WorldWideScience

Sample records for non-contact measurement method

  1. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  2. Studies of non-contact methods for roughness measurements on wood surfaces

    International Nuclear Information System (INIS)

    Lundberg, I.A.S.; Porankiewicz, B.

    1995-01-01

    The quality of wood surfaces after different kinds of machining processes is a property of great importance for the wood processing industries. Present work is a study, whose objective was to evaluate different non-contact methods, for measurement of the quality of the wood surfaces by correlating them with stylus tracing. A number of Scots Pine samples were prepared by different kinds of wood machining processing. Surface roughness measurements were performed, utilizing two optical noncontact methods. The results indicate that the laser scan method can measure surface roughness on sawn wood with a sufficient degree of accuracy. (author) [de

  3. Clinical tonometric measurements comparing three non-contact tonometers.

    Science.gov (United States)

    Walby, M A; Augsburger, A; Polasky, M

    1975-06-01

    Three American Optical Non-contact Tonometers were used to compare readings against each other. The attempt was to determine if all three tonometers were measuring the same IOP over a wide range of pressures. The assumption in practice is that all Non-contact Tonometers are manufactured within tolerance that should allow the examiner to find that same IOP on a patient regardless of the Non-contact Tonometer used. A preliminary study found no significant difference between the instruments.

  4. Development of a baby friendly non-contact method for measuring vital signs: First results of clinical measurements in an open incubator at a neonatal intensive care unit

    Science.gov (United States)

    Klaessens, John H.; van den Born, Marlies; van der Veen, Albert; Sikkens-van de Kraats, Janine; van den Dungen, Frank A.; Verdaasdonk, Rudolf M.

    2014-02-01

    For infants and neonates in an incubator vital signs, such as heart rate, breathing, skin temperature and blood oxygen saturation are measured by sensors and electrodes sticking to the skin. This can damage the vulnerable skin of neonates and cause infections. In addition, the wires interfere with the care and hinder the parents in holding and touching the baby. These problems initiated the search for baby friendly 'non-contact' measurement of vital signs. Using a sensitive color video camera and specially developed software, the heart rate was derived from subtle repetitive color changes. Potentially also respiration and oxygen saturation could be obtained. A thermal camera was used to monitor the temperature distribution of the whole body and detect small temperature variations around the nose revealing the respiration rate. After testing in the laboratory, seven babies were monitored (with parental consent) in the neonatal intensive care unit (NICU) simultaneously with the regular monitoring equipment. From the color video recordings accurate heart rates could be derived and the thermal images provided accurate respiration rates. To correct for the movements of the baby, tracking software could be applied. At present, the image processing was performed off-line. Using narrow band light sources also non-contact blood oxygen saturation could be measured. Non-contact monitoring of vital signs has proven to be feasible and can be developed into a real time system. Besides the application on the NICU non-contact vital function monitoring has large potential for other patient groups.

  5. Non-contact measurement of rotation angle with solo camera

    Science.gov (United States)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  6. Non-Contact Conductivity Measurement for Automated Sample Processing Systems

    Science.gov (United States)

    Beegle, Luther W.; Kirby, James P.

    2012-01-01

    A new method has been developed for monitoring and control of automated sample processing and preparation especially focusing on desalting of samples before analytical analysis (described in more detail in Automated Desalting Apparatus, (NPO-45428), NASA Tech Briefs, Vol. 34, No. 8 (August 2010), page 44). The use of non-contact conductivity probes, one at the inlet and one at the outlet of the solid phase sample preparation media, allows monitoring of the process, and acts as a trigger for the start of the next step in the sequence (see figure). At each step of the muti-step process, the system is flushed with low-conductivity water, which sets the system back to an overall low-conductivity state. This measurement then triggers the next stage of sample processing protocols, and greatly minimizes use of consumables. In the case of amino acid sample preparation for desalting, the conductivity measurement will define three key conditions for the sample preparation process. First, when the system is neutralized (low conductivity, by washing with excess de-ionized water); second, when the system is acidified, by washing with a strong acid (high conductivity); and third, when the system is at a basic condition of high pH (high conductivity). Taken together, this non-contact conductivity measurement for monitoring sample preparation will not only facilitate automation of the sample preparation and processing, but will also act as a way to optimize the operational time and use of consumables

  7. Contact and Non-contact Measurements of Grinding Pins

    Directory of Open Access Journals (Sweden)

    Magdziak Marek

    2015-01-01

    Full Text Available The paper presents the results of contact and non-contact measurements of external profiles of selected grinding pins. The measurements were conducted in order to choose the appropriate measuring technique in the case of the considered measurement task. In the case of contact measurements the coordinate measuring machine ACCURA II was applied. The used coordinate measuring machine was equipped with the contact scanning probe VAST XT and the Calypso inspection software. Contact coordinate measurements were performed by using of different measurement strategies. The applied strategies included different scanning velocities and distances between measured points. Non-contact measurements were conducted by means of the tool presetter produced by the Mahr company. On the basis of gained results the guidelines concerning measurements of grinding pins were formulated. The measurements of analyzed grinding pins performed by means of the non-contact measuring system are characterized by higher reproducibility than the contact measurements. The low reproducibility of contact measurements may be connected with the inaccuracy of the selected coordinate measuring machine and the measuring probe, the measurement parameters and environmental conditions in the laboratory where the coordinate measuring machine is located. Moreover, the paper presents the possible application of results of conducted investigations. The results of non-contact measurements can be used in the simulation studies of grinding processes. The simulations may reduce the costs of machining processes.

  8. Analytical, Numerical, and Experimental Investigation on a Non-Contact Method for the Measurements of Creep Properties of Ultra-High-Temperature Materials

    Science.gov (United States)

    Lee, Jonghyun; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    Responsive access to space requires re-use of components such as rocket nozzles that operate at extremely high temperatures. For such applications, new ultra-hightemperature materials that can operate over 2,000 C are required. At the temperatures higher than the fifty percent of the melting temperature, the characterization of creep properties is indispensable. Since conventional methods for the measurement of creep is limited below 1,700 C, a new technique that can be applied at higher temperatures is strongly demanded. This research develops a non-contact method for the measurement of creep at the temperatures over 2,300 C. Using the electrostatic levitator in NASA MSFC, a spherical sample was rotated to cause creep deformation by centrifugal acceleration. The deforming sample was captured with a digital camera and analyzed to measure creep deformation. Numerical and analytical analyses have also been conducted to compare the experimental results. Analytical, numerical, and experimental results showed a good agreement with one another.

  9. Non-Contact Measurements of Creep Properties of Refractory Materials

    Science.gov (United States)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  10. The non-contact biometric identified bio signal measurement sensor and algorithms.

    Science.gov (United States)

    Kim, Chan-Il; Lee, Jong-Ha

    2018-04-25

    In these days, wearable devices have been developed for effectively measuring biological data. However, these devices have tissue allege and noise problem. To solve these problems, biometric measurement based on a non-contact method, such as face image sequencing is developed. This makes it possible to measure biometric data without any operation and side effects. However, it is impossible for a remote center to identify the person whose data are measured by the novel methods. In this paper, we propose the novel non-contact heart rate and blood pressure imaging system, Deep Health Eye. This system has authentication process at the same time as measuring bio signals, through non-contact method. In the future, this system can be convenient home bio signal monitoring system by combined with smart mirror.

  11. [Evaluation of accuracy of measuring intraocular pressure by handheld non-contact applanation tonometer].

    Science.gov (United States)

    Chen, X; Peng, D; Zhou, W; Zhong, Y

    1995-06-01

    To evaluate the accuracy of measuring intraocular pressure by handheld non-contact applanation tonometer. 58 patients' (113 eyes) intraocular pressure were measured by Keeler, non-contact tonometer and R 900 Goldmann applanation tonometer and the results of measurement of intraocular pressure by the two kinds of tonometers were compared. The mean intraocular pressure measured by non-contact is 16.31 +/- 5.59 mmHg and 17.49 +/- 6.13 mmHg (1 mmHg = 0.1333 kPa) by Goldmann applanation tonometer, respectively. There was no statistical significance to be found (P > 0.05) between the two methods. By linear correlation and regression analysis, a positive correlation was found between the two methods (r = 0.8942, b = 0.8154). The handheld non-contact tonometer has the same accuracy and reliability of measurement of intraocular pressure comparing with Goldmann applanation tonometer, and it can be used in glaucoma clinic and screening.

  12. An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Directory of Open Access Journals (Sweden)

    Usman Zahid

    2016-01-01

    Full Text Available Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology.

  13. Measuring Pulse Rate Variability using Long-Range, Non-Contact Imaging Photoplethysmography

    Science.gov (United States)

    2016-08-20

    contains color . 14. ABSTRACT Camera-based measurement of the blood volume pulse via non-contact, imaging photoplethysmography is a very popular approach...ECG) for each window were calculated in beats per minute (bpm). The periodogram method with a Hamming window was used to estimate mean pulse...11 Hz. Independent component analysis (ICA) was then used to decompose the normalized, bandpass-filtered, color -channel signals into independent

  14. Monitoring Ion Implantation Energy Using Non-contact Characterization Methods

    Science.gov (United States)

    Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.

    2011-01-01

    State-of-the-art ultra-shallow junctions are produced using extremely low ion implant energies, down to the range of 1-3 keV. This can be achieved by a variety of production techniques; however there is a significant risk that the actual implantation energy differs from the desired value. To detect this, sensitive measurement methods need to be utilized. Experiments show that both Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are suitable for this purpose.

  15. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It

  16. Advances in Non-contact Measurement of Creep Properties

    Science.gov (United States)

    Hyers, Robert W.; Canepari, Stacy; Rogers, Jan. R.

    2009-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility, and heated with a laser. The laser is aligned off-center so that the absorbed photons transfer their momentum to the sample, causing it to rotate at up to 250,000+ RPM. The rapid rotation loads the sample through centripetal acceleration, causing it to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the noncontact method exploits stress gradients within the sample to determine the stress exponent in a single test. This method was validated in collaboration with the University of Tennessee for niobium at 1985 C, with agreement within the uncertainty of the conventional measurements. A similar method is being employed on Ultra-High-Temperature ZrB2- SiC composites, which may see application in rocket nozzles and sharp leading edges for hypersonic vehicles.

  17. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria)

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  18. ChemCam-like Spectrometer for Non-Contact Measurements of Key Isotopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the need for a non-contact instrument capable of measuring the isotopic ratios O-18/O-16 and D/H from water ice and other solid materials...

  19. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    Science.gov (United States)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  20. Measurement properties and usability of non-contact scanners for measuring transtibial residual limb volume.

    Science.gov (United States)

    Kofman, Rianne; Beekman, Anna M; Emmelot, Cornelis H; Geertzen, Jan H B; Dijkstra, Pieter U

    2018-06-01

    Non-contact scanners may have potential for measurement of residual limb volume. Different non-contact scanners have been introduced during the last decades. Reliability and usability (practicality and user friendliness) should be assessed before introducing these systems in clinical practice. The aim of this study was to analyze the measurement properties and usability of four non-contact scanners (TT Design, Omega Scanner, BioSculptor Bioscanner, and Rodin4D Scanner). Quasi experimental. Nine (geometric and residual limb) models were measured on two occasions, each consisting of two sessions, thus in total 4 sessions. In each session, four observers used the four systems for volume measurement. Mean for each model, repeatability coefficients for each system, variance components, and their two-way interactions of measurement conditions were calculated. User satisfaction was evaluated with the Post-Study System Usability Questionnaire. Systematic differences between the systems were found in volume measurements. Most of the variances were explained by the model (97%), while error variance was 3%. Measurement system and the interaction between system and model explained 44% of the error variance. Repeatability coefficient of the systems ranged from 0.101 (Omega Scanner) to 0.131 L (Rodin4D). Differences in Post-Study System Usability Questionnaire scores between the systems were small and not significant. The systems were reliable in determining residual limb volume. Measurement systems and the interaction between system and residual limb model explained most of the error variances. The differences in repeatability coefficient and usability between the four CAD/CAM systems were small. Clinical relevance If accurate measurements of residual limb volume are required (in case of research), modern non-contact scanners should be taken in consideration nowadays.

  1. Non-contact micro mass evaluation method using an X-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiseok; Sun, Gwang Min; Baek, Ha Ni; Hoang, Sy Minh Tuan; Park, Sun Ae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-07-15

    For the mass inspection of attached foils such as printed electrodes, mass should be measured by a non-contact method with the capacity to measure a small mass of micrograms. In this study, the masses of 1 mg to 10 mg electrodes were evaluated using an X-ray microscope. The results were compared with the masses determined by using a digital scale with a 0.005 mg error. The average of the relative error between the mass measurements using the X-ray microscope and those using the digital scale was less than 2.51%. The results show that X-ray mass evaluation method can be used for mass measurement of micro objects by replacing a digital scale.

  2. Non-contact measurements of creep properties of niobium at 1985 °C

    Science.gov (United States)

    Lee, J.; Wall, J. J.; Rogers, J. R.; Rathz, T. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2015-01-01

    The stress exponent in the power-law creep of niobium at 1985 °C was measured by a non-contact technique using an electrostatic levitation facility at NASA MSFC. This method employs a distribution of stress to allow the stress exponent to be determined from each test, rather than from the curve fit through measurements from multiple samples that is required by conventional methods. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Based on a mathematical proof, which revealed that the stress exponent was determined uniquely by the ratio of the polar to equatorial strains, a series of finite-element analyses with the models of different stress exponents were also performed to determine the stress exponent corresponding to the measured strain ratio. The stress exponent from the ESL experiment showed a good agreement with those from the literature and the conventional creep test.

  3. A non-contact shape measuring system using an artificial neural network

    International Nuclear Information System (INIS)

    Jeon, Woo Tae; Lee, Myung Chan; Koh, Duck Joon; Cho, Hyung Suck

    1996-01-01

    We developed a non-contact shape measuring device using computer image processing technology. We present a method of calibrating a CCD video camera and a laser range finder which is the most important step toward making an accurate shape measuring system. An artificial neural network is used for the calibration. Our measurement system is composed of a semiconductor laser, a CCD video camera, a personal computer, and a linear motion table. We think that the developed system could be used for measuring the change in shape of the spent nuclear fuel rod before and after irradiation which is one of the most important tasks for developing a better nuclear fuel. A radiation shield is suggested for the possible utilization of the range finder in radioactive environment

  4. A real-time non-contact monitoring method of subsea pipelines

    Directory of Open Access Journals (Sweden)

    Song Dalei

    2015-01-01

    Full Text Available To monitoring the subsea pipeline in real-time, a special potentiometric sensor array and a potential prediction model are presented in this paper. Firstly, to measure the potential of seawater, a special potentiometric sensor array with Ag/AgCl all-solid-state reference electrodes is first developed in this paper. Secondly, according to the obtained distribution law of electric field intensities a prediction model of the pipeline potentials is developed. Finally, the potentiometric sensor array is applied in sink experiment and the prediction model is validated by the sink measurements. The maximum error for pipeline potential prediction model is 1.1 mV. The proposed non-contact monitoring method for subsea pipeline can predict the potential of sea pipeline in real-time, thus providing important information for further subsea pipeline maintenance.

  5. [Comparative pressure measurements with the non-contact tonometer and the Goldmann applanation tonometer].

    Science.gov (United States)

    Langmann, G; Schuhmann, G; Schwaiger, W

    1985-11-01

    The intraocular pressure of 400 patients was measured with both the Non-Contact Tonometer II (NCT II) and the Goldmann applanation tonometer (GAT) and was statistically evaluated. The clinical experience gained, as well as advantages and limitations in application, are discussed.

  6. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    Science.gov (United States)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these

  7. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Laura Aulbach

    2017-03-01

    Full Text Available The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  8. CORRELATION OF INTRAOCULAR PRESSURE MEASUREMENTS WITH NON CONTACT TONOMETER AND GOLDMANN APPLANATION TONOMETRY

    Directory of Open Access Journals (Sweden)

    Leya Sara George

    2017-07-01

    Full Text Available BACKGROUND A complete ophthalmologic examination includes intraocular pressure (IOP measurement, which is a routine procedure and is important for diagnosis and monitoring of glaucoma. IOP measurement is most commonly done using Goldmann Applanation tonometer and Non-Contact tonometer. MATERIALS AND METHODS In this study IOP measurements of 500 eyes (glaucomatous and non-glaucomatous were performed using GAT and NCT on patients visiting the outpatient clinic of Department of Ophthalmology at Christian Medical College and Hospital, Ludhiana. This was a cross sectional and observational study. Comparison of IOP values was done in different IOP ranges. CCT was measured and analysis of its correlation with GAT and NCT was done. RESULTS Both methods of tonometry correlated significantly in patients with IOP <24 mm Hg. The mean IOP measured by NCT, was 16.06 ± 5.85 mm Hg and the mean IOP measurement by GAT was 16.61 ± 6.94 mm Hg. Intraocular pressure readings with GAT and NCT positively correlated with CCT. CONCLUSION NCT may be useful for screening in clinical settings but borderline high IOP readings should be confirmed with GAT. Our findings, also suggest that CCT is an essential variable to consider in interpreting IOP readings.

  9. Investigation of human body potential measured by a non-contact measuring system.

    Science.gov (United States)

    Ichikawa, Norimitsu

    2016-12-07

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.

  10. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun, E-mail: khchung@ulsan.ac.kr

    2016-02-15

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  11. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    International Nuclear Information System (INIS)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-01-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  12. A portable non-contact displacement sensor and its application of lens centration error measurement

    Science.gov (United States)

    Yu, Zong-Ru; Peng, Wei-Jei; Wang, Jung-Hsing; Chen, Po-Jui; Chen, Hua-Lin; Lin, Yi-Hao; Chen, Chun-Cheng; Hsu, Wei-Yao; Chen, Fong-Zhi

    2018-02-01

    We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with +/-30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.

  13. Contact and non-contact ultrasonic measurement in the food industry: a review

    International Nuclear Information System (INIS)

    Mohd Khairi, Mohd Taufiq; Ibrahim, Sallehuddin; Md Yunus, Mohd Amri; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated. (topical review)

  14. Contact and non-contact ultrasonic measurement in the food industry: a review

    Science.gov (United States)

    Taufiq Mohd Khairi, Mohd; Ibrahim, Sallehuddin; Yunus, Mohd Amri Md; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated.

  15. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method.

    Science.gov (United States)

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-11-14

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This "open-shielded" device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities.

  16. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  17. Non-contact Real-time heart rate measurements based on high speed circuit technology research

    Science.gov (United States)

    Wu, Jizhe; Liu, Xiaohua; Kong, Lingqin; Shi, Cong; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin

    2015-08-01

    In recent years, morbidity and mortality of the cardiovascular or cerebrovascular disease, which threaten human health greatly, increased year by year. Heart rate is an important index of these diseases. To address this status, the paper puts forward a kind of simple structure, easy operation, suitable for large populations of daily monitoring non-contact heart rate measurement. In the method we use imaging equipment video sensitive areas. The changes of light intensity reflected through the image grayscale average. The light change is caused by changes in blood volume. We video the people face which include the sensitive areas (ROI), and use high-speed processing circuit to save the video as AVI format into memory. After processing the whole video of a period of time, we draw curve of each color channel with frame number as horizontal axis. Then get heart rate from the curve. We use independent component analysis (ICA) to restrain noise of sports interference, realized the accurate extraction of heart rate signal under the motion state. We design an algorithm, based on high-speed processing circuit, for face recognition and tracking to automatically get face region. We do grayscale average processing to the recognized image, get RGB three grayscale curves, and extract a clearer pulse wave curves through independent component analysis, and then we get the heart rate under the motion state. At last, by means of compare our system with Fingertip Pulse Oximeter, result show the system can realize a more accurate measurement, the error is less than 3 pats per minute.

  18. Non-Contact Thickness and Profile Measurements of Rolled Aluminium Strip Using EMAT

    International Nuclear Information System (INIS)

    Hobbis, A.; Aruleswaran, A.

    2006-01-01

    Accurate measurement of strip thickness is a very high priority for the aluminium rolled product industry. This paper presents the findings of trials to measure the thickness of aluminium strip using a send-receive, radially polarised Electromagnetic Acoustic Transducer (EMAT). A broadband EMAT system, developed at Warwick University, UK with a centre frequency of approximately 5 MHz and frequency content up to 12 MHz was used. The resultant ultrasonic waveforms have been processed using Fourier analysis. Static measurements of aluminium alloy samples in the thickness range between 0.28 mm to 2.8 mm have been measured using this non-contact approach at stand-offs of up to 2 mm. Measurements across the aluminium strip width to evaluate its profile for quality control was also carried out successfully. Some of the experiments and results obtained are described in detail

  19. A method of non-contact reading code based on computer vision

    Science.gov (United States)

    Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan

    2018-03-01

    With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.

  20. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    International Nuclear Information System (INIS)

    Atabak, Mehrdad; Unverdi, Ozhan; Ozer, H. Ozguer; Oral, Ahmet

    2009-01-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  1. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  2. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    Science.gov (United States)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  3. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    Science.gov (United States)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  4. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    International Nuclear Information System (INIS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants

  5. Non-Contact Monitoring of Heart and Lung Activity by Magnetic Induction Measurement

    Directory of Open Access Journals (Sweden)

    M. Steffen

    2008-01-01

    Full Text Available In many clinical applications, the monitoring of heart and lung activity is of vital importance. State-of-the-art monitoring involves the use of electrodes or other contact based sensors (electrocardiogram (ECG, impedance cardiography (ICG, pulse oximetry or equivalent. With the equipment that is used, side effects like skin irritation, difficult application or additional cabling may occur. In contrast, this paper describes a method for non-contact monitoring of heart and lung activity, which is solely based on magnetic induction. This method allows simultaneous monitoring of heart and lung activity, and has the potential of an integrated application in a personal healthcare scenario. To illustrate the performance, a simple test-setup has been developed and the first results are presented here (some of which have been previously presented on the Poster 2008 [10]. 

  6. A Study on non-contact measurements of laser-generated lamb waves

    International Nuclear Information System (INIS)

    Jang, Tae Seong; Lee, Jung Ju; Lee, Seung Seok

    2002-01-01

    Generation and detection of Lamb waves offer an effective non-destructive testing technique that will detect defects quickly and reliably. Lamb waves are generated in a thin plate by Q-switched Nd:YAG pulsed laser. Symmetric and antisymmetric Lamb modes in low-frequency-thickness regime are excited by illuminating a thin plate with an array of laser-generated line sources. The propagation of laser-generated Lamb waves is detected by measuring the out-of-plane displacements in a non-contact manner using the fiber optic Sagnac interferometer and all commercial adaptive reference-beam interferometer. The characteristics of laser-generated Lamb wave due to its frequency are investigated. Fundamental understanding of laser-generated Lamb modes is presented.

  7. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich Hochtemperatur- und Vakuumphysik; Hartmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Hochtemperaturskala; Gutschwager, B. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Infrarot-Strahlungsthermometrie; Struss, O. [HEITRONICS Infrarot Messtechnik GmbH (Germany)

    2007-09-15

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  8. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J.; Hartmann, J.; Gutschwager, B. [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Struss, O. [HEITRONICS Infrarot Messtechnik GmbH, Wiesbaden (Germany)

    2006-07-01

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  9. Comparison of two methods of tonometry in glaucoma patients: Goldmann applanation tonometer and non-contact tonometer

    Directory of Open Access Journals (Sweden)

    Hong-Feng Li

    2015-01-01

    Full Text Available AIM: To compare the two methods for the measurement of glaucoma patients' intraocular pressure(IOPbetween Goldmann applanation tonometer(GATand non-contact tonometer(NCTand find the laws of the two methods.METHODS: The IOP of 108 glaucoma patients(206 eyeswere measured by GAT and NCT respectively. RESULTS: In 108 glaucoma patients, the average IOP of 206 eyes was 29.77±10.27mmHg by GAT and 24.59±8.58mmHg by NCT. There was significant difference between GAT and NCT(PCONCLUSION: The measurement results with NCT were lower than that of GAT. The higher of IOP, the difference between GAT and NCT was greater. It's better to measure IOP by GAT for the glaucoma patients, in order to avoid the misdiagnosis and mistreatment of glaucoma.

  10. Non-contact method of search and analysis of pulsating vessels

    Science.gov (United States)

    Avtomonov, Yuri N.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Despite the variety of existing methods of recording the human pulse and a solid history of their development, there is still considerable interest in this topic. The development of new non-contact methods, based on advanced image processing, caused a new wave of interest in this issue. We present a simple but quite effective method for analyzing the mechanical pulsations of blood vessels lying close to the surface of the skin. Our technique is a modification of imaging (or remote) photoplethysmography (i-PPG). We supplemented this method with the addition of a laser light source, which made it possible to use other methods of searching for the proposed pulsation zone. During the testing of the method, several series of experiments were carried out with both artificial oscillating objects as well as with the target signal source (human wrist). The obtained results show that our method allows correct interpretation of complex data. To summarize, we proposed and tested an alternative method for the search and analysis of pulsating vessels.

  11. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    Science.gov (United States)

    Trichopoulos, Georgios C.

    . Additionally, a butterfly-shaped antenna layout is introduced that enables broadband imaging. The alternative design presented here, allows for video-rate imaging in the 0.6--1.2 THz band and maintains a small antenna footprint, resulting in densely packed FPAs. In both antenna designs, we optimize the impedance matching between the antennas and the integrated electronic devices, thus achieving optimum responsivity levels for high sensitivity and low noise performance. Subsequently, we present the design details of the first THz camera and the first THz camera images captured. With the realized THz camera, imaging of concealed objects is achieved with space. Thus, the hybrid electromagnetic model allows fast and accurate design of THz antennas and modeling of the complete THz imaging system. Finally, motivated by the novel THz antenna layouts and the quasioptical techniques, we developed a novel non-contact probe measurement method for on-chip device characterization. In the THz regime, traditional contact probes are too small and fragile, thus inhibiting accurate and reliable circuit measurements. By integrating the device under test (DUT) with THz antennas that act as the measurement probes, we may couple the incident and reflected signal from and to the network analyzer without residing to any physical connection.

  12. Automatic detection of measurement points for non-contact vibrometer-based diagnosis of cardiac arrhythmias

    Science.gov (United States)

    Metzler, Jürgen; Kroschel, Kristian; Willersinn, Dieter

    2017-03-01

    Monitoring of the heart rhythm is the cornerstone of the diagnosis of cardiac arrhythmias. It is done by means of electrocardiography which relies on electrodes attached to the skin of the patient. We present a new system approach based on the so-called vibrocardiogram that allows an automatic non-contact registration of the heart rhythm. Because of the contactless principle, the technique offers potential application advantages in medical fields like emergency medicine (burn patient) or premature baby care where adhesive electrodes are not easily applicable. A laser-based, mobile, contactless vibrometer for on-site diagnostics that works with the principle of laser Doppler vibrometry allows the acquisition of vital functions in form of a vibrocardiogram. Preliminary clinical studies at the Klinikum Karlsruhe have shown that the region around the carotid artery and the chest region are appropriate therefore. However, the challenge is to find a suitable measurement point in these parts of the body that differs from person to person due to e. g. physiological properties of the skin. Therefore, we propose a new Microsoft Kinect-based approach. When a suitable measurement area on the appropriate parts of the body are detected by processing the Kinect data, the vibrometer is automatically aligned on an initial location within this area. Then, vibrocardiograms on different locations within this area are successively acquired until a sufficient measuring quality is achieved. This optimal location is found by exploiting the autocorrelation function.

  13. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    Science.gov (United States)

    Luczak, Marcin; Dziedziech, Kajetan; Vivolo, Marianna; Desmet, Wim; Peeters, Bart; Van der Auweraer, Herman

    2010-05-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters…) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  14. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    International Nuclear Information System (INIS)

    Luczak, Marcin; Dziedziech, Kajetan; Peeters, Bart; Van der Auweraer, Herman; Vivolo, Marianna; Desmet, Wim

    2010-01-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters...) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  15. Comparison of intraocular pressure measurement between rebound, non-contact and Goldmann applanation tonometry in treated glaucoma patients.

    Science.gov (United States)

    Vincent, Stephen J; Vincent, Roslyn A; Shields, David; Lee, Graham A

    2012-01-01

    To compare the intraocular pressure readings obtained with the iCare rebound tonometer and the 7CR non-contact tonometer with those measured by Goldmann applanation tonometry in treated glaucoma patients. A prospective, cross-sectional study was conducted in a private tertiary glaucoma clinic. One hundred nine (54 males : 55 females) patients including only eyes under medical treatment for glaucoma. Measurement by Goldmann applanation tonometry, iCare rebound tonometry and 7CR non-contact tonometry. Intraocular pressure. There were strong correlations between the intraocular pressure measurements obtained with Goldmann and both the rebound and non-contact tonometers (Spearman r-values ≥ 0.79, P tonometer. For the rebound tonometer, the mean intraocular pressure was slightly higher compared with the Goldmann applanation tonometer in the right eyes (P = 0.02), and similar in the left eyes (P = 0.93); however, these differences did not reach statistical significance. The Goldmann correlated measurements from the non-contact tonometer were lower than the average Goldmann reading for both right (P 0.01) eyes. The corneal compensated measurements from the non-contact tonometer were significantly higher compared with the other tonometers (P ≤ 0.001). The iCare rebound tonometer and the 7CR non-contact tonometer measure intraocular pressure in fundamentally different ways to the Goldmann applanation tonometer. The resulting intraocular pressure values vary between the instruments and will need to be considered when comparing clinical versus home acquired measurements. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  16. Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape

    International Nuclear Information System (INIS)

    Khakural, B.R.; Robert, P.C.; Hugins, D.R.

    1998-01-01

    There is a growing interest in real-time estimation of soil moisture for site-specific crop management. Non-contacting electromagnetic inductive (EMI) methods have potentials to provide real-time estimate of soil profile water contents. Soil profile water contents were monitored with a neutron probe at selected sites. A Geonics LTD EM-38 terrain meter was used to record bulk soil electrical conductivity (EC(A)) readings across a soil-landscape in West central Minnesota with variable moisture regimes. The relationships among EC(A), selected soil and landscape properties were examined. Bulk soil electrical conductivity (0-1.0 and 0-0.5 m) was negatively correlated with relative elevation. It was positively correlated with soil profile (1.0 m) clay content and negatively correlated with soil profile coarse fragments (2 mm) and sand content. There was significant linear relationship between ECA (0-1.0 and 0-0.5) and soil profile water storage. Soil water storage estimated from ECA reflected changes in landscape and soil characteristics

  17. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    Science.gov (United States)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  18. METHOD OF NON-CONTACT PHOTOLUMINESCENT DIAGNOSTICS OF THE EYE FIBROUS TUNIC CONDITION

    Directory of Open Access Journals (Sweden)

    S. Yu. Petrov

    2018-01-01

    Full Text Available Non-contact optical diagnostics of structural disorders of the eye has a number of advantages: high speed, accuracy and a large range of parameters available for analysis. The paper presents the results of studies of the photoluminescence of the fibrous tunic of the eye, excited by polarized light, depending on the intraocular pressure. In the experiments, isolated de-epithelized eyes of the rabbit were used, inside of which pressure up to 50 mm Hg was artificially created. Under these conditions, the cornea and sclera were illuminated with linearly polarized light at wavelengths of 250, 350 and 450 nm, exciting photoluminescence in the wavelength range up to 700 nm. Cross and co-polarized photoluminescence spectra excited by linearly polarized light were obtained. It has been established that, when excited by polarized light, the photoluminescence of the cornea is partially polarized. Depending on the wavelength of the photoluminescence, the degree of polarization varies from 0.2 to 0.35. It is shown that the degree of polarization of the photoluminescence of the cornea of the eye upon excitation by linearly polarized light can be used as a measurable parameter for assessing the physiological state of the eye. It is shown that the photoluminescence spectrum consists of two bands with maxima near 460-470 and 430-440 nm. These bands are assigned, respectively, to pyridinnucleotides and glycosylated collagen. A significant contribution can be made by the epithelium of the eye, which contains riboflavin with characteristic absorption bands near 450 and 365 nm. When excited at 450 nm, the photoluminescence maximum is located near 540 nm, which corresponds to the spectrum of fluorophores in the endothelium and epithelium. The spectrum of photoluminescence upon excitation at a wavelength of 250 nm can be attributed to tryptophan located in the intraocular lens.

  19. Non-contact procedure to measure heart and lung activities in preterm pediatric patients with skin disorders

    Science.gov (United States)

    Marchionni, P.; Scalise, L.; Antognoli, L.; Nobile, S.; Carnielli, V. P.

    2018-04-01

    Preterm patients can have an higher risk of fatalities and can be subjected to long-term disability. With many organs still in the phase of development, the earlier the delivery, the higher the risk and they are therefore hospitalized in specialized neonatal intensive care units) where heart rate and lungs activity are continuously assessed. These are mostly monitored by set of electrodes placed in contact with skin (two in thorax area and one in abdominal area). This paper address the problem of preterm cardiac and respiratory monitoring in a patient with severe skin disorders who can not monitored with standard electrodes because of his dry, thickened, scaly skin. As a solution, we propose a fully non-contact measurement method, based on laser Doppler vibrometry, able to continuously record the movements of wall-chest and extract from this signal, the heart rate and the respiratory activity of the patient. The results show a good agreement between the standard contact measurement methods and the proposed one (no statistical difference between data) with a data uncertainty of 2.9% for the heart rate data and of 9.5% for the respiration rate (k=2), in line with the classical measurement methods.

  20. COMPARISON OF INTRAOCULAR PRESSURE MEASUREMENT WITH NON-CONTACT TONOMETRY AND APPLANATION TONOMETRY AMONG VARIOUS CENTRAL CORNEAL THICKNESS GROUPS

    Directory of Open Access Journals (Sweden)

    Radhakrishnan B

    2018-02-01

    Full Text Available BACKGROUND Glaucoma is the second leading cause of blindness worldwide. Intraocular Pressure (IOP is the only known modifiable risk factor that has been shown to delay progression in both ocular hypertension and glaucoma patients. Clinical measurement of IOP has undergone several technical advances from the initial digital tension measurements, through indentation tonometry, to applanation tonometry and non-contact tonometry. This study was done to compare the intraocular pressure (IOP measurements with Non Contact Tonometry (NCT and Goldmann Applanation tonometry (GAT and to compare NCT IOP and GAT IOP among various central corneal thickness (CCT groups. MATERIALS AND METHODS IOP measurements were done by NCT and then by GAT followed by CCT. All IOP readings were taken in the sitting position over fifteen minutes. NCT was performed before the GAT to avoid the known mild reduction of IOP by anterior chamber compression with GAT. RESULTS The study included 200 eyes of 100 patients. Mean age of the patients was 58.14 ± 11.7 years (range 35- 81 years. The study population consisted of 58 males and 42 females. The mean ± SD intraocular pressure measurements were 23.39 ± 4.6 mmHg and 22.41 ± 5.9 mmHg for NCT and GAT, respectively. The difference between the NCT and GAT IOP was 0.98 ± 4.7 mm Hg. Mean CCT of the study group was 545.74 ± 38.23 microns. The IOP measured with both GAT and NCT showed no significant change with increasing CCT. The difference between the means increases with increasing CCT upto 600 microns. At lower IOPs ≤ 20 mm Hg, GAT measures are higher than NCT and this relationship is reversed at high IOPs. CONCLUSION Intraocular pressure measurement by NCT was consistently higher than GAT. There was a tendency for NCT to underestimate IOP at lower ranges and overestimates IOP at higher ranges. By applying appropriate correction factor for CCT, Noncontact tonometry could be used as a good screening tool for glaucoma evaluation.

  1. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  2. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    Science.gov (United States)

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  3. IOP measurement in silicone oil tamponade eyes by Corvis ST tonometer, Goldmann applanation tonometry and non-contact tonometry.

    Science.gov (United States)

    Zhang, Yang; Zheng, Lin; Bian, Ailing; Zhou, Qi

    2018-04-01

    To compare the postoperative intraocular pressure (IOP) of eyes following pars plana vitrectomy (PPV) combined with intravitreal silicone oil (SO) tamponade by Corneal Visualization Scheimpflug Technology (CST), Goldmann applanation tonometry (GAT) and non-contact tonometry (NCT). Thirty-eight participants who had undergone PPV combined with SO tamponade to treat vitreoretinal diseases were enrolled. Postoperative IOP measurements were obtained using CST, NCT and GAT. Inter-device agreement was assessed by Bland-Altman analysis. The correlation coefficient was used to describe the potential postoperative factors affecting the postoperative IOP differences between each device. Bland-Altman analysis revealed the bias between CST and GAT, between CST and NCT, and between GAT and NCT to be -0.2, 2.1 and 2.4 mmHg, respectively. CST and GAT correlated well with each other. NCT values were lower than those of GAT and CST (all p contact method for measuring postoperative IOP in SO tamponade eyes.

  4. Comparison of three methods of tonometry in normal subjects: Goldmann applanation tonometer, non-contact airpuff tonometer, and Tono-Pen XL

    OpenAIRE

    Yilmaz, Ihsan; Altan,Cigdem; Aygit,Ebru Demet; Alagoz,Cengiz; Baz,Okkes; Ahmet,Sibel; Urvasizoglu,Semih; Yaşa,Dilek; Demirok,Ahmet

    2014-01-01

    Ihsan Yilmaz, Cigdem Altan, Ebru Demet Aygit, Cengiz Alagoz, Okkes Baz, Sibel Ahmet, Semih Urvasizoglu, Dilek Yasa, Ahmet DemirokBeyoglu Eye Training and Research Hospital, Istanbul, TurkeyObjective: We aimed to compare intraocular pressure (IOP) measurements via three different tonometers: the Goldmann applanation tonometer (GAT), the Tono-Pen® XL (TPXL), and a non-contact airpuff tonometer (NCT).Methods: This was a cross-sectional study of 200 eyes from 20...

  5. Measurement of Creep Properties of Ultra-High-Temperature Materials by a Novel Non-Contact Technique

    Science.gov (United States)

    Hyers, Robert W.; Lee, Jonghyun; Rogers, Jan R.; Liaw, Peter K.

    2007-01-01

    A non-contact technique for measuring the creep properties of materials has been developed and validated as part of a collaboration among the University of Massachusetts, NASA Marshall Space Flight Center Electrostatic Levitation Facility (ESL), and the University of Tennessee. This novel method has several advantages over conventional creep testing. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Since there is no contact with grips, there is no theoretical maximum temperature and no concern about chemical compatibility. Materials may be tested at the service temperature even for extreme environments such as rocket nozzles, or above the service temperature for accelerated testing of materials for applications such as jet engines or turbopumps for liquid-fueled engines. The creep measurements have been demonstrated to 2400 C with niobium, while the test facility, the NASA MSFC ESL, has processed materials up to 3400 C. Furthermore, the ESL creep method employs a distribution of stress to determine the stress exponent from a single test, versus the many tests required by conventional methods. Determination of the stress exponent from the ESL creep tests requires very precise measurement of the surface shape of the deformed sample for comparison to deformations predicted by finite element models for different stress exponents. An error analysis shows that the stress exponent can be determined to about 1% accuracy with the current methods and apparatus. The creep properties of single-crystal niobium at 1985 C showed excellent agreement with conventional tests performed according to ASTM Standard E-139. Tests on other metals, ceramics, and composites relevant to rocket propulsion and turbine engines are underway.

  6. Measurement of the thermophysical properties of industrial liquid metallic alloys by non-contact calorimetry under reduced gravity

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.-J.

    2001-01-01

    Full Text: The numerical modeling of casting and solidification is becoming of increased importance in industrial process design. While the numerical algorithms have made large progress towards real process design and optimization, there is a pronounced lack of precise thermophysical input data. This lack is caused by the high chemical reactivity of many metallic alloys in the liquid phase making conventional measurement techniques such as differential thermal analysis difficult if at all possible to apply. In this contribution we report about a project planning to use containerless electromagnetic processing under reduced gravity conditions for thermophysical property measurement of industrially relevant alloys. Alloys of interest are, among others, Ti-alloys, Ni-base superalloys, and steels. In preparation of this project, a survey among leading European industries was conducted revealing properties such as melting range, fraction solid/liquid, specific heat capacity, enthalpy, as well as density, viscosity and surface tension as properties most in need. Non-contact calorimetry of electromagnetically levitated specimens was developed for an investigation of the thermophysical properties of Zr-alloys in the liquid phase. These methods have been applied successfully under reduced gravity conditions on board spacelab to the measurement of the specific heat capacity by modulation calorimetry, the enthalpy of fusion, the total hemispherical emissivity and for an effective thermal conductivity. Specific examples from these experiments demonstrating the applicability of these methods for quantitative calorimetry as well as application at higher Biot numbers will be discussed. New developments include modulation calorimetry in the two phase region for the measurement of the fraction solid. (author)

  7. Influence of corneal thickness on comparative intraocular pressure measurements with Goldmann and non-contact tonometers in keratoconus.

    Science.gov (United States)

    Stabuc Silih, Mirna; Hawlina, Marko

    2003-12-01

    The influence of corneal thickness and curvature on the difference between intraocular pressure (IOP) measurements obtained with non-contact (NCT) and those with the Goldmann applanation tonometer (GAT) was studied in patients with keratoconus. We examined 113 patients with keratoconus. IOP was measured by the Canon TX 10 non-contact tonometer and the Goldmann tonometer, corneal curvature and thickness were obtained by Humphrey Automatic Refractometer Keratometer and Orbscan Version 3.0 Bausch & Lomb Surgical. The IOP measured by NCT was significantly lower than that measured by GAT. The mean pachymetry of the thinnest point was 423.15 +/- 98.43 microm for the right eyes and 426.7 +/- 93.88 microm for the left eyes. The difference between NCT-GAT and corneal thickness showed a significant negative correlation (r = - 0.427, p < 0.0001; t = - 3.677, p < 0.0001). Values of NCT measurements were significantly increasing with corneal thickness (F = 6.505, p < 0.0001 for right eyes and F = 4.37, p = 0.004 for left eyes), whilst GAT measurements did not show a significant influence of the corneal thickness. The keratometry had no effect on the difference between NCT-GAT measurements (t = 1.090, p = 0.278). The thin cornea has more influence on the measurement with NCT than GAT. The relative precision of NCT compared with GAT seems to be influenced by the corneal thickness.

  8. 3D Blade Vibration Measurements on an 80 m Diameter Wind Turbine by Using Non-contact Remote Measurement Systems

    Science.gov (United States)

    Ozbek, Muammer; Rixen, Daniel J.

    Non-contact optical measurement systems photogrammetry and laser interferometry are introduced as cost efficient alternatives to the conventional wind turbine/farm monitoring systems that are currently in use. The proposed techniques are proven to provide an accurate measurement of the dynamic behavior of a 2.5 MW—80 m diameter—wind turbine. Several measurements are taken on the test turbine by using 4 CCD cameras and 1 laser vibrometer and the response of the turbine is monitored from a distance of 220 m. The results of the infield tests and the corresponding analyses show that photogrammetry (also can be called as videogrammetry or computer vision technique) enable the 3D deformations of the rotor to be measured at 33 different points simultaneously with an average accuracy of ±25 mm, while the turbine is rotating. Several important turbine modes can also be extracted from the recorded data. Similarly, laser interferometry (used for the parked turbine only) provides very valuable information on the dynamic properties of the turbine structure. Twelve different turbine modes can be identified from the obtained response data.

  9. [Studies on measurement of oral mucosal color with non-contact spectrum colorimeter].

    Science.gov (United States)

    Ohata, Yohei

    2006-03-01

    Color inspection plays an important role in the diagnosis of oral mucosal lesions. However, it is sometimes difficult to diagnose by color, because color is always evaluated subjectively. In order to measure color objectively and quantitatively, we decided to use a newly developed spectrum colorimeter for the oral mucosa. To keep the same angle and distance, a special stick was utilized. Various experiments were performed and suitable conditions for accurate colorimetric measurement were decided, including room temperature with cooling fan, onset time of the device, calibration timing, and the angle between light and the measured surface. The reproducibility of this method was confirmed by measuring the color of the buccal mucosa in healthy persons.

  10. Measurement of intraocular pressure using the NT-4000: a new non-contact tonometer equipped with pulse synchronous measurement function.

    Science.gov (United States)

    Yaoeda, Kiyoshi; Shirakashi, Motohiro; Fukushima, Atsushi; Funaki, Shigeo; Funaki, Haruko; Ofuchi, Nobutaka; Nakatsue, Tomoko; Abe, Haruki

    2005-06-01

    NT-4000 (Nidek Co. Ltd., Gamagori, Japan) is a new non-contact tonometer (NCT) equipped with pulse synchronous measurement function that can measure intraocular pressure (IOP) synchronized with the ocular pulse. The purpose of this study was to evaluate the usefulness of NT-4000 in normal subjects and in patients with glaucoma and ocular hypertension. This study included 175 eyes of 175 subjects. Firstly, the IOP was measured using NT-4000 without the pulse synchronous measurement function (NTn). Secondly, the IOP at peak, middle, and trough phases of the pulse signal were measured using NT-4000 with the pulse synchronous measurement function (NTp, NTm, NTt, respectively). Additionally, the IOP was measured with Goldmann applanation tonometer (GT). The coefficient of variation (CV) of three readings in the NCT measurements was used to evaluate the intra-session reproducibility. Statistical comparisons were performed using Wilcoxon signed rank test and one-way analysis of variance with Scheffe's test. Linear regression analysis was used to calculate correlation coefficients. P values less than 0.05 were accepted as statistically significant. The CV of NTn, NTp, NTm, and NTt were 6.4%, 5.5%, 4.9%, and 5.2%, respectively. The CV of NTp, NTm, and NTt were significantly smaller than that of NTn (P = 0.007, P < 0.001, P < 0.001, respectively). NTp was significantly higher than NTt (P = 0.038). GT was significantly correlated with NTn, NTp, NTm, and NTt (r = 0.898, P < 0.001; r = 0.912, P < 0.001; r = 0.908, P < 0.001; r = 0.900, P < 0.001, respectively). NT-4000 can detect the fluctuation of IOP associated with the ocular pulse.

  11. Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael

    2016-04-26

    A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  12. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    Science.gov (United States)

    Sinha, D.N.; Wray, W.O.

    1994-12-27

    The apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established. 3 figures.

  13. The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the Tono-Pen XL, and Goldmann applanation tonometry

    OpenAIRE

    Tonnu, P-A; Ho, T; Newson, T; El Sheikh, A; Sharma, K; White, E; Bunce, C; Garway-Heath, D

    2005-01-01

    Aims: To evaluate the influence of central corneal thickness (CCT) on intraocular pressure (IOP) measurements made with the Goldmann applanation tonometer (GAT), Tono-Pen XL, ocular blood flow tonograph (OBF), and Canon TX-10 non-contact tonometer (NCT).

  14. Dynamic Behavior Analysis of Non-Contacting Hydrodynamic Finger Seal Based on Fluid-Solid-Interaction Method

    Directory of Open Access Journals (Sweden)

    Su Hua

    2018-01-01

    Full Text Available Finger seal is an advanced compliant seal and can be utilized to separate high (HP and low pressure (LP zones in high speed rotating shaft environment. The work to be presented concerns the dynamic behavior of a repetitive section of a two-layer finger seal with high-and padded low-pressure laminates. The dynamic performance of the finger seal are analyzed by the coupled fluid-solid-interaction (FSI simulations. By using the commercial software ANSYS-CFX, the numerical simulation results of interactions between the gas flow and fingers structural deformation are described when the radial periodic excitation from the shaft applies to the finger seal. And the gas film loading capacity, gas film stiffness and leakage varied with time are put forward in different working conditions. Compared with the dynamic performance analysis results based on equivalent dynamic method, the FSI dynamic analysis shows some different characteristics which are more accordance with actual circumstance. Moreover, it is shown that under low pressure differential and high rotation speed the non-contacting finger seal with advance features both in sealing effectiveness and potential unlimited life span can be obtained by rational structure design. But for the non-contacting finger seal with circumferential convergent pad working in high pressure and low rotating speed conditions, it is difficult to improve the sealing performance by the way of changing the structure parameters of finger seal. It is because the high pressure plays a major role on this sealing situation.

