01

    Full Text Available Research on network security and intrusion detection strategies presents many challenging issues to both theoreticians and practitioners. Hackers apply an array of intrusion and exploit techniques to cause disruption of normal system operations, but on the defense, firewalls and intrusion detection systems (IDS are typically only effective in defending known intrusion types using their signatures, and are far less than mature when faced with novel attacks. In this paper, we adapt the frequency analysis techniques such as the Discrete Fourier Transform (DFT used in signal processing to the design of intrusion detection algorithms. We demonstrate the effectiveness of the frequency-based detection strategy by running synthetic network intrusion data in simulated networks using the OPNET software. The simulation results indicate that the proposed intrusion detection strategy is effective in detecting anomalous traffic data that exhibit patterns over time, which include several types of DOS and probe attacks. The significance of this new strategy is that it does not depend on the prior knowledge of attack signatures, thus it has the potential to be a useful supplement to existing signature-based IDS and firewalls.

  1. Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    International Nuclear Information System (INIS)

    He Zhi; Zhu Lie-Qiang; Li Li

    2017-01-01

    A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. (paper)

  2. Acknowledging the dilemmas of intrusive media

    DEFF Research Database (Denmark)

    Mathieu, David; Finger, Juliane; Dias, Patrcia

    2017-01-01

    Part of the stakeholder consultation addressed strategies that media audiences are developing to cope with pressures and intrusions in a changing media environment, characterised by digitalisation and interactive possibilities. We interviewed ten stakeholders representing interests such as content...... production, media literacy, media regulation, and activism. Consulting with these stakeholders left the impression that pressures and intrusions from media lack widespread acknowledgement, and that little is known about audiences’ strategies to cope with media. Even when intrusions are acknowledged, we find...... no consensual motivation, nor any clear avenue for action. Therefore, we have analysed different discursive positions that prevent acknowledging or taking action upon the pressures and intrusions that we presented to these stakeholders. The discursive positions are outlined below....

  3. Complexity reduction of multi-phase flows in heterogeneous porous media

    KAUST Repository

    Ghommem, Mehdi

    2013-01-01

    In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in highly heterogeneous porous media. We propose intrusive and non-intrusive model reduction approaches that enable a significant reduction in the dimension of the flow problem size while capturing the behavior of the fully-resolved solutions. In one approach, we employ the dynamic mode decomposition (DMD) and the discrete empirical interpolation method (DEIM). This approach does not require any modification of the reservoir simulation code but rather postprocesses a set of global snapshots to identify the dynamically-relevant structures associated with the flow behavior. In a second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper orthogonal decomposition (POD) modes. Furthermore, we use DEIM to approximate the mobility related term in the global system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE 10 benchmark permeability field and present a variety of numerical examples of two-phase flow and transport. The proposed model reduction methods can be efficiently used when performing uncertainty quantification or optimization studies and history matching.

  4. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  5. Zero Trust Intrusion Containment for Telemedicine

    National Research Council Canada - National Science Library

    Sood, Arun

    2002-01-01

    .... Our objective is the design and analysis of 'zero-trust' Intrusion Tolerant Systems. These are systems built under the extreme assumption that all intrusion detection techniques will eventually fail...

  6. Non-symmetric bi-stable flow around the Ahmed body

    International Nuclear Information System (INIS)

    Meile, W.; Ladinek, T.; Brenn, G.; Reppenhagen, A.; Fuchs, A.

    2016-01-01

    Highlights: • The non-symmetric bi-stable flow around the Ahmed body is investigated experimentally. • Bi-stability, described for symmetric flow by Cadot and co-workers, was found in nonsymmetric flow also. • The flow field randomly switches between two states. • The flow is subject to a spanwise instability identified by Cadot and co-workers for symmetric flow. • Aerodynamic forces fluctuate strongly due to the bi-stability. - Abstract: The flow around the Ahmed body at varying Reynolds numbers under yawing conditions is investigated experimentally. The body geometry belongs to a regime subject to spanwise flow instability identified in symmetric flow by Cadot and co-workers (Grandemange et al., 2013b). Our experiments cover the two slant angles 25° and 35° and Reynolds numbers up to 2.784 × 10"6. Special emphasis lies on the aerodynamics under side wind influence. For the 35° slant angle, forces and moments change significantly with the yawing angle in the range 10° ≤ |β| ≤ 15°. The lift and the pitching moment exhibit strong fluctuations due to bi-stable flow around a critical angle β of ±12.5°, where the pitching moment changes sign. Time series of the forces and moments are studied and explained by PIV measurements in the flow field near the rear of the body.

  7. Coplanar capacitance sensors for detecting water intrusion in composite structures

    International Nuclear Information System (INIS)

    Nassr, Amr A; El-Dakhakhni, Wael W; Ahmed, Wael H

    2008-01-01

    Composite materials are becoming more affordable and widely used for retrofitting, rehabilitating and repairing reinforced concrete structures designed and constructed under older specifications. However, the mechanical properties and long-term durability of composite materials may degrade severely in the presence of water intrusion. This study presents a new non-destructive evaluation (NDE) technique for detecting the water intrusion in composite structures by evaluating the dielectric properties of different composite system constituent materials. The variation in the dielectric signatures was employed to design a coplanar capacitance sensor with high sensitivity to detect such defects. An analytical model was used to study the effect of the sensor geometry on the output signal and to optimize sensor design. A finite element model was developed to validate analytical results and to evaluate other sensor design-related parameters. Experimental testing of a concrete specimen wrapped with composite laminate and containing a series of pre-induced water intrusion defects was conducted in order to validate the concept of the new technique. Experimental data showed excellent agreement with the finite element model predictions and confirmed sensor performance

  8. Contextualising Water Use in Residential Settings: A Survey of Non-Intrusive Techniques and Approaches

    Directory of Open Access Journals (Sweden)

    Davide Carboni

    2016-05-01

    Full Text Available Water monitoring in households is important to ensure the sustainability of fresh water reserves on our planet. It provides stakeholders with the statistics required to formulate optimal strategies in residential water management. However, this should not be prohibitive and appliance-level water monitoring cannot practically be achieved by deploying sensors on every faucet or water-consuming device of interest due to the higher hardware costs and complexity, not to mention the risk of accidental leakages that can derive from the extra plumbing needed. Machine learning and data mining techniques are promising techniques to analyse monitored data to obtain non-intrusive water usage disaggregation. This is because they can discern water usage from the aggregated data acquired from a single point of observation. This paper provides an overview of water usage disaggregation systems and related techniques adopted for water event classification. The state-of-the art of algorithms and testbeds used for fixture recognition are reviewed and a discussion on the prominent challenges and future research are also included.

  9. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  10. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    Science.gov (United States)

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2015-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871

  11. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2016-07-01

    Full Text Available A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison. The measurements were carried out at four observational sites: Payerne (Switzerland, Bilthoven (the Netherlands, Lindenberg (north-eastern Germany, and the Zugspitze mountain (Garmisch-Partenkichen, German Alps, and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg. The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014 that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The

  12. Why hasn't a seawater intrusion yet happened in the Kaluvelli-Pondicherry basin, Tamil Nadu, India?

    Science.gov (United States)

    Vincent, Aude; Violette, Sophie

    2016-04-01

    Worldwide, coastal aquifers are threatened by seawater intrusion. The threat is even bigger when those aquifers are overexploited, for example for irrigation, or when their recharge is low due to a semi-arid or arid climate. The sedimentary basin studied here presents both this characteristics, and water level records in the main aquifer can be as low as 30m below MSL. Though, no seawater intrusion has been monitored yet. To understand why, and because a good knowledge of a system hydrodynamic is a necessary step to an efficient water management strategy, hydrogeological numerical modelling of this multi-layered system has been conducted. Existing and acquired geological and hydrodynamic data have been implemented into a quasi-3D hydrogeological model performed with NEWSAM code. Recharge had been previously quantified through the intercomparison of hydrological models, based on surface flow field measurements. During the hydrogeological modelling, sensitivity tests on parameters, and on the nature of the boundary condition with the sea, led to the hypothesis of an offshore freshwater stock. Extension of this fresh groundwater stock has been calculated thanks to Groen approximation.

  13. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just

  14. Controlling factors on earthquake swarms associated with magmatic intrusions; constraints from Iceland

    Science.gov (United States)

    Pedersen, R.; Sigmundsson, F.; Einarsson, P.; Brandsdottir, B.; Arnadottir, T.

    2005-12-01

    Intrusion of magma into the Earth's crust is frequently associated with seismic activity, often occurring as distinct earthquake swarms. Understanding the nature of these swarms is important for evaluating crisis situations in volcanic areas. However, there often seem to be little correlation between the amount of seismic energy release, the spatial extent of the volume of rock affected by the stress perturbations, and the volume of magma on the move, which complicates the immediate risk evaluation. A number of factors may influence the evolution of a magmatically induced seismic swarm and the resulting seismic energy release. A number of factors need to be evaluated in each individual case. These are, in random order: the crustal thickness, presence/absence of a crustal magma chamber, geothermal gradient, magmatic flow rate/stressing rate, intrusion volume, depth of intrusion, tectonic setting of the intruded area, regional stresses and tectonic history. Based on three case studies, where seismic swarm activities have been confirmed through deformation measurements to be related to magmatic movements, we attempt to evaluate the relative importance of the assumed controlling factors. All case examples are located within Iceland, but in different tectonic settings. 1. The Hengill triple junction, situated where two extensional plate boundaries join a transform zone. The area experienced a period of unusually persistent earthquake activity from 1994 to 1999, contemporaneously with ground uplift at a rate of 1-2 cm/yr. The uplift was modeled as a response to magma injection at about 7 km depth. 2. The Eyjafjallajokull volcano, situated in a volcanic flank zone where extensional fractures are only poorly developed. Two minor seismic swarms, in 1994 and 1999; were associated with a cumulative surface uplift of more than 35 cm. The two uplift events were modeled as sill intrusions at depths of 4.5 to 6.5 km. 3. The Krafla rift segment, forming part of an extensional

  15. 2. Basis of measurement of plasma flow. 2.3 Plasma flow measurements. Spectroscopic methods

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2007-01-01

    The construction of optical system, optical fiber incident system, reciprocal linear dispersion, grating smile and astigmatism of the reflection plane diffraction grating spectrometer are explained in order to measure the plasma flow. The specification of flow measurement and evaluation of 0 point of velocity are stated. For examples of measurements, the fine structures of He II (Δn = 3 - 4) in material and plasma(MAP)-II of Tokyo University, plasma flow measurement by the charge exchange recombination spectroscopy using Large Helical Device and by Zeeman spectroscopy using TRIAM-1M tokamak plasma are stated. (S.Y.)

  16. Network Intrusion Dataset Assessment

    Science.gov (United States)

    2013-03-01

    International Conference on Computational Intelligence and Natural Computing, volume 2, pages 413–416, June 2009. • Rung Ching Chen, Kai -Fan Cheng, and...Chia-Fen Hsieh . “Using rough set and support vector machine for network intrusion detection.” International Journal of Network Security & Its...intrusion detection using FP tree rules.” Journal Of Advanced Networking and Applications, 1(1):30–39, 2009. • Ming-Yang Su, Gwo-Jong Yu , and Chun-Yuen

  17. Further development of drag bodies for the measurement of mass flow rates during blowdown experiments

    International Nuclear Information System (INIS)

    Brockmann, E.; John, H.; Reimann, J.

    1983-01-01

    Drag bodies have already been used for sometime for the measurement of mass flow rates in blowdown experiments. Former research concerning the drag body behaviour in non-homogeneous two-phase flows frequently dealt with special effects by means of theoretical models only. For pipe flows most investigations were conducted for ratios of drag plate area to pipe cross section smaller 0.02. The present paper gives the results of experiments with drag bodies in a horizontal, non-homogeneous two-phase pipe flow with slip, which were carried through under the sponsorship of the German Ministry for Research and Technology (BMFT). Special interest was layed on the behaviour of the drag coefficient in stationary flows and at various cross sectional ratios. Both design and response of various drag bodies, which were developed at the Battelle-Institut, were tested in stationary and instationary two-phase flows. The influences of density and velocity profiles as well as the drag body position were studied. The results demonstrate, that the drag body is capable of measuring mass flow rates in connection with a gamma densitometer also in non-homogeneous two-phase flows. Satisfying results could be obtained, using simply the drag coefficient which was determined from single-phase flow calibrations

  18. Non-Newtonian fluid flow in 2D fracture networks

    Science.gov (United States)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  19. From intrusive to oscillating thoughts.

    Science.gov (United States)

    Peirce, Anne Griswold

    2007-10-01

    This paper focused on the possibility that intrusive thoughts (ITs) are a form of an evolutionary, adaptive, and complex strategy to prepare for and resolve stressful life events through schema formation. Intrusive thoughts have been studied in relation to individual conditions, such as traumatic stress disorder and obsessive-compulsive disorder. They have also been documented in the average person experiencing everyday stress. In many descriptions of thought intrusion, it is accompanied by thought suppression. Several theories have been put forth to describe ITs, although none provides a satisfactory explanation as to whether ITs are a normal process, a normal process gone astray, or a sign of pathology. There is also no consistent view of the role that thought suppression plays in the process. I propose that thought intrusion and thought suppression may be better understood by examining them together as a complex and adaptive mechanism capable of escalating in times of need. The ability of a biological mechanism to scale up in times of need is one hallmark of a complex and adaptive system. Other hallmarks of complexity, including self-similarity across scales, sensitivity to initial conditions, presence of feedback loops, and system oscillation, are also discussed in this article. Finally, I propose that thought intrusion and thought suppression are better described together as an oscillatory cycle.

  20. Nocturnal insomnia symptoms and stress-induced cognitive intrusions in risk for depression: A 2-year prospective study.

    Science.gov (United States)

    Kalmbach, David A; Pillai, Vivek; Drake, Christopher L

    2018-01-01

    Nearly half of US adults endorse insomnia symptoms. Sleep problems increase risk for depression during stress, but the mechanisms are unclear. During high stress, individuals having difficulty falling or staying asleep may be vulnerable to cognitive intrusions after stressful events, given that the inability to sleep creates a period of unstructured and socially isolated time in bed. We investigated the unique and combined effects of insomnia symptoms and stress-induced cognitive intrusions on risk for incident depression. 1126 non-depressed US adults with no history of DSM-5 insomnia disorder completed 3 annual web-based surveys on sleep, stress, and depression. We examined whether nocturnal insomnia symptoms and stress-induced cognitive intrusions predicted depression 1y and 2y later. Finally, we compared depression-risk across four groups: non-perseverators with good sleep, non-perseverators with insomnia symptoms, perseverators with good sleep, and perseverators with insomnia symptoms. Insomnia symptoms (β = .10-.13, p good sleeping non-perseverators had the lowest rates (3.3%, Relative Risk = 3.94). Perseverators with sleep latency >30 m reported greater depression than good sleeping perseverators (t = 2.09, p stress creates a depressogenic mindset, and nocturnal wakefulness may augment the effects of cognitive arousal on depression development. Poor sleepers may be especially vulnerable to cognitive intrusions when having difficulty initiating sleep. As treatable behaviors, nighttime wakefulness and cognitive arousal may be targeted to reduce risk for depression in poor sleepers.

