Non-Boussinesq Dissolution-Driven Convection in Porous Media
Amooie, M. A.; Soltanian, M. R.; Moortgat, J.
2017-12-01
Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.
A numerical study on the non-Boussinesq effect in the natural convection in horizontal annulus
Zhang, Yu; Cao, Yuhui
2018-04-01
In the present study, the non-Boussinesq effect in the thermal convection in an air-filled horizontal concentric annulus is studied numerically by using the variable property-based lattice Boltzmann flux solver (VPLBFS), with the radial temperature difference ratio of 1.0, the radius ratio of 2.0, and the Rayleigh number in the range 104 ≤ Ra ≤ 106. Several solutions are obtained by using the standard form or simplified versions of the VPLBFS, including the real solution with the total variation in fluid properties considered, named as the variable property solution (VPS), the constant property solution (CPS) based on the Boussinesq approximation, the solution with variable dynamic viscosity (VVS), the solution based on the partial Boussinesq approximation (PBAS), the solution with variable thermal conductivity (VCS) and the solution with variable fluid density (VDS). The discrepancy between these solutions is analyzed to illuminate the influence of the non-Boussinesq effects induced by partial or total variation in fluid properties on flow instability behaviors and heat transfer characteristics. The present study reveals the complicated flow instability behavior under non-Boussinesq conditions and its tight association with heat transfer characteristics. Also, it demonstrates the necessity of considering the integral effect of the total variation in fluid properties and highlights the essential role of the fluid density variation.
Turbulent mixing and wave radiation in non-Boussinesq internal bores
DEFF Research Database (Denmark)
Borden, Zac; Koblitz, Tilman; Meiburg, Eckart
2012-01-01
Bores, or hydraulic jumps, appear in many natural settings and are useful in many industrial applications. If the densities of the two fluids between which a bore propagates are very different (i.e., water and air), the less dense fluid can be neglected when modeling a bore analytically-a single...... ratio, defined as the ratio of the density of the lighter fluid to the heavier fluid, is greater than approximately one half. For smaller density ratios, undular waves generated at the bore's front dominate over the effects of turbulent mixing, and the expanding layer loses energy across the bore. Based...
Yahya, S M; Anwer, S F; Sanghi, S
2013-10-01
In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.
Convective mixing and accretion in white dwarfs
International Nuclear Information System (INIS)
Koester, D.
1976-01-01
The evolution of convection zones in cooling white dwarfs with helium envelopes and outer hydrogen layers is calculated with a complete stellar evolution code. It is shown that white dwarfs of spectral type DB cannot be formed from DA stars by convective mixing. However, for cooler temperatures (Tsub(e) [de
Transient Mixed Convection Validation for NGNP
Energy Technology Data Exchange (ETDEWEB)
Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-10-19
The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.
Transient Mixed Convection Validation for NGNP
International Nuclear Information System (INIS)
Smith, Barton; Schultz, Richard
2015-01-01
The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.
Convective mixing in helium white dwarfs
International Nuclear Information System (INIS)
Vauclair, G.; Fontaine, G.
1979-01-01
The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion
Unstable mixed convective transport in groundwater
International Nuclear Information System (INIS)
Schincariol, R.A.; Schwartz, F.W.
1990-01-01
This study is an experimental investigation of variable density groundwater flow in homogeneous and lenticular porous media. A solution of 500 mg/l Rhodamine WT dye served as the carrier for various concentrations of solute (NaCl) introduced into a two-dimensional flow tank at concentrations ranging from 1000 to 100,000 mg/l. At the scale of the experiments, mass transport depends upon both forced and free convection. In addition, density differences as low as 0.008 g/cm 3 (1000 mg/l NaCl) between a plume of dense water and ambient groundwater in homogeneous medium produces gravitational instabilities at realistic groundwater velocities. These instabilities are manifest by lobe-shaped protuberances that formed first along the bottom edge of the plume and later within the plume. As the density difference increases to 0.0015 g/cm 3 (2000 mg/l NaCl), 0.0037 g/cm 3 (5000 mg/l NaCl) or higher, this unstable mixing due to convective dispersion significantly alters the spreading process, resulting in a large degree of vertical spreading of the plume. In a lenticular medium the combination of convective dispersion and nonuniform flow due to heterogeneities results in relatively large dispersion. Scale considerations indicate that convective dispersion may provide an important component of mixing at the field scale. (Author) (30 refs., 12 figs., 3 tabs.)
Study of mixed convection in sodium pool
International Nuclear Information System (INIS)
Wang Zhou; Chen Yan
1995-01-01
The mixed convection phenomena in the sodium pool of fast reactor have been studied systematically by the two dimensional modeling method. A generalized concept of circumferential line in the cylindrical coordinates was proposed to overcome the three dimensional effect induced by the pool geometry in an analysis of two dimensional modeling. A method of sub-step in time was developed for solving the turbulent equations. The treatments on the boundary condition for the auxiliary velocity field have been proposed, and the explanation of allowing the flow function method to be used in the flow field in presence of a mass source term was given. As examples of verification, the experiments were conducted with water flow in a rectangular cavity. The results from theoretical analysis were applied to the numerical computation for the mixed convection in the cavity. The mechanism of stratified flow in the cavity was studied. A numerical calculation was carried out for the mixed convection in hot plenum of a typical fast reactor
An experimental study of mixed convection
International Nuclear Information System (INIS)
Saez, Manuel
1998-01-01
The aim of our study is to establish a reliable data base for improving thermal-hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re=10"3 to 6*10"4 and Ri=10"-"4 to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed data base of turbulent mixed flow of free and forced convection. Part II presents the installation and the calibration system intended for probes calibration. Part III describes the measurement technique (constant-temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part IV relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part V presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the flow structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part V gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author) [fr
Mixing in heterogeneous internally-heated convection
Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.
2017-12-01
Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low
Mixed convection flow past a horizontal plate
Directory of Open Access Journals (Sweden)
Savić Lj.
2005-01-01
Full Text Available The mixed convection flow past a horizontal plate being aligned through a small angle of attack to a uniform free stream will be considered in the limit of large Reynolds number and small Richardson number. Even a small angle of inclination of the wake is sufficient for the buoyancy force to accelerate the flow in the wake which causes a velocity overshoot in the wake. Moreover a hydrostatic pressure difference across the wake induces a correction to the potential flow which influences the inclination of the wake. Thus the wake and the correction of the potential flow have to be determined simultaneously. However, it turns out that solutions exist only if the angle of attack is sufficiently large. Solutions are computed numerically and the influence of the buoyancy on the lift coefficient is determined.
Mixed convection in fluid superposed porous layers
Dixon, John M
2017-01-01
This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.
Primary Issues of Mixed Convection Heat Transfer Phenomena
Energy Technology Data Exchange (ETDEWEB)
Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.
Heat transfer of laminar mixed convection of liquid
Shang, De-Yi
2016-01-01
This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...
Heat transfer characteristics of induced mixed convection
International Nuclear Information System (INIS)
Weiss, Y.; Lahav, C.; Szanto, M.; Shai, I.
1996-01-01
In the present work we focus our attention on the opposed Induced Mixed Convection case, i.e. the flow field structure in a vertical cylinder, closed at its bottom, opens at the top, and being heated circumferentially. The paper reports an experimental study of this complex heat transfer process. For a better understanding of the flow field and the related heat transfer process, two different experimental systems were built. The first was a flow visualization system, with water as the working fluid, while the second system enabled quantitative measurements of the temperature field in air. All the experiments were performed in the turbulent flow regime. In order to learn about all possible flow regimes, the visualization tests were conducted in three different length-to-diameter ratios (1/d=1,5,10). Quantitative measurements of the cylindrical wall temperature, as well as the radial and axial temperature profiles in the flow field, were taken in the air system. Based on the visualization observation and the measured wall temperature profile, it was found that the OIMC can be characterized by three main regimes: a mixing regime at the top, a central turbulent core and a boundary layer type of flow adjacent to the heated wall. (authors)
Convective equilibrium and mixing-length theory for stellarator reactors
International Nuclear Information System (INIS)
Ho, D.D.M.; Kulsrud, R.M.
1985-09-01
In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given
Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids
Energy Technology Data Exchange (ETDEWEB)
Mohanta, Lokanath, E-mail: lxm971@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Cheung, Fan-Bill [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bajorek, Stephen M.; Tien, Kirk; Hoxie, Chris L. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)
2017-02-15
Highlights: • Investigated the heat transfer during mixed laminar convection in a rod bundle with linearly varying heat flux. • The Nusselt number increases downstream of the inlet with increasing Richardson number. • Developed an enhancement factor to account for the effects of mixed convection over the forced laminar heat transfer. - Abstract: Heat transfer by mixed convection in a rod bundle occurs when convection is affected by both the buoyancy and inertial forces. Mixed convection can be assumed when the Richardson number (Ri = Gr/Re{sup 2}) is on the order of unity, indicating that both forced and natural convection are important contributors to heat transfer. In the present study, data obtained from the Rod Bundle Heat Transfer (RBHT) facility was used to determine the heat transfer coefficient in the mixed convection regime, which was found to be significantly larger than those expected assuming purely forced convection based on the inlet flow rate. The inlet Reynolds (Re) number for the tests ranged from 500 to 1300, while the Grashof (Gr) number varied from 1.5 × 10{sup 5} to 3.8 × 10{sup 6} yielding 0.25 < Ri < 4.3. Using results from RBHT test along with the correlation from the FLECHT-SEASET test program for laminar forced convection, a new correlation is proposed for mixed convection in a rod bundle. The new correlation accounts for the enhancement of heat transfer relative to laminar forced convection.
Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes
International Nuclear Information System (INIS)
Chae, Myeong Seon; Chung, Bum Jin
2013-01-01
This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree
Energy Technology Data Exchange (ETDEWEB)
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)
2016-10-15
The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.
Magnetic particle mixing with magnetic micro-convection for microfluidics
International Nuclear Information System (INIS)
Kitenbergs, Guntars; Erglis, Kaspars; Perzynski, Régine; Cēbers, Andrejs
2015-01-01
In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the miscible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele–Shaw cell. Subsequent image analysis both qualitatively and quantitatively reveals the high enhancement of mixing efficiency provided by this method. The mixing efficiency dependence on the magnetic field and the physical limits is discussed. A suitable model for a continuous-flow microfluidics setup for mixing with magnetic micro-convection is also proposed and justified with an experiment. In addition, possible applications in improving the speed of ferrohydrodynamic sorting and magnetic label or selected tracer mixing in lab on a chip systems are noted. - Highlights: • We study the magnetic micro-convection as a mixing method in microfluidics. • We show that the method enhances mixing with magnetic field squared dependency. • We propose a flow cell setup for mixing and justify it with a sample experiment. • The mixing method can be easily implemented in an existing microfluidics setup
Developing mixed convection in a coiled heat exchanger
Sillekens, J.J.M.; Rindt, C.C.M.; Steenhoven, van A.A.
1998-01-01
In this paper the development of mixed convection in a helically coiled heat exchanger for Re = 500, Pr = 5 and d = 1/14 is studied. The influence of buoyancy forces (Gr = ¢O (105)) on heat transfer and secondary flow is analyzed. In the method used the parabolized equations are solved using a
Developing mixed convection in a coiled heat exchanger
Sillekens, J.J.M.; Rindt, C.C.M.; Steenhoven, van A.A.
1998-01-01
In this paper the development of mixed convection in a helically coiled heat exchanger for Re = 500, Pr = 5 and
δ =114
is studied. The influence of buoyancy forces ¢
(Gr = ¢O (105))
on heat transfer and secondary flow is analyzed. In the method used the parabolized equations are
Forced convection mixing transients in the MITR core tank
International Nuclear Information System (INIS)
Hu, Lin-Wen; Meyer, J.E.; Bernard, J.A.
1995-01-01
This paper reports the results of forced convection mixing transient experiments that were studied in the core tank of the 5-MW Massachusetts Institute of Technology (MIT) nuclear reactor as part of the studies being conducted to support a facility upgrade to 10 MW
Magnetic particle mixing with magnetic micro-convection for microfluidics
Kitenbergs , Guntars; Erglis , Kaspars; Perzynski , Régine; Cēbers , Andrejs
2015-01-01
International audience; In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the mis-cible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele-Shaw cell. Subsequent image analysis both qualitatively and quan-titatively reveals the high enhancement of mixing efficiency provided by this method....
Boiling induced mixed convection in cooling loops
International Nuclear Information System (INIS)
Knebel, J.U.; Janssens-Maenhout, G.; Mueller, U.
2000-01-01
This article describes the SUCO program performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. In case of a core melt accident, the sump cooling concept realises a decay heat removal system that is based on passive safety features within the containment. The article gives, first, results of the experiments in the 1:20 linearly scaled SUCOS-2D test facility. The experimental results are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. Second, the real height SUCOT test facility with a volume and power scale of 1:356 that is aimed at investigating the mixed single-phase and two-phase natural circulation flow in the reactor sump, together with first measurement results, are discussed. Finally, a numerical approach to model the subcooled nucleate boiling phenomena in the test facility SUCOT is presented. Physical models describing interfacial mass, momentum and-heat transfer are developed and implemented in the commercial software package CFX4.1. The models are validated for an isothermal air-water bubbly flow experiment and a subcooled boiling experiment in vertical annular water flow. (author)
Directory of Open Access Journals (Sweden)
MD. FAISAL KADER
2012-10-01
Full Text Available In the present paper, the effect of solar radiation on automobiles has been studied by both experimentally and numerically. The numerical solution is done by an operation friendly and fast CFD code – SC/Tetra with a full scale model of a SM3 car and turbulence is modeled by the standard k-ε equation. Numerical analysis of the three-dimensional model predicts a detailed description of fluid flow and temperature distribution in the passenger compartment during both the natural convection due to the incoming solar radiation and mixed convection due to the flow from defrost nozzle and radiation. It can be seen that solar radiation is an important parameter to raise the compartment temperature above the ambient temperature during summer. During natural convection, the rate of heat transfer is fast at the initial period. In the mixed convection analyses, it is found that the temperature drops down to a comfortable range almost linearly at the initial stage. Experimental investigations are performed to determine the temperature contour on the windshield and the local temperature at a particular point for further validation of the numerical results.
Mixed Convection in Technological Reservoir of Thermal Power Station
Directory of Open Access Journals (Sweden)
Kuznetsov Geniy V.
2014-01-01
Full Text Available The problem of mixed convection of a viscous incompressible fluid in an open rectangular reservoir with inlet and outlet of mass with considering nonuniform heat sink at the external borders of the solution domain is solved. The region of the solution was limited by two vertical and by one horizontal walls of finite thickness and one free surface. The flat nonstationary mixed convection within the framework of Navier-Stokes model is examined for liquid and thermal conductivity for solid walls. Distributions of hydrodynamic parameters and temperatures with different intensity of heat sink on the outer contour of the cavity show a change in the intensity of heat sink on the region boundaries of the solution leads to scale changes in the structure of flow and temperature fields of the liquids.
Heat transfer in a one-dimensional mixed convection loop
International Nuclear Information System (INIS)
Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun
1999-01-01
Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed
Mixed convection heat transfer experiments using analogy concept
International Nuclear Information System (INIS)
Ko, Bong Jin; Chung, Bum Jin; Lee, Won Jea
2009-01-01
A Series of the turbulent mixed convective heat transfer experiments in a vertical cylinder was carried out. In order to achieve high Gr and/or Ra with small scale test rigs, the analogy concept was adopted. Using the concept, heat transfer systems were simulated by mass transfer systems, and large Grashof numbers could be achieved with reasonable facility heights. The tests were performed with buoyancy-aided flow and opposed flow for Reynolds numbers from 4,000 to 10,000 with a constant Grashof number, Gr H of 6.2 x 10 9 and Prandtl number of about 2,000. The test results reproduced the typical of the mixed convection heat transfer phenomena in a turbulent situation and agree well with the experimental study performed by Y. Palratan et al. The analogy experimental method simulated the mixed convection heat transfer phenomena successfully and seems to be a useful tool for heat transfer studies for VHTR as well as the systems with high buoyancy condition and high Prandtl number
Study of liquid metal mixed convection in cavities
International Nuclear Information System (INIS)
Abadie, Philippe.
1979-10-01
This study has enabled some results to be obtained on the flow of liquid metals in cavities. The effects of different adimensional parameters characteristic of mixed convection flows were experimentally demonstrated. In the case of a roof heated cavity, three zones were distinguished: the mixing zone at the channel exit, a quasi constant temperature recirculation zone and a stratified zone at the top of the cavity. The thickness of this last region depends on natural convection effects: it disappears completely in a pure forced convection regime. A simple model using a critical Richardson number concept was developed in order to be able to predict the thickness of this region. Heat transfer correlation formulas were established both for the heated roof and forward direction heated wall cases. Some data was also obtained on temperature fluctuations for both cases. The different topics investigated are useful for defining heat transfers in certain regions of fast neutron sodium cooled reactors. A more extensive program is currently being developed in order to be able to investigate a wider range of variations in the above mentioned parameters and to more closely approximate reactor vessels [fr
Turbulent mixed convection in asymmetrically heated vertical channel
Directory of Open Access Journals (Sweden)
Mokni Ameni
2012-01-01
Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.
Convective mixing length and the galactic carbon to oxygen ratio
Energy Technology Data Exchange (ETDEWEB)
Serrano, A; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia
1981-01-01
We have studied chemical evolution models, assuming instantaneous recycling, and considering: a) the effects of mass loss both in massive stars and in intermediate mass stars, and b) the initial mass function of the solar neighbourhood (Serrano 1978). From these models we have derived the yields of carbon and oxygen. It is concluded that the condition C/O approximately 0.58 in the solar neighbourhood can only be satisfied if, during advanced stages of stellar evolution of intermediate mass stars, the ratio of the convective mixing length to the pressure scale height is > approximately 2.
Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection
Energy Technology Data Exchange (ETDEWEB)
Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.
Mixed thermal convection: fundamental issues and analysis of the planar case
Directory of Open Access Journals (Sweden)
JACQUES PADET
2015-09-01
Full Text Available This paper aims to renew interest on mixed thermal convection research and to emphasize three issues that arise from the present analysis: (i a clear definition of the reference temperature in the Boussinesq approximation; (ii a practical delimitation of the three convective modes, which are the forced convection (FC, mixed convection (MC and natural (or free convection (NC; (iii and, finally, a uniform description of the set FC/MC/NC in the similarity framework. The planar case, for which analytical solutions are available, allows a detailed illustration of the answers here advanced to the above issues.
Role of alveolar topology on acinar flows and convective mixing.
Hofemeier, Philipp; Sznitman, Josué
2014-06-01
Due to experimental challenges, computational simulations are often sought to quantify inhaled aerosol transport in the pulmonary acinus. Commonly, these are performed using generic alveolar topologies, including spheres, toroids, and polyhedra, to mimic the complex acinar morphology. Yet, local acinar flows and ensuing particle transport are anticipated to be influenced by the specific morphological structures. We have assessed a range of acinar models under self-similar breathing conditions with respect to alveolar flow patterns, convective flow mixing, and deposition of fine particles (1.3 μm diameter). By tracking passive tracers over cumulative breathing cycles, we find that irreversible flow mixing correlates with the location and strength of the recirculating vortex inside the cavity. Such effects are strongest in proximal acinar generations where the ratio of alveolar to ductal flow rates is low and interalveolar disparities are most apparent. Our results for multi-alveolated acinar ducts highlight that fine 1 μm inhaled particles subject to alveolar flows are sensitive to the alveolar topology, underlining interalveolar disparities in particle deposition patterns. Despite the simplicity of the acinar models investigated, our findings suggest that alveolar topologies influence more significantly local flow patterns and deposition sites of fine particles for upper generations emphasizing the importance of the selected acinar model. In distal acinar generations, however, the alveolar geometry primarily needs to mimic the space-filling alveolar arrangement dictated by lung morphology.
Ethiop. J. Sci. & Technol. 7(1) 49-66, 2014 49 Mixed convection of ...
African Journals Online (AJOL)
Key words: Mixed convection, viscous dissipation, buoyancy force, perturbation series ... direction parallel to the walls is X. The origin of the axes is such that the channel walls are at position Y=- ...... Canadian Journal of Physics.83:705-720.
Double-diffusive mixed convection in a lid-driven cavity with non ...
Indian Academy of Sciences (India)
S SIVASANKARAN
2017-11-11
Nov 11, 2017 ... transfer are solved using the finite-volume method. The numerical ... Keywords. Mixed convection; double diffusion; non-uniform heating; lid-driven cavity. 1. ... exhaustive research due to its importance in various engi- neering ...
Mixing properties of thermal convection in the earth's mantle
Schmalzl, J.T.
1996-01-01
The structure of mantle convection will greatly influence the generation and the survival of compositional heterogeneities. Conversely, geochemical observations can be used to obtain information about heterogeneities in the mantle and then, with certain model assumptions, information about the
Directory of Open Access Journals (Sweden)
Hanafi Abdalla S.
2008-01-01
Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is
Mixed convection in a two-phase flow cooling loop
International Nuclear Information System (INIS)
Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.
2002-03-01
This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N PCh - N Sub ) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the modelling of the interfacial area
Mixed convection in a two-phase flow cooling loop
Energy Technology Data Exchange (ETDEWEB)
Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.
2002-03-01
This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N{sub PCh} - N{sub Sub}) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the
Mixed convective flow of immiscible viscous fluids confined between ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology ... finite difference methods to analyze the problem of natural convection boundary layer flow along a complex vertical surface ... analyzed the flow of two immiscible fluids in a parallel plate channel ... wavy and flat walls are maintained at constant temperatures w.
Review of Mixed Convection Flow Regime Map of a Vertical pipe
International Nuclear Information System (INIS)
Chae, Myeong-Seon; Chung, Bum-Jin; Kang, Gyeong-Uk
2015-01-01
In a vertical pipe, the natural convective force due to buoyancy acts upward only, but forced convective force can be either upward or downward. This determines buoyancy-aided and buoyancy-opposed flows depending on the direction of forced flow with respect to the buoyancy forces. Furthermore, depending on the exchange mechanism, the flow condition is classified into laminar and turbulent. In laminar mixed convection, buoyancy-aided flow presents enhanced heat transfer compared to the pure forced convection and buoyancy-opposed flow shows impaired heat transfer as the flow velocity affected by the buoyancy forces. However, in turbulent mixed convection, buoyancy-aided flow shows an impairment of the heat transfer rate for small buoyancy, and a gradational enhancement for large buoyancy. In this study, the existing flow regime map on mixed convection in a vertical pipe was reviewed through an analysis of literatures. Using the investigated data and heat transfer correlations, the flow regime map was reconstructed independently, and compared with the existing one. This study reviewed the limitations of the classical mixed convection flow regime map. Using the existing data and heat transfer correlations by Martinelli and Boelter and Watzinger and Johnson, the flow regime map was reconstructed independently. The results revealed that the existing map used the data selectively among the experimental and theoretical results, and a detailed description for lines forming mixed convection and transition regime were not given. And the information about uncertainty analysis and the evidentiary data were given insufficiently. The flow regime map and investigator commonly used the diameter as the characteristic length for both Re and Gr in place of the height of the heated wall, though the buoyancy forces are proportional to the third power of the height of heated wall
Energy Technology Data Exchange (ETDEWEB)
Saez, M.
1998-10-20
The aim of our study is to establish a reliable database for improving thermal hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re = 10{sup 3} to 6.10{sup 4} and Ri = 10{sup -4} to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed database of turbulent mixed flow of free and forced convection. Part 2 presents the installation and the calibration system intended for probes calibration. Part 3 describes the measurement technique (constant temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part 4 relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part 5 presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the fluid structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part 5 gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author)
Clifford, Corey; Kimber, Mark
2017-11-01
Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.
El-Amin, Mohamed; Ebrahiem, N.A.; Salama, Amgad; Sun, S.
2011-01-01
The interaction of mixed convection with thermal radiation of an optical dense viscous fluid adjacent to an isothermal cone imbedded in a porous medium with Rosseland diffusion approximation incorporating the variation of permeability and thermal conductivity is numerically investigated. The transformed conservation laws are solved numerically for the case of variable surface temperature conditions. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter , the cone angle parameter ?, the radiation-conduction parameter R d, and the surface temperature parameter H. Copyright 2011 M. F. El-Amin et al.
Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.
2018-06-01
Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.
Mixed convection heat transfer from confined tandem square cylinders in a horizontal channel
Huang, Zhu; Xi, Guang; Zhang, Wei; Wen, Suping
2013-01-01
with four widths of the cylinder and the blockage ratio and the Prandtl number are fixed at 0.1 and 0.7 respectively. The mixed convective flow and heat transfer is simulated by high accuracy multidomain pseudospectral method. The Reynolds number (Re
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
International Nuclear Information System (INIS)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.
2016-01-01
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
Energy Technology Data Exchange (ETDEWEB)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K., E-mail: prodip.das@ncl.ac.uk [School of Mechanical and Systems Engineering Newcastle University Newcastle upon Tyne, NE1 7RU United Kingdom (United Kingdom)
2016-07-12
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.
2016-07-01
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Mixed convection flow and heat transfer in a vertical wavy channel ...
African Journals Online (AJOL)
Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential equations describing the conservation of mass, momentum and energy are solved ...
Effect of viscous dissipation on mixed convection flow in a vertical ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology .... third kind for flow over a flat plate and in the thermal entrance region of a rectangular channel. ... on mixed convection in a vertical channel using Robin boundary conditions was ... Hajmohammadi and Nourazar (2014) studied the effect of a thin gas layer in ...
Analytical solution for the convectively-mixed atmospheric boundary layer
Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.
2013-01-01
Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation
Mixed convection between horizontal plates and consequences for chemical vapor deposition flows
International Nuclear Information System (INIS)
Chiu, K.C.
1986-01-01
To simulate the fluid dynamics of VD systems, mixed convection between horizontal plates (AR = width/height = 10) heated from below was studied by laser Doppler anemometry in a range 1368 < Ra < 8300 and 15 < R3 < 170. The entrance effects were characterized by two lengths: one for the onset of bouyancy-driven instability, and one for the full development of longitudinal convection rolls. Explicit expressions for both entrance lengths are given in terms of Ra and Re. In addition, unsteady longitudinal convection rolls were observed. These are discussed in terms of the admixture of transverse convection rolls and/or contributions from upstream turbulence. For the fully developed region it is shown analytically that the transverse velocities of the longitudinal convection rolls, v and w, are independent of the forced flow and are identical to those of the two-dimensional Rayleigh-Benard convection rolls. These fundamental results serve as a base for the discussion of horizontal CVD flows. The entrance and sidewall effects are found to have pronounced influences on the flow patterns observed in CVD (AR = 2) reactors
Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes
International Nuclear Information System (INIS)
Oldenburg, C.M.
1998-01-01
Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories
Energy Technology Data Exchange (ETDEWEB)
Teamah, M.A. [Faculty of Engineering, Alexandria University, Mech. Eng. Dept, Alexandria (Egypt); El-Maghlany, W.M. [Faculty of Engineering, Suez Canal University, Ismailia (Egypt)
2010-09-15
The present study is concerned with the mixed convection in a rectangular lid-driven cavity under the combined buoyancy effects of thermal and mass diffusion. Double-diffusive convective flow in a rectangular enclosure with moving upper surface is studied numerically. Both upper and lower surfaces are being insulated and impermeable. Constant different temperatures and concentration are imposed along the vertical walls of the enclosure, steady state laminar regime is considered. The transport equations for continuity, momentum, energy and spices transfer are solved. The numerical results are reported for the effect of Richardson number, Lewis number, and buoyancy ratio on the iso-contours of stream line, temperature, and concentration. In addition, the predicted results for both local and average Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. This study was done for 0.1 <= Le <= 50 and Prandtl number Pr = 0.7. Through out the study the Grashof number and aspect ratio are kept constant at 10{sup 4} and 2 respectively and -10 <= N <= 10, while Richardson number has been varied from 0.01 to 10 to simulate forced convection dominated flow, mixed convection and natural convection dominated flow. (authors)
Problems of mixed convection flow regime map in a vertical cylinder
International Nuclear Information System (INIS)
Kang, Gyeong Uk; Chung, Bum Jin
2012-01-01
One of the technical issues by the development of the VHTR is the mixed convection, which is the regime of heat transfer that occurs when the driving forces of both forced and natural convection are of comparable orders of magnitude. In vertical internal flows, the buoyancy force acts upward only, but forced flows can move either upward or downward. Thus, there are two types of mixed convection flows, depending on the direction of the forced flow. When the directions of the forced flow and buoyancy are the same, the flow is a buoyancy aided flow; when they are opposite, the flow is a buoyancy opposed flow. In laminar flows, buoyancy aided flow shows enhanced heat transfer compared to the pure forced convection and buoyancy opposed flow shows impaired heat transfer due to the flow velocity affected by the buoyancy forces. In turbulent flows, however, buoyancy opposed flows shows enhanced heat transfer due to increased turbulence production and buoyancy aided flow shows impaired heat transfer at low buoyancy forces and as the buoyancy increases, the heat transfer restores and at further increases of the buoyancy forces, the heat transfer is enhanced. It is of primary interests to classify which convection regime is mainly dominant. The methods most used to classify between forced, mixed and natural convection have been to refer to the classical flow regime map suggested by Meta is and Eckert. During the course of fundamental literature studies on this topic, it is found that there are some problems on the flow regime map in a vertical cylinder. This paper is to discuss problems identified through reviewing the papers composed in the classical flow regime map. We have tried to reproduce the flow regime map independently using the data obtained from the literatures and compared with the classical flow regime map and finally, the problems on this topic were discussed
Mixed convection around calandria tubes in a ¼ scale CANDU-6 moderator circulation tank
Energy Technology Data Exchange (ETDEWEB)
Atkins, M.D.; Rossouw, D.J.; Boer, M. [Nuclear Science Division, School of Mechanical and Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Kim, T., E-mail: tong.kim@wits.ac.za [Nuclear Science Division, School of Mechanical and Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Rhee, B.W.; Kim, H.T. [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2017-05-15
Highlights: • A secondary jet is formed at a stagnation region and is directed towards the center of the MCT. • The secondary jet undergoes the significant dissipation and mixing due to calandria tubes (CTs). • Its cooling effectiveness is reduced on the CTs in the bottom of the MCT. • With forced convection dominance, peak heat transfer is on the upper CT surface. • With natural convection dominance, peak heat transfer is on the lower CT surface. - Abstract: This study experimentally characterizes mixed convection around calandria tubes (CTs) in a ¼ scale CANDU-6 moderator circulation tank (MCT) that uses air as the working fluid. In a full scale CANDU-6 reactor that undergoes a postulated dual failure with a loss-of-coolant accident without the emergency core cooling system available, mixed convection heat transfer occurs around the CTs. The cooling effectiveness of the moderator is diminished as an emergency heat sink if overheating eventually leads to film boiling. To prevent the onset of film boiling, local sub-cooling margins of the moderator needs to be maintained or else the critical heat flux should be increased. Circulating the moderator which interacts with the overheated CTs increases the heat transfer into the moderator which may suppress film boiling. The present experimental results demonstrate that the cooling effectiveness of the circulating moderator, in particular the secondary jet, is attenuated substantially as it is convected away from the inner wall towards the center of the MCT. The momentum of the secondary jet is diffused through the CTs. At a low jet Reynolds number, the secondary jet becomes ineffective so that some overheated CTs positioned in the other half of the MCT are cooled only by natural convection.
International Nuclear Information System (INIS)
Cheng, S.K.; Todreas, N.E.
1984-08-01
A new version of the ENERGY series code, ENERGY-IV, was written for predicting coolant temperature distributions in wire-wrapped rod assemblies used in the Liquid Metal Fast Breeder Reactor. The ENERGY-IV Code is applicable to both steady-state forced and mixed convection operation for a single isolated assembly. (The SUPERENERGY Code, [Basehore (1980)] is applicable to core wide forced convection analysis.) ENERGY-IV is an empirical code designed to be fast running. Hence the core designer can use it as an inexpensive thermal hydraulic design or diagnosis tool
Simulation of the convective mixed layer in Athens
Energy Technology Data Exchange (ETDEWEB)
Frank, H.P. [Risoe National Lab., Roskilde (Denmark)
1997-10-01
The region of Athens, Greece, has a highly complicated terrain with irregular coastline and mountains next to the sea. This results in complex flow fields. A case study of a simulation of a sea breeze with the Karlsruhe Atmospheric Mesoscale model KAMM is presented together with remarks on the advection of mixed layer air. The valley of Athens is open to the sea towards the south-west and surrounded by mountains on the other sides. Gaps between the mountains channel the flow into the valley. Simulations were done for 14 September 1994 to compare them with measurements at 6 masts by Risoe during the MEDCAPHOT-TRACE experiment. (au)
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2015-08-15
In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.
