WorldWideScience

Sample records for noise underground laboratory

  1. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  2. The Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Amare, J.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Gomez, H.; Luzon, G.; Martinez, M.; Morales, J.; Ortiz de Solorzano, A.; Pobes, C.; Puimedon, J.; Rodriguez, A.; Ruz, J.; Sarsa, M.L.; Torres, L.; Villar, J.A.

    2005-01-01

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories

  3. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  4. Measurements of the background noise gamma at the Modane underground laboratory

    International Nuclear Information System (INIS)

    Morales, A.; Morales, J.; Nunez-Lagos, R.; Villar, J.A.

    1985-01-01

    Experimental measurements of the background have been performed at the Modane underground laboratory, in the Frejus tunnel, in order to locate here a neutrinoless double beta decay on 76 Ge experiment. The background reduction relative to the sea level laboratory at Bordeaux is studied, as well as the intrinsic radiactivity the INa and F 2 Ba scintillators to be selected as a 4 coincidence crown for the experiment. (author)

  5. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  6. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  7. Seismic and resistivity anisotropy analysis at the Low-Noise Underground Laboratory (LSBB) of Rustrel (France)

    Science.gov (United States)

    Zeyen, H. J.; Bereš, J.; Gaffet, S.; Sénéchal, G.; Rousset, D.; Pessel, M.

    2011-12-01

    Many geological materials exhibit anisotropic behaviour. A limestone massif, especially if cracked with fractures and faults in a predominant orientation is expected to manifest seismic and electric resistivity anisotropy. Seismic velocity within air- or water-filled cracks is smaller than in the rock matrix. Therefore, the velocity parallel to fractures, controlled mainly by the rock matrix, is expected to be faster than perpendicular to the fractures, where waves have to cross fractures and rock matrix. Seismic and resistivity measurements were conducted in three underground galleries of the Low-Noise Underground Gallery (LSBB) in southern France forming a horse-shoe setting. The galleries are located inside a karstic limestone massif. Around 22500 first arrival travel-times were picked and different types of pole-pole and dipole-dipole resistivity measurement were carried out in parallel. Resistivities and velocities vary strongly with direction of observation. The direction of fast velocities is at right angle with the one of slow velocities, a typical sign for anisotropy. Observation of a system of subparallel fractures allows to approximate the actual rock anisotropy by a horizontal transverse isotropy model. The dataset was treated by different approaches, including simple cosine fit, inversion of average anisotropy parameters using a Monte-Carlo approach, isotropic and anisotropic tomography inversion. All of the above confirm the directions of fast and slow velocities (30°N and 120°N respectively) and an anisotropy of about 10%. Common measurements of seismic and resistivity data at different periods of the year will have the potential to determine quantitatively the fracture density and the free water content in this karst massif.

  8. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  9. First analyses of the iOSG-type superconducting gravimeter at the low noise underground laboratory (LSBB URL of Rustrel, France

    Directory of Open Access Journals (Sweden)

    Rosat Séverine

    2016-01-01

    Full Text Available In the last few years, the performance of the cryogenic gravity instruments has been further improved by the development of a new generation of superconducting gravimeter (SG: the so-called iOSG which is a superconducting gravimeter designed for observatory purpose with a heavier sphere than previous SGs. The first iOSG (iOSG-024 has been installed in July 2015 at the LSSB low background noise underground research laboratory in Rustrel (France, funded by the EQUIPEX MIGA (Matter wave-laser based Interferometer Gravitation Antenna project and by the European FEDER 2006-2013 “PFM LSBB – Développement des qualités environnementales du LSBB”. This instrument is operational since September 2015. We present the first tidal analyses of the 7-month time-varying gravity records of this newly installed instrument as well as the calibration results performed by parallel FG5 absolute gravity measurements. We also show the performances of iOSG-024 in terms of noise levels in the seismic (in the millihertz frequency range band using a standardized procedure based on the computation of the residual power spectral densities over a quiet time period. The obtained noise levels are compared with other SG sites and with seismological reference noise models. The combination of the instrumental performance of the iOSG with the LSBB site properties makes this gravimetric station one of the quietest in the world, comparable to the lower sensor of the OSG-56 at BFO, at seismic frequencies.

  10. Radioactive wastes: underground laboratories implantation

    International Nuclear Information System (INIS)

    Bataille, Ch.