  1. Measurements of the near-surface flow over a hill

    Science.gov (United States)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  2. Eddy-current flow rate meter for measuring sodium flow rates

    International Nuclear Information System (INIS)

    Knaak, J.

    1976-01-01

    For safety reasons flow rate meters for monitoring coolant flow rates are inserted in the core of sodium-cooled fast breeder reactors. These are so-called eddy-current flow rate meters which can be mounted directly above the fuel elements. In the present contribution the principle of measurement, the mechanical construction and the circuit design of the flow rate measuring device are described. Special problems and their solution on developing the measuring system are pointed out. Finally, results of measurement and experience with the apparatus in several experiments are reported, where also further possibilities of application were tested. (orig./TK) [de

  3. Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses

    International Nuclear Information System (INIS)

    Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.

    1998-01-01

    The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent

  4. The effect of the expansion ratio on a turbulent non-Newtonian recirculating flow

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Departamento de Engenharia Quimica Instituto Superior de Engenharia do Porto (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto (Portugal)

    2002-04-01

    Measurements of the mean and turbulent flow characteristics of shear-thinning moderately elastic 0.1% and 0.2% xanthan gum aqueous solutions were carried out in a sudden expansion having a diameter ratio of 2. The inlet flow was turbulent and fully developed, and the results were compared with data for water in the same geometry and with previous published Newtonian and non-Newtonian data in a smaller expansion of diameter ratio equal to 1.538. An increase in expansion ratio led to an increase in the recirculation length and in the axial normal Reynolds stress at identical normalised locations, but the difference between Newtonian and non-Newtonian characteristics was less intense than in the smaller expansion. An extensive comparison of mean and turbulent flow characteristics was carried out in order to understand the variation of flow features. (orig.)

  5. Intrusive fathering, children's self-regulation and social skills: a mediation analysis.

    Science.gov (United States)

    Stevenson, M; Crnic, K

    2013-06-01

    Fathers have unique influences on children's development, and particularly in the development of social skills. Although father-child relationship influences on children's social competence have received increased attention in general, research on fathering in families of children with developmental delays (DD) is scant. This study examined the pathway of influence among paternal intrusive behaviour, child social skills and child self-regulatory ability, testing a model whereby child regulatory behaviour mediates relations between fathering and child social skills. Participants were 97 families of children with early identified DD enrolled in an extensive longitudinal study. Father and mother child-directed intrusiveness was coded live in naturalistic home observations at child age 4.5, child behaviour dysregulation was coded from a video-taped laboratory problem-solving task at child age 5, and child social skills were measured using independent teacher reports at child age 6. Analyses tested for mediation of the relationship between fathers' intrusiveness and child social skills by child behaviour dysregulation. Fathers' intrusiveness, controlling for mothers' intrusiveness and child behaviour problems, was related to later child decreased social skills and this relationship was mediated by child behaviour dysregulation. Intrusive fathering appears to carry unique risk for the development of social skills in children with DD. Findings are discussed as they related to theories of fatherhood and parenting in children with DD, as well as implications for intervention and future research. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.

  6. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  7. Identification of marine intrusion in the plain of Collo, northeastern Algeria

    Directory of Open Access Journals (Sweden)

    Saaidia Bachir

    2017-12-01

    Full Text Available The population increase, urbanization and intensification of agriculture and demands for water supply in the coastal plain of Collo led to excessive pumping of the unconfined aquifer with limited dimensions. This study aimed to characterize the effect of the overexploitation of the groundwater from the only unconfined aquifer in the region, what resulted in the inversion of the groundwater flow and the rise the possible seawater pollution that is shown in the water table map. The causes and effects of the saltwater intrusion were discussed. The interpretation of the electrical conductivity measurements, chloride and sodium maps have shown clearly the areas where values were the highest with tighter curves towards the sea, the wadis Guebli and Cherka. These values distribution indicated a marine source of salinity in wells and boreholes close to the sea and wadis.

  8. Uncertainty evaluation by gamma transmission measurements and CFD model comparison in a FCC cold pilot unit

    Directory of Open Access Journals (Sweden)

    Dantas C.C.

    2013-01-01

    Full Text Available The solid flow in air-catalyst in circulating fluidized bed was simulated with CFD model to obtain axial and radial distribution. Therefore, project parameters were confirmed and steady state operation condition was improved. Solid holds up axial end radial profiles simulation and comparison with gamma transmission measurements are in a good agreement. The transmission signal from an 241Am radioactive source was evaluated in NaI(Tl detector coupled to multichannel analyzer. This non intrusive measuring set up is installed at riser of a cold pilot unit to determine parameters of FCC catalyst flow at several concentrations. Mass flow rate calculated by combining solid hold up and solid phase velocity measurements was compared with catalyst inlet measured at down-comer. Evaluation in each measured parameter shows that a relative combined uncertainty of 6% in a 95% interval was estimated. Uncertainty analysis took into account a significant correlation in scan riser transmission measurements. An Eulerian approach of CFD model incorporating the kinetic theory of granular flow was adopted to describe the gas–solid two-phase flows in a multizone circulating reactor. Instantaneous and local gas-particle velocity, void fraction and turbulent parameters were obtained and results are shown in 2 D and 3D graphics.

  9. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    Science.gov (United States)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  10. Time-averaged second-order pressure and velocity measurements in a pressurized oscillating flow prime mover

    Energy Technology Data Exchange (ETDEWEB)

    Paridaens, Richard [DynFluid, Arts et Metiers, 151 boulevard de l' Hopital, Paris (France); Kouidri, Smaine [LIMSI-CNRS, Orsay Cedex (France)

    2016-11-15

    Nonlinear phenomena in oscillating flow devices cause the appearance of a relatively minor secondary flow known as acoustic streaming, which is superimposed on the primary oscillating flow. Knowledge of control parameters, such as the time-averaged second-order velocity and pressure, would elucidate the non-linear phenomena responsible for this part of the decrease in the system's energetic efficiency. This paper focuses on the characterization of a travelling wave oscillating flow engine by measuring the time-averaged second order pressure and velocity. Laser Doppler velocimetry technique was used to measure the time-averaged second-order velocity. As streaming is a second-order phenomenon, its measurement requires specific settings especially in a pressurized device. Difficulties in obtaining the proper settings are highlighted in this study. The experiments were performed for mean pressures varying from 10 bars to 22 bars. Non-linear effect does not constantly increase with pressure.

  11. Intrusive trauma memory: A review and functional analysis

    NARCIS (Netherlands)

    Krans, J.; Näring, G.W.B.; Becker, E.S.; Holmes, E.A.

    2009-01-01

    Our contribution to this special issue focuses on the phenomenon of intrusive trauma memory. While intrusive trauma memories can undoubtedly cause impairment, we argue that they may exist for a potentially adaptive reason. Theory and experimental research on intrusion development are reviewed and

  12. Aspects of cold intrusions over Greece during autumn

    Science.gov (United States)

    Mita, Constantina; Marinaki, Aggeliki; Zeini, Konstantina; Konstantara, Metaxia

    2010-05-01

    This study is focused on the description of atmospheric disturbances that caused intense cold intrusions over Greece during autumn for a period of 25 years (1982-2006). The study was based on data analysis from the meteorological station network of the Hellenic National Meteorological Service (HNMS) and the European Centre for Medium Range Weather Forecasts (ECMWF). Initially, the days with temperature at the isobaric surface of 850 hPa less or equal to the mean temperature for the 10-day period the day under investigation belongs to are isolated, composing a new confined data set which was further used. An event of intense cold intrusion is identified based on a subjective set of criteria, considering the temperature decrease at the level of 850 hPa and its duration. In particular, the criteria that were used to identify a cold intrusion were: temperature variation between two successive days at the isobaric level of 850 hPa being equal or greater than 50 C at least once during the event and duration of the event of at least two successive days with continuous temperature decrease. Additionally, the synoptic analysis of the atmospheric disturbances involved using weather charts from ECMWF, revealed that all cases were related to low pressure systems at the level of 500 hPa, accompanied by cold air masses. Moreover, a methodology proposed to classify the cold intrusions based on general circulation characteristics of the atmosphere, resulted in seven major categories. More than half of the events belong in two categories, originated northwest of the greater Greek area (Greece and parts of neighbouring countries), between 400 and 600 N. Further analysis indicated that the frequency of events increases from September to November and the majority of the events lasted two to three days. Additionally, the non-parametric Mann-Kendall test was used for the investigation of the statistical significance of the trends appearing in the results. The tests revealed that over

  13. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  14. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...

  15. Autonomous Rule Creation for Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-04-01

    Many computational intelligence techniques for anomaly based network intrusion detection can be found in literature. Translating a newly discovered intrusion recognition criteria into a distributable rule can be a human intensive effort. This paper explores a multi-modal genetic algorithm solution for autonomous rule creation. This algorithm focuses on the process of creating rules once an intrusion has been identified, rather than the evolution of rules to provide a solution for intrusion detection. The algorithm was demonstrated on anomalous ICMP network packets (input) and Snort rules (output of the algorithm). Output rules were sorted according to a fitness value and any duplicates were removed. The experimental results on ten test cases demonstrated a 100 percent rule alert rate. Out of 33,804 test packets 3 produced false positives. Each test case produced a minimum of three rule variations that could be used as candidates for a production system.

  16. Foundations and measures of quantum non-Markovianity

    International Nuclear Information System (INIS)

    Breuer, Heinz-Peter

    2012-01-01

    The basic features of the dynamics of open quantum systems, such as the dissipation of energy, the decay of coherences, the relaxation to an equilibrium or non-equilibrium stationary state, and the transport of excitations in complex structures are of central importance in many applications of quantum mechanics. The theoretical description, analysis and control of non-Markovian quantum processes play an important role in this context. While in a Markovian process an open system irretrievably loses information to its surroundings, non-Markovian processes feature a flow of information from the environment back to the open system, which implies the presence of memory effects and represents the key property of non-Markovian quantum behaviour. Here, we review recent ideas developing a general mathematical definition for non-Markovianity in the quantum regime and a measure for the degree of memory effects in the dynamics of open systems, which are based on the exchange of information between system and environment. We further study the dynamical effects induced by the presence of system–environment correlations in the total initial state and design suitable methods to detect such correlations through local measurements on the open system. (topical review)

  17. Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow.

    Science.gov (United States)

    Adair, Alexander; Mastikhin, Igor V; Newling, Benedict

    2018-06-01

    The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation). Due to the nature of the bubble cloud, it is ideally measured through the use of non-optical and non-invasive techniques; therefore, it is well-suited for study by magnetic resonance imaging. This paper demonstrates the use of Conical SPRITE (a 3D, centric-scan, pure phase-encoding pulse sequence) to acquire time-averaged void fraction and velocity information about hydrodynamic cavitation for water flowing through a pipe constriction. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: Examples from Bangkok and Jakarta

    International Nuclear Information System (INIS)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-01-01

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and akarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl - concentration and δ 18 O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3 - -N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas

  19. Why seawater intrusion has not yet occurred in the Kaluvelli-Pondicherry basin, Tamil Nadu, India

    Science.gov (United States)

    Vincent, Aude; Violette, Sophie

    2017-09-01

    Worldwide, coastal aquifers are threatened by seawater intrusion. The threat is greatest when aquifers are overexploited or when recharge is low due to a semi-arid or arid climate. The Kaluvelli-Pondicherry sedimentary basin in Tamil Nadu (India) presents both these characteristics. Groundwater levels in the Vanur aquifer can reach 50 m below sea level at less than 20 km inland. This groundwater depletion is due to an exponential increase in extraction for irrigation over 35 years. No seawater intrusion has yet been detected, but a sulphate-rich mineralization is observed, the result of upward vertical leakage from the underlying Ramanathapuram aquifer. To characterize the mechanisms involved, and to facilitate effective water management, hydrogeological numerical modelling of this multi-layered system has been conducted. Existing and acquired geological and hydrodynamic data have been applied to a quasi-3D hydrogeological model, NEWSAM. Recharge had been previously quantified through the inter-comparison of hydrological models, based on climatological and surface-flow field measurements. Sensitivity tests on parameters and boundary conditions associated with the sea were performed. The resulting water balances for each aquifer led to hypotheses of (1) an offshore fresh groundwater stock, and (2) a reversal and increase of the upward leakage from the Ramanathapuram aquifer, thus corroborating the hypothesis proposed to explain geochemical results of the previous study, and denying a seawater intrusion. Palaeo-climate review supports the existence of favourable hydro-climatological conditions to replenish an offshore groundwater stock of the Vanur aquifer in the past. The extent of this fresh groundwater stock was calculated using the Kooi and Groen method.

  20. Use of behavioral biometrics in intrusion detection and online gaming

    Science.gov (United States)

    Yampolskiy, Roman V.; Govindaraju, Venu

    2006-04-01

    Behavior based intrusion detection is a frequently used approach for insuring network security. We expend behavior based intrusion detection approach to a new domain of game networks. Specifically, our research shows that a unique behavioral biometric can be generated based on the strategy used by an individual to play a game. We wrote software capable of automatically extracting behavioral profiles for each player in a game of Poker. Once a behavioral signature is generated for a player, it is continuously compared against player's current actions. Any significant deviations in behavior are reported to the game server administrator as potential security breaches. Our algorithm addresses a well-known problem of user verification and can be re-applied to the fields beyond game networks, such as operating systems and non-game networks security.

  1. Reactor coolant flow measurements at Point Lepreau

    International Nuclear Information System (INIS)

    Brenciaglia, G.; Gurevich, Y.; Liu, G.

    1996-01-01

    The CROSSFLOW ultrasonic flow measurement system manufactured by AMAG is fully proven as reliable and accurate when applied to large piping in defined geometries for such applications as feedwater flows measurement. Its application to direct reactor coolant flow (RCF) measurements - both individual channel flows and bulk flows such as pump suction flow - has been well established through recent work by AMAG at Point Lepreau, with application to other reactor types (eg. PWR) imminent. At Point Lepreau, Measurements have been demonstrated at full power; improvements to consistently meet ±1% accuracy are in progress. The development and recent customization of CROSSFLOW to RCF measurement at Point Lepreau are described in this paper; typical measurement results are included. (author)

  2. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  3. Turbulence measurements in a Short Take-Off Vertical-Landing fountain

    OpenAIRE

    Saddington, Alistair J.; Knowles, K.

    2013-01-01

    THE wall jets created by the impingement on the ground of the individual jet flows from a jet-lift short take-off and vertical landing (STOVL) aircraft with two nozzles meet at a stagnation line and form an upward-flowing fountain that interacts with the airframe (Fig. 1). While it is evident that the fountain upwash flow is unsteady, only limited data on the transient characteristics of this flow region are available. Early experiments relied on intrusive measurement techniques to provide me...

  4. Documentation of the seawater intrusion (SWI2) package for MODFLOW

    Science.gov (United States)

    Bakker, Mark; Schaars, Frans; Hughes, Joseph D.; Langevin, Christian D.; Dausman, Alyssa M.