International Nuclear Information System (INIS)
Khan, Masood; Malik, Rabia; Munir, Asif
2015-01-01
In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case
Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements
Directory of Open Access Journals (Sweden)
J. R. Ziemke
2009-01-01
Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O_{3} mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O_{3} concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O_{3} in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O_{3} mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O_{3} relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O_{3} precursors due to both biomass burning and lightning. Assuming that O_{3} is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O_{3} over
Mixed convection in a lid-driven square cavity with partial slip
International Nuclear Information System (INIS)
Ismael, Muneer A.; Pop, Ioan; Chamkha, Ali J.
2014-01-01
Steady laminar mixed convection inside a lid-driven square cavity filled with water is studied numerically. The lid is due to the movement of the isothermal top and bottom walls which are maintained at T c and T h , respectively, with T h is higher than T c . A partial slip condition was imposed in these two moving walls. The vertical walls of the cavity are kept adiabatic. The appliance of the numerical analysis was USR finite difference method with upwind scheme treatments of the convective terms included in the momentum and energy equations. The studied relevant parameters were: the partial slip parameter S (0-∞); Richardson number Ri (0.01-100) and the direction of the moving walls (λ t = 1, λ b = ±1). The results have showed that there are critical values for the partial slip parameter at which the convection is declined. (authors)
Models for fluid flows with heat transfer in mixed convection
International Nuclear Information System (INIS)
Mompean Munhoz da Cruz, G.
1989-06-01
Second order models were studied in order to predict turbulent flows with heat transfer. The equations used correspond to the characteristic scale of turbulent flows. The order of magnitude of the terms of the equation is analyzed by using Reynolds and Peclet numbers. The two-equation model (K-ε) is applied in the hydrodynamic study. Two models are developed for the heat transfer analysis: the Prt + teta 2 and the complete model. In the first model, the turbulent thermal diffusivity is calculated by using the Prandtl number for turbulent flow and an equation for the variance of the temperature fluctuation. The second model consists of three equations concerning: the turbulent heat flow, the variance of the temperature fluctuation and its dissipation ratio. The equations were validated by four experiments, which were characterized by the analysis of: the air flow after passing through a grid of constant average temperature and with temperature gradient, an axysymmetric air jet submitted to high and low heating temperature, the mixing (cold-hot) of two coaxial jets of sodium at high Peclet number. The complete model is shown to be the most suitable for the investigations presented [fr
International Nuclear Information System (INIS)
D'Orazio, A; Karimipour, A; Nezhad, A H; Shirani, E
2014-01-01
Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration
Periodic mixed convection in horizontal porous layer heated from below by isoflux heater
International Nuclear Information System (INIS)
Saeid, Nawaf H.; Pop, I.
2006-01-01
Numerical study for transient mixed convection in a two-dimensional horizontal porous layer heated from below by a constant heat flux source is carried out in the present paper. The transient thermal field, flow field and average Nusselt number are presented for a wide range of the Peclet number, Pe, for the particular case of Rayleigh number Ra=10x2 and the ratio of heater length to the porous layer thickness A=1, 3 and 5. It is found that for A=3 and A=5 with small values of the Peclet number, the free convection mode is dominated, while for large values, of the Peclet number, the forced convection mode is dominated. However, for moderate values the oscillatory mixed convection is observed and a periodic variation of the average Nusselt number is obtained. When the heater length is equal to the porous layer thickness (A=1) the steady-state results are obtained for the range of Pe=0.01-10. (author)
Onset of solid state mantle convection and mixing during magma ocean solidification
Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris
2017-04-01
The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.
Turbulent mixed convection from a large, high temperature, vertical flat surface
International Nuclear Information System (INIS)
Evans, G.; Greif, R.; Siebers, D.; Tieszen, S.
2005-01-01
Turbulent mixed convection heat transfer at high temperatures and large length scales is an important and seldom studied phenomenon that can represent a significant part of the overall heat transfer in applications ranging from solar central receivers to objects in fires. This work is part of a study to validate turbulence models for predicting heat transfer to or from surfaces at large temperature differences and large length scales. Here, turbulent, three-dimensional, mixed convection heat transfer in air from a large (3m square) vertical flat surface at high temperatures is studied using two RANS turbulence models: a standard k-ε model and the v2-bar -f model. Predictions for three cases spanning the range of the experiment (Siebers, D.L., Schwind, R.G., Moffat, R.F., 1982. Experimental mixed convection from a large, vertical plate in a horizontal flow. Paper MC13, vol. 3, Proc. 7th Int. Heat Transfer Conf., Munich; Siebers, D.L., 1983. Experimental mixed convection heat transfer from a large, vertical surface in a horizontal flow. PhD thesis, Stanford University) from forced (GrH/ReL2=0.18) to mixed (GrH/ReL2=3.06) to natural (GrH/ReL2=∼) convection are compared with data. The results show a decrease in the heat transfer coefficient as GrH/ReL2 is increased from 0.18 to 3.06, for a free-stream velocity of 4.4m/s. In the natural convection case, the experimental heat transfer coefficient is approximately constant in the fully turbulent region, whereas the calculated heat transfer coefficients show a slight increase with height. For the three cases studied, the calculated and experimental heat transfer coefficients agree to within 5-35% over most of the surface with the v2-bar -f model results showing better agreement with the data. Calculated temperature and velocity profiles show good agreement with the data
Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption
Energy Technology Data Exchange (ETDEWEB)
Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ahmad, B. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2016-04-15
Magnetohydrodynamic (MHD) doubly stratified flow of Maxwell nanofluid in presence of mixed convection is analyzed in this article. Effects of thermophoresis, Brownian motion and heat generation/absorption are present. The flow is induced due to linear stretching of sheet. Mathematical formulation is made under boundary layer approach. Expressions of velocity, temperature and nanoparticles concentration are developed. The obtained results are plotted and discussed to examine the variations in temperature and nanoparticles concentration due to different physical parameters. Numerical computations are made to obtain the values of local Nusselt and Sherwood numbers. Impact of sundry parameters on the flow quantities is analyzed graphically. - Highlights: • Double stratified flow of Maxwell nanofluid with mixed convection is modeled. • Thermophoresis and Brownian motion effects are encountered. • Computations are made to obtain the solution expressions. • Numerical values of local Nusselt and Sherwood numbers are computed and examined.
Entropy generation in a mixed convection Poiseulle flow of molybdenum disulphide Jeffrey nanofluid
Gul, Aaiza; Khan, Ilyas; Makhanov, Stanislav S.
2018-06-01
Entropy analysis in a mixed convection Poiseulle flow of a Molybdenum Disulphide Jeffrey Nanofluid (MDJN) is presented. Mixed convection is caused due to buoyancy force and external pressure gradient. The problem is formulated in terms of a boundary value problem for a system of partial differential equations. An analytical solution for the velocity and the temperature is obtained using the perturbation technique. Entropy generation has been derived as a function of the velocity and temperature gradients. The solutions are displayed graphically and the relevant importance of the input parameters is discussed. A Jeffrey nanofluid (JN) has been compared with a second grade nanofluid (SGN) and Newtonian nanofluid (NN). It is found that the entropy generation decreases when the temperature increases whereas increasing the Brickman number increases entropy generation.
Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid
Directory of Open Access Journals (Sweden)
Sadia Ayub
Full Text Available This paper models the peristaltic transport of magnetohydrodynamic (MHD third grade nanofluid in a curved channel with wall properties. Combined effects of heat and mass transfer are retained via mixed convection. The present analysis is made in the presence of thermal radiation and chemical reaction. No-slip effect is maintained at the boundary for the velocity, temperature and nanoparticle volume fraction. Resulting formulation is simplified by employing the assumptions of long wavelength and low Reynolds number approximations. Results of axial velocity, temperature, nanoparticle mass transfer and heat transfer are studied graphically. Results reveal increment in fluid velocity for larger values of heat transfer Grashof number. There is reduction in nanoparticle mass transfer with the increase in thermophoresis parameter. Keywords: Peristalsis, Third grade nanofluid, Curved channel, Mixed convection, Thermal radiation, Chemical reaction, Flexible walls, Numerical solutions
Mixed convection of nanofluids in a lid-driven rough cavity
Guo, Zhimeng; Wang, Jinyu; Mozumder, Aloke K.; Das, Prodip K.
2017-06-01
Mixed convection heat transfer and fluid flow of air, water or oil in enclosures have been studied extensively using experimental and numerical means for many years due to their ever-increasing applications in many engineering fields. In comparison, little effort has been given to the problem of mixed convection of nanofluids in spite of several applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. Mixed convection of nanofluids is a challenging problem due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, mixed convection of nanofluids in a lid-driven square cavity with sinusoidal roughness elements at the bottom is studied numerically using the Navier-Stokes equations with the Boussinesq approximation. The numerical model is developed using commercial finite volume software ANSYS-FLUENT for Al2O3-water and CuO-water nanofluids inside a square cavity with various roughness elements. The effects of number and amplitude of roughness elements on the heat transfer and fluid flow are analysed for various volume concentrations of Al2O3 and CuO nanoparticles. The flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers. The outcome of this study provides some important insight into the heat transfer behaviour of Al2O3-water and CuO-water nanofluids inside a lid-driven rough cavity. This knowledge can be further used in developing novel geometries with enhanced and controlled heat transfer for solar collectors, electronic cooling, and food processing industries.
An analytical solution for the Marangoni mixed convection boundary layer flow
DEFF Research Database (Denmark)
Moghimi, M. A.; Kimiaeifar, Amin; Rahimpour, M.
2010-01-01
In this article, an analytical solution for a Marangoni mixed convection boundary layer flow is presented. A similarity transform reduces the Navier-Stokes equations to a set of nonlinear ordinary differential equations, which are solved analytically by means of the homotopy analysis method (HAM...... the convergence of the solution. The numerical solution of the similarity equations is developed and the results are in good agreement with the analytical results based on the HAM....
Mixed convection heat transfer from confined tandem square cylinders in a horizontal channel
Huang, Zhu
2013-11-01
This paper presents a numerical study on the two-dimensional laminar mixed convective flow and heat transfer around two identical isothermal square cylinders arranged in tandem and confined in a channel. The spacing between the cylinders is fixed with four widths of the cylinder and the blockage ratio and the Prandtl number are fixed at 0.1 and 0.7 respectively. The mixed convective flow and heat transfer is simulated by high accuracy multidomain pseudospectral method. The Reynolds number (Re) is studied in the range 80 ≤ Re ≤ 150, the Richardson number (Ri) demonstrating the influence of thermal buoyancy ranges from 0 to 1. Numerical results reveal that, with the thermal buoyancy effect, the mixed convective flow sheds vortex behind the cylinders and keeps periodic oscillating. The variations of characteristic quantities related to flow and heat transfer processes, such as the overall drag and lift coefficients and the Nusselt numbers, are presented and discussed. Furthermore, the influence of thermal buoyancy on the fluid flow and heat transfer are discussed and analysed. © 2013 Elsevier Ltd. All rights reserved.
Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep
2018-04-01
The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by
International Nuclear Information System (INIS)
Varrall, Kevin
2016-01-01
To answer building issues and fire safety challenges, this thesis deals with the mixed convection flow through a horizontal orifice or vent linking two compartments. The aim is to improve the understanding and the modeling of the exchange of gas through the opening. A small scale experimental study and a theoretical approach are proposed. The study focuses first on the influence of the geometrical ratio L/D of the opening on the flow rate at the vent for free convection regime. Non-intrusive measurements, via the tracking of the interface between two non miscible liquids in an isothermal approach, and thanks to the SPIV in a thermal approach, permit to describe the bidirectional exchange process and to consolidate existing correlations. Experiments for mixed convection regime aim to study the impact of mechanical ventilation (in blowing and extracting modes) on the exchanged flow rates. The comparison between existing correlations and experimental data shows large differences. A modification of the correlation of Cooper is proposed. A theoretical approach from the simplified Navier Stokes equations and with the Boussinesq approximation permits to discuss the construction of existing correlations. From this theory, a more accurate model than those available in the literature is proposed thanks to an adjustment of discharge coefficients from experimental data. (author)
Multi-dimensional Imaging and Characterization of Convective Mixing in a Porous Media
Liyanage, R.; Pini, R.; Crawshaw, J.; Krevor, S. C.
2017-12-01
The dissolution of CO2 into reservoir brines is one of the key trapping mechanisms during CO2 sequestration in deep saline aquifers. The dissolution at the CO2-brine interface induces a buoyant instability in the aqueous phase following a local brine density increase in the range of 0.1-1% depending on pressure, temperature, and salinity. As a result the CO2 -saturated brine mixes with fresh brine to form characteristic finger-like patterns. This downward flow pushes fresh brine to the CO2-brine interface and further enhances dissolution. This phenomenon is referred to as convective mixing. A study has been undertaken to investigate convective mixing in a 3D opaque porous medium. A novel protocol is presented using X-ray Computed Tomography (X-ray CT) to image the evolution of convective mixing over time. Results are presented for experiments carried out at ambient conditions using a spherical bowl (diameter of 20 cm) packed with glass beads (diameter, 0.5 mm). Surrogate fluids are used that provide good x-ray contrast whilst maintaining a maximum density differential comparable to the one observed in a supercritical CO2-brine system (about 10 kg/m3). We use a mixture of methanol and ethylene glycol (MEG) at three different ratios (and doped with KI) and brine. We perform two repeats for each fluid pair and during a typical experiment scans are taken at regular time intervals for up to 10 hours. 3D images of the bowl are reconstructed (fig. 1) with (2x2x2) mm3 voxels. The experiments are classified by Rayleigh number covering the range Ra = 5,000-25,000. As expected, higher Ra leads to early development of instability, with the plume moving faster towards the bottom of the bowl. The computed dissolution flux supports these visual observations and confirms that dissolutions enhanced mixing produces fluxes that are significantly larger than the corresponding purely diffusive scenario. While quantitative agreement is observed from repeated experiments, we note that
Transient mixed convection in a cavity. Comparison between water and sodium
International Nuclear Information System (INIS)
Garnier, J.
1983-01-01
The basic problem studied is the interaction between a vortex and a thermal stratification. The experiments are done in a parallelepipedic cavity which bottom communicates with a rectangular channel. A forced flow in this channel induces a recirculating flow in the cavity. The transient condition is a decrease (step wise or slope) of the inlet temperature at a constant flowrate. This problem is studied with two different approaches: experiments in water or in sodium. In the sodium experiments, the dimension of the cavity ensures large values of the Peclet number (about 10 4 ) and a wide range of values for the Richardson number (from 0.1 to 3). With these experiment, all the regimes of mixed convection, from forced convection to complete stratification can be covered. These results are compared with the other approach using a water model. This comparison is very helpful for studies on the thermalhydraulic behavior of Liquid Metal Fast Breeder Reactors. (author)
Mixing and overshooting in surface convection zones of DA white dwarfs: first results from ANTARES
Kupka, F.; Zaussinger, F.; Montgomery, M. H.
2018-03-01
We present results of a large, high-resolution 3D hydrodynamical simulation of the surface layers of a DA white dwarf (WD) with Teff = 11 800 K and log (g) = 8 using the ANTARES code, the widest and deepest such simulation to date. Our simulations are in good agreement with previous calculations in the Schwarzschild-unstable region and in the overshooting region immediately beneath it. Farther below, in the wave-dominated region, we find that the rms horizontal velocities decay with depth more rapidly than the vertical ones. Since mixing requires both vertical and horizontal displacements, this could have consequences for the size of the region that is well mixed by convection, if this trend is found to hold for deeper layers. We discuss how the size of the mixed region affects the calculated settling times and inferred steady-state accretion rates for WDs with metals observed in their atmospheres.
The prediction of stellar effective temperatures from the mixing-length theory of convection
International Nuclear Information System (INIS)
Pedersen, B.B.; Vandenberg, D.A.; Irwin, A.W.
1990-01-01
A generalized version of the mixing-length theory (MLT) of convection, along with simplifications in the limits of high and low convective efficiency, is described. This forms the basis for a study of the effects of proposed modifications to the original (Boehm-Vitense, 1958) form of the MLT on the predicted effective temperatures of cool stars. These modifications include the parameters y and m. It is found that none of the suggested refinements to the MLT affect the location and shape of an evolutionary track on the H-R diagram in ways that cannot be mimicked to high accuracy by a suitable choice of mixing length parameters alone. Thus, if mixing length parameters is calibrated by comparing stellar models with observed main-sequence stars with well-determined properties, then the subsequent evolutionary tracks and isochrones are uniquely defined, regardless of what version of the MLT is used in the calculations. A careful examination of the Revised Yale Isochrones suggests that the Teff scale of these isochrones is inconsistent with the assumed MLT, thereby resolving much of the known discrepancies between these calculations and those of VandenBerg and Bell (1958). 44 refs
Non-Darcy Mixed Convection in a Doubly Stratified Porous Medium with Soret-Dufour Effects
Directory of Open Access Journals (Sweden)
D. Srinivasacharya
2014-01-01
Full Text Available This paper presents the nonsimilarity solutions for mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a doubly stratified fluid saturated porous medium in the presence of Soret and Dufour effects. The flow in the porous medium is described by employing the Darcy-Forchheimer based model. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms and then solved numerically. The influence of pertinent parameters on dimensionless velocity, temperature, concentration, heat, and mass transfer in terms of the local Nusselt and Sherwood numbers is discussed and presented graphically.
International Nuclear Information System (INIS)
Ishak, Anuar; Nazar, Roslinda; Pop, Ioan
2008-01-01
The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation
Energy Technology Data Exchange (ETDEWEB)
Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)
1997-10-01
We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)
Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle
Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.
2017-12-01
Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).
Time-dependent mixed convection heat transfer from a sphere in a micro-gravity environment
International Nuclear Information System (INIS)
Hommel, M.J.
1987-01-01
A fundamental problem of interest for crystal growth in micro-gravity applications involves the mixed convection heat transfer from a sphere in a uniform flow of fluid at a differing temperature. Under the combined influence of the imposed free stream as well as an induced buoyancy force due to thermal expansion of the fluid, the heat transfer from the sphere will be different from that of either the pure forced convection flow or the pure free convection flow. For the present study, the method of matched asymptotic expansions is applied to the laminar flow problem of an impulsively heated, impulsively started sphere in an originally quiescent fluid. Time series expansions are developed for the dependent variables by acknowledging the existence of two district regions: one, an inner region, near the sphere, in which viscous effects are significant; and two, an outer region in which the fluid may be treated as inviscid. The time series expansions are developed in terms of the Reynolds number and Richardson number (Buoyancy Parameter), and the relevant heat transfer and drag coefficients are calculated and plotted
Radiation and heat generation effects in magnetohydrodynamic mixed convection flow of nanofluids
Directory of Open Access Journals (Sweden)
Gul Aaiza
2018-01-01
Full Text Available Radiation and heat generation effects in unsteady magnetohydrodynamic mixed convection flow of nanofluids along a vertical channel are investigated. Silver nanoparticles of spherical shapes and of different sizes in water as a convection-al base fluid are incorporated. The purpose of this study is to measure the effect of different sizes of nanoparticles on velocity and temperature. Keeping in mind the size, particle material, shape, clustering and Brownian motion of nanoparticles, Koo and Kleinstreuer model is used. The problem is modeled in terms of partial differential equations with physical boundary conditions. Analytical solutions are obtained for velocity and temperature, plotted and discussed. It is concluded that increasing the size of Ag nanoparticles (up to specific size, 30 nm, results in a very small velocity increment while for large particle size (30-100 nm, no change in velocity is observed. As the small size of nanoparticles has the highest thermal conductivity and viscosity. This change in velocity with size of nano-particles is found only in water-based nanofluids with low volume fraction 0.01 while at low volume concentration, no change is observed.
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Directory of Open Access Journals (Sweden)
S. Ahmad
2018-03-01
Full Text Available A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method. The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics. Keywords: Squeezing flow, Sutterby fluid model, Mixed convection, Double stratification, Thermal radiation, Chemical reaction
Numerical investigation on mixed convection flow in a trapezoidal cavity heated from below
International Nuclear Information System (INIS)
Tmartnhad, Ilham; El Alami, Mustapha; Najam, Mostafa; Oubarra, Abdelaziz
2008-01-01
A numerical study of mixed convection from a trapezoidal cavity is carried out. Two openings are adjusted on the plates of the cavity. The inlet opening is horizontal or vertical, while the outlet one is placed horizontally on the bottom wall. The Navier-Stokes equations are solved using a control volume method and the SIMPLEC algorithm is used for the treatment of pressure-velocity coupling. Special emphasis is given to detail the effect of the Reynolds number on the heat transfer generated by mixed convection. The results are given for the parameters of control as, Rayleigh number (Ra = 10 5 ), Prandtl number (Pr = 0.72), the inlet and outlet opening width are respectively (C 1 = 0.38 and C 2 = 0.25), the inclination of the tilted wall (θ = 22 deg. ) and Reynolds number (10 ≤ Re ≤ 1000). The results show that the flow structure and the heat transfer depends significantly on the inlet opening site. Two principal kinds of the problem solution are raised
Variable-property effects in laminar aiding and opposing mixed convection of air in vertical tubes
International Nuclear Information System (INIS)
Nesreddine, H.; Galanis, N.; Nguyen, C.T.
1997-01-01
Mixed convection flow in tubes is encountered in many engineering applications, such as solar collectors, nuclear reactors, and compact heat exchangers. Here, a numerical investigation has been conducted in order to determine the effects of variable properties on the flow pattern and heat transfer performances in laminar developing ascending flow with mixed convection for two cases: in case 1 the fluid is heated, and in case 2 it is cooled. Calculations are performed for air at various Grashof numbers with a fixed entrance Reynolds number of 500 using both the Boussinesq approximation (constant-property model) and a variable-property model. In the latter case, the fluid viscosity and thermal conductivity are allowed to vary with absolute temperature according to simple power laws, while the density varies linearly with the temperature, and the heat capacity is assumed to be constant. The comparison between constant- and variable-property models shows a substantial difference in the temperature and velocity fields when the Grashof number |Gr| is increased. The friction factor is seen to be underpredicted by the Boussinesq approximation when the fluid is heated (case 1), while it is overpredicted for the cooling case (case 2). However, the effects on the heat transfer performance remain negligible except for cases with reverse flow. On the whole, the variable-property model predicts flow reversal at lower values of |Gr|, especially for flows with opposing buoyancy forces. The deviation in results is associated to the difference between the fluid bulk and the wall temperature
Computational fluid dynamics modeling of mixed convection flows in buildings enclosures
Energy Technology Data Exchange (ETDEWEB)
Kayne, Alexander; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)
2013-07-01
In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1) air flow and heat transfer in a naturally ventilated room and (2) airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.
Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana
2008-06-01
Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.
Transient mixed convection in a channel with an open cavity filled with porous media
International Nuclear Information System (INIS)
Buonomo, B; Cresci, G; Manca, O; Mesolella, P; Nardini, S
2012-01-01
In this work transient mixed convection in a porous medium in a horizontal channel with a open cavity below is studied numerically. The cavity presents a heated wall at uniform heat flux and the other walls of the cavity and the channel are assumed adiabatic. Air flows through the horizontal channel. The heated wall of the cavity experiences a uniform heat flux in such a way that the forced flow is perpendicular to the motion due to natural convection. The study is carried out employing Brinkman-Forchheimer-extended Darcy model and two energy equations due to the local thermal non-equilibrium assumption. The flow in the channel is assumed to be two-dimensional, laminar, incompressible. Boussinesq approximation is considered. The thermophysical properties of the fluid are evaluated at the ambient temperature. The results for stream function and temperature distribution given at different times are obtained. Wall temperature value are given and also, the velocity and temperature profiles in several sections of the cavity are presented. In addition, the Nusselt number, both local and average, is presented along with the temporal variations of the average Nusselt number.
Experimental investigation of turbulent mixed convection in the wake of a heated sphere
International Nuclear Information System (INIS)
Suckow, D.
1993-11-01
The axisymmetric wake of a heated sphere under conditions of turbulent mixed convection is investigated in the water test section FLUTMIK. The sphere is located in a vertical channel with forced convective upward flow. The influence of buoyancy forces to the flow field is studied by comparison with the unheated wake. The theoretical fundamentals describing turbulent flows and different versions of the k-ε turbulence model extended by buoyancy terms are described in detail. The quantities to be determined experimentally are derived. The temperature and the components of the velocity vector in axial and radial directions are measured simultaneously by means of a thermocouple probe and a two component, two color laser Doppler anemometer. The flow quantities are determined at axial distances between 5 and 106 sphere diameters. The functional principle and the basis of the laser Doppler anemometer are explained. The mean velocity, the mean temperature, the intensities of their fluctuations and the turbulent exchange quantities of momentum and heat transport are calculated. The decay laws of the quantities along the axis of the channel and the radial profiles are indicated and discussed. The applicability of the experimental results of the axisymmetric buoyancy influenced turbulent wake with respect to the turbulence models presented are shown. (orig.) [de
Directory of Open Access Journals (Sweden)
G. A. Sheikhzadeh
2013-01-01
Full Text Available In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coordinate are discretizedusing the ﬁnite volume method where pressure-velocity coupling is done by the SIMPLER algorithm.Numerical results have been obtained for Rayleigh number ranging from 102 to 105, Reynolds number from 1 to 300 and nanoparticles volume fraction from 0.01 to 0.06. The effects of the Reynolds and Rayleigh numbers, average diameter of nanoparticles and the volume fraction of the nanoparticles on the fluid flow and heat transfer inside the annuli are investigated. According to the results, the average Nusselt number decreases with increasing the Reynolds number. However, the average Nusselt number increases by increasing the Rayleigh number. Moreover, the maximum average Nusselt number occurs for an optimal nanoparticle volume fraction except situations that heat conduction predominates over the heat convection. In these conditions the average Nusselt number is close to unity.
Turbulent mixed convection in vertical and inclined flat channels with aiding flows
Energy Technology Data Exchange (ETDEWEB)
Poskas, P.; Vilemas, J.; Adomaitis, J.E.; Bartkus, G.
1995-09-01
This paper presents an experimental study of turbulent mixed convection heat transfer for aiding flows in a vertical ({phi}=90{degrees}), inclined ({phi}=60{degrees},30{degrees}), and horizontal ({phi}=0{degrees}) flat channels with symmetrical heating and a ratio of height h to width b of about 1:10 and with length about 4 m (x/2h about 44). The study covered Re from 4x10{sup 3} to 5x10{sup 4} and Gr{sub q} from 5x10{sup 7}to 3x10{sup 10}. For the upper wall, a region of impaired heat transfer was found for all angular positions (from vertical to horizontal) and for bottom wall the augmentation of heat transfer in comparison to forced convection was revealed in the region of {phi}=0{degrees}-60{degrees}. Different characteristic buoyancy parameters were found for regions of impaired and enhanced heat transfer. General relations are suggested to predict the heat transfer for fully-developed-flow conditions and different angular positions.
International Nuclear Information System (INIS)
Pis'menny, E.N.; Razumovskiy, V.G.; Maevskiy, E.M.; Koloskov, A.E.; Pioro, I.L.
2006-01-01
The results on heat transfer to supercritical water heated above the pseudo-critical temperature or affected by mixed convection flowing upward and downward in vertical tubes of 6.28-mm and 9.50-mm inside diameter are presented. Supercritical water heat-transfer data were obtained at a pressure of 23.5 MPa, mass flux within the range from 250 to 2200 kg/(m 2 s), inlet temperature from 100 to 415 deg. C and heat flux up to 3.2 MW/m 2 . Temperature regimes of the tubes cooled with supercritical water in a gaseous state (i.e., supercritical water at temperatures beyond the pseudo-critical temperature) were stable and easily reproducible within a wide range of mass and heat fluxes. An analysis of the heat-transfer data for upward and downward flows enabled to determine a range of Gr/Re 2 values corresponding to the maximum effect of free convection on the heat transfer. It was shown that: 1) the heat transfer coefficient at the downward flow of water can be higher by about 50% compared to that of the upward flow; and 2) the deteriorated heat-transfer regime is affected with the flow direction, i.e., at the same operating conditions, the deteriorated heat transfer may be delayed at the downward flow compared to that at the upward flow. These heat-transfer data are applicable as the reference dataset for future comparison with bundle data. (authors)
Mixed layer depth calculation in deep convection regions in ocean numerical models
Courtois, Peggy; Hu, Xianmin; Pennelly, Clark; Spence, Paul; Myers, Paul G.
2017-12-01
Mixed Layer Depths (MLDs) diagnosed by conventional numerical models are generally based on a density difference with the surface (e.g., 0.01 kg.m-3). However, the temperature-salinity compensation and the lack of vertical resolution contribute to over-estimated MLD, especially in regions of deep convection. In the present work, we examined the diagnostic MLD, associated with the deep convection of the Labrador Sea Water (LSW), calculated with a simple density difference criterion. The over-estimated MLD led us to develop a new tool, based on an observational approach, to recalculate MLD from model output. We used an eddy-permitting, 1/12° regional configuration of the Nucleus for European Modelling of the Ocean (NEMO) to test and discuss our newly defined MLD. We compared our new MLD with that from observations, and we showed a major improvement with our new algorithm. To show the new MLD is not dependent on a single model and its horizontal resolution, we extended our analysis to include 1/4° eddy-permitting simulations, and simulations using the Modular Ocean Model (MOM) model.
Resolving both entrainment-mixing and number of activated CCN in deep convective clouds
Directory of Open Access Journals (Sweden)
E. Freud
2011-12-01
Full Text Available The number concentration of activated CCN (N_{a} is the most fundamental microphysical property of a convective cloud. It determines the rate of droplet growth with cloud depth and conversion into precipitation-sized particles and affects the radiative properties of the clouds. However, measuring N_{a} is not always possible, even in the cores of the convective clouds, because entrainment of sub-saturated ambient air deeper into the cloud lowers the concentrations by dilution and may cause partial or total droplet evaporation, depending on whether the mixing is homogeneous or extreme inhomogeneous, respectively.
Here we describe a methodology to derive N_{a} based on the rate of cloud droplet effective radius (R_{e} growth with cloud depth and with respect to the cloud mixing with the entrained ambient air. We use the slope of the tight linear relationship between the adiabatic liquid water mixing ratio and R_{e}^{3} (or R_{v}^{3} to derive an upper limit for N_{a} assuming extreme inhomogeneous mixing. Then we tune N_{a} down to find the theoretical relative humidity that the entrained ambient air would have for each horizontal cloud penetration, in case of homogeneous mixing. This allows us to evaluate both the entrainment and mixing process in the vertical dimension in addition to getting a better estimation for N_{a}.
We found that the derived N_{a} from the entire profile data is highly correlated with the independent CCN measurements from below cloud base. Moreover, it was found that mixing of sub-saturated ambient air into the cloud at scales of ~100 m and above is inclined towards the extreme inhomogeneous limit, i.e. that the time scale of droplet evaporation is significantly smaller than that for turbulent mixing. This means that ambient air that entrains
Mixed Convection Flow along a Stretching Cylinder in a Thermally Stratified Medium
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2012-01-01
Full Text Available An analysis for the axisymmetric laminar boundary layer mixed convection flow of a viscous and incompressible fluid towards a stretching cylinder immersed in a thermally stratified medium is presented in this paper. Similarity transformation is employed to convert the governing partial differential equations into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by a shooting method. It is found that the heat transfer rate at the surface is lower for flow in a thermally stratified medium compared to that of an unstratified medium. Moreover, both the skin friction coefficient and the heat transfer rate at the surface are larger for a cylinder compared to that for a flat plate.
Entropy Generation in Magnetohydrodynamic Mixed Convection Flow over an Inclined Stretching Sheet
Directory of Open Access Journals (Sweden)
Muhammad Idrees Afridi
2016-12-01
Full Text Available This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic (MHD mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet. Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary conditions. The governing boundary layer equations are transformed into ordinary differential equations by an appropriate similarity transformation. The transformed coupled nonlinear ordinary differential equations are then solved numerically by a shooting technique along with the Runge-Kutta method. Expressions for entropy generation (Ns and Bejan number (Be in the form of dimensionless variables are also obtained. Impact of various physical parameters on the quantities of interest is seen.
Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids
Directory of Open Access Journals (Sweden)
S. Das
2015-06-01
Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.
Mixed Convection Heat Transfer on the Outside of a Vertical Cylinder
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, A
1965-10-15
An experimental study was made of turbulent heat transfer from a vertical cylinder placed in a square channel. The flow medium was water flowing upwards. Basic differential equations governing the mixed flow heat transfer phenomena in a vertical annulus are presented. A dimensional analysis is done to find the dimensionless variables affecting the relative magnitude of the effect of buoyancy on forced convection heat transfer. Dimensionless equations correlating the experimental data ana incorporating a buoyancy parameter of the form Gr/Re{sup 2} are presented. Reynolds number range covered is 690 to 129,500 and the Rayleigh num- ber range covered is 10{sup 9} to 4.2 x 10{sup 13} . Effect of different length parameters, like hydraulic diameter and distance of the measuring point from the inlet of the test section, on dimensionless equations are studied.
Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha
2018-03-01
A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.
Study on mixed convective flow penetration into subassembly from reactor hot plenum in FBRs
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, J.; Ohshima, H.; Kamide, H.; Ieda, Y. [Power Reactor and Nuclear Fuel Development Corporation, Ibaraki (Japan)
1995-09-01
Fundamental experiments using water were carried out in order to reveal the phenomenon of mixed convective flow penetration into subassemblies from a reactor`s upper plenum of fast breeder reactors. This phenomenon appears under a certain natural circulation conditions during the operation of the direct reactor auxiliary cooling system for decay heat removal and might influence the natural circulation head which determines the core flow rate and therefore affects the core coolability. In the experiment, a simplified model which simulates an upper plenum and a subassembly was used and the ultrasonic velocity profile monitor as well as thermocouples were applied for the simultaneous measurement of velocity and temperature distributions in the subassembly. From the measured data, empirical equations related to the penetration flow onset condition and the penetration depth were obtained using relevant parameters which were derived from dimensional analysis.
Unsteady Mixed Convection Boundary Layer from a Circular Cylinder in a Micropolar Fluid
Directory of Open Access Journals (Sweden)
Anati Ali
2010-01-01
Full Text Available Most industrial fluids such as polymers, liquid crystals, and colloids contain suspensions of rigid particles that undergo rotation. However, the classical Navier-Stokes theory normally associated with Newtonian fluids is inadequate to describe such fluids as it does not take into account the effects of these microstructures. In this paper, the unsteady mixed convection boundary layer flow of a micropolar fluid past an isothermal horizontal circular cylinder is numerically studied, where the unsteadiness is due to an impulsive motion of the free stream. Both the assisting (heated cylinder and opposing cases (cooled cylinder are considered. Thus, both small and large time solutions as well as the occurrence of flow separation, followed by the flow reversal are studied. The flow along the entire surface of a cylinder is solved numerically using the Keller-box scheme. The obtained results are compared with the ones from the open literature, and it is shown that the agreement is very good.
International Nuclear Information System (INIS)
Cheng, S.K.; Todreas, N.E.
1984-08-01
A simple subchannel analysis method based on the ENERGY series of codes, ENERGY-IV, has been established for predicting the temperature field in a single isolated wire-wrapped Liquid Metal Fast Breeder Reactor (LMFBR) subassembly under steady state forced and mixed convection conditions. The ENERGY-IV is a totally empirical code employed for fast running purposes and requires well calibrated lead length averaged input parameters to achieve satisfactory predictions. These input parameters were identified to be the inlet flow split parameters, the subchannel friction factors, the interchannel mixing parameters, the conduction shape factor, and the transverse velocity at the edge gap. Experiments were performed in a 37-pin wire-wrapped rod bundle with a geometry between that of a typical LMFBR fuel subassembly and blanket subassembly for filling the gap in the available data base for the input parameters. The isokinetic extraction method for measuring subchannel velocity, the pitot-static probe for measuring pressure drop, and the salt tracer injection method for estimating the interchannel mixing, were used in these experiments
International Nuclear Information System (INIS)
Braz Filho, F.A.
1987-01-01
A code was set up in which velocity, temperature and pressure distributions are calculated, using the porous body model, for a rod bundle where mixed convection regime plays an important role. Results show satisfactory agreement with experimental data, as well as a reduction in computational time when compared to ENERGY-III code. (author) [pt
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available This paper investigates the double stratified effects in mixed convection three-dimensional flow of an Oldroyd-B nanofluid. The flow is due to a bidirectional stretching surface. Mathematical analysis is carried out using the temperature and concentration stratification effects. Brownian motion, thermophoresis and chemical reaction effects are also considered. The governing nonlinear boundary layer equations are first converted into the dimensionless ordinary differential equations and then solved for the convergent series solutions of velocity, temperature and nanoparticles concentration. Convergence analysis of the obtained series solutions is also checked and verified. Effects of various emerging parameters are studied in details. Numerical values of local Nusselt and Sherwood numbers are tabulated and analyzed. It is noticed that the impact of mixed convection parameter on temperature and nanoparticles concentration is quite similar. Both temperature and nanoparticles concentration are reduced for larger mixed convection parameter. Keywords: Three-dimensional flow, Oldroyd-B fluid, Nanoparticles, Mixed convection, Thermal and solutal stratification, Chemically reactive species
Pino, D.; Vilà-Guerau de Arellano, J.; Peters, W.; Schröter, J.; van Heerwaarden, C. C.; Krol, M. C.
2012-01-01
Interpretation of observed diurnal carbon dioxide (CO2) mixing ratios near the surface requires knowledge of the local dynamics of the planetary boundary layer. In this paper, we study the relationship between the boundary layer dynamics and the CO2 budget in convective conditions through a newly
Energy Technology Data Exchange (ETDEWEB)
Bettaibi, Soufiene, E-mail: Bettaibisoufiene@gmail.com [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Kuznik, Frédéric [INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Sediki, Ezeddine [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)
2014-06-27
Highlights: • Mixed convection heat transfer in 2D lid-driven cavity is studied numerically. • Hybrid scheme with multiple relaxation time lattice Boltzmann method is used to obtain the velocity field. • Finite difference method is used to compute the temperature. • Effect of both Richardson and Reynolds numbers for mixed convection is studied. - Abstract: Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr=0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the finite difference method (FDM). The main objective of this work is to investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed approach.
Under-Ice Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads
Lowry, Kate E.; Pickart, Robert S.; Selz, Virginia; Mills, Matthew M.; Pacini, Astrid; Lewis, Kate M.; Joy-Warren, Hannah L.; Nobre, Carolina; van Dijken, Gert L.; Grondin, Pierre-Luc; Ferland, Joannie; Arrigo, Kevin R.
2018-01-01
Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84-95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.
Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus
Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.
2018-02-01
Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence
International Nuclear Information System (INIS)
Clifford, Corey E.; Kimber, Mark L.
2015-01-01
Although computational fluid dynamics (CFD) has not been directly utilized to perform safety analyses of nuclear reactors in the United States, several vendors are considering adopting commercial numerical packages for current and future projects. To ensure the accuracy of these computational models, it is imperative to validate the assumptions and approximations built into commercial CFD codes against physical data from flows analogous to those in modern nuclear reactors. To this end, researchers at Utah State University (USU) have constructed the Rotatable Buoyancy Tunnel (RoBuT) test facility, which is designed to provide flow and thermal validation data for CFD simulations of forced and mixed convection scenarios. In order to evaluate the ability of current CFD codes to capture the complex physics associated with these types of flows, a computational model of the RoBuT test facility is created using the ANSYS Fluent commercial CFD code. The numerical RoBuT model is analyzed at identical conditions to several experimental trials undertaken at USU. Each experiment is reconstructed numerically and evaluated with the second-order Reynolds stress model (RSM). Two different thermal boundary conditions at the heated surface of the RoBuT test section are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). Additionally, the fluid velocity at the inlet of the test section is varied in an effort to modify the relative importance of natural convection heat transfer from the heated wall of the RoBuT. Mean velocity, both in the streamwise and transverse directions, as well as components of the Reynolds stress tensor at three points downstream of the RoBuT test section inlet are compared to results obtained from experimental trials. Early computational results obtained from this research initiative are in good agreement with experimental data obtained from the RoBuT facility and both the experimental data and numerical method can be used
International Nuclear Information System (INIS)
Kim, Hyeon Il
2010-02-01
In order to demonstrate the accuracy of predictions in a turbulent mixed convection regime in which both inertia and buoyancy force compete with each other, we found out that assessments done using a single-dimensional system code with a recently updated heat transfer package have shown that this approach cannot give a reasonable prediction of the wall temperature in a case involving strong heating, where the regime falls into turbulent mixed convection regime. It has been known that the main reason of this deficiency comes from the degraded heat transfer in turbulent mixed convection regime, which is below that of convective heat transfer during turbulent forced convection. We investigated two mechanisms that cause this deterioration in convective heat transfer influenced by buoyancy: (1) modification of turbulence, also known as the direct (structural) effect, through the buoyancy-induced production of turbulent kinetic energy: and (2) an indirect (external) effect that occurs through modification of the mean flow. We investigated the Launder-Sharma model of turbulence whether it can appropriately represent the mechanisms causing the degraded heat transfer in Computational Fluid Dynamics (CFD). We found out that this model can capture low Re effects such that a non-equilibrium turbulent boundary layer in turbulent mixed convection regime can be resolved. The model was verified and validated extensively initially with the commercial CFD code, Fluent with a user application package known as the User Defined Function (UDF). The results from this implementation were compared to a set of data that included (1) an experimental data commonly accepted as a standardized problem to verify a turbulent flow, (2) the results from a Direct Numerical Simulation (DNS) in a turbulent forced and mixed convection regime, (3) empirical correlations regarding the friction coefficient and the non-dimensional heat transfer coefficient, the Nusselt number for a turbulent forced
Directory of Open Access Journals (Sweden)
W. G. Read
2008-10-01
Full Text Available Mechanisms for transporting and dehydrating air across the tropical tropopause layer (TTL are investigated with a conceptual two dimensional (2-D model. The 2-D TTL model combines the Holton and Gettelman cold trap dehydration mechanism (Holton and Gettelman, 2001 with the two column convection model of Folkins and Martin (2005. We investigate 3 possible transport scenarios through the TTL: 1 slow uniform ascent across the level of zero radiative heating without direct convective mixing, 2 convective mixing of H_{2}O vapor at 100% relative humidity with respect to ice (RHi with no ice retention, and 3 convective mixing of extremely subsaturated air (100% RHi following the moist adiabatic temperature above the level of neutral buoyancy with sufficient ice retention such that total H_{2}O is 100%RHi. The three mechanisms produce similar seasonal cycles for H_{2}O that are in good quantitative agreement with the Aura Microwave Limb Sounder (MLS measurements. We use Aura MLS measurement of CO and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer measurement of HDO to distinguish among the transport mechanisms. Model comparisons with the observations support the view that H_{2}O is predominantly controlled by regions having the lowest cold point tropopause temperature but the trace species CO and HDO support the convective mixing of dry air and lofted ice. The model provides some insight into the processes affecting the long term trends observed in stratospheric H_{2}O.
Mixed convection of ferrofluids in a lid driven cavity with two rotating cylinders
Directory of Open Access Journals (Sweden)
Fatih Selimefendigil
2015-09-01
Full Text Available Mixed convection of ferrofluid filled lid driven cavity in the presence of two rotating cylinders were numerically investigated by using the finite element method. The cavity is heated from below, cooled from driven wall and rotating cylinder surfaces and side vertical walls of the cavity are assumed to be adiabatic. A magnetic dipole source is placed below the bottom wall of the cavity. The study is performed for various values of Reynolds numbers (100 ≤ Re ≤ 1000, angular rotational speed of the cylinders (−400 ≤ Ω ≤ 400, magnetic dipole strengths (0 ≤ γ ≤ 500, angular velocity ratios of the cylinders (0.25≤Ωi/Ωj≤4 and diameter ratios of the cylinders (0.5≤Di/Dj≤2. It is observed that flow patterns and thermal transport within the cavity are affected by variation in Reynolds number and magnetic dipole strength. The results of this investigation revealed that cylinder angular velocities, ratio of the angular velocities and diameter ratios have profound effect on heat transfer enhancement within the cavity. Averaged heat transfer enhancements of 181.5 % is achieved for clockwise rotation of the cylinder at Ω = −400 compared to motionless cylinder case. Increasing the angular velocity ratio from Ω2/Ω1=0.25 to Ω2/Ω1=4 brings about 91.7 % of heat transfer enhancement.
Directory of Open Access Journals (Sweden)
S. Abdul Gaffar
2015-01-01
Full Text Available Magnetic polymers are finding increasing applications in diverse fields of chemical and mechanical engineering. In this paper, we investigate the nonlinear steady boundary layer flow and heat transfer of such fluids from a nonisothermal wedge. The incompressible Eyring-Powell non-Newtonian fluid model is employed and a magnetohydrodynamic body force is included in the simulation. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging nondimensional parameters, namely, the Eyring-Powell rheological fluid parameter (ε, local non-Newtonian parameter based on length scale (δ, Prandtl number (Pr, Biot number (γ, pressure gradient parameter (m, magnetic parameter (M, mixed convection parameter (λ, and dimensionless tangential coordinate (ξ, on velocity and temperature evolution in the boundary layer regime is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated.
Modelling and experimental studies on a mixed-mode natural convection solar crop-dryer
Energy Technology Data Exchange (ETDEWEB)
Forson, F.K. [Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Nazha, M.A.A.; Rajakaruna, H. [School of Engineering and Technology, De Montfort University, Queens Building, Leicester LE1 9BH (United Kingdom)
2007-03-15
A mathematical model for drying agricultural products in a mixed-mode natural convection solar crop dryer (MNCSCD) using a single-pass double-duct solar air-heater (SPDDSAH) is presented. The model was developed in parallel with experimental work. The model comprises the air-heating process model, the drying model and the technical performance criteria model. The governing equations of the drying air temperature and humidity ratio; the material temperature and its moisture content; and performance criteria indicators are derived. The model requires the solution of a number of interrelated non-linear equations and a set of simultaneous differential equations. Results from experimental studies used for generating the required experimental data for validating the model are presented. Results of simulation runs using the model are presented and compared with the experimental data. It is shown that the model can predict the performance of the MNCSCD fairly accurately and therefore can be used as a design tool for prototype development. (author)
Non-gray gas radiation effect on mixed convection in lid driven square cavity
Energy Technology Data Exchange (ETDEWEB)
Cherifi, Mohammed, E-mail: production1998@yahoo.fr; Benbrik, Abderrahmane, E-mail: abenbrik@umbb.dz; Laouar-Meftah, Siham, E-mail: laouarmeftah@gmail.com [M’Hamed Bougara University, Faculty of Hydrocarbons and Chemistry, 35000 Boumerdes (Algeria); Lemonnier, Denis, E-mail: denis.lemonnier@ensma.fr [Institut Pprime, CNRS, ENSMA, University of Poitiers, Poitiers Futuroscope (France)
2016-06-02
A numerical study is performed to investigate the effect of non-gray radiation on mixed convection in a vertical two sided lid driven square cavity filled with air-H{sub 2}O-CO{sub 2} gas mixture. The vertical moving walls of the enclosure are maintained at two different but uniform temperatures. The horizontal walls are thermally insulated and considered as adiabatic walls. The governing differential equations are solved by a finite-volume method and the SIMPLE algorithm was adopted to solve the pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Simulations are performed in configurations where thermal and shear forces induce cooperating buoyancy forces. Streamlines, isotherms, and Nusselt number are analyzed for three different values of Richardson’s number (from 0.1 to 10) and by considering three different medium (transparent medium, gray medium using the Planck mean absorption coefficient, and non-gray medium assumption).
Mixed convection of magnetohydrodynamic nanofluids inside microtubes at constant wall temperature
Energy Technology Data Exchange (ETDEWEB)
Moshizi, S.A. [Young Researchers and Elite Club, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of); Zamani, M. [Young Researchers and Elite Club, Gonabad Branch, Islamic Azad University, Gonabad (Iran, Islamic Republic of); Hosseini, S.J. [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Malvandi, A., E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)
2017-05-15
Laminar fully developed mixed convection of magnetohydrodynamic nanofluids inside microtubes at a constant wall temperature (CWT) under the effects of a variable directional magnetic field is investigated numerically. Nanoparticles are assumed to have slip velocities relative to the base fluid owing to thermophoretic diffusion (temperature gradient driven force) and Brownian diffusion (concentration gradient driven force). The no-slip boundary condition is avoided at the fluid-solid mixture to assess the non-equilibrium region at the fluid-solid interface. A scale analysis is performed to estimate the relative significance of the pertaining parameters that should be included in the governing equations. After the effects of pertinent parameters on the pressure loss and heat transfer enhancement were considered, the figure of merit (FoM) is employed to evaluate and optimize the thermal performance of heat exchange equipment. The results indicate the optimum thermal performance is obtained when the thermophoresis overwhelms the Brownian diffusion, which is for larger nanoparticles. This enhancement boosts when the buoyancy force increases. In addition, increasing the magnetic field strength and slippage at the fluid-solid interface enhances the thermal performance. - Highlights: • Thermally fully developed flow of nanofluid in circular microchannels at constant wall temperature. • Effect of nanoparticle migration on fluid flow and heat transfer characteristics. • Investigating the Figure of merit of thermal performance. • Performance of system grows when the thermophoresis overwhelms the Brownian diffusion.
Mixed convection flow and heat transfer over different geometries of backward-facing step
Directory of Open Access Journals (Sweden)
BADER SHABEEB ALSHURAIAAN
2013-12-01
Full Text Available Mixed convective flow and heat transfer characteristics for two-dimensional laminar flow in a channel with different geometries of a backward-facing step are presented for various Grashof numbers. The wall downstream of the step was maintained at a constant temperature; TH, while the upper wall was considered isothermal at TC. The wall upstream of the step and the backward-facing step were considered as adiabatic surfaces. Navier-Stokes equations were employed to represent the transport phenomena in the channel. Further, the governing equations were solved using a finite element formulation based on the Galerkin method of weighted residuals. The numerical results of the reattachement lengths for recirculation region in a vertical channel with a backward-facing step (Re = 100 were validated by comparing them against documented studies in the literature. The results of this investigation show that the local skin friction coefficient increases with an increase in Grashof numbers. The results of this investigation show that configuration II of the backward-facing step (inclined exhibited an absence of vortices for all values of Grashof numbers and consequently the minimum skin friction coefficient. However, configuration I is found to have the largest local skin friction coefficient.
Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel
Jha, B. K.; Aina, B.
2017-08-01
The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.
Kamata, Shunichi
2018-01-01
Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.
Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Repetti, A.; Yacouba, H.; Tyler, S. W.; Parlange, M. B.
2011-12-01
A hydro-meteorological field campaign (joint EPFL-2iE) in a mixed agricultural and forest region in the southern Burkina Faso Savanna aims to identify and understand convective rainfall processes and the link to soil moisture. A simple slab Mixed Layer and Lifting Condensation Level model is implemented to separate convective and nonconvective rainfall. Data for this research were acquired during the 2010 rainy season using an array of wireless weather stations (SensorScope) as well as surface energy balance stations that based upon eddy correlation heat flux measurements. The precipitation was found to be variable over the basin with some 200 mm of difference in total seasonal rainfall between agricultural fields and savanna forest. Convective rainfall represents more than 30% of the total rainfall. The convective rainfall events are short (less than hour), intense (greater than 3 mm/minute) and occur both in the early morning and in the afternoons. These events can have an important impact on soil erosion, which we discuss in more detail along with seasonal stream-aquifer interactions.
Energy Technology Data Exchange (ETDEWEB)
Nazar, R.; Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)
2004-02-01
The laminar mixed convection boundary-layer flow of a viscous and incompressible fluid past a horizontal circular cylinder, which is maintained at a constant heat flux and is placed in a stream flowing vertically upward has been theoretically studied in this paper. The solutions for the flow and heat transfer characteristics are evaluated numerically for different values of the mixed convection parameter {lambda} with the Prandtl number Pr = 1 and 7, respectively. It is found, as for the case of a heated or cooled cylinder, considered by Merkin [5], that assisting flow delays separation of the boundary-layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow, on the other side, brings the separation point nearer to the lower stagnation point and for sufficiently strong opposing flows there will not be a boundary-layer on the cylinder. (orig.)
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-01-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
Juliyanto, Bagus; Widodo, Basuki; Imron, Chairul
2018-04-01
The purpose of this research is to study the effect of heat generation on mixed convection flow on Nano fluids over a horizontal circular cylinder of a heated in two dimension form. A stream of fluids are steady and incompressible, a stream flowing vertically upwards for circular cylinder and the boundary layer at the stagnation point. Three different types of nanoparticles considered are Cu, Al2O3, and TiO2. Mixed convection flow in Nano fluids on the surface of a circular cylinder will cause the boundary layer. The governing boundary layer equations are transformed into a non-dimensional form, and then the non-dimensional forms are transformed into a similar boundary equations by using stream function. Furthermore, an implicit finite-difference scheme known as the Keller-box method is applied to solve numerically the resulting similar boundary layer equations. The result of the research by varying the non-dimensional parameters are mixed convection, Prandtl number, nanoparticle volume fraction, heat generation, and radius of a cylinder are as follows. First, the velocity profile increase and temperature profile decrease when mixed convection parameter increase. Second, the velocity and temperature profiles decrease when Prandtl number parameter increase. Third, the velocity profile with the variation of nanoparticle volume fraction (χ) is increased when the value of χ is 0,1 ≤ χ ≤ 0,15 and the velocity profile decreases when the value of χ is 0,19 ≤ χ ≤ 0,5 while the temperature profile is increasing when the value of χ is 0,1 ≤ χ ≤ 0,5. Fourth, the velocity and temperature profiles increase when heat generation and the radius of the cylinder increase. The last, Cu, Al 2 O 3, and TiO 2 nanoparticles produce the same velocity and temperature profiles, but the three types of nanoparticles are different at the velocity and temperature values.
Mixed convective heat transfer from a vertical plate embedded in a ...
Indian Academy of Sciences (India)
Melting effect with heat and mass transfer in porous media has much ... convection boundary layer flow about a vertical surface embedded in a porous medium, ..... Salama A 2008 Combined effect of thermal dispersion and radiation on free.
R-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy
Directory of Open Access Journals (Sweden)
Bing Zhou
2014-04-01
Full Text Available The continuing quest for cost-effective and complex shaped aluminum castings with fewer defects for applications in the automotive industries has aroused the interest in rheological high pressure die casting (R-HPDC. A new machine, forced convection mixing (FCM device, based on the mechanical stirring and convection mixing theory for the preparation of semisolid slurry in convenience and functionality was proposed to produce the automotive shock absorber part by R-HPDC process. The effect of barrel temperature and rotational speed of the device on the grain size and morphology of semi-solid slurry were extensively studied. In addition, flow behavior and temperature field of the melt in the FCM process was investigated combining computational fluid dynamics simulation. The results indicate that the microstructure and pore defects at different locations of R-HPDC casting have been greatly improved. The vigorous fluid convection in FCM process has changed the temperature field and composition distribution of conventional solidification. Appropriately increasing the rotational speed can lead to a uniform temperature filed sooner. The lower barrel temperature leads to a larger uniform degree of supercooling of the melt that benefits the promotion of nucleation rate. Both of them contribute to the decrease of the grain size and the roundness of grain morphology.
Mixed convection and stratification phenomena in a heavy liquid metal pool
Energy Technology Data Exchange (ETDEWEB)
Tarantino, Mariano, E-mail: mariano.tarantino@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy); Martelli, Daniele; Barone, Gianluca [Dipartimento di Ingegneria Civile e Industriale, University of Pisa, Largo Lucio Lazzarino, 1-56100 Pisa Italy (Italy); Di Piazza, Ivan [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy); Forgione, Nicola [Dipartimento di Ingegneria Civile e Industriale, University of Pisa, Largo Lucio Lazzarino, 1-56100 Pisa Italy (Italy)
2015-05-15
Highlights: • Results related to experiments reproducing PLOHS + LOF accident in CIRCE pool facility. • Vertical thermal stratification in large HLM pool. • Transition from forced to natural circulation in HLM pool under DHR conditions. • Heat transfer coefficient measurement in HLM pin bundle. • Nusselt numbers calculations and comparison with correlations. - Abstract: This work deals with an analysis of the first experimental series of tests performed to investigate mixed convection and stratification phenomena in CIRCE HLM large pool. In particular, the tests concern the transition from nominal flow to natural circulation regime, typical of decay heat removal (DHR) regime. To this purpose the CIRCE pool facility has been updated to host a suitable test section in order to reproduce the thermal-hydraulic behaviour of a HLM pool-type reactor. The test section basically consists of an electrical bundle (FPS) made up of 37 pins arranged in a hexagonal wrapped lattice with a pitch diameter ratio of 1.8. Along the FPS active length, three sections were instrumented to monitor the heat transfer coefficient along the bundle as well as the cladding temperatures at different ranks of the sub-channels. This paper reports the experimental data as well as a preliminary analysis and discussion of the results, focusing on the most relevant tests of the campaign, namely Test I (48 h) and Test II (97 h). Temperatures along three sections of the FPS and at inlet and outlet sections of the main components were reported and the Nusselt number in the FPS sub-channels was investigated together with the void fraction in the riser. Concerning the investigation of in-pool thermal stratification phenomena, the temperatures in the whole LBE pool were monitored at different elevations and radial locations. The analysis of experimental data obtained from Tests I and II underline the occurrence of thermal stratification phenomena in the region placed between the outlet sections of
International Nuclear Information System (INIS)
Chan, C.K.; Jones, S.C.A.
1994-01-01
Various scaling parameters for simulating mixing under the influence of buoyancy, jet momentum, and fan-induced convection were examined. Their significance was assessed by comparing the mixing of helium (a simulant for hydrogen) with air in a large-scale enclosure (1.8 m x 1.8 m x 1.8 m) to the mixing of salt-water with fresh-water in a small-scale enclosure (1/6 the size). The advantage of using the salt-water/freshwater technique is that it allows the characteristic flow regime (either turbulent or laminar flow) in the full-scale containment to be maintained in the reduced scale containment. A smoke technique for flow visualization was used to examine the mixing of the helium with air. For the small-scale salt-water/fresh-water experiment, fluorescent dye was used to provide a means to visualize the mixing process. The mixing behaviour in both sets of experiments were analyzed based on video records and concentration measurements in ten locations. Measurements showed that depending on the recirculation and jet flow rates, the injected salt-water (in small-scale experiments) and helium (in large-scale experiments) can disperse sufficiently quickly to produce an essentially 'well mixed' condition rendering the concentration measurements insensitive to the variation in the Froude or the Grashof Numbers. (author)
Energy Technology Data Exchange (ETDEWEB)
Lin, Ming-Han [Ta-Hwa Institute of Technology, Department of Automation Engineering, Hsinchu (Taiwan); Chen, Chin-Tai [Ta-Hwa Institute of Technology, Department of Industrial Engineering and Management, Hsinchu (Taiwan)
2006-01-01
This paper presents a numerical study of the effect of rotation on the formation of longitudinal vortices in mixed convection flow over a flat plate. The criterion on the position of marking the onset of longitudinal vortices is defined in this paper. The onset position characterized by the Goertler number G{sub {delta}} depends on the Grashof number, the rotation number Ro, the Prandtl number Pr and the wave number. The results show that negative rotation stabilizes the boundary layer flow on the surface. On the contrary, positive rotation destabilizes the flow. The numerical data are compared with the experimental results. (orig.)
International Nuclear Information System (INIS)
Mohammed, Hussein A.
2008-01-01
Laminar mixed convection heat transfer for assisted and opposed air flows in the entrance region of a vertical circular tube with the using of a uniform wall heat flux boundary condition has been experimentally investigated. The experimental setup was designed for determining the effect of flow direction and the effect of tube inclination on the surface temperature, local and average Nusselt numbers with Reynolds number ranged from 400 to 1600 and Grashof number from 2.0 x 10 5 to 6.2 x 10 6 . It was found that the circumferential surface temperature along the dimensionless tube length for opposed flow would be higher than that both of assisted flow and horizontal tube [Mohammed HA, Salman YK. Experimental investigation of combined convection heat transfer for thermally developing flow in a horizontal circular cylinder. Appl Therm Eng 2007;27(8-9):1522-33] due to the stronger free convective currents within the cross-section. The Nusselt number values would be lower for opposed flow than that for assisted flow. It was inferred that the behaviour of Nu x for opposed flow to be strongly dependent on the combination of Re and Gr numbers. Empirical equations expressing the average Nusselt numbers in terms of Grashof and Reynolds numbers were proposed for both assisted and opposed flow cases. The average heat transfer results were compared with previous literature and showed similar trend and satisfactory agreement
Energy Technology Data Exchange (ETDEWEB)
De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.
1999-07-01
An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.
Energy Technology Data Exchange (ETDEWEB)
Ismael, Muneer A. [Mechanical Engineering Department, Engineering College, University of Basrah, Basrah (Iraq); Mansour, M.A. [Department of Mathematics, Assuit University, Faculty of Science, Assuit (Egypt); Chamkha, Ali J. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al-Khobar 31952 (Saudi Arabia); Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952 (Saudi Arabia); Rashad, A.M., E-mail: am_rashad@yahoo.com [Department of Mathematics, Aswan University, Faculty of Science, Aswan 81528 (Egypt)
2016-10-15
Mixed convection in a lid-driven square cavity filled with Cu-water nanofluid and subjected to inclined magnetic field is investigated in this paper. Partial slip effect is considered along the lid driven horizontal walls. A constant heat flux source on the left wall is considered, meanwhile the right vertical wall is cooled isothermally. The remainder cavity walls are thermally insulted. A control finite volume method is used as a numerical appliance of the governing equations. Six pertinent parameters were studied these; the orientation of the magnetic field (Φ=0–360°), Richardson number (Ri=0.001–1000), Hartman number (Ha=0–100), the size and position of the heat source (B=0.2–0.8, D=0.3–0.7, respectively), nanoparticles volume fraction (ϕ=0.0–0.1), and the lid-direction of the horizontal walls (λ=±1) where the positive sign means lid-driven to the right while the negative sign means lid-driven to the left. The results show that the orientation and the strength of the magnetic field can play a significant role in controlling the convection under the effect of partial slip. It is also found that the natural convection decreases with increasing the length of the heat source for all ranges of the studied parameters, while it is do so due to the vertical distance up to Hartman number of 50, beyond this value the natural convection decreases with lifting the heat source narrower to the top wall. - Highlights: • Partial slip along moving walls of MHD cavity filled with nanofluid is considered. • The suppression exerted by the magnetic field decreases with its orientation. • Nusselt number is enhanced slightly with nanoparticles at shortest heat source. • Nusselt number is enhanced with nanoparticles at stronger magnetic field.
International Nuclear Information System (INIS)
Ismael, Muneer A.; Mansour, M.A.; Chamkha, Ali J.; Rashad, A.M.
2016-01-01
Mixed convection in a lid-driven square cavity filled with Cu-water nanofluid and subjected to inclined magnetic field is investigated in this paper. Partial slip effect is considered along the lid driven horizontal walls. A constant heat flux source on the left wall is considered, meanwhile the right vertical wall is cooled isothermally. The remainder cavity walls are thermally insulted. A control finite volume method is used as a numerical appliance of the governing equations. Six pertinent parameters were studied these; the orientation of the magnetic field (Φ=0–360°), Richardson number (Ri=0.001–1000), Hartman number (Ha=0–100), the size and position of the heat source (B=0.2–0.8, D=0.3–0.7, respectively), nanoparticles volume fraction (ϕ=0.0–0.1), and the lid-direction of the horizontal walls (λ=±1) where the positive sign means lid-driven to the right while the negative sign means lid-driven to the left. The results show that the orientation and the strength of the magnetic field can play a significant role in controlling the convection under the effect of partial slip. It is also found that the natural convection decreases with increasing the length of the heat source for all ranges of the studied parameters, while it is do so due to the vertical distance up to Hartman number of 50, beyond this value the natural convection decreases with lifting the heat source narrower to the top wall. - Highlights: • Partial slip along moving walls of MHD cavity filled with nanofluid is considered. • The suppression exerted by the magnetic field decreases with its orientation. • Nusselt number is enhanced slightly with nanoparticles at shortest heat source. • Nusselt number is enhanced with nanoparticles at stronger magnetic field.
Ireland, Lewis G.; Browning, Matthew K.
2018-04-01
Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.
Javed, Tariq; Ahmed, B.; Sajid, M.
2018-04-01
The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.
Wang, Yin; Xu, Wei; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger
2017-11-01
We report a combined experimental and numerical study of the scaling properties of the temperature variance profile η(z) along the central z axis of turbulent Rayleigh-Bénard convection in a thin disk cell and an upright cylinder of aspect ratio unity. In the mixing zone outside the thermal boundary layer region, the measured η(z) is found to scale with the cell height H in both cells and obey a power law, η(z) (z/H)ɛ, with the obtained values of ɛ being very close to -1. Based on the experimental and numerical findings, we derive a new equation for η(z) in the mixing zone, which has a power-law solution in good agreement with the experimental and numerical results. Our work thus provides a common framework for understanding the effect of boundary layer fluctuations on the scaling properties of the temperature variance profile in turbulent Rayleigh-Bénard convection. This work was supported in part by Hong Kong Research Grants Council.