  15. A New Method to Detect Driver Fatigue Based on EMG and ECG Collected by Portable Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-11-01

    Full Text Available Recently, detection and prediction on driver fatigue have become interest of research worldwide. In the present work, a new method is built to effectively evaluate driver fatigue based on electromyography (EMG and electrocardiogram (ECG collected by portable real-time and non-contact sensors. First, under the non-disturbance condition for driver’s attention, mixed physiological signals (EMG, ECG and artefacts are collected by non-contact sensors located in a cushion on the driver’s seat. EMG and ECG are effectively separated by FastICA, and de-noised by empirical mode decomposition (EMD. Then, three physiological features, complexity of EMG, complexity of ECG, and sample entropy (SampEn of ECG, are extracted and analysed. Principal components are obtained by principal components analysis (PCA and are used as independent variables. Finally, a mathematical model of driver fatigue is built, and the accuracy of the model is up to 91%. Moreover, based on the questionnaire, the calculation results of model are consistent with real fatigue felt by the participants. Therefore, this model can effectively detect driver fatigue.

  16. A novel non-contact profiler design for measuring synchrotron radiation mirrors

    International Nuclear Information System (INIS)

    Lin, Yao; Takacs, P.Z.; Furenlid, K.; DeBiasse, R.A.; Wang, Run-Wen

    1990-08-01

    A novel optical profiler is described in this paper for measurement of surface profiles of synchrotron radiation (SR) mirrors. The measurement is based on a combination of an optical heterodyne technique and a precise phase measurement procedure without a reference surface. A Zeeman two-frequency He-Ne laser is employed as the light source. The common-path optical system, which uses a birefringent lens as the beam splitter, minimizes the effects of air turbulence, sample vibration and temperature variation. A special autofocus system allows the profiler to measure the roughness and shape of a sample surface. The optical system is mounted on a large linear air-bearing slide, and is capable of scanning over distances covering the spatial period range from several microns to nearly one meter with a high measurement accuracy. 9 refs., 5 figs

  17. Intraocular pressure measurement: Goldmann Applanation Tonometer vs non contact airpuff tonometer.

    Science.gov (United States)

    Shah, Masood Alam; Bin Saleem, Khalid; Mehmood, Talat

    2012-01-01

    An accurate assessment of Intraocular pressure (IOP) is vital in establishing diagnosis of Glaucoma and decision making regarding various treatment modalities available. The purpose of this study is to compare Goldmann Applanation Tonometer (GAT) with Air puff tonometer. Cross-sectional comparative study conducted. 73 eyes from 73 patients were included in this study and intraocular pressure (IOP) was measured by GAT and PT100 at Sheikh Khalifa Bin Zayed Hospital, Muzaffarabad, Benazir Shaheed Teaching Hospital, Abbottabad. Mean age of the patients was 53.17 +/- 13.80 years. Mean IOP measurements showed significant differences in measurements performed by the two tonometers (p contact air-puff tonometer, the Goldmann applanation tonometer is a reliable and consistent technique for measurement of intraocular pressure.

  18. ChemCam-like Spectrometer for Non-Contact Measurements of Key Isotopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASA SBIR topic S1.07 In Situ Sensors for Lunar and Planetary Science, particularly the need for measuring isotopic ratios of the key...

  19. Wireless and Non-contact ECG Measurement System – the “Aachen SmartChair”

    Directory of Open Access Journals (Sweden)

    A. Aleksandrowicz

    2007-01-01

    Full Text Available This publication describes a measurement system that obtains an electrocardiogram (ECG by capacitively coupled electrodes. Fordemonstration purposes, this measurement system was integrated into an off-the-shelf office chair (so-called “Aachen SmartChair”.Whereas in usual clinical applications adhesive, conductively-coupled electrodes have to be attached to the skin, the described system is able to measure an ECG without direct skin contact through the cloth. A wireless communication module was integrated for transmitting theECG data to a PC or to an ICU patient monitor. For system validation, a classical ECG with conductive electrodes and an oxygensaturation signal (SpO2 were obtained simultaneously. Finally, system-specific problems of the presented device are discussed.

  20. Non-Contact Measurements of Thermophysical Properties of Titanium at High Temperature

    Science.gov (United States)

    Rhim, W.; Paradis, P.

    1999-01-01

    Four thermophysical properties of both the solid and the liquid titanium measured using the high-temperature electrostatic levitator at JPL are presented. These properties are the density, the thermal expansion coefficient, the constant pressure heat capacity, and the hemispherical total emissivity.

  1. Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements

    Science.gov (United States)

    2015-10-01

    response, noise spectral density, and dynamic range. 15. SUBJECT TERMS electric field, magnetic field, 1Wire, low-power microcontroller 16. SECURITY...4 Fig. 4 Altium DesignerTM schematic showing the pin connections of our MSP430 microcontroller ...electrical characteristics of the attached cable. 2. Methods and Procedures The circuit’s primary design consists of a microcontroller , 8-channel digital-to

  2. Non-contact Measurement of Remaining Thickness of Corroding Superheater Tubes. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, Kjeld; Storesund, Jan

    2006-10-15

    Corrosion of superheaters has become a severe problem in many biomass boilers and incineration plants. This new situation calls for frequent tube wall thickness testing of the superheaters during very short shut-downs. To meet this demand Electro Magnetic Acoustic Transducer (EMAT) candidates as substitute for conventional manually operated contact UT-transducers. The EMAT can contactlessly generate an ultrasonic wave in the interphase between the external oxide and the metal. This means that measurements can be undertaken much quicker and with a much higher coverage simultaneously, without preceding blast operations. It is the aim of the project to demonstrate the usefulness of two simple EMAT systems, Panametrics and Sonatest, for fast and reliable tube thickness inspections in difficult-to-access superheater sections. The present Phase 1 of the project involves testing of the performance of the two systems in laboratory with the following results: 1. Both instruments work well on plate, tube, and pipe samples assuming the presence of an external oxide layer formed at a temperature above approximately 400 deg C. 2. Both instruments work well on all types of ferritic and martensitic steels but not on austenitic steels. 3. Both instruments work well independent of the thickness of the active oxide layer. 4. Both instruments work well independent of tube diameter, wall thickness, and sample width. 5. Both instruments work well over a very large range of wall thicknesses. Minimum tube wall thickness is less than 1.8 mm. 6. The tolerable lift-off (free distance between transducer and tube surface) is 2.4 - 3.0 mm for Panametrics system and 3.6 - 4.8 mm for Sonatest's system. The tolerable lift-off is a measure of the thickness of ash deposits, which can be tolerated on the tube surface as well as the misplacement, which can be tolerated in case of remote tube testing. 7. The tolerable off-set between tube axis and probe axis is very large for both instruments (10

  3. Non-contact Measurement of Remaining Thickness of Corroding Superheater Tubes. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, Kjeld; Storesund, Jan

    2007-12-15

    The Electro Magnetic Acoustic Transducer (EMAT) is a contactless thickness gauge for detection of corrosion on superheater tubes; it candidates as substitute for conventional manually operated contact UT transducers. It is the aim of the project to demonstrate the usefulness of two simple EMAT systems, Panametrics and Sonatest, for fast and reliable tube thickness inspections in difficult-to-access superheater sections. The present Phase 2 of the project involves testing of the systems on real compact superheaters in remote operation with the help of a mechanical manipulator designed and built for the purpose. The results are the following: - Both EMAT systems work well when tested in the field during handheld operation on tubes with a moderate thick layer of corrosion products and ash. The practical obtainable speed of cross-panel inspection of easily accessible panels is approximately 6 tubes per minute (6 thickness readings per minute). - The Sonatest system works well when tested in the field during remote operation on heavily corroded superheater tubes with thick ash layer. The Panametrics system was not found suitable for this type of field work. - The mechanical manipulator works well for cross-panel inspection of difficult-to-access superheater sections independent of the tube dimensions and the free space between the panels. In its present design it needs few improvements. - The practical obtainable speed of cross-panel inspection is 3 tubes per minute (3 thickness readings per minute). This speed is limited by the detection rate of the EMAT system and not by the travelling speed of the probe. - Scanning of tubes along their axis was never attempted, because the EMAT instruments were not capable of collecting data coming as a continuous stream. - It cannot be judged from visual alone and hardly from the service data, if a tube or a panel can be inspected by the magnetostrictive EMAT method or not. - The main contribution to failure of the EMAT inspection

  4. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Fasong [The State Key Lab of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Departments of Physics, College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn [The State Key Lab of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Lin, Jing; Ding, Yingchun [Departments of Physics, College of Science, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-04-15

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surface of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10{sup −6}(K{sup −1}) at the range of 298 K–598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K–748 K.

  5. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    International Nuclear Information System (INIS)

    O'Toole, M D; Marsh, L A; Davidson, J L; Tan, Y M; Armitage, D W; Peyton, A J

    2015-01-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz–2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes. (paper)

  6. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Directory of Open Access Journals (Sweden)

    A. S. Tremsin

    2017-01-01

    Full Text Available Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (∼739 ± 98 kPa and ∼751 ± 154 kPa for two Xe resonances is in relatively good agreement with the pressure value of ∼758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ∼ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  7. Non-contact measurement of tremor for the characterisation of Parkinsonian individuals: comparison between Kinect and Laser Doppler vibrometer

    Science.gov (United States)

    Casacanditella, L.; Cosoli, G.; Ceravolo, MG; Tomasini, EP

    2017-08-01

    Parkinson’s disease is a progressive neurodegenerative disorder affecting the central nervous system. One of its main and most evident symptoms is the tremor, which usually manifests at rest with varying intensity during time. An important diagnostic challenge is the differential diagnosis between Parkinson’s disease and the other most widely represented tremor syndrome, i.e. Essential (or senile) tremor. At present there are no standard methods for the quantification of tremor and the diagnosis of both Parkinson’s disease and Essential tremor is mainly done on the base of clinical criteria and by using rating scales. The aim of this work is to objectively and non-invasively assess the tremor linked to the quoted diseases, using non-contact techniques: Laser Doppler Vibrometer (LDV) and Kinect for Windows device. Two subjects with Parkinson’s disease and one with Essential tremor were tested in different conditions: at rest, during a cognitive task, with forward stretched arms and in “Wing position”. The results from data processing in terms of tremor frequency seem to be comparable, with a mean deviation of 0.31 Hz. Furthermore, the values computed are consistent with what is stated in the literature (i.e. 4-12 Hz). So, both LDV and Kinect device can be considered suitable to be used as an objective means for the assessment and monitoring of Parkinson’s disease tremor, helping the clinician in the choice of the most suitable treatment for the patients.

  8. The applicability of correction factor for corneal thickness on non-contact tonometer measured intraocular pressure in LASIK treated eyes.

    Science.gov (United States)

    Jethani, Jitendra; Dave, Paaraj; Jethani, Monica; Desai, Yogesh; Patel, Purvi

    2016-01-01

    To determine the applicability of central corneal thickness (CCT) based correction factor for non-contact tonometer (NCT) measured intraocular pressure (IOP) readings. A prospective, non-randomized study involved 346 eyes of 173 consecutive patients with age ⩾21 years undergoing laser-assisted in situ keratomileusis (LASIK) for myopia and/or myopic astigmatism. The CCT and IOP were measured before and after the LASIK procedure. The IOP pre and post-LASIK was compared after applying the correction factor for CCT. Patients not completing the 3 month postoperative follow-up were excluded. The median spherical equivalent before undergoing LASIK was -4.25D (inter-quartile range, -3.25D). The mean preoperative CCT was 536.82 ± 33.71 μm which reduced to 477.55 ± 39.3 μm (p < 0.01) post-LASIK. The mean IOP reduced from a preoperative value of 14.6 ± 2.32 mmHg to 10.64 ± 2.45 mmHg postoperatively (p < 0.01). On applying correction for the corneal thickness, the pre and postoperative IOP was 15.14 ± 2.8 mmHg and 15.37 ± 2.65 mmHg (p = 0.06) respectively with a strong positive correlation (r = 0.7, p < 0.01). Three hundred eyes (86.7%) had an absolute difference in IOP of less than 3.0 mmHg post-CCT correction which is within the retest variability of NCT. Only 46 eyes (13.3%) had an absolute difference of more than 3.0 mmHg. The modified Ehler's correction algorithm used in this study can be effectively applied in the normal IOP range in a majority of patients.

  9. The Influence of Corneal Thickness and Curvature on the Difference Between Intraocular Pressure Measurements Obtained with a Non-contact Tonometer and Those with a Goldmann Applanation Tonometer.

    Science.gov (United States)

    Matsumoto; Makino; Uozato; Saishin; Miyamoto

    2000-11-01

    Purpose: The influence of corneal thickness and curvature on the difference between intraocular pressure (IOP) measurements obtained with a non-contact tonometer (NCT) and those with a Goldmann applanation tonometer (GAT) was studied.Methods: The corneal thickness and curvature were obtained in 230 eyes of 115 subjects. The correlation between them and ratios of measurement with NCT to that with GAT ([NCT/GAT]) were examined.Results: [NCT/GAT] and corneal thickness showed a significant positive correlation (r = 0.556, P <.01), but, the correlation between [NCT/GAT] and the radius of corneal curvature was not statistically significant (r = -0.035, P =.30).Conclusion: The thick cornea has more influence on the measurement with NCT than GAT, because IOP is measured with NCT over a wider applanation area. The corneas with steeper curvature also cause higher corneal rigidity and produce more overestimation of NCT measurement, while they have stronger capillary attraction of the precorneal tear film for the GAT tip and also produce overestimation of GAT measurement. As a result, [NCT/GAT] was believed to be not influenced by the corneal curvature.

  10. Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies

  11. Robust, accurate, and non-contacting vibration measurement systems: Supplemental appendices presenting comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 2

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report

  12. [Effects of central corneal thickness and corneal curvature on measurement of intraocular pressure with Goldmann applanation tonometer and non-contact tonometer].

    Science.gov (United States)

    Zhang, Yang; Zhao, Jia-liang; Bian, Ai-ling; Liu, Xiao-li; Jin, Yu-mei

    2009-08-01

    To investigate the effects of central corneal thickness (CCT) and corneal curvature (CC) on intraocular pressure (IOP) measurements by the Goldmann applanation tonometer (GAT) and the non-contact tonometer (NCT). One hundred and twenty patients were recruited from the clinic of Peking Union Medical College Hospital. The CCT was measured by ultrasound pachymetry and the mean radius of CC by using Canon PK-5 refractometer. The IOP of each eye was measured by both GAT and NCT. Linear regression was used to compare the measurements of GAT and NCT; multi regression was used to analyze the relationships between CCT, CC and the measurements of GAT and NCT. Bland-Altman method was used to compare the effect of NCT and GAT on the IOP measurements. The results of the right eyes were reported in this paper. The mean and standard deviation of IOP measured by GAT and NCT was (18.4 + or - 4.0) mm Hg (1 mm Hg = 0.133 kPa) and (17.0 + or - 4.6) mm Hg, respectively, the difference was statistically significant (r = 0.835, P = 0.000). IOP measured using GAT increased by 0.039 mm Hg per microm increase in CCT. IOP measured using NCT increased by 0.064 mm Hg per microm increase in CCT. For an increase of 1 mm of mean corneal curvature there was decrease in IOP of 2.648 mm Hg measured by the GAT and of 3.190 mm Hg measured by the NCT. Compared to the GAT, NCT underestimated at low IOP level and overestimated at higher IOP level. The IOP measurement obtained with both GAT and NCT varied with CCT and CC. CCT affected IOP measurements by NCT more than that by GAT.

  13. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler.

    Science.gov (United States)

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  14. Profile measurement of a bent neutron mirror using an ultrahigh precision non-contact measurement system with an auto focus laser probe

    International Nuclear Information System (INIS)

    Morita, S; Guo, J; Yamagata, Y; Yamada, N L; Torikai, N; Takeda, S; Furusaka, M

    2016-01-01

    A bent neutron mirror has been considered as one of the best solutions for focusing neutron beams from the viewpoint of cost-benefit performance. Although the form deviation of the bent profile is expected because of the large spot size, it is difficult to measure due to its geometric limitation. Here, we propose a non-contact measurement system using an auto focus (AF) laser probe on an ultrahigh precision machine tool to precisely evaluate the form deviation of the bent mirror. The AF laser probe is composed of a diode laser, a position sensitive sensor, a charge-coupled device (CCD) camera and a microscope objective lens which is actuated by an electromagnetic motor with 1 nm resolution for position sensing and control. The sensor enables a non-contact profile measurement of a high precision surface without any surface damage in contrast with contact-type ultrahigh precision coordinate measurement machines with ruby styli. In the on-machine measurement system, a personal computer simultaneously acquires a displacement signal from the AF laser probe and 3-axis positional coordinates of the ultrahigh machine tool branched between the linear laser scales and the numerical controller. The acquisition rate of the 4-axis positional data in 1 nm resolution is more than 10 Hz and the simultaneity between the axes is negligible. The profile of a neutron bent mirror was measured from a transparent side using the developed system, and the result proves that the form deviation of the mirror enlarged the the spot size of focused neuron beam. (paper)

  15. The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the Tono-Pen XL, and Goldmann applanation tonometry.

    Science.gov (United States)

    Tonnu, P-A; Ho, T; Newson, T; El Sheikh, A; Sharma, K; White, E; Bunce, C; Garway-Heath, D

    2005-07-01

    To evaluate the influence of central corneal thickness (CCT) on intraocular pressure (IOP) measurements made with the Goldmann applanation tonometer (GAT), Tono-Pen XL, ocular blood flow tonograph (OBF), and Canon TX-10 non-contact tonometer (NCT). CCT was recorded for either eye (randomly selected) of each of 105 untreated patients with ocular hypertension and glaucoma attending the glaucoma research unit at Moorfields Eye Hospital. For each of the selected eyes, IOP was measured with the GAT (two observers), Tono-Pen, OBF, and NCT in a randomised order. The relation of measured IOP and of inter-tonometer differences with CCT and subject age was explored by linear regression analysis. A significant association between measured IOP and CCT was found with each instrument. The change in measured IOP for a 10 mum increase in CCT was 0.28, 0.31, 0.38, and 0.46 for the GAT, Tono-Pen, OBF, and NCT, respectively (all p< or = 0.05). There was a significant association between the NCT/GAT differences and CCT, with a tendency of NCT to overestimate GAT in eyes with thicker corneas. There was a significant association between GAT/Tono-Pen and OBF/Tono-Pen differences and age, with a tendency of GAT and OBF to overestimate the Tono-Pen in eyes of older subjects. IOP measurement by all four methods is affected by CCT. The NCT is affected by CCT significantly more than the GAT. Subject age has a differential effect on the IOP measurements made by the GAT and OBF compared to the Tono-Pen.

  16. Quantitative assessment of hemodynamic and structural characteristics of in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact fashion.

    Science.gov (United States)

    Song, Yinchen; Garcia, Sarahy; Frometa, Yisel; Ramella-Roman, Jessica C; Soltani, Mohammad; Almadi, Mohamed; Riera, Jorge J; Lin, Wei-Chiang

    2017-01-01

    Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (R TD (λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to R TD (λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μ s '(λ)/μ a (λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.

  17. PREFACE: Non-contact AFM Non-contact AFM

    Science.gov (United States)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  18. The in vitro and in vivo validation of a mobile non-contact camera-based digital imaging system for tooth colour measurement.

    Science.gov (United States)

    Smith, Richard N; Collins, Luisa Z; Naeeni, Mojgan; Joiner, Andrew; Philpotts, Carole J; Hopkinson, Ian; Jones, Clare; Lath, Darren L; Coxon, Thomas; Hibbard, James; Brook, Alan H

    2008-01-01

    To assess the reproducibility of a mobile non-contact camera-based digital imaging system (DIS) for measuring tooth colour under in vitro and in vivo conditions. One in vitro and two in vivo studies were performed using a mobile non-contact camera-based digital imaging system. In vitro study: two operators used the DIS to image 10 dry tooth specimens in a randomised order on three occasions. In vivo study 1:25 subjects with two natural, normally aligned, upper central incisors had their teeth imaged using the DIS on four consecutive days by one operator to measure day-to-day variability. On one of the four test days, duplicate images were collected by three different operators to measure inter- and intra-operator variability. In vivo study 2:11 subjects with two natural, normally aligned, upper central incisors had their teeth imaged using the DIS twice daily over three days within the same week to assess day-to-day variability. Three operators collected images from subjects in a randomised order to measure inter- and intra-operator variability. Subject-to-subject variability was the largest source of variation within the data. Pairwise correlations and concordance coefficients were > 0.7 for each operator, demonstrating good precision and excellent operator agreement in each of the studies. Intraclass correlation coefficients (ICCs) for each operator indicate that day-to-day reliability was good to excellent, where all ICC's where > 0.75 for each operator. The mobile non-contact camera-based digital imaging system was shown to be a reproducible means of measuring tooth colour in both in vitro and in vivo experiments.

  19. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    International Nuclear Information System (INIS)

    Mullin, Nic; Hobbs, Jamie K.

    2014-01-01

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used

  20. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    International Nuclear Information System (INIS)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y.; Lee, E.S.

    2014-01-01

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis

  1. Non-contact ultrasound techniques

    International Nuclear Information System (INIS)

    Khazali Mohd Zin

    2001-01-01

    Non-contact ultrasound plays significant role in material characterisation and inspection. Unlike conventional ultrasonic techniques, non-contact ultrasonic is mostly applicable to areas where the former has its weaknesses and limitations. It is interesting to note that the non-contact ultrasonic technique has an important significant application in industry. The technique is signified by the fact that the object to be inspected is further away from the ultrasonic source, no couplant is needed and inconsistent pressure between the transducer and the specimen can be eliminated. The paper discusses some of the non-contact ultrasound technique and its applications. (Author)

  2. Comparison of three methods of tonometry in normal subjects: Goldmann applanation tonometer, non-contact airpuff tonometer, and Tono-Pen XL

    Directory of Open Access Journals (Sweden)

    Yilmaz I

    2014-06-01

    Full Text Available Ihsan Yilmaz, Cigdem Altan, Ebru Demet Aygit, Cengiz Alagoz, Okkes Baz, Sibel Ahmet, Semih Urvasizoglu, Dilek Yasa, Ahmet DemirokBeyoglu Eye Training and Research Hospital, Istanbul, TurkeyObjective: We aimed to compare intraocular pressure (IOP measurements via three different tonometers: the Goldmann applanation tonometer (GAT, the Tono-Pen® XL (TPXL, and a non-contact airpuff tonometer (NCT.Methods: This was a cross-sectional study of 200 eyes from 200 patients. Right eyes of all patients were included in this study. IOP was measured via GAT, NCT, and TPXL by three physicians. Each physician used one of the tonometers. Measurements via the three devices were compared.Results: The mean IOP was 15.5±2.2 mmHg (range 10–22 with the GAT, 16.1±3.0 (range 9–25 with the TPXL, and 16.1±2.8 (range 10–26 with the NCT. Bland–Altman analysis showed that the mean difference between measurements from the NCT and the GAT was 0.6±2.3 mmHg. The mean difference between the TPXL and GAT measurements was 0.7±2.5 mmHg. The mean difference between the NCT and TPXL measurements was −0.02±3.0 mmHg. There was no significant difference between the groups according to a one-way analysis of variance (ANOVA test. P-values were 0.998 for NCT–TPXL, 0.067 for NCT–GAT, and 0.059 for TPXL–GAT.Conclusion: The NCT and TPXL provide IOP measurements comparable to those of the gold standard GAT in normotensive eyes.Keywords: tonometry, noncontact tonometry, Goldmann applanation tonometer, Tono-Pen

  3. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  4. Field and Laboratory Investigation of USS3 Ultrasonic Sensors Capability for Non-contact Measurement of Pistachio Canopy Structure

    Directory of Open Access Journals (Sweden)

    H Maghsoudi

    2015-03-01

    Full Text Available Electronic canopy characterization to determine structural properties is an important issue in tree crop management. Ultrasonic and optical sensors are the most used sensors for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To achieve this purpose, a methodology has been designed to analyze sensor performance in relation to foliage distance and to the effects of interference with adjacent sensors when working simultaneously. Results showed that the average error in distance measurement using the ultrasonic sensor in laboratory conditions was 0.64 cm. However, the increase of variability in field conditions reduced the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations was 3.19 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error was ±14.65 cm. When adjacent sensors were placed apart by 60 cm, the average error became 6.73 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in pistachio garden conditions when sensors are 60 cm apart or more and can, therefore, be used in a system to estimate structural canopy parameters in precision horticulture.

  5. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation

    International Nuclear Information System (INIS)

    Jahanshahi, Mohammad R; Masri, Sami F

    2013-01-01

    In mechanical, aerospace and civil structures, cracks are important defects that can cause catastrophes if neglected. Visual inspection is currently the predominant method for crack assessment. This approach is tedious, labor-intensive, subjective and highly qualitative. An inexpensive alternative to current monitoring methods is to use a robotic system that could perform autonomous crack detection and quantification. To reach this goal, several image-based crack detection approaches have been developed; however, the crack thickness quantification, which is an essential element for a reliable structural condition assessment, has not been sufficiently investigated. In this paper, a new contact-less crack quantification methodology, based on computer vision and image processing concepts, is introduced and evaluated against a crack quantification approach which was previously developed by the authors. The proposed approach in this study utilizes depth perception to quantify crack thickness and, as opposed to most previous studies, needs no scale attachment to the region under inspection, which makes this approach ideal for incorporation with autonomous or semi-autonomous mobile inspection systems. Validation tests are performed to evaluate the performance of the proposed approach, and the results show that the new proposed approach outperforms the previously developed one. (paper)

  6. [The influence of corneal thickness and curvature on the difference between intraocular pressure measurements obtained with a non-contact tonometer and those with a Goldmann applanation tonometer].

    Science.gov (United States)

    Matsumoto, T; Makino, H; Uozato, H; Saishin, M; Miyamoto, S

    2000-05-01

    The influence of corneal thickness and curvature on the difference between intraocular pressure (IOP) measurements obtained with a non-contact tonometer (NCT) and those with a Goldmann applanation tonometer (GAT) was studied. The corneal thickness and curvature were obtained in 230 eyes of 115 subjects. The correlation between them and ratios of measurement with NCT to that with GAT ([NCT/GAT]) were examined. [NCT/GAT] and corneal thickness showed a significant positive correlation (r = 0.556, p < 0.01), but, the correlation between [NCT/GAT] and the radius of corneal curvature was not statistically significant (r = -0.035, p = 0.30). The thick cornea has more influence on the measurement with NCT than GAT, because IOP is measured with NCT over a wider applanation area. The corneas with steeper curvature also cause higher corneal rigidity and produce more overestimation of NCT measurement, while they have stronger capillary attraction of the precorneal tear film for the GAT tip and also produce overestimation of GAT measurement. As a result, [NCT/GAT] was believed to be not influenced by the corneal curvature.

  7. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Timotius Yonathan Sunarsa

    2017-12-01

    Full Text Available Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.

  8. Non-contact remote monitoring technique of reactor structural elements

    International Nuclear Information System (INIS)

    Inoue, Hideo; Mori, Kazuo; Ozawa, Norimitsu; Akedo, Jun; Seimiya, Koichi; Chikamori, Kunio; Umezawa, Akihiko

    1998-01-01

    This study aims at development of technique to measure and estimate, at high precision, fine machining scratch, crack and so on formed on grinding tubular elements, especially inner faces of small diameter tube at an optical mirror grade, and at establishment of estimation technique on reliability and soundness of the tubular elements. In this fiscal year, on optical type non-contact monitoring technique, investigations on optical illumination condition and holding accuracy required for the non-contact holding mechanism were conducted by using a sensor head trially produced in 1995 fiscal year. And, in order to realize a high precision non-contact holding in a tube of optical detection system to upgrade static holding properties (holding stiffness, holding attitude, and so on) of pneumatic type inner tube non-contact holding mechanism, realization of increase in supplying air pressure and experiments using a holding mechanism to increase pore numbers of air injecting nozzle were conducted. And, on materials surface technique, effect of difference in pre-machining method (cutting and bright annealing) at inner face of small diameter stainless tube on their smooth machining property was examined. (G.K.)

  9. Comparison of intraocular pressure as measured by three different non-contact tonometers and goldmann applanation tonometer for non-glaucomatous subjects.

    Science.gov (United States)

    Bang, Seung Pil; Lee, Chong Eun; Kim, Yu Cheol

    2017-11-02

    To compare the measurement of intraocular pressure (IOP) among the three different non-contact tonometers (NCT) and the Goldmann applanation tonometer (GAT) for non-glaucomatous subjects. In 52 eyes of 52 non-glaucomatous subjects, IOP was measured sequentially with the Canon TX-20P, the Nidek NT-530P, the Topcon CT-1P, and the GAT at the same time. We evaluated the IOP-measurement agreement among the tonometers as well as the factors affecting the measurements. A significant positive correlation was shown between the IOP values obtained with GAT and each NCT. The Canon TX-20P showed statistically the most significant agreement with the GAT (ICC 0.906, 95% CI 0.837-0.946). In an analysis of the Bland-Altman plots, the Canon TX-20P also showed the largest mean bias (1.38 mmHg) but the narrowest limits of agreement (LoA) (95% LoA; ± 3.43 mmHg). The Topcon CT-1P showed the smallest mean bias (0.48 mmHg) but the widest LoA (95% LoA; ± 4.16 mmHg). The Topcon CT-1P and Nidek NT-530P both showed a significantly positive correlation between increasing central corneal thickness (CCT) and increasing IOP. There was a statistically significant correlation between each of the three different NCT and the GAT measurements. IOP measured with the Canon TX-20P and Topcon CT-1P tended to be higher, and with the Nidek NT-530P lower, than with the GAT. Practitioners need to know the properties of their own NCTs and their respective measurement tendencies.

  10. Comparison of three methods of tonometry in normal subjects: Goldmann applanation tonometer, non-contact airpuff tonometer, and Tono-Pen XL.

    Science.gov (United States)

    Yilmaz, Ihsan; Altan, Cigdem; Aygit, Ebru Demet; Alagoz, Cengiz; Baz, Okkes; Ahmet, Sibel; Urvasizoglu, Semih; Yasa, Dilek; Demirok, Ahmet

    2014-01-01

    WE AIMED TO COMPARE INTRAOCULAR PRESSURE (IOP) MEASUREMENTS VIA THREE DIFFERENT TONOMETERS: the Goldmann applanation tonometer (GAT), the Tono-Pen(®) XL (TPXL), and a non-contact airpuff tonometer (NCT). This was a cross-sectional study of 200 eyes from 200 patients. Right eyes of all patients were included in this study. IOP was measured via GAT, NCT, and TPXL by three physicians. Each physician used one of the tonometers. Measurements via the three devices were compared. The mean IOP was 15.5±2.2 mmHg (range 10-22) with the GAT, 16.1±3.0 (range 9-25) with the TPXL, and 16.1±2.8 (range 10-26) with the NCT. Bland-Altman analysis showed that the mean difference between measurements from the NCT and the GAT was 0.6±2.3 mmHg. The mean difference between the TPXL and GAT measurements was 0.7±2.5 mmHg. The mean difference between the NCT and TPXL measurements was -0.02±3.0 mmHg. There was no significant difference between the groups according to a one-way analysis of variance (ANOVA) test. P-values were 0.998 for NCT-TPXL, 0.067 for NCT-GAT, and 0.059 for TPXL-GAT. The NCT and TPXL provide IOP measurements comparable to those of the gold standard GAT in normotensive eyes.

  11. [Experiences with the non-contact-tonometer (author's transl)].

    Science.gov (United States)

    Dittmar, P; Weinberg, M; Liegl, O

    1975-07-01

    The Non-Contact-Tonometer as developed by the American Optical Corporation, is in use superior to the traditional methods of intraocular-pressure measurements according to Schiötz and Goldmann: Without any manipulation on the eye the intra-ocular pressure can be measured rapidly and easily. Owing to the construction of the tonometer however measurements are only possible with smooth corneae. In addition to this the results of measurement with the NCT are not as exact as those of the traditional methods. Finally there is up to the present no possibility of standardising the new tonometer.

  12. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  13. EPro Non-contact erosion profiling

    DEFF Research Database (Denmark)

    Meinert, Palle

    Pro is a profiling program build to measure the same surface or work piece multiple times and track changes due to erosion. It was developed during 2001 - 2002 at Aalborg University and was part of a Master of Science project dealing with stability of rubble mound breakwaters. The goal was to aut......Pro is a profiling program build to measure the same surface or work piece multiple times and track changes due to erosion. It was developed during 2001 - 2002 at Aalborg University and was part of a Master of Science project dealing with stability of rubble mound breakwaters. The goal...... was to automate the measuring of profiles in order to save manpower and to increase the number of possible measure points. Additional requirement was that measurements should be done in a non-contact way and that the measuring should not be hindered by the presence of water....

  14. The non-contact tonometer. Its value and limitations.

    Science.gov (United States)

    Shields, M B

    1980-01-01

    A review of the literature and a comparative study against Goldmann applanation tonometers suggest that the non-contact tonometer is reliable for measuring intraocular pressures within the normal range. In addition, the non-contact tonometer eliminates the need for corneal contact and topical anesthesia, thereby avoiding the potential problems of corneal abrasion, spread of infection, and drug reactions. The instrument can be used reliably by paramedical personnel and has particular value in mass screening and possibly in studies of topical antiglaucoma drugs. The non-contact tonometer is less reliable in patients with elevated intraocular pressure, since comparative studies against the Goldmann applanation tonometers have shown poorer correlations in the higher pressure ranges. The instrument is also limited by an abnormal cornea or poor fixation, which may interfere with accurate pressure measurements. Furthermore, the non-contact tonometer is less portable than many tonometers and more expensive than most.

  15. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    Science.gov (United States)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  16. Non-contact transportation using near-field acoustic levitation

    Science.gov (United States)

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described.

  17. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision.

    Science.gov (United States)

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image.

  18. Comparison of intraocular pressure measured by non-contact air puff versus Goldmann applanation tonometers in gas-filled vitrectomized eyes.

    Science.gov (United States)

    Patikulsila, Direk; Taweemankongsab, Srisuda; Ngamtipakorn, Supob

    2003-05-01

    To compare intraocular pressure (IOP) measured by two different instruments, air puff tonometer (APT) versus Goldmann applanation tonometer (GAT), in gas-filled vitrectomized eyes. Three-month, prospective, comparative trial. Thirty-eight patients (38 eyes), who underwent a pars plana vitrectomy (PPV) with gas injection, were enrolled in the study. The IOP was measured by an APT, followed by GAT within 10 minutes by two different, masked investigators. IOPs were measured by two methods and then were compared. Overall, there was a high correlation between both measurements (r = 0.908, p 0.05). By a subgroup analysis of 17 eyes with IOP measured by a GAT of 21 mmHg or less, the APT readings (15.28 +/- 4.81) and GAT readings (14.47 +/- 3.89) were not significantly different (p > 0.05). Of 21 eyes, with IOP measured by a GAT of 22 mmHg or more, the APT readings (26.88 +/- 8.81) were significantly lower than those obtained by the GAT (29.62 +/- 7.69) (p < 0.05). In gas-filled vitrectomized eyes, IOP measurements obtained by an APT correlated well with those obtained by GAT, especially when the IOP was within normal range. However, in eyes with elevated IOP, the APT significantly underestimated the IOP measurement when compared to the gold standard, GAT.

  19. Examination of a Novel Method for Non-Contact, Low-Cost, and Automated Heart-Rate Detection in Ambient Light Using Photoplethysmographic Imaging

    Science.gov (United States)

    2014-10-01

    Unclassified 19b. TELEPHONE NUMBER (Include area code ) 407-208-5693 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 iii...more intrusive than those recording facial and vocal expression. For example, to measure heart rate (HR) or heart rate variability (HRV), the subject...during surgery . Capnographs monitor respiratory status 2 and pulse of patients during anesthesia and intensive care. These methods are proven

  20. Non-contact feature detection using ultrasonic Lamb waves

    Science.gov (United States)

    Sinha, Dipen N [Los Alamos, NM

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  1. Assessment of the accuracy and reliability of the Topcon CT80 non-contact tonometer.

    Science.gov (United States)

    Ogbuehi, Kelechi C

    2006-09-01

    The reliability of non-contact tonometers has been reported extensively in the literature. This study was designed to assess reliability of the new Topcon CT80 non-contact tonometer in normotensive subjects, using the Goldmann tonometer as the standard. The accuracy of the Topcon CT 80 non-contact tonometer was assessed by comparing its IOP assessments with those of the Goldmann applanation tonometer, on 60 right eyes of young healthy subjects with normal intraocular pressures. Each subject's intraocular pressure was assessed with each technique on two separate occasions, one week apart. The reliability of each technique was determined by the assessment of its inter-session repeatability using the Bland-Altman method. The 95 per cent limits of agreement for the two methods were also determined. No statistically significant difference was found between the average intraocular pressures measured with the two techniques (p > 0.05). The inter-session repeatability indices for the two techniques did not differ significantly (p > 0.05). The mean difference in intraocular measurements between the two techniques was 0.2 +/- 1.5 mmHg (mean +/- SD) and the 95 per cent limits of agreement were -3.14 and +2.74 mmHg, with the non-contact tonometer returning higher readings than the Goldmann tonometer. In this sample of normotensive subjects, the Topcon CT80 non-contact tonometer proved to be accurate and as reliable as the Goldmann tonometer in the assessment of intraocular pressure. Thus, it can be used as an objective clinical method for the assessment of normal intraocular pressure.

  2. [Objective non-contact method of study of the color of the human skin integument by use of a photoelectric colorimeter].

    Science.gov (United States)

    Gruzdeva, N I; Zherebtsov, L D; Vasilevskiĭ, V K; Vremzen, S A

    1975-04-01

    The authors describe a method of determination of the colour of the skin in man based on the use of contactless photoelectric colorimeter made especially for this purpose. The mean normal values of the indices of the skin colour of the anterior and the posterior surface of the arm in 45 men and 35 women of the Europeoid race under normal conditions are presented.

  3. Simulation of non-contact tonometer - Ocular response analyzer

    Directory of Open Access Journals (Sweden)

    M. Arsalan Khan

    2016-04-01

    Simultaneous explosion of ophthalmic knowledge and medical instrument, being made in the 19th century, has led to the invention of tonometers of varied designs and principles, and Non-Contact Tonometers (NCTs are among them. Glodmann Applanation Tonometer (GAT is considered the ‘gold standard’ in measuring IOP; however, IOP measurement using GAT is now known to be affected by various factors like corneal thickness, curvature and material properties as demonstrated by Khan [1]. Due to inaccuracies in measuring IOP by GAT, this ‘gold standard’ has been challenged. Therefore, the present research aims to develop a multi-parametric correction equation to determine the True Intraocular Pressure (IOPT using Non-Contact Tonometer and the current article focuses on evaluating the influence of individual parameters on IOP by NCT.

  4. Non-contact fluid characterization in containers using ultrasonic waves

    Science.gov (United States)

    Sinha, Dipen N [Los Alamos, NM

    2012-05-15

    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  5. On repeated corneal applanation with the Goldmann and two non-contact tonometers.

    Science.gov (United States)

    Almubrad, Turki M; Ogbuehi, Kelechi C

    2010-03-01

    Several authors believe it is necessary to randomise the order in which contact and non-contact tonometers are used in comparison studies. This study was carried out to investigate the effect of repeated applanation on the measured intraocular pressure. One set of measurements per session was made on each of three sessions (one session per day) with the Goldmann and two non-contact tonometers (Topcon CT80 and Keeler Pulsair EasyEye), in a pre-determined order, on one randomly selected eye of 120 subjects randomised to one of two groups. For session one, only the non-contact tonometers were used to assess the intraocular pressure of both groups. For session two, either non-contact or Goldmann tonometry was performed first and this order was reversed for session 3. Average intraocular pressures were compared between sessions to determine the presence or absence of effects on the intraocular pressure caused by prior repeated applanation with the Goldmann or either one (or both) of the non-contact tonometers. Prior applanation with a non-contact tonometer did not cause a significant (p > 0.05) reduction of the mean pressure measured with either non-contact tonometer. The mean pressure was slightly but significantly (p contact tonometers in both subject groups) when non-contact tonometry was performed after Goldmann tonometry. There was no significant difference (p > 0.05) between the pressures measured with the Goldmann tonometer prior to and subsequent to non-contact tonometry, in both subject groups. A small but statistically significant reduction in the intraocular pressure was found following applanation with the Goldmann tonometer but not with either one of two non-contact tonometers.

  6. The Pulsair-Keeler non-contact tonometer in self-tonometry: preliminary results.

    Science.gov (United States)

    Boles Carenini, B; Brogliatti, B; Tonetto, C; Renis, E

    1992-09-01

    The authors considered the possibility of using the Pulsair-Keeler non-contact tonometer in self-tonometry. For this reason, 45 patients have been trained to use the instrument and, after a reasonable trial period, were able to self-measure their IOP. The results have been compared to the tonometric values measured with Goldmann tonometer to evaluate statistically the limits and the dependability of this method of measurement. The results shows that self-tonometry with the Pulsair-Keeler tonometer can be used in monitoring glaucomatous patients at home.

  7. Non-contact evaluation of milk-based products using air-coupled ultrasound

    Science.gov (United States)

    Meyer, S.; Hindle, S. A.; Sandoz, J.-P.; Gan, T. H.; Hutchins, D. A.

    2006-07-01

    An air-coupled ultrasonic technique has been developed and used to detect physicochemical changes of liquid beverages within a glass container. This made use of two wide-bandwidth capacitive transducers, combined with pulse-compression techniques. The use of a glass container to house samples enabled visual inspection, helping to verify the results of some of the ultrasonic measurements. The non-contact pulse-compression system was used to evaluate agglomeration processes in milk-based products. It is shown that the amplitude of the signal varied with time after the samples had been treated with lactic acid, thus promoting sample destabilization. Non-contact imaging was also performed to follow destabilization of samples by scanning in various directions across the container. The obtained ultrasonic images were also compared to those from a digital camera. Coagulation with glucono-delta-lactone of skim milk poured into this container could be monitored within a precision of a pH of 0.15. This rapid, non-contact and non-destructive technique has shown itself to be a feasible method for investigating the quality of milk-based beverages, and possibly other food products.

  8. Features of the non-contact carotid pressure waveform: Cardiac and vascular dynamics during rebreathing

    Science.gov (United States)

    Casaccia, S.; Sirevaag, E. J.; Richter, E. J.; O'Sullivan, J. A.; Scalise, L.; Rohrbaugh, J. W.

    2016-10-01

    This report amplifies and extends prior descriptions of the use of laser Doppler vibrometry (LDV) as a method for assessing cardiovascular activity, on a non-contact basis. A rebreathing task (n = 35 healthy individuals) was used to elicit multiple effects associated with changes in autonomic drive as well as blood gases including hypercapnia. The LDV pulse was obtained from two sites overlying the carotid artery, separated by 40 mm. A robust pulse signal was obtained from both sites, in accord with the well-described changes in carotid diameter over the blood pressure cycle. Emphasis was placed on extracting timing measures from the LDV pulse, which could serve as surrogate measures of pulse wave velocity (PWV) and the associated arterial stiffness. For validation purposes, a standard measure of pulse transit time (PTT) to the radial artery was obtained using a tonometric sensor. Two key measures of timing were extracted from the LDV pulse. One involved the transit time along the 40 mm distance separating the two LDV measurement sites. A second measure involved the timing of a late feature of the LDV pulse contour, which was interpreted as reflection wave latency and thus a measure of round-trip travel time. Both LDV measures agreed with the conventional PTT measure, in disclosing increased PWV during periods of active rebreathing. These results thus provide additional evidence that measures based on the non-contact LDV technique might provide surrogate measures for those obtained using conventional, more obtrusive assessment methods that require attached sensors.

  9. [Tonometry with a new non-contact tonometer].

    Science.gov (United States)

    Langmann, G; Schuhmann, G; Langmann, A; Zenz, H

    1990-11-01

    We conducted comparative measurements with 100 healthy probands and patients suffering of glaucoma with both a Goldmann Applanation Tonometer (GAT) and the new Keeler Non Contact Tonometer (NCT). A noticeable conformity of mean values in the group I with values under 23 mm Hg and in group II with values greater or equal 23 mm Hg was obvious. The results of three NCT measurement values were compared with those of four measurements. The Keeler NCT nearly fulfills the needed criteria for the first group with pressure under 23 mm Hg except for a high standard deviation. In group II (pressure greater or equal 23 mm Hg) the demanded nominal values are exceeded.

  10. [Correlation between Goldmann and non-contact tonometry based on corneal thickness].

    Science.gov (United States)

    Schepens, G; Urier, N; Bechetoille, A; De Potter, P

    2001-01-01

    In this transversal study, we measure the intra ocular pressure by means of the Goldmann tonometer and a Non-Contact tonometer along with the central cornea thickness in 136 eyes of 73 patients. The statistical analysis of the collected data doesn't allow us to establish a correlation between the variation of the corneal thickness and the difference between the Goldmann tonometer and Non-Contact tonometer measures. The relative precision of the Non-Contact tonometer compared with the Goldmann tonometer doesn't seem influenced by the central cornea thickness.

  11. Freeform optics: a non-contact "test plate" for manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this NASA SBIR Phase I study is to determine the feasibility of measuring precision (fractional wave) freeform optics using non-contact areal (imaging)...

  12. Reliability of the Nidek NT-1000 non contact tonometer.

    Science.gov (United States)

    Van de Velde, T; Zeyen, T

    1995-01-01

    In this prospective study, we compared the intraocular pressure (IOP) readings of 100 patients measured with the Goldmann applanation tonometer and the Nidek NT-1000 pneumotonometer. The correlation coefficient between the Goldmann and Nidek readings was 0.86. On the average the pneumotonometer overestimated the intraocular pressure with 0.43 mm Hg. The Nidek NT-1000 non contact tonometer can be used for screening purposes provided an appropriately low IOP value is used to indicate the need for further assessment with the Goldman applanation tonometer.

  13. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Buj C.

    2015-09-01

    Full Text Available A very fast innovative holographic off-axis non-contact detection method for Photoacoustic Tomography (PAT is introduced. It overcomes the main problems of most state-of-the-art photoacoustic imaging approaches that are long acquisition times and the requirement of acoustic contact. In order to increase the acquisition speed significantly, the surface displacements of the object, caused by the photoacoustic pressure waves, are measured interferometrically in two dimensions. Phase alterations in the observed speckle field are used to identify changes in the object’s topography. A sampling rate of up to 80 MHz is feasible, which reduces the occurrence of motion artefacts.

  14. Analysis of Non-contact Acousto Thermal Signature Data (Postprint)

    Science.gov (United States)

    2016-02-01

    AFRL-RX-WP-JA-2016-0321 ANALYSIS OF NON-CONTACT ACOUSTO-THERMAL SIGNATURE DATA (POSTPRINT) Amanda K. Criner AFRL/RX...October 2014 – 16 September 2015 4. TITLE AND SUBTITLE ANALYSIS OF NON-CONTACT ACOUSTO-THERMAL SIGNATURE DATA (POSTPRINT) 5a. CONTRACT NUMBER...words) The non-contact acousto-thermal signature (NCATS) is a nondestructive evaluation technique with potential to detect fatigue in materials such as

  15. Non-contact biopotential sensor for remote human detection

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, A E [Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland); Faggion, L, E-mail: hussain.mahdi@ul.ie, E-mail: lorenzo.faggion@jrc.ec.europa.eu [Joint Research Centre of the European Commission, Institute for the Protection and Safety of the Citizen, Ispra (Italy)

    2011-08-17

    This paper describes a new low-cost, low-noise displacement current sensor developed for non-contact measurements of human biopotentials and well suited for detection of human presence applications. The sensor employs a simple, improvised transimpedance amplifier that eliminates the need for ultra high values resistors normally needed in current amplifiers required for this type of measurements. The sensor provides an operational bandwidth of 0.5 - 250 Hz, and a noise level of 7.8{mu}V{radical}Hz at 1 Hz down to 30nV/{radical}Hz at 1 kHz. Reported experimental results demonstrate the sensor's capability in measuring heart related biopotentials within 0.5m off-body distance, and muscle related biopotentials within 10m no obstacles off-body distance, and 5m off-body distance with a concrete wall in between.