    1997-01-01

    This article studies the situation of radioactive waste management, more especially the possible storage in deep laboratories. In front of the reaction of public opinion relative to the nuclear waste question, it was essential to begin by a study on the notions of liability, transparence and democracy. At the beginning, it was a matter of underground researches with a view to doing an eventual storage of high level radioactive wastes. The Parliament had to define, through the law, a behaviour able to come to the fore for anybody. A behaviour which won recognition from authorities, from scientists, from industrial people, which guarantees the rights of populations confronted to a problem whom they were not informed, on which they received only few explanations. (N.C.)

  11. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  12. A review of international underground laboratory developments

    International Nuclear Information System (INIS)

    Cheng Jianping; Yue Qian; Wu Shiyong; Shen Manbin

    2011-01-01

    Underground laboratories are essential for various important physics areas such as the search for dark matter, double beta decay, neutrino oscillation, and proton decay. At the same time, they are also a very important location for studying rock mechanics, earth structure evolution,and ecology. It is essential for a nation's basic research capability to construct and develop underground laboratories. In the past, China had no high-quality underground laboratory,in particular no deep underground laboratory,so her scientists could not work independently in major fields such as the search for dark matter,but had to collaborate with foreign scientists and share the space of foreign underground laboratories. In 2009, Tsinghua university collaborated with the Ertan Hydropower Development Company to construct an extremely deep underground laboratory, the first in China and currently the deepest in the world, in the Jinping traffic tunnel which was built to develop hydropower from the Yalong River in Sichuan province. This laboratory is named the China Jinping Underground Laboratory (CJPL) and formally opened on December 12, 2010. It is now a major independent platform in China and can host various leading basic research projects. We present a brief review of the development of various international underground laboratories,and especially describe CJPL in detail. (authors)

  13. Underground laboratories in Japan and North America

    International Nuclear Information System (INIS)

    Sobel, Henry W

    2006-01-01

    There is a blossoming demand for deep underground laboratory space to satisfy the expanding interest in experiments that require significant cosmic-ray shielding. I'll briefly describe the existing deep facilities and their plans for expansion. I will also discuss the planning for a new major underground facility in the U.S

  14. Inter-disciplinary Interactions in Underground Laboratories

    Science.gov (United States)

    Wang, J. S.; Bettini, A.

    2010-12-01

    Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new

  15. First Characterization of the Ultra-Shielded Chamber in the Low-noise Underground Laboratory (LSBB) of Rustrel Pays d'Apt

    CERN Document Server

    Waysand, G; Bongiraud, J P; Collar, J I; Dolabdjian, C; Le Thiec, P; Thiec, Ph. Le

    2000-01-01

    In compliance with international agreements on nuclear weapons limitation, the French ground-based nuclear arsenal has been decommissioned in its totality. One of its former underground missile control centers, located in Rustrel, 60 km east of Avignon (Provence) has been converted into the ``Laboratoire Souterrain à Bas Bruit de Rustrel-Pays d'Apt'' (LSBB). The deepest experimental hall (500 m of calcite rock overburden) includes a 100 m$^{2}$ area of sturdy flooring suspended by and resting on shock absorbers, entirely enclosed in a 28 m-long, 8 m-diameter, 1 cm-thick steel Faraday cage. This results in an unparalleled combination of shielding against cosmic rays, acoustic, seismic and electromagnetic noise, which can be exploited for rare event searches using ultra low-temperature and superconducting detectors. The first characterization measurements in this unique civilian site are reported. http://www.gps.jussieu.fr/RUSTREL/rustrel.html

  16. ANDES: An Underground Laboratory in South America

    Science.gov (United States)

    Dib, Claudio O.

    ANDES (Agua Negra Deep Experiment Site) is an underground laboratory, proposed to be built inside the Agua Negra road tunnel that will connect Chile (IV Region) with Argentina (San Juan Province) under the Andes Mountains. The Laboratory will be 1750 meters under the rock, becoming the 3rd deepest underground laboratory of this kind in the world, and the first in the Southern Hemisphere. ANDES will be an international Laboratory, managed by a Latin American consortium. The laboratory will host experiments in Particle and Astroparticle Physics, such as Neutrino and Dark Matter searches, Seismology, Geology, Geophysics and Biology. It will also be used for the development of low background instrumentation and related services. Here we present the general features of the proposed laboratory, the current status of the proposal and some of its opportunities for science.