Directory of Open Access Journals (Sweden)
Sami Ullah Khan
2018-03-01
Full Text Available The aim of this article is to highlight the unsteady mixed convective couple stress nanoliquid flow passed through stretching surface. The flow is generated due to periodic oscillations of sheet. An appropriate set of dimensionless variables are used to reduce the independent variables in governing equations arising from mathematical modeling. An analytical solution has been computed by employing the technique of homotopy method. The outcomes of various sundry parameters like couple stress parameter, the ratio of angular velocity to stretching rate, thermophoresis parameter, Hartmann number, Prandtl number, heat source/sink parameter, Schmidt number described graphically and in tabular form. It is observed that the velocity profile increases by increasing mixed convection parameter and concentration buoyancy parameter. The temperature enhances for larger values of Hartmann number and Brownian. The concentration profile increases by increasing thermophoresis parameter. Results show that wall shear stress increases by increasing couple stress parameter and ratio of oscillating frequency to stretching rate. Keywords: Oscillatory surface, Couple stress fluid, Nanoparticles, Heat absorption/generation
Directory of Open Access Journals (Sweden)
Khan Md. Rabbi
2016-03-01
Full Text Available Mixed convection has been a center point of attraction to the heat transfer engineers for many years. Here, pure mixed convection analysis in cavity is carried out for two different geometric heater configurations under externally applied magnetic field. Ferrofluid (Fe3O4–water is considered as working fluid and modeled as single phase fluid. The heaters at the bottom wall are kept at constant high temperature while vertical side walls are adiabatic. The top wall is moving at a constant velocity in both geometric configurations and is kept at constant low temperature. Galerkin weighted residuals method of finite element analysis is implemented to solve the governing equations. The analysis has been carried out for a wide range of Richardson number (Ri = 0.1–10, Reynolds number (Re = 100–500, Hartmann number (Ha = 0–100 and solid volume fraction (φ = 0–0.15 of ferrofluid. The overall heat transfer performance for both the configurations is quantitatively investigated by average Nusselt number at the heated boundary wall. It is observed that higher Ri enhances the heat transfer rate, although higher Ha decreases heat transfer rate. Moreover, at higher Ri and lower Ha, semi-circular notched cavity shows significantly better (more than 30% heat transfer rate.
International Nuclear Information System (INIS)
Malvandi, A.; Safaei, M.R.; Kaffash, M.H.; Ganji, D.D.
2015-01-01
In the current study, an MHD mixed convection of alumina/water nanofluid inside a vertical annular pipe is investigated theoretically. The model used for the nanofluid mixture involves Brownian motion and thermophoretic diffusivities in order to take into account the effects of nanoparticle migration. Since the thermophoresis is the main mechanism of the nanoparticle migration, different temperature gradients have been imposed using the asymmetric heating. Considering hydrodynamically and thermally fully developed flow, the governing equations have been reduced to two-point ordinary boundary value differential equations and they have been solved numerically. It is revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the velocity, temperature and nanoparticle concentration profiles. Moreover, it is shown that the advantage of nanofluids in heat transfer enhancement is reduced in the presence of a magnetic field. - Highlights: • MHD mixed convection of alumina/water nanofluid inside a vertical annulus. • The effects of nanoparticle migration on rheological and thermophysical characteristics. • The effects of asymmetric heating on nanoparticle migration. • The effects of asymmetric heating on the heat transfer enhancement. • Inclusion of nanoparticles in presence of a magnetic field has a negative effect on performance
Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels
International Nuclear Information System (INIS)
Saleh, H.; Hashim, I.
2010-01-01
The present analysis is concerned with flow reversal phenomena of the fully-developed laminar combined free and forced MHD convection in a vertical parallel-plate channel. The effect of viscous dissipation is taken into account. Flow reversal adjacent to the cold (or hot) wall is found to exist within the channel as Gr/Re is above (or below) a threshold value. Parameter zones for the occurrence of reversed flow are presented. (fundamental areas of phenomenology(including applications))
Energy Technology Data Exchange (ETDEWEB)
Aghaei, Alireza, E-mail: AlirezaAghaei21@gmail.com; Khorasanizadeh, Hossein, E-mail: khorasan@kashanu.ac.ir; Sheikhzadeh, Ghanbarali, E-mail: Sheikhz@kashanu.ac.ir; Abbaszadeh, Mahmoud, E-mail: abbaszadeh.mahmoud@gmail.com
2016-04-01
The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu–water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 10{sup 4}, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect. - Highlights: • effects of magnetic field on the flow field, heat transfer and entropy generation. • mixed
International Nuclear Information System (INIS)
Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbarali; Abbaszadeh, Mahmoud
2016-01-01
The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu–water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 10"4, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect. - Highlights: • effects of magnetic field on the flow field, heat transfer and entropy generation. • mixed
Directory of Open Access Journals (Sweden)
Sklyarenko Kristina A.
2015-01-01
Full Text Available The article shows the results of mathematical simulation of mixed convection in the low-temperature storage of liquefied natural gas with a regenerative cooling. The regimes of mixed convection in a closed area with the different arrangement of the input and output sections of the masses are investigated. Two-dimensional nonstationary problem in the model of the Navier-Stokes in dimensionless variables “vorticity - stream function - temperature” was examined. Are obtained distributions of the hydrodynamic parameters and temperatures, characteristic basic laws governing the processes being investigated. Detailed circulating currents and carried out analysis of the mechanism of vortices formation and the temperature distribution in the solution for mixed convection mode with low Reynolds and Grashof numbers (Gr = 106, 100
International Nuclear Information System (INIS)
Lecocq, Y.
2008-12-01
In the frame of radioactive waste management, this work aims to study the flow around a heating wall-mounted cylinder in crossflow in URANS approach. Well-known limitations of first order turbulence models lead us to consider second order turbulence modelling. In that frame, a heat transfer model is developed and validated on academic test cases. To begin with, when mixed convection regime is dominant, these simulations, completed by an isotherm one, all performed with low-Reynolds k-w SST model, give prominence to several eddy structures registered by the bibliography. One simulation is also performed with the high-Reynolds Rij-epsilon SSG model. With the k-w SST model, the heat transfer is correctly reproduced compared to the VALIDA experiment lead by the CEA, though with the Rij-epsilon SSG model, it is strongly under-estimated. It is supposed that it comes from the use of wall functions. Subsequently, when natural convection is predominant, flow topology becomes completely different and the heat transfer becomes less accurate to the VALIDA experiment. Following Durbin's approach, the Elliptic Blending-Renolds Stress Model EBRSM, consists in accounting for wall effects, and in wall blockage in particular. Following this formalism, an Elliptic Blending-Algebraic Flux Model is developed, the EBAFM. With this model, a priori tests in the three convection regimes and then simulations on the same test cases show major improvements in flow predictions. This leads to an interesting perspective to an intermediate model between SGDH and transport equations. (author)
Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet
Directory of Open Access Journals (Sweden)
Kai-Long Hsiao
2007-01-01
Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.
Hoteit, Hussein
2017-12-29
Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the crossflow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite difference (FD) methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local discontinuous Galerkin (LDG) method instead of the MFE calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed.
Directory of Open Access Journals (Sweden)
Prasad K.V.
2017-02-01
Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.
Hoteit, Hussein; Firoozabadi, Abbas
2017-01-01
Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the crossflow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite difference (FD) methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local discontinuous Galerkin (LDG) method instead of the MFE calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed.
Directory of Open Access Journals (Sweden)
Norfifah Bachok
Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
Energy Technology Data Exchange (ETDEWEB)
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Shahzad, S. A.; Meraj, M. A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M. K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Raza, J. [School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah (Malaysia)
2016-03-15
A numerical study is carried out for two dimensional steady incompressible mixed convective flow of electrically conductive micro nanofluid in a stretchable channel. The flow is generated due to the stretching walls of the channel immersed in a porous medium. The magnetic field is applied perpendicular to the walls. The impact of radiation, viscous dissipation, thermophoretic and Brownian motion of nanoparticles appear in the energy equation. A numerical technique based on Runge-Kutta-Fehlberg fourth-fifth order (RFK45) method is used to express the solutions of velocity, microrotation, temperature and concentration fields. The dimensionless physical parameters are discussed both in tabular and graphical forms. The results are also found in a good agreement with previously published literature work.
Rawi, N. A.; Ilias, M. R.; Lim, Y. J.; Isa, Z. M.; Shafie, S.
2017-09-01
The influence of nanoparticles on the unsteady mixed convection flow of Casson fluid past an inclined stretching sheet is investigated in this paper. The effect of gravity modulation on the flow is also considered. Carboxymethyl cellulose solution (CMC) is chosen as the base fluid and copper as nanoparticles. The basic governing nonlinear partial differential equations are transformed using appropriate similarity transformation and solved numerically using an implicit finite difference scheme by means of the Keller-box method. The effect of nanoparticles volume fraction together with the effect of inclination angle and Casson parameter on the enhancement of heat transfer of Casson nanofluid is discussed in details. The velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are presented and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Zangiabadi, B [Univ. of Stavanger, Stavanger (Norway); Ameri, M; Mahmoudabadi, M M [Shahid Bahonar Univ., Kerman (Iran, Islamic Republic of)
2008-07-01
According to FAO statistics, Iran is the largest exporter of pistachios. Kerman province -south east of Iran- has approximately 200000 hectares of pistachio orchards, which provides practically 80% of whole country production of pistachios. After harvesting the pistachio, nuts must be washed to prevent staining. Therefore the nuts have almost 40% moisture content and it must be decreased to storage moisture of 6% or below. Simply decreasing in the moisture content of the products is called drying. In some areas where the environment conditions meet the minimum standard, solar drying can be an alternative approach for drying agricultural products. This work deals with the design, construction and testing a mixed-mode forced convection PV operated solar dryer. (orig.)
Directory of Open Access Journals (Sweden)
Muhammad Ramzan
Full Text Available The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM. Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.
Energy Technology Data Exchange (ETDEWEB)
Cachard, F. de; Lomperski, S.; Monauni, G.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics
1999-07-01
An experimental and analytical program was performed at PSI to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned-tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. The finned-tubes condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less than 10 % standard deviation between experimental and predicted results. (authors)
International Nuclear Information System (INIS)
Yang, C.I.; Sha, W.T.; Kasza, K.E.
1982-01-01
As a result of the uncertainties in the understanding of the influence of thermal-buoyancy effects on the flow and heat transfer in Liquid Metal Fast Breeder Reactor heat exchangers and steam generators under off-normal operating conditions, an extensive experimental program is being conducted at Argonne National Laboratory to eliminate these uncertainties. Concurrently, a parallel analytical effort is also being pursued to develop a three-dimensional transient computer code (COMMIX-IHX) to study and predict heat exchanger performance under mixed, forced, and free convection conditions. This paper presents computational results from a heat exchanger simulation and compares them with the results from a test case exhibiting strong thermal buoyancy effects. Favorable agreement between experiment and code prediction is obtained
Severin, Tatiana; Sauret, Caroline; Boutrif, Mehdi; Duhaut, Thomas; Kessouri, Fayçal; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Durrieu de Madron, Xavier; Garel, Marc; Tamburini, Christian; Conan, Pascal; Ghiglione, Jean-François
2016-12-01
Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Connors, V.S.; Cahoon, D.R. Jr.; Reichle, H.G. Jr.; Brunke, E.G.; Garstang, M.; Seiler, W.; Scheel, H.E.
1991-01-01
This study examines both the emission and the transport of CO from the surface to the free troposphere and the role of convection in redistributing this gas in the free troposphere over southern Africa. Upper-air soundings, the meteorological analyses from the European Center for Medium-Range Weather Forecasts (ECMWF), and the multispectral imagery from the European Space Agency's Meteosat-2 satellite comprise the meteorological data base. The surface measurements of CO were measured at an atmospheric chemistry laboratory in Cape Point, South Africa. The CO in the middle troposphere was measured by the Measurement of Air Pollution from Satellites (MAPS) experiment flown on the space shuttle. This study focuses on the emissions and transport of CO from Africa south of the equator on 5-6 October 1984
Vilella, Kenny; Deschamps, Frederic
2018-04-01
Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean
Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.
2006-01-01
Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion zone are studied by means of the mixed layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered.
Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.
2006-01-01
Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion are studied by means of the mixed-layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered. The
International Nuclear Information System (INIS)
Bogatyrev, I.L.; Bogoslovskaya, G.P.; Zhukov, A.V.; Sorokin, A.P.; Titov, P.A.
1992-01-01
System of constants for mass, impulse and energy conservation equations (drag, mixing, heat transfer coefficients, azimuthal unquality of temperature) is reported in region with small Re number for wide range of geometrical assembly parameters. This system can be used in subchannel calculations of assemblies with natural and mixed convection under conditions with loss of flow accident. The formulae are compared with experimental data. 30 refs.; 12 figs.; 1 tab
International Nuclear Information System (INIS)
Jackson, J.D.
2011-01-01
The early experimental studies of buoyancy-influenced turbulent convective heat transfer to fluids flowing upwards and downwards in long uniformly heated vertical tubes were mainly performed using water at atmospheric pressure as the working fluid. In addition, some experiments using air were reported and even some using mercury. At that time there was also quite a lot of interest in heat transfer to water at supercritical pressure and also carbon dioxide. More recently, experimental results have been obtained using liquid sodium. The Prandtl numbers in the studies referred to above cover a wide range of values, being well in excess of unity under some conditions in the case of the supercritical pressure fluids and atmospheric pressure water, just under unity in the case of air, much less than unity in the case of mercury and even lower in the case of liquid sodium. Over the years a good general understanding has gradually been achieved of the complex manner in which buoyancy affects heat transfer in conventional fluids such as water and air. Up to a point, the behaviour in the case of a liquid metal such as mercury can be reconciled with such arguments. However, this is certainly not so in the case of liquid sodium. In the present paper results from a number of experimental studies of buoyancy-influenced heat transfer in vertical tubes are reviewed. This is done with the aim of providing a picture of observed behaviour consistent with our understanding of the basic mechanisms of convective heat transfer, taking account of the complicated manner in which the mean motion, turbulence and the heat transfer are affected by buoyancy. The starting point is to view convective heat transfer in wall shear flows in terms of the local balance between diffusion of heat (turbulent and molecular) and advection of heat by the flowing fluid. Prandtl number affects the radial temperature profile and therefore the variation of density across the shear flow and, in turn, the extent
International Nuclear Information System (INIS)
Li, R.
2012-01-01
The aim of this research dissertation is at studying natural and mixed convections of fluid flows, and to develop and validate numerical schemes for interface tracking in order to treat incompressible and immiscible fluid flows, later. In a first step, an original numerical method, based on Finite Volume discretizations, is developed for modeling low Mach number flows with large temperature gaps. Three physical applications on air flowing through vertical heated parallel plates were investigated. We showed that the optimum spacing corresponding to the peak heat flux transferred from an array of isothermal parallel plates cooled by mixed convection is smaller than those for natural or forced convections when the pressure drop at the outlet keeps constant. We also proved that mixed convection flows resulting from an imposed flow rate may exhibit unexpected physical solutions; alternative model based on prescribed total pressure at inlet and fixed pressure at outlet sections gives more realistic results. For channels heated by heat flux on one wall only, surface radiation tends to suppress the onset of re-circulations at the outlet and to unify the walls temperature. In a second step, the mathematical model coupling the incompressible Navier-Stokes equations and the Level-Set method for interface tracking is derived. Improvements in fluid volume conservation by using high order discretization (ENO-WENO) schemes for the transport equation and variants of the signed distance equation are discussed. (author)
International Nuclear Information System (INIS)
Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki
2000-03-01
A quantitative evaluation on thermal striping, in which temperature fluctuation due to convective mixing among jets imposes thermal fatigue on structural components, is of importance for reactor safety. In the present study, a water experiment was performed on parallel triple-jet: cold jet at the center and hot jets in both sides. Three kinds of numerical analyses based on the finite difference method were carried out to compare the similarity with the experiment by use of respective different handling of turbulence such as a k-ε two equation turbulence model (k-ε Model), a low Reynolds number stress and heat flux equation model (LRSFM) and a direct numerical simulation (DNS). In the experiment, the jets were mainly mixed due to the coherent oscillation. The numerical result using k-ε Model could not reproduce the coherent oscillating motion of jets due to rolling-up fluid. The oscillations of the jets predicted by LRSFM and DNS were in good agreements with the experiment. The comparison between the coherent and random components in experimental temperature fluctuation obtained by using the phase-averaging shows that k-ε Model and LRSFM overestimated the random component and the coherent component respectively. The ratios of coherent to random components in total temperature fluctuation obtained from DNS were in good agreements with the experiment. The numerical analysis using DNS can reproduce the coherent oscillation of the jets and the coherent / random components in temperature fluctuation. The analysis using LRSFM could simulate the mixing process of the jets with the low frequency. (author)
International Nuclear Information System (INIS)
Sudo, Y.; Kaminaga, M.
1990-01-01
The effects of channel gap size on mixed forced and free convective heat transfer characteristics were experimentally investigated for water flowing near atmospheric pressure in a 750 mm long and 50 mm wide channel heated from both sides. The channel gap sizes investigated were 2.5, 6, 18 and 50 mm. Experiments were carried out for both aiding and opposing forced convective flows with a Reynolds number Re x of 4x10 to 6x10 6 and a Grashof number Gr x of 2x10 4 to 6x10 11 , where the distance x from the inlet of the channel is adopted as the characteristic length in Re x and Gr x . As for the results, the following were revealed for the parameters ranges investigated in this study. (1) When the dimensionless parameter, Gr x /Re x 21/8 Pr 1/2 is less than 10 -4 , the flow shows the nature of forced convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (2) When Gr x /Re x 21/8 Pr 1/2 is larger than 10 -2 , the flow shows the nature of free convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (3) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size equal to or larger than 6 mm, the heat transfer coefficients in both aiding and opposing flows become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection, and can be expressed in simple forms with a combination of Gr x /Re x 21/8 Pr 1/2 and the previous correlation for either the pure turbulent forced convection or the free convection along a flat plate. (4) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size of 2.5 mm, the heat transfer coefficients in both aiding and opposing flows also become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection. (orig./GL)
Directory of Open Access Journals (Sweden)
Safikhani Hamed
2016-01-01
Full Text Available In this article, the laminar mixed convection of Al2O3-Water nanofluid flow in a horizontal flat tube has been numerically simulated. The two-phase mixture model has been employed to solve the nanofluid flow, and constant heat flux has been considered as the wall boundary condition. The effects of different and important parameters such as the Reynolds number (Re, Grashof number (Gr, nanoparticles volume fraction (Φ and nanoparticle diameter (dp on the thermal and hydrodynamic performances of nanofluid flow have been analyzed. The results of numerical simulation were compared with similar existing data and good agreement is observed between them. It will be demonstrated that the Nusselt number (Nu and the friction factor (Cf are different for each of the upper, lower, left and right walls of the flat tube. The increase of Re, Gr and f and the reduction of dp lead to the increase of Nu. Similarly, the increase of Re and f results in the increase of Cf. Therefore, the best way to increase the amount of heat transfer in flat tubes using nanofluids is to increase the Gr and reduce the dp.
Directory of Open Access Journals (Sweden)
Heng-Sheng Cheng
2015-03-01
Full Text Available Steady double-diffusive mixed convection in an enclosure with side venting and discrete heat and contaminant sources is numerically studied under supplying upside and returning downside (STRB mode and returning upside and supplying downside mode (RTSB, respectively. The parameters governing the fluid flow include the Grashof number Gr (102–106, Reynolds number Re (100–500, supplying or returning distance H 1/HT (0–2, Prandtl number Pr (0.7, buoyancy ratio N, and Schmidt number Sc. Effects of Gr, Re, and H 1/HT on the flow patterns, thermal, and species transports were numerically investigated concerning STRB and RTSB modes. Fluid flow, heat, and species transports in the enclosure are visualized and analyzed by the contours of stream function, heat function, and mass function, respectively. Air age was also presented to evaluate the freshness of the enclosed fluid. Averaged Nusselt number of the heat source and Sherwood number of the contaminant source are power-law correlated with Gr, Re, and H 1/HT for two ventilation modes, respectively. The correlations demonstrate that the ratio of averaged Nusselt number to Sherwood number was approximately approaching unity, independent of ventilation modes and values of H 1/HT . This investigation could benefit the future design of room ventilation and thermal removals from the electronic chips.
Energy Technology Data Exchange (ETDEWEB)
Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)
2006-12-15
The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)
International Nuclear Information System (INIS)
Sirvydas, A.; Poskas, R.
2006-01-01
We present the results on numerical investigation of the local opposing mixed convection heat transfer in a vertical flat channel with symmetrical heating at low Reynolds numbers. Numerical two-dimensional simulation was performed for the same channel and for the same conditions as in the experiment using the FLUENT 6.1 code. The unsteady flow investigations were performed in airflow for the experimental conditions at the Reynolds number 2130 and Grashof number 6.2* 10 8 . Quasi-steady flow investigations were performed for two Reynolds numbers (2130 and 4310) and the Grashof number up to 3.1*10 9 in order to simulate the buoyancy effect on the flow structure. In both steady and quasi-steady modelling cases the results demonstrated that under the high buoyancy effect the chequerwise local circular flow took place near the heated walls. This made velocity profiles asymmetrical and caused pulsations of the wall temperature. Wall temperature had a pulsatory character, however, the resulting averaged values correlated rather well with experimental data for steady and quasi-steady cases for Re in = 2130. For Re in = 4310, the resulting averaged values for x/d e ≤25 correlated rather well with experimental data. When x/d e > 25, the difference between the experimental and the calculated wall temperature was increasing, increasing, possibly due to a steady flow and heat transfer modelling. (author)
Directory of Open Access Journals (Sweden)
Liping Wei
2013-01-01
Full Text Available Mixed convection heat transfer between supercritical water and particles is a major basic problem in supercritical water fluidized bed reactor, but little work focused on this new area in the past. In this paper, a numerical model fully accounting for thermophysical property variation has been established to investigate heat transfer between supercritical water and a single spherical particle under gravity. Flow field, temperature field and Nusselt number are analyzed based on the simulation results. Results show that buoyancy force has a remarkable effect on flow and heat transfer process. When the direction of gravity and flow are opposite, the gravity enhances the heat transfer before the separation point and inhibits the heat transfer after the separation point. When gravity is incorporated in calculation, a higher temperature gradient and a thinner boundary layer in the vicinity of the particle surface are observed before separation point, and the situations are just the reverse after separation point. Variation of specific heat and conductivity plays a main role in determination of heat transfer coefficient.
Directory of Open Access Journals (Sweden)
H. R. Ehteram
2016-01-01
Full Text Available In this paper the effect of using various models for conductivity and viscosity considering Brownian motion of nanoparticles is investigated. This study is numerically conducted inside a cavity full of Water-Al2O3 nanofluid at the case of mixed convection heat transfer. The effect of some parameters such as the nanoparticle volume fraction, Rayleigh, Richardson and Reynolds numbers has been examined. The governing equations with specified boundary conditions has been solved using finite volume method. A computer code has been prepared for this purpose. The results are presented in form of stream functions, isotherms, Nusselt number and the flow power with and without the Brownian motion taken into consideration. The results show that for all the applied models the stream functions and isotherm have approximately same patterns and no considerable difference has been observed. In all the studied models when considering the Brownian motion, the average Nusselt number is higher than not taking this effect into account. The models of Koo-Kleinstreuer and Li-Kleinstreuer give almost same values for the maximum stream function and average Nusselt number. It is also true about the models of Vajjha-Das and Xiao et al.
International Nuclear Information System (INIS)
Mohseni, Mahdi; Bazargan, Majid
2014-01-01
Highlights: • The entropy generation in supercritical fluid flows has been numerically investigated. • The mechanisms of entropy generation are different near and away from the walls. • In the near wall region, the energy dissipation is the deciding parameter. • Away from the wall, the heat transfer is the effective factor in entropy generation. • The bulk Be number is greater in the liquid-like region than in vapor-like region. - Abstract: In this study, a two dimensional CFD code has been developed to investigate entropy generation in turbulent mixed convection heat transfer flow of supercritical fluids. Since the fluid properties vary significantly under supercritical conditions, the changes of entropy generation are large. The contribution of each of the mechanisms of entropy production (heat transfer and energy dissipation) is compared in different regions of the flow. The results show that the mechanisms of entropy generation act differently in the near wall region within the viscous sub-layer and in the region away from the wall. The effects of the wall heat flux on the entropy generation are also investigated
International Nuclear Information System (INIS)
Barletta, A.
2008-01-01
The necessary condition for the onset of parallel flow in the fully developed region of an inclined duct is applied to the case of a circular tube. Parallel flow in inclined ducts is an uncommon regime, since in most cases buoyancy tends to produce the onset of secondary flow. The present study shows how proper thermal boundary conditions may preserve parallel flow regime. Mixed convection flow is studied for a special non-axisymmetric thermal boundary condition that, with a proper choice of a switch parameter, may be compatible with parallel flow. More precisely, a circumferentially variable heat flux distribution is prescribed on the tube wall, expressed as a sinusoidal function of the azimuthal coordinate θ with period 2π. A π/2 rotation in the position of the maximum heat flux, achieved by setting the switch parameter, may allow or not the existence of parallel flow. Two cases are considered corresponding to parallel and non-parallel flow. In the first case, the governing balance equations allow a simple analytical solution. On the contrary, in the second case, the local balance equations are solved numerically by employing a finite element method
Ezzaraa, K.; Bahlaoui, A.; Arroub, I.; Raji, A.; Hasnaoui, M.; Naïmi, M.
2018-05-01
In this work, we investigated numerically heat transfer by mixed convection coupled to thermal radiation in a vented rectangular enclosure uniformly heated from below with a constant heat flux. The fresh fluid is admitted into the cavity by injection or suction, by means of two openings located on the lower part of both right and left vertical sides. Another opening is placed on the middle of the top wall to ensure the ventilation. Air, a radiatively transparent medium, is considered to be the cooling fluid. The inner surfaces, in contact with the fluid, are assumed to be gray, diffuse emitters and reflectors of radiation with identical emissivities. The effects of some pertinent parameters such as the Reynolds number, 300 ≤ Re ≤ 5000, and the emissivity of the walls, 0 ≤ ɛ ≤ 0.85, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes (injection and suction). The results indicate that the flow and thermal structures are affected by the thermal radiation for the two modes of imposed flow. However, the suction mode is found to be more favorable to the heat transfer in comparison with the injection one.
Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim
2017-06-01
A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.
Najiyah S. Khasi'ie; Roziena Khairuddin; Najihah Mohamed; Mohd Zuki Salleh; Roslinda Nazar; Ioan Pop
2012-01-01
Problem statement: In this study, the mathematical modeling of free convection boundary layer flow over a permeable horizontal flat plate embedded in a porous medium under mixed thermal boundary conditions and radiation effects is considered. Approach: The transformed boundary layer equations are solved numerically using the shooting method. Results: Numerical solutions are obtained for the wall temperature, the heat transfer coefficient, as well as the velocity and temperature profiles. The ...
Directory of Open Access Journals (Sweden)
Sameh E. Ahmed
2016-03-01
Full Text Available This paper examines numerically the thermal and flow field characteristics of the laminar steady mixed convection flow in a square lid-driven enclosure filled with water-based micropolar nanofluids by using the finite volume method. While a uniform heat source is located on a part of the bottom of the enclosure, both the right and left sidewalls are considered adiabatic together with the remaining parts of the bottom wall. The upper wall is maintained at a relatively low temperature. Both the upper and left sidewalls move at a uniform lid-driven velocity and four different cases of the moving lid ordinations are considered. The fluid inside the enclosure is a water based micropolar nanofluid containing different types of solid spherical nanoparticles: Cu, Ag, Al2O3, and TiO2. Based on the numerical results, the effects of the dominant parameters such as Richardson number, nanofluid type, length and location of the heat source, solid volume fractions, moving lid orientations and dimensionless viscosity are examined. Comparisons with previously numerical works are performed and good agreements between the results are observed. It is found that the average Nusselt number along the heat source decreases as the heat source length increases while it increases when the solid volume fraction increases. Also, the results of the present study indicate that both the local and the average Nusselt numbers along the heat source have the highest value for the fourth case (C4. Moreover, it is observed that both the Richardson number and moving lid ordinations have a significant effect on the flow and thermal fields in the enclosure.
Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young
2014-12-01
The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.
Energy Technology Data Exchange (ETDEWEB)
Forson, F.K.; Akuffo, F.O. [Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Nazha, M.A.A.; Rajakaruna, H. [Department of Mechanical Engineering, De Montfort University, Queens Building, Leicester LE1 9BH (United Kingdom)
2007-11-15
A mixed-mode natural convection solar crop dryer (MNCSCD) designed and used for drying cassava and other crops in an enclosed structure is presented. A prototype of the dryer was constructed to specification and used in experimental drying tests. This paper outlines the systematic combination of the application of basic design concepts, and rules of thumb resulting from numerous and several years of experimental studies used and presents the results of calculations of the design parameters. A batch of cassava 160 kg by mass, having an initial moisture content of 67% wet basis from which 100 kg of water is required to be removed to have it dried to a desired moisture content of 17% wet basis, is used as the drying load in designing the dryer. A drying time of 30-36 h is assumed for the anticipated test location (Kumasi; 6.7 N,1.6 W) with an expected average solar irradiance of 400 W/m{sup 2} and ambient conditions of 25 C and 77.8% relative humidity. A minimum of 42.4 m{sup 2} of solar collection area, according to the design, is required for an expected drying efficiency of 12.5%. Under average ambient conditions of 28.2 C and 72.1% relative humidity with solar irradiance of 340.4 W/m{sup 2}, a drying time of 35.5 h was realised and the drying efficiency was evaluated as 12.3% when tested under full designed load signifying that the design procedure proposed is sufficiently reliable. (author)
Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas
2016-01-01
Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.
Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Asghar, Saleem
2017-01-01
This study investigates the mixed convection flow of Jeffrey liquid by an impermeable inclined stretching cylinder. Thermal radiation and non-uniform heat source/sink are considered. The convective boundary conditions at surface are imposed. Nonlinear expressions of momentum, energy and concentration are transformed into dimensionless systems. Convergent homotopic solutions of the governing systems are worked out by employing homotopic procedure. Impact of physical variables on the velocity, temperature and concentration distributions are sketched and discussed. Numerical computations for skin friction coefficient, local Nusselt and Sherwood numbers are carried out. It is concluded that velocity field enhances for Deborah number while reverse situation is observed regarding ratio of relaxation to retardation times. Temperature and heat transfer rate are enhanced via larger thermal Biot number. Effect of Schmidt number on the concentration and local Sherwood number is quite reverse.
Brandon, A. D.; Debaille, V.
2014-12-01
The 146Sm-142Nd (t1/2=68 Ma) chronometer can be used to examine silicate differentiation in the first 400 Ma of Earth history. Early fractionation between Sm and Nd is recorded in cratonic Archean rocks in their 142Nd/144Nd ratios that that deviate up to ±20 ppm, or μ142Nd - ppm deviation relative to the present-day convecting mantle at 0. These values likely record early extraction of incompatible trace element (ITE) enriched material with -μ142Nd, either as crust or late stage residual melt from a magma ocean, and resulting in a complimentary ITE depleted residual mantle with +μ142Nd. If this early-formed ITE-enriched material was re-incorporated rapidly back into the convecting mantle, both ITE-enriched and ITE-depleted mantle domains would have been established in the Hadean. Alternatively, if it was early-formed crust that remained stable it could have slowly eroded and progressively remixed into the convecting mantle as subducted sediment during the Archean. Each of these scenarios could potentially explain the decrease in the maximum variation in µ142Nd from ±20 at 4.0 Ga to 0 at 2.5 Ga [1,2,3]. In the scenario where these variations reflect mixing of mantle domains, this implies long mantle mixing times of greater than 1 Ga in the Archean in order to preserve the early-formed heterogeneities. This can be achieved in a stagnant lid tectonic regime in the Archean with sporadic and short subduction cycles [2]. This scenario would also indicate that mixing times in the convecting mantle were much slower than the previously proposed 100 Ma in the Hadean and Archean. In the alternative scenario, sediment with -µ142Nd was progressively mixed into the mantle via subduction in the Archean [3]. This scenario doesn't require slow mantle mixing times or a stagnant-lid regime. It requires crustal resident times of up to 750 Ma to maintain a steady supply of ancient sediment recycling over the Archean. Each of these scenarios evoke very contrasting conditions for
Energy Technology Data Exchange (ETDEWEB)
Azam, Mohammad, E-mail: azam09mebuet@gmail.com; Hasanuzzaman, Md., E-mail: hasanuzzaman138@gmail.com; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)
2016-07-12
The present study investigates the thermal mixing scenarios of steady magneto-hydrodynamic (MHD) mixed convection in a two-dimensional lid-driven trapezoidal cavity filled with Cu-water nanofluid. The top wall of the cavity slides with a uniform velocity from left to right direction, while the other walls are fixed. The bottom wall is kept with a constant higher temperature than the top one. The governing mass, momentum and energy equations are expressed in non-dimensional forms and Galerkin finite element method has been employed to solve these equations. Special attention is paid on investigating the onset of transition from laminar to chaos at pure mixed convection case. Hence, the computations are carried out for a wide range of Reynolds numbers (Re = 0.1 − 400) and Grashof numbers (Gr = 10{sup −2} − 1.6 × 10{sup 5}) at unity Richardson number and fixed Hartmann number (Ha = 10). The variation of average Nusselt number of the bottom heated wall indicates the influence of governing parameters (Re and Gr) on heat transfer characteristics. The results are presented and explained through the visualisation of isotherms, streamlines and heatlines.