    2013-01-01

    The SWI2 Package is the latest release of the Seawater Intrusion (SWI) Package for MODFLOW. The SWI2 Package allows three-dimensional vertically integrated variable-density groundwater flow and seawater intrusion in coastal multiaquifer systems to be simulated using MODFLOW-2005. Vertically integrated variable-density groundwater flow is based on the Dupuit approximation in which an aquifer is vertically discretized into zones of differing densities, separated from each other by defined surfaces representing interfaces or density isosurfaces. The numerical approach used in the SWI2 Package does not account for diffusion and dispersion and should not be used where these processes are important. The resulting differential equations are equivalent in form to the groundwater flow equation for uniform-density flow. The approach implemented in the SWI2 Package allows density effects to be incorporated into MODFLOW-2005 through the addition of pseudo-source terms to the groundwater flow equation without the need to solve a separate advective-dispersive transport equation. Vertical and horizontal movement of defined density surfaces is calculated separately using a combination of fluxes calculated through solution of the groundwater flow equation and a simple tip and toe tracking algorithm. Use of the SWI2 Package in MODFLOW-2005 only requires the addition of a single additional input file and modification of boundary heads to freshwater heads referenced to the top of the aquifer. Fluid density within model layers can be represented using zones of constant density (stratified flow) or continuously varying density (piecewise linear in the vertical direction) in the SWI2 Package. The main advantage of using the SWI2 Package instead of variable-density groundwater flow and dispersive solute transport codes, such as SEAWAT and SUTRA, is that fewer model cells are required for simulations using the SWI2 Package because every aquifer can be represented by a single layer of cells

  5. Comparing attentional control and intrusive thoughts in obsessive-compulsive disorder, generalized anxiety disorder and non clinical population.

    Directory of Open Access Journals (Sweden)

    Mehri Moradi

    2014-06-01

    Full Text Available Attention is an important factor in information processing; obsessive- compulsive disorder (OCD and generalized anxiety disorder (GAD are two main emotional disorders with a chronic course. This research examined the relationship among attentional control and intrusive thoughts (worry, rumination and obsession in these disorders. It was hypothesized that attentional control is a common factor in OCD and GAD. In addition, we compared worry, rumination and obsession among OCD, GAD and non- clinical participants.The research sample included three groups: OCD (n = 25, GAD (n = 30 and non- clinical samples (n = 56. Data were collected using the Attentional Control Scale (ACS, Rumination Response Scale (RRS, Pennsylvania State Worry Questionnaire (PSWQ, Beck Depression Inventory (BDI, Beck Anxiety Inventory (BAI, Obsessive-Compulsive Inventory-Revised (OCI-R and General Health Questionnaire (GHQ-28. Data were analyzed using MANOVA and MANCOVA by SPSS-17.Multivariate Analysis of Variance revealed that the OCD and GAD groups reported greater deficits in attentional control, higher obsessive-compulsive symptoms, rumination, worry, anxiety and depression compared to the control group.This research indicated a great attentional deficit in obsessive- compulsive disorder and generalized anxiety disorder. However, no significant difference was found between these two disorders.

  6. Measurement of regional cerebral blood flow by intravenous administation of 133 xenon

    International Nuclear Information System (INIS)

    Ryding, E.

    1986-01-01

    Reviewing the background and the theory for rCFB measurements the following conditions are established for the use of flow measurement with 133-Xenon as a reliable indicator for indirect measurements of cerebral functional activity. 1. There is a strict coupling between rCBF and regional metabolism. This condition can only be considered to be fulfilled in the normal non-anoxic bran tissue. 2. There is a close correlation between the tissue and the venous concentration of 133-Xenin which can be reliably approximated by the blood-brain partition coefficient. This condition can be considered to be fullfilled in the normal flow range, but not in pathological conditions such as cerebrovascular occlusions. 3. Intercompartment diffusion of 133-Xenon has no significant effect upon the measurement of rCBF values. This condition appear to share its limitations for fulfilement with condition 2. 4. There is no significant contamination by the extracerebral flow components at IH or IV rCBF measurements. 5. There is a negligible 'look through' effect from surrounding areas to region with focal high or low blood flow. (U.W.)

  7. Stone Stability in Non-uniform Flow

    NARCIS (Netherlands)

    Hoan, N.T.; Stive, M.J.F.; Booij, R.; Hofland, B.; Verhagen, H.J.

    2011-01-01

    This paper presents the results of an experimental study on stone stability under nonuniform turbulent flow, in particular expanding flow. Detailed measurements of both flow and turbulence and the bed stability are described. Than various manners of quantifying the hydraulic loads exerted on the

  8. Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2017-01-01

    To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which are utili......To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which...... are utilized by insider attacks (e.g., betrayal attacks). In our previous research, we developed a notion of intrusion sensitivity and identified that it can help improve the detection of insider attacks, whereas it is still a challenge for these nodes to automatically assign the values. In this article, we...... of intrusion sensitivity based on expert knowledge. In the evaluation, we compare the performance of three different supervised classifiers in assigning sensitivity values and investigate our trust model under different attack scenarios and in a real wireless sensor network. Experimental results indicate...

  9. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  10. Development of an ultrasonic flow and temperature measurement system for pressurized water reactors

    International Nuclear Information System (INIS)

    James, R.W.; Lubnow, T.; Baumgart, G.; Ravetti, D.

    1996-01-01

    In U.S. nuclear plants, primary coolant flow and reactor thermal power are calculated from a measurement of feedwater flow to the steam generator combined with knowledge of steam generator heat transfer characteristics nd measurement of hot leg temperature by resistance temperature detectors (RTDs). The calculation of plant thermal output is complicated by an indirect measurement of primary coolant mass flow rate and thermal streaming in the region where hot leg temperature is typically measured. Uncertainty in the thermal output calculation results from uncertainties in steam generator characteristics, in the hot leg temperature due to thermal streaming, and in fouling of venturi nozzles used for feedwater flow measurement. This in turn leads to operation of power plants ar lower levels of efficiency. The Electric Power Research Institute (EPRI) has on ongoing project to develop a prototype system to directly measure primary coolant flow rate and bulk average temperature using ultrasonic transducers externally mounted on the pipe. The topic of this paper is a summary of the project experience in developing this system. The technology being developed in this project is based in part upon previously existing ultrasonic feedwater flow measurement technology developed by MPR Associates and Caldon, Inc EPRI is a non-profit company performing research for U.S. and international electric power utilities. (authors)

  11. Illness intrusiveness among survivors of autologous blood and marrow transplantation.

    Science.gov (United States)

    Schimmer, A D; Elliott, M E; Abbey, S E; Raiz, L; Keating, A; Beanlands, H J; McCay, E; Messner, H A; Lipton, J H; Devins, G M

    2001-12-15

    Illness-induced disruptions to lifestyles, activities, and interests (i.e., illness intrusiveness) compromise subjective well-being. The authors measured illness intrusiveness in autologous blood and bone marrow transplantation (ABMT) survivors and compared the results with survivors of solid organ transplants. Forty-four of 64 consecutive ABMT survivors referred to the University of Toronto ABMT long-term follow-up clinic completed the Illness Intrusiveness Ratings Scale (IIRS), the Affect Balance Scale (ABS), the Atkinson Life Happiness Rating (ATKLH), the Beck Hopelessness Scale (BHS), and the Center for Epidemiologic Studies Depression (CES-D) Scale. Mean time from ABMT to evaluation was 4.6 +/- 2.8 years. All patients were in remission or had stable disease at the time of evaluation. Autologous blood and bone marrow transplantation patients' IIRS scores were compared with scores reported by recipients of kidney (n = 357), liver (n = 150), lung (n = 77), and heart (n = 60) transplants. Mean IIRS score for the 44 ABMT patients was 37.2 +/- 17 (maximum possible score, 91; minimum possible score, 13). Higher IIRS scores correlated with lower scores on the ABS (r = -0.54; P work, financial situation, and active recreation. Despite achieving a remission after ABMT, patients continue to experience illness intrusiveness compromising subjective well-being. Copyright 2001 American Cancer Society.

  12. Intrusion scenarios in fusion waste disposal sites

    International Nuclear Information System (INIS)

    Zucchetti, M.; Zucchetti, M.; Rocco, P.

    1998-01-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  13. Intrusion scenarios in fusion waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, M. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Zucchetti, M.; Rocco, P. [Energetics Dept., Polytechnic of Turin (Italy)

    1998-07-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  14. Negative Intrusive Thoughts and Dissociation as Risk Factors for Self-Harm

    Science.gov (United States)

    Batey, Helen; May, Jon; Andrade, Jackie

    2010-01-01

    Relationships between self-harm and vulnerability factors were studied in a general population of 432 participants, of whom 30% reported some experience of self-harm. This group scored higher on dissociation and childhood trauma, had lower self-worth, and reported more negative intrusive thoughts. Among the non-harming group, 10% scored similarly…

  15. Measure solutions for non-local interaction PDEs with two species

    Energy Technology Data Exchange (ETDEWEB)

    Francesco, Marco Di [Department of Mathematical and Statistical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Fagioli, Simone [DISIM—Department of Information Engineering, Computer Science and Mathematics, University of L' Aquila, Via Vetoio 1 (Coppito) 67100 L' Aquila (AQ) (Italy)

    2013-10-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C{sup 2} potentials using a variant of the method of characteristics. (paper)

  16. Measure solutions for non-local interaction PDEs with two species

    International Nuclear Information System (INIS)

    Francesco, Marco Di; Fagioli, Simone

    2013-01-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C 2 potentials using a variant of the method of characteristics. (paper)

  17. Iron isotope systematics of the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Lesher, Charles; Lundstrom, C.C.; Barfod, Gry

    crystallization on non-traditional stable isotope systems, particularly iron. FeTi oxide minerals (titanomagnetite and ilmenite) appear after ~60% of the magma had solidified. This was a significant event affecting the liquid line of descent and potentially accompanied by iron isotope fractionation. Here we...... report the results of a broad study of the iron isotope compositions of gabbros within the layered and upper border series of the Skaergaard intrusion, pegmatite and granophyre associated with these gabbroic rocks, and the sandwich horizon thought to represent the product of extreme differentiation and...

  18. Experimental flow and perfusion measurement in an animal model with magnetic resonance tomography

    International Nuclear Information System (INIS)

    Schoenberg, S.O.; Bock, M.; Just, A.

    2001-01-01

    Aim. Validation of non-invasive methods for morphologic and functional imaging of the kidney under physiologic and pathophysiologic conditions. Material and Methods. In chronically instrumented animals (foxhounds) comparative measurements of renal flow and perfusion were performed. Magnetic resonance imaging techniques were compared to data obtained from implanted flow probes and total kidney weight post mortem. In the MR system, different degrees of renal artery stenosis could be induced by means of an implanted inflatable cuff. The degree of stenosis was verified with high-resolution 3D contrast-enhanced MR angiography (3D-CE-MRA) using an intravascular contrast agent. Results. The MR-data agreed well with the invasively obtained results. Artifacts resulting from the implanted flow probes and other devices could be kept to a minimum due to appropriate selection of the probe materials and measurement strategies. Stenoses could be reproduced reliably and quantified from the induced morphologic and functional changes. Conclusion. Morphologic and functional MR techniques are well suited for non-invasive in vivo assessment of renal blood flow physiology. (orig.) [de

  19. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  20. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    Science.gov (United States)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  1. Non-local two phase flow momentum transport in S BWR

    International Nuclear Information System (INIS)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A.

    2015-09-01

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  2. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  3. Quantitative measurement of the cerebral blood flow

    International Nuclear Information System (INIS)

    Houdart, R.; Mamo, H.; Meric, P.; Seylaz, J.

    1976-01-01

    The value of the cerebral blood flow measurement (CBF) is outlined, its limits are defined and some future prospects discussed. The xenon 133 brain clearance study is at present the most accurate quantitative method to evaluate the CBF in different regions of the brain simultaneously. The method and the progress it has led to in the physiological, physiopathological and therapeutic fields are described. The major disadvantage of the method is shown to be the need to puncture the internal carotid for each measurement. Prospects are discussed concerning methods derived from the same general principle but using a simpler, non-traumatic way to introduce the radio-tracer, either by breathing into the lungs or intraveinously [fr

  4. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements

    Directory of Open Access Journals (Sweden)

    Eric Van den Bulck

    2008-11-01

    Full Text Available In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  5. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements.

    Science.gov (United States)

    Vanierschot, Maarten; Van den Bulck, Eric

    2008-11-28

    In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  6. Intrusive Memories of Distressing Information: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Eva Battaglini

    Full Text Available Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42 viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13 demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13. Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC and dorsolateral prefrontal cortex (dlPFC, inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories.

  7. Homogeneous non-equilibrium two-phase critical flow model

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Vuxuan, N.

    1987-01-01

    An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)

  8. Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle

    Science.gov (United States)

    Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun

    2018-05-01

    The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.

  9. Diagonalizing quadratic bosonic operators by non-autonomous flow equations

    CERN Document Server

    Bach, Volker

    2016-01-01

    The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.

  10. The Influence of Emotional Inhibition on Intrusive Thoughts in a Non-Clinical Sample

    Directory of Open Access Journals (Sweden)

    Zahra Salehzadeh Einabad

    2017-06-01

    Full Text Available Background Given the studies insisting on the impacts of cultural issues on the emotion regulation strategies in eastern cultures and lack of study on the effects of emotional inhibition in our culture, this research aimed to investigate the influences of emotional inhibition on intrusive thoughts in non-clinical sample. Methods A quasi-experimental design was adopted with 45 participants that were randomly assigned to 2 groups (emotional inhibition and control groups. Participants which were selected according to cluster sampling answered to some questionnaires, including depression, general health, and emotion regulation. Then, a clip and a related instruction were presented for each group. They were asked to perform according to instruction after watching movie and tick on a paper whenever the thoughts of movie come to their mind. Data were analyzed using t test in SPSS-23. Results There are not significant differences between groups in terms of mood, emotion regulation, depression, and general health in the pre-test. Similarly, results indicated that there is not a significant differences between groups. Conclusions This research showed that the usefulness of emotional inhibition depends on the culture. In fact, in Eastern cultures, using emotion regulation strategies such as suppression and emotional inhibition are common so that avoidance is a short term and useful emotion regulation mechanism.

  11. Human intrusion into geologic repositories for high-level radioactive waste: potential and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, F X [Nuclear Regulatory Commission, Washington, DC (USA). Office of Nuclear Regulatory Research

    1981-12-01

    Isolation of high-level radioactive waste over long periods of time requires protection not only from natural events and processes, but also from the deliberate or inadvertent activities of future societies. This paper evaluates the likelihood of inadvertent human intrusion due to the loss of societal memory of the repository site. In addition measures to prevent inadvertent intrusion, and to guide future societies in any decision to deliberately intrude into the repository are suggested.

  12. Analysis of the flow structure of a turbulent thermal plasma jet

    International Nuclear Information System (INIS)

    Spores, R.A.