  16. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    International Nuclear Information System (INIS)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T.; Worsley, D.A.; Deganello, D.

    2012-01-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz–Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: ► Color change of a nanoparticle silver coating was measured during sintering ► Color change was correlated to the electrical performance of the coating. ► Potential in-line non-contact measurement method for roll-to-roll printed electronics

  17. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T. [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Worsley, D.A. [SPECIFIC, College of Engineering, Swansea University, Baglan Bay Innovation Centre, Central Avenue, Baglan Energy Park, Port Talbot, SA12 7AX (United Kingdom); Deganello, D., E-mail: d.deganello@swansea.ac.uk [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2012-11-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz-Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: Black-Right-Pointing-Pointer Color change of a nanoparticle silver coating was measured during sintering Black-Right-Pointing-Pointer Color change was correlated to the electrical performance of the coating. Black-Right-Pointing-Pointer Potential in-line non-contact measurement method for roll-to-roll printed electronics.

  18. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    Directory of Open Access Journals (Sweden)

    Abbas Abbas K

    2011-10-01

    Full Text Available Abstract Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI detection and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU. The promising results suggest to include this technology into advanced NICU monitors.

  19. A non-contact time-domain scanning brain imaging system: first in-vivo results

    Science.gov (United States)

    Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.

    2013-06-01

    We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.

  20. Comparative study of intraocular pressure (IP in Bangladeshi individuals by contact and non contact technique

    Directory of Open Access Journals (Sweden)

    Sayed Abdul Wadud

    2016-07-01

    Full Text Available Background: Intraocular pressure (IOP is one of the most important parameters in the diagnosis and treatment of glaucoma. Glaucoma has been established as the second leading cause of blindness. The treatment of glaucoma focuses mainly on lowering intraocular pressure (IOP. The target IOP is often set to a level 20% to 30% of IOP reduction, and consequent large IOP reduction beyond 30% or even 40% in cases of advanced glaucoma The different methods of tonometery are: Goldman Applanation tonometery, Noncontact (air-puff tonometery, Perkins tonometery, Tonopen tonometery, Transpalpebral tonometery.Objective: To determine the frequency of accuracy of intraocular pressure (IOP measured by non-contact (air puff tonometer compared with Goldmann applanation tonometer.Methods: This was a non-interventional, cross sectional study conducted at a tertiary care centre of Dhaka, Bangladesh. consecutive subjects attending the BSMMU eye OPD were included in the study. IOP was measured by non-contact (air puff tonometer and a slit lamp mounted GAT in all the subjects. The study samples were selected by convenience sampling who presented for check-up in the Eye Department of community ophthalmology, Bangabandhu Sheikh Mujib Medical University, Dhaka. Bangladesh. Results:A total of 120 eyes in 60 patients were studied. The mean age of the patients was 41.60 year. study population consisted of 24 (40 % men and 36 (60 % women. The mean intraocular pressure was 13.52 &13.72 mmHg for GAT, and 16.64 & 17.44 mmHg for Air puff respectively. The range of measurements by GAT was from 10 to 23 mmHg and by Air puff was 12 to 28mmHg. The difference between IOP measured by two instruments were statistically significant (p=0.000.Conclusion: Airpuff tonometer is quick, a non-contact method to measure intraocular pressure and is useful for screening purposes and postoperative case but the measurements should be confirmed with Goldmann applanation tonometer for accurate labelling

  1. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    Science.gov (United States)

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  2. Clinical evaluation of the Non-Contact Tonometer Mark II.

    Science.gov (United States)

    Chauhan, B C; Henson, D B

    1988-09-01

    The purpose of this investigation was to test the reliability of the American Optical Non-Contact Tonometer Mark II (NCT II) using the Goldmann Applanation Tonometer (GAT) as the validating instrument. The sample contained 102 consecutive patients from our University Eye Clinic, of whom one-half had 4 NCT II measurements first, followed by 4 GAT measurements; the other one-half had 4 GAT measurements first, followed by 4 NCT II measurements. No significant change in intraocular pressure (IOP) was noted over the measurement sequence with either instrument. There was no significant difference between paired NCT II and GAT readings when the NCT II was used first; however, a highly significant difference between paired readings was obtained when the GAT was used first, indicating that the GAT measurement produced a delayed reduction in the IOP. This effect did not occur with the NCT II. Although the NCT II is shown to have a good overall reliability when compared to the GAT in both protocols, the agreement between any two tonometers may be influenced greatly by the very process of taking a measurement and by the dynamic nature of the IOP.

  3. Non-contact magnetic coupled power and data transferring system for an electric vehicle

    International Nuclear Information System (INIS)

    Matsuda, Y.; Sakamoto, H.

    2007-01-01

    We have developed a system which transmits electric power and communication data simultaneously in a non-contact method using a magnetic coupling coil. Already, we are developing the fundamental technology of a non-contact charging system, and this is applied in electric shavers, electric toothbrushes, etc. Moreover, basic experiments are being conducted for applying this non-contact charging system to electric equipments such as an electric vehicle (EV), which is a zero emission vehicle and environmentally excellent and will be the transportation means of the next generation. The technology can also be applied in other electronic equipment, etc. However, since the power supply route for these individual devices is independent, the supply system is complicated. EV also has to perform the transmission of electric power and the transmission of information (data), such as the amount of the charge, in a separate system, and thus is quite complicated. In this study, by performing simultaneously the transmission of electric power and information (data) using magnetic coupling technology in which it does not contact, the basic experiment aimed at attaining and making unification of a system simple was conducted, and the following good results were obtained: (1) Electric power required for load can be transmitted easily by non-contact. (2) A signal can easily be transmitted bidirectionally by non-contact. (3) This system is reliable, and is widely applicable

  4. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO2 Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer

    Science.gov (United States)

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8–14 µm with a single-band CO2 laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8–14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  5. Inductive Non-Contact Position Sensor

    Science.gov (United States)

    Youngquist, Robert; Garcia, Alyssa; Simmons, Stephen

    2010-01-01

    Optical hardware has been developed to measure the depth of defects in the Space Shuttle Orbiter's windows. In this hardware, a mirror is translated such that its position corresponds to the defect's depth, so the depth measurement problem is transferred to a mirror-position measurement problem. This is preferable because the mirror is internal to the optical system and thus accessible. Based on requirements supplied by the window inspectors, the depth of the defects needs to be measured over a range of 200 microns with a resolution of about 100 nm and an accuracy of about 400 nm. These same requirements then apply to measuring the position of the mirror, and in addition, since this is a scanning system, a response time of about 10 ms is needed. A market search was conducted and no sensor that met these requirements that also fit into the available housing volume (less than one cubic inch) was found, so a novel sensor configuration was constructed to meet the requirements. This new sensor generates a nearly linearly varying magnetic field over a small region of space, which can easily be sampled, resulting in a voltage proportional to position. Experiments were done with a range of inductor values, drive voltages, drive frequencies, and inductor shapes. A rough mathematical model was developed for the device that, in most aspects, describes how it operates and what electrical parameters should be chosen for best performance. The final configuration met all the requirements, yielding a small rugged sensor that was easy to use and had nanometer resolution over more than the 200-micron range required. The inductive position sensor is a compact device (potentially as small as 2 cubic centimeters), which offers nanometer-position resolution over a demonstrated range of nearly 1 mm. One of its advantages is the simplicity of its electrical design. Also, the sensor resolution is nearly uniform across its operational range, which is in contrast to eddy current and

  6. Non-contact radiation thickness gauge

    International Nuclear Information System (INIS)

    Tsujii, T.; Okino, T.

    1983-01-01

    A noncontact thickness gauge system for measuring the thickness of a material comprising a source of radiation, a detector for detecting the amount of radiation transmitted through the material which is a function of the absorptance and thickness of the material, a memory for storing the output signals of the detector and curve-defining parameters for a plurality of quadratic calibration curves which correspond to respective thickness ranges, and a processor for processing the signals and curve defining parameters to determine the thickness of the material. Measurements are made after precalibration to obtain calibration curves and these are stored in the memory, providing signals representative of a nominal thickness and an alloy compensation coefficient for the material. The calibration curve corresponding to a particular thickness range is selected and the curve compensated for drift; the material is inserted into the radiation path and the detector output signal processed with the compensated calibration curve to determine the thickness of the material. (author)

  7. Non-contact current and voltage sensor

    Science.gov (United States)

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  8. DistancePPG: Robust non-contact vital signs monitoring using a camera

    Science.gov (United States)

    Kumar, Mayank; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2015-01-01

    Vital signs such as pulse rate and breathing rate are currently measured using contact probes. But, non-contact methods for measuring vital signs are desirable both in hospital settings (e.g. in NICU) and for ubiquitous in-situ health tracking (e.g. on mobile phone and computers with webcams). Recently, camera-based non-contact vital sign monitoring have been shown to be feasible. However, camera-based vital sign monitoring is challenging for people with darker skin tone, under low lighting conditions, and/or during movement of an individual in front of the camera. In this paper, we propose distancePPG, a new camera-based vital sign estimation algorithm which addresses these challenges. DistancePPG proposes a new method of combining skin-color change signals from different tracked regions of the face using a weighted average, where the weights depend on the blood perfusion and incident light intensity in the region, to improve the signal-to-noise ratio (SNR) of camera-based estimate. One of our key contributions is a new automatic method for determining the weights based only on the video recording of the subject. The gains in SNR of camera-based PPG estimated using distancePPG translate into reduction of the error in vital sign estimation, and thus expand the scope of camera-based vital sign monitoring to potentially challenging scenarios. Further, a dataset will be released, comprising of synchronized video recordings of face and pulse oximeter based ground truth recordings from the earlobe for people with different skin tones, under different lighting conditions and for various motion scenarios. PMID:26137365

  9. Development of a high cycle vibration fatigue diagnostic system with non-contact vibration sensing

    International Nuclear Information System (INIS)

    Nekomoto, Yoshitsugu; Tanaka, Masanori; Nishimura, Moritatsu; Matsumoto, Kenji; O'shima, Eiji

    2004-01-01

    Nuclear power plants have a large number of pipes. These small-diameter pipe branches in particles are often damaged due to high-cycle fatigue. In order to ensure the reliability of a plant it is important to detect fatigue damages in pipe branches at an early stage and to develop the technology to predict and diagnose the advancement of fatigue. Further, in order to carry out the diagnosis of the piping system effectively during operation, non-contact evaluation is useful. Hence, we have developed a ''high-cycle fatigue diagnostic system with non-contact vibration sensing'', which measures the vibration of the pipe branch using a non-contact sensor. (author)

  10. Development of a high cycle vibration fatigue diagnostic system with non-contact vibration sensing

    International Nuclear Information System (INIS)

    Yoshitsugu, Nekomoto; Satoshi, Kiriyama; Moritatsu, Nishimura; Kenji, Matsumoto; Eiji, O'shima

    2001-01-01

    Nuclear power plants have a large number of pipes. Of these small-diameter pipe branches in particular are often damaged due to high-cycle fatigue. In order to ensure the reliability of a plant it is important to detect the fatigues in pipe branches at an early stage and to develop the technology to predict and diagnose the advancement of fatigue. Further, in order to carry out the diagnosis of the piping system effectively during operation, non-contact evaluation is useful. Hence, we have developed a 'high-cycle fatigue diagnostic system with non-contact vibration sensing', where the vibration of the pipe branch is measured using a non-contact sensor. Since the contents of the developed sensor technology has already been reported, this paper mainly describes the newly developed high-cycle fatigue diagnostic system. (authors)

  11. The Transfer efficiency analysis and modeling technology of new non - contact power transmission equipment

    Directory of Open Access Journals (Sweden)

    Cao Shi

    2017-01-01

    Full Text Available Due to the shortcomings of current power transmission which is used in ultrasound - assisted machining and the different transfer efficiency caused by the related parameters of the electromagnetic converter, this paper proposes an analysis model of the new non-contact power transmission device with more stable output and higher transmission efficiency. Then By utilizing Maxwell finite element analysis software, this paper studies the law of the transfer efficiency of the new non-contact transformer and compares new type with traditional type with the method of setting the boundary conditions of non-contact power supply device. At last, combining with the practical application, the relevant requirements which have a certain reference value in the application are put forward in the actual processing.

  12. Non-contact ulcer area calculation system for neuropathic foot ulcer.

    Science.gov (United States)

    Shah, Parth; Mahajan, Siddaram; Nageswaran, Sharmila; Paul, Sathish Kumar; Ebenzer, Mannam

    2017-08-11

    Around 125,785 new cases in year 2013-14 of leprosy were detected in India as per WHO report on leprosy in September 2015 which accounts to approximately 62% of the total new cases. Anaesthetic foot caused by leprosy leads to uneven loading of foot leading to ulcer in approximately 20% of the cases. Much efforts have gone in identifying newer techniques to efficiently monitor the progress of ulcer healing. Current techniques followed in measuring the size of ulcers, have not been found to be so accurate but are still is followed by clinicians across the globe. Quantification of prognosis of the condition would be required to understand the efficacy of current treatment methods and plan for further treatment. This study aims at developing a non contact technique to precisely measure the size of ulcer in patients affected by leprosy. Using MATLAB software, GUI was designed to process the acquired ulcer image by segmenting and calculating the pixel area of the image. The image was further converted to a standard measurement using a reference object. The developed technique was tested on 16 ulcer images acquired from 10 leprosy patients with plantar ulcers. Statistical analysis was done using MedCalc analysis software to find the reliability of the system. The analysis showed a very high correlation coefficient (r=0.9882) between the ulcer area measurements done using traditional technique and the newly developed technique, The reliability of the newly developed technique was significant with a significance level of 99.9%. The designed non-contact ulcer area calculating system using MATLAB is found to be a reliable system in calculating the size of ulcers. The technique would help clinicians have a reliable tool to monitor the progress of ulcer healing and help modify the treatment protocol if needed. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  13. Dynamic contour tonometry vs. non-contact tonometry and their relation with corneal thickness

    OpenAIRE

    Briceño, Adriana; Mas, David; Domenech, Begoña

    2016-01-01

    The purpose of this study is to evaluate the concordance between intraocular pressure (IOP) values obtained with a dynamic contour tonometer (DCT) and a non-contact tonometer (NCT) in healthy patients and to investigate the effect of central corneal thickness (CCT) on IOP readings for each of the two measuring systems. The mean IOP yielded by DCT, NCT and corrected non-contact tonometer (CNCT) was 17.1 mmHg, 15.5 mmHg and 12.2 mmHg, respectively. The average CCT was 563.6 μm and the ocular pu...

  14. Comparative study of three non-contact tonometers and the Goldmann tonometer.

    Science.gov (United States)

    Moreno-Montañés, J; Gómez-Demmel, E; Lajara-Blesa, J; Aliseda-Pérez de Madrid, D

    1994-01-01

    The main objective of this study was to find out how well three non-contact tonometers (Pulsair, Xpert-NCT and CT-20) compare with the Goldmann tonometer (GT). Sensitivity, specificity, positive and negative predictive values were all evaluated for an intraocular pressure (IOP) > or = 21 mm Hg. We also calculated the mean IOP, the correlation and the dispersion of the results. The difficulty in using the instruments, the patient's attitude and subjective comfort of IOP measuring were also evaluated. We describe the advantages and shortcomings of non-contact tonometers as screening tools to detect elevated IOP in the general population.

  15. [Comparison of tonometry with the Keeler air puff non-contact tonometer "Pulsair" and the Goldmann applanation tonometer].

    Science.gov (United States)

    Yücel, A A; Stürmer, J; Gloor, B

    1990-10-01

    Intraocular pressure (IOP) readings were performed with the Keeler Air-Puff Non-Contact Tonometer "Pulsair" in 126 patients before (NCT1) and after (NCT2) applanation-tonometry with the Goldmann device (GAT). For the whole population of 126 patients, in each of whom only one eye was selected, there was a significant difference of the mean IOP measurement, but the difference between the two measurement methods was only slightly significant when the NCT was applied before the GAT, and highly significant vice versa. Also the variation of the NCT-measurements was significantly larger than that for the GAT, while the before- and after GAT measurements had equal variations. If only the measurements under 18 mmHg mean GAT are taken into account (n = 101), the difference between GAT and NCT1 was not significant (p = 0.437), as opposed to the GAT-measurements above 18 mmHg, where a highly significant difference between the means was found (p = 0.0033). In most cases, the IOP-readings were underestimated using NCT. The Non Contact Tonometer "Pulsair" could be used for IOP-readings in patients with increased risk of infection, as well as in those with known allergic reactions to topical anesthetic agents, with poor or absent fixation ability, with corneal edema, and postoperative after anterior-segment surgery. The possibility of IOP-measurement in a reclined position is a true advantage of the Non-Contact Tonometer presented here. A measuring strategy for the above-mentioned applications is presented.

  16. Analysis of a non-contact magnetoelastic torque transducer

    International Nuclear Information System (INIS)

    Andreescu, R.; Spellman, B.; Furlani, E.P.

    2008-01-01

    Results are presented for the performance of a magnetoelastic torque transducer that converts a torque-induced strain in a non-magnetic shaft into changes in a measurable magnetic field. The magnetic field is generated by a thin magnetostrictive layer that is coated onto the circumference of the shaft. The layer is magnetized and has an initial residual strain. The magnetization within the layer rotates in response to changes in the strain which occur when the shaft is torqued. The magnetic field produced by the layer changes with the magnetization and this can be sensed by a magnetometer to monitor the torque on the shaft. In this paper, a phenomenological theory is developed for predicting the performance of the transducer. The theory can be used to predict the magnetic field distribution of the transducer as a function of the physical properties of the magnetic coating, its residual strain, and the applied torque. It enables rapid parametric analysis of transducer performance, which is useful for the development and optimization of novel non-contact torque sensors

  17. Clinical comparison of the XPERT non-contact tonometer and the conventional Goldmann applanation tonometer.

    Science.gov (United States)

    Hansen, M K

    1995-04-01

    Intraocular pressure (IOP) in the right eye of 113 patients was measured with one XPERT NCT air-puff non-contact tonometer (XPERT) and compared with IOP measured with one Goldmann applanation tonometer (GAT). Precision of the methods was judged by variance analysis, indicating that GAT was slightly more precise than XPERT. The slope of the linear relationship between the methods did not differ significantly from 1.0. Mean difference between the methods was 0.92 mmHg, XPERT measuring lower than GAT, p = 0.00017. The intra-individual difference between methods ranged from -8.00 to 8.67 mmHg, and standard deviation (SD) of differences was 2.52 mmHg. The 95% limits of agreement between the two methods were -5.85 to 4.01 mmHg. The SD of differences is of approximately the same size as previous XPERT vs GAT as well as previous GAT vs GAT studies.

  18. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  19. Continuous control systems for non-contact ECG

    Science.gov (United States)

    Kodkin, Vladimir L.; Yakovleva, Galina V.; Smirnov, Alexey S.

    2017-03-01

    South Ural State University is still conducting the research work dedicated to innovations in biomedicine. Development of system for continuous control and diagnosis of the functional state in large groups of people is based on studies of non-contact ECG recording reported by the authors at the SPIE conference in 2016. The next stage of studies has been performed this year.

  20. Non-contact finger vein acquisition system using NIR laser

    Science.gov (United States)

    Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan

    2009-02-01

    Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.

  1. Non-contact translation-rotation sensor using combined effects of magnetostriction and piezoelectricity.

    Science.gov (United States)

    Yang, Bintang; Liu, Qingwei; Zhang, Ting; Cao, Yudong; Feng, Zhiqiang; Meng, Guang

    2012-10-15

    Precise displacement sensors are an important topic in precision engineering. At present, this type of sensors typically have a single feature of either translation or rotation measurement. They are also inconvenient to integrate with the host devices. In this report we propose a new kind of sensor that enables both translation and rotation measurement by using the combined effect of magnetostriction and piezoelectricity. As a proof of concept, we experimentally realized a prototype of non-contact translation-rotation precise sensor. In the current research stage, through both theoretical and experimental study, the non-contact displacement sensor is shown to be feasible for measuring both translation and rotation either in coarse or fine measurement. Moreover, owing to its compact, rigid structure and fewer components, it can be easily embedded in host equipment.

  2. Non-Contact Translation-Rotation Sensor Using Combined Effects of Magnetostriction and Piezoelectricity

    Directory of Open Access Journals (Sweden)

    Guang Meng

    2012-10-01

    Full Text Available Precise displacement sensors are an important topic in precision engineering. At present, this type of sensors typically have a single feature of either translation or rotation measurement. They are also inconvenient to integrate with the host devices. In this report we propose a new kind of sensor that enables both translation and rotation measurement by using the combined effect of magnetostriction and piezoelectricity. As a proof of concept, we experimentally realized a prototype of non-contact translation-rotation precise sensor. In the current research stage, through both theoretical and experimental study, the non-contact displacement sensor is shown to be feasible for measuring both translation and rotation either in coarse or fine measurement. Moreover, owing to its compact, rigid structure and fewer components, it can be easily embedded in host equipment.

  3. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Directory of Open Access Journals (Sweden)

    Ulfah Rimayanti

    Full Text Available PURPOSE: To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP reading changes caused by wearing soft contact lenses (CLs. METHODS: One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL, with -5.0 diopters (D, -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. RESULTS: The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. CONCLUSIONS: Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  4. Non-contacting "snubber bearing" for passive magnetic bearing systems

    Science.gov (United States)

    Post, Richard F

    2017-08-22

    A new non-contacting magnetic "snubber" bearing is provided for application to rotating systems such as vehicular electromechanical battery systems subject to frequent accelerations. The design is such that in the equilibrium position the drag force of the snubber is very small (milliwatts). However in a typical case, if the rotor is displaced by as little as 2 millimeters a large restoring force is generated without any physical contact between the stationary and rotating parts of the snubber bearing.

  5. Non-contact tonometry in the postoperative eye.

    OpenAIRE

    Vernon, S A

    1989-01-01

    The Keeler Pulsair non-contact tonometer was compared with the Goldmann applanation tonometer in a series of 48 eyes after operation. A correlation coefficient of 0.92 (p less than 0.001) was found between the two instruments, with the Pulsair having a statistically significant tendency to overread the Goldmann slightly in this situation. The Pulsair was, however, shown to be effective in the identification of postoperative ocular hypertension with a high degree of sensitivity and specificity...

  6. In situ/non-contact superfluid density measurement apparatus

    Science.gov (United States)

    Nam, Hyoungdo; Su, Ping-Hsang; Shih, Chih-Kang

    2018-04-01

    We present a double-coil apparatus designed to operate with in situ capability, which is strongly desired for superconductivity studies on recently discovered two-dimensional superconductors. Coupled with a scanning tunneling microscope, the study of both local and global superconductivity [for superconducting gap and superfluid density (SFD), respectively] is possible on an identical sample without sample degradations due to damage, contamination, or oxidation in an atmosphere. The performance of the double-coil apparatus was tested on atomically clean surfaces of non-superconducting Si(111)-7 × 7 and on superconducting films of 100 nm-thick Pb and 1.4 nm-ultrathin Pb. The results clearly show the normal-to-superconductor phase transition for Pb films with a strong SFD.

  7. In-motion, non-contact rail temperature measurement sensor.

    Science.gov (United States)

    2012-12-01

    Preventing track buckling incidents (Figure 1) is important to the railroad industry. Track materials, rail steel, for example, experience thermal expansion, which refers to the increase in a materials volume as its temperature rises. Thermal expa...

  8. Optical measurement system for non-contact temperature profile

    CSIR Research Space (South Africa)

    Masina, BN

    2009-07-01

    Full Text Available In principle all objects emit thermal radiation as a consequence of their temperature. The thermal radiation emitted by an object depends on its temperature, surface condition and thermal properties. A thermography camera senses the emission from...

  9. Non-contact measurement machine for freeform optics

    NARCIS (Netherlands)

    Henselmans, R.

    2009-01-01

    The performance of high-precision optical systems using spherical optics is limited by aberrations. By applying aspherical and freeform optics, the geometrical aberrations can be reduced or eliminated while at the same time also reducing the required number of components, the size and the weight of

  10. Comparison of a new non-contact tonometer with Goldmann applanation.

    Science.gov (United States)

    Moseley, M J; Evans, N M; Fielder, A R

    1989-01-01

    A comparison of a new non-contact tonometer (Keeler Pulsair: Keeler UK Ltd) with the Goldmann applanation tonometer is reported. Measurements of intraocular pressure were obtained from 182 eyes of 94 patients. At low pressures (less than 10 mmHg) the candidate tonometer tended to overestimate pressures obtained with the Goldmann tonometer whilst at high pressures (greater than 19 mmHg) those obtained by Goldmann applanation were underestimated. Between 10 and 19 mmHg there was no significant difference between readings obtained with either method. Up to 71% of averaged Pulsair measurements fell within +/- 3 mmHg of those obtained with the Goldmann tonometer increasing to 78% if pressures greater than or equal to 30 mmHg obtained with the Pulsair tonometer were excluded. Adopting a screening criterion of greater than or equal to 21 mmHg (Goldmann) resulted in a sensitivity of 85% and a specificity of 95%. Some evidence that serial Pulsair readings are influenced by the ocular pulse is presented. It is concluded that the Pulsair tonometer can provide clinically useful measurements of intraocular pressure.

  11. Development of the Floating Centrifugal Pump by Use of Non Contact Magnetic Drive and Its Performance

    Directory of Open Access Journals (Sweden)

    Mitsuo Uno

    2004-01-01

    Full Text Available This article focuses on the impeller construction, non contact driving method and performance of a newly developed shaftless floating pump with centrifugal impeller. The drive principle of the floating impeller pump used the magnet induction method similar to the levitation theory of the linear motor. In order to reduce the axial thrust by the pressure different between shroud and disk side, the balance hole and the aileron blade were installed in the floating impeller. Considering the above effect, floating of an impeller in a pump was realized. Moreover, the performance curves of a developed pump are in agreement with a general centrifugal pump, and the dimensionless characteristic curve also agrees under the different rotational speed due to no mechanical friction of the rotational part. Therefore, utility of a non contacting magnetic-drive style pump with the floating impeller was made clear.

  12. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    Science.gov (United States)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  13. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-07-25

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  14. Structural, Functional, and Metabolic Brain Markers Differentiate Collision versus Contact and Non-Contact Athletes.

    Science.gov (United States)

    Churchill, Nathan W; Hutchison, Michael G; Di Battista, Alex P; Graham, Simon J; Schweizer, Tom A

    2017-01-01

    There is growing concern about how participation in contact sports affects the brain. Retrospective evidence suggests that contact sports are associated with long-term negative health outcomes. However, much of the research to date has focused on former athletes with significant health problems. Less is known about the health of current athletes in contact and collision sports who have not reported significant medical issues. In this cross-sectional study, advanced magnetic resonance imaging (MRI) was used to evaluate multiple aspects of brain physiology in three groups of athletes participating in non-contact sports ( N  = 20), contact sports ( N  = 22), and collision sports ( N  = 23). Diffusion tensor imaging was used to assess white matter microstructure based on measures of fractional anisotropy (FA) and mean diffusivity (MD); resting-state functional MRI was used to evaluate global functional connectivity; single-voxel spectroscopy was used to compare ratios of neural metabolites, including N -acetyl aspartate (NAA), creatine (Cr), choline, and myo-inositol. Multivariate analysis revealed structural, functional, and metabolic measures that reliably differentiated between sport groups. The collision group had significantly elevated FA and reduced MD in white matter, compared to both contact and non-contact groups. In contrast, the collision group showed significant reductions in functional connectivity and the NAA/Cr metabolite ratio, relative to only the non-contact group, while the contact group overlapped with both non-contact and collision groups. For brain regions associated with contact sport participation, athletes with a history of concussion also showed greater alterations in FA and functional connectivity, indicating a potential cumulative effect of both contact exposure and concussion history on brain physiology. These findings indicate persistent differences in brain physiology for athletes participating in contact and collision sports

  15. Incidence of open-angle glaucoma and screening of the intraocular pressure with a non-contact tonometer.

    Science.gov (United States)

    Rouhiainen, H; Teräsvirta, M

    1990-06-01

    New equipment for measuring intraocular pressure have been introduced lately. One of these is the Keeler Pulsair non-contact tonometer which uses pressurized air in measurement. It is found to be safe and easy to use in practice, but it seems to give 1.5-2.0 mmHg lower reading than the Goldmann applanation tonometer. This was confirmed by the present study, where non-contact tonometry was controlled by applanation tonometry with a 2-3 week delay between the measurements. However, for screening procedures the accuracy of the apparatus can be considered as sufficient.

  16. Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Kim, Ji-Sik

    2014-01-01

    This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further. (paper)

  17. Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers

    Science.gov (United States)

    Kim, Gi-Woo; Kim, Ji-Sik

    2014-01-01

    This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further.

  18. Algorithm describing pressure distribution of non-contact TNT explosion

    Directory of Open Access Journals (Sweden)

    Radosław Kiciński

    2014-12-01

    Full Text Available [b]Abstract[/b]. The aim of this study is to develop a computational algorithm, describing the shock wave pressure distribution in the space induced by non-contact TNT explosion. The procedure describes pressure distribution on a damp surface of the hull. Simulations have been carried out using Abaqus/CAE. The study also shows the pressure waveform descriptions provided by various authors and presents them in charts. The formulated conclusions convince efficiency of the algorithm application.[b]Keywords:[/b] Underwater explosion, shock wave, CAE, TNT, Kobben class submarine

  19. Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials.

    Science.gov (United States)

    Gosálbez, J; Wright, W M D; Jiang, W; Carrión, A; Genovés, V; Bosch, I

    2018-08-01

    In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen. Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modelling atomic scale manipulation with the non-contact atomic force microscope

    International Nuclear Information System (INIS)

    Trevethan, T; Watkins, M; Kantorovich, L N; Shluger, A L; Polesel-Maris, J; Gauthier, S

    2006-01-01

    We present the results of calculations performed to model the process of lateral manipulation of an oxygen vacancy in the MgO(001) surface using the non-contact atomic force microscope (NC-AFM). The potential energy surfaces for the manipulation as a function of tip position are determined from atomistic modelling of the MgO(001) surface interacting with a Mg terminated MgO tip. These energies are then used to model the dynamical evolution of the system as the tip oscillates and at a finite temperature using a kinetic Monte Carlo method. The manipulation process is strongly dependent on the lateral position of the tip and the system temperature. It is also found that the expectation value of the point at which the vacancy jumps depends on the trajectory of the oscillating cantilever as the surface is approached. The effect of the manipulation on the operation of the NC-AFM is modelled with a virtual dynamic AFM, which explicitly simulates the entire experimental instrumentation and control loops. We show how measurable experimental signals can result from a single controlled atomic scale event and suggest the most favourable conditions for achieving successful atomic scale manipulation experimentally

  1. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Keun, E-mail: ykkim@handong.edu [Department of Mechanical and Control Engineering, Handong Global University, Pohang (Korea, Republic of); Kim, Kyung-Soo [Department of Mechanical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  2. Temperature Identification in the Structural Elements of Non-Contacting Face Seals by Using Trefftz Functions

    Directory of Open Access Journals (Sweden)

    Anna PAWIŃSKA

    2014-12-01

    Full Text Available Phenomena of the heat transfer in non-contacting face seals was described by partial differential equation of the second order and boundary conditions. In this way, the mathematical model was developed for the sealing rings. The distributions of temperature in the structural elements was obtained by the Trefftz method. It is a simple method of solving direct and inverse problems described by a homogeneous or an inhomogeneous partial differential equation. The main idea of the method is to determine functions satisfying a given differential equation (Trefftz functions and to fit the linear combination of them to the governing boundary conditions.

  3. Effects of puff times on intraocular pressure agreement between non-contact and Goldmann applanation tonometers

    Directory of Open Access Journals (Sweden)

    Ibrahim Toprak

    2014-07-01

    Full Text Available AIM: To compare intraocular pressure(IOPvalues obtained from two different puff modes of Canon TX-F non-contact tonometer(NCTand Goldmann applanation tonometer(GATin patients with primary open angle glaucoma(POAG. METHODS: The study group comprised 55 right eyes of 55 patients with a confirmed diagnosis of POAG, which were under treatment. All patients underwent detailed ophthalmological examinations, optical coherence tomography imaging and automated perimetry. Intraocular pressure measurements were performed using 1-puff mode of NCT(NCT1, 3-puffs mode of NCT(NCT3and GAT with 5 minutes intervals in order. RESULTS: Fifty-five eyes of 55 patients with POAG(mean age of 64.1±8.1 yearswere enrolled into the study. NCT1 and NCT3 gave similar IOP values when compared with GAT measurements(14.22±3.42, 14.28±3.29, 14.66±3.49mmHg respectively, P=0.291. Intertonometer agreement was assessed using the Bland-Altman method. The 95% limits of agreement(LoAfor NCT1-GAT, NCT3-GAT and NCT1-NCT3 comparisons were -4.9 to +4.4mmHg, -4.1 to +3.4mmHg, and -3.4 to +3.3mmHg respectively.CONCLUSION: Although IOP measurements obtained from two puff modes of NCT and GAT showed similar values, wide range of LoA might restrict use of NCT1, NCT3 and GAT interchangeably in POAG patients.

  4. Non-contact flow gauging for the extension and development of rating curves

    Science.gov (United States)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves

  5. Dynamic contour tonometry (DCT) versus non-contact tonometry (NCT): a comparison study.

    Science.gov (United States)

    Burvenich, H; Burvenich, E; Vincent, C

    2005-01-01

    In a prospective study we measured the intraocular pressure (IOP) by means of a Non-Contact Tonometer (NCT) and by means of a Pascal Dynamic Contour Tonometer (DCT), and the Central Corneal Thickness (CCT) by means of a contact pachymeter in 294 emmetropic or ametropic eyes. There is a linear relation between NCT and CCT. This linear relation doesn't exist between DCT and CCT. The same measurements were done before and 6 weeks after a Lasik intervention in 58 myopic eyes. Lasik intervention influences NCT but doesn't influence DCT.

  6. Numerical analysis of the non-contacting gas face seals

    Science.gov (United States)

    Blasiak, S.

    2017-08-01

    The non-contacting gas face seals are used in high-performance devices where the main requirements are safety and reliability. Compliance with these requirements is made possible by careful research and analysis of physical processes related to, inter alia, fluid flow through the radial gap and ring oscillations susceptible to being housed in the enclosure under the influence of rotor kinematic forces. Elaborating and developing mathematical models describing these phenomena allows for more and more accurate analysis results. The paper presents results of studies on stationary ring oscillations made of different types of materials. The presented results of the research allow to determine which of the materials used causes the greatest amplitude of the vibration of the system fluid film-working rings.

  7. Automated real-time search and analysis algorithms for a non-contact 3D profiling system

    Science.gov (United States)

    Haynes, Mark; Wu, Chih-Hang John; Beck, B. Terry; Peterman, Robert J.

    2013-04-01

    The purpose of this research is to develop a new means of identifying and extracting geometrical feature statistics from a non-contact precision-measurement 3D profilometer. Autonomous algorithms have been developed to search through large-scale Cartesian point clouds to identify and extract geometrical features. These algorithms are developed with the intent of providing real-time production quality control of cold-rolled steel wires. The steel wires in question are prestressing steel reinforcement wires for concrete members. The geometry of the wire is critical in the performance of the overall concrete structure. For this research a custom 3D non-contact profilometry system has been developed that utilizes laser displacement sensors for submicron resolution surface profiling. Optimizations in the control and sensory system allow for data points to be collected at up to an approximate 400,000 points per second. In order to achieve geometrical feature extraction and tolerancing with this large volume of data, the algorithms employed are optimized for parsing large data quantities. The methods used provide a unique means of maintaining high resolution data of the surface profiles while keeping algorithm running times within practical bounds for industrial application. By a combination of regional sampling, iterative search, spatial filtering, frequency filtering, spatial clustering, and template matching a robust feature identification method has been developed. These algorithms provide an autonomous means of verifying tolerances in geometrical features. The key method of identifying the features is through a combination of downhill simplex and geometrical feature templates. By performing downhill simplex through several procedural programming layers of different search and filtering techniques, very specific geometrical features can be identified within the point cloud and analyzed for proper tolerancing. Being able to perform this quality control in real time

  8. [Principle and results of a new "non-contact-tonometer" are discussed (author's transl)].

    Science.gov (United States)

    Draeger, J; Jessen, K; Haselmann, G

    1975-07-01

    Comparing measurements with Non-Contact-Tonometer and handapplanation tonometer on 462 eyes with normal and elevated intraocular tension are statistically evaluated. The 2-s-limits for normal i.o. pressure at +/- 6.52 mm Hg (+/- 8.6 mbar), for elevated intraocular pressure +/- 13.2 mm Hg (+/- 17.6 mbar). This means less reliability than conventional applanation tonometers or even Schiötz-tonometers. The unability to read the tension when the corneal surface is rough means remarkable disadvantages to clinical use.

  9. Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V

    Science.gov (United States)

    Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.

    2010-02-01

    Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.

  10. Clinical performance of the Reichert AT550: a new non-contact tonometer.

    Science.gov (United States)

    Jorge, J; Díaz-Rey, J A; González-Méijome, J M; Almeida, J B; Parafita, M A

    2002-11-01

    The aim of the present study was to assess the level of accuracy for measurements of intra-ocular pressure (IOP) obtained with a new non-contact tonometer (NCT) the Reichert AT550. Measurements were compared against those obtained with the Reichert Xpert Plus, Goldmann applanation tonometer and Perkins tonometer. Thirty-five university students were assessed with the four tonometers in a randomised order, with non-contact tonometry performed first. Each of the four measurement devices had its own trained clinical observer. Plots of differences of IOP as a function of the mean for each pair of instruments were obtained. No statistically significant differences were found when comparing the AT550 NCT with contact applanation tonometry (AT) (p> 0.05), displaying the closest level of agreement (as represented by the lowest mean difference and the narrowest confidence interval) with the Goldmann tonometer (limits of agreement, 0.12+/-2.17). In conclusion, readings of IOP with the AT550 NCT are clinically comparable with those obtained with Goldmann tonometry in a population with IOP within the normal range.

  11. Modular Architecture of a Non-Contact Pinch Actuation Micropump

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2012-09-01

    Full Text Available This paper demonstrates a modular architecture of a non-contact actuation micropump setup. Rapid hot embossing prototyping was employed in micropump fabrication by using printed circuit board (PCB as a mold material in polymer casting. Actuator-membrane gap separation was studied, with experimental investigation of three separation distances: 2.0 mm, 2.5 mm and 3.5 mm. To enhance the micropump performance, interaction surface area between plunger and membrane was modeled via finite element analysis (FEA. The micropump was evaluated against two frequency ranges, which comprised a low driving frequency range (0–5 Hz, with 0.5 Hz step increments and a nominal frequency range (0–80 Hz, with 10 Hz per step increments. The low range frequency features a linear relationship of flow rate with the operating frequency function, while two magnitude peaks were captured in the flow rate and back pressure characteristic in the nominal frequency range. Repeatability and reliability tests conducted suggest the pump performed at a maximum flow rate of 5.78 mL/min at 65 Hz and a backpressure of 1.35 kPa at 60 Hz.

  12. Some image artefacts in non-contact mode force microscopy

    International Nuclear Information System (INIS)

    Dinte, B.P.; Watson, G.S.; Dobson, J.F.; Myhra, S.

    1996-01-01

    Full text: Non-contact mode Atomic Force Microscopy (AFM), performed in air, of two-dimensional hexagonal close-packed (2DHCP) layers of 200 nm diameter polystyrene spheres yields images containing artefacts ('ghost spheres') at layer edges and vacancy sites. The origin of these artefacts is clearly not the simple convolution of the tip and sample geometries, but must be the interaction between them. A computer program was written to simulate the experimental contours, assuming that the only force between the tip and the sample is the van der Waals (dispersion) force, and that the contours traced by the AFM tip are those of constant force derivative. The energy was calculated by integrating R -6 over the volumes of the tip and the sample, with a (constant) arbitrary scaling factor. The experimental contours were reproduced by the simulations, except for the 'ghost' artefacts. The assumption that there is only a dispersion force is thus incorrect. The experiments were performed in air, so that all surfaces were coated by a layer of adsorbed moisture. It is proposed that meniscus forces may be the origin of the artefacts

  13. Non-contact tensile viscoelastic characterization of microscale biological materials

    Science.gov (United States)

    Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng

    2018-06-01

    Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

  14. Non-contact wearable single forearm cardiac biopotential acquisition device

    International Nuclear Information System (INIS)

    Gonçalves, Sérgio; Martins, Raul Carneiro

    2013-01-01

    In this work the authors propose a novel approach to obtain the electrocardiogram in the forearm using non-contact sensing. This new solution should be at same time portable, ergonomic and robust, enabling its use in different set of applications. A system of four electrodes was used in an adjustable sleeve to be wrapped in the forearm. No additional electrode references were used in other body parts. In order to increase the sensitivity of the system, an harmonium like approach was used in the design of the electrodes. The prototype was then compared with a similar system with a flat conformation. The developed prototype enabled the acquisition of an ECG signal in the forearm and the inclusion of the harmonium like electrode conformation resulted in a considerable increase of the sensitivity of the system. The acquired signal did not enable the identification of all characteristic cardiac waves. However, it was possible to identify clearly a signal pattern, characteristic of the QRS complex. The properties of the acquired signal restrict their use in rigorous electrocardiographic studies, allowing, however, its application in heart rate variability monitoring and biometric identification without the disadvantages usually associated with conventional electrodes. This makes it specially useful for man-machine interfaces and automated identification

  15. Evaluation of the Keeler Pulsair non-contact tonometer.

    Science.gov (United States)

    Sponsel, W E; Kaufman, P L; Strinden, T I; DePaul, K L; Bowes, H N; Olander, K W; Barnebey, H S

    1989-10-01

    The recently-introduced Pulsair non-contact tonometer (Keeler Instruments, Inc, Broomall, PA) was evaluated against the Goldmann applanation tonometer in cannulated post mortem human eyes, and in living subjects at three clinical centers. Statistical analysis of the findings revealed strong linear relationships between Goldmann or manometric and Pulsair intraocular pressure readings, with correlation coefficients ranging from 0.79 to 0.97. However, with the Pulsair reading as the dependent variable, the slope of the relationship in each case was significantly less than 1.0 (range 0.65 to 0.83), while the intercept was positive (range 1.31 to 2.33 mmHg). Thus, the Pulsair tended to read low at intraocular pressure above the normal range. Conversion factors and a calibration table allowing intraocular pressure estimates more comparable to Goldmann tonometry using the current (J-series) Pulsair are provided herein. A calibration algorithm could be integrated into the circuitry of future production models of the Pulsair instrument.

  16. A study on non-contact ultrasonic technique for on-line inspection of CFRP

    International Nuclear Information System (INIS)

    Lee, Seung-Joon; Park, Won-Su; Lee, Joon-Hyun; Byun, Joon-Hyung

    2007-01-01

    The advantages of carbon fiber reinforced plastic materials (CFRP) are: they are light structure materials, they have corrosion resistance, and higher specific strength and elasticity. The recently developed 3-dimentional fiber placement system is able to produce a more complex and various shaped structures due to less limitations of a product shape according to the problem in conventional fabrication process. This fiber placement system stacks the narrow prepreg tape on the mold according to the designed sequence and thickness. Non-destructive evaluation was rquired for these composites to evaluate changes in strength caused by defects such as delamination and porosity. Additionally, the expectent quality should be satisfied for the high cost fabrication process using the fiber placement system. Therefore, an on line non-destructive evaluation system is required and real-time complement is needed when the defects are detected [1]. Defect imaging by the ultrasonic C-scan method is a useful technique for defect detection in CFRP. However, the conventional ultrasonic C-scan technique cannot be applied during the fabrication process because the test piece should be immersed into the water. Therefore, non-contact ultrasonic techniques should be applied during the fabricating process. For the development of non-contact ultrasonic techniques available in non-destructive evaluation of CFRP, a recent laser-generated ultrasonic technique and an air-coupled transducer that transmit and receive ultrasounds in the air are studied [2-3]. In this study, generating and receiving techniques of laser-generated ultrasound and the characteristics of received signals upon the internal defects of CFRO were studied for non-contact inspection

  17. Proposal of Non-Contact Type Interface of Command Input Using Lip Motion Features

    Science.gov (United States)

    Sato, Yoshiyuki; Kageyama, Yoichi; Nishida, Makoto

    Lip motion features are of practical use in identifying individuals. It is therefore important to develop non-contact type interface. For the interface using lip motion features, individual differences such as accents and dialects in commands should be accepted. In this paper, we propose a method to identify commands by analyzing three kinds of lip motion features. They are lip width, lip length, and ratio of width and length. The analysis is made on the basis of these features' relative values obtained from the primary and object frame. The proposed method has three steps. First, we extracted the lip motion features on the basis of both positions and shapes of lip in each frame of facial images. Second, standard patterns were created from features of six utterances per command. The standard pattern is able to reduce the relative difference in the lip motion features. Third, similarities among commands were computed by Dynamic-Programming (DP) matching. And then, the command with the largest similarity was selected as the target one. Our experimental results suggest that proposed method is useful to construct the non-contact type interface of command input using lip motion features.

  18. Image-based non-contact monitoring of skin texture changed by piloerection for emotion estimation

    Science.gov (United States)

    Uchida, Mihiro; Akaho, Rina; Ogawa, Keiko; Tsumura, Norimichi

    2018-02-01

    In this paper, we find the effective feature values of skin textures captured by non-contact camera to monitor piloerection on the skin for emotion estimation. Recently, emotion estimation is required for service robots to interact with human more naturally. There are a lot of researches of estimating emotion and additional methods are required to improve emotion estimation because using only a few methods may not give enough information for emotion estimation. In the previous study, it is necessary to fix a device on the subject's arm for detecting piloerection, but the contact monitoring can be stress itself and distract the subject from concentrating in the stimuli and evoking strong emotion. So, we focused on the piloerection as the object obtained with non-contact methods. The piloerection is observed as goose bumps on the skin when the subject is emotionally moved, scared and so on. This phenomenon is caused by contraction of arrector pili muscles with the activation of sympathetic nervous system. This piloerection changes skin texture. Skin texture is important in the cosmetic industry to evaluate skin condition. Therefore, we thought that it will be effective to evaluate the condition of skin texture for emotion estimation. The evaluations were performed by extracting the effective feature values from skin textures captured with a high resolution camera. The effective feature values should have high correlation with the degree of piloerection. In this paper, we found that standard deviation of short-line inclination angles in the texture is well correlated with the degree of piloerection.