Directory of Open Access Journals (Sweden)
A. M. Elaiw
2012-01-01
Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.
Energy Technology Data Exchange (ETDEWEB)
Malvandi, A., E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of); Safaei, M.R. [Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Kaffash, M.H. [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of); Ganji, D.D. [Mechanical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of)
2015-05-15
In the current study, an MHD mixed convection of alumina/water nanofluid inside a vertical annular pipe is investigated theoretically. The model used for the nanofluid mixture involves Brownian motion and thermophoretic diffusivities in order to take into account the effects of nanoparticle migration. Since the thermophoresis is the main mechanism of the nanoparticle migration, different temperature gradients have been imposed using the asymmetric heating. Considering hydrodynamically and thermally fully developed flow, the governing equations have been reduced to two-point ordinary boundary value differential equations and they have been solved numerically. It is revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the velocity, temperature and nanoparticle concentration profiles. Moreover, it is shown that the advantage of nanofluids in heat transfer enhancement is reduced in the presence of a magnetic field. - Highlights: • MHD mixed convection of alumina/water nanofluid inside a vertical annulus. • The effects of nanoparticle migration on rheological and thermophysical characteristics. • The effects of asymmetric heating on nanoparticle migration. • The effects of asymmetric heating on the heat transfer enhancement. • Inclusion of nanoparticles in presence of a magnetic field has a negative effect on performance.
Directory of Open Access Journals (Sweden)
Nepal C. Roy
2016-06-01
Full Text Available Unsteady mixed convection boundary-layer flow of an electrically conducting micropolar fluid past a circular cylinder is investigated taking into account the effect of thermal radiation and heat generation or absorption. The reduced non-similar boundary-layer equations are solved using the finite difference method. It is found that the magnitude of the friction factor and the couple stress significantly increases due to the increase of the mixed convection parameter, the conduction-radiation parameter, the surface temperature parameter, the heat absorption parameter and the frequency parameter. However the magnitude of the heat transfer rate decreases with these parameters. The converse characteristics are observed for the Prandtl number. The magnitude of the couple stress and the heat transfer rate is seen to decrease whereas the magnitude of the skin factor increases with increasing the vortex viscosity parameter. The magnetic field parameter reduces the skin factor, couple stress and heat transfer rate. The amplitude of oscillation of the transient skin factor and couple stress gradually increases owing to an increase of $\\xi$. But the transient heat transfer rate is found to be oscillating with almost the same amplitude for any value of $\\xi$. The amplitude of oscillation of the transient skin factor and couple stress increases with an increase of $S$ and $\\xi$ while the amplitude of the transient heat transfer rate increases with increasing Pr and $S$.
Ahmed, Tarek Nabil; Khan, Ilyas
2018-03-01
This article aims to study the mixed convection heat transfer in non-Newtonian nanofluids over an infinite vertical plate. Mixed convection is caused due to buoyancy force and sudden plate motion. Sodium alginate (SA-NaAlg) is considered as non-Newtonian base fluid and molybdenum disulphide (MoS2) as nanoparticles are suspended in it. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively. The flow is modeled in the form of partial differential equations with imposed physical conditions. Exact solutions for velocity and temperature fields are developed by means of the Laplace transform technique. Numerical computations are performed for different governing parameters such as non-Newtonian parameter, Grashof number and nanoparticle volume fraction and the results are plotted in various graphs. Results for skin friction and Nusselt number are presented in tabular form which show that increasing nanoparticle volume fraction leads to heat transfer enhancement and increasing skin friction.
Convective overshooting in stars
Andrássy, R.
2015-01-01
Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing
International Nuclear Information System (INIS)
Pal, Sandip
2016-01-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars
Energy Technology Data Exchange (ETDEWEB)
Pal, Sandip, E-mail: sup252@PSU.EDU
2016-06-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.
Pal, Sandip
2016-06-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
G.A. Sheikhzadeh
2013-07-01
Full Text Available In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperatures. The study is carried out for Richardson numbers of 0.01–1000, the solid volume fractions of 0–0.05 and the Grashof number of 104. The transport equations are solved numerically with a finite volume approach using the SIMPLER algorithm. The results show that the Nusselt number is mainly affected by the viscosity, density and conductivity variations. For low Richardson numbers, although viscosity increases by increasing the nanoparticles volume fraction, due to high intensity convection of enhanced conductivity nanofluid, the average Nusselt number increases for both constant and variable cases. However, for high Richardson numbers, as the volume fraction of nanoparticles increases heat transfer enhancement occurs for the constant properties cases but deterioration in heat transfer occurs for the variable properties cases. The distinction is due to underestimation of viscosity of the nanofluid by the constant viscosity model in the constant properties cases and states important effects of temperature dependency of thermophysical properties, in particular the viscosity distribution in the domain.
Directory of Open Access Journals (Sweden)
Khilap Singh
2016-01-01
Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.
Directory of Open Access Journals (Sweden)
Sumit Malik
2016-09-01
Full Text Available In the present study, a two sided lid-driven mixed convection nanofluid flow with discrete heat sources have been numerically investigated. A two dimensional computational visualization technique is used to study the flow behavior using four different cases; depending on the direction of moving vertical walls with fixed upper and lower walls. Two discrete heat sources of equal lengths are taken on the lower wall and the rest of it is kept insulated. The other walls are kept at constant low temperature. The effect of flow governing parameters such as Reynolds number 1⩽Re⩽100, Richardson number 0.1⩽Ri⩽10 and solid volume fraction 0.0⩽ϕ⩽0.2 with Prandtl number Pr=6.2 is studied to understand the fluid flow pattern and the heat transfer effect using isotherms and average Nusselt number.
Directory of Open Access Journals (Sweden)
N. Sandeep
2015-12-01
Full Text Available The aim of the present study is to investigate the influence of non-uniform heat source/sink, mass transfer and chemical reaction on an unsteady mixed convection boundary layer flow of a magneto-micropolar fluid past a stretching/shrinking sheet in the presence of viscous dissipation and suction/injection. The governing equations of the flow, heat and mass transfer are transformed into system of nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Shooting technique with Matlab Package. The influence of non-dimensional governing parameters on velocity, microrotation, temperature and concentration profiles are discussed and presented with the help of their graphical representations. Also, friction factor, heat and mass transfer rates have been computed and presented through tables. Under some special conditions, present results are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.
Directory of Open Access Journals (Sweden)
Ch.Ram Reddy
2017-12-01
Full Text Available This paper analyzes the heat and mass transfer characteristics on mixed convective fully developed flow in an electrically conducting Newtonian fluid between vertical parallel plates. The chemical reaction, heat generation, Hall and ion-slip effects are taken into consideration. By using similarity transformations the nonlinear governing equations are reduced into dimensionless form and hence solved using Adomian decomposition method (ADM. The influence of magnetic parameter, Hall parameter, ion-slip parameter, chemical reaction parameter, and heat generation/absorption parameter on non-dimensional velocities, temperature and concentration profiles are exhibited graphically. In addition, the numerical data for skin friction, heat and mass transfer rates are shown in tabular form.
Shateyi, Stanford; Marewo, Gerald T.
2018-05-01
We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.
Directory of Open Access Journals (Sweden)
Azharul Karim
2017-12-01
Full Text Available A numerical study of the unsteady mixed convection heat transfer characteristics of an Ag–water nanofluid confined within a square shape lid-driven cavity has been carried out. The Galerkin weighted residual of the finite element method has been employed to investigate the effects of the periodicity of sinusoidal boundary condition for a wide range of Grashof numbers (Gr (105 to 107 with the parametric variation of sinusoidal even and odd frequency, N, from 1 to 6 at different instants (for τ = 0.1 and 1. It has been observed that both the Grashof number and the sinusoidal even and odd frequency have a significant influence on the streamlines and isotherms inside the cavity. The heat transfer rate enhanced by 90% from the heated surface as the Grashof number (Gr increased from 105 to 107 at sinusoidal frequency N = 1 and τ = 1.
Sobhani, M.; Behzadmehr, A.
2018-05-01
This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.
Kareem, Ali Khaleel; Gao, Shian
2018-02-01
The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.
Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.
Energy Technology Data Exchange (ETDEWEB)
Shi, Er; Sun, Xiaoqin; He, Yecong; Jiang, Changwei, E-mail: cw_jiang@163.com [School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114 (China)
2017-06-15
Natural convection of cold water near its density maximum in a square enclosure is studied numerically under the influence of a magnetic quadrupole field without gravity. A generalized model which includes a non-Boussinesq parabolic density–temperature relationship is established. The governing equations in primitive variables are discretized using the finite-volume method and solved using the SIMPLE algorithm. The effects of magnetic force number, Rayleigh number and density inversion parameter on flow and heat transfer characteristics are analyzed. The results show that the primary flow pattern depends mainly on the density inversion parameter. Multi-cellular flow structures are observed for certain ranges of density inversion parameter independent of the value of Rayleigh number and magnetic force number. The heat transfer changes non-monotonically under combined actions of the quadrupole magnetic field and density inversion. (paper)
Parameterizing convective organization
Directory of Open Access Journals (Sweden)
Brian Earle Mapes
2011-06-01
Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time
Directory of Open Access Journals (Sweden)
Wyczółkowski R.
2015-12-01
Full Text Available The paper presents experimental studies devoted to the convection phenomenon within the steel charge of mixed porosity. Such charges constitute bundles of hollow long elements such as pipes or rectangular sections which are heat treated. A significant portion of the gas phase in the volume of the charge makes that natural convection of the gas occurring within the individual elements may have an effect on the course of heating. To the tests the Schlieren method was used which is one of the optical visualization methods applied to the analysis of the flow phenomena in the transparent and non luminous media such as air or water. The tested samples have the form of porous charge beds made from pipes and rectangular profiles. During the experiments the samples were heating up for the constant heat flux rate. The direction of flux was vertical, from the bottom to the top.
International Nuclear Information System (INIS)
Kimura, Nobuyuki; Tokuhiro, A.; Miyakoshi, Hiroyuki
1996-10-01
Elucidation on thermal hydraulic behavior of Thermal Striping is of importance for a reactor safety, which is arisen form exit temperature difference of fuel subassemblies. Since its temperature fluctuation may cause thermal cycle fatigue on upper internal structure (UIS). A series of experiments was performed using the Thermal Striping water test facility in order to investigate the mixing phenomena on three vertical jets with exit velocity and temperature differences. The parameters were the velocity and temperature of the jets at discharge nozzles. The local velocities were measured by Ultrasound Velocity Profile (UVP) monitor and Laser Doppler Anemometry (LDA), and temperature distributions were measured by thermocouples. This report mainly examined the experimental results of temperature measurements. There is a typical region where the gradient of the temperature variation in the triple-jet: that is the Convective Mixing region. This region is independent of the discharged temperature difference, and spreads with larger velocity difference among the jets. For isovelocity discharge conditions, non-dimensional temperature fields are almost independent of discharged temperature differences within Convective Mixing region. Consequently, the effect of temperature difference is negligible compared to that of velocity difference on the flow field. There are remarkable frequencies of 2-5Hz in temperature fluctuation due to a oscillation of the central jet (cold jet) for this condition. While, for non-isovelocity discharge condition, there are no remarkable frequencies. Hence, it is clear that there is the region where a large thermal fatigue is imposed by Thermal Striping against structures of Fast Reactor. It is suggested that the structures have to be placed outside of Convective Mixing region. Also, it is considered that typical frequencies in temperature fluctuation are controlled by giving a discharge velocity difference between cold and hot jets. (J.P.N.)
Jiji, Latif M.
Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.
Directory of Open Access Journals (Sweden)
Pau Baya
2011-05-01
Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.
Energy Technology Data Exchange (ETDEWEB)
Martinand, D
2003-01-15
This analytical study deals with the spatio-temporal evolution of linear thermo-convective instabilities in a horizontal fluid layer heated from below (the Rayleigh--Benard system) and subject to a horizontal pressure gradient (Poiseuille flow). The novelty consists of a spatially inhomogeneous temperature, in the form of a two-dimensional bump imposed on the lower plate, while the upper plate is kept at a constant temperature. The inhomogeneous boundary temperature and the mean flow of the Rayleigh--Benard--Poiseuille system break the symmetries of the classical Rayleigh--Benard system. The instabilities of interest are therefore spatially localised packets of convection rolls. If a mode of this type is synchronized, it is called a global mode. Assuming that the characteristic scale of the spatial variation of the lower plate temperature is large compared to the wavelength of the rolls, global modes are sought in the form of Eigenmodes in the confined vertical direction, modulated by a two-dimensional WKBJ expansion in the slowly-varying horizontal directions. Such an expansion breaks down at points where the group velocity of the instability vanishes, i.e. at WKBJ turning points. In the neighbourhood of one such point, located at the top of the temperature bump, the boundedness of the solution imposes a selection criterion for the global modes which provides the growth rate (or equivalently the critical threshold), the frequency and the wave vector of the most amplified global mode. This study thus generalizes to two-dimensional cases the methods used and the results obtained for one-dimensional inhomogeneities. The analysis is first applied to a simplified governing equation obtained by an envelope formalism and the analytical results are compared with numerical solutions of the amplitude equation. The formalism is finally applied to the Rayleigh--Benard--Poiseuille system described by the Navier--Stokes equations with the Boussinesq approximation. (author)
National Research Council Canada - National Science Library
Morison, James
2003-01-01
.... Over the years we have sought to understand the heat and mass balance of the mixed layer, marginal ice zone processes, the Arctic internal wave and mixing environment, summer and winter leads, and convection...
Convective overshoot at the solar tachocline
Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.
2017-08-01
At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.
The pattern of convection in the Sun
International Nuclear Information System (INIS)
Weiss, N.O.
1976-01-01
The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandt numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the convecting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered. (Auth.)
National Convective Weather Diagnostic
National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or
International Nuclear Information System (INIS)
Le Quere, P.; Weisman, C.; Paillere, H.; Vierendeels, J.; Dick, E.; Becker, R.; Braack, M.; Locke, J.
2005-01-01
Heat transfer by natural convection and conduction in enclosures occurs in numerous practical situations including the cooling of nuclear reactors. For large temperature difference, the flow becomes compressible with a strong coupling between the continuity, the momentum and the energy equations through the equation of state, and its properties (viscosity, heat conductivity) also vary with the temperature, making the Boussinesq flow approximation inappropriate and inaccurate. There are very few reference solutions in the literature on non-Boussinesq natural convection flows. We propose here a test case problem which extends the well-known De Vahl Davis differentially heated square cavity problem to the case of large temperature differences for which the Boussinesq approximation is no longer valid. The paper is split in two parts: in this first part, we propose as yet unpublished reference solutions for cases characterized by a non-dimensional temperature difference of 0.6, Ra 10 6 (constant property and variable property cases) and Ra = 10 7 (variable property case). These reference solutions were produced after a first international workshop organized by Cea and LIMSI in January 2000, in which the above authors volunteered to produce accurate numerical solutions from which the present reference solutions could be established. (authors)
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
National Convective Weather Forecast
National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...
International Nuclear Information System (INIS)
Kandasamy, R.; Muhaimin; Hashim, I.; Ruhaila
2008-01-01
The effects of variable viscosity, thermophoresis and non-Darcy mixed convection flow with heat and mass transfer over a porous wedge are presented here, taking into account the homogeneous chemical reaction of first order. The fluid viscosity is assumed to vary as an inverse linear function of temperature. Favorable comparison with previously published work is performed. The governing fundamental equations are approximated by a system of nonlinear ordinary differential equations and are solved numerically by using the Runge Kutta Gill and shooting methods. The steady-state velocity, temperature and concentration profiles are shown graphically. It is observed that due to the presence of first-order chemical reaction the concentration decreases with increasing values of the chemical reaction parameter. The results also showed that the particle deposition rates were strongly influenced by thermophoresis and buoyancy force, particularly for opposing flow and hot surfaces. Numerical results for the skin-friction coefficient, wall heat and mass transfer are obtained and reported graphically for various parametric conditions to show interesting aspects of the solution
Directory of Open Access Journals (Sweden)
Muthuraj R.
2012-01-01
Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.
Effect of Chemical Reaction on Unsteady MHD Free Convective Two
African Journals Online (AJOL)
Joseph et al.
radiation effects on mixed convection heat and mass transfer over a vertical plate in ... numerically by finite difference method and analytically by perturbation. ... Brinkman equation was used to model the flow in the porous region. The.
Mixed convection in a baffled grooved channel
Indian Academy of Sciences (India)
MS received 16 May 2014; revised 19 October 2014; accepted 06 November 2014. Abstract. In the present numerical work, flow structure and heat transfer charac- teristics are investigated in a baffled grooved channel, differentially heated from the sides. The baffle is placed vertically downward from the top wall of grooved ...
Moisture Vertical Structure, Deep Convective Organization, and Convective Transition in the Amazon
Schiro, K. A.; Neelin, J. D.
2017-12-01
Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. Results from the Green Ocean Amazon (GOAmazon) field campaign (2014-2015) provide evidence that deep convection is strongly controlled by the availability of moisture in the free troposphere over the Amazon, much like over tropical oceans. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Boundary layer moisture shows a strong relationship to the onset during the day, which largely disappears during nighttime. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free troposphere. Retrievals of vertical velocity from a radar wind profiler indicate updraft velocity and mass flux increasing with height through the lower troposphere. A deep-inflow mixing scheme motivated by this — corresponding to deep inflow of environmental air into a plume that grows with height — provides a weighting of boundary layer and free tropospheric air that yields buoyancies consistent with the observed onset of deep convection across seasons and times of day, across land and ocean sites, and for all convection types. This provides a substantial improvement relative to more traditional constant mixing assumptions, and a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for unorganized convection.
Observing Convective Aggregation
Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita
2017-11-01
Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.
Calibrating convective properties of solar-like stars in the Kepler field of view
Bonaca, A.; Tanner, J.D.; Basu, S.; Chaplin, W.J.; Metcalfe, T.S.; Monteiro, M.J.P.F.G.; Ballot, J.; Bedding, T.R.; Bonanno, A.; Broomhall, A.M.; Bruntt, H.; Campante, T.L.; Christensen-Dalsgaard, J.; Corsaro, E.; Elsworth, Y.; García, R.A.; Hekker, S.; Karoff, C.; Kjeldsen, H.; Mathur, S.; Régulo, C.; Roxburgh, I.; Stello, D.; Trampedach, R.; Barclay, T.; Burke, C.J.; Caldwell, D.A.
2012-01-01
Stellar models generally use simple parameterizations to treat convection. The most widely used parameterization is the so-called mixing-length theory where the convective eddy sizes are described using a single number, α, the mixing-length parameter. This is a free parameter, and the general
Convective transport resistance in the vitreous humor
Penkova, Anita; Sadhal, Satwindar; Ratanakijsuntorn, Komsan; Moats, Rex; Tang, Yang; Hughes, Patrick; Robinson, Michael; Lee, Susan
2012-11-01
It has been established by MRI visualization experiments that the convection of nanoparticles and large molecules with high rate of water flow in the vitreous humor will experience resistance, depending on the respective permeabilities of the injected solute. A set of experiments conducted with Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) and 30 nm gadolinium-based particles (Gado CELLTrackTM, Biopal, Worcester, MA) as MRI contrast agents showed that the degree of convective transport in this Darcy-type porous medium varies between the two solutes. These experiments consisted of injecting a mixture of the two (a 30 μl solution of 2% Magnevist and 1% nanoparticles) at the middle of the vitreous of an ex vivo whole bovine eye and subjecting the vitreous to water flow rate of 100 μl/min. The water (0.9% saline solution) was injected at the top of the eye, and was allowed to drain through small slits cut at the bottom of the eyeball. After 50 minutes of pumping, MRI images showed that the water flow carried the Gd-DTPA farther than the nanoparticles, even though the two solutes, being mixed, were subjected to the same convective flow conditions. We find that the convected solute lags the water flow, depending on the solute permeability. The usual convection term needs to be adjusted to allow for the filtration effect on the larger particles in the form (1- σ) u . ∇ c with important implications for the modeling of such systems.
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
Convective instabilities in SN 1987A
Benz, Willy; Thielemann, Friedrich-Karl
1990-01-01
Following Bandiera (1984), it is shown that the relevant criterion to determine the stability of a blast wave, propagating through the layers of a massive star in a supernova explosion, is the Schwarzschild (or Ledoux) criterion rather than the Rayleigh-Taylor criterion. Both criteria coincide only in the incompressible limit. Results of a linear stability analysis are presented for a one-dimensional (spherical) explosion in a realistic model for the progenitor of SN 1987A. When applying the Schwarzschild criterion, unstable regions get extended considerably. Convection is found to develop behind the shock, with a characteristic growth rate corresponding to a time scale much smaller than the shock traversal time. This ensures that efficient mixing will take place. Since the entire ejected mass is found to be convectively unstable, Ni can be transported outward, even into the hydrogen envelope, while hydrogen can be mixed deep into the helium core.
NUMERICALLY DETERMINED TRANSPORT LAWS FOR FINGERING ('THERMOHALINE') CONVECTION IN ASTROPHYSICS
International Nuclear Information System (INIS)
Traxler, A.; Garaud, P.; Stellmach, S.
2011-01-01
We present the first three-dimensional simulations of fingering convection performed at parameter values approaching those relevant for astrophysics. Our simulations reveal the existence of simple asymptotic scaling laws for turbulent heat and compositional transport, which can be straightforwardly extrapolated from our numerically tractable values to the true astrophysical regime. Our investigation also indicates that thermo-compositional 'staircases', a key consequence of fingering convection in the ocean, cannot form spontaneously in the fingering regime in stellar interiors. Our proposed empirically determined transport laws thus provide simple prescriptions for mixing by fingering convection in a variety of astrophysical situations, and should, from here on, be used preferentially over older and less accurate parameterizations. They also establish that fingering convection does not provide sufficient extra-mixing to explain observed chemical abundances in red giant branch stars.
Simulating deep convection with a shallow convection scheme
Directory of Open Access Journals (Sweden)
C. Hohenegger
2011-10-01
Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.
Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.
Convection and stellar oscillations
DEFF Research Database (Denmark)
Aarslev, Magnus Johan
2017-01-01
for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...
Energy Technology Data Exchange (ETDEWEB)
Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)
1995-12-31
Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.
Cheng, W. Y.; Kim, D.; Rowe, A.; Park, S.
2017-12-01
Despite the impact of mesoscale convective organization on the properties of convection (e.g., mixing between updrafts and environment), parameterizing the degree of convective organization has only recently been attempted in cumulus parameterization schemes (e.g., Unified Convection Scheme UNICON). Additionally, challenges remain in determining the degree of convective organization from observations and in comparing directly with the organization metrics in model simulations. This study addresses the need to objectively quantify the degree of mesoscale convective organization using high quality S-PolKa radar data from the DYNAMO field campaign. One of the most noticeable aspects of mesoscale convective organization in radar data is the degree of convective clustering, which can be characterized by the number and size distribution of convective echoes and the distance between them. We propose a method of defining contiguous convective echoes (CCEs) using precipitating convective echoes identified by a rain type classification algorithm. Two classification algorithms, Steiner et al. (1995) and Powell et al. (2016), are tested and evaluated against high-resolution WRF simulations to determine which method better represents the degree of convective clustering. Our results suggest that the CCEs based on Powell et al.'s algorithm better represent the dynamical properties of the convective updrafts and thus provide the basis of a metric for convective organization. Furthermore, through a comparison with the observational data, the WRF simulations driven by the DYNAMO large-scale forcing, similarly applied to UNICON Single Column Model simulations, will allow us to evaluate the ability of both WRF and UNICON to simulate convective clustering. This evaluation is based on the physical processes that are explicitly represented in WRF and UNICON, including the mechanisms leading to convective clustering, and the feedback to the convective properties.
Convective transport in tokamaks
International Nuclear Information System (INIS)
D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.
2005-01-01
Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)
Arnett, W. David
2009-05-01
We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1
Mathematical models of convection
Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V
2012-01-01
Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel
Convective aggregation in realistic convective-scale simulations
Holloway, Christopher E.
2017-01-01
To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...
CDM Convective Forecast Planning guidance
National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...
Convection in Slab and Spheroidal Geometries
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
Presentation on Tropical Mesoscale convective Systems and ...
Indian Academy of Sciences (India)
IAS Admin
Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.
Convective Propagation Characteristics Using a Simple Representation of Convective Organization
Neale, R. B.; Mapes, B. E.
2016-12-01
Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.
Models of surface convection and dust clouds in brown dwarfs
International Nuclear Information System (INIS)
Freytag, B; Allard, F; Ludwig, H-G; Homeier, D; Steffen, M
2008-01-01
The influence of dust grains on the atmospheres of brown dwarfs is visible in observed spectra. To investigate what prevents the dust grains from falling down, or how fresh condensable material is mixed up in the atmosphere to allow new grains to form, we performed 2D radiation-hydrodynamics simulations with CO5BOLD of the upper part of the convection zone and the atmosphere containing the dust cloud layers. We find that unlike in models of Cepheids, the convective overshoot does not play a major role. Instead, the mixing in the dust clouds is controlled by gravity waves.
10,000 - A reason to study granular heat convection
Energy Technology Data Exchange (ETDEWEB)
Einav, I.; Rognon, P.; Gan, Y.; Miller, T.; Griffani, D. [Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia)
2013-06-18
In sheared granular media, particle motion is characterized by vortex-like structures; here this is demonstrated experimentally for disks system undergoing indefinite deformation during simple shear, as often imposed by the rock masses hosting earthquake fault gouges. In traditional fluids it has been known for years that vortices represent a major factor of heat transfer enhancement via convective internal mixing, but in analyses of heat transfer through earthquake faults and base planes of landslides this has been continuously neglected. Can research proceed by neglecting heat convection by internal mixing? Our answer is astonishingly far from being yes.
International Nuclear Information System (INIS)
Leteinturier, D.; Blanc, D.; Menant, B.; Basque, G.
1980-02-01
A presentation is made of theoretical and experimental studies carried out in France on mixed and natural convection in LMFBR wire wrapped bundles. Two codes are described, one for mixed convection THERNAT and the other for natural convection BACCHUS. THe related experimental program FETUNA, with electrically heated bundles in sodium loops, is also presented
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
Concepts of magnetospheric convection
International Nuclear Information System (INIS)
Vasyliunas, V.M.
1975-01-01
Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)
Bidispersive-inclined convection
Mulone, Giuseppe; Straughan, Brian
2016-01-01
A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934
SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY
International Nuclear Information System (INIS)
Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jørgen
2012-01-01
Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.
DEFF Research Database (Denmark)
Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Krenek, Miroslav
2009-01-01
This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection developm......This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection......-scale test room with background mixing ventilation. Thermal manikin with realistic free convection flow was used. The PV supplied air from front/above towards the face. All measurements were performed under isothermal conditions at 20 °C and 26 °C. The air in the test room was mixed with tracer gas, while...
Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics
Sreekanth, T. S.
Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three
Tests of two convection theories for red giant and red supergiant envelopes
Stothers, Richard B.; Chin, Chao-Wen
1995-01-01
Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.
Convection in a colloidal suspension in a closed horizontal cell
International Nuclear Information System (INIS)
Smorodin, B. L.; Cherepanov, I. N.
2015-01-01
The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined
Nield, Donald A
2013-01-01
Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...
Bohan, Richard J.; Vandegrift, Guy
2003-02-01
Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.
Nield, Donald A
1992-01-01
This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches
Stellar convection and dynamo theory
Energy Technology Data Exchange (ETDEWEB)
Jennings, R L
1989-10-01
In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).
The convection patterns in microemulsions
International Nuclear Information System (INIS)
Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.
1991-07-01
The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs
Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics
S, Sreekanth T.
begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of
Vigorous convection as the explanation for Pluto's polygonal terrain.
Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M
2016-06-02
Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.
Convection in the Labrador Sea
National Research Council Canada - National Science Library
Davis, R
1997-01-01
The long-term goal of this grant was to describe the process of deep oceanic convection well enough to provide critical tests of, and guidance to, models used to predict subsurface ocean conditions...
Applied model for the growth of the daytime mixed layer
DEFF Research Database (Denmark)
Batchvarova, E.; Gryning, Sven-Erik
1991-01-01
numerically. When the mixed layer is shallow or the atmosphere nearly neutrally stratified, the growth is controlled mainly by mechanical turbulence. When the layer is deep, its growth is controlled mainly by convective turbulence. The model is applied on a data set of the evolution of the height of the mixed...... layer in the morning hours, when both mechanical and convective turbulence contribute to the growth process. Realistic mixed-layer developments are obtained....
Dunn, James C.; Hardee, Harry C.; Striker, Richard P.
1985-01-01
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.
Convection-enhanced water evaporation
B. M. Weon; J. H. Je; C. Poulard
2011-01-01
Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...
DEFF Research Database (Denmark)
Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund
2013-01-01
models for convection. In a full-scale test room, the heat transfer was investigated during 12 h of discharge by night-time ventilation. A total of 34 experiments have been performed, with different ventilation types (mixing and displacement), air change rates, temperature differences between the inlet...... air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations....... For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement...
Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report
International Nuclear Information System (INIS)
Todreas, N.E.; Cheng, S.K.; Basehore, K.
1984-08-01
This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified
El-Amin, Mohamed; Salama, Amgad; El-Amin, Ammaarah A.; Gorla, Rama Subba Reddy
2013-01-01
In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension
Mantle Convection on Modern Supercomputers
Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.
2015-12-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.
Convection Cells in the Atmospheric Boundary Layer
Fodor, Katherine; Mellado, Juan-Pedro
2017-04-01
layers of the same depth, defined from the surface to the height at which the turbulent kinetic energy (TKE) is zero (in non-penetrative cases) or less than 10% of its maximum value (in penetrative cases). We find that with increasing filter width, the contribution of the filtered flow to the total TKE in the middle of the boundary layer decreases much more rapidly in the penetrative cases than in the non-penetrative cases. In particular, around 20-25% of the TKE at this height comes from small-scale turbulence with a length scale less than or equal to 15% of the boundary layer depth in the CBL, whereas in Rayleigh-Bénard convection, it is just 6-7%. This is consistent with visualisations, which show that entrainment creates additional small-scale mixing within the large-scale circulations in the CBL. Without entrainment, large-scale organisation predominates. Neither spatial nor temporal filtering are as successful at extracting superstructures in the penetrative cases as in the non-penetrative cases. Hence, these techniques depend not on the steadiness of the system, but rather on the presence of entrainment. We therefore intend to try other detection techniques, such as proper orthogonal decomposition, in order to make a rigorous assessment of which is most effective for isolating superstructures in all four cases.
Convective behaviour in severe accidents
International Nuclear Information System (INIS)
Clement, C.F.
1988-01-01
The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs
Topology Optimization for Convection Problems
DEFF Research Database (Denmark)
Alexandersen, Joe
2011-01-01
This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...
Experimental methods in natural convection
International Nuclear Information System (INIS)
Koster, J.N.
1982-11-01
Some common experimental techniques to determine local velocities and to visualize temperature fields in natural convection research are discussed. First the physics and practice of anemometers are discussed with emphasis put on optical anemometers. In the second and third case the physics and practice of the most developed interferometers are discussed; namely differential interferometry for visualization of temperature gradient fields and holographic interferometry for visualization of temperature fields. At the Institut fuer Reaktorbauelemente these three measuring techniques are applied for convection and pipe flow studies. (orig.) [de
Segregation and convection in dendritic alloys
Poirier, D. R.
1990-01-01
Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.
Rozel, A; Golabek, G J; Näf, R; Tackley, P J
2015-06-28
Numerical simulations of mantle convection with a viscoplastic rheology usually display mobile, episodic or stagnant lid regimes. In this study, we report a new convective regime in which a ridge can form without destabilizing the surrounding lithosphere or forming subduction zones. Using simulations in 2-D spherical annulus geometry, we show that a depth-dependent yield stress is sufficient to reach this ridge only regime. This regime occurs when the friction coefficient is close to the critical value between mobile lid and stagnant lid regimes. Maps of convective regime as a function of the parameters friction coefficients and depth dependence of viscosity are provided for both basal heating and mixed heating situations. The ridge only regime appears for both pure basal heating and mixed heating mode. For basal heating, this regime can occur for all vertical viscosity contrasts, while for mixed heating, a highly viscous deep mantle is required.