    1989-01-01

    The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process

  13. The state of the art in intrusion prevention and detection

    CERN Document Server

    Pathan, Al-Sakib Khan

    2013-01-01

    The State of the Art in Intrusion Prevention and Detection analyzes the latest trends and issues surrounding intrusion detection systems in computer networks, especially in communications networks. Its broad scope of coverage includes wired, wireless, and mobile networks; next-generation converged networks; and intrusion in social networks.Presenting cutting-edge research, the book presents novel schemes for intrusion detection and prevention. It discusses tracing back mobile attackers, secure routing with intrusion prevention, anomaly detection, and AI-based techniques. It also includes infor

  14. Salt water intrusion on Uznam Island - 'Wydrzany' water intake

    International Nuclear Information System (INIS)

    Kochaniec, M.

    1999-01-01

    Aquifers of Uznam Island have high risk of saline water intrusion due to geographical and geological location. Hydrogeological and geophysical researchers were taken up in order to evaluate changes in intrusion of saline water into aquifer of Uznam Island. Water intake named 'Wydrzany' was built in south part of island in 1973. Since 1975 geophysical research has shown intrusion of salt water from reservoirs and bedrock due to withdrawn of water. In 1997 geoelectrical researches evaluated changes which have taken place since 1975 in saline water intrusion into aquifers of Uznam Island. The last research result showed that intrusion front moved 1100 m to the centre of island in comparison with situation in 1975. (author)

  15. Modelling saline intrusion for repository performance assessment

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1989-04-01

    UK Nirex Ltd are currently considering the possibility of disposal of radioactive waste by burial in deep underground repositories. The natural pathway for radionuclides from such a repository to return to Man's immediate environment (the biosphere) is via groundwater. Thus analyses of the groundwater flow in the neighbourhood of a possible repository, and consequent radionuclide transport form an important part of a performance assessment for a repository. Some of the areas in the UK that might be considered as possible locations for a repository are near the coast. If a repository is located in a coastal region seawater may intrude into the groundwater flow system. As seawater is denser than fresh water buoyancy forces acting on the intruding saline water may have significant effects on the groundwater flow system, and consequently on the time for radionuclides to return to the biosphere. Further, the chemistry of the repository near-field may be strongly influenced by the salinity of the groundwater. It is therefore important for Nirex to have a capability for reliably modelling saline intrusion to an appropriate degree of accuracy in order to make performance assessments for a repository in a coastal region. This report describes work undertaken in the Nirex Research programme to provide such a capability. (author)

  16. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  17. Magmatic intrusions in the lunar crust

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  18. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    Science.gov (United States)

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  19. Adaptive intrusion data system

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1976-01-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-level, analog and video data. The output of the system is digital tapes formatted for direct data reduction on a CDC 6400 computer, and video tapes containing timed tagged information that can be correlated with the digital data

  20. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  1. Unsteady flow measurements in centrifugal compressors

    International Nuclear Information System (INIS)

    Bammert, K.; Mobarak, A.; Rautenberg, M.

    1976-01-01

    Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required high pressure ratios, highly loaded centrifugal compressors are built. The paper deals with unsteady flow measurements on highly loaded centrifugal impellers. Measurements of the approaching flow have been done with hot wires. The method of measurement enabled us to get the velocity distribution across the pitch ahead of the inducer. The static pressure signals along the shroud line has been discussed on the basis of some theoretical considerations. Accordingly the form of flow in the impeller and the wave flow or separation zones in the impeller can now be better interpreted. The importance of the unsteady nature of the relative flow, especially at impeller exit, is clearly demonstrated. Measurements with high responsive total pressure probes in the vicinity of impeller exit and the subsequent calculations have shown, that the instantaneous energy transfer at a certain point after the impeller may differ by more than 30% from the Euler work. Lastly, unsteady pressure measurements along the shroud line have been performed during surge and rotating stall. The surge signal have been analyzed in more detail and the mechanism of flow rupture and pressure recovery during a surge cycle is thoroughly discussed. (orig.) [de

  2. A novel contra propagating ultrasonic flowmeter using glad buffer rods for high temperature measurement. Application to the oil and gas industries

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Demartonne R. [Brasilia Univ., DF (Brazil). Dept. de Engenharia Eletrica; Cheng-Kuei Jen; Yuu Ono [National Research Council (NRC), Quebec (Canada). Industrial Materials Institute

    2005-07-01

    Ultrasonic techniques are attractive for process monitoring and control because they are non-intrusive, robust and inexpensive. Two common concerns limiting the high temperature performance of conventional ultrasonic systems for flow measurement are related to transducers and couplants. A suitable approach to overcoming this drawback is to insert a thermal isolating buffer rod with good ultrasonic performance (e.g., high signal-to-noise ratio). This requirement is important because, a priori, the noises generated in the buffer rod may bury the desired signals, so that no meaningful information is extracted. Besides protecting the ultrasonic transducers from overheating in applications such as high temperature flow measurements, buffer rods are also a solution for the couplant between the probe and tested sample, since their probing end can be directly wetted by fluids. Here, we propose clad buffer rods driven by shear transducers as the main building block of contra propagating ultrasonic flowmeters for high temperature application. It is demonstrated that the superior signal-to-noise ratio exhibit by clad buffer rods compared to the reported non-clad counterparts improve precision in transit-time measurement, leading to more accurate flow speed determination. In addition, it is shown that clad buffer rods generate specific ultrasonic signals for temperature calibration of flowmeters, allowing temperature variation while still measuring accurately the flow speed. These results are of interest for the oil and gas industries. (author)

  3. Salt Intrusion in the Tweed Estuary

    Science.gov (United States)

    Uncles, R. J.; Stephens, J. A.

    1996-09-01

    Results are presented from a 2-week field programme in the Tweed Estuary, U.K. Maximum values of the empirically based Estuarine Richardson Number, Ri E, occurred during neap tides, and minimum values occurred during spring tides. Estimated values of Ri Evaried between 0·3 and 2·3, suggesting the occurrence of partially mixed to stratified conditions, depending on tidal state and freshwater inflow. These relatively large values of Ri Ewere consistent with both observed strong salinity stratification and large salt fluxes due to vertical shear transport. Low values (0·5) values in the halocline. A velocity maximum occurred within the halocline during the early flood. Wave-like spatial oscillations of the halocline occurred on the ebb. The oscillation troughs were situated above deep holes located just down-estuary of the rail and old road bridges. There was an indication that the constricted flow between the bridges' arches resulted in enhanced mixing of near-surface waters and a thickening of the halocline. It is also possible that these wave-like structures were stationary, near-critical internal lee waves, triggered by the deep holes. Trapping of high-salinity waters occurred on the ebb. Saline pools were isolated within a deep hole or deeper section of bed by the falling halocline. When the salt wedge moved further down-estuary, the ' trapped ' waters were subjected to strongly ebbing, overlying freshwater, and were subsequently entrained and flushed. The salinity intrusion was a strong function of spring-neap tidal state and a weaker function of freshwater inflow. The estimated salinity intrusion varied from about 4·7 to 7·6 km during the fieldwork period. The strong dependence on tidal range followed from the comparable lengths of the tidal excursion and salinity intrusion. Long excursion lengths were also partly responsible for the short residence (or flushing) times and their strong dependence on spring-neap tidal state. For typical summer freshwater

  4. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in understated...

  5. A measurement device for electromagnetic flow tomography

    Science.gov (United States)

    Vauhkonen, M.; Hänninen, A.; Lehtikangas, O.

    2018-01-01

    Electromagnetic flow meters have succesfully been used in many industries to measure the mean flow velocity of conductive liquids. This technology works reliably in single phase flows with axisymmetric flow profiles but can be inaccurate with asymmetric flows, which are encountered, for example, in multiphase flows, pipe elbows and T-junctions. Some computational techniques and measurement devices with multiple excitation coils and measurement electrodes have recently been proposed to be used in cases of asymmetric flows. In earlier studies, we proposed a computational approach for electromagnetic flow tomography (EMFT) for estimating velocity fields utilizing several excitation coils and a set of measurement electrodes attached to the surface of the pipe. This approach has been shown to work well with simulated data but has not been tested extensively with real measurements. In this paper, an EMFT system with four excitation coils and 16 measurement electrodes is introduced. The system is capable of using both square wave and sinusoidal coil current excitations and all the coils can be excited individually, also enabling parallel excitations with multiple frequencies. The studies undertaken in the paper demonstrate that the proposed EMFT system, together with the earlier introduced velocity field reconstruction approach, is capable of producing reliable velocify field estimates in a laboratory environment with both axisymmetric and asymmetric single phase flows.

  6. Flow measurement at the aortic root

    DEFF Research Database (Denmark)

    Bertelsen, Litten; Svendsen, Jesper Hastrup; Køber, Lars

    2016-01-01

    during CMR and aortic stenosis were excluded from the analyses. Stroke volumes were measured volumetrically (SVref) from steady-state free precision short axis images covering the entire left ventricle, excluding the papillary muscles and including the left ventricular outflow tract. Flow sequences......BACKGROUND: Cardiovascular magnetic resonance (CMR) is considered the gold standard of cardiac volumetric measurements. Flow in the aortic root is often measured at the sinotubular junction, even though placing the slice just above valve level may be more precise. It is unknown how much flow...... theoretically be equal to flow measurements, SVV and SVST were compared to SVref. RESULTS: Initially, 152 patients were included. 22 were excluded because of arrhythmias during scans and 9 were excluded for aortic stenosis. Accordingly, data from 121 patients were analysed and of these 63 had visually evident...

  7. Episodic intrusion, internal differentiation, and hydrothermal alteration of the miocene tatoosh intrusive suite south of Mount Rainier, Washington

    Science.gov (United States)

    du Bray, E.A.; Bacon, C.R.; John, D.A.; Wooden, J.L.; Mazdab, F.K.

    2011-01-01

    The Miocene Tatoosh intrusive suite south of Mount Rainier is composed of three broadly granodioritic plutons that are manifestations of ancestral Cascades arc magmatism. Tatoosh intrusive suite plutons have individually diagnostic characteristics, including texture, mineralogy, and geochemistry, and apparently lack internal contacts. New ion-microprobe U-Pb zircon ages indicate crystallization of the Stevens pluton ca. 19.2 Ma, Reflection-Pyramid pluton ca. 18.5 Ma, and Nisqually pluton ca. 17.5 Ma. The Stevens pluton includes rare, statistically distinct ca. 20.1 Ma zircon antecrysts. Wide-ranging zircon rare earth element (REE), Hf, U, and Th concentrations suggest late crystallization from variably evolved residual liquids. Zircon Eu/Eu*-Hf covariation is distinct for each of the Reflection-Pyramid, Nisqually, and Stevens plutons. Although most Tatoosh intrusive suite rocks have been affected by weak hydrothermal alteration, and sparse mineralized veins cut some of these rocks, significant base or precious metal mineralization is absent. At the time of shallow emplacement, each of these magma bodies was largely homogeneous in bulk composition and petrographic features, but, prior to final solidification, each of the Tatoosh intrusive suite plutons developed internal compositional variation. Geochemical and petrographic trends within each pluton are most consistent with differential loss of residual melt, possibly represented by late aplite dikes or erupted as rhyolite, from crystal-rich magma. Crystal-rich magma that formed each pluton evidently accumulated in reservoirs below the present level of exposure and then intruded to a shallow depth. Assembled by episodic intrusion, the Tatoosh intrusive suite may be representative of midsized composite plutonic complexes beneath arc volcanoes. ?? 2011 Geological Society of America.

  8. Evidential reasoning research on intrusion detection

    Science.gov (United States)

    Wang, Xianpei; Xu, Hua; Zheng, Sheng; Cheng, Anyu

    2003-09-01

    In this paper, we mainly aim at D-S theory of evidence and the network intrusion detection these two fields. It discusses the method how to apply this probable reasoning as an AI technology to the Intrusion Detection System (IDS). This paper establishes the application model, describes the new mechanism of reasoning and decision-making and analyses how to implement the model based on the synscan activities detection on the network. The results suggest that if only rational probability values were assigned at the beginning, the engine can, according to the rules of evidence combination and hierarchical reasoning, compute the values of belief and finally inform the administrators of the qualities of the traced activities -- intrusions, normal activities or abnormal activities.

  9. Experimental study of mixed convection flow through a horizontal orifice or vent linking two compartments

    International Nuclear Information System (INIS)

    Varrall, Kevin

    2016-01-01

    To answer building issues and fire safety challenges, this thesis deals with the mixed convection flow through a horizontal orifice or vent linking two compartments. The aim is to improve the understanding and the modeling of the exchange of gas through the opening. A small scale experimental study and a theoretical approach are proposed. The study focuses first on the influence of the geometrical ratio L/D of the opening on the flow rate at the vent for free convection regime. Non-intrusive measurements, via the tracking of the interface between two non miscible liquids in an isothermal approach, and thanks to the SPIV in a thermal approach, permit to describe the bidirectional exchange process and to consolidate existing correlations. Experiments for mixed convection regime aim to study the impact of mechanical ventilation (in blowing and extracting modes) on the exchanged flow rates. The comparison between existing correlations and experimental data shows large differences. A modification of the correlation of Cooper is proposed. A theoretical approach from the simplified Navier Stokes equations and with the Boussinesq approximation permits to discuss the construction of existing correlations. From this theory, a more accurate model than those available in the literature is proposed thanks to an adjustment of discharge coefficients from experimental data. (author)

  10. Analysis of the performance capability of an infrared interior intrusion detector

    International Nuclear Information System (INIS)

    Dunn, D.R.

    1977-01-01

    Component performances are required by the LLL assessment procedure for material control and accounting (MC and A) systems. Monitors are an example of an MC and A component whose functions are to process measurements or observations for purposes of detecting abnormalities. This report develops a methodology for characterizing the performance of a class of infrared (IR) interior intrusion monitors or detectors. The methodology is developed around a specific commercial IR detector, the InfrAlarm, manufactured by Barnes Engineering Company (Models 19-124 and 19-115A). Statistical detection models for computing probabilities of detection and false alarms were derived, and the performance capability of the InfrAlarm IR detector was shown using these measures. The results obtained in the performance analysis show that the detection capability of the InfrAlarm is excellent (approx. 1), with very low false alarm rates, for a wide range in target characteristics. These results should be representative and particularly for non-hostile environments

  11. Use of minor uranium isotope measurements as an aid in safeguarding a uranium enrichment cascade

    International Nuclear Information System (INIS)

    Levin, S.A.; Blumkin, S.; Von Halle, E.

    1979-01-01

    Surveillance and containment, which are indispensable supporting measures for material accountability, do not provide those charged with safeguarding an installation with the assurance beyond the shadow of a doubt that all the input and output uranium will in fact be measured. Those who are concerned with developing non-intrusive techniques for safeguarding uranium enrichment plants under the Nuclear Non-Proliferation Treaty have perceived the possibility that data on the minor uranium isotope concentrations in an enrichment cascade withdrawal and feed streams may provide a means either to corroborate or to contradict the material accountability results. A basic theoretical study has been conducted to determine whether complete isotopic measurements on enrichment cascade streams may be useful for safeguards purposes. The results of the calculations made to determine the behaviour of the minor uranium isotopes ( 234 U and 236 U) in separation cascades, and the results of three plant tests made to substantiate the validity of the calculations, are reviewed briefly. Based on the fact that the 234 U and 236 U concentrations relative to that of 235 U in cascade withdrawal streams reflect the cascade flow-sheet, the authors conclude that the use of the minor isotope concentration measurements (MIST) in cascade withdrawal streams is a potentially valuable adjunct to material accounting for safeguarding a 235 U enrichment cascade. A characteristic of MIST, which qualifies it particularly for safeguards application under the NPT, is the fact that its use is entirely non-intrusive with regard to process technology and proprietary information. The usefulness of MIST and how it may be applied are discussed briefly. (author)

  12. Non-Markovianity Measure Based on Brukner-Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    Science.gov (United States)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  13. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  14. Seawater intrusion in karstic, coastal aquifers: Current challenges and future scenarios in the Taranto area (southern Italy).