  19. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    Science.gov (United States)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  20. A Study on Adaptable Non-contact Shape Inspection System

    International Nuclear Information System (INIS)

    Kang, Young June; Park, Nak Gyu; Lee, Dong Hwan

    2005-01-01

    A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3D data of an object was calculated from the 2 dimensional image information obtained by the laser stripe using the laser triangulation. The system that use existing theory can measure the diameter of hole not only in a normal plane but also ill an incline plane. However, in the existing theory, since the lens with fixed feral length was used, the area of measurement was fixed. The simplest way to solve this problem is to change distance between a CCD camera and object. Other way is to use a zoom lens having variable focal length. In this paper, the zoom lens with variable focal length was used. Therefore, we ran experiment with magnification that is optimized according to size of object using zoom lens with variable focal length

  1. Design of novel non-contact multimedia controller for disability by using visual stimulus.

    Science.gov (United States)

    Pan, Jeng-Shyang; Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh

    2015-12-01

    The design of a novel non-contact multimedia controller is proposed in this study. Nowadays, multimedia controllers are generally used by patients and nursing assistants in the hospital. Conventional multimedia controllers usually involve in manual operation or other physical movements. However, it is more difficult for the disabled patients to operate the conventional multimedia controller by themselves; they might totally depend on others. Different from other multimedia controllers, the proposed system provides a novel concept of controlling multimedia via visual stimuli, without manual operation. The disabled patients can easily operate the proposed multimedia system by focusing on the control icons of a visual stimulus device, where a commercial tablet is used as the visual stimulus device. Moreover, a wearable and wireless electroencephalogram (EEG) acquisition device is also designed and implemented to easily monitor the user's EEG signals in daily life. Finally, the proposed system has been validated. The experimental result shows that the proposed system can effectively measure and extract the EEG feature related to visual stimuli, and its information transfer rate is also good. Therefore, the proposed non-contact multimedia controller exactly provides a good prototype of novel multimedia controlling scheme. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Non-contact assessment of obstructive sleep apnea cardiovascular biomarkers using photoplethysmography imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Jagani, Shubh; Clausi, David A.; Wong, Alexander

    2018-02-01

    Obstructive sleep apnea (OSA) affects 20% of the adult population, and is associated with cardiovascular and cognitive morbidities. However, it is estimated that up to 80% of treatable OSA cases remain undiagnosed. Cur- rent methods for diagnosing OSA are expensive, labor-intensive, and involve uncomfortable wearable sensors. This study explored the feasibility of non-contact biophotonic assessment of OSA cardiovascular biomarkers via photoplethysmography imaging (PPGI). In particular, PPGI was used to monitor the hemodynamic response to obstructive respiratory events. Sleep apnea onset was simulated using Muller's maneuver in which breathing was obstructed by a respiratory clamp. A custom PPGI system, coded hemodynamic imaging (CHI), was positioned 1 m above the bed and illuminated the participant's head with 850 nm light, providing non-intrusive illumination for night-time monitoring. A video was recorded before, during and following an apnea event at 60 fps, yielding 17 ms temporal resolution. Per-pixel absorbance signals were extracted using a Beer-Lambert derived light transport model, and subsequently denoised. The extracted hemodynamic signal exhibited dynamic temporal modulation during and following the apnea event. In particular, the pulse wave amplitude (PWA) decreased during obstructed breathing, indicating vasoconstriction. Upon successful inhalation, the PWA gradually increased toward homeostasis following a temporal phase delay. This temporal vascular tone modulation provides insight into autonomic and vascular response, and may be used to assess sleep apnea using non-contact biophotonic imaging.

  3. Comparison of the Keeler Pulsair 2000 non-contact tonometer with Goldmann applanation.

    Science.gov (United States)

    Moseley, M J; Thompson, J R; Deutsch, J; Misson, G P; Naylor, G; Tan-Yee, A; Taylor, R H; Fielder, A R

    1993-01-01

    The Pulsair 2000 non-contact tonometer (Keeler Ltd, UK) is compared with the Goldmann applanation tonometer. Data from 80 eyes were acquired by four experienced observers. A linear regression analysis showed the relationship between the instruments to be: Pulsair = 0.66 + 0.95 Goldmann. Individual components of variation were analysed by analysis of variance which indicated a significant variation in the slope of the regression equation due to observers (p = 0.02) but not to the order in which topical anaesthesia was administered. Differences between two Pulsair instruments were of marginal significance (p = 0.07). The intercept of the regression equation was unaffected by any of the components of variation. Seventy-nine per cent of averaged intraocular pressure measurements obtained with the Pulsair 2000 fell on or within +/- 3 mmHg of those measured with the Goldmann tonometer. It is concluded that the Pulsair 2000 can provide clinically useful measurements of intraocular pressure.

  4. A clinical evaluation of the non-contact tonometer.

    Science.gov (United States)

    Wittenberg, S

    1977-02-01

    Paired non-contact tonometer readings were taken on patients at the Boston City Hospital Eye Clinic before and after routine vision care that included Goldmann tonometry. The variability of NCT readings was determined and comparisons made between readings obtained with the NCT and Goldmann instruments. The regression equation relating the pre-Goldmann NCT findings (N1), to the Goldmann (G), was N1 = 1.01G + 1.97; and the equation relating the post-Goldmann NCT findings (N2), to the Goldman was N2 = .94G + 1.70. The N1 mean was 2.06 mm. higher than the mean G, while the N2 mean was .58 mm. higher than the mean G. The correlation coefficients and standard deviation of the differences for the two comparisons were, .88, 3.91, and .93, 3.07, respectively. The Goldmann findings therefore were seen to agree more closely with the NCT findings taken after them. The linear regression and correlation coefficients between the NCT and the Goldmann were generally in good agreement with those of prior studies, although the standard deviations of the differences between findings were larger in this study. This result is not surprising since no attempt was made to train Goldmann operators to criterion or to limit variability induced by differing observer criteria or by the use of only one Goldmann operator. The operators of the Goldmann tonometer had varying degrees of training as residents in ophthalmology. Interestingly, the agreement between pre-Goldmann NCT and post-Goldmann NCT findings was not good. This suggested that the taking of the Goldmann findings themselves may have had a significant effect on the tonometric readings and that the considerable time that frequently took place between the two sets of NCT readings could have affected the value. The standard deviation of the differences between pre- and post-Goldmann readings on the same patient was 3.27 as compared to that for paired readings which was 2.28. The data also showed a much better agreement between the NCT and

  5. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    Science.gov (United States)

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  6. Methods for measuring shrinkage

    OpenAIRE

    Chapman, Paul; Templar, Simon

    2006-01-01

    This paper presents findings from research amongst European grocery retailers into their methods for measuring shrinkage. The findings indicate that: there is no dominant method for valuing or stating shrinkage; shrinkage in the supply chain is frequently overlooked; data is essential in pinpointing where and when loss occurs and that many retailers collect data at the stock-keeping unit (SKU) level and do so every 6 months. These findings reveal that it is difficult to benc...

  7. A clinical comparison of the Xpert non-contact tonometer with the Goldmann applanation tonometer after penetrating keratoplasty.

    Science.gov (United States)

    Lisle, C; Ehlers, N

    2000-04-01

    To assess the agreement between the Xpert non-contact tonometer (NCT) and the Goldmann applanation tonometer in patients who have undergone penetrating keratoplasty. The study material consisted of 42 consecutive patients (43 eyes) who had undergone penetrating keratoplasty within the previous 13 months. The slope of the linear relationship between the two measurement methods did not differ significantly from 1.0. The mean difference between the methods of 0.96 mmHg was not statistically significant. The range of intraindividual differences between the methods was from -9.8 to 22.8 mmHg. The standard deviation of differences was 6.62 mmHg. The 95% limits of agreement were -12.00 to 13.94 mmHg. There was no significant correlation between the central corneal thickness, astigmatism or transplant size and the difference between the methods The Xpert NCT shows considerable variation from the Goldmann values The degree of agreement with the true IOP value remains to be shown.

  8. Sequence of oral bacterial co-adhesion and non-contact brushing

    NARCIS (Netherlands)

    van der Mei, H. C.; Rustema-Abbing, M.; Bruinsma, G. M.; Gottenbos, B.; Busscher, H. J.

    Non-contact plaque removal offers advantages in interproximal spaces, fissures, and pockets. It requires the generation of strong fluid flows and the inclusion of air bubbles to become effective. A pair of co-adhering streptococci and actinomyces has been used previously to demonstrate non-contact

  9. Non-contact acquisition of respiration and heart rates using Doppler radar with time domain peak-detection algorithm.

    Science.gov (United States)

    Xiaofeng Yang; Guanghao Sun; Ishibashi, Koichiro

    2017-07-01

    The non-contact measurement of the respiration rate (RR) and heart rate (HR) using a Doppler radar has attracted more attention in the field of home healthcare monitoring, due to the extremely low burden on patients, unconsciousness and unconstraint. Most of the previous studies have performed the frequency-domain analysis of radar signals to detect the respiration and heartbeat frequency. However, these procedures required long period time (approximately 30 s) windows to obtain a high-resolution spectrum. In this study, we propose a time-domain peak detection algorithm for the fast acquisition of the RR and HR within a breathing cycle (approximately 5 s), including inhalation and exhalation. Signal pre-processing using an analog band-pass filter (BPF) that extracts respiration and heartbeat signals was performed. Thereafter, the HR and RR were calculated using a peak position detection method, which was carried out via LABVIEW. To evaluate the measurement accuracy, we measured the HR and RR of seven subjects in the laboratory. As a reference of HR and RR, the persons wore contact sensors i.e., an electrocardiograph (ECG) and a respiration band. The time domain peak-detection algorithm, based on the Doppler radar, exhibited a significant correlation coefficient of HR of 0.92 and a correlation coefficient of RR of 0.99, between the ECG and respiration band, respectively.

  10. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  11. Reproducibility with the Keeler Pulsair 2000 non-contact tonometer.

    Science.gov (United States)

    Vernon, S A

    1995-06-01

    The IOP variation on repeated testing with the recently introduced Keeler Pulsair 2000 instrument was investigated. One hundred normal individuals (50 male and 50 female) new to the instrument had three sets of IOP recordings within a 15 minute time period. The mean of the first set of IOPs from both right and left eyes was significantly higher than those from subsequent sets (p < 0.0001 for right eyes and p = 0.01 and < 0.0002 for left eyes). This tendency increased significantly with increasing IOP. Second and third IOP sets were, however, similar indicating stabilisation of IOP measurements. The coefficient of repeatability of the instrument between second and third sets was 4.2 mm Hg for right eyes and 3.6 mm Hg for left eyes. The Pulsair 2000 passes the British standard for reproducibility of a standard test method.

  12. A comparison of hamstring muscle activity during different screening tests for non-contact ACL injury

    DEFF Research Database (Denmark)

    Husted, Rasmus S; Bencke, Jesper; Andersen, Lars Louis

    2016-01-01

    phenomenon and thereby observable independently of the type of clinical screening tests used is not known. This cross sectional study investigated the rank correlation of knee joint neuromuscular activity between three different ACL injury risk screening tests. METHODS: Sixty-two adolescent female elite......BACKGROUND: Reduced ability to activate the medial hamstring muscles during a sports-specific sidecutting movement has been found to be a potential risk factor for non-contact ACL injury. However, whether a reduced ability to activate the medial hamstring muscle is a general neuromuscular...... football and handball players (16.7±1.3years) participated in the study. Using surface electromyography (EMG) assessment, the neuromuscular activity of medial hamstring muscle (semitendinosus, ST), lateral hamstring muscle (biceps femoris, BF) and quadriceps muscle (vastus lateralis, VL) were monitored...

  13. Comparison between two non-contact techniques for art digitalization

    Science.gov (United States)

    Bianconi, F.; Catalucci, S.; Filippucci, M.; Marsili, R.; Moretti, M.; Rossi, G.; Speranzini, E.

    2017-08-01

    Many measurements techniques have been proposed for the “digitalization of objects”: structured light 3D scanner, laser scanner, high resolution camera, depth cam, thermal-cam, … Since the adoption of the European Agenda for Culture in 2007, heritage has been a priority for the Council’s work plans for culture, and cooperation at European level has advanced through the Open Method of Coordination. Political interest at EU level has steadily grown cultural and heritage stakeholders recently highlighted in the Declaration on a New Narrative for Europe: “Europe as a political body needs to recognize the value of Cultural Heritage”. Photomodelling is an innovative and extremely economical technique related to the conservation of Cultural Heritage, which leads to the creation of three-dimensional models starting from simple photographs. The aim of the research is to understand the full potential offered by this new technique and dedicated software, analysing the reliability of each instrument, with particular attention to freeware ones. An analytical comparison between photomodelling and structured light 3D scanner guarantees a first measure of the reliability of instruments, tested in the survey of several Umbrian heritage artefacts. The comparison between tests and reference models is explained using different algorithms and criteria, spatial, volumetric and superficial.

  14. Thermal screening of facial skin arterial hot spots using non-contact infrared radiometry

    International Nuclear Information System (INIS)

    Williams, E M; Heusch, A I; McCarthy, P W

    2008-01-01

    Non-contact infrared thermometry of facial skin offers advantages over less accessible internal body sites, especially when considering mass screening for febrile infectious disease. The forehead offers an obvious site, but does not present an isothermic surface, as various small arteries passing close to the surface create 'hot-spots'. The aim of this study is to use non-contact infrared (IR) thermometry to determine the link between the temperature at specific facial skin sites and clinical body temperature. A sample of 169 asymptomatic adults (age range 18–54 years) was screened with IR thermometers (Braun Thermoscan proLT for auditory meatus (AM) temperature representing clinical body temperature, and a Raytek, Raynger MX for skin surface temperature). Peak IR skin temperature was measured over the course of each posterior auricular artery (PAA) and each superficial temporal artery (STA). In a sub-group (n = 54) the peak skin temperature of the forehead's metopic region (MR) was also recorded. There were no differences (P > 0.05) between the PAA and STA at 34.2 ± 0.9 °C and 34.2 ± 0.7 °C, respectively, which were 2.5 °C cooler than the AM temperature (36.7 ± 0.5 °C, p 2 = 0.63, p < 0.001) between PAA and STA. There were no asymmetric temperature differences between the left and right sides and males had warmer skin over the MR (F, 33.6 ± 0.7 °C versus M, 34.4 ± 0.6 °C, p < 0.001). Although a lack of correlation between either PAA or STA and AM was apparent in asymptomatics, further research in symptomatics is required to determine the usefulness of these measurements in mass screening of conditions such as fever

  15. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions.

    Science.gov (United States)

    Peña-García, Pablo; Peris-Martínez, Cristina; Abbouda, Alessandro; Ruiz-Moreno, José M

    2016-02-08

    The purpose of the present study was to develop a discriminant function departing from the biomechanical parameters provided by a non-contact tonometer (Corvis-ST, Oculus Optikgeräte, Wetzlar, Germany) to distinguish subclinical keratoconus from normal eyes. 212 eyes (120 patients) were divided in two groups: 184 healthy eyes of 92 patients aged 32.99 ± 7.85 (21-73 years) and 28 eyes of 28 patients aged 37.79 ± 14.21 (17-75 years) with subclinical keratoconus. The main outcome measures were age, sex, intraocular pressure (IOP), corneal central thickness (CCT) and other specific biomechanical parameters provided by the tonometer. Correlations between all biomechanical parameters and the rest of variables were evaluated. The biomechanical measures were corrected in IOP and CCT (since these variable are not directly related with the corneal structure and biomechanical behavior) to warrant an accurate comparison between both types of eyes. Two discriminant functions were created from the set of corrected variables. The best discriminant function created depended on three parameters: maximum Deformation Amplitude (corrected in IOP and CCT), First Applanation time (corrected in CCT) and CCT. Statistically significant differences were found between groups for this function (p=2·10(-10); Mann-Withney test). The area under the Receiving Operating Characteristic was 0.893 ± 0.028 (95% confidence interval 0.838-0.949). Sensitivity and specificity were 85.7% and 82.07% respectively. These results show that the use of biomechanical parameters provided by non-contact tonometry, previous normalization, combined with the theory of discriminant functions is a useful tool for the detection of subclinical keratoconus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  17. A comparison of hamstring muscle activity during different screening tests for non-contact ACL injury.

    Science.gov (United States)

    Husted, Rasmus S; Bencke, Jesper; Andersen, Lars L; Myklebust, Grethe; Kallemose, Thomas; Lauridsen, Hanne B; Hölmich, Per; Aagaard, Per; Zebis, Mette K

    2016-06-01

    Reduced ability to activate the medial hamstring muscles during a sports-specific sidecutting movement has been found to be a potential risk factor for non-contact ACL injury. However, whether a reduced ability to activate the medial hamstring muscle is a general neuromuscular phenomenon and thereby observable independently of the type of clinical screening tests used is not known. This cross sectional study investigated the rank correlation of knee joint neuromuscular activity between three different ACL injury risk screening tests. Sixty-two adolescent female elite football and handball players (16.7±1.3years) participated in the study. Using surface electromyography (EMG) assessment, the neuromuscular activity of medial hamstring muscle (semitendinosus, ST), lateral hamstring muscle (biceps femoris, BF) and quadriceps muscle (vastus lateralis, VL) were monitored during three standardized screening tests - i.e. one-legged horizontal hop (OLH), drop vertical jump (DJ) and sidecutting (SC). Neuromuscular pre-activity was measured in the time interval 10ms prior to initial contact on a force plate. For neuromuscular hamstring muscle pre-activity, correlation analysis (Spearman correlation coefficient) showed low-to-moderate correlations between SC and 1) DJ (rs=0.34-0.36, Phamstring pre-activity share some common variance during the examined tests. However, a lack of strong correlation suggests that we cannot generalize one risk factor during one test to another test. The present data demonstrate that one-legged horizontal hop and drop vertical jump testing that are commonly used in the clinical setting does not resemble the specific neuromuscular activity patterns known to exist during sidecutting, a well known high risk movement for non-contact ACL injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Measured attenuation correction methods

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.K.; Doll, J.; Lorenz, W.J.

    1989-01-01

    Accurate attenuation correction is a prerequisite for the determination of exact local radioactivity concentrations in positron emission tomography. Attenuation correction factors range from 4-5 in brain studies to 50-100 in whole body measurements. This report gives an overview of the different methods of determining the attenuation correction factors by transmission measurements using an external positron emitting source. The long-lived generator nuclide 68 Ge/ 68 Ga is commonly used for this purpose. The additional patient dose from the transmission source is usually a small fraction of the dose due to the subsequent emission measurement. Ring-shaped transmission sources as well as rotating point or line sources are employed in modern positron tomographs. By masking a rotating line or point source, random and scattered events in the transmission scans can be effectively suppressed. The problems of measured attenuation correction are discussed: Transmission/emission mismatch, random and scattered event contamination, counting statistics, transmission/emission scatter compensation, transmission scan after administration of activity to the patient. By using a double masking technique simultaneous emission and transmission scans become feasible. (orig.)

  19. Evaluation of anti-tuberculosis antibodies in healthy contact and non-contacts persons

    International Nuclear Information System (INIS)

    Aziz, N; Bukhari, M.H; Muneer, M; Tayyab, M; Chaudhry, N.A.

    2006-01-01

    This study was conducted to see the presence of the antimycobacterial antibodies in healthy household contacts of tuberculosis patients and healthy normal subjects who have never been in contact with tuberculosis patients. A total of 200 subjects, 120 with history of household contact and 80 without such history were included in the study. Routine Haematological investigations were performed and all the sera of 200 subjects were tested who 19M, 19G and IgA anti tuberculosis antibodies using ELISA technique. There was no difference in the average age of the household contacts and non-contacts. The complaints of pyrexia, night sweats and loss of weight was more in house hold contacts as compared to non-contacts. The awareness about BCG vaccination was equal among the household contacts and non-contacts. The combined serological positivity of the household contacts was 65.8% and the combined serological positivity for non-contacts was 34.1%. There was no statistically significant difference in the presence of 19M among household contacts as compared to non-contacts. However both IgG and 19A were present in significantly higher number of household contacts as compared to non contacts. This study concludes that the persons living in the house with a patient suffering from active pulmonary tuberculosis (household contact) have more chances of being infected with Mycobacterium tuberculosis as compared to the healthy non-contacts. (author)

  20. On-line non-contact gas analysis

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    , and good agreement has been found for NO (e.g. deviations of 1-5% for NO at 1200 °C). Practical highresolution measurements at the AVV2 boiler are analysed, and detection limits for the NO are discussed. The developed tools and results will be used in the future projects, e.g. fast measurements of the gas...

  1. Reliability of the non-contact tono-pachymeter Tonopachy NT-530P in healthy eyes.

    Science.gov (United States)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Giraldez, M Jesus; Yebra-Pimentel, Eva

    2013-05-01

    Non-contact Tonopachy NT-530P (Nidek Co., LTD) provides intraocular pressure (IOP) and central corneal thickness (CCT) measurements. This study assesses the reliability and repeatability of its IOP measurements in young healthy adult subjects. IOP was determined in the right eye of 64 healthy patients using Tonopachy followed by the Canon TX-10 non-contact and Goldmann applanation (GAT) tonometers. Tonopachy IOP measurements were corrected (Tonopachy-C) or not (Tonopachy-NC) by the instrument for central corneal thickness. Central corneal thickness measurements provided by Tonopachy were also used to correlate (Pearson's coefficient) central corneal thickness with the GAT and Canon TX-10 IOPs. Repeatability of Tonopachy and GAT was assessed in the right eye of 31 subjects in two separate sessions one week apart. Differences between pairs of instruments and between sessions were determined using Bland-Altman plots. The coefficient of repeatability was calculated as the 95% limits of agreement (LoA) of differences between the two sessions. Tonopachy-NC, Tonopachy-C, Canon TX-10 and the Goldmann tonometers showed a mean IOP of 14.62, 15.64, 15.02 and 14.68 mmHg, respectively. Tonopachy-NC and Canon TX-10 readings did not differ significantly from the Goldmann (p > 0.05), with close agreement with both tonometers (GAT versus Tonopachy-NC: -3.84 to 3.96 mmHg; Goldmann versus Canon TX-10: -4.75 to 4.07 mmHg). Tonopachy-C readings differed significantly from Goldmann (mean difference -0.96 mmHg, p = 0.001, LoA from -5.09 to 3.17). Coefficients of repeatability were ± 3.70, ± 3.14 and ± 3.33 mmHg for GAT, Tonopachy-NC and Tonopachy-C, respectively. Central corneal thickness measured with Tonopachy was 530.42 ± 34.96 μm. There was a significant correlation between central corneal thickness and IOP for all tonometers except Tonopachy-C. Reasonable agreement was observed between the Goldmann and Tonopachy. This instrument provides reliable and repeatable IOP

  2. [Comparative study between the non-contact pneumotonometer Canon TX10 and the Goldmann tonometer].

    Science.gov (United States)

    Sánchez-Tocino, H; Bringas-Calvo, R; Iglesias-Cortiñas, D

    2005-11-01

    To study and contrast the measurement of intraocular pressure (IOP) with an air non-contact tonometer (Canon TX-10) with that obtained with the Goldmann tonometer. Intraocular pressure was measured in 649 subjects with both the pneumotonometer and the Goldmann tonometer. Statistically significant differences between the results obtained by both tonometers and the influence of variables including age, corneal thickness, and corneal curvature were studied. The mean age of the study population was 48.5 years, standard deviation (SD) 7.6 years, with a range of 22-68 years. The mean IOP was 15.4, SD 2.7 mm Hg, (range 8-25) with the Goldmann tonometer and 15.6, SD 2.9 mm Hg (range 8-29) with the pneumotonometer. There was a statistically significant difference between the measurements using the air pneumotonometer and the Goldmann tonometer (ptonometers was 0.24, SD 2 mm Hg. Seventy-five percent of measurements were in the range of +/-1, 85% in +/-2, and 95% in the Bland and Altman's interval of 4.42, -3.94. These differences were more significant for higher values of IOP, in thicker corneas and in corneas with greater curvature. A correlation between IOP and age was not found (p=0.247). The pneumotonometer is a useful and reliable instrument for measuring the IOP providing there is additional checking in cases with borderline values of IOP, or excessive corneal thickness and/or curvature.

  3. INNOVATIVE NON-CONTACT METROLOGY SOLUTIONS FOR LARGE OPTICAL TELESCOPES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has unique non-contact precision metrology requirements for dimensionally inspecting the global position and orientation of large and highly-polished...

  4. A non-contact high resolution piezoelectric film based sensor for monitoring breathing during sleep

    Science.gov (United States)

    Johnston, Robert; Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Misaki, Yukinori

    2017-07-01

    Currently, research for measuring human breathing during sleep is actively being conducted into using technologies that include piezoelectric, ultrasonic, microwave and infrared rays. But various problems have led to not many practical applications. As such, it was decided to develop a PVDF (PolyVinylidene DiFluoride) based non-contact high resolution sensor for monitoring a subject's breathing as they sleep. Development of the high resolution respiration sensor was possible through the use of PVDF piezoelectric film and the development of a new sensor configuration. Although there was already an existing respiration sensor research resulting product available, is weak signal strength made it very sensitive to noise and difficult to measure respiration accurately. As such, complicated circuits and signal processing were needed. A new high resolution breathing sensor was developed with greater signal strength and with just the use of some simple circuits and signal processing, was able to accurately measure subject breathing. Also due to the greater signal strength, it became possible to measure both heart rate and respiration rate simultaneously.

  5. [Prospective comparison of the new indentation tonometer TGdC-01, the non-contact tonometer PT100 and the conventional Goldmann applanation tonometer].

    Science.gov (United States)

    Müller, A; Godenschweger, L; Lang, G E; Kampmeier, J

    2004-09-01

    This study aimed to compare the results of newer tonometric techniques with standard tonometry for the examples of the Goldmann applanation tonometry (GAT), the indentation tonometer "TGDc-01" and the non-contact tonometer "PT 100". The study was conducted on a total of 52 healthy subjects. The IOP was measured in each subject on both eyes with all three methods. There were 27 males (51.9 %), 25 females (48.1 %) with an average age of 28.5 years, with a minimum of 13 and a maximum of 79 years. There was no statistically significant difference between the non-contact and the Goldmann applanation tonometry. The measurements were 0.4 mmHg lower, no difference for the left or right side was seen. For IOP higher than 15 mmHg - 0.88 mmHg lower and for IOP lower 15 mmHg - 0.15 mmHg. The results for the "TGDc01" were 0.82 mmHg lower than GAT, the standard deviation was a little higher with 2.9 mmHg compared to 2.67 mmHg for GAT. For IOP higher than 15 mmHg they rose up to - 2.28 mmHg, for IOP lower than 15 mmHg the results for "TGDc-01" were only - 0.2 mmHg lower. There was also an effect with respect to the side, on the right eye the difference was significant with 3.03 mmHg (p = 0.006), in contrast to the left eye with 2.69 mmHg (p = 0.235). For "TGDc01" the standard deviation was higher with 2.9 mmHg compared to 2.6 mmHg for "PT 100". The non-contact tonometer showed no clinical relevant difference compared with GAT for measuring IOP. The indentation tonometer showed differences for precision, for higher tension IOP the measurement was lower compared with GAT. There was also a significant side difference using the "TGDc-01".

  6. Non-contacting actuation by radiation powered telemetry system

    International Nuclear Information System (INIS)

    Wang Xiaolin; Zhao Chunnong; Kapitola, Peter; Jacob, John; Ju Li; Blair, David G

    2004-01-01

    In laser interferometer gravitational wave detectors, local control relative to vibration isolated parts of a suspension chain may introduce noise through wires. In this paper we present a feasibility study of a wireless signal transmission method for control systems. A prototype system provides a wireless two-way signal transmission over short distances at more than 800 kbits s -1 . Wireless electric power for the system may be provided using a diode laser and solar cells with up to 33% conversion efficiency

  7. Quantitative analysis of tip-sample interaction in non-contact scanning force spectroscopy

    International Nuclear Information System (INIS)

    Palacios-Lidon, Elisa; Colchero, Jaime

    2006-01-01

    Quantitative characterization of tip-sample interaction in scanning force microscopy is fundamental for optimum image acquisition as well as data interpretation. In this work we discuss how to characterize the electrostatic and van der Waals contribution to tip-sample interaction in non-contact scanning force microscopy precisely. The spectroscopic technique presented is based on the simultaneous measurement of cantilever deflection, oscillation amplitude and frequency shift as a function of tip-sample voltage and tip-sample distance as well as on advanced data processing. Data are acquired at a fixed lateral position as interaction images, with the bias voltage as fast scan, and tip-sample distance as slow scan. Due to the quadratic dependence of the electrostatic interaction with tip-sample voltage the van der Waals force can be separated from the electrostatic force. Using appropriate data processing, the van der Waals interaction, the capacitance and the contact potential can be determined as a function of tip-sample distance. The measurement of resonance frequency shift yields very high signal to noise ratio and the absolute calibration of the measured quantities, while the acquisition of cantilever deflection allows the determination of the tip-sample distance

  8. Evaluation techniques of accuracy characteristics for non-contact photonic track inspection system

    Science.gov (United States)

    Popov, Dmitry V.; Ryabichenko, Roman B.; Krivosheina, Elena A.

    2005-06-01

    The most important task in Moscow metro is increasing safety of railway traffic. For safety purposes six track parameters are measured in Moscow Metro with help of track measurement car. Equipment mounted on this car works only in contact mode and doesn't provide modem requirements for accuracy. Also important task is measurement at high speeds, but contact technology limits speed of movement up to 25mph on rail switches. Current system can't measure in real-time mode. For decision of these field of tasks non-contact photonic measurement system (KSIR) is constructed. The KSIR works at speeds up to 70 mph and measure seven track parameters. The KSIR contains four subsystems: rail wear, height and track gauge measurement (BFSM); rail slump measurement (FTP); contact rail measurement (FKR); speed, level and car locating (USI). KSIR contains five CCD matrix cameras, four line CCD cameras, five infrared stripe lasers and four spot infrared lasers. Laser forms shape on the rail. CCD-camera acquires rail image and transfers it into the digital signal processor which produces preliminary calculation ofrail shape. Then image is transferred into the central computer to calculate values of rail characteristics. Angles between photonic unit and rail bring distortions in images from cameras. Additional distortions are caused by short-focus optics and small distance between camera and track. This distance is limited by structure clearance. The transformation algorithms for distortions elimination are applied. It's based on surfaces spline-approximation. As a result the KSIR calculates coefficients of approximating polynomials. The calibration is performed for checking accuracy of measurement in BFSM, FTP and FKR units. Evaluation techniques of accuracy characteristics are considered.

  9. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)

    2006-10-15

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.

  10. Clinical evaluation of the Keeler Pulsair 3000 non-contact tonometer.

    Science.gov (United States)

    Lawson-Kopp, Wendy; DeJong, Amy; Yudcovitch, Lorne; Williams, Salisa; Kohl, Paul; Yolton, Robert L

    2002-02-01

    The Keeler Pulsair 3000 is a recently introduced non-contact tonometer that is especially useful for children and those for whom sitting at a slit-lamp or table-mounted unit would be difficult. In this project, intraocular pressures (IOPs) measured by Keeler Pulsair 3000 and Goldmann tonometers were compared to assess validity and reliability of the Pulsair 3000 data. Two Pulsair 3000 IOPs (each the mean of four individual air-puff readings) and two Goldmann IOPs were measured for each eye of 113 subjects. Subjects were also asked which measurement technique they preferred. IOPs ranged from 9 to 28 mmHg. Correlations between the two Goldmann IOPs measured for the right and left eyes were 0.98 and 0.97, respectively. These values are higher than correlations between Pulsair and Goldmann measurements (0.86 to 0.91). Pulsair 3000 IOPs were slightly above Goldmann values for pressures of less than 15 mmHg and slightly below for IOPs greater than 15 mmHg. Extrapolation to a Goldmann IOP of 30 mmHg suggests the Pulsair 3000 would read about 6% (1.7 mmHg) too low at this IOP. Eight eyes (7%) had differences between Pulsair 3000 and Goldmann IOP readings of 5.0 mmHg or more. Single outlier pressures accounted for these differences in three out of the eight eyes. In the range of 10 to 24 mmHg, the Pulsair 3000 tonometer produced IOP readings that corresponded well with Goldmann values for most eyes and was preferred by the majority of subjects who indicated a preference. The Pulsair 3000 is relatively easy to use by technicians and has numerous special applications in optometric practice (e.g. measuring IOPs for pediatric patients and those with compromised corneas).

  11. Air microjet system for non-contact force application and the actuation of micro-structures

    International Nuclear Information System (INIS)

    Khare, S M; Venkataraman, V

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s −1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable. (technical note)

  12. Air microjet system for non-contact force application and the actuation of micro-structures

    Science.gov (United States)

    Khare, S. M.; Venkataraman, V.

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s-1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

  13. Acute non-contact anterior cruciate ligament tears are associated with relatively increased vastus medialis to semimembranosus cross-sectional area ratio: a case-control retrospective MR study.

    Science.gov (United States)

    Wieschhoff, Ged G; Mandell, Jacob C; Czuczman, Gregory J; Nikac, Violeta; Shah, Nehal; Smith, Stacy E

    2017-11-01

    Hamstring muscle deficiency is increasingly recognized as a risk factor for anterior cruciate ligament (ACL) tears. The purpose of this study is to evaluate the vastus medialis to semimembranosus cross-sectional area (VM:SM CSA) ratio on magnetic resonance imaging (MRI) in patients with ACL tears compared to controls. One hundred knee MRIs of acute ACL tear patients and 100 age-, sex-, and side-matched controls were included. Mechanism of injury, contact versus non-contact, was determined for each ACL tear subject. The VM:SM CSA was measured on individual axial slices with a novel method using image-processing software. One reader measured all 200 knees and the second reader measured 50 knees at random to assess inter-reader variability. The intraclass correlation coefficient (ICC) was calculated to evaluate for correlation between readers. T-tests were performed to evaluate for differences in VM:SM CSA ratios between the ACL tear group and control group. The ICC for agreement between the two readers was 0.991 (95% confidence interval 0.984-0.995). Acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.44 vs. 1.28; p = 0.005). Non-contact acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.48 vs. 1.20; p = 0.003), whereas contact acute ACL tear patients do not (1.23 vs. 1.26; p = 0.762). Acute non-contact ACL tears are associated with increased VM:SM CSA ratios, which may imply a relative deficiency in hamstring strength. This study also demonstrates a novel method of measuring the relative CSA of muscles on MRI.

  14. Acute non-contact anterior cruciate ligament tears are associated with relatively increased vastus medialis to semimembranosus cross-sectional area ratio: a case-control retrospective MR study

    International Nuclear Information System (INIS)

    Wieschhoff, Ged G.; Mandell, Jacob C.; Czuczman, Gregory J.; Nikac, Violeta; Shah, Nehal; Smith, Stacy E.

    2017-01-01

    Hamstring muscle deficiency is increasingly recognized as a risk factor for anterior cruciate ligament (ACL) tears. The purpose of this study is to evaluate the vastus medialis to semimembranosus cross-sectional area (VM:SM CSA) ratio on magnetic resonance imaging (MRI) in patients with ACL tears compared to controls. One hundred knee MRIs of acute ACL tear patients and 100 age-, sex-, and side-matched controls were included. Mechanism of injury, contact versus non-contact, was determined for each ACL tear subject. The VM:SM CSA was measured on individual axial slices with a novel method using image-processing software. One reader measured all 200 knees and the second reader measured 50 knees at random to assess inter-reader variability. The intraclass correlation coefficient (ICC) was calculated to evaluate for correlation between readers. T-tests were performed to evaluate for differences in VM:SM CSA ratios between the ACL tear group and control group. The ICC for agreement between the two readers was 0.991 (95% confidence interval 0.984-0.995). Acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.44 vs. 1.28; p = 0.005). Non-contact acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.48 vs. 1.20; p = 0.003), whereas contact acute ACL tear patients do not (1.23 vs. 1.26; p = 0.762). Acute non-contact ACL tears are associated with increased VM:SM CSA ratios, which may imply a relative deficiency in hamstring strength. This study also demonstrates a novel method of measuring the relative CSA of muscles on MRI. (orig.)

  15. Acute non-contact anterior cruciate ligament tears are associated with relatively increased vastus medialis to semimembranosus cross-sectional area ratio: a case-control retrospective MR study

    Energy Technology Data Exchange (ETDEWEB)

    Wieschhoff, Ged G.; Mandell, Jacob C.; Czuczman, Gregory J.; Nikac, Violeta; Shah, Nehal; Smith, Stacy E. [Brigham and Women' s Hospital, Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States)

    2017-11-15

    Hamstring muscle deficiency is increasingly recognized as a risk factor for anterior cruciate ligament (ACL) tears. The purpose of this study is to evaluate the vastus medialis to semimembranosus cross-sectional area (VM:SM CSA) ratio on magnetic resonance imaging (MRI) in patients with ACL tears compared to controls. One hundred knee MRIs of acute ACL tear patients and 100 age-, sex-, and side-matched controls were included. Mechanism of injury, contact versus non-contact, was determined for each ACL tear subject. The VM:SM CSA was measured on individual axial slices with a novel method using image-processing software. One reader measured all 200 knees and the second reader measured 50 knees at random to assess inter-reader variability. The intraclass correlation coefficient (ICC) was calculated to evaluate for correlation between readers. T-tests were performed to evaluate for differences in VM:SM CSA ratios between the ACL tear group and control group. The ICC for agreement between the two readers was 0.991 (95% confidence interval 0.984-0.995). Acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.44 vs. 1.28; p = 0.005). Non-contact acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.48 vs. 1.20; p = 0.003), whereas contact acute ACL tear patients do not (1.23 vs. 1.26; p = 0.762). Acute non-contact ACL tears are associated with increased VM:SM CSA ratios, which may imply a relative deficiency in hamstring strength. This study also demonstrates a novel method of measuring the relative CSA of muscles on MRI. (orig.)

  16. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models

    International Nuclear Information System (INIS)

    Tarassenko, L; Villarroel, M; Guazzi, A; Jorge, J; Clifton, D A; Pugh, C

    2014-01-01

    Remote sensing of the reflectance photoplethysmogram using a video camera typically positioned 1 m away from the patient’s face is a promising method for monitoring the vital signs of patients without attaching any electrodes or sensors to them. Most of the papers in the literature on non-contact vital sign monitoring report results on human volunteers in controlled environments. We have been able to obtain estimates of heart rate and respiratory rate and preliminary results on changes in oxygen saturation from double-monitored patients undergoing haemodialysis in the Oxford Kidney Unit. To achieve this, we have devised a novel method of cancelling out aliased frequency components caused by artificial light flicker, using auto-regressive (AR) modelling and pole cancellation. Secondly, we have been able to construct accurate maps of the spatial distribution of heart rate and respiratory rate information from the coefficients of the AR model. In stable sections with minimal patient motion, the mean absolute error between the camera-derived estimate of heart rate and the reference value from a pulse oximeter is similar to the mean absolute error between two pulse oximeter measurements at different sites (finger and earlobe). The activities of daily living affect the respiratory rate, but the camera-derived estimates of this parameter are at least as accurate as those derived from a thoracic expansion sensor (chest belt). During a period of obstructive sleep apnoea, we tracked changes in oxygen saturation using the ratio of normalized reflectance changes in two colour channels (red and blue), but this required calibration against the reference data from a pulse oximeter. (paper)

  17. Non-contact tonometry synchronized with cardiac rhythm and its relationship with blood pressure.

    Science.gov (United States)

    Queirós, A; González-Méijome, J M; Fernandes, P; Jorge, J; Almeida, J B; Parafita, M A

    2006-07-01

    The main objectives of this study were to determine the differences between non-synchronized intraocular pressure (IOP_N) and intraocular pressure readings synchronized with cardiac pulse and try to determine if these parameters are related to blood pressure values. One hundred and sixty-five right eyes from 165 volunteers (107 females, 58 males) aged from 19 to 73 years (mean +/- S.D., 29.93 +/- 11.17) were examined with the Nidek NT-4000, a new non-contact tonometer that allows the measurement of IOP synchronized with the cardiac rhythm. IOP measurements in the four different modes of synchronization were taken in a randomized order. Three measures of each parameter were taken and then averaged. The blood pressure was determined three times with a portable manometer and mean values of systolic and diastolic pressure and the pulse rate were computed. Mean arterial pressure (MAP) was determined as being 1/3 of systolic plus 2/3 of diastolic blood pressure. The mean +/- S.D. values for the standard intraocular pressure (IOP_N: 14.76 +/- 2.86), intraocular pressure in the systolic instant or peak (IOP_P: 14.99 +/- 2.85), intraocular pressure in the middle instant between heartbeats or middle (IOP_M: 14.68 +/- 2.76), and intraocular pressure in the diastolic instant or bottom (IOP_B: 13.86 +/- 2.61) were obtained. The IOP_P was higher than the remaining values. A significant difference in mean IOP existed between IOP_B and the remaining modes of measuring (p non-synchronized and the remaining synchronized parameters in a significant way. Other than a weak association with MAP, no significant correlation between IOP and BP was found. The measurements of IOP readings for the three modes are consistent with timings during the cardiac cycle and IOP pulse cycle.

  18. Non-contact optoacoustic imaging with focused air-coupled transducers

    Energy Technology Data Exchange (ETDEWEB)

    Deán-Ben, X. Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Pang, Genny A.; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); School of Medicine, Technische Universität München (TUM), Munich (Germany); Montero de Espinosa, Francisco [CSIC, Institute of Physics and Communication Technologies, Madrid (Spain)

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  19. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  20. Application and development of non contact angle-wide viewing system in vitreous retinal surgery

    Directory of Open Access Journals (Sweden)

    Rong-Hua He

    2016-07-01

    Full Text Available Wide-angle viewing system as an important auxiliary device can clearly observe the whole fundus field of vision in vitreous surgery, which enable vitreoretinal surgery more efficient, safer and more effective. So it has very high application value in ophthalmologic operation. In this paper, we studied the development and application of wide-angle viewing system in vitreoretinal surgery in recent years, from which we summed up the advantage of non-contact wide-angle viewing system in clinical field, and pointed out the shortcomings. The ultimate goal is to make the non-contact wide-angle viewing system better applied in vitreous surgery.

  1. Acanthamoeba keratitis in a non-contact lens wearer with human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, Birgitte Rønde; Kronborg, Gitte

    2003-01-01

    , and was treated with various topical antibiotics and steroids. 13 months after symptom onset the eye was removed owing to serious scarring of cornea and unbearable pain. Microbiological and histopathological examination of the cornea showed Acanthamoeba. In non-contact lens wearers suffering from Acanthamoeba......Acanthamoeba keratitis is potentially blinding and often associated with contact lens wearing. A human immunodeficiency virus (HIV)-positive patient, a non-contact lens wearer, presented with keratitis. She experienced a protracted course of disease, characterized by exacerbations and remissions...

  2. Improvement in abdominal and flank contouring by a novel adipocyte-selective non-contact radiofrequency device.

    Science.gov (United States)

    Choi, Sun Young; Kim, Young Jae; Kim, So Yeon; Lee, Woo Jin; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Won, Chonghyun

    2018-05-07

    The demand for undergoing subcutaneous fat reduction has been gradually increasing, and there are many methods and devices for performing non-surgical and non-invasive fat reduction, such as high-intensity focused ultrasound, cryolipolysis, radiofrequency (RF) devices, and lasers. This study evaluated the efficacy and safety of a novel adipocyte-selective non-contact RF device for improving abdominal contouring in Asian subjects. Twenty-four Asian subjects with abundant subcutaneous abdominal and love handle fat tissues were enrolled in this prospective clinical study. They received six 45-min weekly treatments with an RF field device over the abdominal and love handle regions. The body mass index and abdominal circumference were measured at baseline and at 4 and 8 weeks post the last treatment. The thickness of the abdomen and depth of subcutaneous abdominal fat tissue were respectively assessed using calipers and abdominal ultrasonography. A subset of 15 subjects was selected by randomization for fat volume measurement via abdominal CT. For safety evaluation, serum lipid, and liver-related blood tests were performed at baseline and at the sixth treatment session. Subjects rated their heat perception level using a four point scale and their pain score using an 11-point visual analog scale during RF treatment. Twenty-four subjects (21 females and 3 males) completed this study with an 8-week follow-up. The average decreases in abdominal circumference at 4 and 8 weeks post treatment were 3.48 ± 2.11 cm (P < 0.001) and 5.12 ± 0.47 cm (P < 0.001), respectively. The average decreases in abdominal fat thickness at 4 and 8 weeks treatment were 0.27 ± 0.61 cm (P = 0.041) and 0.47 ± 0.60 cm (P = 0.001), respectively. The average decreases in subcutaneous fat tissue depth at 4 and 8 weeks post treatment were 0.16 ± 0.43 cm (P = 0.091) and 0.34 ± 0.39 cm (P < 0.001), respectively. However, there was no

  3. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    Science.gov (United States)

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  4. Development of a non-contact diagnostic tool for high power lasers

    Science.gov (United States)

    Simmons, Jed A.; Guttman, Jeffrey L.; McCauley, John

    2016-03-01

    High power lasers in excess of 1 kW generate enough Rayleigh scatter, even in the NIR, to be detected by silicon based sensor arrays. A lens and camera system in an off-axis position can therefore be used as a non-contact diagnostic tool for high power lasers. Despite the simplicity of the concept, technical challenges have been encountered in the development of an instrument referred to as BeamWatch. These technical challenges include reducing background radiation, achieving high signal to noise ratio, reducing saturation events caused by particulates crossing the beam, correcting images to achieve accurate beam width measurements, creating algorithms for the removal of non-uniformities, and creating two simultaneous views of the beam from orthogonal directions. Background radiation in the image was reduced by the proper positioning of the back plane and the placement of absorbing materials on the internal surfaces of BeamWatch. Maximizing signal to noise ratio, important to the real-time monitoring of focus position, was aided by increasing lens throughput. The number of particulates crossing the beam path was reduced by creating a positive pressure inside BeamWatch. Algorithms in the software removed non-uniformities in the data prior to generating waist width, divergence, BPP, and M2 results. A dual axis version of BeamWatch was developed by the use of mirrors. By its nature BeamWatch produced results similar to scanning slit measurements. Scanning slit data was therefore taken and compared favorably with BeamWatch results.

  5. Automatic detection of whole night snoring events using non-contact microphone.

    Directory of Open Access Journals (Sweden)

    Eliran Dafna

    Full Text Available OBJECTIVE: Although awareness of sleep disorders is increasing, limited information is available on whole night detection of snoring. Our study aimed to develop and validate a robust, high performance, and sensitive whole-night snore detector based on non-contact technology. DESIGN: Sounds during polysomnography (PSG were recorded using a directional condenser microphone placed 1 m above the bed. An AdaBoost classifier was trained and validated on manually labeled snoring and non-snoring acoustic events. PATIENTS: Sixty-seven subjects (age 52.5 ± 13.5 years, BMI 30.8 ± 4.7 kg/m(2, m/f 40/27 referred for PSG for obstructive sleep apnea diagnoses were prospectively and consecutively recruited. Twenty-five subjects were used for the design study; the validation study was blindly performed on the remaining forty-two subjects. MEASUREMENTS AND RESULTS: To train the proposed sound detector, >76,600 acoustic episodes collected in the design study were manually classified by three scorers into snore and non-snore episodes (e.g., bedding noise, coughing, environmental. A feature selection process was applied to select the most discriminative features extracted from time and spectral domains. The average snore/non-snore detection rate (accuracy for the design group was 98.4% based on a ten-fold cross-validation technique. When tested on the validation group, the average detection rate was 98.2% with sensitivity of 98.0% (snore as a snore and specificity of 98.3% (noise as noise. CONCLUSIONS: Audio-based features extracted from time and spectral domains can accurately discriminate between snore and non-snore acoustic events. This audio analysis approach enables detection and analysis of snoring sounds from a full night in order to produce quantified measures for objective follow-up of patients.

  6. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch

    1997-01-01

    to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...... is applied to nearly all types of measurements today....

  7. Non-contact detection of cardiac rate based on visible light imaging device

    Science.gov (United States)

    Zhu, Huishi; Zhao, Yuejin; Dong, Liquan

    2012-10-01

    We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.

  8. New method of noncontact temperature measurement in on-line textile production

    Science.gov (United States)

    Cheng, Xianping; Song, Xing-Li; Deng, Xing-Zhong

    1993-09-01

    Based on the condition of textile production the method of infrared non-contact temperature measurement is adcpted in the heat-setting and drying heat-treatment process . This method is used to monitor the moving cloth. The temperature of the cloth is displayed rapidly and exactly. The principle of the temperature measurement is analysed theoretically in this paper. Mathematical analysis and calculation are used for introducing signal transmitting method. Adopted method of combining software with hardware the temperature is corrected and compensated with the aid of a single-chip microcomputer. The results of test indicate that the application of temperature measurement instrument provides reliable parameters in the quality control. And it is an important measure on improving the quality of products.

  9. Improved protein structure reconstruction using secondary structures, contacts at higher distance thresholds, and non-contacts.