Boiling Suppression in Convective Flow
International Nuclear Information System (INIS)
Aounallah, Y.
2004-01-01
The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)
Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew
2017-12-01
Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.
Consequences of high effective Prandtl number on solar differential rotation and convective velocity
Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto
2018-04-01
Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.
Variable viscosity effects on mixed convection heat and mass ...
African Journals Online (AJOL)
DR OKE
the effects of viscous dissipation and variable viscosity on the flow of heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the ..... been solved by Gauss-. Seidel iteration method and numerical values are carried out after executing the computer program for it. In order to prove.
Mixed convective heat transfer from a vertical plate embedded
Indian Academy of Sciences (India)
Abstract. The effect of melting and solute dispersion on heat and mass transfer in non-Darcy fluid flow over a vertical surface has been studied numerically in the present article. The flow is assumed to be laminar and steady state. Using similarity transformations, the governing boundary layer equations are transformed into ...
Variable viscosity effects on mixed convection heat and mass ...
African Journals Online (AJOL)
An analysis is carried out to study the viscous dissipation and variable viscosity effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the presence of chemical reaction. The governing boundary layer equations are written into a dimensionless form by similarity ...
Convective mixing by internal waves in the Puerto Rico Trench
van Haren, H.; Gostiaux, L.
2016-01-01
A2.4 km long deep-sea mooringwas deployed for 14 months in the Puerto Rico Trench, the deepestpart of the Atlantic Ocean. Below its top buoyancy package, the mooring line held a 200 m long stringof high-resolution temperature sensors and a current meter. Over the instrumented range between6,004 and
Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star
Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.
2017-08-01
Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we
Convectively Induced Meanflow in a Long Channel.
Grimm, Th.; Maxworthy, T.
1997-11-01
The similarity theory of Phillips (Deep Sea Res. 13, 1966) for the convectively induced motion in the Red Sea, predicts that the outflow buoyancy difference should scale as (B _0L) ^2/3/h :: , where B 0 is the surface buoyancy flux and L and h are the length and height of the channel above the sill crest, respectively. A friction-buoyancy balance leads to a modified expression [(B _0L) ^2/3/h][fracLh]^1/3 :: (2). The results can be applied also to a number of other natural flows including freezing-induced convection in fjords and polar seas. A series of Experiments have been conducted to check the predictions. A channel 300 cm long and 21 cm wide has been constructed. Within it segmented salt-water sources have been placed over a length of 250 cm. Their depth varied from 2 to 12 cm. A sill was placed in the exit region and its height was at least half the total depth of water in the channel. Density data were taken by withdrawing samples while velocity profiles were found by a DPIV technique. The meanflow consists of a two-layer stratification over a large fraction of the length of the channel. Our results suggest that the scaling (2) above is most closely realized with a constant of value 1.1. Analysis of the Red Sea data suggests a constant between 1.1 and 1.4 depending on the data set used. The exit Fr-number is unity. The amount of mixing within the channel is less than that predicted for the 'overmixed' state. Supported by the German Acad. Exchge. Serv. and the NSF Polar Programs.
A transilient matrix for moist convection
Energy Technology Data Exchange (ETDEWEB)
Romps, D.; Kuang, Z.
2011-08-15
A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.
Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores
Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David
2017-10-01
Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.
Land surface sensitivity of mesoscale convective systems
Tournay, Robert C.
the high plains in the east of regions. Examining the covariance of SM and vegetation at CI points revealed that July and August showed expected covariance relationships with concurrently measured convective variables (i.e., high SM/vegetation associated with high CAPE and vice versa for low SM/vegetation) while May and June higher CAPE and CIN over low vegetation anomalies. A climatology of elevated mixed layers in the central GP was conducted, revealing that the greatest number of EMLS occurred in the northern GP. Back trajectories (BT) were conducted from the radiosonde point of detection for 18 and 36 hours, revealing that the BT point mean for days with severe weather were further west and south from the origin point. The SM and vegetation was sampled at the BT point, revealing a negative, significant correlation with EML depth when pooling the northern stations in 18-hr BTs, and a significant, negative correlation with EVI when pooling the southern sites. A modeling case study was conducted in which an idealized SM anomaly was imposed over the EML origin region. Experiments were also conducted to test the sensitivity of ML formation and EML transport using different PBL parameterizations. While the YSU PBL parameterization produced the deeper PBL over anonymously dry soils in the EML origin region, the EML was not transported to the east as it was in those experiments using the MYNN parameterization, impacting the timing and extent of precipitation in the model runs.
Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data
Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.
2018-01-01
Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.
Convective flows of colloidal suspension in an inclined closed cell
Energy Technology Data Exchange (ETDEWEB)
Smorodin, Boris; Ishutov, Sergey [Department of Physics of Phase Transitions, Perm State University, Perm (Russian Federation); Cherepanov, Ivan, E-mail: bsmorodin@yandex.ru [Department of Radio Electronics and Information Security, Perm State University, Perm (Russian Federation)
2016-12-15
The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number). (paper)
Plume structure in high-Rayleigh-number convection
Puthenveettil, Baburaj A.; Arakeri, Jaywant H.
2005-10-01
Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.
Effect of thermal-convection-induced defects on the performance of perovskite solar cells
Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan
2017-07-01
Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.
Convective aggregation in realistic convective-scale simulations
Holloway, Christopher E.
2017-06-01
To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather
Tropical continental downdraft characteristics: mesoscale systems versus unorganized convection
Schiro, Kathleen A.; Neelin, J. David
2018-02-01
Downdrafts and cold pool characteristics for strong mesoscale convective systems (MCSs) and isolated, unorganized deep precipitating convection are analyzed using multi-instrument data from the DOE Atmospheric Radiation Measurement (ARM) GoAmazon2014/5 campaign. Increases in column water vapor (CWV) are observed leading convection, with higher CWV preceding MCSs than for isolated cells. For both MCSs and isolated cells, increases in wind speed, decreases in surface moisture and temperature, and increases in relative humidity occur coincidentally with system passages. Composites of vertical velocity data and radar reflectivity from a radar wind profiler show that the downdrafts associated with the sharpest decreases in surface equivalent potential temperature (θe) have a probability of occurrence that increases with decreasing height below the freezing level. Both MCSs and unorganized convection show similar mean downdraft magnitudes and probabilities with height. Mixing computations suggest that, on average, air originating at heights greater than 3 km must undergo substantial mixing, particularly in the case of isolated cells, to match the observed cold pool θe, implying a low typical origin level. Precipitation conditionally averaged on decreases in surface equivalent potential temperature (Δθe) exhibits a strong relationship because the most negative Δθe values are associated with a high probability of precipitation. The more physically motivated conditional average of Δθe on precipitation shows that decreases in θe level off with increasing precipitation rate, bounded by the maximum difference between surface θe and its minimum in the profile aloft. Robustness of these statistics observed across scales and regions suggests their potential use as model diagnostic tools for the improvement of downdraft parameterizations in climate models.
CRUCIB: an axisymmetric convection code
International Nuclear Information System (INIS)
Bertram, L.A.
1975-03-01
The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)
Directory of Open Access Journals (Sweden)
J. Arteta
2009-09-01
, the differences between the two groups are small indicating that the downward transport from the stratosphere is more related to the turbulent mixing parameterization than to the convection parameterization.
Fluid convection, constraint and causation
Bishop, Robert C.
2012-01-01
Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955
Cryogenic helium gas convection research
International Nuclear Information System (INIS)
Donnelly, R.J.
1994-10-01
This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so
Thermosolutal convection during dendritic solidification
Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.
1989-01-01
This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.
Stökl, A.
2008-11-01
Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical
Directory of Open Access Journals (Sweden)
L. Grignon
2010-06-01
Full Text Available We study the variability of hydrographic preconditioning defined as the heat and salt contents in the Ligurian Sea before convection. The stratification is found to reach a maximum in the intermediate layer in December, whose causes and consequences for the interannual variability of convection are investigated. Further study of the interannual variability and correlation tests between the properties of the deep water formed and the winter surface fluxes support the description of convection as a process that transfers the heat and salt contents from the top and intermediate layers to the deep layer. A proxy for the rate of transfer is given by the final convective mixed layer depth, that is shown to depend equally on the surface fluxes and on the preconditioning. In particular, it is found that deep convection in winter 2004–2005 would have happened even with normal winter conditions, due to low pre-winter stratification.
The convection electric field in auroral substorms
DEFF Research Database (Denmark)
Gjerløv, Jesper Wittendorff; Hoffman, R.A.
2001-01-01
Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...
Thermal turbulent convection: thermal plumes and fluctuations
International Nuclear Information System (INIS)
Gibert, M.
2007-10-01
In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)
Titan Balloon Convection Model, Phase I
National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...
REVERSALS IN THE 6-CELLS CONVECTION DRIVEN
Directory of Open Access Journals (Sweden)
G.M. Vodinchar
2015-12-01
Full Text Available We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y24 , which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation. The velocity of convection and the dipole component of the magnetic field are close to the observed ones.
Deep convective clouds at the tropopause
Directory of Open Access Journals (Sweden)
H. H. Aumann
2011-02-01
Full Text Available Data from the Atmospheric Infrared Sounder (AIRS on the EOS Aqua spacecraft each day show tens of thousands of Cold Clouds (CC in the tropical oceans with 10 μm window channel brightness temperatures colder than 225 K. These clouds represent a mix of cold anvil clouds and Deep Convective Clouds (DCC. This mix can be separated by computing the difference between two channels, a window channel and a channel with strong CO_{2} absorption: for some cold clouds this difference is negative, i.e. the spectra for some cold clouds are inverted. We refer to cold clouds with spectra which are more than 2 K inverted as DCCi2. Associated with DCCi2 is a very high rain rate and a local upward displacement of the tropopause, a cold "bulge", which can be seen directly in the brightness temperatures of AIRS and Advanced Microwave Sounding Unit (AMSU temperature sounding channels in the lower stratosphere. The very high rain rate and the local distortion of the tropopause indicate that DCCi2 objects are associated with severe storms. Significant long-term trends in the statistical properties of DCCi2 could be interesting indicators of climate change. While the analysis of the nature and physical conditions related to DCCi2 requires hyperspectral infrared and microwave data, the identification of DCCi2 requires only one good window channel and one strong CO_{2} sounding channel. This suggests that improved identification of severe storms with future advanced geostationary satellites could be accomplished with the addition of one or two narrow band channels.
International Nuclear Information System (INIS)
Bates, J.M.; Khan, E.U.
1980-10-01
An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program
Scale analysis of convective clouds
Directory of Open Access Journals (Sweden)
Micha Gryschka
2008-12-01
Full Text Available The size distribution of cumulus clouds due to shallow and deep convection is analyzed using satellite pictures, LES model results and data from the German rain radar network. The size distributions found can be described by simple power laws as has also been proposed for other cloud data in the literature. As the observed precipitation at ground stations is finally determined by cloud numbers in an area and individual sizes and rain rates of single clouds, the cloud size distributions might be used for developing empirical precipitation forecasts or for validating results from cloud resolving models being introduced to routine weather forecasts.
Characterizing Convection in Stellar Atmospheres
International Nuclear Information System (INIS)
Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank
2011-01-01
We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.
Problems in Microgravity Fluid Mechanics: G-Jitter Convection
Homsy, G. M.
2005-01-01
This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.
Snow precipitation on Mars driven by cloud-induced night-time convection
Spiga, Aymeric; Hinson, David P.; Madeleine, Jean-Baptiste; Navarro, Thomas; Millour, Ehouarn; Forget, François; Montmessin, Franck
2017-09-01
Although it contains less water vapour than Earth's atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms--or ice microbursts--can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars' water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Benard convection in gaps and cavities
International Nuclear Information System (INIS)
Mueller, U.
1981-04-01
The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de
Impact of Aerosols on Convective Clouds and Precipitation
Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen
2012-01-01
Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics
Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient
El-Amin, Mohamed; Sun, Shuyu; Kanayama, Hiroshi
2010-01-01
In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.
Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient
El-Amin, Mohamed
2010-12-01
In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.
Southern Ocean Convection and tropical telleconnections
Marinov, I.; Cabre, A.; Gnanadesikan, A.
2014-12-01
We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the
Topology Optimisation for Coupled Convection Problems
DEFF Research Database (Denmark)
Alexandersen, Joe
This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...
Convective penetration in a young sun
Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group
2018-01-01
To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.
Numerical simulations of convectively excited gravity waves
International Nuclear Information System (INIS)
Glatzmaier, G.A.
1983-01-01
Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region
Magnetic Fields in the Solar Convection Zone
Directory of Open Access Journals (Sweden)
Fan Yuhong
2004-07-01
Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.
The Mechanism of First Raindrops Formation in Deep Convective Clouds
Energy Technology Data Exchange (ETDEWEB)
Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail
2013-08-22
The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.
Actively convected liquid metal divertor
International Nuclear Information System (INIS)
Shimada, Michiya; Hirooka, Yoshi
2014-01-01
The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem. (letter)
Martian Mixed Layer during Pathfinder Mission
Martinez, G. M.; Valero, F.; Vazquez, L.
2008-09-01
In situ measurements of the Martian Planetary Boundary Layer (MPBL) encompass only the sur- face layer. Therefore, in order to fully address the MPBL, it becomes necessary to simulate somehow the behaviour of the martian mixed layer. The small-scale processes that happen in the MPBL cause GCM's ([1], [2]) to describe only partially the turbulent statistics, height, convective scales, etc, of the surface layer and the mixed layer. For this reason, 2D and 3D martian mesoscale models ([4], [5]), and large eddy simulations ([4], [6], [7], [8]) have been designed in the last years. Although they are expected to simulate more accurately the MPBL, they take an extremely expensive compu- tational time. Alternatively, we have derived the main turbu- lent characteristics of the martian mixed layer by using surface layer and mixed layer similarity ([9], [10]). From in situ temperature and wind speed measurements, together with quality-tested simu- lated ground temperature [11], we have character- ized the martian mixed layer during the convective hours of Pathfinder mission Sol 25. Mean mixed layer turbulent statistics like tem- perature variance , horizontal wind speed variance , vertical wind speed variance , viscous dissipation rate , and turbu- lent kinetic energy have been calculated, as well as the mixed layer height zi, and the convective scales of wind w? and temperature θ?. Our values, obtained with negligible time cost, match quite well with some previously obtained results via LES's ([4] and [8]). A comparisson between the above obtained mar- tian values and the typical Earth values are shown in Table 1. Convective velocity scale w doubles its counterpart terrestrial typical value, as it does the mean wind speed variances and . On the other hand, the temperature scale θ? and the mean temperature variance are virtually around one order higher on Mars. The limitations of these results concern the va- lidity of the convective mixed layer similarity. This theory
International Nuclear Information System (INIS)
Grossman, Y.
1997-10-01
In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed
International Nuclear Information System (INIS)
Sackmann, I.
1980-01-01
It was found that even for stars evolved away from the red giant branch, a new mixing of nucleo-synthesis products from the hydrogen-burning shells into surface layers was possible, from the penetration of the contaminated intershell region with the H- and He-ionization convection zones. This is due to the helium shell flash driving an immense expansion of an inner carbon pocket, namely, by a factor of 12,000 in radius, a drop in density of about 10 12 , and a cooling of inner pockets normally near 10 8 K to 23,000 K. The surface would be enriched in carbon ( 12 C), helium ( 4 He), and s-process elements, but not significantly in nitrogen ( 14 N), oxygen ( 16 O), or the isotope 13 C. This new type of mixing might provide the missing clue for FG Sagittae. Such a mixing had been suggested by the observations of FG Sagittae, but had been unexplainable by theory up to now
A thermodynamically general theory for convective vortices
Renno, Nilton O.
2008-08-01
Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.
Boundary Layer Control of Rotating Convection Systems
King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.
2008-12-01
Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.
Drop Size Distribution - Based Separation of Stratiform and Convective Rain
Thurai, Merhala; Gatlin, Patrick; Williams, Christopher
2014-01-01
For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective
Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM)
Energy Technology Data Exchange (ETDEWEB)
Zhao, C.Y., E-mail: c.y.zhao@warwick.ac.u [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Dai, L.N.; Tang, G.H.; Qu, Z.G.; Li, Z.Y. [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2010-10-15
A thermal lattice BGK model with doubled populations is proposed to simulate the two-dimensional natural convection flow in porous media (porous metals). The accuracy of this method is validated by the benchmark solutions. The detailed flow and heat transfer at the pore level are revealed. The effects of pore density (cell size) and porosity on the natural convection are examined. Also the effect of porous media configuration (shape) on natural convection is investigated. The results showed that the overall heat transfer will be enhanced by lowering the porosity and cell size. The square porous medium can have a higher heat transfer performance than spheres due to the strong flow mixing and more surface area.
Bursting and large-scale intermittency in turbulent convection with differential rotation
International Nuclear Information System (INIS)
Garcia, O.E.; Bian, N.H.
2003-01-01
The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation level, akin to Lotka-Volterra oscillations. The basic reason for such behavior is the unidirectional and conservative transfer of kinetic energy from the fluctuating motions to the mean component of the flows, and its dissipation at large scales. Results from numerical simulations further demonstrate the intimate relation between these low-frequency modulations and the large-scale intermittency of convective turbulence, as manifested by exponential tails in single-point probability distribution functions. Moreover, the spatio-temporal evolution of convective structures illustrates the mechanism triggering avalanche events in the transport process. The latter involves the overlap of delocalized mixing regions when the barrier to transport, produced by the mean component of the flow, transiently disappears
Measuring Convective Mass Fluxes Over Tropical Oceans
Raymond, David
2017-04-01
Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and
Convective cells and transport in toroidal plasmas
International Nuclear Information System (INIS)
Hassam, A.B.; Kulsrud, R.M.
1978-12-01
The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells
Severin, Tatiana; Kessouri, Faycal; Rembauville, Mathieu; Sánchez-Pérez, Elvia Denisse; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Ghiglione, Jean-François; D'Ortenzio, Fabrizio; Taillandier, Vincent; Mayot, Nicolas; Durrieu De Madron, Xavier; Ulses, Caroline; Estournel, Claude; Conan, Pascal
2017-06-01
This study was a part of the DeWEX project (Deep Water formation Experiment), designed to better understand the impact of dense water formation on the marine biogeochemical cycles. Here, nutrient and phytoplankton vertical and horizontal distributions were investigated during a deep open-ocean convection event and during the following spring bloom in the Northwestern Mediterranean Sea (NWM). In February 2013, the deep convection event established a surface nutrient gradient from the center of the deep convection patch to the surrounding mixed and stratified areas. In the center of the convection area, a slight but significant difference of nitrate, phosphate and silicate concentrations was observed possibly due to the different volume of deep waters included in the mixing or to the sediment resuspension occurring where the mixing reached the bottom. One of this process, or a combination of both, enriched the water column in silicate and phosphate, and altered significantly the stoichiometry in the center of the deep convection area. This alteration favored the local development of microphytoplankton in spring, while nanophytoplankton dominated neighboring locations where the convection reached the deep layer but not the bottom. This study shows that the convection process influences both winter nutrients distribution and spring phytoplankton distribution and community structure. Modifications of the convection's spatial scale and intensity (i.e., convective mixing depth) are likely to have strong consequences on phytoplankton community structure and distribution in the NWM, and thus on the marine food web.Plain Language SummaryThe deep open-ocean convection in the Northwestern Mediterranean Sea is an important process for the formation and the circulation of the deep waters of the entire Mediterranean Sea, but also for the local spring phytoplankton bloom. In this study, we showed that variations of the convective mixing depth induced different supply in nitrate
Convection in complex shaped vessel; Convection dans des enceintes de forme complexe
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-07-01
The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)
Modelling and interpreting the isotopic composition of water vapour in convective updrafts
Directory of Open Access Journals (Sweden)
M. Bolot
2013-08-01
Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.
Modelling and interpreting the isotopic composition of water vapour in convective updrafts
Bolot, M.; Legras, B.; Moyer, E. J.
2013-08-01
The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.
Modelling and intepreting the isotopic composition of water vapour in convective updrafts
Bolot, M.; Legras, B.; Moyer, E. J.
2012-08-01
The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.
Steady, three-dimensional, internally heated convection
International Nuclear Information System (INIS)
Schubert, G.; Glatzmaier, G.A.; Travis, B.
1993-01-01
Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection
Convective Radio Occultations Final Campaign Summary
Energy Technology Data Exchange (ETDEWEB)
Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)
2016-03-01
Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.
Ignition in Convective-Diffusive Systems
National Research Council Canada - National Science Library
Law, Chung
1999-01-01
... efficiency as well as the knock and emission characteristics. The ignition event is clearly controlled by the chemical reactions of fuel oxidation and the fluid mechanics of convective and diffusive transport...
Understanding and controlling plasmon-induced convection
Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.
2014-01-01
The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.
What favors convective aggregation and why?
Muller, Caroline; Bony, Sandrine
2015-07-01
The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.
Free Convection Personalized Ventilation (FCPV)
DEFF Research Database (Denmark)
Nielsen, Peter V.
Normally we supply fresh air to a room with a diffuser, and this air is distributed in the room according to different principles as: mixing ventilation, displacement ventilation etc. That means we have to supply a very large amount of air to the whole room, although a person in the room totally ...
Energy Technology Data Exchange (ETDEWEB)
Gibert, M
2007-10-15
In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)
Antartic observations of plasma convection
International Nuclear Information System (INIS)
Hansen, H.J.
1983-01-01
This thesis is concerned with the use of whistler duct tracking as a diagnostic for the behaviour of plasma in the plasmasphere. As a setting for the results given in the thesis, a broad review is presented which embraces pertinent aspects of previous experimental and theoretical studies of the plasmasphere. From a study of 24 hours of continuous whistler data recorded at Sanae, (L = 3,98), it is shown that associated with quiet magnetic conditions (Av Ksub(p)=1), there exists two plasmasphere bulges centred on about 1700 and 0100 UT. There is evidence that these plasmasphere bulge structures are part of a ground-state or reference base drift pattern. Electric field measurements provide some evidence that quiet time plasmasphere drift behaviour is controlled by the internal ionospheric current systems of dynamo origin, rather than being controlled by magnetospheric convection. Finally, this thesis describes an application of the whistler duct tracking technique to whistler data recorded simultaneously at two ground-based stations (Sanae (L = 3,98) and Halley (L = 4,23)). The identification of common whistler components on each station's data set provides a means of estimating the lifetimes of the associated whistler ducts. Duct lifetimes of as little as 30 minutes are found. Such short lived ducts have important implications for current theories of duct formation
Dynamics of acoustic-convective drying of sunflower cake
Zhilin, A. A.
2017-10-01
The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.
CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES
Energy Technology Data Exchange (ETDEWEB)
Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)
2016-05-01
Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.
MAGNETO-CONVECTION AND LITHIUM AGE ESTIMATES OF THE β PICTORIS MOVING GROUP
International Nuclear Information System (INIS)
Macdonald, J.; Mullan, D. J.
2010-01-01
Although the means of the ages of stars in young groups determined from Li depletion often agree with mean ages determined from Hertzsprung-Russell (H-R) diagram isochrones, there are often statistically significant differences in the ages of individual stars determined by the two methods. We find that inclusion of the effects of inhibition of convection due to the presence of magnetic fields leads to consistent ages for the individual stars. We illustrate how age consistency arises by applying our results to the β Pictoris moving group (BPMG). We find that, although magnetic inhibition of convection leads to increased ages from the H-R diagram isochrones for all stars, Li ages are decreased for fully convective M stars and increased for stars with radiative cores. Our consistent age determination for BPMG of 40 Myr is larger than previous determinations by a factor of about two. We have also considered models in which the mixing length ratio is adjusted to give consistent ages. We find that our magneto-convection models, which give quantitative estimates of magnetic field strength, provide a viable alternative to models in which the effects of magnetic fields (and other processes) are accounted for by reducing the mixing length ratio.
Temperature Inversions and Nighttime Convection in the Martian Tropics
Hinson, D. P.; Spiga, A.; Lewis, S.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Häusler, B.
2013-12-01
We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The sharp temperature minimum at the base of the midlevel inversion suggests the presence of a thin water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected
Energy Technology Data Exchange (ETDEWEB)
Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward; Thorsen, Tyler J.; Fu, Qiang
2017-07-28
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.
FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES
International Nuclear Information System (INIS)
Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B.; Homeier, D.; Venot, O.
2015-01-01
This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H 2 -H 2 , H 2 -He, H 2 O, CO, CO 2 , CH 4 , NH 3 , K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH 3 quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust
FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES
Energy Technology Data Exchange (ETDEWEB)
Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Homeier, D. [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Venot, O., E-mail: tremblin@astro.ex.ac.uk, E-mail: pascal.tremblin@cea.fr [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2015-05-01
This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H{sub 2}-H{sub 2}, H{sub 2}-He, H{sub 2}O, CO, CO{sub 2}, CH{sub 4}, NH{sub 3}, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH{sub 3} quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.
Hydrodynamical wind in magnetized accretion flows with convection
International Nuclear Information System (INIS)
Abbassi, Shahram; Mosallanezhad, Amin
2012-01-01
The existence of outflow and magnetic fields in the inner region of hot accretion flows has been confirmed by observations and numerical magnetohydrodynamic (MHD) simulations. We present self-similar solutions for radiatively inefficient accretion flows (RIAFs) around black holes in the presence of outflow and a global magnetic field. The influence of outflow is taken into account by adopting a radius that depends on mass accretion rate M-dot = M-dot 0 (r/r 0 ) s with s > 0. We also consider convection through a mixing length formula to calculate convection parameter α con . Moreover we consider the additional magnetic field parameters β r,φ,z [ = c 2 r,φ,z /(2c 2 s )], where c 2 r,φ,z are the Alfvén sound speeds in three directions of cylindrical coordinates. Our numerical results show that by increasing all components of the magnetic field, the surface density and rotational velocity increase, but the sound speed and radial infall velocity of the disk decrease. We have also found that the existence of wind will lead to reduction of surface density as well as rotational velocity. Moreover, the radial velocity, sound speed, advection parameter and the vertical thickness of the disk will increase when outflow becomes important in the RIAF. (research papers)
Numerical simulation of turbulent convective flow over wavy terrain
Dörnbrack, A.; Schumann, U.
1993-09-01
By means of a large-eddy simulation, the convective boundary layer is investigated for flows over wavy terrain. The lower surface varies sinusoidally in the downstream direction while remaining constant in the other. Several cases are considered with amplitude δ up to 0.15 H and wavelength λ of H to 8 H, where H is the mean fluid-layer height. At the lower surface, the vertical heat flux is prescribed to be constant and the momentum flux is determined locally from the Monin-Obukhov relationship with a roughness length z o=10-4 H. The mean wind is varied between zero and 5 w *, where w * is the convective velocity scale. After rather long times, the flow structure shows horizontal scales up to 4 H, with a pattern similar to that over flat surfaces at corresponding shear friction. Weak mean wind destroys regular spatial structures induced by the surface undulation at zero mean wind. The surface heating suppresses mean-flow recirculation-regions even for steep surface waves. Short surface waves cause strong drag due to hydrostatic and dynamic pressure forces in addition to frictional drag. The pressure drag increases slowly with the mean velocity, and strongly with δ/ H. The turbulence variances increase mainly in the lower half of the mixed layer for U/w *>2.
The impact of free convection on late morning ozone decreases on an Alpine foreland mountain summit
Directory of Open Access Journals (Sweden)
J.-C. Mayer
2008-10-01
Full Text Available Exceptional patterns in the diurnal course of ozone mixing ratio at a mountain top site (998 m a.s.l. were observed during a field experiment (September 2005. They manifested themselves as strong and sudden decreases of ozone mixing ratio with a subsequent return to previous levels. The evaluation of corresponding long-term time series (2000–2005 revealed that such events occur mainly during summer, and affect the mountain top site on about 18% of the summer days. Combining (a surface layer measurements at mountain summit and at the foot of the mountain, (b in-situ (tethered balloon and remote sensing (SODAR-RASS measurements within the atmospheric boundary layer, the origin of these events of sudden ozone decrease could be attributed to free convection. The free convection was triggered by a rather frequently occurring wind speed minimum around the location of the mountain.
Vertical natural convection: application of the unifying theory of thermal convection
Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.
2015-01-01
Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In
DEFF Research Database (Denmark)
Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...
Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.
2012-01-01
Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and
DEFF Research Database (Denmark)
Grosse, Fabian; Lindemann, Christian; Pätch, Johannes
2014-01-01
organic carbon. The carbon export during late winter/early spring significantly exceeded the export of the reference run. Furthermore, a non-hydrostatic convection model was used to evaluate the major assumption of the presented parameterisation which implies the matching of the mixed layer depth...
An iterative algorithm for the finite element approximation to convection-diffusion problems
International Nuclear Information System (INIS)
Buscaglia, Gustavo; Basombrio, Fernando
1988-01-01
An iterative algorithm for steady convection-diffusion is presented, which avoids unsymmetric matrices by means of an equivalent mixed formulation. Upwind is introduced by adding a balancing dissipation in the flow direction, but there is no dependence of the global matrix on the velocity field. Convergence is shown in habitual test cases. Advantages of its use in coupled calculation of more complex problems are discussed. (Author)
Localized traveling pulses in natural doubly diffusive convection
Lo Jacono, D.; Bergeon, A.; Knobloch, E.
2017-09-01
Two-dimensional natural doubly diffusive convection in a vertical slot driven by an imposed temperature difference in the horizontal is studied using numerical continuation and direct numerical simulation. Two cases are considered and compared. In the first a concentration difference that balances thermal buoyancy is imposed in the horizontal and stationary localized structures are found to be organized in a standard snakes-and-ladders bifurcation diagram. Disconnected branches of traveling pulses TPn consisting of n ,n =1 ,2 ,⋯ , corotating cells are identified and shown to accumulate on a tertiary branch of traveling waves. With Robin or mixed concentration boundary conditions on one wall all localized states travel and the hitherto stationary localized states may connect up with the traveling pulses. The stability of the TPn states is determined and unstable TPn shown to evolve into spatio-temporal chaos. The calculations are done with no-slip boundary conditions in the horizontal and periodic boundary conditions in the vertical.
Convective instabilities in liquid centrifugation for nuclear wastes separation
Energy Technology Data Exchange (ETDEWEB)
Camassa, R. [Los Alamos National Laboratory, NM (United States)
1995-10-01
The separation of fission products from liquid solutions using centrifugal forces may prove an effective alternative to chemical processing in cases where radioactive materials necessitate minimal mixed-waste products or when allowing access to sophisticated chemical processing is undesirable. This investigation is a part of the effort to establish the feasibility of using liquid centrifugation for nuclear waste separation in the Accelerator Driven Energy Production (ADEP) program. A number of fundatmental issues in liquid centrifugation with radioactive elements need to be addressed in order to validate the approach and provide design criteria for experimental liquid salt (LiF and BeF{sub 2}) centrifuge. The author concentrates on one such issue, the possible onset of convective instabilities which could inhibit separation.
Assumed Probability Density Functions for Shallow and Deep Convection
Directory of Open Access Journals (Sweden)
Steven K Krueger
2010-10-01
Full Text Available The assumed joint probability density function (PDF between vertical velocity and conserved temperature and total water scalars has been suggested to be a relatively computationally inexpensive and unified subgrid-scale (SGS parameterization for boundary layer clouds and turbulent moments. This paper analyzes the performance of five families of PDFs using large-eddy simulations of deep convection, shallow convection, and a transition from stratocumulus to trade wind cumulus. Three of the PDF families are based on the double Gaussian form and the remaining two are the single Gaussian and a Double Delta Function (analogous to a mass flux model. The assumed PDF method is tested for grid sizes as small as 0.4 km to as large as 204.8 km. In addition, studies are performed for PDF sensitivity to errors in the input moments and for how well the PDFs diagnose some higher-order moments. In general, the double Gaussian PDFs more accurately represent SGS cloud structure and turbulence moments in the boundary layer compared to the single Gaussian and Double Delta Function PDFs for the range of grid sizes tested. This is especially true for small SGS cloud fractions. While the most complex PDF, Lewellen-Yoh, better represents shallow convective cloud properties (cloud fraction and liquid water mixing ratio compared to the less complex Analytic Double Gaussian 1 PDF, there appears to be no advantage in implementing Lewellen-Yoh for deep convection. However, the Analytic Double Gaussian 1 PDF better represents the liquid water flux, is less sensitive to errors in the input moments, and diagnoses higher order moments more accurately. Between the Lewellen-Yoh and Analytic Double Gaussian 1 PDFs, it appears that neither family is distinctly better at representing cloudy layers. However, due to the reduced computational cost and fairly robust results, it appears that the Analytic Double Gaussian 1 PDF could be an ideal family for SGS cloud and turbulence
Vertical mixing by Langmuir circulations
International Nuclear Information System (INIS)
McWilliams, James C.; Sullivan, Peter P.