    Science.gov (United States)

    De Filippis, Giovanna; Foglia, Laura; Giudici, Mauro; Mehl, Steffen; Margiotta, Stefano; Negri, Sergio Luigi

    2016-12-15

    Mediterranean areas are characterized by complex hydrogeological systems, where management of freshwater resources, mostly stored in karstic, coastal aquifers, is necessary and requires the application of numerical tools to detect and prevent deterioration of groundwater, mostly caused by overexploitation. In the Taranto area (southern Italy), the deep, karstic aquifer is the only source of freshwater and satisfies the main human activities. Preserving quantity and quality of this system through management policies is so necessary and such task can be addressed through modeling tools which take into account human impacts and the effects of climate changes. A variable-density flow model was developed with SEAWAT to depict the "current" status of the saltwater intrusion, namely the status simulated over an average hydrogeological year. Considering the goals of this analysis and the scale at which the model was built, the equivalent porous medium approach was adopted to represent the deep aquifer. The effects that different flow boundary conditions along the coast have on the transport model were assessed. Furthermore, salinity stratification occurs within a strip spreading between 4km and 7km from the coast in the deep aquifer. The model predicts a similar phenomenon for some submarine freshwater springs and modeling outcomes were positively compared with measurements found in the literature. Two scenarios were simulated to assess the effects of decreased rainfall and increased pumping on saline intrusion. Major differences in the concentration field with respect to the "current" status were found where the hydraulic conductivity of the deep aquifer is higher and such differences are higher when Dirichlet flow boundary conditions are assigned. Furthermore, the Dirichlet boundary condition along the coast for transport modeling influences the concentration field in different scenarios at shallow depths; as such, concentration values simulated under stressed conditions

  15. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    Science.gov (United States)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  16. An Immune-inspired Adaptive Automated Intrusion Response System Model

    Directory of Open Access Journals (Sweden)

    Ling-xi Peng

    2012-09-01

    Full Text Available An immune-inspired adaptive automated intrusion response system model, named as , is proposed. The descriptions of self, non-self, immunocyte, memory detector, mature detector and immature detector of the network transactions, and the realtime network danger evaluation equations are given. Then, the automated response polices are adaptively performed or adjusted according to the realtime network danger. Thus, not only accurately evaluates the network attacks, but also greatly reduces the response times and response costs.

  17. Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie; Copping, Andrea E.

    2015-04-01

    Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of the inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.

  18. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  19. THE PALEOPROTEROZOIC IMANDRA-VARZUGA RIFTING STRUCTURE (KOLA PENINSULA: INTRUSIVE MAGMATISM AND MINERAGENY

    Directory of Open Access Journals (Sweden)

    V. V. Chashchin

    2014-01-01

    Full Text Available The article provides data on the structure of the Paleoproterozoic intercontinental Imandra-Varzuga rifting structure (IVS and compositions of intrusive formations typical of the early stage of the IVS development and associated mineral resources. IVS is located in the central part of the Kola region. Its length is about 350 km, and its width varies from 10 km at the flanks to 50 km in the central part. IVS contains an association of the sedimentary-volcanic, intrusive and dyke complexes. It is a part of a large igneous Paleoproterozoic province of the Fennoscandian Shield spreading for a huge area (about 1 million km2, which probably reflects the settings of the head part of the mantle plume. Two age groups of layered intrusions were associated with the initial stage of the IVS development. The layered intrusions of the Fedorovo-Pansky and Monchegorsk complexes (about 2.50 Ga are confined to the northern flank and the western closure of IVS, while intrusions of the Imandra complex (about 2.45 Ga are located at the southern flank of IVS. Intrusions of older complexes are composed of rock series from dunite to gabbro and anorthosites (Monchegorsk complex and from orthopyroxenite to gabbro and anorthosites (Fedorovo-Pansky complex. Some intrusions of this complexes reveal features of multiphase ones. The younger Imandra complex intrusions (about 2.45 Ga are stratified from orthopyroxenite to ferrogabbro. Their important feature is comagmatical connection with volcanites. All the intrusive complexes have the boninite-like mantle origin enriched by lithophyle components. Rocks of these two complexеs with different age have specific geochemical characteristics. In the rocks of the Monchegorsk and Fedorovo-Pansky complexes, the accumulation of REE clearly depends on the basicity of the rocks, the spectrum of REE is non-fractionated and ‘flat’, and the Eu positive anomaly is slightly manifested. In the rocks of the Imandra complex, the level of

  20. Review of invasive urodynamics and progress towards non-invasive measurements in the assessment of bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    C J Griffiths

    2009-01-01

    Full Text Available Objective: This article defines the need for objective measurements to help diagnose the cause of lower urinary tract symptoms (LUTS. It describes the conventional techniques available, mainly invasive, and then summarizes the emerging range of non-invasive measurement techniques. Methods: This is a narrative review derived form the clinical and scientific knowledge of the authors together with consideration of selected literature. Results: Consideration of measured bladder pressure urinary flow rate during voiding in an invasive pressure flow study is considered the gold standard for categorization of bladder outlet obstruction (BOO. The diagnosis is currently made by plotting the detrusor pressure at maximum flow (p detQmax and maximum flow rate (Q max on the nomogram approved by the International Continence Society. This plot will categorize the void as obstructed, equivocal or unobstructed. The invasive and relatively complex nature of this investigation has led to a number of inventive techniques to categorize BOO either by measuring bladder pressure non-invasively or by providing a proxy measure such as bladder weight. Conclusion: Non-invasive methods of diagnosing BOO show great promise and a few have reached the stage of being commercially available. Further studies are however needed to validate the measurement technique and assess their worth in the assessment of men with LUTS.

  1. A Survey on Anomaly Based Host Intrusion Detection System

    Science.gov (United States)

    Jose, Shijoe; Malathi, D.; Reddy, Bharath; Jayaseeli, Dorathi

    2018-04-01

    An intrusion detection system (IDS) is hardware, software or a combination of two, for monitoring network or system activities to detect malicious signs. In computer security, designing a robust intrusion detection system is one of the most fundamental and important problems. The primary function of system is detecting intrusion and gives alerts when user tries to intrusion on timely manner. In these techniques when IDS find out intrusion it will send alert massage to the system administrator. Anomaly detection is an important problem that has been researched within diverse research areas and application domains. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. From the existing anomaly detection techniques, each technique has relative strengths and weaknesses. The current state of the experiment practice in the field of anomaly-based intrusion detection is reviewed and survey recent studies in this. This survey provides a study of existing anomaly detection techniques, and how the techniques used in one area can be applied in another application domain.

  2. A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels

    Science.gov (United States)

    Zerihun, Yebegaeshet T.

    2017-06-01

    The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.

  3. Interior intrusion alarm systems

    International Nuclear Information System (INIS)

    Prell, J.A.

    1978-01-01

    In meeting the requirements for the safeguarding of special nuclear material and the physical protection of licensed facilities, the licensee is required to design a physical security system that will meet minimum performance requirements. An integral part of any physical security system is the interior intrusion alarm system. The purpose of this report is to provide the potential user of an interior intrusion alarm system with information on the various types, components, and performance capabilities available so that he can design and install the optimum alarm system for his particular environment. In addition, maintenance and testing procedures are discussed and recommended which, if followed, will help the user obtain the optimum results from his system

  4. On-line component ratio measurement of oil/gas/water mixtures using an admittance sensor

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, J A

    1984-01-01

    The operator of a production platform is primarily interested in which types of fluids a well is producing and how quickly these different components are being produced. The component ratio and production rate of a well vary during the life of a field. To optimize production, measurement of each well's output is thus desirable. Current designs for subsea production systems lack means of continuously measuring three-component flows. A new method of component ratio measurement is described. The fraction of oil, gas and water flowing between two insulated electrode plates is determined by measuring both the electrical conductance and suseptance across the sensor. A preliminary evaluation of the new measurement system has been performed using a process oil/ water/air mixture. The method is not limited to small pipe diameters. The only possible limitation is that for low velocities in very large pipe diameters an in-line mixer may be required. Advantages of this new system are that real-time measurement of void fraction and water content is possible if a non-intrusive rugged sensor is used, and there are no range limitations, as each component may be measured for any given concentration. 4 references.

  5. Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2015-03-01

    Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.

  6. Application of a Density-Dependent Numerical Model (MODHMS) to Assess Salinity Intrusion in the Biscayne Aquifer, North Miami-Dade County, Florida

    Science.gov (United States)

    Guha, H.; Panday, S.

    2005-05-01

    Miami-Dade County is located at the Southeastern part of the State of Florida adjoining the Atlantic coast. The sole drinking water source is the Biscayne Aquifer, which is an unconfined freshwater aquifer, composed of marine limestone with intermediate sand lenses. The aquifer is highly conductive with hydraulic conductivity values ranging from 1,000 ft/day to over 100,000 ft/day in some areas. Saltwater intrusion from the coast is an immediate threat to the freshwater resources of the County. Therefore, a multilayer density-dependent transient groundwater model was developed to evaluate the saltwater intrusion characteristics of the system. The model was developed using MODHMS, a finite difference, fully coupled groundwater and surface water flow and transport model. The buoyancy term is included in the equation for unconfined flow and the flow and transport equations are coupled using an iterative scheme. The transport equation was solved using an adaptive implicit total variation diminishing (TVD) scheme and anisotropy of dispersivity was included for longitudinal, transverse, vertical transverse, and vertical longitudinal directions. The model eastern boundaries extended approximately 3.5 miles into the Atlantic Ocean while the western boundary extended approximately 27 miles inland from the coast. The northern and southern boundaries extend 6 miles into Broward County and up to the C-100 canal in Miami-Dade County respectively. Close to 2 million active nodes were simulated, with horizontal discretization of 500 feet. A total of nine different statistical analyses were conducted with observed and simulated hydraulic heads. The analysis indicates that the model simulated hydraulic heads matched closely with the observed heads across the model domain. In general, the model reasonably simulated the inland extent of saltwater intrusion within the aquifer, and matched relatively well with limited observed chloride data from monitoring wells along the coast

  7. Intrusion problematic during water supply systems' operation

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Rodriguez, Jesus; Lopez-Jimenez, P. Amparo [Departamento de Ingenieria Hidraulica y Medio Ambiente, Universidad Politecnica de Valencia, Camino de Vera, s/n, 46022, Valencia (Spain); Ramos, Helena M. [Civil Engineering Department and CEHIDRO, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal)

    2011-07-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuses in obtaining up the physical representation on a specific case intrusion in a pipe water system. The combination of two factors is required to generate this kind of intrusion in a water supply system: on one hand the existence of at least a leak in the system; on the other hand, a pressure variation could occur during the operation of the system due to consumption variation, pump start-up or shutdown. The potential of intrusion during a dynamic or transient event is here analyzed. To obtain this objective an experimental case study of pressure transient scenario is analyzed with a small leak located nearby the transient source.

  8. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan [Northwesten University

    2013-12-05

    Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm is significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.

  9. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  10. A new intrusion prevention model using planning knowledge graph

    Science.gov (United States)

    Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong

    2013-03-01

    Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.

  11. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    Science.gov (United States)

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  12. Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies

    Directory of Open Access Journals (Sweden)

    Xiankang Xin

    2017-10-01

    Full Text Available In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42–54 mPa∙s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.

  13. Usability of ECT for quantitative and qualitative characterization of trickle-bed flow dynamics experiencing filtration conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tibirna, C.; Fortin, A. [Laval Univ., Quebec City, PQ (Canada). GIREF; Edouard, D.; Larachi, F. [Laval Univ., Quebec City, PQ (Canada). Dept. of Chemical Engineering

    2006-07-01

    The feasibility of using electrical capacitance tomography (ECT) as an imaging method for trickle-bed reaction processes was examined in this study. In particular, the advantages and disadvantages of using ECT to characterize the flow dynamics in a four-phase trickle bed reactor were investigated. This work was part of a larger study to extend the service life of catalyst beds used during the hydrotreatment of some oil fractions, such as Athabasca bitumen. A better understanding of the flow dynamics and clogging physics in trickle-bed reactors is needed in order to prevent clogging in the catalyst bed. This study focused on several aspects of the ECT as a non-intrusive imaging method for such processes. This paper described the experimental setup in detail. The ECT equipment allowed for up to 100 tomograms per second to be recorded. The clogging experiments lasted about 30 hours from a completely clean catalyst bed to a stable, non-filtering clogging state. A series of algorithms for ECT image reconstruction were presented. Truncated and filtered single value decomposition (SVD) and Landweber methods were found to be the most appropriate. ECT was shown to be faster and less expensive than nuclear ionizing, non-ionizing and other tomography methods. However, the main advantage of ECT was its non-intrusive attributes. It was also suggested that the complex technologies involved in ECT still require further refinement and better calibration methods. 9 refs., 5 figs.

  14. Development of a Non-Intrusive Diagnosis Technique for Gas Lifted Oil Wells

    International Nuclear Information System (INIS)

    Abidi, Tawfik; Guellouz, Mohamed Sadok; Harbaoui, Mohamed; Ellejmi, Mohamed

    2009-01-01

    In the present study a numerical model, representative of a real gas-lifted oil well, is used to perform flow simulations under different states of the oil reservoir. The simulations results helped to establish correlations between the well state and the measurable parameters at the well head. The uniqueness of these correlations, allows the reliable diagnosis of the state of the well by inferring the anomalies affecting it based on easily measurable parameters with no need to stop the oil production

  15. Effects of non-homogeneous flow on ADCP data processing in a hydroturbine forebay

    Energy Technology Data Exchange (ETDEWEB)

    Harding, S. F.; Richmond, M. C.; Romero-Gomez, P.; Serkowski, J. A.

    2016-12-01

    Observations of the flow conditions in the forebay of a hydroelectric power station indicate significant regions of non-homogeneous velocities near the intakes and shoreline. The effect of these non-homogeneous regions on the velocity measurement of an acoustic Doppler current profiler (ADCP) is investigated. By using a numerical model of an ADCP operating in a velocity field calculated using computational fluid dynamics (CFD), the errors due to the spatial variation of the flow velocity are identified. The numerical model of the ADCP is referred to herein as a Virtual ADCP (VADCP). Two scenarios are modeled in the numerical analyses presented. Firstly the measurement error of the VADCP is calculated for a single instrument adjacent to the short converging intake of the powerhouse. Secondly, the flow discharge through the forebay is estimated from a transect of VADCP instruments at dif- ferent distances from the powerhouse. The influence of instrument location and orientation are investigated for both cases. A velocity error of over up to 94% of the reference velocity is calculated for a VADCP modeled adjacent to an operating intake. Qualitative agreement is observed between the calculated VADCP velocities and reference velocities by an offset of one intake height upstream of the powerhouse.