    Science.gov (United States)

    Adhikari, Badri; Cheng, Jianlin

    2017-08-29

    Residue-residue contacts are key features for accurate de novo protein structure prediction. For the optimal utilization of these predicted contacts in folding proteins accurately, it is important to study the challenges of reconstructing protein structures using true contacts. Because contact-guided protein modeling approach is valuable for predicting the folds of proteins that do not have structural templates, it is necessary for reconstruction studies to focus on hard-to-predict protein structures. Using a data set consisting of 496 structural domains released in recent CASP experiments and a dataset of 150 representative protein structures, in this work, we discuss three techniques to improve the reconstruction accuracy using true contacts - adding secondary structures, increasing contact distance thresholds, and adding non-contacts. We find that reconstruction using secondary structures and contacts can deliver accuracy higher than using full contact maps. Similarly, we demonstrate that non-contacts can improve reconstruction accuracy not only when the used non-contacts are true but also when they are predicted. On the dataset consisting of 150 proteins, we find that by simply using low ranked predicted contacts as non-contacts and adding them as additional restraints, can increase the reconstruction accuracy by 5% when the reconstructed models are evaluated using TM-score. Our findings suggest that secondary structures are invaluable companions of contacts for accurate reconstruction. Confirming some earlier findings, we also find that larger distance thresholds are useful for folding many protein structures which cannot be folded using the standard definition of contacts. Our findings also suggest that for more accurate reconstruction using predicted contacts it is useful to predict contacts at higher distance thresholds (beyond 8 Å) and predict non-contacts.

  10. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Science.gov (United States)

    Rimayanti, Ulfah; Kiuchi, Yoshiaki; Uemura, Shohei; Takenaka, Joji; Mochizuki, Hideki; Kaneko, Makoto

    2014-01-01

    To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP) reading changes caused by wearing soft contact lenses (CLs). One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL), with -5.0 diopters (D), -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  11. Design and Optimal Research of a Non-Contact Adjustable Magnetic Adhesion Mechanism for a Wall-Climbing Welding Robot

    Directory of Open Access Journals (Sweden)

    Minghui Wu

    2013-01-01

    Full Text Available Wall-climbing welding robots (WCWRs can replace workers in manufacturing and maintaining large unstructured equipment, such as ships. The adhesion mechanism is the key component of WCWRs. As it is directly related to the robot's ability in relation to adsorbing, moving flexibly and obstacle-passing. In this paper, a novel non-contact adjustably magnetic adhesion mechanism is proposed. The magnet suckers are mounted under the robot's axils and the sucker and wall are in non-contact. In order to pass obstacles, the sucker and the wheel unit can be pulled up and pushed down by a lifting mechanism. The magnetic adhesion force can be adjusted by changing the height of the gap between the sucker and the wall by the lifting mechanism. In order to increase the adhesion force, the value of the sucker's magnetic energy density (MED is maximized by optimizing the magnet sucker's structure parameters with a finite element method. Experiments prove that the magnetic adhesion mechanism has enough adhesion force and that the WCWR can complete wall-climbing work within a large unstructured environment.

  12. Simulated non-contact atomic force microscopy for GaAs surfaces based on real-space pseudopotentials

    International Nuclear Information System (INIS)

    Kim, Minjung; Chelikowsky, James R.

    2014-01-01

    We simulate non-contact atomic force microscopy (AFM) with a GaAs(1 1 0) surface using a real-space ab initio pseudopotential method. While most ab initio simulations include an explicit model for the AFM tip, our method does not introduce the tip modeling step. This approach results in a considerable reduction of computational work, and also provides complete AFM images, which can be directly compared to experiment. By analyzing tip-surface interaction forces in both our results and previous ab initio simulations, we find that our method provides very similar force profile to the pure Si tip results. We conclude that our method works well for systems in which the tip is not chemically active.

  13. Channel box dimension measuring method

    International Nuclear Information System (INIS)

    Oshima, Hirotake; Jo, Hiroto.

    1994-01-01

    The present invention provides a method for measuring the entire length of a channel box of a fuel assembly of a BWR type reactor. Namely, four sensors are used as one set that generate ultrasonic waves from oblique upper portion, oblique lower portion, upper portion and lower portion of the channel box respectively. The distances between the four sensors and each of the portions of the channel box are measured respectively for both of a reference member and a member to be measured. The entire length of the channel box is measured by calculating the measured values and the angles of the obliquely disposed sensors according to a predetermined formula. According to the method of the present invention, the inclination of the channel box to be measured can be corrected. In addition, accuracy of the measurement is improved and the measuring time is saved as well as the measuring device and operation can be simplified. (I.S.)

  14. An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors.

    Science.gov (United States)

    Foussier, Jerome; Teichmann, Daniel; Jia, Jing; Misgeld, Berno; Leonhardt, Steffen

    2014-05-09

    Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min(-1) (0.3 min(-1)) and -0.7 bpm (1.7 bpm) (compared to -0.2 min(-1) (0.4 min(-1)) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average total computational time needed

  15. Method for biological tissue temperature measuring in the area of laser radiation exposure with a small size beam profile during laser welding

    Science.gov (United States)

    Ryabkin, Dmitrii I.

    2018-04-01

    Connection is not strong enough In case of insufficient or excessive temperature of the laser welding. As a result, the temperature measurement in laser welding is an important problem. Measurement area surface is small (3.12 mm2) and measurements shall be carried out by a Non-contact method, which makes them challenging. Method of temperature measurement by an infrared sensor in two positions has been offered. This method allows you to measure the temperature at a distance of up to 5 cm from the measured area with an accuracy of 8%.

  16. Acanthamoeba keratitis in a non-contact lens wearer with human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, Birgitte Rønde; Kronborg, Gitte

    2003-01-01

    Acanthamoeba keratitis is potentially blinding and often associated with contact lens wearing. A human immunodeficiency virus (HIV)-positive patient, a non-contact lens wearer, presented with keratitis. She experienced a protracted course of disease, characterized by exacerbations and remissions......, and was treated with various topical antibiotics and steroids. 13 months after symptom onset the eye was removed owing to serious scarring of cornea and unbearable pain. Microbiological and histopathological examination of the cornea showed Acanthamoeba. In non-contact lens wearers suffering from Acanthamoeba...... keratitis the diagnosis is delayed, pathognomonic features are often not seen and visual outcome is usually poor. There is no known relation between HIV infection and Acanthamoeba keratitis....

  17. Secondary seal effects in hydrostatic non-contact seals for reactor coolant pump shaft

    International Nuclear Information System (INIS)

    Fujita, T.; Koga, T.; Tanoue, H.; Hirabayashi, H.

    1987-01-01

    The paper presents a seal flow analysis in a hydrostatic non-contact seal for a PWR coolant pump shaft. A description is given of the non-contact seal for the reactor coolant pump. Results are presented for a distortion analysis of the seal ring, along with the seal flow characteristics and the contact pressure profiles of the secondary seals. The results of the work confirm previously reported findings that the seal ring distortion is sensitive to the o-ring location (which was placed between the ceramic seal face and the seal ring retainer). The paper concludes that the seal flow characteristics and the tracking performance depend upon the dynamic properties of the secondary seal. (U.K.)

  18. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study.

    Directory of Open Access Journals (Sweden)

    Miguel Á Ariza-Gracia

    Full Text Available The mechanical response of the cornea subjected to a non-contact air-jet tonometry diagnostic test represents an interplay between its geometry, the corneal material behavior and the loading. The objective is to study this interplay to better understand and interpret the results obtained with a non-contact tonometry test. A patient-specific finite element model of a healthy eye, accounting for the load free configuration, was used. The corneal tissue was modeled as an anisotropic hyperelastic material with two preferential directions. Three different sets of parameters within the human experimental range obtained from inflation tests were considered. The influence of the IOP was studied by considering four pressure levels (10-28 mmHg whereas the influence of corneal thickness was studied by inducing a uniform variation (300-600 microns. A Computer Fluid Dynamics (CFD air-jet simulation determined pressure loading exerted on the anterior corneal surface. The maximum apex displacement showed a linear variation with IOP for all materials examined. On the contrary, the maximum apex displacement followed a cubic relation with corneal thickness. In addition, a significant sensitivity of the apical displacement to the corneal stiffness was also obtained. Explanation to this behavior was found in the fact that the cornea experiences bending when subjected to an air-puff loading, causing the anterior surface to work in compression whereas the posterior surface works in tension. Hence, collagen fibers located at the anterior surface do not contribute to load bearing. Non-contact tonometry devices give useful information that could be misleading since the corneal deformation is the result of the interaction between the mechanical properties, IOP, and geometry. Therefore, a non-contact tonometry test is not sufficient to evaluate their individual contribution and a complete in-vivo characterization would require more than one test to independently determine

  19. Modeling leukocyte-leukocyte non-contact interactions in a lymph node.

    Science.gov (United States)

    Gritti, Nicola; Caccia, Michele; Sironi, Laura; Collini, Maddalena; D'Alfonso, Laura; Granucci, Francesca; Zanoni, Ivan; Chirico, Giuseppe

    2013-01-01

    The interaction among leukocytes is at the basis of the innate and adaptive immune-response and it is largely ascribed to direct cell-cell contacts. However, the exchange of a number of chemical stimuli (chemokines) allows also non-contact interaction during the immunological response. We want here to evaluate the extent of the effect of the non-contact interactions on the observed leukocyte-leukocyte kinematics and their interaction duration. To this aim we adopt a simplified mean field description inspired by the Keller-Segel chemotaxis model, of which we report an analytical solution suited for slowly varying sources of chemokines. Since our focus is on the non-contact interactions, leukocyte-leukocyte contact interactions are simulated only by means of a space dependent friction coefficient of the cells. The analytical solution of the Keller-Segel model is then taken as the basis of numerical simulations of interactions between leukocytes and their duration. The mean field interaction force that we derive has a time-space separable form and depends on the chemotaxis sensitivity parameter as well as on the chemokines diffusion coefficient and their degradation rate. All these parameters affect the distribution of the interaction durations. We draw a successful qualitative comparison between simulated data and sets of experimental data for DC-NK cells interaction duration and other kinematic parameters. Remarkably, the predicted percentage of the leukocyte-leukocyte interactions falls in the experimental range and depends (~25% increase) upon the chemotactic parameter indicating a non-negligible direct effect of the non-contact interaction on the leukocyte interactions.

  20. Analytical model development of an eddy-current-based non-contacting steel plate conveyance system

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.; Hwang, C.-C.

    2008-01-01

    A concise model for analyzing and predicting the quasi-static electromagnetic characteristics of an eddy-current-based non-contacting steel plate conveyance system has been developed. Confirmed by three-dimensional (3-D) finite element analysis (FEA), adequacy of the analytical model can be demonstrated. Such an effective approach, which can be conveniently used by the potential industries for preliminary system operational performance evaluations, will be essential for designers and on-site engineers

  1. Modeling leukocyte-leukocyte non-contact interactions in a lymph node.

    Directory of Open Access Journals (Sweden)

    Nicola Gritti

    Full Text Available The interaction among leukocytes is at the basis of the innate and adaptive immune-response and it is largely ascribed to direct cell-cell contacts. However, the exchange of a number of chemical stimuli (chemokines allows also non-contact interaction during the immunological response. We want here to evaluate the extent of the effect of the non-contact interactions on the observed leukocyte-leukocyte kinematics and their interaction duration. To this aim we adopt a simplified mean field description inspired by the Keller-Segel chemotaxis model, of which we report an analytical solution suited for slowly varying sources of chemokines. Since our focus is on the non-contact interactions, leukocyte-leukocyte contact interactions are simulated only by means of a space dependent friction coefficient of the cells. The analytical solution of the Keller-Segel model is then taken as the basis of numerical simulations of interactions between leukocytes and their duration. The mean field interaction force that we derive has a time-space separable form and depends on the chemotaxis sensitivity parameter as well as on the chemokines diffusion coefficient and their degradation rate. All these parameters affect the distribution of the interaction durations. We draw a successful qualitative comparison between simulated data and sets of experimental data for DC-NK cells interaction duration and other kinematic parameters. Remarkably, the predicted percentage of the leukocyte-leukocyte interactions falls in the experimental range and depends (~25% increase upon the chemotactic parameter indicating a non-negligible direct effect of the non-contact interaction on the leukocyte interactions.

  2. A non-contact complete knee dislocation with popliteal artery disruption, a rare martial arts injury

    OpenAIRE

    Viswanath, Y; Rogers, I

    1999-01-01

    Complete knee dislocation is a rare injury and an associated incidence of popliteal artery damage ranges from 16-60% of cases. It occurs commonly in road traffic accidents and in high velocity trauma where significant contact remains as the usual mode of injury. We describe a rare case of non-contact knee dislocation with popliteal artery injury sustained while practising Aikido, a type of martial art. This patient successfully underwent closed reduction of the knee with an emergency vein byp...

  3. Hybrid method for determining the parameters of condenser microphones from measured membrane velocities and numerical calculations

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2009-01-01

    to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters......, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses......Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel...

  4. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    Energy Technology Data Exchange (ETDEWEB)

    Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Wabnitz, Heidrun; Macdonald, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Pifferi, Antonio [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Mazurenka, Mikhail [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hannoversches Zentrum für Optische Technologien, Nienburger Str. 17, 30167 Hannover (Germany); Hoshi, Yoko [Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Boso, Gianluca; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Becker, Wolfgang [Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Martelli, Fabrizio [Dipartimento di Fisica e Astronomia dell’Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019 (Italy)

    2016-03-15

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  5. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    International Nuclear Information System (INIS)

    Di Sieno, Laura; Dalla Mora, Alberto; Contini, Davide; Wabnitz, Heidrun; Macdonald, Rainer; Pifferi, Antonio; Mazurenka, Mikhail; Hoshi, Yoko; Boso, Gianluca; Tosi, Alberto; Becker, Wolfgang; Martelli, Fabrizio

    2016-01-01

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  6. Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate.

    Science.gov (United States)

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir D; Dunshea, Frank R

    2018-06-03

    Traditional methods to assess heart rate (HR) and blood pressure (BP) are intrusive and can affect results in sensory analysis of food as participants are aware of the sensors. This paper aims to validate a non-contact method to measure HR using the photoplethysmography (PPG) technique and to develop models to predict the real HR and BP based on raw video analysis (RVA) with an example application in chocolate consumption using machine learning (ML). The RVA used a computer vision algorithm based on luminosity changes on the different RGB color channels using three face-regions (forehead and both cheeks). To validate the proposed method and ML models, a home oscillometric monitor and a finger sensor were used. Results showed high correlations with the G color channel (R² = 0.83). Two ML models were developed using three face-regions: (i) Model 1 to predict HR and BP using the RVA outputs with R = 0.85 and (ii) Model 2 based on time-series prediction with HR, magnitude and luminosity from RVA inputs to HR values every second with R = 0.97. An application for the sensory analysis of chocolate showed significant correlations between changes in HR and BP with chocolate hardness and purchase intention.

  7. Spectrometric kidney depth measurement method

    International Nuclear Information System (INIS)

    George, P.; Soussaline, F.; Raynaud, C.

    1976-01-01

    The method proposed uses the single posterior surface measurement of the kidney radioactivity distribution. The ratio C/P of the number of scattered photons to the number of primary photons, which is a function of the tissue depth penetrated, is calculated for a given region. The parameters on which the C/P value depends are determined from studies on phantoms. On the basis of these results the kidney depth was measured on a series of 13 patients and a correlation was established between the value thus calculated and that obtained by the profile method. The reproducibility of the method is satisfactory [fr

  8. Methods for Human Dehydration Measurement

    Science.gov (United States)

    Trenz, Florian; Weigel, Robert; Hagelauer, Amelie

    2018-03-01

    The aim of this article is to give a broad overview of current methods for the identification and quantification of the human dehydration level. Starting off from most common clinical setups, including vital parameters and general patients' appearance, more quantifiable results from chemical laboratory and electromagnetic measurement methods will be reviewed. Different analysis methods throughout the electromagnetic spectrum, ranging from direct current (DC) conductivity measurements up to neutron activation analysis (NAA), are discussed on the base of published results. Finally, promising technologies, which allow for an integration of a dehydration assessment system in a compact and portable way, will be spotted.

  9. Non-contact respiration monitoring for in-vivo murine micro computed tomography: characterization and imaging applications

    International Nuclear Information System (INIS)

    Burk, Laurel M; Lee, Yueh Z; Wait, J Matthew; Lu Jianping; Zhou, Otto Z

    2012-01-01

    A cone beam micro-CT has previously been utilized along with a pressure-tracking respiration sensor to acquire prospectively gated images of both wild-type mice and various adult murine disease models. While the pressure applied to the abdomen of the subject by this sensor is small and is generally without physiological effect, certain disease models of interest, as well as very young animals, are prone to atelectasis with added pressure, or they generate too weak a respiration signal with this method to achieve optimal prospective gating. In this work we present a new fibre-optic displacement sensor which monitors respiratory motion of a subject without requiring physical contact. The sensor outputs an analogue signal which can be used for prospective respiration gating in micro-CT imaging. The device was characterized and compared against a pneumatic air chamber pressure sensor for the imaging of adult wild-type mice. The resulting images were found to be of similar quality with respect to physiological motion blur; the quality of the respiration signal trace obtained using the non-contact sensor was comparable to that of the pressure sensor and was superior for gating purposes due to its better signal-to-noise ratio. The non-contact sensor was then used to acquire in-vivo micro-CT images of a murine model for congenital diaphragmatic hernia and of 11-day-old mouse pups. In both cases, quality CT images were successfully acquired using this new respiration sensor. Despite the presence of beam hardening artefacts arising from the presence of a fibre-optic cable in the imaging field, we believe this new technique for respiration monitoring and gating presents an opportunity for in-vivo imaging of disease models which were previously considered too delicate for established animal handling methods. (paper)

  10. The influence of physical properties of materials used for slide rings on the process of heat transfer in the non-contacting face seals

    Directory of Open Access Journals (Sweden)

    Blasiak Slawomir

    2017-01-01

    Full Text Available The paper presents the results of analytical solution of the model of heat transfer for non-contacting face seals. Comparative analyses were performed for various physical properties of materials used for slide rings. A mathematical model includes a series of differential equations of partial derivatives with generally used boundary conditions, i.e. the Reynold’s equation, energy equation and heat transfer equations, which describe the heat transfer in sealing rings with surrounding medium. Heat transfer equation is written in the Cartesian coordinate system and solved using the Green’s functions method. Theoretical studies made it possible to draw a number of practical conclusions on the phenomena of heat transfer in the node seal. The presented model will allow more accurate identification of the heat transfer mechanism in the node seal. The results will help to select appropriate materials for sealing rings, depending on operating conditions of non-contacting face seals.

  11. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  12. A non-contact complete knee dislocation with popliteal artery disruption, a rare martial arts injury.

    Science.gov (United States)

    Viswanath, Y K; Rogers, I M

    1999-09-01

    Complete knee dislocation is a rare injury and an associated incidence of popliteal artery damage ranges from 16-60% of cases. It occurs commonly in road traffic accidents and in high velocity trauma where significant contact remains as the usual mode of injury. We describe a rare case of non-contact knee dislocation with popliteal artery injury sustained while practising Aikido, a type of martial art. This patient successfully underwent closed reduction of the knee with an emergency vein bypass graft. Similar injury in association with Aikido has not been described in the English literature previously. Various martial art injuries are briefly discussed and safety recommendations made.

  13. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications

    Science.gov (United States)

    Bhardwaj, Mahesh C.

    2009-03-01

    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  14. A Case of Non-Contact Lens related Acanthamoeba keratitis in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohamed Kamel, A. G.

    2005-01-01

    Full Text Available Acanthamoeba is a ubiquitous free-living amoeba and is responsible for an uncommon yet increasingly diagnosed keratitis in humans. Acanthamoeba keratitis is perhaps the most challenging ocular infection to manage successfully and it can result in permanently impaired vision or blindness. Although contact lens use is the principal risk factor, about 10% of cases occur following trauma and exposure to contaminated soil or water. Cases of Acanthamoeba keratitis involving contact lens wearers have previously been reported in Malaysia but this is the first time, a non-contact lens relatedAcanthamoeba keratitis is reported. The case involved a 28 year old Indonesian male construction worker who had a trauma of the right eye. While working his eye was struck by some sand and dust particles and he quickly washed his eye with water from an open tank at the construction site. He then experienced pain, redness, glaring and blurring of vision of the right eye. The diagnosis was missed at the initial presentation but subsequent culture of the corneal scraping demonstrated Acanthamoeba as the aetiological agent. The history, clinical findings, diagnosis and treatment of non-contact lens related Acanthamoeba keratitis are briefly discussed in this communication. We hope to create awareness especially among the medical and paramedical staff about the existence of this infection in the country and fully support the consideration of Acanthamoeba keratitis as part of the differential diagnosis of most cases of presumed microbial keratitis.

  15. Smart Garment Fabrics to Enable Non-Contact Opto-Physiological Monitoring.

    Science.gov (United States)

    Iakovlev, Dmitry; Hu, Sijung; Hassan, Harnani; Dwyer, Vincent; Ashayer-Soltani, Roya; Hunt, Chris; Shen, Jinsong

    2018-03-29

    Imaging photoplethysmography (iPPG) is an emerging technology used to assess microcirculation and cardiovascular signs by collecting backscattered light from illuminated tissue using optical imaging sensors. The aim of this study was to study how effective smart garment fabrics could be capturing physiological signs in a non-contact mode. The present work demonstrates a feasible approach of, instead of using conventional high-power illumination sources, integrating a grid of surface-mounted light emitting diodes (LEDs) into cotton fabric to spotlight the region of interest (ROI). The green and the red LEDs (525 and 660 nm) placed on a small cotton substrate were used to locally illuminate palm skin in a dual-wavelength iPPG setup, where the backscattered light is transmitted to a remote image sensor through the garment fabric. The results show that the illuminations from both wavelength LEDs can be used to extract heart rate (HR) reaching an accuracy of 90% compared to a contact PPG probe. Stretching the fabric over the skin surface alters the morphology of iPPG signals, demonstrating a significantly higher pulsatile amplitude in both channels of green and red illuminations. The skin compression by the fabric could be potentially utilised to enhance the penetration of illumination into cutaneous microvascular beds. The outcome could lead a new avenue of non-contact opto-physiological monitoring and assessment with functional garment fabrics.

  16. POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE

    Science.gov (United States)

    Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina

    2011-01-01

    Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540

  17. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning.

    Science.gov (United States)

    Ding, Yuzhe; Huang, Eric; Lam, Kit S; Pan, Tingrui

    2013-05-21

    Biopatterning has been increasingly used for well-defined cellular microenvironment, patterned surface topology, and guided biological cues; however, it meets challenges on biocompatibility, thermal and chemical sensitivity, as well as limited availability of reagents. In this paper, we aim at combining the desired features from non-contact inkjet printing and dot-matrix impact printing to establish a versatile multiplexed micropatterning platform, referred to as Microfluidic Impact Printer (MI-Printer), for emerging biomedical applications. Using this platform, we can achieve the distinct features of no cross-contamination, sub-microliter ink loading with a minimal dead volume, high-throughput printing, biocompatible non-contact processing, sequential patterning with self-alignment, wide adaptability for complex media (e.g., cell suspension or colloidal solutions), interchangeable/disposable cartridge design, and simple assembly and configuration, all highly desirable towards laboratory-based research and development. Specifically, the printing resolution of the MI-printer platform has been experimentally characterized and theoretically analysed. Optimal printing resolution of 80 μm has been repeatedly obtained. Furthermore, two useful functions of the MI-printer, multiplexed printing and combinatorial printing, have been experimentally demonstrated with less than 10 μm misalignment. Moreover, molecular and biological patterning, utilizing the multiplexed and combinatorial printing, has been implemented to illustrate the utility of this versatile printing technique for emerging biomedical applications.

  18. Utilizing Non-Contact Stress Measurement System (NSMS) as a Health Monitor

    Science.gov (United States)

    Hayes, Terry; Hayes, Bryan; Bynum, Ken

    2011-01-01

    Continuously monitor all 156 blades throughout the entire operating envelope without adversely affecting tunnel conditions or compromise compressor shell integrity, Calculate dynamic response and identify the frequency/mode to determine individual blade deflection amplitudes, natural frequencies, phase, and damping (Q), Log static deflection to build a database of deflection values at certain compressor conditions to use as basis for real-time online Blade Stack monitor, Monitor for stall, surge, flutter, and blade damage, Operate with limited user input, low maintenance cost, safe illumination of probes, easy probe replacement, and require little or no access to compressor.

  19. Design, realization and testing of the nanomefos non-contact measurement machine for freeform optics

    NARCIS (Netherlands)

    Henselmans, R.; Cacace, L.; Rosielle, P.C.J.N.; Steinbuch, M.

    2008-01-01

    By applying freeform optics (figure 1) in high-end optical systems such as used in space, science and lithography applications, system performance can be improved while decreasing the system mass, size and number of required components (for instance [1]). The applicability of classical metrology

  20. Non-contact methods for NDT of aeronautical structures : An image processing workstation for thermography

    OpenAIRE

    Azzarelli, Luciano; Chimenti, Massimo; Salvetti, Ovidio

    1992-01-01

    The main goals of the Istituto di Elaborazione della Informazione in Task 4., Subtasks 4.3.1 (Image Processing) and 4.3.2 (Workstation Architecture) were the study of thermograms features, the design of the architecture of a customized workstation and the project of specialized algorithms for thermal image analysis. Thermograms features pertain to data acquisition, data archiving and data processing; following general study some basic requirements for the workstation were defined. "Data acqui...

  1. A non-contact 3D method to characterize the surface roughness of castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    2013-01-01

    that the surface quality of the standard comparators was successfully evaluated and it was established that the areal parameters are the most informative for cast components. The results from the surface comparators were compared with the results from a stylus instrument. Sand cast components were also evaluated...

  2. Patient characteristics, diagnosis, and treatment of non-contact lens related Acanthamoeba keratitis.

    Science.gov (United States)

    Sharma, S; Garg, P; Rao, G N

    2000-10-01

    To review the clinical characteristics, diagnosis, and visual outcome in patients with non-contact lens related Acanthamoeba keratitis and compare the findings with reported series of contact lens associated Acanthamoeba keratitis. Medical and microbiology records of 39 consecutive patients with a diagnosis of Acanthamoeba keratitis, at a tertiary eyecare centre in India between January 1996 and June 1998, were analysed retrospectively. A majority of the patients presented with poor visual acuity and large corneal stromal infiltrates (mean size 38.20 (SD 26. 18) mm). A predisposing factor was elicited in 19/39 (48.7%) patients (trauma 15, dirty water splash three, leaf juice one). None of the patients had worn contact lenses. Most patients (26/39 (66. 6%)) came from a low socioeconomic background. Complaint of severe pain was not a significant feature and radial keratoneuritis was seen in 1/39 (2.5%) patients. A ring infiltrate was present in 41.1% of cases. A clinical diagnosis of fungal keratitis was made in 45% of the patients before they were seen by us. However, all patients were diagnosed microbiologically at our institute based on demonstration of Acanthamoeba cysts in corneal scrapings (34/39) and/or culture of Acanthamoeba (34/39). Treatment with biguanides (PHMB, 15/38 (39.4%), PHMB with CHx, 23/38 (60.5%), one patient did not return for treatment) resulted in healing with scar formation in 27 out of 31(87.0%) followed up patients (mean time to healing 106.9 days). Overall visual outcome was poor with no statistical difference between cases diagnosed within 30 days (early) or 30 days after (late) start of symptoms. The visual outcome in cases requiring tissue adhesive (five) and keratoplasty (three) was also poor. This is thought to be the largest series of cases of Acanthamoeba keratitis in non-contact lens wearers. In such cases, the disease is advanced at presentation in most patients, pathognomonic clinical features are often not seen, disease

  3. [The American Optical non-contact tonometer and its results compared with the Goldmann applanation tonometer (author's transl)].

    Science.gov (United States)

    Derka, H

    1980-11-01

    Intraocular pressure (IOP) of 617 eyes was measured with both an AO non-contact tonometer (NCT) and a Goldmann applanation tonometer (GAT). - Statistical evaluation and the scattergram gave the following results: Correlation coefficient r = 0.74. Regression line y = 3.01 + 0.8x. Close agreement between mean GAT (17.8 mmHg) and mean NCT (17.3 mmHg). Variations in readings for NCT-GAT in 92% of all cases with a range of +/- 8 mmHg (95% reliability range) - in some cases much higher or lower - for all IOP values between 10 and 30 mmHg. - Ten NCT measurements were carried out on 42 eyes. The mean values lay between 9 and 22 mmHg, with deviations of up to +/- 6 mmHg from the GAT values. The range was 3 to 13 mmHg, averaging 7.1 mmHg. Standard deviations observed from these measurements were 1.03 minimum, 2.29 average and 3.99 maximum. These were not correlated to IOP. - Changes in the place of applanation are discussed as a possible cause of the variability of NCT readings.

  4. Millimeter-wave emissivity as a metric for the non-contact diagnosis of human skin conditions.

    Science.gov (United States)

    Owda, Amani Yousef; Salmon, Neil; Harmer, Stuart William; Shylo, Sergiy; Bowring, Nicholas John; Rezgui, Nacer Ddine; Shah, Mamta

    2017-10-01

    A half-space electromagnetic model of human skin over the band 30-300 GHz was constructed and used to model radiometric emissivity. The model showed that the radiometric emissivity rose from 0.4 to 0.8 over this band, with emission being localized to a layer approximately one millimeter deep in the skin. Simulations of skin with differing water contents associated with psoriasis, eczema, malignancy, and thermal burn wounds indicated radiometry could be used as a non-contact technique to detect and monitor these conditions. The skin emissivity of a sample of 30 healthy volunteers, measured using a 95 GHz radiometer, was found to range from 0.2 to 0.7, and the experimental measurement uncertainty was ±0.002. Men on average were found to have an emissivity 0.046 higher than those of women, a measurement consistent with men having thicker skin than women. The regions of outer wrist and dorsal forearm, where skin is thicker, had emissivities 0.06-0.08 higher than the inner wrist and volar forearms where skin is generally thinner. Recommendations are made to develop a more sophisticated model of the skin and to collect larger data sets to obtain a deeper understanding of the signatures of human skin in the millimeter wave band. Bioelectromagnetics. 38:559-569, 2017. © 2017 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc. © 2017 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.

  5. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  6. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system.

    Science.gov (United States)

    Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-02-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.

  7. The non-contact ("air puff") tonometer: variability and corneal staining.

    Science.gov (United States)

    Myers, K J; Scott, C A

    1975-01-01

    We investigated the possibility of significant corneal trauma (as revealed by slit lamp observation of the fluorescein instilled eye), and massage effects following determination of intraocular pressure with the A. O. Non-Contact tonometer (NCT). Fifteen different, normal human eyes were each applanated 150 successive times with the NCT; leading to the conclusion that only minor, superficial corneal epithelial defects sometimes resulted and that, in line with other studies, the initially higher readings (about 1 mm), obtained with the NCT, were most likely due to patient apprehension, while the subsequently lower readings represented patient acceptance of the process and were not a result of true aqueous massage. As in an earlier study, we found the instrument's variability to be about plus and minus 1 or plus and minus 2 mm and probably due to the subject's own cardiac cycle.

  8. Plate-shaped non-contact ultrasonic transporter using flexural vibration.

    Science.gov (United States)

    Ishii, Takahiko; Mizuno, Yosuke; Koyama, Daisuke; Nakamura, Kentaro; Harada, Kana; Uchida, Yukiyoshi

    2014-02-01

    We developed a plate-shaped non-contact transporter based on ultrasonic vibration, exploiting a phenomenon that a plate can be statically levitated at the place where its gravity and the acoustic radiation force are balanced. In the experiment, four piezoelectric zirconate titanate elements were attached to aluminum plates, on which lattice flexural vibration was excited at 22.3 kHz. The vibrating plates were connected to a loading plate via flexible posts that can minimize the influence of the flexure induced by heavy loads. The distribution of the vibration displacement on the plate was predicted through finite-element analysis to find the appropriate positions of the posts. The maximum levitation height of this transporter was 256 μm with no load. When two vibrating plates were connected to a loading plate, the maximum transportable load was 4.0 kgf. Copyright © 2013. Published by Elsevier B.V.

  9. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    International Nuclear Information System (INIS)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-01-01

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws

  10. Renewable energy: Method and measures

    International Nuclear Information System (INIS)

    Nilsen, Trond Hartvedt

    2003-01-01

    The thesis presents various possibilities for renewable energy in Norway. The wind power would give a practical and economic alternative. The external costs for the wind power would be moderate. In chapter 3 the utility cost analysis for renewable alternatives are studied relative to the macroeconomic efficiency. Some methodical problems and how these analyses are used are reviewed. In the practical utility cost analyses wind power is studied relative to gas power which is the non-renewable alternative present in Norway today. A qualitative part is included. It is not possible to determine whether wind power is preferable to gas power in the macroeconomic perspective. Wind power would be the choice if high environmental and CO2 cleaning costs are expected. The first conclusion to be drawn is that it is difficult to decide whether wind power is the best solution based on cost benefit analysis. However, the alternative seems to be quite robust in the analysis. Due to the central position the energy supplies have in the society this business should be heavily regulated. The sector is also overtaxed as a reduction in consumption is desired. The analysis shows that the system does not function perfectly. The thesis surveys various measures for improving the renewable energy supply and focuses on the wind power. A model for and analysis of the measures are carried out and resulted in a second conclusion. The measures have various properties as to the influence on the market. A subsidy is a fine measure for stimulation production of green power while a tax reduces efficiently the production of black power. A system with green licenses in combination with a subsidy and a tax would be preferable as to increasing the part of renewable energy of the total production. It is therefore necessary to have clearly defined goals and use suitable measures for achieving them. The costs of wind power is falling and it would therefore soon be macroeconomic profitable. It is also

  11. Method of measuring surface density

    International Nuclear Information System (INIS)

    Gregor, J.

    1982-01-01

    A method is described of measuring surface density or thickness, preferably of coating layers, using radiation emitted by a suitable radionuclide, e.g., 241 Am. The radiation impinges on the measured material, e.g., a copper foil and in dependence on its surface density or thickness part of the flux of impinging radiation is reflected and part penetrates through the material. The radiation which has penetrated through the material excites in a replaceable adjustable backing characteristic radiation of an energy close to that of the impinging radiation (within +-30 keV). Part of the flux of the characteristic radiation spreads back to the detector, penetrates through the material in which in dependence on surface density or thickness of the coating layer it is partly absorbed. The flux of the penetrated characteristic radiation impinging on the face of the detector is a function of surface density or thickness. Only that part of the energy is evaluated of the energy spectrum which corresponds to the energy of characteristic radiation. (B.S.)

  12. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design.

    Science.gov (United States)

    Hall, Travis; Lie, Donald Y C; Nguyen, Tam Q; Mayeda, Jill C; Lie, Paul E; Lopez, Jerry; Banister, Ron E

    2017-11-15

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients' long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient's vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is sleeping

  13. Intraocular pressure measurement in patients with previous LASIK surgery using pressure phosphene tonometer.

    Science.gov (United States)

    Cheng, Arthur C K; Leung, Dexter Y L; Cheung, Eva Y Y; Fan, Dorothy S P; Law, Ricky W K; Lam, Dennis S C

    2005-04-01

    To compare intraocular pressure (IOP) assessment in post-LASIK patients using non-contact tonometry, pressure phosphene tonometry and applanation tonometry. Sixty-two consecutive LASIK patients were analysed preoperatively and postoperatively with non-contact, pressure phosphene and applanation tonometry. Comparisons among these values were assessed with paired sample Student t-test, Pearson's correlation test and Bland-Altman plotting. There was no significant difference for preoperative IOP measurement between non-contact, pressure phosphene and applanation tonometry. The mean +/-SD difference between the preoperative non-contact tonometry and postoperative pressure phosphene tonometry IOP measurements was 0.80 +/- 2.77 mmHg (P contact tonometry significantly underestimated IOP measurement by 9.96 +/- 2.25 mmHg (P < 0.001). Pressure phosphene tonometry may provide an alternative method for the assessment of IOP in post-LASIK patients.

  14. Detailed rock failure susceptibility mapping in steep rocky coasts by means of non-contact geostructural surveys: the case study of the Tigullio Gulf (Eastern Liguria, Northern Italy

    Directory of Open Access Journals (Sweden)

    P. De Vita

    2012-04-01

    Full Text Available In this study, an engineering geological analysis for the assessment of the rock failure susceptibility of a high, steep, rocky coast was developed by means of non-contact geostructural surveys. The methodology was applied to a 6-km coastal cliff located in the Gulf of Tigullio (Northern Tyrrhenian Sea between Rapallo and Chiavari.

    The method is based on the geostructural characterisation of outcropping rock masses through meso- and macroscale stereoscopic analyses of digital photos that were taken continuously from a known distance from the coastline. The results of the method were verified through direct surveys of accessible sample areas. The rock failure susceptibility of the coastal sector was assessed by analysing the fundamental rock slope mechanisms of instability and the results were implemented into a Geographic Information System (GIS.

    The proposed method is useful for rock failure susceptibility assessments in high, steep, rocky coastal areas, where accessibility is limited due to cliffs or steep slopes. Moreover, the method can be applied to private properties or any other area where a complete and systematic analysis of rock mass structural features cannot be achieved.

    Compared to direct surveys and to other non-contact methods based on digital terrestrial photogrammetry, the proposed procedure provided good quality data of the structural features of the rock mass at a low cost. Therefore, the method could be applied to similar coastal areas with a high risk of rock failure occurrence.

  15. Intraocular pressure asymmetry is not a clinically-significant feature when using the PULSAIR non-contact tonometer.

    Science.gov (United States)

    Pointer, J S

    1997-11-01

    This report describes the results of a retrospective analysis of intraocular pressure (i.o.p.) values recorded from the right (R) and left (L) eyes of middle-aged and elderly at-risk but assumed non-glaucomatous subjects. The tensions had been measured using the Keeler PULSAIR non-contact tonometer (NCT) in the course of routine optometric practice when individuals attended for a sight test. These bilateral IOP data were collated on the basis of each subject's gender, (male/female), age (40-59 years/60+ years) and the time of the tonometry assessment (a.m./p.m.). Wherever possible material was equi-partitioned across these three bipartite variables producing balanced data groupings. Pair-wise testing of R versus L absolute values of pneumo-applanation pressures across any of the balanced data groupings failed to reveal a statistically-significant difference between the paired IOP distributions. There was a consistent but small relative IOP asymmetry (L > R) in these data. Further analysis indicated that this asymmetry only attained borderline statistical significance with respect to subject's age: neither gender nor the time of assessment were statistically significant features, and there were no statistically-significant interactions between any of the three variables. In conclusion, provided that the manufacturer's operating instructions are adhered to, IOP asymmetry is not a clinically-significant feature when using the PULSAIR NCT on a clinical population at risk of developing glaucoma.

  16. Deterioration in the accuracy of the pulsair non-contact tonometer with use: need for regular calibration.

    Science.gov (United States)

    Atkinson, P L; Wishart, P K; James, J N; Vernon, S A; Reid, F

    1992-01-01

    The Pulsair non-contact tonometer (Keeler Pulsair: Keeler UK) has been shown to be a versatile instrument particularly suitable for screening for raised intraocular pressure. Although demonstrated to be accurate initially when compared to the Goldmann applanation tonometer no study has examined its long-term accuracy. Comparisons of three Pulsair tonometers with different degrees of usage with the Goldmann tonometer are described. Measurements were obtained from 64, 116, and 223 eyes in three separate comparative studies. Correlation coefficients of between 0.78 and 0.90 were obtained, the least used instrument being significantly more accurate than the two more extensively used instruments. Taking the Goldmann tonometer as the standard tonometer, and the aim to detect intraocular pressures of greater than 21 mmHg, sensitivities of 40%, 48%, and 85% for the three Pulsair tonometers respectively were shown. The Pulsair tonometer appears liable to a long-term drift in accuracy with use, and we suggest that provision is made for the regular re-calibration of the instrument.

  17. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  18. Biometric Changes After Trabeculectomy with Contact and Non-contact Biometry.

    Science.gov (United States)

    Alvani, Azam; Pakravan, Mohammad; Esfandiari, Hamed; Yaseri, Mehdi; Yazdani, Shahin; Ghahari, Elham

    2016-02-01

    To compare biometric changes measured with contact and noncontact methods after mitomycin-C-augmented trabeculectomy. In this prospective study, 31 eyes from 31 glaucoma patients scheduled for primary trabeculectomy were enrolled. Biometric parameters including axial length (AL), anterior chamber depth (ACD), and lens thickness (LT) were measured using contact ultrasound biometry (UD-6000 Ultrasonic A/B scanner biometer; Tomey Corporation, Nagoya, Japan) and a noncontact optical biometry device (Lenstar; Haag-Streit AG, Koeniz, Switzerland). Measurements were taken the day before trabeculectomy and then compared with measurements obtained 3 and 6 months after surgery. The AL and ACD were significantly decreased at 3 and 6 months compared with baseline values taken with each biometry method. There was a significant increase in LT measured by the Lenstar device at the 3- and 6-month follow-up. At both the 3- and 6-month follow-up, the mean AL measurement reduction with the Lenstar device was significantly lower than that of the A-scan ultrasound measurements. The mean ACD changes between the two devices were not significantly different. There is a small but significant decrease in the AL and ACD after trabeculectomy as measured with both the contact and noncontact methods. The amount of AL reduction measured is significantly smaller using the noncontact method, making it the preferable method for intraocular lens power calculation for patients who need cataract surgery combined with or after trabeculectomy. The LT measured by the Lenstar device increased significantly after the operation, which can be an early sign of the progression of cataractous changes after trabeculectomy.

  19. Imaging contrast and tip-sample interaction of non-contact amplitude modulation atomic force microscopy with Q -control

    International Nuclear Information System (INIS)

    Shi, Shuai; Guo, Dan; Luo, Jianbin

    2017-01-01

    Active quality factor ( Q ) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q -control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q -control to the dynamic system. (paper)

  20. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    Science.gov (United States)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  1. Towards real-time non contact spatial resolved oxygenation monitoring using a multi spectral filter array camera in various light conditions

    Science.gov (United States)

    Bauer, Jacob R.; van Beekum, Karlijn; Klaessens, John; Noordmans, Herke Jan; Boer, Christa; Hardeberg, Jon Y.; Verdaasdonk, Rudolf M.

    2018-02-01

    Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and non contact patient monitoring. Although point measurements are the clinical standard till this day, regional differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and image acquisition were optimised. The measurement were robust to different illumination conditions with NIR light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially possible in real time.

  2. Non-contact adhesion to self-affine surfaces: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Maxim A., E-mail: makeev@umich.edu

    2013-11-22

    Strength of adhesion between materials is known to be strongly influenced by interface irregularities. In this work, I devise a perturbative approach to describe the effect of self-affine roughness on non-contact adhesive interactions. The hierarchy of the obtained analytical solutions is the following. First, analytical formulae are deduced to describe roughness corrections to the van der Waals interaction energies between a hemi-space adherend, bounded by a self-affine surface, and a point-like adherent. Second, the problem of two hemi-spaces, one of which has a planar surface, and the other is bounded by a self-affine surface, is solved analytically. In the latter case, a numerical analysis is performed to delineate the behavior of the roughness corrections as a function of the parameters, characterizing self-affine fractal surface roughness. The problem of two hemi-spaces, both bounded by self-affine fractal surfaces, is also addressed in this work. The model's predictions are compared with previously reported theoretical results and available experimental data.

  3. Methods to Measure Map Readability

    OpenAIRE

    Harrie, Lars

    2009-01-01

    Creation of maps in real-time web services introduces challenges concerning map readability. Therefore we must introduce analytical measures controlling the readability. The aim of this study is to develop and evaluate analytical readability measures with the help of user tests.

  4. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities

    NARCIS (Netherlands)

    Mujawar, L.H.; Norde, W.; Amerongen, van A.

    2013-01-01

    Non-contact inkjet printing technology is one of the most promising tools for producing microarrays. The quality of the microarray depends on the type of the substrate used for printing biomolecules. Various porous and non-porous substrates have been used in the past, but due to low production cost

  5. Accuracy and reliability of the Keeler Pulsair EasyEye non-contact tonometer.

    Science.gov (United States)

    Ogbuehi, Kelechi C; Almubrad, Turki M

    2008-01-01

    To evaluate the accuracy and reliability of the Keeler Pulsair EasyEye noncontact tonometer in a normotensive population. This masked prospective clinical study included 72 right eyes of 72 subjects. Two sets of intraocular pressure measurements were made 1 week apart. Intraocular pressure assessment with the Goldmann tonometer was always subsequent to that with the noncontact tonometer. Each method was assessed for within-session and test-retest repeatability and both methods were assessed for limits of agreement, twice. The level of significance for this study was 0.05. Both methods were repeatable within-sessions to within +/-2 mm Hg, and between sessions to within +/-3 mm Hg. Neither the within-session differences nor the between session differences differed significantly between the Goldmann tonometer and the Pulsair EasyEye noncontact tonometer. The mean differences (+/-SD) between both methods (0.1 +/- 1.6 mm Hg and 0.05 +/- 1.7 mm Hg, for the first and second sessions, respectively) were not statistically significant, but the intraocular pressure measured with the Pulsair EasyEye tonometer was consistently higher than that measured with the Goldmann tonometer. The Pulsair EasyEye noncontact tonometer is considered an accurate reliable method in the normotensive population studied but because of a systematic bias in a small number of subjects, it cannot be used interchangeably with the Goldmann tonometer.

  6. Non-contact hematoma damage and healing assessment using reflectance photoplethysmographic imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Clausi, David A.; Wong, Alexander

    2016-03-01

    Impact trauma may cause a hematoma, which is the leakage of venous blood into surrounding tissues. Large hematomas can be dangerous as they may inhibit local blood ow. Hematomas are often diagnosed visually, which may be problematic if the hematoma leaks deeper than the visible penetration depth. Furthermore, vascular wound healing is often monitored at home without the aid of a clinician. We therefore investigated the use of near infrared (NIR) re ectance photoplethysmographic imaging (PPGI) to assess vascular damage resulting from a hematoma, and monitor the healing process. In this case study, the participant experienced internal vascular damage in the form of a hematoma. Using a PPGI system with dual-mode temporally coded illumination for ambient-agnostic data acquisition and mounted optical elements, the tissue was illuminated with a spatially uniform irradiance pattern of 850 nm wavelength light for increased tissue penetration and high oxy-to-deoxyhemoglobin absorption ratio. Initial and follow-up PPGI data collection was performed to assess vascular damage and healing. The tissue PPGI sequences were spectrally analyzed, producing spectral maps of the tissue area. Experimental results show that spatial differences in spectral information can be observed around the damaged area. In particular, the damaged site exhibited lower pulsatility than the surrounding healthy tissue. This pulsatility was largely restored in the follow-up data, suggesting that the tissue had undergone vascular healing. These results indicate that hematomas can be assessed and monitored in a non-contact visual manner, and suggests that PPGI can be used for tissue health assessment, with potential extensions to peripheral vascular disease.

  7. Method for 3D noncontact measurements of cut trees package area

    Science.gov (United States)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  8. Low level TOC measurement method

    Science.gov (United States)

    Ekechukwu, Amy A.

    2001-01-01

    A method for the determination of total organic carbon in an aqueous sample by trapping the organic matter on a sorbent which is carbon free and analyzing the sorbent by combustion and determination of total CO.sub.2 by IR.

  9. Automated Methods of Corrosion Measurements

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1997-01-01

    . Mechanical control, recording, and data processing must therefore be automated to a high level of precision and reliability. These general techniques and the apparatus involved have been described extensively. The automated methods of such high-resolution microscopy coordinated with computerized...