2001-01-01
Wind and surface wave frequently induce Langmuir circulations (LC) in the upper ocean, and the LC contribute to mixing materials down from the surface. In this paper we analyze large-eddy simulation (LES) cases based on surface-wave-averaged, dynamical equations and show that the effect of the LC is a great increase in the vertical mixing efficiency for both material properties and momentum. We provide new confirmation that the previously proposed K-profile parameterization (KPP) model accurately characterizes the turbulent transport in a weakly convective, wind-driven boundary layer with stable interior stratification. We also propose a modest generalization of KPP for the regime of weakly convective Langmuir turbulence. This makes the KPP turbulent flux profiles match those in the LES case with LC present fairly well, especially so for material properties being transported downwards from the ocean surface. However, some open issues remain about how well the present LES and KPP formulations represent Langmuir turbulence, in part because wave-breaking effects are not yet included. (Author)
Assimilation of ZDR Columns for Improving the Spin-Up and Forecasts of Convective Storms
Carlin, J.; Gao, J.; Snyder, J.; Ryzhkov, A.
2017-12-01
A primary motivation for assimilating radar reflectivity data is the reduction of spin-up time for modeled convection. To accomplish this, cloud analysis techniques seek to induce and sustain convective updrafts in storm-scale models by inserting temperature and moisture increments and hydrometeor mixing ratios into the model analysis from simple relations with reflectivity. Polarimetric radar data provide additional insight into the microphysical and dynamic structure of convection. In particular, the radar meteorology community has known for decades that convective updrafts cause, and are typically co-located with, differential reflectivity (ZDR) columns - vertical protrusions of enhanced ZDR above the environmental 0˚C level. Despite these benefits, limited work has been done thus far to assimilate dual-polarization radar data into numerical weather prediction models. In this study, we explore the utility of assimilating ZDR columns to improve storm-scale model analyses and forecasts of convection. We modify the existing Advanced Regional Prediction System's (ARPS) cloud analysis routine to adjust model temperature and moisture state variables using detected ZDR columns as proxies for convective updrafts, and compare the resultant cycled analyses and forecasts with those from the original reflectivity-based cloud analysis formulation. Results indicate qualitative and quantitative improvements from assimilating ZDR columns, including more coherent analyzed updrafts, forecast updraft helicity swaths that better match radar-derived rotation tracks, more realistic forecast reflectivity fields, and larger equitable threat scores. These findings support the use of dual-polarization radar signatures to improve storm-scale model analyses and forecasts.
International Nuclear Information System (INIS)
Zhang, Xuan; Zikanov, Oleg
2017-01-01
Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • Poloidal magnetic field suppresses turbulence at high Hartmann number. • Flow structure is dominated by large-scale counter-rotation vortices. • Effective heat transfer is maintained by surviving convection structures. - Abstract: We explore the effect of poloidal magnetic field on the thermal convection flow in a toroidal duct of a generic liquid metal blanket. Non-uniform strong heating (the Grashof number up to 10 11 ) arising from the interaction of high-speed neutrons with the liquid breeder, and strong magnetic field (the Hartmann number up to 10 4 ) corresponding to the realistic reactor conditions are considered. The study continues our earlier work , where the problem was solved for a purely toroidal magnetic field and the convection was found to result in two-dimensional turbulence and strong mixing within the duct. Here, we find that the poloidal component of the magnetic field suppresses turbulence, reduces the flow's kinetic energy and high-amplitude temperature fluctuations, and, at high values of Hartmann number, leads to a steady-state flow. At the same time, the intense mixing by the surviving convection structures remains able to maintain effective heat transfer between the liquid metal and the walls.
3rd International Conference on Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.
2013-07-01
non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples to list. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or acceleration. Their scaling, spectral and invariant properties differ substantially from those of classical Kolmogorov turbulence. At atomistic and meso-scales, the non-equilibrium dynamics depart dramatically from a standard scenario given by Gibbs statistic ensemble average and quasi-static Boltzmann equation. The singular aspect and the similarity of the non-equilibrium dynamics at macroscopic scales are interplayed with the fundamental properties of the Euler and compressible Navier-Stokes equations and with the problem sensitivity to the boundary conditions at discontinuities. The state-of-the-art numerical simulations of multi-phase flows suggest new methods for predictive modelling of the multi-scale non-equilibrium dynamics in fluids and plasmas, for error estimates and uncertainty quantifications, as well as for novel data assimilation techniques. 3. International Conference 'Turbulent Mixing and Beyond' The First and Second International Conferences on Turbulent Mixing and Beyond found that: (i) TMB-related problems have in common a set of outstanding research issues; (ii) their solution has a potential to significantly advance a variety of disciplines in science
Margirier, Félix; Bosse, Anthony; Testor, Pierre; L'Hévéder, Blandine; Mortier, Laurent; Smeed, David
2017-12-01
Numerous gliders have been deployed in the Gulf of Lions (northwestern Mediterranean Sea) and in particular during episodes of open-ocean deep convection in the winter 2012-2013. The data collected represents an unprecedented density of in situ observations providing a first in situ statistical and 3-D characterization of the important mixing agents of the deep convection phenomenon, the so-called plumes. A methodology based on a glider-static flight model was applied to infer the oceanic vertical velocity signal from the glider navigation data. We demonstrate that during the active phase of mixing, the gliders underwent significant oceanic vertical velocities up to 18 cm s-1. Focusing on the data collected by two gliders during the 2012-2013 winter, 120 small-scale convective downward plumes were detected with a mean radius of 350 m and separated by about 2 km. We estimate that the plumes cover 27% of the convection area. Gliders detected downward velocities with a magnitude larger than that of the upward ones (-6 versus +2 cm s-1 on average). Along-track recordings of temperature and salinity as well as biogeochemical properties (dissolved oxygen, fluorescence, and turbidity) allow a statistical characterization of the water masses' properties in the plumes' core with respect to the "background": the average downward signal is of colder (-1.8 × 10-3 °C), slightly saltier (+4.9 × 10-4 psu) and thus denser waters (+7.5 × 10-4 kg m-3). The plunging waters are also on average more fluorescent (+2.3 × 10-2 μg L-1). The plumes are associated with a vertical diffusion coefficient of 7.0 m2 s-1 and their vertical velocity variance scales with the ratio of the buoyancy loss over the Coriolis parameter to the power 0.86.
Natural Convective Heat Transfer from Narrow Plates
Oosthuizen, Patrick H
2013-01-01
Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.
Introductory analysis of Benard-Marangoni convection
International Nuclear Information System (INIS)
Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S
2007-01-01
We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics
Might electrical earthing affect convection of light
International Nuclear Information System (INIS)
Budrikis, Z.L.
1982-01-01
Partial convection of light by moving media was predicted by Fresnel and verified by Fizeau, Zeeman and others. It is accepted as an important argument in favour of the Special Theory of Relativity. The suggestion is made here that the convection is partial only when the propagating medium is moved with respect to its electrically earthed surroundings and that it would be total if an earthed shield was co-moving with the medium. This is based on a reinterpretation of Maxwell's equations wherein they are seen as macroscopic relationships that are in each case valid only in respect of a particular inertial frame of reference, the local electrical earth frame. (Auth.)
Introductory analysis of Benard-Marangoni convection
Energy Technology Data Exchange (ETDEWEB)
Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)
2007-03-15
We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.
Topology Optimisation for Coupled Convection Problems
DEFF Research Database (Denmark)
Alexandersen, Joe; Andreasen, Casper Schousboe; Aage, Niels
stabilised finite elements implemented in a parallel multiphysics analysis and optimisation framework DFEM [1], developed and maintained in house. Focus is put on control of the temperature field within the solid structure and the problems can therefore be seen as conjugate heat transfer problems, where heat...... conduction governs in the solid parts of the design domain and couples to convection-dominated heat transfer to a surrounding fluid. Both loosely coupled and tightly coupled problems are considered. The loosely coupled problems are convection-diffusion problems, based on an advective velocity field from...
Lattice BGK simulation of natural convection
International Nuclear Information System (INIS)
Chen, Yu; Ohashi, Hirotada; Akiyama, Mamoru
1995-01-01
Recently a new thermal lattice Bhatnagar-Gross-Krook fluid model was suggested by the authors. In this study, this new model was applied into the numerical simulation of natural convection, namely the Rayleigh Benard flow. The critical number for the onset of convective phenomenon was numerically measured and compared with that of theoretical prediction. A gravity dependent deviation was found in the numerical simulation, which is explained as an unavoidable consequence of the incorporation of gravity force in the lattice BGK system. (author)
Dhara, Chirag; Renner, Maik; Kleidon, Axel
2015-04-01
The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.
Wulfmeyer, V.; Branch, O.; Adebabseh, A.; Temimi, M.
2017-12-01
Irrigated plantations and modified terrain can provide a sustainable means of enhancing convective rainfall in arid regions like the United Arab Emirates, or UAE, and can be used to aid ongoing cloud seeding operations through the geographic-localization of seedable cloud formation. The first method, the planting of vast irrigated plantations of hardy desert shrubs, can lead to wind convergence and vertical mixing through increased roughness and modified radiative balances. When upper-air atmospheric instability is present, these phenomena can initiate convection. The second method, increasing the elevation of moderate-sized mountains, is based on the correlation between elevation and the number of summertime convection initiation events observed in the mountains of the UAE and Oman. This augmentation of existing orographic features should therefore increase the likelihood and geographic range of convection initiation events. High-resolution simulations provide a powerful means of assessing the likely impacts of land surface modifications. Previous convection-permitting simulations have yielded some evidential support for these hypotheses, but higher resolutions down to 1 km provide more detail regarding convective processes and land surface representation. Using seasonal simulations with the WRF-NOAHMP land-atmosphere model at a 2.5 km resolution, we identify frequent zones of convergence and atmospheric instability in the UAE and select interesting cases. Using these results, as well as an agricultural feasibility study, we identify optimal plantation positions within the UAE. We then run realistic plantation scenarios for single case studies at 1 km resolution. Using the same cases, we simulate the impact of augmenting mountain elevations on convective processes, with the augmentation being achieved through GIS-based modification of the terrain data. For both methods, we assess the impacts quantitatively and qualitatively, and assess key processes and
Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta
2015-04-01
NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of
High Ra, high Pr convection with viscosity gradients
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.
Stretched flow of Carreau nanofluid with convective boundary ...
Indian Academy of Sciences (India)
journal of. January 2016 physics pp. 3–17. Stretched flow of Carreau nanofluid with ... fluid over a flat plate subjected to convective surface condition. ... the steady laminar boundary layer flow over a permeable plate with a convective boundary.
Energy Technology Data Exchange (ETDEWEB)
Costa, V.A.F. [Departamento de Engenharia Mecanica, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)
2006-07-15
Care needs to be taken when considering the viscous dissipation in the energy conservation formulation of the natural convection problem in fluid-saturated porous media. The unique energy formulation compatible with the First Law of Thermodynamics informs us that if the viscous dissipation term is taken into account, also the work of pressure forces term needs to be taken into account. In integral terms, the work of pressure forces must equal the energy dissipated by viscous effects, and the net energy generation in the overall domain must be zero. If only the (positive) viscous dissipation term is considered in the energy conservation equation, the domain behaves as a heat multiplier, with an heat output greater than the heat input. Only the energy formulation consistent with the First Law of Thermodynamics leads to the correct flow and temperature fields, as well as of the heat transfer parameters characterizing the involved porous device. Attention is given to the natural convection problem in a square enclosure filled with a fluid-saturated porous medium, using the Darcy Law to describe the fluid flow, but the main ideas and conclusions apply equally for any general natural or mixed convection heat transfer problem. It is also analyzed the validity of the Oberbeck-Boussinesq approximation when applied to natural convection problems in fluid-saturated porous media. (author)
Analysis of a convection loop for GFR post-LOCA decay heat removal
International Nuclear Information System (INIS)
Williams, W.C.; Hejzlar, P.; Saha, P.
2004-01-01
A computer code (LOCA-COLA) has been developed at MIT for steady state analysis of convective heat transfer loops. In this work, it is used to investigate an external convection loop for decay heat removal of a post-LOCA gas-cooled fast reactor (GFR). The major finding is that natural circulation cooling of the GFR is feasible under certain circumstances. Both helium and CO 2 cooled system components are found to operate in the mixed convection regime, the effects of which are noticeable as heat transfer enhancement or degradation. It is found that CO 2 outdoes helium under identical natural circulation conditions. Decay heat removal is found to have a quadratic dependence on pressure in the laminar flow regime and linear dependence in the turbulent flow regime. Other parametric studies have been performed as well. In conclusion, convection cooling loops are a credible means for GFR decay heat removal and LOCA-COLA is an effective tool for steady state analysis of cooling loops. (authors)
An infinite-dimensional model of free convection
Energy Technology Data Exchange (ETDEWEB)
Iudovich, V.I. (Rostovskii Gosudarstvennyi Universitet, Rostov-on-Don (USSR))
1990-12-01
An infinite-dimensional model is derived from the equations of free convection in the Boussinesq-Oberbeck approximation. The velocity field is approximated by a single mode, while the heat-conduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers. 10 refs.
Electrical Resistivity Imaging and Hydrodynamic Modeling of Convective Fingering in a Sabkha Aquifer
Van Dam, Remke; Eustice, Brian; Hyndman, David; Wood, Warren; Simmons, Craig
2014-05-01
Free convection, or fluid motion driven by density differences, is an important groundwater flow mechanism that can enhance transport and mixing of heat and solutes in the subsurface. Various issues of environmental and societal relevance are exacerbated convective mixing; it has been studied in the context of dense contaminant plumes, nuclear waste disposal, greenhouse gas sequestration, the impacts of sea level rise and saline intrusion on drinking water resources. The basic theory behind convective flow in porous media is well understood, but important questions regarding this process in natural systems remain unanswered. Most previous research on this topic has focused on theory and modeling, with only limited attention to experimental studies and field measurements. The few published studies present single snapshots, making it difficult to quantify transient changes in these systems. Non-invasive electrical methods have the potential to exploit the relation between solute concentrations and electrical conductance of a fluid, and thereby estimate fluid salinity differences in time and space. We present the results of a two-year experimental study at a shallow sabkha aquifer in the United Arab Emirates, about 50 km southwest of the city of Abu Dhabi along the coast of the Arabian Gulf, that was designed to explore the transient nature of free convection. Electrical resistivity tomography (ERT) data documented the presence of convective fingers following a significant rainfall event. One year later, the complex fingering pattern had completely disappeared. This observation is supported by analysis of the aquifer solute budget as well as hydrodynamic modeling of the system. The transient dynamics of the gravitational instabilities in the modeling results are in agreement with the timing observed in the time-lapse ERT data. Our experimental observations and modeling are consistent with the hypothesis that the instabilities arose from a dense brine that infiltrated
Education: DNA replication using microscale natural convection.
Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M
2012-12-07
There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.
Evolution of Excited Convective Cells in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens; Sugai, H.
1984-01-01
Convective cells are excited externally in a fully ionized magnetized plasma and their space-time evolution is investigated by two-dimensional potential measurements. A positive cell is excited externally by control of the end losses in the 'scrape off' layer of a plasma column produced by surface...
Free convection film flows and heat transfer
Shang, Deyi
2010-01-01
Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.
Penetrative convection at high Rayleigh numbers
Toppaladoddi, Srikanth; Wettlaufer, John S.
2018-04-01
We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.
Radiative-convective equilibrium model intercomparison project
Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki
2018-03-01
RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.
Vortex statistics in turbulent rotating convection
Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, B.J.
2010-01-01
The vortices emerging in rotating turbulent Rayleigh-Bénard convection in water at Rayleigh number Ra=6.0×108 are investigated using stereoscopic particle image velocimetry and by direct numerical simulation. The so-called Q criterion is used to detect the vortices from velocity fields. This
Phenomenology of convection-parameterization closure
Directory of Open Access Journals (Sweden)
J.-I. Yano
2013-04-01
Full Text Available Closure is a problem of defining the convective intensity in a given parameterization. In spite of many years of efforts and progress, it is still considered an overall unresolved problem. The present article reviews this problem from phenomenological perspectives. The physical variables that may contribute in defining the convective intensity are listed, and their statistical significances identified by observational data analyses are reviewed. A possibility is discussed for identifying a correct closure hypothesis by performing a linear stability analysis of tropical convectively coupled waves with various different closure hypotheses. Various individual theoretical issues are considered from various different perspectives. The review also emphasizes that the dominant physical factors controlling convection differ between the tropics and extra-tropics, as well as between oceanic and land areas. Both observational as well as theoretical analyses, often focused on the tropics, do not necessarily lead to conclusions consistent with our operational experiences focused on midlatitudes. Though we emphasize the importance of the interplays between these observational, theoretical and operational perspectives, we also face challenges for establishing a solid research framework that is universally applicable. An energy cycle framework is suggested as such a candidate.
Oscillatory Convection in Rotating Liquid Metals
Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan
2016-11-01
We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.
Natural convection in horizontal fluid layers
International Nuclear Information System (INIS)
Suo-Antilla, A.J.
1977-02-01
The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase
Solar Hot Water Heating by Natural Convection.
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
A 'backward' free-convective boundary layer
Kuiken, H.K.
1981-01-01
In this paper the cooling of a low-heat-resistance sheet that moves downwards is considered. The free-convective velocities are assumed to be much larger than the velocity of the sheet. As a result the motion of the fluid is mainly towards the point where the sheet enters the system and a ‘backward’
Natural convection inside an irregular porous cavity
International Nuclear Information System (INIS)
Beltran, Jorge I. LLagostera; Trevisan, Osvair Vidal
1990-01-01
Natural convection flow induced by heating from below in a irregular porous cavity is investigated numerically. The influence of the modified Rayleigh number and geometric ratios on heat transfer and fluid flow is studied. Global and local Nusselt for Rayleigh numbers covering the range 0 - 1600 and for several geometric ratios. The fluid flow and the temperature field are illustrated by contour maps. (author)
Preserving Symmetry in Convection-Diffusion Schemes
Verstappen, R.W.C.P.; Veldman, A.E.P.; Drikakis, D.; Geurts, B.J.
2002-01-01
We propose to perform turbulent flow simulations in such manner that the difference operators do have the same symmetry properties as the corresponding differential operators. That is, the convective operator is represented by a skew-symmetric difference operator and the diffusive operator is
Theories for convection in stellar atmospheres
International Nuclear Information System (INIS)
Nordlund, Aa.
1976-02-01
A discussion of the fundamental differences between laboratory convection in a stellar atmosphere is presented. The shortcomings of laterally homogeneous model atmospheres are analysed, and the extent to which these shortcoming are avoided in the two-component representation is discussed. Finally a qualitative discussion on the scaling properties of stellar granulation is presented. (Auth.)
Terminal project heat convection in thin cylinders
International Nuclear Information System (INIS)
Morales Corona, J.
1992-01-01
Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)
International Nuclear Information System (INIS)
Riihimaki, Laura D.; Comstock, J. M.; Luke, E.; Thorsen, T. J.; Fu, Q.
2017-01-01
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. Furthermore, this approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.
Riihimaki, L. D.; Comstock, J. M.; Luke, E.; Thorsen, T. J.; Fu, Q.
2017-07-01
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.
Cryogenic forced convection refrigerating system
International Nuclear Information System (INIS)
Klee, D.J.
1988-01-01
This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized
Testing particle filters on convective scale dynamics
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical
Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
Directory of Open Access Journals (Sweden)
B. Croft
2012-11-01
Full Text Available The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model. To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model.
A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude.
Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition, depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme. Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold. However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction
Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.
2012-11-01
The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all
Novel Natural Convection Heat Sink Design Concepts From First Principles
2016-06-01
CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern
International symposium on transient convective heat transfer: book of abstracts
International Nuclear Information System (INIS)
1996-01-01
The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting
Basal melting driven by turbulent thermal convection
Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico
2018-05-01
Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.
Convective mass transfer around a dissolving bubble
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
DEFF Research Database (Denmark)
Bang Appel, Helene; Singla, Rashmi
2016-01-01
Despite an increase in cross border intimate relationships and children of mixed parentage, there is little mention or scholarship about them in the area of childhood and migrancy in the Nordic countries. The international literature implies historical pathologisation, contestation and current...... of identity formation in the . They position themselves as having an “in-between” identity or “ just Danes” in their every day lives among friends, family, and during leisure activities. Thus a new paradigm is evolving away- from the pathologisation of mixed children, simplified one-sided categories...
Sutherland, G.; Reverdin, G.; Marié, L.; Ward, B.
2014-12-01
A comparison between mixed (MLD) and mixing (XLD) layer depths is presented from the SubTRopical Atlantic Surface Salinity Experiment (STRASSE) cruise in the subtropical Atlantic. This study consists of 400 microstructure profiles during fairly calm and moderate conditions (2 background level. Two different thresholds for the background dissipation level are tested, 10-8 and 10-9 m2 s-3, and these are compared with the MLD as calculated using a density threshold. The larger background threshold agrees with the MLD during restratification but only extends to half the MLD during nighttime convection, while the lesser threshold agrees well during convection but is deeper by a factor of 2 during restratification. Observations suggest the use of a larger density threshold to determine the MLD in a buoyancy driven regime.
Forced convective melting at an evolving ice-water interface
Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand
2015-11-01
The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.
Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.
2010-11-01
We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.
A continuous and prognostic convection scheme based on buoyancy, PCMT
Guérémy, Jean-François; Piriou, Jean-Marcel
2016-04-01
A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global
DEFF Research Database (Denmark)
Brabrand, Helle
2010-01-01
levels than those related to building, and this exploration is a special challenge and competence implicit artistic development work. The project Mixed Movements generates drawing-material, not primary as representation, but as a performance-based media, making the body being-in-the-media felt and appear...... as possible operational moves....
2014-09-30
negative (right panel c) and the kinetic energy dissipation is larger than that expected from meterological forcing alone (right panel a). This is...10.1002/grl.50919. Shcherbina, A. et al., 2014, The LatMix Summer Campaign: Submesoscale Stirring in the Upper Ocean., Bull. American Meterological
Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?
Yano, Jun-Ichi
2015-04-01
Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this
CALIBRATING CONVECTIVE PROPERTIES OF SOLAR-LIKE STARS IN THE KEPLER FIELD OF VIEW
Energy Technology Data Exchange (ETDEWEB)
Bonaca, Ana; Tanner, Joel D.; Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Chaplin, William J.; Metcalfe, Travis S.; Christensen-Dalsgaard, Jorgen; Garcia, Rafael A.; Mathur, Savita [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Monteiro, Mario J. P. F. G.; Campante, Tiago L. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, Jerome [CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Bedding, Timothy R.; Corsaro, Enrico [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Bonanno, Alfio [INAF-Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania (Italy); Broomhall, Anne-Marie; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Bruntt, Hans; Karoff, Christoffer; Kjeldsen, Hans [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Hekker, Saskia, E-mail: ana.bonaca@yale.edu, E-mail: sarbani.basu@yale.edu, E-mail: joel.tanner@yale.edu [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands); and others
2012-08-10
Stellar models generally use simple parameterizations to treat convection. The most widely used parameterization is the so-called mixing-length theory where the convective eddy sizes are described using a single number, {alpha}, the mixing-length parameter. This is a free parameter, and the general practice is to calibrate {alpha} using the known properties of the Sun and apply that to all stars. Using data from NASA's Kepler mission we show that using the solar-calibrated {alpha} is not always appropriate, and that in many cases it would lead to estimates of initial helium abundances that are lower than the primordial helium abundance. Kepler data allow us to calibrate {alpha} for many other stars and we show that for the sample of stars we have studied, the mixing-length parameter is generally lower than the solar value. We studied the correlation between {alpha} and stellar properties, and we find that {alpha} increases with metallicity. We therefore conclude that results obtained by fitting stellar models or by using population-synthesis models constructed with solar values of {alpha} are likely to have large systematic errors. Our results also confirm theoretical expectations that the mixing-length parameter should vary with stellar properties.
Behaviors and transitions along the path to magnetostrophic convection
Grannan, A. M.; Vogt, T.; Horn, S.; Hawkins, E. K.; Aggarwal, A.; Aurnou, J. M.
2017-12-01
The generation of magnetic fields in planetary and stellar interiors are believed to be controlled primarily by turbulent convection constrained by Coriolis and Lorentz forces in their electrically conducting fluid layers. Yet relatively few laboratory experiments are capable of investigating the different regimes of turbulent magnetohydrodynamic convection. In this work, we perform one laboratory experiment in a cylinder at a fixed heat flux using the liquid metal gallium in order to investigate, sequentially: Rayleigh-Bènard convection without any imposed constraints, magnetoconvection with a Lorentz constraint imposed by vertical magnetic field, rotating convection with a Coriolis constraint imposed by rotation, and finally the magnetostrophic convective regime where both Coriolis and Lorentz are imposed and equal. Using an array of internal and external temperature probes, we show that each regime along the path to magnetostrophic convection is unique. The behaviors and transitions in the dominant modes of convection as well as their fundamental frequencies and wavenumbers are investigated.
Hayat, T.; Ahmed, Bilal; Alsaedi, A.; Abbasi, F. M.
2018-03-01
The present communication investigates flow of Carreau-Yasuda nanofluid in presence of mixed convection and Hall current. Effects of viscous dissipation, Ohmic heating and convective conditions are addressed. In addition zero nanoparticle mass flux condition is imposed. Wave frame analysis is carried out. Coupled differential systems after long wavelength and low Reynolds number are numerically solved. Effects of different parameters on velocity, temperature and concentration are studied. Heat and mass transfer rates are analyzed through tabular values. It is observed that concentration for thermophoresis and Brownian motion parameters has opposite effect. Further heat and mass transfer rates at the upper wall enhances significantly when Hartman number increases and reverse situation is noticed for Hall parameter.
WRF nested large-eddy simulations of deep convection during SEAC4RS
Heath, Nicholas K.; Fuelberg, Henry E.; Tanelli, Simone; Turk, F. Joseph; Lawson, R. Paul; Woods, Sarah; Freeman, Sean
2017-04-01
Large-eddy simulations (LES) and observations are often combined to increase our understanding and improve the simulation of deep convection. This study evaluates a nested LES method that uses the Weather Research and Forecasting (WRF) model and, specifically, tests whether the nested LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection that occurred during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Mesoscale WRF output (1.35 km grid length) was used to drive a nested LES with 450 m grid spacing, which then drove a 150 m domain. Results reveal that the 450 m nested LES reasonably simulates observed reflectivity distributions and aircraft-observed in-cloud vertical velocities during the study period. However, when examining convective updrafts, reducing the grid spacing to 150 m worsened results. We find that the simulated updrafts in the 150 m run become too diluted by entrainment, thereby generating updrafts that are weaker than observed. Lastly, the 450 m simulation is combined with observations to study the processes forcing strong midlevel cloud/updraft edge downdrafts that were observed on 2 September. Results suggest that these strong downdrafts are forced by evaporative cooling due to mixing and by perturbation pressure forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested LES approach, with further development and evaluation, could potentially provide an effective method for studying deep convection in real-world cases.
Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun
2018-03-01
Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.
International Nuclear Information System (INIS)
Zhang Yanlai; Rao Zhonghao; Wang Shuangfeng; Zhang Zhao; Li Xiuping
2012-01-01
Highlights: ► It gives heat transfer characteristics in a rectangular heat storage tank as the basic unit for reservoir of thermal storage. ► Onset of natural convection gets easier for the MPCMS with a higher mass concentration. ► It enhances the heat transfer ability of natural convection for the MPCMS. ► Obtained the relationship between Ra and Nu of the MPCMS. - Abstract: The main purpose of this experiment is to evaluate natural convection heat transfer characteristics of microencapsulated PCM (phase change material) slurry (MPCMS) during phase change process in a rectangular heat storage tank heated from the bottom and cooled at the top. The microencapsulated PCM is several material compositions of n-paraffin waxes (mainly nonadecane) as the core materials, outside a layer of a melamine resin wrapped. In the present study, its slurry is used mixing with water. And the specific heat capacity with latent heat shows a peak value at the temperature of about T = 31 °C. We investigate the influences of the phase change process of the MPCMS on natural convection heat transfer. The experimental results indicate that phase change process of the MPCMS promote natural convection heat transfer. The local maximum heat transfer enhancement occurs at approximately T H = 34 °C corresponding to the heated plate temperature. With high mass concentration C m , the onset of natural convection gets easier for the MPCMS. The temperature gradient is larger near top plate and bottom plate of a rectangular heat storage tank. Heat transfer coefficient increases with the phase change of the PCM. And it summarizes that the phase change process of the PCM promote the occurrence of natural convection.
Coupling of convection and circulation at various resolutions
Directory of Open Access Journals (Sweden)
Cathy Hohenegger
2015-03-01
Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.
International Nuclear Information System (INIS)
Adelberger, E.G.
1975-01-01
The field of parity mixing in light nuclei bears upon one of the exciting and active problems of physics--the nature of the fundamental weak interaction. It is also a subject where polarization techniques play a very important role. Weak interaction theory is first reviewed to motivate the parity mixing experiments. Two very attractive systems are discussed where the nuclear physics is so beautifully simple that the experimental observation of tiny effects directly measures parity violating (PV) nuclear matrix elements which are quite sensitive to the form of the basic weak interaction. Since the measurement of very small analyzing powers and polarizations may be of general interest to this conference, some discussion is devoted to experimental techniques
Convective boundary layer heights over mountainous terrain - A review of concepts -
De Wekker, Stephan; Kossmann, Meinolf
2015-12-01
Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.
Natural convection in heat-generating fluids
International Nuclear Information System (INIS)
Bol'shov, Leonid A; Kondratenko, Petr S; Strizhov, Valerii F
2001-01-01
Experimental and theoretical studies of convective heat transfer from a heat-generating fluid confined to a closed volume are reviewed. Theoretical results are inferred from analytical estimates based on the relevant conservation laws and the current understanding of the convective heat-transfer processes. Four basic and one asymptotic regime of heat transfer are identified depending on the heat generation rate. Limiting heat-transfer distribution patterns are found for the lower boundary. Heat transfer in a quasi-two-dimensional geometry is analyzed. Quasi-steady-state heat transfer from a cooling-down fluid without internal heat sources is studied separately. Experimental results and theoretical predictions are compared. (reviews of topical problems)
Topology optimisation of natural convection problems
DEFF Research Database (Denmark)
Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe
2014-01-01
This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations...... coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences...... in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach...
Natural convection heat transfer in SIGMA experiment
International Nuclear Information System (INIS)
Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull
2004-01-01
A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on
Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xuan, E-mail: xuanz@umich.edu; Zikanov, Oleg
2017-03-15
Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • The flow is strongly modified by the buoyancy force associated with growing T{sub m}. • Thermal convection is suppressed at high Gr. • High temperature difference between top and bottom walls is expected at high Gr. - Abstract: The work continues the exploration of the effect of thermal convection on flows in toroidal ducts of a liquid metal blanket. This time we consider the effect of the mean flow along the duct and of the associated heat transfer diverting the heat deposited by captured neutrons. Numerical simulations are conducted for a model system with two-dimensional (streamwise-uniform) fully developed flow, purely toroidal magnetic field, and perfectly electrically and thermally insulating walls. Realistically high Grashof (up to 10{sup 11}) and Reynolds (up to 10{sup 6}) numbers are used. It is found that the flow develops thermal convection in the transverse plane at moderate Grashof numbers. At large Grashof numbers, the flow is dominated by the top-bottom asymmetry of the streamwise velocity and stable stratification of temperature, which are caused by the buoyancy force due to the mean temperature growing along the duct. This leads to suppression of thermal convection, weak mixing, and substantial gradients of wall temperature. Further analysis based on more realistic models is suggested.
Convection and crystal settling in sills
Gibb, Fergus G. F.; Henderson, C. Michael B.
1992-02-01
It has been advocated that convective and crystal settling processes play significant, and perhaps crucial, roles in magmatic differentiation. The fluid dynamics of magma chambers have been extensively studied in recent years, both theoretically and experimentally, but there is disagreement over the nature and scale of the convection, over its bearing on fractionation and possibly over whether it occurs at all. The differential distribution of modal olivine with height in differentiated alkaline basic sills provides critical evidence to resolve this controversy, at least for small to medium-large magma chambers. Our own and others' published data for such sills show that, irrespective of overall olivine content, modal olivine contents tend to increase in a roughly symmetrical manner inwards from the upper and lower margins of the sill, i.e. the distribution patterns are more often approximately D-shaped rather than the classic S-shape generally ascribed to gravity settling. We concur with the majority of other authors that this is an original feature of the filling process which has survived more or less unchanged since emplacement. We therefore conclude that the magmas have not undergone turbulent convection and that gravity settling has usually played only a minor modifying role since the intrusion of these sills. We offer a possible explanation for the apparent contradiction between fluid dynamical theory and the petrological evidence by suggesting that such sills rarely fill by the rapid injection of a single pulse of magma. Rather, they form from a series of pulses or a continuous pulsed influx over a protracted interval during which marginal cooling severely limits the potential for thermal convection.