  16. Structural power flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  17. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Kazakis, N., E-mail: kazanera@yahoo.com [Aristotle University of Thessaloniki, Department of Geology, Lab. of Engineering Geology & Hydrogeology, 54124 Thessaloniki (Greece); Pavlou, A. [Aristotle University of Thessaloniki, Department of Geology, Lab. of Engineering Geology & Hydrogeology, 54124 Thessaloniki (Greece); Vargemezis, G. [Aristotle University of Thessaloniki, Department of Geology, Lab. of Applied Geophysics, 54124 Thessaloniki (Greece); Voudouris, K.S.; Soulios, G. [Aristotle University of Thessaloniki, Department of Geology, Lab. of Engineering Geology & Hydrogeology, 54124 Thessaloniki (Greece); Pliakas, F. [Democritus University of Thrace, Department of Civil Engineering, Xanthi 67100 (Greece); Tsokas, G. [Aristotle University of Thessaloniki, Department of Geology, Lab. of Applied Geophysics, 54124 Thessaloniki (Greece)

    2016-02-01

    The aim of this study was to determine the extent and geometrical characteristics of seawater intrusion in the coastal aquifer of the eastern Thermaikos Gulf, Greece. Hydrochemical data and geoelectrical measurements were combined and supplemented to determine the hydrochemical regime of the study site in regard to seawater phenomena. Chemical analysis of groundwater was performed in 126 boreholes and fifteen electrical resistivity tomographies (ERT) were measured, whereas in two sites the ERT measurements were repeated following the wet season. The Cl{sup −} concentrations recorded reached 2240 mg/L indicating seawater intrusion which was also verified by ionic ratios. The ionic ratios were overlapped and a seawater intrusion map (SWIM) was produced. A significant part of the coastal aquifer (up to 150 km{sup 2}) is influenced by seawater intrusion. The areas with the most intensive salinization are located between Nea Kallikratia–Epanomi and Aggelochori–Peraia. According to the ERTs, in the influenced areas the salinization of the aquifer exceeds 1 km toward the mainland and its depth reaches 200 m. In the area surrounding Thessaloniki airport, the ERTs revealed salinization of the upper aquifer to depths of up to 40 m, whereas the lower aquifer is uninfluenced. This abnormal distribution of seawater intrusion demonstrates the value of geoelectrical methods in the study of seawater intrusion especially in areas with limited available hydrochemical data. - Highlights: • ERTs determined the geometrical characteristics of the saline aquifer. • An abnormal distribution of seawater intrusion was recorded. • Four ionic ratios overlapped and a seawater intrusion map was produced. • Cl{sup −} concentrations increased significantly from 2005 to 2010 by up to 1800 mg/L.

  18. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece

    International Nuclear Information System (INIS)

    Kazakis, N.; Pavlou, A.; Vargemezis, G.; Voudouris, K.S.; Soulios, G.; Pliakas, F.; Tsokas, G.

    2016-01-01

    The aim of this study was to determine the extent and geometrical characteristics of seawater intrusion in the coastal aquifer of the eastern Thermaikos Gulf, Greece. Hydrochemical data and geoelectrical measurements were combined and supplemented to determine the hydrochemical regime of the study site in regard to seawater phenomena. Chemical analysis of groundwater was performed in 126 boreholes and fifteen electrical resistivity tomographies (ERT) were measured, whereas in two sites the ERT measurements were repeated following the wet season. The Cl"− concentrations recorded reached 2240 mg/L indicating seawater intrusion which was also verified by ionic ratios. The ionic ratios were overlapped and a seawater intrusion map (SWIM) was produced. A significant part of the coastal aquifer (up to 150 km"2) is influenced by seawater intrusion. The areas with the most intensive salinization are located between Nea Kallikratia–Epanomi and Aggelochori–Peraia. According to the ERTs, in the influenced areas the salinization of the aquifer exceeds 1 km toward the mainland and its depth reaches 200 m. In the area surrounding Thessaloniki airport, the ERTs revealed salinization of the upper aquifer to depths of up to 40 m, whereas the lower aquifer is uninfluenced. This abnormal distribution of seawater intrusion demonstrates the value of geoelectrical methods in the study of seawater intrusion especially in areas with limited available hydrochemical data. - Highlights: • ERTs determined the geometrical characteristics of the saline aquifer. • An abnormal distribution of seawater intrusion was recorded. • Four ionic ratios overlapped and a seawater intrusion map was produced. • Cl"− concentrations increased significantly from 2005 to 2010 by up to 1800 mg/L.

  19. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  20. Politically-focused intrusive thoughts and associated ritualistic behaviors in a community sample.

    Science.gov (United States)

    Cepeda, Sandra L; McKay, Dean; Schneider, Sophie C; La Buissonnière-Ariza, Valérie; Egberts, Jolenthe T N E; McIngvale, Elizabeth; Goodman, Wayne K; Storch, Eric A

    2018-05-01

    A significant proportion of the U.S. population report increased stress attributed to the political climate following the controversial 2016 United States (U.S.) Presidential election. The political stressors paired with the growth in news consumption and social media-use could be a potential trigger for obsessive-compulsive-like symptoms specific to politics in some individuals. This study aimed to elucidate the rate of Politically-focused Intrusive Thoughts and associated Ritualistic Behaviors (PITRB), their demographic and clinical correlates, and the degree of association with political ideology. Survey data were collected using the crowdsourcing platform Mechanical Turk. A total of N = 484 individuals completed the survey. Measures of politically-focused intrusive thoughts and ritualistic behaviors, general obsessive-compulsive symptoms, depression, anxiety, anxiety control, worry, and disability were administered, as well as a measure of social and economic conservative affiliation. Results showed that a quarter of the sample (25.2%) had at least one PITRB more than once a day. PITRB was associated with all measures of psychopathology and disability. Finally, anxiety control moderated the relationship between PITRB and both anxiety and depression. No differences in psychopathology were found between major party affiliations. The findings suggest that politically-focused intrusive thoughts and ritualistic behaviors are associated with psychopathology domains in a manner comparable to general obsessive-compulsive symptoms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow

    Science.gov (United States)

    Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati

    2010-06-01

    The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.

  2. Perceived illness intrusions among continuous ambulatory peritoneal dialysis patients

    Directory of Open Access Journals (Sweden)

    Usha Bapat

    2012-01-01

    Full Text Available To study the perceived illness intrusion of continuous ambulatory peritoneal dialysis (CAPD patients, to examine their demographics, and to find out the association among demographics, duration of illness as well as illness intrusion, 40 chronic kidney disease stage V patients on CAPD during 2006-2007 were studied. Inclusion criteria were patients′ above 18 years, willing, stable, and completed at least two months of dialysis. Those with psychiatric co-morbidity were excluded. Sociodemographics were collected using a semi-structured interview schedule. A 14-item illness intrusion checklist covering various aspects of life was administered. The subjects had to rate the illness intrusion in their daily life and the extent of intrusion. The data was analyzed using descriptive statistics and chi square test of association. The mean age of the subjects was 56.05 ± 10.05 years. There was near equal distribution of gender. 82.5% were married, 70.0% belonged to Hindu religion, 45.0% were pre-degree, 25.0% were employed, 37.5% were housewives and 30.0% had retired. 77.5% belonged to the upper socioeconomic strata, 95.0% were from an urban background and 65.0% were from nuclear families. The mean duration of dialysis was 19.0 ± 16.49 months. Fifty-eight percent of the respondents were performing the dialysis exchanges by themselves. More than 95.0%were on three or four exchanges per day. All the 40 subjects reported illness intrusion in their daily life. Intrusion was perceived to some extent in the following areas: health 47.5%, work 25.0%, finance 37.5%, diet 40.0%, and psychological 50.0%. Illness had not intruded in the areas of relationship with spouse 52.5%, sexual life 30.0%, with friends 92.5%, with family 85.5%, social functions 52.5%, and religious functions 75.0%. Statistically significant association was not noted between illness intrusion and other variables. CAPD patients perceived illness intrusion to some extent in their daily life

  3. How we can measure the non-driving-task engagement in automated driving: Comparing flow experience and workload.

    Science.gov (United States)

    Ko, Sang Min; Ji, Yong Gu

    2018-02-01

    In automated driving, a driver can completely concentrate on non-driving-related tasks (NDRTs). This study investigated the flow experience of a driver who concentrated on NDRTs and tasks that induce mental workload under conditional automation. Participants performed NDRTs under different demand levels: a balanced demand-skill level (fit condition) to induce flow, low-demand level to induce boredom, and high-demand level to induce anxiety. In addition, they performed the additional N-Back task, which artificially induces mental workload. The results showed participants had the longest reaction time when they indicated the highest flow score, and had the longest gaze-on time, road-fixation time, hands-on time, and take-over time under the fit condition. Significant differences were not observed in the driver reaction times in the fit condition and the additional N-Back task, indicating that performing NDRTs that induce a high flow experience could influence driver reaction time similar to performing tasks with a high mental workload. Copyright © 2017. Published by Elsevier Ltd.

  4. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  5. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  6. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation.

    Science.gov (United States)

    Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R

    2017-01-01

    The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.

  7. Simulation and experimental investigation of mechanical and thermal non-equilibrium effect on choking flow at low pressure

    International Nuclear Information System (INIS)

    Yoon, H.J.; Ishii, M.; Revankar, S.T.

    2004-01-01

    The prediction of two-phase choking flow at low pressure (<1MPa) is much more difficult than at relatively higher pressure due to the large density ratio and relatively large thermal and mechanical non-equilibrium between the phases. At low pressure currently available choking flow models are not reliable and satisfactory. In view of this, separate effect tests were conducted to systematically investigate the effects of mechanical and thermal non-equilibrium on the two-phase choking flow in a pipe. The systematic studies is not available in literature, therefore no clear understanding of these effects has been attained until now. A scaled integral facility called PUMA was used for these tests with specific boundary condition with several unique in-;line instruments. The mechanical non-equilibrium effect was studied with air-water choking flow. Subcooled water two-phase choking flow was studied to identify the effects of mechanical and thermal non-equilibrium. A typical nozzle and orifice were used as the choking flow section to evaluate the degree of non-equilibrium due to geometry. The slip ratio, which is a key parameter to express the mechanical non-equilibrium, is obtained upstream of the choking section in the air-water test. The measured choking mass flux for the nozzle was higher than the orifice at low flow quality (<0.05) for the same upstream flow quality indicating that there is a strong mechanical non-equilibrium at the choking plane. The thermal non-equilibrium effect was very strong at low pressure, however, no major influence of the geometry on this effect was observed. Experimental data were compared with RELAP5/MOD3.2.1.2, MOD3.3 beta and TRAC-M code predictions. The code predictions in general were not in agreement with the air-water choking flow test data. This indicated that the mechanical non-equilibrium effects were not properly modeled in the codes. The test data for subcooled water showed moderate decrease of choking mass flux with decrease

  8. Biological intrusion barriers for large-volume waste-disposal sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Cline, J.F.; Rickard, W.H.

    1982-01-01

    intrusion of plants and animals into shallow land burial sites with subsequent mobilization of toxic and radiotoxic materials has occured. Based on recent pathway modeling studies, such intrusions can contribute to the dose received by man. This paper describes past work on developing biological intrusion barrier systems for application to large volume waste site stabilization. State-of-the-art concepts employing rock and chemical barriers are discussed relative to long term serviceability and cost of application. The interaction of bio-intrusion barrier systems with other processes affecting trench cover stability are discussed to ensure that trench cover designs minimize the potential dose to man. 3 figures, 6 tables

  9. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  10. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking

    OpenAIRE

    Kalivas, Benjamin C.; Kalivas, Peter W.

    2016-01-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumben...

  11. Identification of Human Intrusion Types into Radwaste Disposal Facility

    International Nuclear Information System (INIS)

    Budi Setiawan

    2007-01-01

    Human intrusion has long been recognized as a potentially important post-closure safety issue for rad waste disposal facility. It is due to the difficulties in predicting future human activities. For the preliminary study of human intrusion, identification of human intrusion types need to be recognized and investigated also the approaching of problem solving must be known to predict the prevention act and accepted risk. (author)

  12. Perceived illness intrusion among patients on hemodialysis

    International Nuclear Information System (INIS)

    Bapat, Usha; Kedlaya, Prashanth G; Gokulnath

    2009-01-01

    Dialysis therapy is extremely stressful as it interferes with all spheres of daily activities of the patients. This study is aimed at understanding the perceived illness intrusion among patients on hemodialysis (HD) and to find the association between illness intrusion and patient demo-graphics as well as duration of dialysis. A cross sectional study involving 90 patients with chronic kidney disease (CKD) stage V, on HD was performed during the period from 2005 to 2006. The subjects included were above 18 years of age, willing, stable and on dialysis for at least two months. Patients with psychiatric co-morbidity were excluded. A semi-structured interview schedule covering sociodemographics and a 13 item illness intrusion checklist covering the various aspects of life was carried out. The study patients were asked to rate the illness intrusion and the extent. The data were analyzed statistically. The mean age of the subjects was 50.28 + - 13.69 years, males were predominant (85%), 73% were married, 50% belonged to Hindu religion, 25% had pre-degree education, 25% were employed and 22% were housewives. About 40% and 38% of the study patients belonged to middle and upper socio-economic strata respectively; 86% had urban background and lived in nuclear families. The mean duration on dialysis was 24 + - 29.6 months. All the subjects reported illness intrusion to a lesser or greater extent in various areas including: health (44%), work (70%) finance (55%), diet (50%) sexual life (38%) and psychological status (25%). Illness had not intruded in areas of relationship with spouse (67%), friends (76%), family (79%), social (40%) and religious functions (72%). Statistically significant association was noted between illness intrusion and occupation (P= 0.02). (author)

  13. Perceived illness intrusion among patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Bapat Usha

    2009-01-01

    Full Text Available Dialysis therapy is extremely stressful as it interferes with all spheres of daily acti-vities of the patients. This study is aimed at understanding the perceived illness intrusion among pa-tients on hemodialysis (HD and to find the association between illness intrusion and patient demo-graphics as well as duration of dialysis. A cross sectional study involving 90 patients with chronic kidney disease (CKD stage V, on HD was performed during the period from 2005 to 2006. The subjects included were above 18 years of age, willing, stable and on dialysis for at least two months. Patients with psychiatric co-morbidity were excluded. A semi-structured interview schedule covering socio-demographics and a 13 item illness intrusion checklist covering the various aspects of life was ca-rried out. The study patients were asked to rate the illness intrusion and the extent. The data were ana-lyzed statistically. The mean age of the subjects was 50.28 ± 13.69 years, males were predominant (85%, 73% were married, 50% belonged to Hindu religion, 25% had pre-degree education, 25% were employed and 22% were housewives. About 40% and 38% of the study patients belonged to middle and upper socio-economic strata respectively; 86% had urban background and lived in nuclear fami-lies. The mean duration on dialysis was 24 ± 29.6 months. All the subjects reported illness intrusion to a lesser or greater extent in various areas including: health (44%, work (70% finance (55%, diet (50% sexual life (38% and psychological status (25%. Illness had not intruded in areas of rela-tionship with spouse (67%, friends (76%, family (79%, social (40% and religious functions (72%. Statistically significant association was noted between illness intrusion and occupation (P= 0.02.