  10. Development and test of model apparatus of non-contact spin processor for photo mask production applying radial-type superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Saito, Kimiyo; Fukui, Satoshi; Maezawa, Masaru; Ogawa, Jun; Oka, Tetsuo; Sato, Takao

    2013-01-01

    Highlights: ► We develop test spinner for non-contact spinning process in photo mask production. ► This test spinner shows improved spinning ability compared with our previous one. ► Large vertical movement of turn table still occurs during acceleration. ► Method to control vertical movement of turn table should be developed in next step. -- Abstract: In semiconductor devices, miniaturization of circuit patterning on wafers is required for higher integrations of circuit elements. Therefore, very high tolerance and quality are also required for patterning of microstructures of photo masks. The deposition of particulate dusts generated from mechanical bearings of the spin processor in the patterns of the photo mask is one of main causes of the deterioration of pattern preciseness. In our R and D, application of magnetic bearing utilizing bulk high temperature superconductors to the spin processors has been proposed. In this study, we develop a test spinner for the non-contact spinning process in the photo mask production system. The rotation test by using this test spinner shows that this test spinner accomplishes the improvement of the spinning ability compared with the test spinner developed in our previous study. This paper describes the rotation test results of the new test spinner applying the magnetic bearing with bulk high temperature superconductors

  11. The reflection seismology measurement method

    International Nuclear Information System (INIS)

    Sprecher, C.

    1987-01-01

    Even though data acquisition and data processing procedures have become more and more complex in recent decades, the end products of a reflection seismic survey have remained simple and illustrative. A seismic section resembles a geological cross-section and can be interpreted without in-depth knowledge provided that the basic principles behind the method are understood. This article attempts to convey some insight into the methodology without claiming to be scientifically exact or complete. (author)

  12. Measuring methods of matrix diffusion

    International Nuclear Information System (INIS)

    Muurinen, A.; Valkiainen, M.

    1988-03-01

    In Finland the spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. The radionuclides which are dissolved in the groundwater may be able to diffuse into the micropores of the porous rock matrix and thus be withdrawn from the flowing water in the fractures. This phenomenon is called matrix diffusion. A review over matrix diffusion is presented in the study. The main interest is directed to the diffusion of non-sorbing species. The review covers diffusion experiments and measurements of porosity, pore size, specific surface area and water permeability

  13. Particle measurement systems and methods

    Science.gov (United States)

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  14. Methods for measurement of durability parameters

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1996-01-01

    Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included.......Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included....

  15. New strain measurement method at axial tensile test of thin films through direct imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jong-Eun [Department of Automotive Engineering, Seoul National Uinversity of Technolgy, 172 Gongneung-2 Dong, Nowon-Gu, Seoul (Korea, Republic of); Park, Jun-Hyub [Department of Mechatronics Engineering, College of Engineering, Tongmyong University, 535, Yongdang-Dong, Nam-Gu, Busan 608-711 (Korea, Republic of); Kang, Dong-Joong [School of Mechanical Eng., Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)], E-mail: jhyubpark@korea.com

    2008-09-07

    This paper proposes a new method for measuring strain during a tensile test of the specimen with micrometre size through direct imaging. A specimen was newly designed for adoption of direct imaging which was the main contribution of the proposed system. The structure of the specimen has eight indicators that make it possible to adopt direct imaging and it is fabricated using the same process of microelectromechanical system (MEMS) devices to guarantee the feasibility of the tensile test. We implemented a system for non-contact in situ measurement of strain with the specimen, the image-based displacement measurement system. Extension of the gauge length in the specimen could be found robustly by computing the positions of the eight rectangular-shape indicators on the image. Also, for an easy setup procedure, the region of interest was found automatically through the analysis of the edge projection profile along the horizontal direction. To gain confidence in the reliability of the system, the tensile test for the Al-3%Ti thin film was performed, which is widely used as a material in MEMS devices. Tensile tests were performed and displacements were measured using the proposed method and also the capacitance type displacement sensor for comparison. It is demonstrated that the new strain measurement system can be effectively used in the tensile test of the specimen at microscale with easy setup and better accuracy.

  16. Measurement of intraocular pressure with pressure phosphene tonometry in children.

    Science.gov (United States)

    Fan, Dorothy S P; Chiu, Thomas Y H; Congdon, Nathan; Chan, Jeffrey C W; Cheung, Eva Y Y; Lam, Dennis S C

    2011-01-01

    To study the accuracy and acceptability of intraocular pressure (IOP) measurement by the pressure phosphene tonometer, non-contact tonometer, and Goldmann tonometer in children. Fifty children (5 to 14 years old) participated in this prospective comparative study. IOP was measured with the pressure phosphene tonometer, non-contact tonometer, and Goldmann tonometer by three different examiners who were masked to the results. The children were also asked to grade the degree of discomfort from 0 to 5 (0 = no discomfort; 5 = most discomfort). The mean IOPs measured by the Goldmann tonometer, pressure phosphene tonometer, and non-contact tonometer were 15.9 mm Hg (standard deviation [SD]: = 5.5 mm Hg; range: 10 to 36 mm Hg), 16.0 mm Hg (SD: 2.9 mm Hg; range: 12 to 25 mm Hg), and 15.7 mm Hg (SD = 5.1 mm Hg; range: 8 to 32 mm Hg), respectively (P = .722). The mean difference between pressure phosphene tonometer and Goldmann tonometer readings was 2.9 mm Hg and that between non-contact tonometer and Goldmann tonometer readings was 2.1 mm Hg. The 95% confidence interval of the mean difference between pressure phosphene tonometer and Goldmann tonometer readings was -1.07 and 1.19, and that between non-contact tonometer and Goldmann tonometer readings was -1.07 and 0.53. The mean discomfort ratings for the pressure phosphene tonometer, non-contact tonometer, and Goldmann tonometer were 0.6, 2.0, and 2.3, respectively (P tonometer was less accurate than the non-contact tonometer compared with Goldmann tonometer, it gave a reasonably close estimate and had a high specificity of raised IOP. In addition, measurement by the pressure phosphene tonometer is most acceptable to children. The pressure phosphene tonometer can be considered as an alternative method of IOP measurement in children. Copyright 2011, SLACK Incorporated.

  17. A study of the river velocity measurement techniques and analysis methods

    Science.gov (United States)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    objects in water in high flow, resulting in measurement automation work still needs further study. If the priority for the safety of personnel and instruments, we can use the non-contact velocity measurement method with the theoretical analysis method to achieve real-time monitoring.

  18. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design

    Science.gov (United States)

    Hall, Travis; Nguyen, Tam Q.; Mayeda, Jill C.; Lie, Paul E.; Lopez, Jerry; Banister, Ron E.

    2017-01-01

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is

  19. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design

    Directory of Open Access Journals (Sweden)

    Travis Hall

    2017-11-01

    Full Text Available It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF non-contact vital signs (NCVS monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the

  20. Non-contact test of coating by means of laser-induced ultrasonic excitation and holographic sound representation

    International Nuclear Information System (INIS)

    Crostack, H.A.; Pohl, K.Y.; Radtke, U.

    1991-01-01

    In order to circumvent the problems of introducing and picking off sound, which occur in conventional ultrasonic testing, a completely non-contact test process was developed. The ultrasonic surface wave required for the test is generated without contact by absorption of laser beams. The recording of the ultrasound also occurs by a non-contact holographic interferometry technique, which permits a large scale representation of the sound. Using the example of MCrAlY and ZrO 2 layers, the suitability of the process for testing thermally sprayed coatings on metal substrates is identified. The possibilities and limits of the process for the detection and description of delamination and cracks are shown. (orig.) [de

  1. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    Science.gov (United States)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  2. Emittance measurements by variable quadrupole method

    International Nuclear Information System (INIS)

    Toprek, D.

    2005-01-01

    The beam emittance is a measure of both the beam size and beam divergence, we cannot directly measure its value. If the beam size is measured at different locations or under different focusing conditions such that different parts of the phase space ellipse will be probed by the beam size monitor, the beam emittance can be determined. An emittance measurement can be performed by different methods. Here we will consider the varying quadrupole setting method.

  3. Seven methods to measure ground moisture

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The correct irrigation methods are of great importance to the deciduous fruit grower. The article discusses seven methods for the measuring of ground humidity. These methods are based on gravimetry, electric resistance, gamma attenuation, neutron humidity measurement, tensiometers and a study of the correlation between ground humidity and water evaporation. At this stage, the last technique is regarded as the most practicle method. Neutron moisture gages might be used if adhered to the regulations of NUCOR

  4. Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient

    Science.gov (United States)

    Gijsbertsen, A.; Bicanic, D.; Gielen, J. L. W.; Chirtoc, M.

    2004-03-01

    CO 2-laser photothermal radiometry (PTR) was demonstrated to be suitable for the non-destructive and non-contact characterization (both optical and thermal) of solid phase agricultural commodities (fresh vegetables, fruits) and confectionery products (candy). Proper interpretation of PTR signals enable one to calculate two parameters, i.e. the well known thermal effusivity e ( e= λρc p, where λ and ρcp are the thermal conductivity and the volume specific heat, respectively) and a newly introduced physical quantity termed 'initial heating coefficient' chi ( χ= β/( ρcp), β is the absorption coefficient). Obtained values for e are in a good agreement with data reported in the literature. PTR enables one to rapidly determine e via a single measurement. As opposed to this, the knowledge of two out of three thermophysical parameters (thermal diffusivity, thermal conductivity and volume specific heat) is a condition sine qua non for determining effusivity in the conventional manner.

  5. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Bhandari, Deepak [ORNL; Lorenz, Matthias [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  6. Preparation of n-type Bi{sub 2}Te{sub 3} thermoelectric materials by non-contact dispenser printing combined with selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Keping; Yan, Yonggao; Zhang, Jian; Mao, Yu; Xie, Hongyao; Zhang, Qingjie; Tang, Xinfeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei (China); Yang, Jihui [Department of Materials Science and Engineering, University of Washington, Seattle, WA (United States); Uher, Ctirad [Department of Physics, University of Michigan, Ann Arbor, MI (United States)

    2017-06-15

    The manufacturing cost has been a bottle neck for broader applications of thermoelectric (TE) modules. We have developed a rapid, facile, and low cost method that combines non-contact dispenser printing with selective laser melting (SLM) and we demonstrate it on n-type Bi{sub 2}Te{sub 3}-based materials. Using this approach, single phase n-type Bi{sub 2}Te{sub 2.7}Se{sub 0.3} thin layers with the Seebeck coefficient of -152 μV K{sup -1} at 300 K have been prepared. Assembling such thin layers on top of each other, the performance of thus prepared bulk sample is comparable to Bi{sub 2}Te{sub 3}-based materials fabricated by the conventional techniques. Dispenser printing combined with SLM is a promising manufacturing process for TE materials. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Validity and limitations of the Nidek NT-4000 non-contact tonometer: a clinical study.

    Science.gov (United States)

    Regine, Federico; Scuderi, Gian Luca; Cesareo, Massimo; Ricci, Federico; Cedrone, Claudio; Nucci, Carlo

    2006-01-01

    Using Goldmann applanation tonometry (GAT) as a gold standard, we evaluated the accuracy of Nidek NT-4000 pneumotonometry (NPT) in adults without corneal disease. Bland and Altman analysis of serial intra-ocular pressures (IOPs) measured with NPT and GAT in 10 healthy subjects revealed that the repeatability coefficients for the two methods were similar. NPT, GAT and ultrasonic pachymetry were then performed in 100 patients. Bland and Altman analysis showed that NPT yielded significantly higher readings than GAT [mean biases for right and left eye measurements were 1.37 mmHg (95% limits of agreement: -3.02-5.76) and 1.17 mmHg (95% limits of agreement: -2.76-5.11) respectively] and was more affected by corneal thickness variations. For detection of IOPs > or =21 mmHg, NPT displayed very high sensitivity (0.90) and good specificity (0.95). NPT may be useful in screening and clinical settings but borderline-high IOP readings should be confirmed with GAT.

  8. Optical measurement of surface roughness in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brodmann, R.

    1984-11-01

    The measuring system described here is based on the light-scattering method, and was developed by Optische Werke G. Rodenstock, Munich. It is especially useful for rapid non-contact monitoring of surface roughness in production-related areas. This paper outlines the differences between this system and the common stylus instrument, including descriptions of some applications in industry.

  9. Photogrammetry and Videogrammetry Methods Development for Solar Sail Structures. Masters Thesis awarded by George Washington Univ.

    Science.gov (United States)

    Pappa, Richard S. (Technical Monitor); Black, Jonathan T.

    2003-01-01

    This report discusses the development and application of metrology methods called photogrammetry and videogrammetry that make accurate measurements from photographs. These methods have been adapted for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, non-contact, dynamic characterization using dot projection videogrammetry. The accuracy of the measurement of the resonant frequencies and operating deflection shapes that were extracted surpassed expectations. While other non-contact measurement methods exist, they are not full-field and require significantly more time to take data.

  10. Research on the high-precision non-contact optical detection technology for banknotes

    Science.gov (United States)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  11. Handbook of nuclear safeguards measurement methods

    International Nuclear Information System (INIS)

    Rogers, D.R.

    1983-09-01

    This handbook is intended to be a guide to the selection of methods for meeting specific measurement requirements. The information was compiled from a survey of production facilities, the literature, and current exchange programs. The survey included bulk measurements, chemical assay, sampling techniques, isotopic measurements, passive NDA, and active NDA

  12. Measuring method for optical fibre sensors

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Fluitman, J.H.J.

    1984-01-01

    A new measuring method for the signal amplitude in intensity modulating fibre optic sensors is described. A reference signal is generated in the time domain. The method is insensitive for the sensitivity fluctuations of the light transmitter and the light receiver. The method is experimentally

  13. From Measurements Errors to a New Strain Gauge Design

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Zike, Sanita; Salviato, Marco

    2015-01-01

    Significant over-prediction of the material stiffness in the order of 1-10% for polymer based composites has been experimentally observed and numerical determined when using strain gauges for strain measurements instead of non-contact methods such as digital image correlation or less stiff method...

  14. Methods of measuring residual stresses in components

    International Nuclear Information System (INIS)

    Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G.

    2012-01-01

    Highlights: ► Defining the different methods of measuring residual stresses in manufactured components. ► Comprehensive study on the hole drilling, neutron diffraction and other techniques. ► Evaluating advantage and disadvantage of each method. ► Advising the reader with the appropriate method to use. -- Abstract: Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non-destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments.

  15. Measuring methods for the TFR plasma diagnostics

    International Nuclear Information System (INIS)

    Etievant, C.

    1975-02-01

    The measuring methods in operation or still under development for the diagnostics of the TFR plasma parameters (ion and electron temperatures, electron density, current density are reviewed, the diagnostics of the electrical behavior of the discharge, the neutral gas densities, the impurities and the parameters of the plasma turbulence being also investigated. Actual works are principally devoted to: improving ion temperature measurements by the possible use of the Doppler effect or infra-red incoherent scattering; improving n(e) and T(e) measurement by Thomson scattering; measuring the poloidal field and current density; measuring impurities by X and UV spectroscopy and measuring instabilities and turbulence [fr

  16. Photogrammetric methods of measurement in industrial applications

    International Nuclear Information System (INIS)

    Godding, R.; Groene, A.; Heinrich, G.; Schneider, C.T.

    1993-01-01

    Methods for 3D measurement are required for very varied applications in the industrial field. This includes tasks of quality assurance and plant monitoring, among others. It should be possible to apply the process flexibly it should require as short interruptions of production as possible and should meet the required accuracies. These requirements can be met by photogrammetric methods of measurement. The article introduces these methods and shows their capabilities from various selected examples (eg: the replacement of large components in a pressurized water reactor, and aircraft measurements (orig./DG) [de

  17. Temperature radiation measuring equipment. Temperaturstrahlungsmessgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Lotzer, W

    1981-01-22

    The invention is concerned with a temperature radiation measuring equipment for non-contact temperature measurement by the light intensity variation method, with a photoelectric resistance as the measuring element. By having a circuit with a transistor, the 'dark resistance' occurring in the course of time is compensated for and thus gives a genuine reading (ie. the voltage drop across the photoelectric resistance remains constant).

  18. Flux modeling and analysis of a linear induction motor for steel mill non-contacting conveyance system application

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.

    2005-01-01

    A detailed mathematical approach for analyzing static/dynamic characteristics of a linear induction motor for steel mill non-contacting conveyance system application will be provided. The dependent reluctances among the motor secondary steel plate and primary poles have been systematically formulated; hence, the operational performance of the system can be derived conveniently. Results showed that not only the motor structure is suitable for the design objective, but also the proposed magnetic equivalent circuit can provide appropriate and convenient modeling for relative analytical investigations

  19. Residual gravimetric method to measure nebulizer output.

    Science.gov (United States)

    Vecellio None, Laurent; Grimbert, Daniel; Bordenave, Joelle; Benoit, Guy; Furet, Yves; Fauroux, Brigitte; Boissinot, Eric; De Monte, Michele; Lemarié, Etienne; Diot, Patrice

    2004-01-01

    The aim of this study was to assess a residual gravimetric method based on weighing dry filters to measure the aerosol output of nebulizers. This residual gravimetric method was compared to assay methods based on spectrophotometric measurement of terbutaline (Bricanyl, Astra Zeneca, France), high-performance liquid chromatography (HPLC) measurement of tobramycin (Tobi, Chiron, U.S.A.), and electrochemical measurements of NaF (as defined by the European standard). Two breath-enhanced jet nebulizers, one standard jet nebulizer, and one ultrasonic nebulizer were tested. Output produced by the residual gravimetric method was calculated by weighing the filters both before and after aerosol collection and by filter drying corrected by the proportion of drug contained in total solute mass. Output produced by the electrochemical, spectrophotometric, and HPLC methods was determined after assaying the drug extraction filter. The results demonstrated a strong correlation between the residual gravimetric method (x axis) and assay methods (y axis) in terms of drug mass output (y = 1.00 x -0.02, r(2) = 0.99, n = 27). We conclude that a residual gravimetric method based on dry filters, when validated for a particular agent, is an accurate way of measuring aerosol output.

  20. Measurement methods for several properties of scintillator

    International Nuclear Information System (INIS)

    Luo Fengqun; Ji Changsong

    1998-01-01

    The current paper describes the experimental measurement methods for the relative light output, the relative energy conversion efficiency, the intrinsic amplitude resolution and the detection efficiency of the scintillators and their temperature effects

  1. Absolute measurement method of environment radon content

    International Nuclear Information System (INIS)

    Ji Changsong

    1989-11-01

    A portable environment radon content device with a 40 liter decay chamber based on the method of Thomas double filter radon content absolute measurement has been developed. The correctness of the method of Thomas double filter absolute measurement has been verified by the experiments to measure the sampling gas density of radon that the theoretical density has been known. In addition, the intrinsic uncertainty of this method is also determined in the experiments. The confidence of this device is about 95%, the sensitivity is better than 0.37 Bqm -3 and the intrinsic uncertainty is less than 10%. The results show that the selected measuring and structure parameters are reasonable and the experimental methods are acceptable. In this method, the influence on the measured values from the radioactive equilibrium of radon and its daughters, the ratio of combination daughters to the total daughters and the fraction of charged particles has been excluded in the theory and experimental methods. The formula of Thomas double filter absolute measuring radon is applicable to the cylinder decay chamber, and the applicability is also verified when the diameter of exit filter is much smaller than the diameter of inlet filter

  2. Noise thermometry - a new temperature measuring method

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Rittinghaus, K.F.

    1975-01-01

    The thermal Johnson-Niquist noise is the basis of noise thermometry. This temperature measuring method is, e.g., of interest insofar as the noise thermometer gives absolute values as a primary thermometer and is in principle extensively independent of environmental influences and material properties. The resistance values of the measuring probe are about 10 Ohm to a few kOhm. The demands of electronics are high, the self-noise of the measuring apparatus must be as small as possible; a comparative measuring method is advantageous. 1 to 2,500 K are given as a possible temperature range. An accuracy of 0.1% could be achieved in laboratory measurements. Temperature measurements to be used in operation in a few nuclear reactors are mentioned. (HP/LH) [de

  3. Advanced Method of the Elastomagnetic Sensors Calibration

    Directory of Open Access Journals (Sweden)

    Mikulas Prascak

    2004-01-01

    Full Text Available Elastomagnetic method (EM method is a highly sensitive non-contact evaluation method for measuring tensile and compressive stress in steel. The latest development of measuring devices and EM sensors has shown that the thermomagnetic phenomenon has a stron influence on th accuracy during the EM sensor calibration. To eliminate the influence of this effect a two dimensional regression method is presented.

  4. A new method to measure vaginal sensibility

    NARCIS (Netherlands)

    Lakeman, M. M. E.; Laan, E.; Vaart, C. H.; Roovers, J. P.

    2010-01-01

    Vaginal surgery may affect sexual function both positively and negatively. Possibly, negative consequences of surgical interventions on sexuality may be caused by reduced sensibility of the vaginal wall. To develop a new method to measure vaginal sensibility. We developed a technique to measure the

  5. Palpatory method of measuring diastolic blood pressure

    Directory of Open Access Journals (Sweden)

    Dinesh Sahu

    2010-01-01

    Conclusion: The palpatory method would be very useful where frequent blood pressure measurement are being done manually like in wards, in busy OPD, patient on treadmill and also whenever stethoscope is not available. The blood pressure can be measured in noisy environment too.

  6. Improved method of measurement for outer leak

    International Nuclear Information System (INIS)

    Xu Guang

    2012-01-01

    Pneumatic pipeline is installed for the airborne radioactivity measurement equipment, air tightness and outer leak rate are essential for the testing of the characteristics, both in the national criteria and ISO standards, an improved practical method is available for the measurement of the outer air leak rate based on the engineering experiences for the equipment acceptance and testing procedure. (authors)

  7. A New Method to Measure Vaginal Sensibility

    NARCIS (Netherlands)

    Lakeman, M. M. E.; Laan, E.; Vaart, C. H.; Roovers, J. P.

    2010-01-01

    Introduction: Vaginal surgery may affect sexual function both positively and negatively. Possibly, negative consequences of surgical interventions on sexuality may be caused by reduced sensibility of the vaginal wall. Aims: To develop a new method to measure vaginal sensibility. Methods: We

  8. An optical sensor for local strain measuring of an object by means of a speckle correlation method

    Czech Academy of Sciences Publication Activity Database

    Horváth, P.; Šmíd, Petr; Hrabovský, M.; Hamarová, Ivana

    2012-01-01

    Roč. 106, s3 (2012), s. 425-427 ISSN 0009-2770 R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100521 Keywords : non-contact measurement * strain * speckle * speckle correlation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.453, year: 2012

  9. Torsion method for measuring piezooptic coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Skab, I.; Smaga, I.; Savaryn, V.; Vasylkiv, Yu.; Vlokh, R. [Institute of Physical Optics, Lviv (Ukraine)

    2011-01-15

    We develop and describe analytically a torsion method for measuring piezooptic coefficients associated with shear stresses. It is shown that the method enables to increase significantly the accuracy of determination of piezooptic coefficients. The method and the appropriate apparatus are verified experimentally on the example of LiNbO{sub 3} crystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Methods of radon measurement and devices

    International Nuclear Information System (INIS)

    Miles, J.

    2004-01-01

    The following topics and instrumentation are discussed: The quantity to be measured; Active measurement methods (scintillation cells, ionisation chambers, electrostatic collection of decay products); Passive measurement methods (charcoal detectors; electret ion chambers; etched track detectors); and Detector considerations for large-scale surveys ('always on' or 'switchable' detectors?; response to radon-220; avoidance of electrostatic effects; quality assurance for passive radon detectors; quality control within the laboratory; external quality assurance; detectors need to be easily deliverable). It is concluded that the ideal detector for large scale surveys of radon in houses is a small, closed detector in a conducting holder which excludes radon-220, supported by rigorous quality assurance procedures. (P.A.)

  11. Absolute method of measuring magnetic susceptibility

    Science.gov (United States)

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  12. Development of diverse methods for drop time measurement of PFBR shut down mechanisms

    International Nuclear Information System (INIS)

    Prakash, V.; Nashine, B.K.; Padmakumar, G.; Vijayashree, R.; Sharma, Prashant; Patri, Sudheer; Chandramouli, S.; Rajan, K.K.

    2015-01-01

    Prototype Fast Breeder Reactor (PFBR) is equipped with two shutdown systems namely, Control and Safety Rod Drive Mechanism (CSRDM) and Diverse Safety Rod Drive Mechanism (DSRDM). DSRDM is used for the safe shut down of the reactor. During a SCRAM, DSR is released from its electromagnet and falls into the reactor core under gravity. It is a safety requirement to measure the fall time of DSR during each SCRAM. As no sensor can be attached to the moving part of DSR, non-contact type measurement techniques namely acoustic and eddy current methods are envisaged for the measurement of DSR fall time in PFBR. Acoustic technique uses accelerometer mounted on upper part of DSRDM for the detection of acoustic events during the movement of DSR in the DSR subassembly. Measurements were carried out in various water/sodium facilities and an On-line measurement system for PFBR has been developed. The developed system was tested for its performance and results were compared with ultrasonic method to establish its measurement sensitivity. Eddy current position sensor uses the property of change in inductance due to the entry of DSR piston into the DSR dashpot region. DSR piston, which is made up of modified 9Cr-1Mo steel, replaces the liquid sodium in the dashpot, which results in a change in inductance in the sensor coil embedded in DSR subassembly sheath near the entry of dashpot. A sensor with two pick-up coils was successfully developed and tested in sodium at various temperatures for various test conditions. The developed eddy current system was installed in prototype DSRDM, tested for its performance and the results are compared with acoustic technique. This paper discusses the details of the developmental activities of both the techniques and their experimental verification using prototype DSRDM. (author)

  13. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  14. Applications of optical coherence tomography in the non-contact assessment of automotive paints

    Science.gov (United States)

    Lawman, Samuel; Zhang, Jinke; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun

    2017-06-01

    The multiple layer paint systems on modern cars serve two end purposes, they firstly protect against corrosion and secondly give the desired visual appearance. To ensure consistent corrosion protection and appearance, suitable Quality Assurance (QA) measures on the final product are required. Various (layer thickness and consistency, layer composition, flake statistics, surface profile and layer dryness) parameters are of importance, each with specific techniques that can measure one or some of them but no technique that can measure all or most of them. Optical Coherence Tomography (OCT) is a 3D imaging technique with micrometre resolution. Since 2016, OCT measurements of layer thickness and consistency, layer composition fingerprint and flake statistics have been reported. In this paper we demonstrate two more novel applications of OCT to automotive paints. Firstly, we use OCT to quantify unwanted surface texture, which leads to an "orange peel" visual defect. This was done by measuring the surface profiles of automotive paints, with an unoptimised precision of 37 nm over lateral range of 7 mm, to quantify texture of less than 500 nm. Secondly, we demonstrate that OCT can measure how dry a coating layer is by measuring how fast it is still shrinking quasiinstantaneously, using Fourier phase sensitivity.

  15. 25G compared with 20G vitrectomy under Resight non-contact wide-angle lenses for Terson syndrome.

    Science.gov (United States)

    Mao, Xinbang; You, Zhipeng

    2017-08-01

    The aim of the present study was to compare the effectiveness of 25G vitrectomy to standard 20G vitrectomy for treatment of Terson syndrome under Resight non-contact wide-angle lenses. This was a case-control study of 20 patients with Terson syndrome (study group) that underwent 25G vitrectomy under Resight non-contact wide-angle lenses, with those of 20 matched patients that underwent 20G vitrectomy (control group). Medical records were reviewed from between July 2011 and October 2013. Data included results of the Early Treatment Diabetic Retinopathy Study examination, ophthalmology B-scan ultrasonography and fundus photography. The mean age, follow-up time, the preoperative visual acuity of LogMAR and the preoperative intraocular pressure (IOP) were all comparable in the two groups (all P>0.05). There were statistically significant differences in postoperative visual acuity of LogMAR compared with preoperative visual acuity (Pcontact wide-angle lenses can achieve a significantly shorter operative time and lower post-operative IOP compared with 20G Vitrectomy.

  16. COMPANY PERFORMANCE MEASUREMENT AND REPORTING METHODS

    Directory of Open Access Journals (Sweden)

    Nicu Ioana Elena

    2012-12-01

    Full Text Available One of the priorities of economic research has been and remains the re-evaluation of the notion of performance and especially exploring and finding some indicators that would reflect as accurately as possible the subtleties of the economic entity. The main purpose of this paper is to highlight the main company performance measurement and reporting methods. Performance is a concept that raises many question marks concerning the most accurate or the best method of reporting the performance at the company level. The research methodology has aimed at studying the Romanian and foreign specialized literature dealing with the analyzed field, studying magazines specialized on company performance measurement. If the financial performance measurement indicators are considered to offer an accurate image of the situation of the company, the modern approach through non-financial indicators offers a new perspective upon performance measurement, which is based on simplicity. In conclusion, after the theoretical study, I have noticed that the methods of performance measurement, reporting and interpretation are various, the opinions regarding the best performance measurement methods are contradictive and the companies prefer resorting to financial indicators that still play a more important role in the consolidation of the company performance measurement than the non-financial indicators do.

  17. Differential Laser Doppler based Non-Contact Sensor for Dimensional Inspection with Error Propagation Evaluation

    Directory of Open Access Journals (Sweden)

    Ketsaya Vacharanukul

    2006-06-01

    Full Text Available To achieve dynamic error compensation in CNC machine tools, a non-contactlaser probe capable of dimensional measurement of a workpiece while it is being machinedhas been developed and presented in this paper. The measurements are automatically fedback to the machine controller for intelligent error compensations. Based on a well resolvedlaser Doppler technique and real time data acquisition, the probe delivers a very promisingdimensional accuracy at few microns over a range of 100 mm. The developed opticalmeasuring apparatus employs a differential laser Doppler arrangement allowing acquisitionof information from the workpiece surface. In addition, the measurements are traceable tostandards of frequency allowing higher precision.

  18. Track detection methods of radium measurements

    International Nuclear Information System (INIS)

    Somogyi, G.

    1986-06-01

    The principles of tack formation and processing including the description of etching and etch-track evaluation for the preferably used plastic track detectors are discussed. Measuring methods to determine 226 Ra activity based either on the mapping of alpha-decaying elements in the complete U-Ra series by alpha-radiography, or on the measurement of uranium alone by neutron induced fissionography, or on the alpha-decay measurement of 222 Rn, the first daughter element of radium, and finally on the measurement of alpha-tracks originating from radium itself, which is separated from its parent nuclides are described in detail. (V.N.)

  19. Effect of central corneal thickness on intraocular pressure and comparison of Topcon CT-80 non-contact tonometry with Goldmann applanation tonometry.

    Science.gov (United States)

    Mansoori, Tarannum; Balakrishna, Nagalla

    2018-03-01

    To compare intraocular pressure (IOP) measurements obtained with the Topcon CT-80 non-contact tonometer (NCT) and Goldmann applanation tonometer (GAT), in different ranges of IOP in normal and glaucoma subjects, and to assess the influence of central corneal thickness (CCT) on the IOP measurements in Asian Indian eyes. Four hundred and two eyes of 402 subjects (193 newly diagnosed primary open angle glaucoma [POAG] and 209 normal) were enrolled for this prospective study. For each eye, IOP was measured with GAT by a glaucoma specialist and NCT by a trained optometrist. The IOP values were compared among the tonometers in the three different IOP ranges (≤ 12 mmHg, 13-20 mmHg and ≥ 21 mmHg) using Bland-Altman graphs. Correlation between GAT and NCT was assessed by Pearson correlation co-efficient. CCT was measured with ultrasound pachymetry and its correlation with GAT and NCT was analysed using linear regression analysis. The mean paired difference of IOP between NCT and GAT was 1.556 ± 2.69 mmHg (r = 0.26, p = 0.006) at IOP range of ≤ 12 mmHg, -1.665 ± 2.6 mmHg (r = 0.51, p tonometer and that the IOP readings obtained with these tonometers are not interchangeable. © 2017 Optometry Australia.

  20. Sugeno-Fuzzy Expert System Modeling for Quality Prediction of Non-Contact Machining Process

    Science.gov (United States)

    Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.

    2018-03-01

    Modeling can be categorised into four main domains: prediction, optimisation, estimation and calibration. In this paper, the Takagi-Sugeno-Kang (TSK) fuzzy logic method is examined as a prediction modelling method to investigate the taper quality of laser lathing, which seeks to replace traditional lathe machines with 3D laser lathing in order to achieve the desired cylindrical shape of stock materials. Three design parameters were selected: feed rate, cutting speed and depth of cut. A total of twenty-four experiments were conducted with eight sequential runs and replicated three times. The results were found to be 99% of accuracy rate of the TSK fuzzy predictive model, which suggests that the model is a suitable and practical method for non-linear laser lathing process.

  1. Methods of viscosity measurements in sealed ampoules

    Science.gov (United States)

    Mazuruk, Konstantin

    1999-07-01

    Viscosity of semiconductors and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviate. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and nonintrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods is presented along with the initial test result of the constructed apparatus. Advantages of each of the method are discussed.

  2. Human performance assessment: methods and measures

    International Nuclear Information System (INIS)

    Andresen, Gisle; Droeivoldsmo, Asgeir

    2000-10-01

    The Human Error Analysis Project (HEAP) was initiated in 1994. The aim of the project was to acquire insights on how and why cognitive errors occur when operators are engaged in problem solving in advanced integrated control rooms. Since human error had not been studied in the HAlden Man-Machine LABoratory (HAMMLAB) before, it was also necessary to carry out research in methodology. In retrospect, it is clear that much of the methodological work is relevant to human-machine research in general, and not only to research on human error. The purpose of this report is, therefore, to give practitioners and researchers an overview of the methodological parts of HEAP. The scope of the report is limited to methods used throughout the data acquisition process, i.e., data-collection methods, data-refinement methods, and measurement methods. The data-collection methods include various types of verbal protocols, simulator logs, questionnaires, and interviews. Data-refinement methods involve different applications of the Eyecon system, a flexible data-refinement tool, and small computer programs used for rearranging, reformatting, and aggregating raw-data. Measurement methods involve assessment of diagnostic behaviour, erroneous actions, complexity, task/system performance, situation awareness, and workload. The report concludes that the data-collection methods are generally both reliable and efficient. The data-refinement methods, however, should be easier to use in order to facilitate explorative analyses. Although the series of experiments provided an opportunity for measurement validation, there are still uncertainties connected to several measures, due to their reliability still being unknown. (Author). 58 refs.,7 tabs

  3. A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition.

    Science.gov (United States)

    Fong, Ee-May; Chung, Wan-Young

    2015-08-05

    A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject's skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3-15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio.

  4. A review of non-contact micro- and nano-printing technologies

    International Nuclear Information System (INIS)

    Ru, Changhai; Sun, Yu; Luo, Jun; Xie, Shaorong

    2014-01-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing. (topical review)

  5. A review of non-contact micro- and nano-printing technologies

    Science.gov (United States)

    Ru, Changhai; Luo, Jun; Xie, Shaorong; Sun, Yu

    2014-05-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.

  6. The variability of piezoelectric measurements. Material and measurement method contributions

    International Nuclear Information System (INIS)

    Stewart, M.; Cain, M.

    2002-01-01

    The variability of piezoelectric materials measurements has been investigated in order to separate the contributions from intrinsic instrumental variability, and the contributions from the variability in materials. The work has pinpointed several areas where weaknesses in the measurement methods result in high variability, and also show that good correlation between piezoelectric parameters allow simpler measurement methods to be used. The Berlincourt method has been shown to be unreliable when testing thin discs, however when testing thicker samples there is a good correlation between this and other methods. The high field permittivity and low field permittivity correlate well, so tolerances on low field measurements would predict high field performance. In trying to identify microstructural origins of samples that behave differently to others within a batch, no direct evidence was found to suggest that outliers originate from either differences in microstructure or crystallography. Some of the samples chosen as maximum outliers showed pin-holes, probably from electrical breakdown during poling, even though these defects would ordinarily be detrimental to piezoelectric output. (author)

  7. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Chongxing Zhang

    2018-02-01

    Full Text Available Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  8. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors.

    Science.gov (United States)

    Zhang, Chongxing; Dong, Ming; Ren, Ming; Huang, Wenguang; Zhou, Jierui; Gao, Xuze; Albarracín, Ricardo

    2018-02-11

    Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  9. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul

    2004-01-01

    . To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...... been tried in the past and discusses some of the recent sensor designs, which can now be used to measure Friction in both production situations and for research purposes....

  10. Three methods to measure RH bond energies

    International Nuclear Information System (INIS)

    Berkowitz, J.; Ellison, G.B.; Gutman, D.

    1993-01-01

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies

  11. Statistical methods towards more efficient infiltration measurements.

    Science.gov (United States)

    Franz, T; Krebs, P

    2006-01-01

    A comprehensive knowledge about the infiltration situation in a catchment is required for operation and maintenance. Due to the high expenditures, an optimisation of necessary measurement campaigns is essential. Methods based on multivariate statistics were developed to improve the information yield of measurements by identifying appropriate gauge locations. The methods have a high degree of freedom against data needs. They were successfully tested on real and artificial data. For suitable catchments, it is estimated that the optimisation potential amounts up to 30% accuracy improvement compared to nonoptimised gauge distributions. Beside this, a correlation between independent reach parameters and dependent infiltration rates could be identified, which is not dominated by the groundwater head.

  12. Non-contact current and voltage sensor having detachable housing incorporating multiple ferrite cylinder portions

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael A.

    2016-04-26

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylinder when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  13. Clinical comparison of Pulsair non-contact tonometer and Goldmann applanation tonometer in Indian population.

    Science.gov (United States)

    Mohan, Shalini; Tiwari, Satyaprakash; Jain, Arvind; Gupta, Jaya; Sachan, Surendra Kumar

    2014-01-01

    Goldmann applanation tonometer (GAT) is the gold standard for Intraocular Pressure (IOP) measurement but has disadvantage of being contact device and problems with portability. The aim of the study was to compare the Keeler's Pulsair noncontact tonometer (NCT) with GAT in Indian Population. Eighty-one subjects were screened from a Glaucoma clinic of a tertiary care centre in North India. The IOP was measured by Pulsair NCT and GAT after explaining the procedure. Central corneal thickness (CCT) was measured to avoid its bias on IOP readings. The data were analyzed using SPSS software. The mean age of subjects was 49.9±8.8 (mean±SD) years. The mean IOP as taken by Pulsair NCT was 15.79±4.07mmHg and that for GAT was 17.02±4.23mmHg (p=0.062). The mean CCT was 0.536±0.019mm. A positive Pearson's correlation coefficient of 0.909 (p=0.0001) was found between the two instruments. Bland and Altmann analysis showed a fair agreement between the two tonometers at lower IOP range. Pulsair NCT can be used as a screening tool for community practices but is not reliable in the subjects with higher IOP range. Copyright © 2011 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  14. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  15. Non-Contact Temperature Requirements (NCTM) for drop and bubble physics

    Science.gov (United States)

    Hmelo, Anthony B.; Wang, Taylor G.

    1989-01-01

    Many of the materials research experiments to be conducted in the Space Processing program require a non-contaminating method of manipulating and controlling weightless molten materials. In these experiments, the melt is positioned and formed within a container without physically contacting the container's wall. An acoustic method, which was developed by Professor Taylor G. Wang before coming to Vanderbilt University from the Jet Propulsion Laboratory, has demonstrated the capability of positioning and manipulating room temperature samples. This was accomplished in an earth-based laboratory with a zero-gravity environment of short duration. However, many important facets of high temperature containerless processing technology have not been established yet, nor can they be established from the room temperature studies, because the details of the interaction between an acoustic field an a molten sample are largely unknown. Drop dynamics, bubble dynamics, coalescence behavior of drops and bubbles, electromagnetic and acoustic levitation methods applied to molten metals, and thermal streaming are among the topics discussed.

  16. High throughput integrated thermal characterization with non-contact optical calorimetry

    Science.gov (United States)

    Hou, Sichao; Huo, Ruiqing; Su, Ming

    2017-10-01

    Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.

  17. Method of superconducting joint and its measurement

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Lee, Ho Jin; Hong, Gye Won

    1994-04-01

    The development of joint techniques for superconducting wires is essential to fabricate the high quality superconducting magnet. In this report, the various joining methods and their measuring techniques were reviewed. In order to fabricate a precise superconducting magnet, joining and measuring experiment by using the field decay technique carried out. The contact resistance of coupled specimens with joint was measured as 3.0 x 10 -15 ohm at 1 Tesla which is lower than that of the real operating condition of MRI magnet. It is expected that these data can be used to design and fabricate the superconducting magnets successfully. (Author) 12 refs., 20 figs., 2 tabs

  18. [Contemporary possibilities of intraocular pressure measurement].

    Science.gov (United States)

    Hornová, J; Baxant, A

    2013-10-01

    Authors introduced current possibilities of measuring intraocular pressure (IOP). A list of available methods of monitoring IOP is published; contact measurement method IOP directly on the cornea, but also over upper lid, methodology of minimal contact and non-contact measurement. Following contact methods are described; former measurements of IOP by impression Schiotz tonometer and the current methodology applanation. So far as the gold standard measurement Goldmann applanation tonometer (GAT) is considered, another methodology with applanation measurements are compared: Pascal dynamic contoured tonometer (DCT ), BioResonator - resonant applanation tonometer (ART ), digital applanation tonometer Tonopen and last hit: continuous measurement of IOP by Sensimed Triggerfish. Orientation and rapid assessment is palpation pressure control over the lid and measuring by tonometer Diaton. Rebound tonometer (RBT) iCare belongs to measurements with minimal contact, no need anesthetic drops and fluorescein, therefore a self - home version of IOP measurements (Icare ONE) is developed. Non-contact measurement of IOP by different pneumotonometers is popular for screening assessment of IOP. Reichert Ocular Response Analyzer (ORA) is a non-contact applanation IOP measurement and reveals additional properties of the cornea. In the discussion of a range methodology is evaluated, the experience of other authors and their own experience is compared. For monitoring of patients is necessary to select the most suitable methodology, measure repeatedly and accurately to allow long-term monitoring of intraocular pressure.

  19. Evaluation of skin firmness by the DynaSKIN, a novel non-contact compression device, and its use in revealing the efficacy of a skincare regimen featuring a novel anti-ageing ingredient, acetyl aspartic acid.

    Science.gov (United States)

    Kearney, E M; Messaraa, C; Grennan, G; Koeller, G; Mavon, A; Merinville, E

    2017-05-01

    One of the key strategies for anti-ageing in the cosmetics industry today is to target the structural changes responsible for ptosis of the skin, given its impact on age perception. Several objective and non-invasive methods are available to characterise the biomechanical properties of the skin, which are operator-dependent, involving skin contact and providing single-dimensional numerical descriptions of skin behaviour. The research introduces the DynaSKIN, a device using non-contact mechanical pressure in combination with fringe projection to quantify and visualise the skin response in 3-dimensions. We examine the age correlation of the measurements, how they compare with the Cutometer ® , and measure skin dynamics following application of a skincare regimen containing established anti-ageing ingredients. DynaSKIN and Cutometer ® measurements were made on the cheek of 80 Caucasian women (18-64 years). DynaSKIN volume, mean depth and maximum depth parameters were correlated with age and 15 Cutometer ® parameters. Subsequently, the firming efficacy of a skincare regimen featuring acetyl aspartic acid (AAA) and a peptide complex was examined in a cohort of 41 volunteers. DynaSKIN volume, mean depth and maximum depth parameters correlate with age and the Cutometer ® parameters that are associated with the skin relaxation phase (R1, R2, R4, R5, R7 and F3). Furthermore, the DynaSKIN captured significant improvements in skin firmness delivered by the skincare regimen. The DynaSKIN is a novel device capable of capturing skin biomechanics at a high level of specificity and successfully detected the firming properties of a skincare regimen. Its independent measuring principle, consumer relevance and skin firmness 3D visualisation capabilities bring objectivity and novelty to product efficacy substantiation evaluation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Measurement methods of building structures deflections

    Directory of Open Access Journals (Sweden)

    Wróblewska Magdalena

    2018-01-01

    Full Text Available Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures’ constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.

  1. Acoustic methods for measuring bullet velocity

    OpenAIRE

    Courtney, Michael

    2008-01-01

    This article describes two acoustic methods to measure bullet velocity with an accuracy of 1% or better. In one method, a microphone is placed within 0.1 m of the gun muzzle and a bullet is fired at a steel target 45 m away. The bullet's flight time is the recorded time between the muzzle blast and sound of hitting the target minus the time for the sound to return from the target to the microphone. In the other method, the microphone is placed equidistant from both the gun muzzle and the stee...

  2. Radiometric measuring method for egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Forberg, S; Svaerdstroem, K

    1973-02-01

    A description is given of a fast nondestructive radiometric method for registration of the thickness of egg shells of the tawny owl, hen, osprey, and Canada goose. Certain errors are discussed. Measurement of the thickness of egg shells (mineral content per cm/sup 2/) with an accuracy better than 1% is possible in less than one minute under field conditions. (auth)

  3. Gamma spectrometric methods for measuring plutonium

    International Nuclear Information System (INIS)

    Gunnink, R.

    1978-01-01

    Nondestructive analyses of plutonium can be made by detecting and measuring the gamma rays emitted by a sample. Although qualitative and semiquantitative assays can be performed with relative ease, only recently have methods been developed, using computer analysis techniques, that provide quantitative results. This paper reviews some new techniques developed for measuring plutonium. The features of plutonium gamma-ray spectra are reviewed and some of the computer methods used for spectrum analysis are discussed. The discussion includes a description of a powerful computer method of unfolding complex peak multiplets that uses the standard linear least-squares techniques of data analysis. This computer method is based on the generation of response profiles for the isotopes composing a plutonium sample and requires a description of the peak positions, relative intensities, and line shapes. The principles that plutonium isotopic measurements are based on are also developed, followed by illustrations of the measurement procedures as applied to the quantitative analysis of plutonium liquid and solid samples

  4. Non-contact sheet forming using lasers applied to a high strength aluminum alloy

    Directory of Open Access Journals (Sweden)

    Rafael Humberto Mota Siqueira

    2016-07-01

    Full Text Available Laser beam forming (LBF is a contactless mechanical process accomplished by the introduction of thermal stresses on the surface of a material using a laser in order to induce plastic deformation. In this work, LBF was performed on 1.6 mm thick sheets of a high strength aluminum alloy, AA6013-T4 class by using a defocused continuous Yb-fiber laser beam of 0.6 mm in diameter on the sheet top surface. The laser power and process speed were varied from 200 W to 2000 W and from 3 to 30 mm/s, respectively. For these experimental conditions, the bending angle of the sheet ranged from 0.1° to 2.5° per run. In the highest bending angle condition, 1000 W and 30 mm/s, the depth of remelted pool was 0.6 mm and the microstructure near the plate bottom surface remained unaltered. For the whole set of experimental conditions, the hardness remained constant at approximately 100 HV, which is similar to the base material. In order to verify the applicability of the method, some previously T-welded sheets were straightened. The method was efficient in correcting the distortion of the sheets with a bending angle up to 5°.

  5. New sensor and non-contact geometrical survey for the vibrating wire technique

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Renan [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil); Junqueira Leão, Rodrigo, E-mail: rodrigo.leao@lnls.br [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil); Cernicchiaro, Geraldo [Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, RJ (Brazil); Terenzi Neuenschwander, Regis; Citadini, James Francisco; Droher Rodrigues, Antônio Ricardo [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil)

    2016-03-01

    The tolerances for the alignment of the magnets in the girders of the next machine of the Brazilian Synchrotron Light Laboratory (LNLS), Sirius, are as small as 40 µm for translations and 0.2 mrad for rotations. Therefore, a novel approach to the well-known vibrating wire technique has been developed and tested for the precise fiducialization of magnets. The alignment bench consists of four commercial linear stages, a stretched wire, a commercial lock-in amplifier working with phase-locked loop (PLL), a coordinate measuring machine (CMM) and a vibration sensor for the wire. This novel sensor has been designed for a larger linear region of operation. For the mechanical metrology step of the fiducialization of quadrupoles an innovative technique, using the vision system of the CMM, is presented. While the work with pitch and yaw orientations is still ongoing with promising partial results, the system already presents an uncertainty level below 10 µm for translational alignment.