Nonlinear Convective Models of RR Lyrae Stars
Feuchtinger, M.; Dorfi, E. A.
The nonlinear behavior of RR Lyrae pulsations is investigated using a state-of-the-art numerical technique solving the full time-dependent system of radiation hydrodynamics. Grey radiative transfer is included by a variable Eddington-factor method and we use the time-dependent turbulent convection model according to Kuhfuss (1986, A&A 160, 116) in the version of Wuchterl (1995, Comp. Phys. Comm. 89, 19). OPAL opacities extended by the Alexander molecule opacities at temperatures below 6000 K and an equation of state according to Wuchterl (1990, A&A 238, 83) close the system. The resulting nonlinear system is discretized on an adaptive mesh developed by Dorfi & Drury (1987, J. Comp. Phys. 69, 175), which is important to provide the necessary spatial resolution in critical regions like ionization zones and shock waves. Additionally, we employ a second order advection scheme, a time centered temporal discretizaton and an artificial tensor viscosity in order to treat discontinuities. We compute fundamental as well first overtone models of RR Lyrae stars for a grid of stellar parameters both with and without convective energy transport in order to give a detailed picture of the pulsation-convection interaction. In order to investigate the influence of the different features of the convection model calculations with and without overshooting, turbulent pressure and turbulent viscosity are performed and compared with each other. A standard Fourier decomposition is used to confront the resulting light and radial velocity variations with recent observations and we show that the well known RR Lyrae phase discrepancy problem (Simon 1985, ApJ 299, 723) can be resolved with these stellar pulsation computations.
Natural convective heat transfer from square cylinder
Energy Technology Data Exchange (ETDEWEB)
Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)
2016-06-30
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
Heat transport in bubbling turbulent convection.
Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2013-06-04
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.
Modeling mantle convection in the spherical annulus
Hernlund, John W.; Tackley, Paul J.
2008-12-01
Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.
Energy Technology Data Exchange (ETDEWEB)
Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)
2014-04-15
In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)
Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling
DEFF Research Database (Denmark)
Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor
2014-01-01
The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V
Experiences of ZAMG on mixing height determination
Energy Technology Data Exchange (ETDEWEB)
Piringer, M. [Zentralanstalt fuer Meteorologie und Geodynamik, ZAMG, Vienna (Austria)
1997-10-01
Temperature inversions in the boundary layer occur quite often, esp. in mountainous terrain by which Austria is covered to a large extent, and can lead to enhanced pollution at the surface because the air volume available for dilution is then vertically limited. The Department of Environmental Meteorology of ZAMG therefore set up several field programs in the past to study such conditions at a variety of sites in Austria, using tethersondes and Sodars. Early investigations aimed at comparing Sodar echo profiles to the tethersonde temperature profiles to derive mixing heights from the Sodar echo structure. More recently, evolving from KONGEX, the `convective boundary layer experiment`, mixing heights calculated for Vienna by the OML model were compared to those derived from radiosonde and tethersonde potential temperature profiles. Results of these investigations will be presented, focussing on the problems when using the different methods. New efforts to derive mixing heights from data were also undertaken and are discussed separately. (au)
Panosetti, Davide; Schlemmer, Linda; Schär, Christoph
2018-05-01
Convection-resolving models (CRMs) can explicitly simulate deep convection and resolve interactions between convective updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated convective cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist convection over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and convective mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.
Investigation of the transition from forced to natural convection in the research reactor Munich II
International Nuclear Information System (INIS)
Skreba, S.; Adamek, J.; Unger, H.
1999-01-01
up to limiting amplitudes of 0.1 bar, 0.2 bar and 0.3 bar at the transition from forced to natural convection have been determined. Further tests have been performed to determine minimum heat flux densities leading to boiling processes in the cooling channel and critical heat flux densities causing dry outs of the cooling channel at downwards directed forced flow. During the tests, flow reversals have been observed because of the buoyancy forces in the coolant causing a mixed convection flow. The last test series, which has been finished in March 1999, has been performed in order to determine critical heat flux densities during the transition from forced to natural convection and to measure the occurring pressure amplitudes. All results prove the possibility to remove the decay heat of the FRM-II by natural convection, even in case of a complete loss of the active decay heat removal system. Above this, large safety margins in the FRM-II concerning pressure pulsations, beginning of boiling and dry out could be verified. (author)
Wind profiler mixing depth and entrainment measurements with chemical applications
Energy Technology Data Exchange (ETDEWEB)
Angevine, W.M.; Trainer, M.; Parrish, D.D.; Buhr, M.P.; Fehsenfeld, F.C. [NOAA Aeronomy Lab., Boulder, CO (United States); Kok, G.L. [NCAR Research Aviation Facility, Boulder, CO (United States)
1994-12-31
Wind profiling radars operating at 915 MHz have been present at a number of regional air quality studies. The profilers can provide a continuous, accurate record of the depth of the convective mixed layer with good time resolution. Profilers also provide information about entrainment at the boundary layer top. Mixing depth data from several days of the Rural Oxidants in the Southern Environment II (ROSE II) study in Alabama in June, 1992 are presented. For several cases, chemical measurements from aircraft and ground-based instruments are shown to correspond to mixing depth and entrainment zone behavior observed by the profiler.
Fluid Mixing in the Eye Under Rapid Eye Movement
Huang, Jinglin; Gharib, Morteza
2017-11-01
Drug injection is an important technique in certain treatments of eye diseases. The efficacy of chemical mixing plays an important role in determining pharmacokinetics of injected drugs. In this study, we build a device to study the chemical mixing behavior in a spherical structure. The mixing process is visualized and analyzed qualitatively. We hope to understand the chemical convection and diffusion behaviors in correlation with controlled rapid mechanical movements. The results will have potential applications in treatment of eye diseases. Resnick Institute at Caltech.
José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro
2017-04-01
A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the
Vorticity imbalance and stability in relation to convection
Read, W. L.; Scoggins, J. R.
1977-01-01
A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.
A Thermodynamically General Theory for Convective Circulations and Vortices
Renno, N. O.
2007-12-01
Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.
Thermo-electro-hydrodynamic convection under microgravity: a review
Energy Technology Data Exchange (ETDEWEB)
Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)
2016-12-15
Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)
Some problems of free convection in a macrocapillary
Energy Technology Data Exchange (ETDEWEB)
Luikov, A V; Berkovsky, B M; Kolpashchikov, V L
1971-01-01
Solution is given to a number of problems of free convection in incompressible viscous fluid in elementary macrocapillaries with nonuniform temperature distribution at the boundary. The fluid flow structure and effect of a magnetic field on convection in the case of conducting fluid has been studied in detail. The influence of macrocapillary properties on the flow structure, rate of convection, and temperature distribution has been estimated.
Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO
Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.
2012-12-01
One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.
Strategic Repositioning for Convection Business Case Study: AR Vendor
Anindita, Pratisara Satwika; Toha, Mohamad
2013-01-01
The study aims to determine suitable position and strategy in order to reach superiority in convection business based on the company strengths and weaknesses. A study conducted in late 2012 at AR Vendor, a home-based convection company which focus on the t-shirt screen printing service. In response to the issue of the below average profit margin, the company has to rethink their position and strategy in handling the convection business environment. While AR Vendor business may growth in accor...
Directory of Open Access Journals (Sweden)
Hong Xia
2017-05-01
Full Text Available Abstract In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE reduced-order extrapolation (SMFEROE model holding seldom unknowns for the two-dimensional (2D unsteady conduction-convection problem via the proper orthogonal decomposition (POD technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.
Xia, Hong; Luo, Zhendong
2017-01-01
In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE) reduced-order extrapolation (SMFEROE) model holding seldom unknowns for the two-dimensional (2D) unsteady conduction-convection problem via the proper orthogonal decomposition (POD) technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.
The role of deep convection on the dynamics of the North Atlantic phytoplankton community
DEFF Research Database (Denmark)
Lindemann, Christian
waters and suggests that it is the convective overturning within the mixed layer, that enables cell to thrive under these conditions. To investigate the role of acclimation during winter and during the onset of the spring bloom, an adaptive Individual-Based-Model (IBM) was developed, allowing to test......, in particular during the onset of thermal stratification in spring. The finding of this thesis have important implication for our understanding of carbon sequestration during winter and for the role of the North Atlantic as a carbon sink, in particular in a scenario of climate change...
Temperature boundary layer profiles in turbulent Rayleigh-Benard convection
Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga
2017-11-01
Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.
Transitions in rapidly rotating convection dynamos
Tilgner, A.
2013-12-01
It is commonly assumed that buoyancy in the fluid core powers the geodynamo. We study here the minimal model of a convection driven dynamo, which is a horizontal plane layer in a gravity field, filled with electrically conducting fluid, heated from below and cooled from above, and rotating about a vertical axis. Such a plane layer may be viewed as a local approximation to the geophysically more relevant spherical geometry. The numerical simulations have been run on graphics processing units with at least 960 cores. If the convection is driven stronger and stronger at fixed rotation rate, the flow behaves at some point as if it was not rotating. This transition shows in the scaling of the heat transport which can be used to distinguish slow from rapid rotation. One expects dynamos to behave differently in these two flow regimes. But even within the convection flows which are rapidly rotating according to this criterion, it will be shown that different types of dynamos exist. In one state, the magnetic field strength obeys a scaling indicative of a magnetostrophic balance, in which the Lorentz force is in equilibrium with the Coriolis force. The flow in this case is helical. A different state exists at higher magnetic Reynolds numbers, in which the magnetic energy obeys a different scaling law and the helicity of the flow is much reduced. As one increases the Rayleigh number, all other parameters kept constant, one may find both types of dynamos separated by an interval of Rayleigh numbers in which there are no dynamos at all. The effect of these transitions on energy dissipation and mean field generation have also been studied.
What Determines Upscale Growth of Oceanic Convection into MCSs?
Zipser, E. J.
2017-12-01
Over tropical oceans, widely scattered convection of various depths may or may not grow upscale into mesoscale convective systems (MCSs). But what distinguishes the large-scale environment that favors such upscale growth from that favoring "unorganized", scattered convection? Is it some combination of large-scale low-level convergence and ascending motion, combined with sufficient instability? We recently put this to a test with ERA-I reanalysis data, with disappointing results. The "usual suspects" of total column water vapor, large-scale ascent, and CAPE may all be required to some extent, but their differences between large MCSs and scattered convection are small. The main positive results from this work (already published) demonstrate that the strength of convection is well correlated with the size and perhaps "organization" of convective features over tropical oceans, in contrast to tropical land, where strong convection is common for large or small convective features. So, important questions remain: Over tropical oceans, how should we define "organized" convection? By size of the precipitation area? And what environmental conditions lead to larger and better organized MCSs? Some recent attempts to answer these questions will be described, but good answers may require more data, and more insights.
Natural convection in superposed fluid-porous layers
Bagchi, Aniruddha
2013-01-01
Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.
Urban Influences on Convection and Lightning Over Houston
National Research Council Canada - National Science Library
Gauthier, Michael L
2006-01-01
The research presented in this dissertation addresses a fundamental question regarding urban, ultimately anthropogenic, influences on convection as it relates to lightning production and precipitation structure...
Effects of variable thermal diffusivity on the structure of convection
Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.
2018-03-01
The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.
Cumulus convection and the terrestrial water-vapor distribution
Donner, Leo J.
1988-01-01
Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.
Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation
Energy Technology Data Exchange (ETDEWEB)
Stechmann, Samuel N., E-mail: stechmann@wisc.edu [Department of Mathematics, University of Wisconsin-Madison (United States); Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison (United States)
2014-08-15
A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes.
Multiscale stabilization for convection-dominated diffusion in heterogeneous media
Calo, Victor M.
2016-02-23
We develop a Petrov-Galerkin stabilization method for multiscale convection-diffusion transport systems. Existing stabilization techniques add a limited number of degrees of freedom in the form of bubble functions or a modified diffusion, which may not be sufficient to stabilize multiscale systems. We seek a local reduced-order model for this kind of multiscale transport problems and thus, develop a systematic approach for finding reduced-order approximations of the solution. We start from a Petrov-Galerkin framework using optimal weighting functions. We introduce an auxiliary variable to a mixed formulation of the problem. The auxiliary variable stands for the optimal weighting function. The problem reduces to finding a test space (a dimensionally reduced space for this auxiliary variable), which guarantees that the error in the primal variable (representing the solution) is close to the projection error of the full solution on the dimensionally reduced space that approximates the solution. To find the test space, we reformulate some recent mixed Generalized Multiscale Finite Element Methods. We introduce snapshots and local spectral problems that appropriately define local weight and trial spaces. In particular, we use energy minimizing snapshots and local spectral decompositions in the natural norm associated with the auxiliary variable. The resulting spectral decomposition adaptively identifies and builds the optimal multiscale space to stabilize the system. We discuss the stability and its relation to the approximation property of the test space. We design online basis functions, which accelerate convergence in the test space, and consequently, improve stability. We present several numerical examples and show that one needs a few test functions to achieve an error similar to the projection error in the primal variable irrespective of the Peclet number.
Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation
International Nuclear Information System (INIS)
Stechmann, Samuel N.
2014-01-01
A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes
Natural convection between two concentric spheres
International Nuclear Information System (INIS)
Blondel-Roux, Marie
1983-01-01
After an overview of researches on natural convection in a confined or semi-confined environment, this research thesis reports the use of the Caltagirone and Mojtabi numerical model and the study of its validity for different values of the Rayleigh and Prandtl numbers. Results obtained with this model are compared with experimental ones. Thermal transfer curves are presented and discussed, as well as the different temperature fields numerically obtained, flow function fields, velocities in the fluid layer, and temperature profiles with respect to the Rayleigh number [fr
Measurement of natural convection by speckle photography
International Nuclear Information System (INIS)
Wernekinck, U.; Merzkirch, W.
1986-01-01
The principle of speckle photography can be applied to the measurement of density variations in fluids. A modification of existing experimental arrangements allows for the measurement of large values of the light deflection angles as they may occur in heat and mass transfer situations. The method is demonstrated for the case of a helium jet exhausting into still air and the natural convective flow along a heated plate. The obtained data are compared with results measured with classical optical interferometers, and good agreement is found. The advantages of the new technique over the classical optical methods are briefly discussed. 11 references
Hamiltonian Description of Convective-cell Generation
International Nuclear Information System (INIS)
Krommes, J.A.; Kolesnikov, R.A.
2004-01-01
The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted
Parker, E. N.
1979-01-01
The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.
Tellez Alvarez, Jackson David; Redondo, Jose Manuel; Sanchez, Jesu Mary
2016-04-01
The improvements in experimental methods and high resolution image analysis are nowadays able to detect subtle changes in the structure of the turbulence over a wide range of temporal and spatial scales [1], we compare the scaling shown by different mixing fronts driven by buoyancy that form convective driven mixing. We use PIV and density front tracking in several experimental configurations akin to geophysical overturning [2, 3]. We parametrize the role of unstable stratification by means of the Rayleigh and Atwood numbers and compare the scaling and the multifractal structure functions of the different markers used to visualize the non-homogeneous. Both reactive and passive scalar tracers are used to investigate the mixing structure and the intermittency of the flow. Different initial conditions are compared and the mixing efficiency of the overall turbulent process is evaluated [4 - 6]. Diffusion is measured in the transition from a homogeneous linearly stratified fluid to a cellular or layered structure by means of Thermoelectric generated heating and cooling [2, 4]. Patterns arise by setting up a convective flow generated by a buoyant heat flux either in the base or in a side wall of the convective enclosure [1, 6]. The experiments described here investigate high Prandtl number mixing using brine or sugar solutions and fresh water in order to form a density interface and low Prandtl number mixing with only temperature gradients [7]. The set of dimensionless parameters define conditions of numeric and small scale laboratory modeling of environmental flows. Fields of velocity, density and their gradients were computed and visualized [8, 9]. When convective heating and cooling takes place the combination of internal waves and buoyant turbulence is much more complicated if the Rayleigh and Reynolds numbers are high in order to study entrainment and mixing. The experiments described here investigate high Prandtl number mixing using salt or sugar solutions and
Energy Technology Data Exchange (ETDEWEB)
Freitag, M., E-mail: freitag@becker-technologies.com; Schmidt, E.; Gupta, S.; Poss, G.
2016-04-01
Highlights: . • We studied the generation and dissolution of steam stratification in natural convection. • We performed a computer code benchmark including blind and open phases. • The dissolution of stratification predicted only qualitatively by LP and CFD models during the blind simulation phase. - Abstract: Locally enriched hydrogen as in stratification may contribute to early containment failure in the course of severe nuclear reactor accidents. During accident sequences steam might accumulate as well to stratifications which can directly influence the distribution and ignitability of hydrogen mixtures in containments. An international code benchmark including Computational Fluid Dynamics (CFD) and Lumped Parameter (LP) codes was conducted in the frame of the German THAI program. Basis for the benchmark was experiment TH24.3 which investigates the dissolution of a steam layer subject to natural convection in the steam-air atmosphere of the THAI vessel. The test provides validation data for the development of CFD and LP models to simulate the atmosphere in the containment of a nuclear reactor installation. In test TH24.3 saturated steam is injected into the upper third of the vessel forming a stratification layer which is then mixed by a superposed thermal convection. In this paper the simulation benchmark will be evaluated in addition to the general discussion about the experimental transient of test TH24.3. Concerning the steam stratification build-up and dilution of the stratification, the numerical programs showed very different results during the blind evaluation phase, but improved noticeable during open simulation phase.
Theory of modulational interaction of trapped ion convective cells and drift wave turbulence
International Nuclear Information System (INIS)
Shapiro, V.D.; Diamond, P.H.; Lebedev, V.; Soloviev, G.; Shevchenko, V.
1993-01-01
Theoretical and computational studies of the modulational interaction between trapped ion convective cells and short wavelength drift wave turbulence are discussed. These studies are motivated by the fact that cells and drift waves are expected to coexist in tokamaks so that: (a) cells strain and modulate drift waves, and (b) drift waves open-quote ride on close-quote a background of cells. The results of the authors' investigation indicate that: (1) (nonlinear) parametric growth rates of trapped ion convective cells can exceed linear predictions (for drift wave levels at the mixing length limit); (2) a set of coupled envelope equations, akin to the Zakharov equations from Langmuir turbulence, can be derived and used to predict the formation of a dipole pair of convective cells trapped by the drift wave envelope. This dipole pair is strongly anisotropic, due to the structure of the drift wave Reynolds stress which drives the cell flow. Numerical solutions of the envelope equations are in good agreement with theoretical predictions, and indicate the persistence of the structure in time; (3) strong modulation and trapping of drift waves with k perpendicular ρ > 1 occurs. Extensions to magnetically sheared systems and the broader implications of this work as a paradigm for the dynamics of persistent structures in shearing flows are discussed
International Nuclear Information System (INIS)
Khan, E.U.; Rector, D.R.
1982-01-01
Reactor fuel and blanket assemblies within a Liquid Metal Fast Breeder Reactor (LMFBR) can be subjected to severe radial heat flux gradients. At low-flow conditions, with power-to-flow ratios of nearly the same magnitude as design conditions, buoyancy forces cause flow redistribution to the side of a bundle with the higher heat generation rate. Recirculation of fluid within a rod bundle can occur during a natural convection transient because of the combined effect of flow coastdown and buoyancy-induced redistribution. An important concern is whether recirculation leads to high coolant temperatures. For this reason, the COBRA-WC code was developed with the capability of modeling recirculating flows. Experiments have been conducted in a 2 x 6 rod bundle for flow and power transients to study recirculation in the mixed-convection (forced cooled) and natural-convection regimes. The data base developed was used to validate the recirculation module in the COBRA-WC code. COBRA-WC code calculations were made to predict flow and temperature distributions in a typical LMFBR blanket assembly for the worst-case, natural-circulation transient
Model of convection mass transfer in titanium alloy at low energy high current electron beam action
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.
2017-01-01
The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.
Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.
2016-10-01
This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.
An application of the unifying theory of thermal convection in vertical natural convection
Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel
2014-11-01
Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.
From convection rolls to finger convection in double-diffusive turbulence
Yang, Yantao; Verzicco, Roberto; Lohse, Detlef
2015-01-01
Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars’ transfer rate and flow structures. Here we systematically investigate DDC flow
Mixing process of a binary gas in a density stratified layer
Energy Technology Data Exchange (ETDEWEB)
Takeda, Tetsuaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1997-09-01
This study is to investigate the effect of natural convection on the mixing process by molecular diffusion in a vertical stratified layer of a binary fluid. There are many experimental and analytical studies on natural convection in the vertical fluid layer. However, there are few studies on natural convection with molecular diffusion in the vertical stratified layer of a binary gas. Experimental study has been performed on the combined phenomena of molecular diffusion and natural convection in a binary gas system to investigate the mixing process of the binary gas in a vertical slot consisting of one side heated and the other side cooled. The range of Rayleigh number based on the slot width was about 0 < Ra{sub d} < 7.5 x 10{sup 4}. The density change of the gas mixture and the temperature distribution in the slot was obtained and the mixing process when the heavier gas ingress into the vertical slot filled with the lighter gas from the bottom side of the slot was discussed. The experimental results showed that the mixing process due to molecular diffusion was affected significantly by the natural convection induced by the slightly temperature difference between both vertical walls even if a density difference by the binary gas is larger than that by the temperature difference. (author). 81 refs.
Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves
Yang, Q.; Majda, A.
2017-12-01
Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive
Granular boycott effect: How to mix granulates
Duran, J.; Mazozi, T.
1999-11-01
Granular material can display the basic features of the Boycott effect in sedimentation. A simple experiment shows that granular material falls faster in an inclined tube than in a vertical tube, in analogy with the Boycott effect. As long as the inclination of the tube is above the avalanche threshold, descent of granular material in the tube causes internal convection which in turn results in an efficient mixture of the granular components. By contrast, as in analogous experiments in two dimensions, a vertical fall of granular material occurs via successive block fragmentation, resulting in poor mixing.
The effect of convection and semi-convection on the C/O yield of massive stars
International Nuclear Information System (INIS)
Dearborn, D.S.
1979-01-01
The C/O ratio produced during core helium burning affects the future evolution and nucleosynthetic yield of massive stars. This ratio is shown to be sensitive to the treatment of convection as well as uncertainties in nuclear rates. By minimizing the effect of semi-convection and reducing the size of the convective core, mass loss in OB stars increases the C/O ratio. (Author)
Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.
2017-11-01
Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.
Microgravity Science Experiment of Marangoni Convection occurred in Larger Liquid Bridge on KIBO
Matsumoto, Satoshi; Yoda, Shinichi; Tanaka, Tetsuo
Marangoni convection is a fluid motion induced by local variations of surface tension along a free surface which is caused by temperature and/or concentration differences. Marangoni convection plays important roll in such applications as crystal growth from melt, welding, con-tainerless material processing, and so on. One of the promising techniques to grow a high quality crystal is a floating-zone method which exists cylindrical melting part at heated region. This liquid part like a column is sustained between solid rods and it has free surface on the side. For investigation of Marangoni convection, a liquid bridge configuration with heated top and cooled bottom is often employed to simplify phenomena. Much work has been performed on Marangoni convection in the past, both experimentally and theoretically. Most of the ex-perimental investigations were conducted in normal gravity but some results from microgravity experiments are now available. However, problems to be solved are still remained in scientific view point. The effect of liquid bridge size on critical Marangoni number to determine the onset of oscillatory flow is one of important subjects. To investigate size effect, the experiment with changing wide range of diameter is needed. Under terrestrial conditions, large size of liquid bridge enhances to induce buoyancy convection. Much larger liquid bridge is deformed its shape or finally liquid bridge could not keep between disks because of its self-weight. So, microgravity experiment is required to make clear the size effect and to obtain precise data. We carried out Marangoni experiment under microgravity condition in Japanese Experiment Module "KIBO". A 50 mm diameter liquid bridge was formed and temperature difference between supporting rods was imposed to induce thermocapillary flow. Convective motion was observed in detail using several cameras, infrared camera and temperature sensors. Silicone oil of 5cSt was employed as a working fluid, which Prandtl
Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity
Kiladis, G. N.; Biello, J. A.; Straub, K. H.
2012-12-01
It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG
Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.
2017-12-01
A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.
Dong, X.; Logan, T.; Xi, B.
2015-12-01
Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.
International Nuclear Information System (INIS)
Ren, Xiu-Hong; Hu, Jiang-Tao; Liu, Di; Zhao, Fu-Yun; Li, Xiao-Hong; Wang, Han-Qing
2016-01-01
Highlights: • Combined convective heat and airborne transports under different flow schemes. • Natural and forced convection dominated regimes were identified with transition. • Dual solution branches were sustained for the transitional mixing flow scheme. • Rest solutions evolving from motionless flows coincided with other solution branch. • Heat and species lines were presented to delineate heat and mass transport structures. - Abstract: This paper reports a numerical study of mixed convection on a heated and polluted strip within a slot ventilated enclosure in which the displacement and mixing flow schemes are considered. Contours of streamfunction, heatfunction, and massfunction are presented to clearly scrutinize the mechanism of heat and airborne pollutant transports. For the displacement flow scheme, thermal Nusselt and pollutant Sherwood numbers under different Reynolds numbers remain almost constant as the value of Gr/Re 2 decreases down to the regime of forced convection dominated. However, as Ar increases up to the regime of natural convection dominated, both Nu and Sh increase sharply with Ar (Gr/Re 2 ). Similar trends could be observed for the situation of mixing ventilated flow scheme. In the mixing scheme, non unique steady flow solutions could be observed for the range of transitional flow regime. Upward solutions, downward solutions and rest solutions have been exemplified with varying Gr/Re 2 . Dual solution branches could be sustained at the range of 39.0 ≤ Gr/Re 2 ≤ 6.0 × 10 3 , while the rest solutions obtained from rest states were completely coinciding with former continuous solutions. The present work could be significant for the natural optimization and passive control of heat and pollutant removals from the electronic boxes or building enclosures.
Numerical modeling of two-phase binary fluid mixing using mixed finite elements
Sun, Shuyu
2012-07-27
Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.
Forced convection heat transfer in He II
International Nuclear Information System (INIS)
Kashani, A.
1986-01-01
An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid
Vertical Slot Convection: A linear study
International Nuclear Information System (INIS)
McAllister, A.; Steinolfson, R.; Tajima, T.
1992-11-01
The linear stability properties of fluid convection in a vertical slot were studied. We use a Fourier-Chebychev decomposition was used to set up the linear eigenvalue problems for the Vertical Slot Convection and Benard problems. The eigenvalues, neutral stability curves, and critical point values of the Grashof number, G, and the wavenumber were determined. Plots of the real and imaginary parts of the eigenvalues as functions of G and α are given for a wide range of the Prandtl number, Pr, and special note is made of the complex mode that becomes linearly unstable above Pr ∼ 12.5. A discussion comparing different special cases facilitates the physical understanding of the VSC equations, especially the interaction of the shear-flow and buoyancy induced physics. Making use of the real and imaginary eigenvalues and the phase properties of the eigenmodes, the eigenmodes were characterized. One finds that the mode structure becomes progressively simpler with increasing Pr, with the greatest complexity in the mid ranges where the terms in the heat equation are of roughly the same size
Solutocapillary Convection Effects on Polymeric Membrane Morphology
Krantz, William B.; Todd, Paul W.; Kinagurthu, Sanjay
1996-01-01
Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth.
Conjugate Problems in Convective Heat Transfer: Review
Directory of Open Access Journals (Sweden)
Abram Dorfman
2009-01-01
Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.
Mass transport in propagating patterns of convection
International Nuclear Information System (INIS)
Moses, E.; Steinberg, V.
1988-01-01
Recent studies of propagating waves in an oscillatory convection of binary mixtures arise questions about transport properties of this flow. Optical visualization of a field of refraction index due to a shadowgraph technique gives information on the temperature and concentration fields. However, experimental observation of rolls propagating along the cell as travelling waves (TW) does not necessarily imply that mass is transferred hydrodynamically by the convective motion along the cell. One of the possibilities discussed, e.g., is that TW observed is only a phase propagation. The traditional examples of such situations come from the domain of linear, superposition-oriented physics. Acoustic waves transfer momentum and energy, but do not cause the mass to make excursions for their equilibrium point that are larger than the oscillation amplitude. In the case of nonlinear physics we were aware that small amplitude surface waves cause only small oscillatory motion round the equilibrium point, while larger amplitudes can cause the mass to start moving in the direction of the TW. This paper discussed the different possibilities of mass transfer by TW. 27 refs., 20 figs
Benard convection in liquid sodium layers
International Nuclear Information System (INIS)
Kek, V.
1989-08-01
In a sodium layer heated from below and cooled from above, the integral Nusselt numbers are determined in a range of Rayleigh numbers 1.5x10 3 5 . The experiments are performed in containers with dimensions of 500 mm in diameter and 15 mm and 45 mm in height. The relevant quantities are evaluated from measured temperature and heating power data. The experiments show that the heat transfer across the layer is determined mainly by heat conduction up to Rayleigh number Ra ≅ 10 4 . Beyond this value a significant increase of the convective heat transport is observed. At a Rayleigh number of 4x10 4 the Nusselt number achieves the value Nu = 1.7. This result differs from values given by Nusselt-Rayleigh number correlations reported in the literature for liquids with higher Prandtl number. A regression analysis of the experimental data results empirical correlations for the Nusselt number. A time series analysis of the time dependent temperature signals shows that the measured temperature fluctuations exhibit predominantly stochastic features. However, in the lower range of Rayleigh numbers 1.5x10 3 4 certain regular frequencies can be identified from peaks in broadband power density spectra. These frequencies correspond to fluctuations of a period of 80 to 200 seconds. These regular frequencies are explained by instabilities of the cellular pattern in the convection layer reported in the literature. (orig./HP) [de
Effective diffusion in laminar convective flows
International Nuclear Information System (INIS)
Rosenbluth, M.N.; Berk, H.L.; Doxas, I.; Horton, W.
1987-03-01
The effective diffusion coefficient D* of a passive component, such as test particles, dye, temperature, magnetic flux, etc., is derived for motion in periodic two-dimensional incompressible convective flow with characteristic velocity v and size d in the presence of an intrinsic local diffusivity D. Asymptotic solutions for effective diffusivity D*(P) in the large P limit, with P ∼ vd/D, is shown to be of the form D* = cDP/sup 1/2/ with c being a coefficient that is determined analytically. The constant c depends on the geometry of the convective cell and on an average of the flow speed along the separatrix. The asymptotic method of evaluation applies to both free boundary and rough boundary flow patterns and it is shown that the method can be extended to more complicated patterns such as the flows generated by rotating cylinders, as in the problem considered by Nadim, Cox, and Brenner [J. Fluid Mech., 164: 185 (1986)]. The diffusivity D* is readily calculated for small P, but the evaluation for arbitrary P requires numerical methods. Monte Carlo particle simulation codes are used to evaluate D* at arbitrary P, and thereby describe the transition for D* between the large and small P limits
Mixed phase evaporation source
International Nuclear Information System (INIS)
1975-01-01
Apparatus for reducing convection current heat loss in electron beam evaporator is described. A material to be evaporated (evaporant) is placed in the crucible of an electron beam evaporation source along with a porous mass formed of a powdered or finely divided solid to act as an impedance to convection currents. A feed system is employed to replenish the supply of evaporant as it is vaporized
Convective losses through an air-filled gap
Energy Technology Data Exchange (ETDEWEB)
Baum, V A; Ovezsakhatov, N
1976-01-01
Simplified formulas for the heat fluxes with given parameters of the air are used to calculate the specific heat losses by convection in a number of solar-energy systems (water heater, thermal generator, double-glazed window, and still). Heat losses by convection and radiation are compared.
Unravelling convective heat transfer in the Rotated Arc Mixer
Speetjens, M.F.M.; Baskan, O.; Metcalfe, G.; Clercx, H.J.H.
2014-01-01
Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations.
Solar wind effects on ionospheric convection: a review
DEFF Research Database (Denmark)
Lu, G.; Cowley, S.W.H.; Milan, S.E.
2002-01-01
), and travelling convection vortices (TCVs). Furthermore, the large-scale ionospheric convection configuration has also demonstrated a strong correspondence to variations in the interplanetary medium and substorm activity. This report briefly discusses the progress made over the past decade in studies...
Modulated convection at high frequencies and large modulation amplitudes
International Nuclear Information System (INIS)
Swift, J.B.; Hohenberg, P.C.
1987-01-01
Modulated Rayleigh-Benard convection is analyzed for high frequencies and large modulation amplitudes. The linear theory of Gershuni and Zhukhovitskii is generalized to the nonlinear domain, and a subcritical bifurcation to convection is found in agreement with the experiments of Niemela and Donnelly. The crossover between the high-frequency (''Stokes layer'') regime and the low-frequency regime studied previously is analyzed