  14. Turbulent intermittent structure in non-homogeneous non-local flows

    Science.gov (United States)

    Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.

    2010-05-01

    estimated from two characteristic parameters(D,b). For unstable or neutral situations, it is possible to find values for these parameters that represent the empirical scaling exponents D and b obtained from [1]. When D increases, the order smaller than 3 relative scaling exponents also increases (but for orders higher than 3, they decrease) linearly. On the contrary, for a certain value of D, when b increases the behavior of the relative scaling exponents is the opposite and non-linear. [1]Ben-Mahjoub O., Babiano A. y Redondo J.M. Velocity structure and Extended Self Similarity in nonhomogeneous Turbulent Jets and Wakes. Journal of flow turbulence and combustion. 59 , 299-313. 1998. [2]Ben-Mahjoub O., Redondo J.M., and R. Alami. Turbulent Structure Functions in Geophysical Flows, Rapp. Comm. int. Mer Medit., 35, 126-127. 1998 [3]Babiano, A., Dubrulle, B., Frick, P. Some properties of two-dimensional inverse energy cascade dynamics, Phys. Rev. E. 55, 2693, 1997. [4]Vindel J.M., Yague C. and J.M. Redondo, Structure function analysis and intermittency in the ABL, NonLin. Proc. Geophys. 15, 6. 915-929. 2009. [5]Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Vila, J., Redondo, J. M., Cantalapiedra, I. R., Conangla L., Bound-Layer Meteor. 96, 337-370 2000. [6]Rodríguez, A., Sánchez-Arcilla, A., Redondo, J. M., Mosso, C.: Macroturbulence measurements with electromagnetic and ultrasonic sensors: a comparison under high-turbulent flows, Experiments in Fluids, 27, 31-42. 1999.

  15. Smart sensor systems for outdoor intrusion detection

    International Nuclear Information System (INIS)

    Lynn, J.K.

    1988-01-01

    A major improvement in outdoor perimeter security system probability of detection (PD) and reduction in false alarm rate (FAR) and nuisance alarm rate (NAR) may be obtained by analyzing the indications immediately preceding an event which might be interpreted as an intrusion. Existing systems go into alarm after crossing a threshold. Very slow changes, which accumulate until the threshold is reached, may be assessed falsely as an intrusion. A hierarchial program has begun at Stellar to develop a modular, expandable Smart Sensor system which may be interfaced to most types of sensor and alarm reporting systems. A major upgrade to the SSI Test Site is in progress so that intrusions may be simulated in a controlled and repeatable manner. A test platform is being constructed which will operate in conduction with a mobile instrumentation center with CCTVB, lighting control, weather and data monitoring and remote control of the test platform and intrusion simulators. Additional testing was contracted with an independent test facility to assess the effects of severe winter weather conditions

  16. Temperature measurement in the flowing medium

    Directory of Open Access Journals (Sweden)

    Sedlák Kamil

    2018-01-01

    Full Text Available The article deals with a brief description of methods of temperature measurements in a flowing water steam. Attention is paid to the measurement of pseudo static temperature by a single sealed thermocouple entering the flowing liquid through the flown-by wall. Then three types of probes for stagnation temperature measurement are shown, whose properties were tested using CFD calculations. The aim was to design a probe of stagnation parameters of described properties which can be used for measuring flow parameters in a real steam turbine. An important factor influencing the construction is not only the safe manipulation of the probe when inserting and removing it from the machine in operation, but also the possibility to traverse the probe along the blade length.

  17. Heart rate, startle response, and intrusive trauma memories

    Science.gov (United States)

    Chou, Chia-Ying; Marca, Roberto La; Steptoe, Andrew; Brewin, Chris R

    2014-01-01

    The current study adopted the trauma film paradigm to examine potential moderators affecting heart rate (HR) as an indicator of peritraumatic psychological states and as a predictor of intrusive memories. We replicated previous findings that perifilm HR decreases predicted the development of intrusive images and further showed this effect to be specific to images rather than thoughts, and to detail rather than gist recognition memory. Moreover, a group of individuals showing both an atypical sudden reduction in HR after a startle stimulus and higher trait dissociation was identified. Only among these individuals was lower perifilm HR found to indicate higher state dissociation, fear, and anxiety, along with reduced vividness of intrusions. The current findings emphasize how peritraumatic physiological responses relate to emotional reactions and intrusive memory. The moderating role of individual difference in stress defense style was highlighted. PMID:24397333

  18. Use of the heat dissipation method for sap flow measurement in citrus nursery trees1

    Directory of Open Access Journals (Sweden)

    Eduardo Augusto Girardi

    2010-12-01

    Full Text Available Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L. Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.

  19. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  20. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece.

    Science.gov (United States)

    Kazakis, N; Pavlou, A; Vargemezis, G; Voudouris, K S; Soulios, G; Pliakas, F; Tsokas, G

    2016-02-01

    The aim of this study was to determine the extent and geometrical characteristics of seawater intrusion in the coastal aquifer of the eastern Thermaikos Gulf, Greece. Hydrochemical data and geoelectrical measurements were combined and supplemented to determine the hydrochemical regime of the study site in regard to seawater phenomena. Chemical analysis of groundwater was performed in 126 boreholes and fifteen electrical resistivity tomographies (ERT) were measured, whereas in two sites the ERT measurements were repeated following the wet season. The Cl(-) concentrations recorded reached 2240 mg/L indicating seawater intrusion which was also verified by ionic ratios. The ionic ratios were overlapped and a seawater intrusion map (SWIM) was produced. A significant part of the coastal aquifer (up to 150 km(2)) is influenced by seawater intrusion. The areas with the most intensive salinization are located between Nea Kallikratia-Epanomi and Aggelochori-Peraia. According to the ERTs, in the influenced areas the salinization of the aquifer exceeds 1 km toward the mainland and its depth reaches 200 m. In the area surrounding Thessaloniki airport, the ERTs revealed salinization of the upper aquifer to depths of up to 40 m, whereas the lower aquifer is uninfluenced. This abnormal distribution of seawater intrusion demonstrates the value of geoelectrical methods in the study of seawater intrusion especially in areas with limited available hydrochemical data. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Intrusion of the Bay of Bengal water into the Arabian Sea during winter monsoon and associated chemical and biological response

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.; Kumar, A.; Shaji, C.; Anand, P.; Sabu, P.; Rijomon, G.; Josia, J.; Jayaraj, K.A.; Radhika, A.; Nair, K.K.C.

    off. The hydrological imbalance thus created on an annual scale will have to be balanced by the inter-basin exchange. In winter this happens through the intrusion of Bay of Bengal waters into the Arabian Sea, when the southward flowing East India...

  2. Prompt and Non-prompt $J/\\psi$ Elliptic Flow in Pb+Pb Collisions at 5.02 TeV with the ATLAS Detector

    CERN Document Server

    Lopez, Jorge; The ATLAS collaboration

    2018-01-01

    The elliptic flow of prompt and non-prompt $J/\\psi$ was measured in Pb+Pb collisions at $\\sqrt{s_\\text{NN}}=5.02$ TeV with an integrated luminosity of $0.42~\\mathrm{nb}^{-1}$ with ATLAS at the LHC. The prompt and non-prompt signals are separated using a two-dimensional simultaneous fit of the invariant mass and pseudo-proper time in the dimuon decay channel. The measurement is performed in the kinematic range $9flow is evaluated with respect to the event plane and the results are presented as a function of transverse momentum, rapidity and centrality. It is observed that prompt and non-prompt $J/\\psi$ mesons have non-zero elliptic flow. Prompt $J/\\psi$ $v_2$ decreases as a function of $p_\\mathrm{T}$, while non-prompt $J/\\psi$ $v_2$ is flat over the studied kinematical region. There is no observed dependence on rapidity or centrality.

  3. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  4. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  5. Investigating Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    Science.gov (United States)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2016-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOSchem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7% and 7.6%, respectively) compared to that from LT (64.1%), but the relative ozone concentration coming from LS and UT is high (38.4% and 20.95%, respectively) compared to that from LT (17.7%). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  6. Method and device for measuring fluid flow

    International Nuclear Information System (INIS)

    Atherton, R.; Marinkovich, P.S.; Spadaro, P.R.; Stout, J.W.

    1976-01-01

    The invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution. 1 claim, 7 figures

  7. Evaluation of higher brain function by MRI. Flow measurement in the superior sagittal sinus using phase contrast method

    International Nuclear Information System (INIS)

    Ono, Mototsugu

    1997-01-01

    To assess the higher brain function, flow measurement in the superior sagittal sinus (SSS) was performed noninvasively using a phase contrast MRI in 76 patients with suspicious of impaired higher brain function including dementias (senile dementia of Alzheimer type; SDAT and multi-infarct dementia; MID), strokes, and others. Thirty-one normal controls were consisted of 18 healthy volunteers and 13 patients with tension headache whose higher brain function was proved be normal. Mean flow velocity was measured in the distal portion of the SSS adjoining to the occipital lobes and was multiplied by cross-sectional area of the SSS at the measuring point to obtain mean flow volume. For intellectual index, cross-cultural cognitive examination (CCCE) was applied to all cases excluding volunteers. Normal value of SSS flow volume measured by MRI was 6.92±0.66 ml/s. Significant differences in both SSS flow and CCCE score from normal controls were found in SDAT group, MID group, and non-dementia group. No substantial differences between SDAT group and MID group were noted in both CCCE score and SSS flow. In normal controls, there was no correlation between SSS flow and age, whereas, significant inverse correlation of SSS flow with age was found in all cases. Between CCCE score and SSS flow, there were nearly linear relationships in all cases, SDAT group, MID group, and non-dementia group. Significant but relatively poor correlation was found in normals. (K.H.)

  8. Non-gated fetal MRI of umbilical blood flow in an acardiac twin

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Nobuhiko [University of Tokyo, Graduate School of Information Science and Technology, Tokyo (Japan); Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Wada, Toru [University of Tokyo, Graduate School of Information Science and Technology, Tokyo (Japan); Kashima, Kyoko; Okada, Yoshiyuki [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Unno, Nobuya [Nagano Children' s Hospital, Center for Perinatal Medicine, Nagano (Japan); Kitagawa, Michihiro [National Center for Child Health and Development, Department of Prenatal Medicine and Maternal Care, Tokyo (Japan); Chiba, Toshio [National Center for Child Health and Development, Department of Strategic Medicine, Tokyo (Japan)

    2005-08-01

    Currently, the standard method of diagnosis of twin reversed arterial perfusion (TRAP) sequence is ultrasound imaging. The use of MRI for flow visualization may be a useful adjunct to US imaging for assessing the presence of retrograde blood flow in the acardiac fetus and/or umbilical artery. The technical challenge in fetal MRI flow imaging, however, is that fetal electrocardiogram (ECG) monitoring required for flow imaging is currently unavailable in the MRI scanner. A non-gated MRI flow imaging technique that requires no ECG monitoring was developed using the t-test to detect blood flow in 20 slices of phase-contrast MRI images randomly scanned at the same location over multiple cardiac cycles. A feasibility study was performed in a 24-week acardiac twin that showed no umbilical flow sonographically. Non-gated MRI flow images clearly indicated the presence of blood flow in the umbilical artery to the acardiac twin; however, there was no blood flow beyond the abdomen. This study leads us to conjecture that non-gated MRI flow imaging is sensitive in detecting low-range blood flow velocity and can be an adjunct to Doppler US imaging. (orig.)

  9. Non-gated fetal MRI of umbilical blood flow in an acardiac twin

    International Nuclear Information System (INIS)

    Hata, Nobuhiko; Wada, Toru; Kashima, Kyoko; Okada, Yoshiyuki; Unno, Nobuya; Kitagawa, Michihiro; Chiba, Toshio

    2005-01-01

    Currently, the standard method of diagnosis of twin reversed arterial perfusion (TRAP) sequence is ultrasound imaging. The use of MRI for flow visualization may be a useful adjunct to US imaging for assessing the presence of retrograde blood flow in the acardiac fetus and/or umbilical artery. The technical challenge in fetal MRI flow imaging, however, is that fetal electrocardiogram (ECG) monitoring required for flow imaging is currently unavailable in the MRI scanner. A non-gated MRI flow imaging technique that requires no ECG monitoring was developed using the t-test to detect blood flow in 20 slices of phase-contrast MRI images randomly scanned at the same location over multiple cardiac cycles. A feasibility study was performed in a 24-week acardiac twin that showed no umbilical flow sonographically. Non-gated MRI flow images clearly indicated the presence of blood flow in the umbilical artery to the acardiac twin; however, there was no blood flow beyond the abdomen. This study leads us to conjecture that non-gated MRI flow imaging is sensitive in detecting low-range blood flow velocity and can be an adjunct to Doppler US imaging. (orig.)

  10. Dynamic Characterization of a Low Cost Microwave Water-Cut Sensor in a Flow Loop

    KAUST Repository

    Karimi, Muhammad Akram; Arsalan, Muhammad; Shamim, Atif

    2017-01-01

    Inline precise measurement of water fraction in oil (i.e. water-cut [WC]) finds numerous applications in oil and gas industry. This paper presents the characterization of an extremely low cost, completely non-intrusive and full range microwave water

  11. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  12. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  13. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  14. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    International Nuclear Information System (INIS)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Schofield, John S.

    2013-01-01

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106

  15. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.

    Science.gov (United States)

    Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado

    2017-07-01

    A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM 10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM 2.5 . A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    Science.gov (United States)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  17. An evaluation of classification algorithms for intrusion detection ...

    African Journals Online (AJOL)

    An evaluation of classification algorithms for intrusion detection. ... Log in or Register to get access to full text downloads. ... Most of the available IDSs use all the 41 features in the network to evaluate and search for intrusive pattern in which ...

  18. Salivary flow and composition in diabetic and non-diabetic subjects.

    Science.gov (United States)

    Lasisi, T J; Fasanmade, A A

    2012-06-07

    The study investigated the effects of type 2 diabetes mellitus on salivary flow and composition in humans compared to healthy sex and age matched controls. Forty adult human subjects divided into 20 diabetic and 20 non-diabetic healthy subjects were included. Saliva samples were collected and analysed for glucose, total protein, calcium, sodium, potassium, chloride and bicarbonate. Salivary flow rate was also determined. The results showed that salivary glucose and potassium levels were significantly higher (p = 0.01 and 0.002 respectively) in diabetic patients compared with non-diabetic participants. It was also found that the diabetic patients had significant reduction in salivary flow rate when compared with non-diabetic individuals. In contrast, there was no significant difference in levels of total protein, Na+, Ca++, Cl- and HCO3- between the two groups. These results suggest that some oral diseases associated with diabetes mellitus may be due to altered levels of salivary glucose, potassium and flow.

  19. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  20. Non-Darcy behavior of two-phase channel flow.