  6. Non-contact transportation system of small objects using Ultrasonic Waveguides

    International Nuclear Information System (INIS)

    Nakamura, K; Koyama, D

    2012-01-01

    A transportation system for small object or fluid without contact is investigated being based on ultrasonic levitation. Small objects are suspended against gravity at the nodal points in ultrasonic pressure field due to the sound radiation force generated as the gradient of the energy density of the field. In this study, the trapped object is transported in the horizontal plane by introducing the spatial shift of the standing waves by the switching the lateral modes or travelling waves. The goal of the study is to establish a technology which can provide a total system with the flexibility in composing various transportation paths. Methods for linear/rotary stepping motions and continuous linear transportation are explained in this report. All the transportation tracks are composed of a bending vibrator and a reflector. The design for these acoustic cavity/waveguide is discussed.

  7. Soft tissue strain measurement using an optical method

    Science.gov (United States)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  8. Scleral Buckling Using a Non-contact Wide-Angle Viewing System with a 25-Gauge Chandelier Endoilluminator.

    Science.gov (United States)

    Jo, Jaehyuck; Moon, Byung Gil; Lee, Joo Yong

    2017-12-01

    To report the outcome of scleral buckling using a non-contact wide-angle viewing system with a 25-gauge chandelier endoilluminator. Retrospective analyses of medical records were performed for 17 eyes of 16 patients with primary rhegmatogenous retinal detachment (RRD) without proliferative vitreoretinopathy who had undergone conventional scleral buckling with cryoretinopexy using the combination of a non-contact wide-angle viewing system and chandelier endoillumination. The patients were eight males and five females with a mean age of 26.8 ± 10.2 (range, 11 to 47) years. The mean follow-up period was 7.3 ± 3.1 months. Baseline best-corrected visual acuity was 0.23 ± 0.28 logarithm of the minimum angle of resolution units. Best-corrected visual acuity at the final visit showed improvement (0.20 ± 0.25 logarithm of the minimum angle of resolution units), but the improvement was not statistically significant (p = 0.722). As a surgery-related complication, there was vitreous loss at the end of surgery in one eye. As a postoperative complication, increased intraocular pressure (four cases) and herpes simplex epithelial keratitis (one case) were controlled postoperatively with eye drops. One case of persistent RRD after primary surgery needed additional vitrectomy, and the retina was postoperatively attached. Scleral buckling with chandelier illumination as a surgical technique for RRD has the advantages of relieving the surgeon's neck pain from prolonged use of the indirect ophthalmoscope and sharing the surgical procedure with another surgical team member. In addition, fine retinal breaks that are hard to identify using an indirect ophthalmoscope can be easily found under the microscope by direct endoillumination. © 2017 The Korean Ophthalmological Society

  9. Agreement among Goldmann applanation tonometer, iCare, and Icare PRO rebound tonometers; non-contact tonometer; and Tonopen XL in healthy elderly subjects.

    Science.gov (United States)

    Kato, Yoshitake; Nakakura, Shunsuke; Matsuo, Naoko; Yoshitomi, Kayo; Handa, Marina; Tabuchi, Hitoshi; Kiuchi, Yoshiaki

    2018-04-01

    To evaluate the inter-device agreement among the Goldmann applanation tonometer (GAT), iCare and Icare PRO rebound tonometers, non-contact tonometer (NCT), and Tonopen XL tonometer. Sixty healthy elderly subjects were enrolled. The intraocular pressure (IOP) in each subject's right eye was measured thrice using each of the five tonometers. Intra-device agreement was evaluated by calculating intraclass correlation coefficients (ICCs). Inter-device agreement was evaluated by ICC and Bland-Altman analyses. ICCs for intra-device agreement for each tonometer were >0.8. IOP as measured by iCare (mean ± SD, 11.6 ± 2.5 mmHg) was significantly lower (p tonometers (all ICCs tonometers ranged from 14.94 to 16.47 mmHg. Among the other tonometers, however, the widths of 95% limits of agreement ranged from 7.91 to 9.24 mmHg. There was good inter-device agreement among GAT, rebound tonometers, and NCT. Tonopen XL shows the worst agreement with the other tonometers; therefore, we should pay attention to its' respective IOP. Japan Clinical Trials Register; number: UMIN000011544.

  10. [Current status of the standardization of air impulse tonometers and their evaluation--as an example: the Non-Contact Tonometer II].

    Science.gov (United States)

    Jessen, K; Hoffmann, F

    1983-10-01

    The standard values and tolerances used in the assessment of the clinical efficiency of different types of tonometers are once again demonstrated. Investigations carried out in accordance with the existing test plan for comparative clinical measurements using two non-contact tonometers II (NCT II) and a calibrated applanation tonometer as a reference instrument in 155 patient eyes showed that both the regression equation and the scattering of the individual values around the regression curve satisfy the conditions of clinical assessment criteria. Of the individual values, 2.6% are outside the 95% limits. Following a brief illustration of the measuring principle of the NCT II, a test procedure is described for this type of tonometer. It consists of a torsion balance mounted on a cross-sliding carriage with a small mirror 2.5 mm in diameter and a control balance. A lens equipped with a centering cross is used for adjustment to the nominal distances of 11 mm between the nozzle and the cornea. This test procedure makes it possible to determine whether the digital display of any particular NTC II deviates from the nominal value by not more than +/- 1 digit in the range between "12" and "30" and by not more than +/- 2 digits between "31" and "50".

  11. Non-contact inline monitoring of thermoplastic CFRP tape quality using air-coupled ultrasound

    Science.gov (United States)

    Essig, W.; Fey, P.; Meiler, S.; Kreutzbruck, M.

    2017-02-01

    Beginning with the aerospace industry, fiber reinforced plastics have spread towards many applications such as automotive, civil engineering as well as sports and leisure articles. Their superior strength and stiffness to mass ratio made them the number one material for achieving high performance. Especially continuous fiber reinforced plastics allow for the construction of structures which are custom tailored to their mechanical loads by adjusting the paths of the fibers to the loading direction. The two main constituents of CFRP are carbon fibers and matrix. Two possibilities for matrix material exist: thermosetting and thermoplastic matrix. While thermosetting matrix may yield better properties with respect to thermal loads, thermoplasticity opens a wide range of applications due to weldability, shapeability, and compatibility to e.g. injection molded thermoplastic materials. Thin (0.1 mm) thermoplastic continuous fiber CFRP tapes with a width of 100 mm were examined using air-coupled ultrasound. Transducers were arranged in reflection as well as transmission setup. By slanted incidence of the ultrasound on the tape surface, guided waves were excited in the material in fiber direction and perpendicular to the fiber direction. Artificial defects - fiber cuts, matrix cuts, circular holes, low velocity impacts from tool drop, and sharp bends - were produced. Experiments on a stationary tape showed good detectability of all artificial defects by guided waves. Also the effects of variation in material properties, fiber volume content and fiber matrix adhesion being the most relevant, on guided wave propagation were examined, to allow for quality assessment. Guided wave measurements were supported by destructive analysis. Also an apparatus containing one endless loop of CFRP tape was constructed and built to simulate inline testing of CFRP tapes, as it would be employed in a CFRP tape production environment or at a CFRP tape processing facility. The influences of tape

  12. Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications: Speed, Torque and Efficiency Measurements

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan

    2015-09-01

    Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.

  13. From measurements errors to a new strain gauge design for composite materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Salviato, Marco; Gili, Jacopo

    2015-01-01

    Significant over-prediction of the material stiffness in the order of 1-10% for polymer based composites has been experimentally observed and numerical determined when using strain gauges for strain measurements instead of non-contact methods such as digital image correlation or less stiff method...

  14. New phase method of measuring particle size with laser Doppler radar

    Science.gov (United States)

    Zemlianskii, Vladimir M.

    1996-06-01

    A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.

  15. Computational methods for industrial radiation measurement applications

    International Nuclear Information System (INIS)

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-01-01

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments

  16. Automated back titration method to measure phosphate

    International Nuclear Information System (INIS)

    Comer, J.; Tehrani, M.; Avdeef, A.; Ross, J. Jr.

    1987-01-01

    Phosphate was measured in soda drinks and as an additive in flour, by a back titration method in which phosphate was precipitated with lanthanum, and the excess lanthanum was titrated with fluoride. All measurements were performed using the Orion fluoride electrode and the Orion 960 Autochemistry System. In most commercial automatic titrators, the inflection point of the titration curve, calculated from the first derivative of the curve, is used to find the equivalence polar of the titration. The inflection technique is compared with a technique based on Gran functions, which uses data collected after the end point and predicts the equivalence point accordingly

  17. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  18. Quantitative autoradiography - a method of radioactivity measurement

    International Nuclear Information System (INIS)

    Treutler, H.C.; Freyer, K.

    1988-01-01

    In the last years the autoradiography has been developed to a quantitative method of radioactivity measurement. Operating techniques of quantitative autoradiography are demonstrated using special standard objects. Influences of irradiation quality, of backscattering in sample and detector materials, and of sensitivity and fading of the detectors are considered. Furthermore, questions of quantitative evaluation of autoradiograms are dealt with, and measuring errors are discussed. Finally, some practical uses of quantitative autoradiography are demonstrated by means of the estimation of activity distribution in radioactive foil samples. (author)

  19. Accurate color measurement methods for medical displays.

    Science.gov (United States)

    Saha, Anindita; Kelley, Edward F; Badano, Aldo

    2010-01-01

    The necessity for standard instrumentation and measurements of color that are repeatable and reproducible is the major motivation behind this work. Currently, different instrumentation and methods can yield very different results when measuring the same feature such as color uniformity or color difference. As color increasingly comes into play in medical imaging diagnostics, display color will have to be quantified in order to assess whether the display should be used for imaging purposes. The authors report on the characterization of three novel probes for measuring display color with minimal contamination from screen areas outside the measurement spot or from off-normal emissions. They compare three probe designs: A modified small-spot luminance probe and two conic probe designs based on black frusta. To compare the three color probe designs, spectral and luminance measurements were taken with specialized instrumentation to determine the luminance changes and color separation abilities of the probes. The probes were characterized with a scanning slit method, veiling glare, and a moving laser and LED arrangement. The scanning slit measurement was done using a black slit plate over a white line on an LCD monitor. The luminance was measured in 1 mm increments from the center of the slit to +/- 15 mm above and below the slit at different distances between the probe and the slit. The veiling glare setup consisted of measurements of the luminance of a black spot pattern with a white disk of radius of 100 mm as the black spot increases in 1 mm radius increments. The moving LED and laser method consisted of a red and green light orthogonal to the probe tip for the light to directly shine into the probe. The green light source was moved away from the red source in 1 cm increments to measure color stray-light contamination at different probe distances. The results of the color testing using the LED and laser methods suggest a better performance of one of the frusta probes

  20. Comparison of microstickies measurement methods. Part I, sample preparation and measurement methods

    Science.gov (United States)

    Mahendra R. Doshi; Angeles Blanco; Carlos Negro; Gilles M. Dorris; Carlos C. Castro; Axel Hamann; R. Daniel Haynes; Carl Houtman; Karen Scallon; Hans-Joachim Putz; Hans Johansson; R.A. Venditti; K. Copeland; H.-M. Chang

    2003-01-01

    Recently, we completed a project on the comparison of macrostickies measurement methods. Based on the success of the project, we decided to embark on this new project on comparison of microstickies measurement methods. When we started this project, there were some concerns and doubts principally due to the lack of an accepted definition of microstickies. However, we...

  1. Method for traceable measurement of LTE signals

    Science.gov (United States)

    Sunder Dash, Soumya; Pythoud, Frederic; Leuchtmann, Pascal; Leuthold, Juerg

    2018-04-01

    This contribution presents a reference setup to measure the power of the cell-specific resource elements present in downlink long term evolution (LTE) signals in a way that the measurements are traceable to the international system of units. This setup can be used to calibrate the LTE code-selective field probes that are used to measure the radiation of base stations for mobile telephony. It can also be used to calibrate LTE signal generators and receivers. The method is based on traceable scope measurements performed directly at the output of a measuring antenna. It implements offline digital signal processing demodulation algorithms that consider the digital down-conversion, timing synchronization, frequency synchronization, phase synchronization and robust LTE cell identification to produce the downlink time-frequency LTE grid. Experimental results on conducted test scenarios, both single-input-single-output and multiple-input-multiple-output antenna configuration, show promising results confirming measurement uncertainties of the order of 0.05 dB with a coverage factor of 2.

  2. Application of radiotracer methods in streamflow measurements

    International Nuclear Information System (INIS)

    Dincer, T.

    1967-01-01

    An attempt is made to evaluate methods using radiotracers in streamflow measurements. The basic principles of the tracer method are explained and background information given. Radiotracers used in stream discharge measurements are discussed and measurements made by different research workers are described. Problems such as adsorption of the tracer and the mixing length are discussed and the potential use of the radioisotopes as tracer in the routine stream-gauging work is evaluated. It is concluded that, at the present stage of development, radiotracer methods do not seem to be ready for routine use in stream-gauging work, and can only be used in some special cases. For gamma-emitting radioisotopes there are problems related to safety, transport and injection which should be solved. Tritium, though a very attractive tracer in some respects, has the disadvantages of having a relatively long half-life and of disturbing the natural tritium levels in the region. Finally, an attempt is made to define the objectives of the research in the field of application of radioisotopes in hydrometry. (author)

  3. A dynamic method for magnetic torque measurement

    Science.gov (United States)

    Lin, C. E.; Jou, H. L.

    1994-01-01

    In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.

  4. Methods of measuring radioactivity in the environment

    Science.gov (United States)

    Isaksson, Mats

    In this thesis a variety of sampling methods have been utilised to assess the amount of deposited activity, mainly of 137Cs, from the Chernobyl accident and from the nuclear weapons tests. Starting with the Chernobyl accident in 1986 sampling of air and rain was used to determine the composition and amount of radioactive debris from this accident, brought to southern Sweden by the weather systems. The resulting deposition and its removal from urban areas was than studied through measurements on sewage sludge and water. The main part of the thesis considers methods of determining the amount of radiocaesium in the ground through soil sampling. In connection with soil sampling a method of optimising the sampling procedure has been developed and tested in the areas of Sweden which have a comparatively high amount of 137Cs from the Chernobyl accident. This method was then used in a survey of the activity in soil in Lund and Skane, divided between nuclear weapons fallout and fallout from the Chernobyl accident. By comparing the results from this survey with deposition calculated from precipitation measurements it was found possible to predict the deposition pattern over Skane for both nuclear weapons fallout and fallout from the Chernobyl accident. In addition, the vertical distribution of 137Cs has been modelled and the temporal variation of the depth distribution has been described.

  5. [Effects of posterior tibial slope on non-contact anterior cruciate ligament rupture and stability of anterior cruciate ligament rupture knee].

    Science.gov (United States)

    Yue, De-bo; E, Sen; Wang, Bai-liang; Wang, Wei-guo; Guo, Wan-shou; Zhang, Qi-dong

    2013-05-07

    To retrospectively explore the correlation between anterior cruciate ligament (ACL)-ruptured knees, stability of ACL-rupture knee and posterior tibial slope (PTS). From January 2008 to October 2012, 150 knees with ACL rupture underwent arthroscopic surgery for ACL reconstruction. A control group was established for subjects undergoing arthroscopic surgery without ACL rupture during the same period. PTS was measured on a digitalized lateral radiograph. Lachman and mechanized pivot shift tests were performed for assessing the stability of knee. There was significant difference (P = 0.007) in PTS angle between the patients with ACL rupture (9.5 ± 2.2 degrees) and the control group (6.6 ± 1.8 degrees). Only among females, increased slope of tibial plateau had effect on the Lachman test. There was a higher positive rate of pivot shift test in patients of increased posterior slope in the ACL rupture group. Increased posterior tibial slope (>6.6) appears to contribute to non-contact ACL injuries in females. And the changes of tibial slope have no effect upon the Lachman test. However, large changes in tibial slope affect pivot shift.

  6. Evaluation of a novel Scheimpflug-based non-contact tonometer in healthy subjects and patients with ocular hypertension and glaucoma.

    Science.gov (United States)

    Reznicek, Lukas; Muth, Daniel; Kampik, Anselm; Neubauer, Aljoscha S; Hirneiss, Christoph

    2013-11-01

    To evaluate the agreement of intraocular pressure (IOP) and central corneal thickness (CCT) measurements obtained with the non-contact tonometer Corvis Scheimpflug Technology (Corvis ST, OCULUS, Wetzlar, Germany) versus Goldmann applanation tonometry (GAT) and ultrasound-based corneal pachymetry (US-CCT). Eye healthy participants, patients with ocular hypertension (OHT) and patients with open-angle glaucoma were included in this prospective study. In each participant, GAT, US-CCT and measurements with Corvis ST were obtained (Corvis-IOP and Corvis-CCT). Accuracy and repeatability were tested by correlation and regression analyses, Bland-Altman plots and assessment of intraclass correlation coefficients. A consecutive series of 188 right study eyes of 188 participants (142 eyes with glaucoma, 10 eyes with OHT and 36 control eyes) were included in this prospective study. The mean GAT of all included was 14.5±4.8 mm Hg compared with mean Corvis-IOP of 15.4±5.6 mm Hg (Spearman's r=0.75, p<0.0001). Mean US-CCT was 544.56±40.0 µm compared with Corvis-CCT of 545.2±46.5 µm (Pearson's r=0.78, p<0.0001). Bland-Altman plots of all included eyes as well as subgroup analyses revealed good agreement of the IOP and CCT measurement techniques. High intraclass correlation coefficient values in 17 patients with repeated measurements revealed very good repeatability (0.942 and 0.937 for Corvis-IOP and Corvis-CCT, respectively). Corvis-IOP but not GAT showed a trend of dependence on CCT. Obtaining CCT and measuring IOP with the Corvis ST reveals very good repeatability and good accuracy in healthy subjects and patients with OHT and glaucoma when compared with standardised US pachymetry or GAT.

  7. Large subcriticality measurement by pulsed neutron method

    International Nuclear Information System (INIS)

    Yamane, Y.; Yoshida, A.; Nishina, K.; Kobayashi, K.; Kanda, K.

    1985-01-01

    To establish the method determining large subcriticalities in the field of nuclear criticality safety, the authors performed pulsed neutron experiments using the Kyoto University Critical Assembly (KUCA) at Research Reactor Institute, Kyoto University and the Cockcroft-Walton type accelerator attached to the assembly. The area-ratio method proposed by Sjoestrand was employed to evaluate subcriticalities from neutron decay curves measured. This method has the shortcomings that the neutron component due to a decay of delayed neutrons remarkably decreases as the subcriticality of an objective increases. To overcome the shortcoming, the authors increased the frequency of pulsed neutron generation. The integral-version of the area-ratio method proposed by Kosaly and Fisher was employed in addition in order to remove a contamination of spatial higher modes from the decay curve. The latter becomes significant as subcriticality increases. The largest subcriticality determined in the present experiments was 125.4 dollars, which was equal to 0.5111 in a multiplication factor. The calculational values evaluated by the computer code KENO-IV with 137 energy groups based on the Monte Carlo method agreed well with those experimental values

  8. Which Extrinsic and Intrinsic Factors are Associated with Non-Contact Injuries in Adult Cricket Fast Bowlers?

    Science.gov (United States)

    Olivier, Benita; Taljaard, Tracy; Burger, Elaine; Brukner, Peter; Orchard, John; Gray, Janine; Botha, Nadine; Stewart, Aimee; Mckinon, Warrick

    2016-01-01

    The high prevalence of injury amongst cricket fast bowlers exposes a great need for research into the risk factors associated with injury. Both extrinsic (environment-related) and intrinsic (person-related) risk factors are likely to be implicated within the high prevalence of non-contact injury amongst fast bowlers in cricket. Identifying and defining the relative importance of these risk factors is necessary in order to optimize injury prevention efforts. The objective of this review was to assess and summarize the scientific literature related to the extrinsic and intrinsic factors associated with non-contact injury inherent to adult cricket fast bowlers. A systematic review was performed in compliance with the PRISMA guidelines. This review considered both experimental and epidemiological study designs. Studies that included male cricket fast bowlers aged 18 years or above, from all levels of play, evaluating the association between extrinsic/intrinsic factors and injury in fast bowlers were considered for inclusion. The three-step search strategy aimed at finding both published and unpublished studies from all languages. The searched databases included MEDLINE via PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Controlled Trials Register in the Cochrane Library, Physiotherapy Evidence Database (PEDro), ProQuest 5000 International, ProQuest Health and Medical Complete, EBSCO MegaFile Premier, Science Direct, SPORTDiscus with Full Text and SCOPUS (prior to 28 April 2015). Initial keywords used were 'cricket', 'pace', 'fast', 'bowler', and 'injury'. Papers which fitted the inclusion criteria were assessed by two independent reviewers for methodological validity prior to inclusion in the review using standardized critical appraisal instruments from the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI). A total of 16 studies were determined to be suitable for inclusion in this

  9. Characteristics of corneal biomechanical responses detected by a non-contact scheimpflug-based tonometer in eyes with glaucoma.

    Science.gov (United States)

    Jung, Younhea; Park, Hae-Young L; Yang, Hee Jung; Park, Chan Kee

    2017-11-01

    To determine the corneal biomechanical properties in eyes with glaucoma using a non-contact Scheimpflug-based tonometer. Corneal biomechanical responses were examined using a non-contact Scheimpflug-based tonometer. The tonometer parameters of the normal control group (n = 75) were compared with those of the glaucoma group (n = 136), including an analysis of glaucoma subgroups categorized by visual field loss. After adjusting for potential confounding factors, including the intraocular pressure (IOP), central corneal thickness (CCT), age and axial length, the deformation amplitude was smaller in the glaucoma group (1.09 ± 0.02 mm) than in the normal control group (1.12 ± 0.02 mm; p value = 0.031). The deformation amplitude and the deflection amplitude of the severe glaucoma group (1.12 ± 0.02 mm and 0.92 ± 0.01 mm) were significantly greater than that of the early glaucoma group (1.07 ± 0.01   mm and 0.88 ± 0.11 mm, p = 0.006 and p = 0.031), whereas that of the moderate glaucoma group (1.09 ± 0.02 mm and 0.90 ± 0.02 mm) was greater than that of the early glaucoma group, but this difference was not statistically significant. The deformation amplitude showed a negative correlation with the CCT in the normal control group (r = -0.235), with a weaker negative relationship observed in the early glaucoma group (r = -0.099). However, in the moderate and severe glaucoma groups, the deformation amplitude showed a positive relationship with the CCT, showing an inverse relationship. The duration and number of antiglaucomatous eyedrops used had negative correlations with the CCT in eyes with moderate and severe glaucoma. Overall, the glaucoma group showed significantly less deformable corneas than did the normal controls, even after adjusting for the IOP, CCT, age and axial length. However, there were also differences according to the severity of glaucoma, where the corneal deformation amplitude was greater in the severe glaucoma

  10. Novel Methods for Measuring LiDAR

    Science.gov (United States)

    Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.

    2017-12-01

    The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and

  11. Two methods to measure granular gas temperature

    Science.gov (United States)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2017-07-01

    Grains are vibrated so as to achieve a granular gas, here regarded as an archetype of a dissipative non equilibrium steady state (NESS). We report on two distinct and concordant experimental measures of the system effective temperature. To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian rotator, which is used as both actuator and sensor simultaneously. On the one hand, the Gallavotti-Cohen fluctuation theorem, which involves a measure of the asymmetry of the energy exchanges between the rotator and the NESS reservoir, provides a first effective temperature. On the other hand, the fluctuation-dissipation theorem, which involves the relation between the spontaneous fluctuations and the response to a weak perturbation, defines a second, independent, effective temperature. Both methods, even though they are based on drastically different ideas, give nicely concordant results.

  12. Method for steam generator water level measurement

    International Nuclear Information System (INIS)

    Srinivasan, J.S.

    1991-01-01

    This paper describes a nuclear power plant, a method of controlling the steam generator water level, wherein the steam generator has an upper level tap corresponding to an upper level, a lower level, a riser positioned between the lower and upper taps, and level sensor means for indicating water level between a first range limit and a second range limit, the sensor means being connected to at least the lower tap. It comprises: calculating a measure of velocity head at about the lower level tap; calculating a measure of full water level as the upper level less the measure of velocity head; calibrating the level sensor means to provide an output at the first limit corresponding to an input thereto representative of the measure of full level; calculating a high level setpoint equal to the level of the riser less a bias amount which is a function of the position of the riser relative to the span between the taps; and controlling the water level when the sensor means indicates that the high level setpoint has been reached

  13. Measuring and controlling method for organic impurities

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo

    1995-01-01

    The present invention concerns measurement and control for organic impurities contained in ultrapurified water for use in a nuclear power plant. A specimen containing organic impurities leached out of anionic exchange resins and cationic exchange resins is introduced to an organic material decomposing section to decompose organic impurities into organic carbon and other decomposed products. Sulfate ions, nitrate ions, nitrite ions and carbon dioxide are produced by the decomposition of the organic impurities. As a next step, carbon dioxide in the decomposed products is separated by deaerating with a nitrogen gas or an argon gas and then a TOC concentration is measured by a non-dispersion-type infrared spectrometer. Further, a specimen from which carbon dioxide was separated is introduced to a column filled with ion exchange resins and, after concentrating inorganic ion impurities, the inorganic ion impurities are identified by using a measuring theory of an ion chromatographic method of eluting and separating inorganic ion impurities and detecting them based on the change of electroconductivity depending on the kinds of the inorganic ion impurities. Organic impurities can be measured and controlled, to improve the reliability of water quality control. (N.H.)

  14. Faraday rotation measurement method and apparatus

    Science.gov (United States)

    Brockman, M. H. (Inventor)

    1981-01-01

    A method and device for measuring Faraday rotation of a received RF signal is described. A simultaneous orthogonal polarization receiver compensates for a 3 db loss due to splitting of a received signal into left circular and right circular polarization channels. The compensation is achieved by RF and modulation arraying utilizing a specific receiver array which also detects and measures Faraday rotation in the presence or absence of spin stabilization effects on a linear polarization vector. Either up-link or down-link measurement of Faraday rotation is possible. Specifically, the Faraday measurement apparatus utilized in conjunction with the specific receiver array provides a means for comparing the phase of a reference signal in the receiver array to the phase of a tracking loop signal related to the incoming signal, and comparing the phase of the reference signal to the phase of the tracking signal shifted in phase by 90 degrees. The averaged and unaveraged signals, are compared, the phase changes between the two signals being related to Faraday rotation.

  15. Acoustic levitation methods for density measurements

    Science.gov (United States)

    Trinh, E. H.; Hsu, C. J.

    1986-01-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  16. Method of measuring a liquid pool volume

    Science.gov (United States)

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  17. Electromagnetic compatibility methods, analysis, circuits, and measurement

    CERN Document Server

    Weston, David A

    2016-01-01

    Revised, updated, and expanded, Electromagnetic Compatibility: Methods, Analysis, Circuits, and Measurement, Third Edition provides comprehensive practical coverage of the design, problem solving, and testing of electromagnetic compatibility (EMC) in electrical and electronic equipment and systems. This new edition provides novel information on theory, applications, evaluations, electromagnetic computational programs, and prediction techniques available. With sixty-nine schematics providing examples for circuit level electromagnetic interference (EMI) hardening and cost effective EMI problem solving, this book also includes 1130 illustrations and tables. Including extensive data on components and their correct implementation, the myths, misapplication, misconceptions, and fallacies that are common when discussing EMC/EMI will also be addressed and corrected.

  18. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  19. Implant Monitoring Measurements On Ultra Shallow Implants Before And After Anneal Using Photomodulated Reflection And Junction Photovoltage Measurement Techniques

    Science.gov (United States)

    Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.

    2011-01-01

    Ultra shallow junctions are becoming widely used in the micro- and nanoelectronic devices, and novel measurement methods are needed to monitor the manufacturing processes. Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are non-contact, nondestructive techniques suitable for characterizing both the implantation and the annealing process. Tests verify that these methods are consistent with each other and by using them together, defects originating in the implantation and anneal steps can be separated.

  20. Clinical estimation of intraocular pressure with a non-contact tonometer and Goldman applanation tonometer as a tool for mass screening and its correlation with central corneal thickness: A comparative hospital based study

    Directory of Open Access Journals (Sweden)

    Anshulee Sood

    2015-01-01

    Full Text Available Purpose To assess the mean difference between intra-ocular pressure measurement by Goldmann applanation tonometer and Non Contact tonometer to determine the suitability of tonometer for community or mass screening and the variation in intra-ocular pressure between the two devices with respect to CCT. Material and Methods The proposed study was conducted on 300 eyes of 150 patients. The IOP assessment with the Goldmann applanation tonometer was always subsequent to that with the air-puff noncontact tonometer (AT-555. An average of three readings taken 15 seconds apart, with each method was taken to get final intraocular pressure reading for each eye. The central corneal thickness (CCT measurements were performed using the pachymeter. Results Majority of the eyes were found to be in the 12-24 mmHg group i.e. 51 % eyes in the right eye and 64 % in the left eye. 3. Mean IOP measured with NCT was 22.30±10.149 mmHg and with GAT was 18.31±7.427 mmHg, thus showing a difference of 3.99 mmHg. In patients where IOP was 24mm Hg the difference in the mean IOP for right eye was 5.69mmHg and for left eye 7.84mmHg (p<0.001. Both the methods of IOP measurement showed positive correlation with central corneal thickness. The NCT was more influenced by CCT than GAT; for every 10 micron CCT change, the IOP change expected with NCT was 0.47 mmHg and GAT was 0.29 mmHg. Conclusion Thus we can conclude that NCT can be used as a screening procedure in tertiary care centres catering to a large number of patients wherein it is not possible to do Goldmann applanation tonometry on all patients.. However, intraocular pressure readings may require adjustment, especially when measured with NCT in those patients who have a CCT that is significantly different from population mean.

  1. Portable method of measuring gaseous acetone concentrations.

    Science.gov (United States)

    Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2013-08-15

    Measurement of acetone in human breath samples has been previously shown to provide significant non-invasive diagnostic insight into the control of a patient's diabetic condition. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetone, which are then exhaled during respiration. Using various breath analysis methods has allowed for the accurate determination of acetone concentrations in exhaled breath. However, many of these methods require instrumentation and pre-concentration steps not suitable for point-of-care use. We have found that by immobilizing resorcinol reagent into a perfluorosulfonic acid polymer membrane, a controlled organic synthesis reaction occurs with acetone in a dry carrier gas. The immobilized, highly selective product of this reaction (a flavan) is found to produce a visible spectrum color change which could measure acetone concentrations to less than ppm. We here demonstrate how this approach can be used to produce a portable optical sensing device for real-time, non-invasive acetone analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A Time-Frequency Respiration Tracking System using Non-Contact Bed Sensors with Harmonic Artifact Rejection

    Science.gov (United States)

    Beattie, Zachary T.; Jacobs, Peter G.; Riley, Thomas C.; Hagen, Chad C.

    2015-01-01

    Sleep apnea is a serious health condition that affects many individuals and has been associated with serious health conditions such as cardiovascular disease. Clinical diagnosis of sleep apnea requires that a patient spend the night in a sleep clinic while being wired up to numerous obtrusive sensors. We are developing a system that utilizes respiration rate and breathing amplitude inferred from non-contact bed sensors (i.e. load cells placed under bed supports) to detect sleep apnea. Multi-harmonic artifacts generated either biologically or as a result of the impulse response of the bed have made it challenging to track respiration rate and amplitude with high resolution in time. In this paper, we present an algorithm that can accurately track respiration on a second-by-second basis while removing noise harmonics. The algorithm is tested using data collected from 5 patients during overnight sleep studies. Respiration rate is compared with polysomnography estimations of respiration rate estimated by a technician following clinical standards. Results indicate that certain subjects exhibit a large harmonic component of their breathing signal that can be removed by our algorithm. When compared with technician transcribed respiration rates using polysomnography signals, we demonstrate improved accuracy of respiration rate tracking using harmonic artifact rejection (mean error: 0.18 breaths/minute) over tracking not using harmonic artifact rejection (mean error: −2.74 breaths/minute). PMID:26738176

  3. Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan

    Science.gov (United States)

    Fatehpuria, Abhishika; Lau, Daniel L.; Hassebrook, Laurence G.

    2006-04-01

    The use of fingerprints as a biometric is both the oldest mode of computer aided personal identification and the most relied-upon technology in use today. But current fingerprint scanning systems have some challenging and peculiar difficulties. Often skin conditions and imperfect acquisition circumstances cause the captured fingerprint image to be far from ideal. Also some of the acquisition techniques can be slow and cumbersome to use and may not provide the complete information required for reliable feature extraction and fingerprint matching. Most of the difficulties arise due to the contact of the fingerprint surface with the sensor platen. To attain a fast-capture, non-contact, fingerprint scanning technology, we are developing a scanning system that employs structured light illumination as a means for acquiring a 3-D scan of the finger with sufficiently high resolution to record ridge-level details. In this paper, we describe the postprocessing steps used for converting the acquired 3-D scan of the subject's finger into a 2-D rolled equivalent image.

  4. An ultra-bright white LED based non-contact skin cancer imaging system with polarization control

    Science.gov (United States)

    Günther, A.; Basu, C.; Roth, B.; Meinhardt-Wollweber, M.

    2013-06-01

    Early detection and excision of melanoma skin cancer is crucial for a successful therapy. Dermoscopy in direct contact with the skin is routinely used for inspection, but screening is time consuming for high-risk patients with a large number of nevi. Features like symmetry, border, color and most importantly changes like growth or depigmentation of a nevus may indicate malignancy. We present a non-contact remote imaging system for human melanocytic nevi with homogenous illumination by an ultra-bright white LED. The advantage compared to established dermoscopy systems requiring direct skin contact is that deformation of raised nevi is avoided and full-body scans of the patients may time-efficiently be obtained while they are in a lying, comfortable position. This will ultimately allow for automated screening in the future. In addition, calibration of true color rendering, which is essential for distinguishing between benign and malignant lesions and to ensure reproducibility and comparison between individual check-ups in order to follow nevi evolution is implemented as well as suppression of specular highlights on the skin surface by integration of polarizing filters. Important features of the system which will be crucial for future integration into automated systems are the possibility to record images without artifacts in combination with short exposure times which both reduce image blurring caused by patient motion.

  5. [Study of cytogenetic and cytotoxic effect of non-contact electrochemically-activated waters in the five organs of rats].

    Science.gov (United States)

    Sycheva, L P; Mikhaĭlova, R I; Beliaeva, N N; Zhurkov, V S; Iurchenko, V V; Savostikova, O N; Alekseeva, A V; Kribtsova, E K; Kovalenko, M A; Akhal'tseva, L V; Sheremet'eva, S M; Iurtseva, N A; Murav'eva, L V; Kamenetskaia, D B

    2014-01-01

    For the first time the multiorgan karyological analysis of five organs of rats was applied for the study of the cytogenetic and cytotoxic action of the four types of non-contact electrochemically activated water in the 30-days in vivo experiment. The effects of investigated waters were not detected in bone marrow polychromatic erythrocytes. "Anolyte" (ORP = -362 mV) did not have a negative effect on rats. "Catholyte-5" (ORP = +22 mV) and "Catholyte-25" (ORP = -60 mV) induced cytogenetic abnormalities in the bladder and fore stomach. The same catholytes and "Catholyte-40" (ORP = -10 mV) changed the proliferation indices: increased the mitotic index in the fore stomach epithelium and reduced the frequency of binucleated cells in the fore stomach, bladder and lungs. The increase in the rate of cells with cytogenetic abnormalities on the background of the promotion of mitotic activity can be considered as a manifestation of the negative effect, typical for catolytes, but the effect of each out of them has its own features.

  6. Method of measuring reactor water level

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1979-01-01

    Purpose: To provide a water level measuring system so that a reactor water level detecting signal can be corrected in correspondence to a recirculation flow, thereby to carry out a correct water level detection in a wide range of the reactor. Method: According to the operation record of a precursor reactor, the ratio Δh of the lowering of the water level due to the recirculation flow is lowered in proportion to the ratiowith respect to the rated differential pressure of the recirculation flow. Accordingly, the flow of recirculation pump is measured by an elbow differential pressure generator utilizing an elbow of a pipe, and the measured value is multiplied by a gain by a ratio setter, and therefter, an addition computation is carried out by an adder for correcting the signal from a water level detector. When the signal from the water level detector is corrected in this manner, the influence of the lowering of the water level due to the recirculation flow can be removed, and an interlocker predetermined in the defined water level can be actuated, thus the influence of the dynamic pressure due to the recirculation flow acting on the instrumental pipe line detecting the reactor water level can be removed effectively. (Yoshino, Y.)

  7. Express method and radon gas measurement detector

    International Nuclear Information System (INIS)

    Khajdarov, R.A.; Khajdarov, R.R.

    2004-01-01

    The purpose of this work was to improve the activated charcoal adsorption method. The detector consisted of an electronic unit (200 mm x 180 mm x 80 mm) and a scintillation cell (a tube 200 mm long, 60 mm diam.). The electronic unit contained a power supply, amplifier, discriminator, timer, counter and indicator. The scintillation cell contained a zinc sulfide scintillator, photomultiplier, preamplifier, high voltage power supply and a 200 ml chamber above the scintillator. This chamber was intended to situate activated carbon fibrous absorber and air compressor. In this method, air is drawn through a filter to remove radon decay products and then through the activated carbon cloth by using a compressor. Sampling takes between 5 and 15 minutes. After the sampling, the cloth is heated for 5-10 sec up to 200-250 deg C by electric current passing through the fiber. Radon gas evaporates from the cloth and the device detects scintillation pulses. Owing to a high radon preconcentration factor (by adsorption of radon on the activated carbon cloth from 50-150 L of air of and evaporation into the small volume of the chamber), the detection limit of the method is 2-4 Bq/m 3 . Since the distance between the filter, cloth and scintillator is over 80 mm, the detector only measures radiation from radon without interference from the radon decay products, remaining in the filter and cloth

  8. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  9. Adaptive Sampling based 3D Profile Measuring Method for Free-Form Surface

    Science.gov (United States)

    Duan, Xianyin; Zou, Yu; Gao, Qiang; Peng, Fangyu; Zhou, Min; Jiang, Guozhang

    2018-03-01

    In order to solve the problem of adaptability and scanning efficiency of the current surface profile detection device, a high precision and high efficiency detection approach is proposed for surface contour of free-form surface parts based on self- adaptability. The contact mechanical probe and the non-contact laser probe are synthetically integrated according to the sampling approach of adaptive front-end path detection. First, the front-end path is measured by the non-contact laser probe, and the detection path is planned by the internal algorithm of the measuring instrument. Then a reasonable measurement sampling is completed according to the planned path by the contact mechanical probe. The detection approach can effectively improve the measurement efficiency of the free-form surface contours and can simultaneously detect the surface contours of unknown free-form surfaces with different curvatures and even different rate of curvature. The detection approach proposed in this paper also has important reference value for free-form surface contour detection.

  10. Measuring ambiguity in HLA typing methods.

    Directory of Open Access Journals (Sweden)

    Vanja Paunić

    Full Text Available In hematopoietic stem cell transplantation, donor selection is based primarily on matching donor and patient HLA genes. These genes are highly polymorphic and their typing can result in exact allele assignment at each gene (the resolution at which patients and donors are matched, but it can also result in a set of ambiguous assignments, depending on the typing methodology used. To facilitate rapid identification of matched donors, registries employ statistical algorithms to infer HLA alleles from ambiguous genotypes. Linkage disequilibrium information encapsulated in haplotype frequencies is used to facilitate prediction of the most likely haplotype assignment. An HLA typing with less ambiguity produces fewer high-probability haplotypes and a more reliable prediction. We estimated ambiguity for several HLA typing methods across four continental populations using an information theory-based measure, Shannon's entropy. We used allele and haplotype frequencies to calculate entropy for different sets of 1,000 subjects with simulated HLA typing. Using allele frequencies we calculated an average entropy in Caucasians of 1.65 for serology, 1.06 for allele family level, 0.49 for a 2002-era SSO kit, and 0.076 for single-pass SBT. When using haplotype frequencies in entropy calculations, we found average entropies of 0.72 for serology, 0.73 for allele family level, 0.05 for SSO, and 0.002 for single-pass SBT. Application of haplotype frequencies further reduces HLA typing ambiguity. We also estimated expected confirmatory typing mismatch rates for simulated subjects. In a hypothetical registry with all donors typed using the same method, the entropy values based on haplotype frequencies correspond to confirmatory typing mismatch rates of 1.31% for SSO versus only 0.08% for SBT. Intermediate-resolution single-pass SBT contains the least ambiguity of the methods we evaluated and therefore the most certainty in allele prediction. The presented measure

  11. Measuring Ambiguity in HLA Typing Methods

    Science.gov (United States)

    Madbouly, Abeer; Freeman, John; Maiers, Martin

    2012-01-01

    In hematopoietic stem cell transplantation, donor selection is based primarily on matching donor and patient HLA genes. These genes are highly polymorphic and their typing can result in exact allele assignment at each gene (the resolution at which patients and donors are matched), but it can also result in a set of ambiguous assignments, depending on the typing methodology used. To facilitate rapid identification of matched donors, registries employ statistical algorithms to infer HLA alleles from ambiguous genotypes. Linkage disequilibrium information encapsulated in haplotype frequencies is used to facilitate prediction of the most likely haplotype assignment. An HLA typing with less ambiguity produces fewer high-probability haplotypes and a more reliable prediction. We estimated ambiguity for several HLA typing methods across four continental populations using an information theory-based measure, Shannon's entropy. We used allele and haplotype frequencies to calculate entropy for different sets of 1,000 subjects with simulated HLA typing. Using allele frequencies we calculated an average entropy in Caucasians of 1.65 for serology, 1.06 for allele family level, 0.49 for a 2002-era SSO kit, and 0.076 for single-pass SBT. When using haplotype frequencies in entropy calculations, we found average entropies of 0.72 for serology, 0.73 for allele family level, 0.05 for SSO, and 0.002 for single-pass SBT. Application of haplotype frequencies further reduces HLA typing ambiguity. We also estimated expected confirmatory typing mismatch rates for simulated subjects. In a hypothetical registry with all donors typed using the same method, the entropy values based on haplotype frequencies correspond to confirmatory typing mismatch rates of 1.31% for SSO versus only 0.08% for SBT. Intermediate-resolution single-pass SBT contains the least ambiguity of the methods we evaluated and therefore the most certainty in allele prediction. The presented measure objectively evaluates HLA

  12. Method of measuring blood flow by radiation

    International Nuclear Information System (INIS)

    Gildenberg, P.L.

    1977-01-01

    A method of measuring relative blood flow through at least a part of the body using penetrating radiation comprises transmitting a plurality of rays at an initial angle or initial mean angle through a planar slice of the body to define a first set of rays, transmitting a plurality of further sets of rays at angles or mean angles different from each other and from the initial angle or initial mean angle through the same planar slice of the body to define by the intersection of all such rays a two-dimensional matrix of elements of the body in the slice, measuring for each ray emerging from the body a number of over the period of time at least equal to a pulse interval representing the momentary sum of the transmissions or absorptions of the element of the body intersected by the ray, determining from the momentary signals momentary signals a difference signal representing the maximum difference between the momentary signals for each ray over the period of time, deriving sets of discrete difference signals corresponding to the sets of rays, the difference signals being indicative of the transmission or absorption of blood flowing through each element of the body in the matrix, and calculating from the difference signals resultant signals representing the transmissions or absorptions due to blood flow in the elements of the matrix. These resultant signals may be visually depicted on a cathode ray tube display, as a digital print-out, or as a photograph. 30 claims, 8 figures

  13. Association between maximal hamstring muscle strength and hamstring muscle pre-activity during a movement associated with non-contact ACL injury

    DEFF Research Database (Denmark)

    Zebis, M. K.; Sorensen, R. S.; Thorborg, K.

    2015-01-01

    Background: Reduced hamstring pre-activity during sidecutting increases the risk for non-contact ACL injury. During the last decade resistance training of the lower limb muscles has become an integral part ofACLinjury prevention in e.g. soccer and handball. However, it is not known whether a stro...

  14. A surgical navigation system for non-contact diffuse optical tomography and intraoperative cone-beam CT

    Science.gov (United States)

    Daly, Michael J.; Muhanna, Nidal; Chan, Harley; Wilson, Brian C.; Irish, Jonathan C.; Jaffray, David A.

    2014-02-01

    A freehand, non-contact diffuse optical tomography (DOT) system has been developed for multimodal imaging with intraoperative cone-beam CT (CBCT) during minimally-invasive cancer surgery. The DOT system is configured for near-infrared fluorescence imaging with indocyanine green (ICG) using a collimated 780 nm laser diode and a nearinfrared CCD camera (PCO Pixelfly USB). Depending on the intended surgical application, the camera is coupled to either a rigid 10 mm diameter endoscope (Karl Storz) or a 25 mm focal length lens (Edmund Optics). A prototype flatpanel CBCT C-Arm (Siemens Healthcare) acquires low-dose 3D images with sub-mm spatial resolution. A 3D mesh is extracted from CBCT for finite-element DOT implementation in NIRFAST (Dartmouth College), with the capability for soft/hard imaging priors (e.g., segmented lymph nodes). A stereoscopic optical camera (NDI Polaris) provides real-time 6D localization of reflective spheres mounted to the laser and camera. Camera calibration combined with tracking data is used to estimate intrinsic (focal length, principal point, non-linear distortion) and extrinsic (translation, rotation) lens parameters. Source/detector boundary data is computed from the tracked laser/camera positions using radiometry models. Target registration errors (TRE) between real and projected boundary points are ~1-2 mm for typical acquisition geometries. Pre-clinical studies using tissue phantoms are presented to characterize 3D imaging performance. This translational research system is under investigation for clinical applications in head-and-neck surgery including oral cavity tumour resection, lymph node mapping, and free-flap perforator assessment.

  15. Extrinsic and intrinsic factors associated with non-contact injury in adult pace bowlers: a systematic review protocol.

    Science.gov (United States)

    Olivier, Benita; Stewart, Aimee; Taljaard, Tracy; Burger, Elaine; Brukner, Peter; Orchard, John; Gray, Janine; Botha, Nadine; Mckinon, Warrick

    2015-01-01

    Review question: which extrinsic and intrinsic factors are associated with non-contact injury in adult cricket pace bowlers?Review objective: the objective of this review is to determine the extrinsic and intrinsic factors associated with non-contact injury in adult pace bowlers. Cricket is generally considered to be a sport of low injury risk compared to other sports. In cricket, the pace bowler strives towards the adoption of a bowling technique with a relatively low injury threat that will, at the same time, allow for a fast (>120km/hr) and accurate delivery to the opposing batsman. However, of all the various roles of the cricket player, the pace bowler has the highest risk of injury, especially for low back and lower limb (lower quarter) injury. The reason for this high risk of injury is due to the inherent, high-load biomechanical nature of the pace bowling action. The high prevalence of injury amongst pace bowlers highlights the great need for research into factors associated with injury.Both extrinsic and intrinsic factors work in combination to predispose the bowler to injury. Extrinsic or environment-related factors include bowling workload (the numbers of overs a bowler bowls), player position (first, second or third change) and time of play (morning or afternoon). A high bowling workload has been linked with a higher risk of injury in pace bowlers. Foster et al. found in an observational study that bowling too many overs in a single spell or bowling too many spells may increase the pace bowler's risk of sustaining a low back injury. In another observational study, Dennis et al. found that an exceptionally high bowling workload as well as an uncommonly low bowling workload is associated with injury risk. The major extrinsic factors for bowling injury identified by Orchard et al. are a high number of match overs bowled in the previous week, number of days of play and bowling second (batting first) in a match. Extrinsic factors are known to make the bowler

  16. A pilot study of the nocturnal respiration rates in COPD patients in the home environment using a non-contact biomotion sensor

    International Nuclear Information System (INIS)

    Ballal, Tarig; Zaffaroni, Alberto; Heneghan, Conor; Shouldice, Redmond; Boyle, Patricia; McNicholas, Walter T; De Chazal, Philip; Donnelly, Seamas C

    2014-01-01

    Nocturnal respiration rate parameters were collected from 20 COPD subjects over an 8 week period, to determine if changes in respiration rate were associated with exacerbations of COPD. These subjects were primarily GOLD Class 2 to 4, and had been recently discharged from hospital following a recent exacerbation. The respiration rates were collected using a non-contact radio-frequency biomotion sensor which senses respiratory effort and body movement using a short-range radio-frequency sensor. An adaptive notch filter was applied to the measured signal to determine respiratory rate over rolling 15 s segments. The accuracy of the algorithm was initially verified using ten manually-scored 15 min segments of respiration extracted from overnight polysomnograms. The calculated respiration rates were within 1 breath min −1 for >98% of the estimates. For the 20 subjects monitored, 11 experienced one or more subsequent exacerbation of COPD (ECOPD) events during the 8 week monitoring period (19 events total). Analysis of the data revealed a significant increase in nocturnal respiration rate (e.g. >2 breath min −1 ) prior to many ECOPD events. Using a simple classifier of a change of 1 breath min −1 in the mode of the nocturnal respiration rate, a predictive rule showed a sensitivity of 63% and specificity of 85% for predicting an exacerbation within a 5 d window. We conclude that it is possible to collect respiration rates reliably in the home environment, and that the respiration rate may be a potential indicator of change in clinical status. (paper)

  17. The neutronic method for measuring soil moisture

    International Nuclear Information System (INIS)

    Couchat, Ph.

    1967-01-01

    The three group diffusion theory being chosen as the most adequate method for determining the response of the neutron soil moisture probe, a mathematical model is worked out using a numerical calculation programme with Fortran IV coding. This model is fitted to the experimental conditions by determining the effect of different parameters of measuring device: channel, fast neutron source, detector, as also the soil behaviour under neutron irradiation: absorbers, chemical binding of elements. The adequacy of the model is tested by fitting a line through the image points corresponding to the couples of experimental and theoretical values, for seven media having different chemical composition: sand, alumina, line stone, dolomite, kaolin, sandy loam, calcareous clay. The model chosen gives a good expression of the dry density influence and allows α, β, γ and δ constants to be calculated for a definite soil according to the following relation which gives the count rate of the soil moisture probe: N = (α ρ s +β) H v +γ ρ s + δ. (author) [fr

  18. Contemporary methods of body composition measurement

    DEFF Research Database (Denmark)

    Fosbøl, Marie Ø; Zerahn, Bo

    2015-01-01

    elements by in vivo neutron activation analysis, which are regarded as gold standard methods, are also summarized. The choice of a specific method or combination of methods for a particular study depends on various considerations including accuracy, precision, subject acceptability, convenience, cost...... and radiation exposure. The relative advantages and disadvantages of each method are discussed with these considerations in mind....

  19. Reconstruction of mechanically recorded sound from an edison cylinder using three dimensional non-contact optical surface metrology

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V.; Haber, C.; Maul, C.; McBride, J.W.; Golden, M.

    2004-04-20

    Audio information stored in the undulations of grooves in a medium such as a phonograph disc record or cylinder may be reconstructed, without contact, by measuring the groove shape using precision optical metrology methods and digital image processing. The viability of this approach was recently demonstrated on a 78 rpm shellac disc using two dimensional image acquisition and analysis methods. The present work reports the first three dimensional reconstruction of mechanically recorded sound. The source material, a celluloid cylinder, was scanned using color coded confocal microscopy techniques and resulted in a faithful playback of the recorded information.

  20. Standard-Setting Methods as Measurement Processes

    Science.gov (United States)

    Nichols, Paul; Twing, Jon; Mueller, Canda D.; O'Malley, Kimberly

    2010-01-01

    Some writers in the measurement literature have been skeptical of the meaningfulness of achievement standards and described the standard-setting process as blatantly arbitrary. We argue that standard setting is more appropriately conceived of as a measurement process similar to student assessment. The construct being measured is the panelists'…

  1. Rethinking traditional methods for measuring intellectual capital.

    Science.gov (United States)

    Corso, John A

    2007-01-01

    Historically, approaches to measuring intellectual capital have included both conventional accounting-based measures, such as variants of the market-to-book ratio, and more progressive measures, such as the measurement of intangible assets found in approaches such as the Balanced Scorecard and Human Resource Accounting. As greater emphasis is placed on intellectual capital and its various aspects in the continually growing service and knowledge economy, the use of assessment instruments to inventory the alignment, balance, and variety of intellectual capacities and metrics that assess the effectiveness of succession planning may represent new directions in which organizations can head in the measurement of this important construct.

  2. Current lung water measurement methods in man

    International Nuclear Information System (INIS)

    Basset, G.; Moreau, F.; Marsac, J.; Capitini, R.; Botter, F.

    1979-01-01

    Two kinds of tracer method are used to estimate the lung water pools differing by the tracer intake and the sector observed. Airborne intake gives an estimate of the tissues irrigated by the lung and bronchial circulation, whereas vascular intake only shows the sectors perfused by the lung flow. Either of these methods is suitable for a general or regional analysis. In general methods the tracer is followed at the lung exit on expired air for the first method, on peripheral arterial blood for the second. Regional methods imply partial or whole-lung external detection systems [fr

  3. Prevalence of non-contact and contact childhood sexual abuse: An Internet-based sample of men who have sex with men in China.

    Directory of Open Access Journals (Sweden)

    Wenjian Xu

    Full Text Available The prevalence of childhood sexual abuse (CSA is high among Western men who have sex with men (MSM, and CSA is associated with certain socio-demographic variables and with human immunodeficiency virus (HIV status. Little is known about CSA among Chinese MSM; therefore, we explored the prevalence and frequency of non-contact (e.g., sexual invitations, exhibitionism and contact (e.g., intercourse, genital contact forms of CSA in an Internet-based sample of MSM in China. We also examined the associations between the participants' socio-demographic characteristics and HIV status, and their histories of CSA.We surveyed MSM from 30 Chinese provinces in 2014-2015; 1,030 (mean age = 25.15 years, SD = 6.32 and 1,020 (mean age = 25.05 years, SD = 5.95 respondents were eligible for inclusion in the non-contact and contact CSA groups, respectively.Prevalence of non-contact and contact CSA was 36.2% and 29.8%, respectively; 20.4% and 15.0% had experienced non-contact and contact CSA ≥ 3 times, respectively. Most respondents were young adults, well educated, single, had never "come out," and self-identified as gay or bisexual men. Univariate analyses showed that respondents who had experienced contact CSA were more likely to be HIV-positive than those who had never experienced contact CSA. Multivariate analyses showed that non-contact CSA was associated with less education, being in a relationship with a woman or a man, and having "come out." Contact CSA was associated with less education, higher income, and being in a relationship with a man. Respondents who had experienced non-contact CSA ≥ 3 times were more likely to be less educated, "out," and to be in a relationship with a woman or a man. Respondents who had experienced contact CSA ≥ 3 times were more likely to be less educated and to be in a relationship with a man.It is necessary to pay closer attention to CSA among MSM and other sexual minorities in China.

  4. A Comparison of Cognitive Function in Former Rugby Union Players Compared with Former Non-Contact-Sport Players and the Impact of Concussion History.

    Science.gov (United States)

    Hume, Patria A; Theadom, Alice; Lewis, Gwyn N; Quarrie, Kenneth L; Brown, Scott R; Hill, Rosamund; Marshall, Stephen W

    2017-06-01

    This study investigated differences in cognitive function between former rugby and non-contact-sport players, and assessed the association between concussion history and cognitive function. Overall, 366 former players (mean ± standard deviation [SD] age 43.3 ± 8.2 years) were recruited from October 2012 to April 2014. Engagement in sport, general health, sports injuries and concussion history, and demographic information were obtained from an online self-report questionnaire. Cognitive functioning was assessed using the online CNS Vital Signs neuropsychological test battery. Cohen's d effect size statistics were calculated for comparisons across player groups, concussion groups (one or more self-reported concussions versus no concussions) and between those groups with CNS Vital Signs age-matched norms (US norms). Individual differences within groups were represented as SDs. The elite-rugby group (n = 103) performed worse on tests of complex attention, processing speed, executive functioning, and cognitive flexibility than the non-contact-sport group (n = 65), and worse than the community-rugby group (n = 193) on complex attention. The community-rugby group performed worse than the non-contact group on executive functioning and cognitive flexibility. Compared with US norms, all three former player groups performed worse on verbal memory and reaction time; rugby groups performed worse on processing speed, cognitive flexibility and executive functioning; and the community-rugby group performed worse on composite memory. The community-rugby group and non-contact-sport group performed slightly better than US norms on complex attention, as did the elite-rugby group for motor speed. All three player groups had greater individual differences than US norms on composite memory, verbal memory and reaction time. The elite-rugby group had greater individual differences on processing speed and complex attention, and the community-rugby group had greater individual

  5. Shadow photography method for beam emittance measurement

    International Nuclear Information System (INIS)

    Kashkovskij, V.V.; Lisin, V.A.

    1988-01-01

    Improved technique of shadow photography which allows to measure rather simply and accurately the angular distribution of electrons extracted from betatron is described. Measurement accuracy of particle flight angles is determined by setting of rods relatively to the plane of photographic paper sheet, their diameter and shadow trace length. Incidental angle deviation of rod axes contributes mainly into the error. Mean root-square error constituted 2-3% according to the results of several measurements of angles

  6. Superconducting property measuring system by magnetization method

    International Nuclear Information System (INIS)

    Ikisawa, K.; Mori, T.; Takasu, N.

    1988-01-01

    Superconducting property measuring system (CMS-370B) for high temperature oxide superconductor has been developed. This system adopts magnetization measurement. The superconducting properties are able to be measured automatically and continuously changing the temperature and external magnetic field. The critical current density as a function of temperature and magnetic field of high temperature superconductor YBa 2 Cu 3 O 7-y (YBCO) has been measured. This paper reports how it was confirmed that this system having the high performance and the accuracy gave the significant contribution to the superconducting material development

  7. Direct measurement of tritium in urine by liquid scintillation method

    International Nuclear Information System (INIS)

    Zhang Caihong; Wen Qinghua; Chen Kefei; Li Huaixin

    1999-01-01

    The author introduces the method for direct measurement of tritium concentration in urine using liquid scintillation. Effects of sampling containers, store patterns and storage time are studied. Meanwhile, results of two methods are compared with direct measurement method and oxidation distillation method. The results shows that direct measurement method is a economic and simple method, which can meet the need of determination of urine tritium for NPP workers. There is no significant difference compared with the data obtained by oxidation distillation method

  8. Mapping Mixed Methods Research: Methods, Measures, and Meaning

    Science.gov (United States)

    Wheeldon, J.

    2010-01-01

    This article explores how concept maps and mind maps can be used as data collection tools in mixed methods research to combine the clarity of quantitative counts with the nuance of qualitative reflections. Based on more traditional mixed methods approaches, this article details how the use of pre/post concept maps can be used to design qualitative…

  9. Method of measuring distance between fuel element

    International Nuclear Information System (INIS)

    Urata, Megumu.

    1991-01-01

    The distance between fuel elements contained in a pool is measured in a contactless manner even for a narrow distance less than 1 mm. That is, the equipment for measuring the distance between spent fuel elements of a spent fuel assembly in a nuclear reactor comprises a optical fiber scope, a lens, an industrial TV camera and a monitor TV. The top end of the optical fiber scope is inserted between fuel elements to be measured. The state thereof is displayed on the TV screen to measure the distance between the fuel elements. The measured results are compared with a previously formed calibration curve to determine the value between the fuel elements. Then, the distance between the fuel elements can be determined in the pool of a power plant without dismantling the fuel assembly, to investigate the state of the bending and estimate the fuel working life. (I.S.)

  10. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  11. Initial study of a method for IR measurements in boilers; Inledande studie av metod foer IR-maetning i aangpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Martin; Joensson, Magnus; Lundin, Leif [Swedish National Testing and Research Inst., Boraas (Sweden)

    1999-10-01

    The tubes in steam boilers are required to be regularly inspected, in order to find water-side deposits, thinning of walls or material defects. This is for safety, problem-free operation and high availability. No non-destructive method of inspection is available today for finding deposits on the insides of boiler tubes. Nor is there any method that can not only detect deposits on the insides of the tubes but also monitor the tubes' wall thicknesses. A suitable method - reliable, safe, easy to use and cost-efficient - is therefore needed. One such method is to measure the surface temperature of a larger area of the diaphragm wall, using a non-contact method, and from the resulting information to assess the material thickness and possible water-side or steam-side deposits. An IR camera is used for non-contact measurement of the radiated energy from several adjacent surface elements, and thus also of their temperature. The temperature is displayed on the camera's screen to produce a picture of the temperature distribution. This is a well-established method today, and is used in applications such as the steel industry, the electricity industry, electronics and health care. The surface temperatures of the tube walls can be measured by inserting an IR camera on an arm into the combustion chamber, without anyone having to get inside the boiler. The combustion chamber is the part of the boiler that is of main interest for inspection, as it is the easiest to reach. Measurements are facilitated by higher temperatures and thus higher heat fluxes through the tube walls. Diaphragm wall temperatures can be measured quickly and rationally over large areas. Points of interest in inspections include determining where there are water-side deposits in the tubes, where tubes are thin, where flow is obstructed and where there might be material defects. With the exception of material defects, all of these mechanisms result in changes in the surface temperature, which in many

  12. Clinical evaluation of the new TGDc-01 "PRA" palpebral tonometer: comparison with contact and non-contact tonometry.

    Science.gov (United States)

    García Resúa, Carlos; Giráldez Fernández, Maria J; Cerviño Expósito, Alejandro; González Pérez, Javier; Yebra-Pimentel, Eva

    2005-02-01

    The TGDc-01 "PRA" (Ryazan State Instrument, Ryazan, Russia) tonometer is a new portable small-sized tonometer that measures intraocular pressure (IOP) through the eyelid. The purpose of this study is to assess the repeatability of the TGDc-01 IOP measurements by comparing them against those obtained with Goldmann tonometer and with those from Perkins applanation tonometer, Xpert (Reichert, Depew, NY) noncontact tonometer, and Tono-Pen XL (Medtronic Solan, Jacksonville, FL) digital tonometer. Fifty-eight right eyes of 58 young subjects were measured with each of the tonometers. Noncontact tonometry was performed first, followed by Goldmann and Perkins applanation tonometer (in random order), digital Tono-Pen XL, and finally TGDc-01 tonometer (sitting and supine position). Correlation analysis was used to evaluate the relationship between the Goldmann tonometer and the remaining tonometers used in this study. Plotting the difference between the methods against mean was also done to compare the tonometers. The hypothesis of zero bias was examined by a paired t-test. The 95% limits of agreement (LoA) were also calculated. TGDc-01 showed no statistical difference between the IOP measurements obtained in sitting and supine positions. A poor relationship between the TGDc-01 and Goldmann tonometer was found (r = 0.173; p = 0.001). Although the mean differences between Goldmann and Tonopen XL, Xpert, and TGDc-01 IOP measurements were statistically significant, the wider 95% LoA was observed when comparing the Goldmann and TGDc-01 tonometers. Computation of the 95% LoA resulted in a wide bias range when comparing the TGDc-01 with all the tonometers used in this study. The TGDc-01 "PRA" tonometer was not comparable with the other techniques used in the study. The wide dispersion range of the values obtained shows low repeatability of the TGDc-01 for screening purposes. These results could be because of the technique of measurement and/or interindividual variables.

  13. Thermophysical Properties Measurements of Zr62Cu20Al10Ni8

    Science.gov (United States)

    Bradshaw, Richard C.; Waren, Mary; Rogers, Jan R.; Rathz, Thomas J.; Gangopadhyay, Anup K.; Kelton, Ken F.; Hyers, Robert W.

    2006-01-01

    Thermophysical property studies performed at high temperature can prove challenging because of reactivity problems brought on by the elevated temperatures. Contaminants from measuring devices and container walls can cause changes in properties. To prevent this, containerless processing techniques can be employed to isolate a sample during study. A common method used for this is levitation. Typical levitation methods used for containerless processing are, aerodynamically, electromagnetically and electrostatically based. All levitation methods reduce heterogeneous nucleation sites, 'which in turn provide access to metastable undercooled phases. In particular, electrostatic levitation is appealing because sample motion and stirring are minimized; and by combining it with optically based non-contact measuring techniques, many thermophysical properties can be measured. Applying some of these techniques, surface tension, viscosity and density have been measured for the glass forming alloy Zr62Cu20Al10Ni8 and will be presented with a brief overview of the non-contact measuring method used.

  14. Arterial endothelial function measurement method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  15. A Novel Method for Short Distance Measurements

    International Nuclear Information System (INIS)

    Fernandez, M.G.; Ferrando, A.; Josa, M.I.; Molinero, A.; Oller, J.C.; Arce, P.; Calvo, E.; Figueroa, C.F.; Garcia, C.F.; Rodigrido, T.; Vila, I.; Virto, A.L.

    1998-01-01

    A new, accurate and un expensive device for measuring short distances, intended for monitoring in LHC experiments is presented. Data taken with a very simple prototype are shown and performance is extracted. (Author) 4 refs

  16. Complementary methods of transverse emittance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zagel, James; Hu, Martin; Jansson, Andreas; Thurman-Keup, Randy; Yan, Ming-Jen; /Fermilab

    2008-05-01

    Several complementary transverse emittance monitors have been developed and used at the Fermilab accelerator complex. These include Ionization profile Monitors (IPM), Flying Wires, Schottky detectors and a Synchrotron Light Monitor (Synchlite). Mechanical scrapers have also been used for calibration purposes. This paper describes the various measurement devices by examining their basic features, calibration requirements, systematic uncertainties, and applications to collider operation. A comparison of results from different kinds of measurements is also presented.

  17. Method and device for measuring fluid flow

    International Nuclear Information System (INIS)

    Atherton, R.; Marinkovich, P.S.; Spadaro, P.R.; Stout, J.W.

    1976-01-01

    The invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution. 1 claim, 7 figures

  18. Dimension measuring method for channel box

    International Nuclear Information System (INIS)

    Jo, Hiroto.

    1995-01-01

    The device of the present invention concerns detection of a channel box for spent fuel assemblies of a BWR type reactor, which measures a cross sectional shape and dimension of the channel box to check deformation amount such as expansion. That is, a customary fuel exchanger and a dimension measuring device are used. The lower end of the channel box is measured by a distance sensor of the dimension measuring device when it is aligned with a position of the distance sensor. The channel box is lowered at the same time while detecting axial position data of the fuel exchanger. The position of the channel box in an axial direction is detected based on axial position data of the fuel exchanger. The lower end of the channel box can accurately be recognized by the detection of both of them. Subsequent deformation measurement for the channel box at accurate axial positions is enabled. In addition, since the axial position data of the fuel exchanger per se are detected, an axial profile of the channel box can be measured even if a lifting speed of the channel box is varied on every region. (I.S.)

  19. Association between maximal hamstring strength and hamstring muscle pre-activity during a movement associated with non-contact ACL injury

    DEFF Research Database (Denmark)

    Skov Husted, Rasmus; Bencke, Jesper; Thorborg, Kristian

    2014-01-01

    Introduction Reduced hamstring pre-activity during side-cutting may predispose for non-contact ACL injury. During the last decade resistance training of the lower limb muscles has become an integral part of ACL injury prevention in e.g. soccer and handball. However, it is not known whether a strong...... hamstring (ACL-agonist) musculature is associated with a high level of hamstring muscle pre-activity during high risk movements such as side-cutting. The purpose of this study was to examine the relationship between hamstring muscle pre-activity recorded during a standardized sidecutting maneuver...... translate into high levels of muscle pre-activity during movements like the sidecutting maneuver. Thus, other exercise modalities (i.e. neuromuscular training) are needed to optimize hamstring muscle pre-activity during movements associated with non-contact ACL injury....

  20. Non-contact test of coating by means of laser-induced ultrasonic excitation and holographic sound representation. Beruehrungslose Pruefung von Beschichtungen mittels laserinduzierter Ultraschallanregung und holographischer Schallabbildung

    Energy Technology Data Exchange (ETDEWEB)

    Crostack, H A; Pohl, K Y [QZ-DO Qualitaetszentrum Dortmund GmbH und Co. KG (Germany); Radtke, U [Dortmund Univ. (Germany). Fachgebiet Qualitaetskontrolle

    1991-01-01

    In order to circumvent the problems of introducing and picking off sound, which occur in conventional ultrasonic testing, a completely non-contact test process was developed. The ultrasonic surface wave required for the test is generated without contact by absorption of laser beams. The recording of the ultrasound also occurs by a non-contact holographic interferometry technique, which permits a large scale representation of the sound. Using the example of MCrAlY and ZrO[sub 2] layers, the suitability of the process for testing thermally sprayed coatings on metal substrates is identified. The possibilities and limits of the process for the detection and description of delamination and cracks are shown. (orig.).

  1. A New Measurement Method of Iimage Encryption

    International Nuclear Information System (INIS)

    Yu, X Y; Zhang, J; Ren, H E; Li, S; Zhang, X D

    2006-01-01

    Image scrambling transformation is applied widely in the digital watermarking and image encryption. Although more and more scrambling algorithms appear, they lack a method to evaluate the image scrambling degree. According to the relative differences of a point and adjacent point in scrambling front and back, a new method which judges the scrambling degree is proposed. Not only it can evaluate the change of each pixel's position, but also evaluate the change of adjacent pixel's value. Apply Matlab to the simulation experiment, the result indicated that this method can evaluate image scrambling degree well, and it accorded with people's vision too

  2. Method and apparatus for measuring electromagnetic radiation

    Science.gov (United States)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  3. Methods to measure stability of dental implants

    Directory of Open Access Journals (Sweden)

    Shruti Digholkar

    2014-01-01

    Full Text Available Dental implant treatment is an excellent option for prosthetic restoration that is associated with high success rates. Implant stability is essential for a good outcome. The clinical assessment of osseointegration is based on mechanical stability rather than histological criteria, considering primary stability (absence of mobility in bone bed after implant insertion and secondary stability (bone formation and remodeling at implant-bone interface. However, due to the invasive nature of the histological methods various other methods have been proposed: Radiographs, the surgeon′s perception, Insertion torque (cutting torque analysis, seating torque, reverse torque testing, percussion testing, impact hammer method, pulsed oscillation waveform, implant mobility checker, Periotest, resonance frequency analysis. This review focuses on the methods currently available for the evaluation of implant stability.

  4. Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors.

    Science.gov (United States)

    Zheng, Shuhong; Chen, Weibo; Tan, Dezhi; Zhou, Jiajia; Guo, Qiangbing; Jiang, Wei; Xu, Cheng; Liu, Xiaofeng; Qiu, Jianrong

    2014-06-07

    We report that non-contact self-referencing temperature sensors can be realized with the use of core-shell nanostructures. These lanthanide-based nanothermometers (NaGdF4:Yb(3+)/Tm(3+)@Tb(3+)/Eu(3+)) exhibit higher sensitivity in a wide range from 125 to 300 K based on two emissions of Tb(3+) at 545 nm and Eu(3+) at 615 nm under near-infrared laser excitation.

  5. Chemical Method of Urine Volume Measurement

    Science.gov (United States)

    Petrack, P.

    1967-01-01

    A system has been developed and qualified as flight hardware for the measurement of micturition volumes voided by crewmen during Gemini missions. This Chemical Urine Volume Measurement System (CUVMS) is used for obtaining samples of each micturition for post-flight volume determination and laboratory analysis for chemical constituents of physiological interest. The system is versatile with respect to volumes measured, with a capacity beyond the largest micturition expected to be encountered, and with respect to mission duration of inherently indefinite length. The urine sample is used for the measurement of total micturition volume by a tracer dilution technique, in which a fixed, predetermined amount of tritiated water is introduced and mixed into the voided urine, and the resulting concentration of the tracer in the sample is determined with a liquid scintillation spectrometer. The tracer employed does not interfere with the analysis for the chemical constituents of the urine. The CUVMS hardware consists of a four-way selector valve in which an automatically operated tracer metering pump is incorporated, a collection/mixing bag, and tracer storage accumulators. The assembled system interfaces with a urine receiver at the selector valve inlet, sample bags which connect to the side of the selector valve, and a flexible hose which carries the excess urine to the overboard drain connection. Results of testing have demonstrated system volume measurement accuracy within the specification limits of +/-5%, and operating reliability suitable for system use aboard the GT-7 mission, in which it was first used.

  6. A keyboard control method for loop measurement

    International Nuclear Information System (INIS)

    Gao, Z.W.

    1994-01-01

    This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation

  7. Space Suit Joint Torque Measurement Method Validation

    Science.gov (United States)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  8. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad; Mohammed, Omar F.; Aly, Shawkat M.; Alarousu, Erkki

    2016-01-01

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  9. A Simulation Method Measuring Psychomotor Nursing Skills.

    Science.gov (United States)

    McBride, Helena; And Others

    1981-01-01

    The development of a simulation technique to evaluate performance of psychomotor skills in an undergraduate nursing program is described. This method is used as one admission requirement to an alternate route nursing program. With modifications, any health profession could use this technique where psychomotor skills performance is important.…

  10. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  11. Telerobotic system performance measurement - Motivation and methods

    Science.gov (United States)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  12. Measurement methods on the complexity of network

    Institute of Scientific and Technical Information of China (English)

    LIN Lin; DING Gang; CHEN Guo-song

    2010-01-01

    Based on the size of network and the number of paths in the network,we proposed a model of topology complexity of a network to measure the topology complexity of the network.Based on the analyses of the effects of the number of the equipment,the types of equipment and the processing time of the node on the complexity of the network with the equipment-constrained,a complexity model of equipment-constrained network was constructed to measure the integrated complexity of the equipment-constrained network.The algorithms for the two models were also developed.An automatic generator of the random single label network was developed to test the models.The results show that the models can correctly evaluate the topology complexity and the integrated complexity of the networks.

  13. Liquid temperature measuring method and device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Fumi; Karasawa, Hirokazu

    1995-06-02

    In the present invention, temperature of liquid metal in coolants in an FBR type reactor can accurately be measured at rapid response time. Namely, ultrasonic waves are emitted from an ultrasonic wave sensor disposed in the air to a guide wave tube. Ultrasonic waves are reflected at reflection plates disposed at front and back or upper and lower portions of a small hole disposed to the wave guide tube. The reflected waves are received by the sensor described above. The difference of the reaching time of the reflected waves from the reflecting plates disposed at the front and the back or the upper and lower portions is measured. The speed of sounds in this case is determined based on the size of the small hole and the distance of the upper and the lower reflection plates. The speed of sounds is determined by the formula below: V(m/s) = 2500 - 0.52 T, where T: temperature. The temperature of the liquid can easily be calculated based on the formula. Accordingly, since the speed of the ultrasonic waves from their emission to the reception is msec order, and the processing of the signals are simple, the temperature can be measured at a response time of several msecs. In addition, since the ultrasonic wave sensor is disposed at the outside of the reactor, no special countermeasure for environmental circumstances is necessary, to improve maintenance ability. (I.S.).

  14. Optimization on Measurement Method for Neutron Moisture Meter

    International Nuclear Information System (INIS)

    Gong Yalin; Wu Zhiqiang; Li Yanfeng; Wang Wei; Song Qingfeng; Liu Hui; Wei Xiaoyun; Zhao Zhonghua

    2010-01-01

    When the water in the measured material is nonuniformity, the measured results of the neutron moisture meter in the field may have errors, so the measured errors of the moisture meter associated with the water nonuniformity in material were simulated by Monte Carlo method. A new measurement method of moisture meter named 'transmission plus scatter' was put forward. The experiment results show that the new measurement method can reduce the error even if the water in the material is nonuniformity. (authors)

  15. Quantitative Method of Measuring Metastatic Activity

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  16. Modelling methods for milk intake measurements

    International Nuclear Information System (INIS)

    Coward, W.A.

    1999-01-01

    One component of the first Research Coordination Programme was a tutorial session on modelling in in-vivo tracer kinetic methods. This section describes the principles that are involved and how these can be translated into spreadsheets using Microsoft Excel and the SOLVER function to fit the model to the data. The purpose of this section is to describe the system developed within the RCM, and how it is used

  17. A comparison of the Goldmann applanation and non-contact (Keeler Pulsair EasyEye) tonometers and the effect of central corneal thickness in indigenous African eyes.

    Science.gov (United States)

    Babalola, O E; Kehinde, A V; Iloegbunam, A C; Akinbinu, T; Moghalu, C; Onuoha, I

    2009-03-01

    The Keeler Pulsair EasyEye non-contact tonometer (NCT) was introduced into practice at Rachel Eye Center Abuja, Nigeria, where the patients are indigenous Africans. This was compared to the 'gold standard' Goldmann applanation tonometer (GAT) to determine if the instrument was accurate in Africans, with particular reference to the influence of central corneal thickness (CCT). 174 eyes of 88 patients were analysed. Pachymetry was performed using Sonomed PacScan AP300, and GAT with the Haag Streit R-900. Pachymetric corrections of NCT (NCTc) and GAT (GATc) were carried out with the Sonomed algorithm. Pearson's correlation r, linear regression analysis, Student t-test and Bland-Altman analysis were used to compare the instruments. Mean NCT readings were similar (17.36 mmHg) to mean GAT (17.42 mmHg; p = 0.769). GAT/NCT correlation coefficient, r, was 0.883 as compared with 0.868 for GATc/NCTc. The linear regression equation was GAT = 2.79 + 0.84*NCT (r(2) = 0.78). Forty-five per cent of differences were within 1 mmHg, while 79% were within 3 mmHg. This was similar to findings in some studies on Caucasians. Bland-Altman analysis however suggested that the spread of differences was wider than in those studies. Outliers (differences more than 5 mmHg) sometimes reflected difficulties encountered with GAT in routine practice. Mean CCT was 537.9 microm, (S.D. 38.4, 95% confidence interval 532.1-543.7 microm) and CCT appeared lower than in Caucasians. Both GAT and NCT IOP tended to rise with increasing CCT but NCT had a greater tendency to do so. Regression analysis suggested that NCT IOP increased by 0.6 mmHg for every 10 mum increase in CCT, compared to 0.4 mmHg for GAT. Thirty-eight per cent of the patients preferred NCT as opposed to 25% GAT. The Keeler Pulsair EasyEye gives reliable measurements of IOP in African eyes but is significantly affected by CCT. Particularly in borderline cases where management decisions have to be taken, it may be necessary to have pachymetric

  18. Non-contact quantification of laser micro-impulse in water by atomic force microscopy and its application for biomechanics

    Science.gov (United States)

    Hosokawa, Yoichiroh

    2011-12-01

    We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.

  19. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors.

    Science.gov (United States)

    Alentorn-Geli, Eduard; Myer, Gregory D; Silvers, Holly J; Samitier, Gonzalo; Romero, Daniel; Lázaro-Haro, Cristina; Cugat, Ramón

    2009-07-01

    Soccer is the most commonly played sport in the world, with an estimated 265 million active soccer players by 2006. Inherent to this sport is the higher risk of injury to the anterior cruciate ligament (ACL) relative to other sports. ACL injury causes the most time lost from competition in soccer which has influenced a strong research focus to determine the risk factors for injury. This research emphasis has afforded a rapid influx of literature defining potential modifiable and non-modifiable risk factors that increase the risk of injury. The purpose of the current review is to sequence the most recent literature that reports potential mechanisms and risk factors for non-contact ACL injury in soccer players. Most ACL tears in soccer players are non-contact in nature. Common playing situations precluding a non-contact ACL injury include: change of direction or cutting maneuvers combined with deceleration, landing from a jump in or near full extension, and pivoting with knee near full extension and a planted foot. The most common non-contact ACL injury mechanism include a deceleration task with high knee internal extension torque (with or without perturbation) combined with dynamic valgus rotation with the body weight shifted over the injured leg and the plantar surface of the foot fixed flat on the playing surface. Potential extrinsic non-contact ACL injury risk factors include: dry weather and surface, and artificial surface instead of natural grass. Commonly purported intrinsic risk factors include: generalized and specific knee joint laxity, small and narrow intercondylar notch width (ratio of notch width to the diameter and cross sectional area of the ACL), pre-ovulatory phase of menstrual cycle in females not using oral contraceptives, decreased relative (to quadriceps) hamstring strength and recruitment, muscular fatigue by altering neuromuscular control, decreased "core" strength and proprioception, low trunk, hip, and knee flexion angles, and high

  20. Preclinical, fluorescence and diffuse optical tomography: non-contact instrumentation, modeling and time-resolved 3D reconstruction

    International Nuclear Information System (INIS)

    Nouizi, F.

    2011-09-01

    Time-Resolved Diffuse Optical Tomography (TR-DOT) is a new non-invasive imaging technique increasingly used in the clinical and preclinical fields. It yields optical absorption and scattering maps of the explored organs, and related physiological parameters. Time-Resolved Fluorescence Diffuse Optical Tomography (TR-FDOT) is based on the detection of fluorescence photons. It provides spatio-temporal maps of fluorescent probe concentrations and life times, and allows access to metabolic and molecular imaging which is important for diagnosis and therapeutic monitoring, particularly in oncology. The main goal of this thesis was to reconstruct 3D TR-DOT/TR-FDOT images of small animals using time-resolved optical technology. Data were acquired using optical fibers fixed around the animal without contact with its surface. The work was achieved in four steps: 1)- Setting up an imaging device to record the 3D coordinates of an animal's surface; 2)- Modeling the no-contact approach to solve the forward problem; 3)- Processing of the measured signals taking into account the impulse response of the device; 4)- Implementation of a new image reconstruction method based on a selection of carefully chosen points. As a result, good-quality 3D optical images were obtained owing to reduced cross-talk between absorption and scattering. Moreover, the computation time was cut down, compared to full-time methods using whole temporal profiles. (author)

  1. Development of nondestructive hybrid measuring method for three-dimensional residual stress distribution of thick welded joint. Hybrid measuring method of inherent strain method and neutron diffraction method

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Kasahara, Norifumi; Tamura, Ryota

    2012-01-01

    The measuring methods of the residual stress are classified into destructive one and nondestructive one. The inherent strain method (ISM) is destructive one. The neutron diffraction method (NDM) is nondestructive one. But the measurable depth is limited within about 20 mm and the method cannot measure the weld zone, without destruction of the object. So, in this study, the hybrid measuring method has been developed, by combining the ISM and the NDM. The theory of the hybrid method is the same as the ISM. In the analysis, the strains measured by the NDM without destruction are used. This hybrid measuring method is a true nondestructive measuring method for a thick welded joint. The applicability of the hybrid method has been verified by simulation, using a butt welded joint of thick pipes. In the simulation, the reliable order of the strains measured by the present NDM is very important, and was considered as 10 micro. The measurable regions by the present NDM were assumed. Under the above conditions, the data (the residual elastic strains assumed to be measured by the NDM) were made, and used in the ISM. As a result of such simulation, it has been cleared that the estimated residual stress has very high accuracy, if enough data are used. The required number of data is less than the ISM. (author)

  2. Method of measuring the polarization of high momentum proton beams

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1976-01-01

    A method of measuring the polarization of high momentum proton beams is proposed. This method utilizes the Primakoff effect and relates asymmetries at high energy to large asymmetries already measured at low energy. Such a new method is essential for the success of future experiments at energies where present methods are no longer feasible

  3. 一种接口兼容的非接触式呼吸信号检测系统的设计与研究%Design and Research of an Interface Compatible Non-contacting Respiratory Signal Detection System

    Institute of Scientific and Technical Information of China (English)

    宋奎; 齐家俊; 林涛; 张逸

    2011-01-01

    Respiration-induced displacements of organs greatly affect the safety and efficiency of high intensity focused ultrasound (HIFU) tumor therapy system. The key to solve this problem is accurate, real-time detection of respiratory signals. The present study gives a new design of an interface compatible non-contacting respiratory signal detection system using the method of irradiating the laser beam onto certain region of the surface of human body that is intensely influenced by the breathing movements (mostly the breast or the dorsum) at a certain angle, and meanwhile using a camera to aquire information from the location of the laser projection. Then we can draw a curve of the location of laser projection versus time base, that is the respiration curve. This respiratory signal detection method is non-contacting, interface compatible and easy to be integrated into the treatment system.%呼吸运动引发的体内脏器移位极大影响高强度聚焦超声(HIFU)肿瘤治疗系统的安全性和治疗效率.解决这一问题的关键是实时、准确的呼吸信号检测.以一定角度,用激光束在人体表受呼吸运动影响较大的部位(一般是胸部或背部)投射激光点,用摄像机采集激光点位置信息.描绘激光点位置与采集时刻的关系曲线,即呼吸曲线.该呼吸信号检测方法为非接触式,同时具有接口兼容性好的优点,便于集成到治疗系统中.

  4. Measurement method of cardiac computed tomography (CT)

    International Nuclear Information System (INIS)

    Watanabe, Shigeru; Yamamoto, Hironori; Yumura, Yasuo; Yoshida, Hideo; Morooka, Nobuhiro

    1980-01-01

    The CT was carried out in 126 cases consisting of 31 normals, 17 cases of mitral stenosis (MS), 8 cases of mitral regurgitation (MR), 11 cases of aortic stenosis (AS), 9 cases of aortic regurgitation (AR), 20 cases of myocardial infarction (MI), 8 cases of atrial septal defect (ASD) and 22 hypertensives. The 20-second scans were performed every 1.5 cm from the 2nd intercostal space to the 5th or 6th intercostal space. The computed tomograms obtained were classified into 8 levels by cross-sectional anatomy; levels of (1) the aortic arch, (2) just beneath the aortic arch, (3) the pulmonary artery bifurcation, (4) the right atrial appendage or the upper right atrium, (5) the aortic root, (6) the upper left ventricle, (7) the mid left ventricle, and (8) the lower left ventricle. The diameter (anteroposterior and transverse) and cross-sectional area were measured about ascending aorta (Ao), descending aorta (AoD), superior vena cava (SVC), inferoir vena cava (IVC), pulmonary artery branch (PA), main pulmonary artery (mPA), left atrium (LA), right atrium (RA), and right ventricular outflow tract (RVOT) on each level where they were clearly distinguished. However, it was difficult to separate cardiac wall from cardiac cavity because there was little difference of X-ray attenuation coefficient between the myocardium and blood. Therefore, on mid ventricular level, diameter and area about total cardiac shadow were measured, and then cardiac ratios to the thorax were respectively calculated. The normal range of their values was shown in table, and abnormal characteristics in cardiac disease were exhibited in comparison with normal values. In MS, diameter and area in LA were significantly larger than normal. In MS and ASD, all the right cardiac system were larger than normal, especially, RA and SVC in MS, PA and RVOT in ASD. The diameter and area of the aortic root was larger in the order of AR, AS and HT than normal. (author)

  5. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  6. Dissipative and electrostatic force spectroscopy of indium arsenide quantum dots by non-contact atomic force microscopy

    Science.gov (United States)

    Stomp, Romain-Pierre

    This thesis is devoted to the studies of self-assembled InAs quantum dots (QD) by low-temperature Atomic Force Microscopy (AFM) in frequency modulation mode. Several spectroscopic methods are developed to investigate single electron charging from a two-dimensional electron gas (2DEG) to an individual InAs QD. Furthermore, a new technique to measure the absolute tip-sample capacitance is also demonstrated. The main observables are the electrostatic force between the metal-coated AFM tip and sample as well as the sample-induced energy dissipation, and therefore no tunneling current has to be collected at the AFM tip. Measurements were performed by recording simultaneously the shift in the resonant frequency and the Q-factor degradation of the oscillating cantilever either as a function of tip-sample voltage or distance. The signature of single electron charging was detected as an abrupt change in the frequency shift as well as corresponding peaks in the dissipation. The main experimental features in the force agree well with the semi-classical theory of Coulomb blockade by considering the free energy of the system. The observed dissipation peaks can be understood as a back-action effect on the oscillating cantilever beam due to the fluctuation in time of electrons tunneling back and forth between the 2DEG and the QD. It was also possible to extract the absolute value of the tip-sample capacitance, as a consequence of the spectroscopic analysis of the electrostic force as a function of tip-sample distance for different values of the applied voltage. At the same time, the contact potential difference and the residual non-capacitive force could also be determined as a function of tip-sample distance.

  7. 30 CFR 75.1719-3 - Methods of measurement; light measuring instruments.

    Science.gov (United States)

    2010-07-01

    ... being measured and a sufficient distance from the surface to allow the light sensing element in the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of measurement; light measuring... § 75.1719-3 Methods of measurement; light measuring instruments. (a) Compliance with § 75.1719-1(d...

  8. An in-situ measuring method for planar straightness error

    Science.gov (United States)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  9. Comparison of electric field exposure measurement methods under power lines

    International Nuclear Information System (INIS)

    Korpinen, L.; Kuisti, H.; Tarao, H.; Paeaekkoenen, R.; Elovaara, J.

    2014-01-01

    The object of the study was to investigate extremely low frequency (ELF) electric field exposure measurement methods under power lines. The authors compared two different methods under power lines: in Method A, the sensor was placed on a tripod; and Method B required the measurer to hold the meter horizontally so that the distance from him/her was at least 1.5 m. The study includes 20 measurements in three places under 400 kV power lines. The authors used two commercial three-axis meters, EFA-3 and EFA-300. In statistical analyses, they did not find significant differences between Methods A and B. However, in the future, it is important to take into account that measurement methods can, in some cases, influence ELF electric field measurement results, and it is important to report the methods used so that it is possible to repeat the measurements. (authors)

  10. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  11. A condensed water method for measuring the atmospheric radon

    CERN Document Server

    Wu Xin; Pan Xiao Qing; Yu Yi Ling

    1998-01-01

    The author summarizes the present situation of atmospheric Radon measurement, and introduces the working principle, working method and advantage and disadvantage of condensed water method in detail. The structure and function of the instrument used for this method, and the measuring result are discussed. The direction of further work is pointed out from now on

  12. Design and control strategy applying the novel highly effective magnetic flux coupling (HEMFC) scheme for a non-contact power transfer system

    International Nuclear Information System (INIS)

    Chen, W.-P.; Huang, W.-N.; Chen, P.-S.; Fan, T.-Y.; Chen, M.-P.; Teng, C.-C.

    2006-01-01

    In this paper, the novel design concept for highly effective magnetic flux coupling (HEMFC) schemes, based on enhancement of path guiding effect for leakage flux transmitting, is proposed for a non-contact power transfer system. Two implementation techniques are presented herein utilizing simple structure opinions of specific slant air gap as well as adding of metal bushing components. Both simulation and experimental results demonstrate that the improvement of magnetic coupling ratio and overall system efficiency are achieved by applying the two HEMFC schemes as the power transmitting devices

  13. Diode laser-induced tissue effects: in vitro tissue model study and in vivo evaluation of wound healing following non-contact application.

    Science.gov (United States)

    Havel, Miriam; Betz, Christian S; Leunig, Andreas; Sroka, Ronald

    2014-08-01

    The basic difference between the various common medical laser systems is the wavelength of the emitted light, leading to altered light-tissue interactions due to the optical parameters of the tissue. This study examines laser induced tissue effects in an in vitro tissue model using 1,470 nm diode laser compared to our standard practice for endonasal applications (940 nm diode laser) under standardised and reproducible conditions. Additionally, in vivo induced tissue effects following non-contact application with focus on mucosal healing were investigated in a controlled intra-individual design in patients treated for hypertrophy of nasal turbinate. A certified diode laser system emitting the light of λ = 1470 nm was evaluated with regards to its tissue effects (ablation, coagulation) in an in vitro setup on porcine liver and turkey muscle tissue model. To achieve comparable macroscopic tissue effects the laser fibres (600 µm core diameter) were fixed to a computer controlled stepper motor and the laser light was applied in a reproducible procedure under constant conditions. For the in vivo evaluation, 20 patients with nasal obstruction due to hyperplasia of inferior nasal turbinates were included in this prospective randomised double-blinded comparative trial. The endoscopic controlled endonasal application of λ = 1470 nm on the one and λ = 940 nm on the other side, both in 'non-contact' mode, was carried out as an outpatient procedure under local anaesthesia. The postoperative wound healing process (mucosal swelling, scab formation, bleeding, infection) was endoscopically documented and assessed by an independent physician. In the experimental setup, the 1,470 nm laser diode system proved to be efficient in inducing tissue effects in non-contact mode with a reduced energy factor of 5-10 for highly perfused liver tissue to 10-20 for muscle tissue as compared to the 940 nm diode laser system. In the in vivo evaluation scab formation

  14. Improved study of electric dipoles on the Si(100)-2 × 1 surface by non-contact scanning nonlinear dielectric microscopy

    International Nuclear Information System (INIS)

    Suzuki, Masataka; Yamasue, Kohei; Cho, Yasuo; Abe, Masayuki; Sugimoto, Yoshiaki

    2014-01-01

    We studied a Si(100)-2 × 1 surface by non-contact scanning nonlinear dielectric microscopy (NC-SNDM). Simultaneously taken images of the topography and electric dipole moment distribution show that negative electric dipole moments are locally formed on individual dimers on the surface. In addition, we obtained the dc bias voltage dependence of the ε local (3) signal on a specific dimer by using an atom-tracking technique with NC-SNDM. We observed that the electric dipole induced a surface potential of around −250 mV on the dimer.

  15. Methods for analysing cardiovascular studies with repeated measures

    NARCIS (Netherlands)

    Cleophas, T. J.; Zwinderman, A. H.; van Ouwerkerk, B. M.

    2009-01-01

    Background. Repeated measurements in a single subject are generally more similar than unrepeated measurements in different subjects. Unrepeated analyses of repeated data cause underestimation of the treatment effects. Objective. To review methods adequate for the analysis of cardiovascular studies

  16. Calibration and uncertainty in electromagnetic fields measuring methods

    International Nuclear Information System (INIS)

    Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.

    1999-01-01

    Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it

  17. Method for obtaining more precise measures of excreted organic carbon

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A new method for concentrating and measuring excreted organic carbon by lyophilization and scintillation counting is efficient, improves measurable radioactivity, and increases precision for estimates of organic carbon excreted by phytoplankton and macrophytes

  18. CAPABILITY ASSESSMENT OF MEASURING EQUIPMENT USING STATISTIC METHOD

    Directory of Open Access Journals (Sweden)

    Pavel POLÁK

    2014-10-01

    Full Text Available Capability assessment of the measurement device is one of the methods of process quality control. Only in case the measurement device is capable, the capability of the measurement and consequently production process can be assessed. This paper deals with assessment of the capability of the measuring device using indices Cg and Cgk.

  19. [Comparision of Different Methods of Area Measurement in Irregular Scar].

    Science.gov (United States)

    Ran, D; Li, W J; Sun, Q G; Li, J Q; Xia, Q

    2016-10-01

    To determine a measurement standard of irregular scar area by comparing the advantages and disadvantages of different measurement methods in measuring same irregular scar area. Irregular scar area was scanned by digital scanning and measured by coordinate reading method, AutoCAD pixel method, Photoshop lasso pixel method, Photoshop magic bar filled pixel method and Foxit PDF reading software, and some aspects of these methods such as measurement time, repeatability, whether could be recorded and whether could be traced were compared and analyzed. There was no significant difference in the scar areas by the measurement methods above. However, there was statistical difference in the measurement time and repeatability by one or multi performers and only Foxit PDF reading software could be traced back. The methods above can be used for measuring scar area, but each one has its advantages and disadvantages. It is necessary to develop new measurement software for forensic identification. Copyright© by the Editorial Department of Journal of Forensic Medicine

  20. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    International Nuclear Information System (INIS)

    Buckova, M; Kasparova, M; Dostalova, T; Jelinkova, H; Sulc, J; Nemec, M; Fibrich, M; Bradna, P; Miyagi, M

    2013-01-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel. (paper)