    Science.gov (United States)

    Xu, Xianmin; Wang, Xiaoping

    2014-08-01

    We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.

  1. Hydrodynamic modeling of the intrusion phenomenon in water distribution systems; Modelacion hidrodinamica del fenomeno de intrusion en tuberia de abastecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Jimenez, Petra Amparo; Mora-Rodriguez, Jose de Jesus; Perez-Garcia, Rafael; Martinez-Solano, F. Javier [Universidad Politecnica de Valencia (Spain)

    2008-10-15

    This paper describes a strategy for the hydrodynamic modeling of the pathogen intrusion phenomenon in water distribution systems by the combination of a breakage with a depression situation. This scenario will be modeled computationally and experimentally. The phenomenon to be represented by both simulations is the same: the entrance of an external volume into the circulation of a main volume, known as a pathogen intrusion, as long as the main volume is potable water. To this end, a prototype and a computational model based on Computational Fluid Dynamics (CFD) are used, which allow visualizing the fields of speeds and pressures in a simulated form. With the comparison of the results of both models, conclusions will be drawn on the detail of the studied pathogen intrusion phenomenon. [Spanish] En el presente documento se describe una estrategia de modelacion del fenomeno hidrodinamico de la intrusion patogena en redes de distribucion de agua por combinacion de una rotura con una situacion de depresion. Este escenario sera modelado computacional y experimentalmente. El fenomeno que se desea representar con ambas simulaciones es el mismo: la entrada de un caudal externo a una conduccion para la que circula un caudal principal, denominado intrusion patogena, siempre y cuando el caudal principal sea agua potable. Para ello se dispone de un prototipo y un modelo computacional basado en la Dinamica de Fluidos Computacional (DFC de aqui en adelante), que permite visualizar los campos de velocidades y presiones de forma simulada. Con la comparacion de los resultados de ambos modelos se extraeran conclusiones sobre el detalle del fenomeno de la intrusion patogena estudiado.

  2. Measurement technique developments for LBE flows

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, D., E-mail: d.buchenau@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Eckert, S.; Gerbeth, G. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Stieglitz, R. [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Dierckx, M. [SCK-CEN, Belgian Nuclear Research Centre, 2400 Mol (Belgium)

    2011-08-31

    We report on the development of measurement techniques for flows in lead-bismuth eutectic alloys (LBE). This paper covers the test results of newly developed contactless flow rate sensors as well as the development and test of the LIDAR technique for operational free surface level detection. The flow rate sensors are based on the flow-induced disturbance of an externally applied AC magnetic field which manifests itself by a modified amplitude or a modified phase of the AC field. Another concept of a force-free contactless flow meter uses a single cylindrical permanent magnet. The electromagnetic torque on the magnet caused by the liquid metal flow sets the magnet into rotation. The operation of those sensors has been demonstrated at liquid metal test loops for which comparative flow rate measurements are available, as well as at the LBE loops THESYS at KIT and WEBEXPIR at SCK-CEN. For the level detection a commercial LIDAR system was successfully tested at the WEBEXPIR facility in Mol and the THEADES loop in Karlsruhe.

  3. Performance assessment of a non-linear eddy-viscosity turbulence model applied to the anisotropic wake flow of a low-pressure turbine blade

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Sideridis, A.; Yakinthos, K.; Goulas, A.

    2012-01-01

    Highlights: ► We model the wake flow produced by a LPT blade using a non-linear turbulence model. ► We use two interpolation schemes for the convection terms with different accuracy. ► We investigate the effect of each term of the non-linear constitutive expression. ► The results are compared with available experimental measurements. ► The model predicts with a good accuracy the velocity and stress distributions. - Abstract: The wake flow produced by a low-pressure turbine blade is modeled using a non-linear eddy-viscosity turbulence model. The theoretical benefit of using a non-linear eddy-viscosity model is strongly related to the capability of resolving highly anisotropic flows in contrast to the linear turbulence models, which are unable to correctly predict anisotropy. The main aim of the present work is to practically assess the performance of the model, by examining its ability to capture the anisotropic behavior of the wake-flow, mainly focusing on the measured velocity and Reynolds-stress distributions and to provide accurate results for the turbulent kinetic energy balance terms. Additionally, the contribution of each term of its non-linear constitutive expression for the Reynolds stresses is also investigated, in order to examine their direct effect on the modeling of the wake flow. The assessment is based on the experimental measurements that have been carried-out by the same group in Thessaloniki, Sideridis et al. (2011). The computational results show that the non-linear eddy viscosity model is capable to predict, with a good accuracy, all the flow and turbulence parameters while it is easy to program it in a computer code thus meeting the expectations of its originators.

  4. Apparatus for measuring fluid flow

    Science.gov (United States)

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  5. Treatment of two-phase turbulent mixing, void drift and diversion cross-flow in a hydraulically non-equilibrium subchannel flow

    International Nuclear Information System (INIS)

    Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa

    1997-01-01

    A practical way of treating two-phase turbulent mixing, void drift and diversion cross-flow on a subchannel analysis has been studied. Experimental data on the axial variations of subchannel flow parameters, such as flow rates of both phases, pressure, void fraction and concentrations of tracers for both phases, were obtained for hydraulically non-equilibrium two-phase subchannel flows in a vertical multiple channel made up of two-identical circular subchannels. These data were analyzed on the basis of the following four assumptions: (1) the turbulent mixing is independent of both the void drift and the diversion cross-flow; (2) the turbulent mixing rates of both phases in a non-equilibrium flow are equal to those in the equilibrium flow that the flow under consideration will attain; (3) the void drift is independent of the diversion cross-flow; and (4) the lateral gas velocity due to the void drift is predictable from Lahey et al.'s void settling model even in a non-equilibrium flow with the diversion cross-flow. The validity of the assumptions (1) and (2) was assured by comparing the concentration distribution data with the calculations, and that of the assumptions (3) and (4) by analyzing the data on flow rates of both phases, pressure and void fraction (author)

  6. 40 CFR 91.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  7. Dynamic Characterization of a Low Cost Microwave Water-Cut Sensor in a Flow Loop

    KAUST Repository

    Karimi, Muhammad Akram

    2017-03-31

    Inline precise measurement of water fraction in oil (i.e. water-cut [WC]) finds numerous applications in oil and gas industry. This paper presents the characterization of an extremely low cost, completely non-intrusive and full range microwave water-cut sensor based upon pipe conformable microwave T-resonator. A 10″ microwave stub based T-resonator has been implemented directly on the pipe surface whose resonance frequency changes in the frequency band of 90MHz–190MHz (111%) with changing water fraction in oil. The designed sensor is capable of detecting even small changes in WC with a resolution of 0.07% at low WC and 0.5% WC at high WC. The performance of the microwave WC sensor has been tested in an in-house flow loop. The proposed WC sensor has been characterized over full water-cut range (0%–100%) not only in vertical but also in horizontal orientation. The sensor has shown predictable response in both orientations with huge frequency shift. Moreover, flow rate effect has also been investigated on the proposed WC sensor’s performance and it has been found that the sensor’s repeatability is within 2.5% WC for variable flow rates.

  8. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuation....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity...

  9. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  10. Difference flow measurements in borehole KOV01 at Oskarshamn

    International Nuclear Information System (INIS)

    Poellaenen, J.; Rouhiainen, P.

    2001-09-01

    Posiva Flow Log/Difference Flow method can be used for relatively fast determination of hydraulic conductivity and hydraulic head in fractures or fractured zones in cored boreholes. This report presents the principles of the method as well as the results of the measurements carried out in borehole KOV01 at Oskarshamn in February and March 2001. The aim of the measurements presented in this report was to determine the depth and flow rate of flowing fractures in borehole KOV01 prior to groundwater sampling. The measurements in borehole KOV01 were carried out between 100-1000 m depth using the so called detailed flow logging mode; the flow rate into a 5 m long test section was measured. Detailed flow logging was repeated at the location of the detected flow anomalies using 0.5 m section length and 0.1 m point intervals. The borehole was pumped during these measurements. The occurrence of saline water in the borehole was studied by electric conductivity measurements. The flow guide encloses also an electrode for measuring of single point resistance of the bedrock. It was measured with 0.01 m point intervals during the detailed flow logging. Depth calibration was made on the basis of the known depth marks in the borehole. The depth marks were detected by caliper measurements and by single point resistance measurements

  11. Cine-CT measurement of cortical renal blood flow

    International Nuclear Information System (INIS)

    Jaschke, W.R.; Gould, R.G.; Cogan, M.G.; Sievers, R.; Lipton, M.J.

    1987-01-01

    A modified indicator-dilution technique using radiographic contrast material and a cine-CT scanner was used to measure blood flow in the renal cortex of dogs. To validate this technique, CT measurements were correlated with simultaneous measurements of flow determined by radioactive microspheres. Measurements were taken during euvolemic conditions and after hemorrhage. Thirty-nine measurements were compared, covering a flow range from 1 to 7 ml min-1 g-1, and a good correlation was found between the cine-CT and microsphere results (r = 0.93; p less than 0.001). Additionally, cine-CT measurements were made of the mean transit time (MTT) of contrast material through the renal cortex, and the reciprocal of these MTT values was also well correlated to microsphere determined flow (r = 0.94; p less than 0.001). Thus, cine-CT appears to be a promising new technique for measuring renal blood flow

  12. Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics

    International Nuclear Information System (INIS)

    Massing, J; Kähler, C J; Cierpka, C; Kaden, D

    2016-01-01

    The simultaneous and non-intrusive measurement of temperature and velocity fields in flows is of great scientific and technological interest. To sample the velocity and temperature, tracer particle based approaches have been developed, where the velocity is measured using PIV or PTV and the temperature is obtained from the intensity (LIF, thermographic phosphors) or frequency (TLC) of the light emitted or reflected by the tracer particles. In this article, a measurement technique is introduced, that relates the luminescent intensity ratio of individual dual-color luminescent tracer particles to temperature. Different processing algorithms are tested on synthetic particle images and compared with respect to their accuracy in estimating the intensity ratio. Furthermore, polymer particles which are doped with the temperature sensitive dye europium (III) thenoyltrifluoroacetonate (EuTTA) and the nearly temperature insensitive reference dye perylene are characterized as valid tracers. The results show a reduction of the temperature measurement uncertainty of almost 40% (95% confidence interval) compared to previously reported luminescent particle based measurement techniques for microfluidics. (paper)

  13. A novel concept of measuring mass flow rates using flow induced ...

    Indian Academy of Sciences (India)

    Measurement of mass flow rate is important for automatic control of the mass flow rate in .... mass flow rate. The details are as follows. ... Assuming a symmetry plane passing through the thickness of the plate, at the symmetry plane δu∗n,B = 0.

  14. Externalizing symptoms, effortful control, and intrusive parenting: A test of bidirectional longitudinal relations during early childhood.

    Science.gov (United States)

    Eisenberg, Nancy; Taylor, Zoe E; Widaman, Keith F; Spinrad, Tracy L

    2015-11-01

    At approximately 30, 42, and 54 months of age (N = 231), the relations among children's externalizing symptoms, intrusive maternal parenting, and children's effortful control (EC) were examined. Both intrusive parenting and low EC have been related to psychopathology, but children's externalizing problems and low EC might affect the quality of parenting and one another. Mothers' intrusive behavior with their children was assessed with observations, children's EC was measured with mothers' and caregivers' reports, and children's externalizing symptoms were assessed with mothers', fathers', and caregivers' reports. In a structural equation panel model, bidirectional relations between intrusive parenting and EC were found: EC at 30 and 42 months predicted low levels of intrusive parenting a year later, controlling for prior levels of parenting and vice versa. Moreover, high levels of children's externalizing problems at both 30 and 42 months negatively predicted EC a year later, controlling for prior levels of EC. Although externalizing problems positively predicted high EC over time, this appeared to be a suppression effect because these variables had a strong negative pattern in the zero-order correlations. Moreover, when controlling for the stability of intrusive parenting, EC, and externalizing (all exhibited significant stability across time) and the aforementioned cross-lagged predictive paths, EC and externalizing problems were still negatively related within the 54-month assessment. The findings are consistent with the view that children's externalizing behavior undermines their EC and contributes to intrusive mothering and that relations between intrusive parenting and EC are bidirectional across time. Thus, interventions that focus on modifying children's externalizing problems (as well as the quality of parenting) might affect the quality of parenting they receive and, hence, subsequent problems with adjustment.

  15. Microparticle tracking velocimetry as a tool for microfluidic flow measurements

    Science.gov (United States)

    Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.

    2017-07-01

    The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.

  16. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  17. Experimental analysis of ultrasonic signals in air-water vertical upward for void fraction measurement using neural networks; Analise experimental dos sinais ultra-sonicos em escoamentos verticais bifasicos para medicao da fracao de vazios atraves de redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Milton Y.; Massignan, Joao P.D.; Daciuk, Rafael J.; Neves Junior, Flavio; Arruda, Lucia V.R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    Rheology of emulsion mixtures and void fraction measurements of multiphase flows requires proper instrumentation. Sometimes it is not possible to install this instrumentation inside the pipe or view the flow. Ultrasound technology has characteristics compatible with the requirements of the oil industry. It can assist the production of heavy oil. This study provides important information for an analysis of the feasibility of developing non-intrusive equipment. These probes can be used for measurement of multiphase void fraction and detect the flow pattern using ultrasound. Experiments using simulated upward air-water vertical two-phase flow show that there is a correlation between the acoustic attenuation and the concentration of the gas phase. Experimental data were obtained through the prototype developed for ultrasonic data acquisition. This information was processed and used as input parameters for a neural network classifier. Void fractions ({proportional_to}) were analyzed between 0% - 16%, in increments of 1%. The maximum error of the neural network for the classification of the flow pattern was 6%. (author)

  18. Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models

    Science.gov (United States)

    Gorczyk, Weronika; Vogt, Katharina

    2018-03-01

    Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.

  19. PENGGUNAAN METODE DISCOUNTED CASH FLOW DAN UKURAN NON KEUANGAN DALAM PENGANGGARAN MODAL: PENDEKATAN KONTINJENSI

    Directory of Open Access Journals (Sweden)

    Ahmad Rosyid

    2012-10-01

    Full Text Available This study aims to (1 examine the degree of use between Discounted Cash Flow (DCF method and non financial measures in capital budgeting (2 examine managers’ satisfaction on both methods when there is a contingency fit between those methods with two contingency variables: product standardization and firm strategy. This research used purposive sampling method to collect data. The research population was manufacturing firms listed in BEI and major non listed firms located in Jawa Tengah and got 35 responses. Multiple regression and Moderated Regression Analysis (MRA were used to test the hypothesis. Research results indicate that (1 DCF method is not more important than non financial measures. Managers tend to use both methods simultaneously (2 firm strategy affects to DCF method and non financial measures significantly which it means that firms with prospector strategy tend to place more emphasis on non financial measures while firms with defender strategy tend to place more emphasis on DCF method. (3 product standardization has no effect on both methods (4 firm strategy has a moderating effect on the relation between two capital budgeting methods and manager’s satisfaction on budgeting process while product standardization has no effect.

  20. Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2015-10-01

    Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.