  17. UNDERGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-11-15

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  18. UNDERGROUND

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  19. Underground laboratories: Cosmic silence, loud science

    Energy Technology Data Exchange (ETDEWEB)

    Coccia, Eugenio, E-mail: coccia@lngs.infn.i [Department of Physics, University of Rome ' Tor Vergata' and INFN Gran Sasso National Laboratory (Italy)

    2010-01-01

    Underground laboratories provide the low radioactive background environment necessary to host key experiments in the field of particle and astroparticle physics, nuclear astrophysics and other disciplines that can profit of their characteristics and of their infrastructures. The cosmic silence condition existing in these laboratories allows the search for extremely rare phenomena and the exploration of the highest energy scales that cannot be reached with accelerators. I briefly describe all the facilities that are presently in operation around the world.

  20. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  1. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  2. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Harms, J; Dorsher, S; Kandhasamy, S; Mandic, V [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Acernese, F; Barone, F [Universita degli Studi di Salerno, Fisciano (Saudi Arabia) (Italy); Bartos, I; Marka, S [Columbia University, New York, NY 10027 (United States); Beker, M; Van den Brand, J F J; Rabeling, D S [Nikhef, National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam (Netherlands); Christensen, N; Coughlin, M [Carleton College, Northfield, MN 55057 (United States); DeSalvo, R [California Institute of Technology, Pasadena, CA 91125 (United States); Heise, J; Trancynger, T [Sanford Underground Laboratory, 630 East Summit Street, Lead, SD 57754 (United States); Mueller, G [University of Florida, Gainesville, FL 32611 (United States); Naticchioni, L [Department of Physics, University of Rome ' Sapienza' , P.le Aldo Moro 2, 00185 Rome (Italy); O' Keefe, T [Saint Louis University, 3450 Lindell Blvd., St. Louis, MO 63103 (United States); Sajeva, A, E-mail: janosch@caltech.ed [Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Bruno Pontecorvo, Pisa (Italy)

    2010-11-21

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100 ft level as a world-class low seismic-noise environment.

  3. Neutrons from rock radioactivity in the new Canfranc underground laboratory

    International Nuclear Information System (INIS)

    Amare, J; Bauluz, B; Beltran, B; Carmona, J M; Cebrian, S; GarcIa, E; Gomez, H; Irastorza, I G; Luzon, G; MartInez, M; Morales, J; Solorzano, A Ortiz de; Pobes, C; Jpuimedon; RodrIguez, A; Ruz, J; Sarsa, M L; Torres, L; Villar, J A

    2006-01-01

    Measurements of radioactivity and composition of rock from the main hall of the new Canfranc underground laboratory are reported. Estimates of neutron production by spontaneous fission and (α, n) reactions are given

  4. Status and prospects of a deep underground laboratory in China

    International Nuclear Information System (INIS)

    Kang, K J; Cheng, J P; Li, Y J; Yue, Q; Chen, Y H; Shen, M B; Wu, S Y

    2010-01-01

    An excellent candidate location for a deep underground laboratory with more than 2500 m of rock overburden has been identified at Sichuan Province in China. It can be accessed through a road tunnel of length 17.5 km, and is supported by services and amenities near the entrance provided by the local Ertan Hydropower Plant. The particle physics community in China is actively pursuing the construction of an underground laboratory at this location, under the leadership of Tsinghua University. Memorandum has been signed with Ertan Hydropower Plant which permits access to and construction of the underground laboratory - China JinPing Deep Underground Laboratory (CJPL). The basic features of this underground site, as well as the status and schedules of the construction of the first laboratory cavern are presented. The immediate goal is to have the first experiment operational in 2010, deploying an Ultra-Low-Energy Germanium detector for WIMP dark matter searches, with emphasis on the mass range of 1-10 GeV. The conceptual design of the experiment, as well as the future plans and prospects of the laboratory, will be surveyed.

  5. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  6. Design study of the underground facilities, the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on the deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at the Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU consisted of surface and underground facilities excavated to a depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program, includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed in 1998, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  7. Design study of underground facility of the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU is consisted of surface and underground facilities down to the depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program which includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed last year, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  8. Underground laboratories for rock mechanics before radioactive waste

    International Nuclear Information System (INIS)

    Duffaut, P.

    1985-01-01

    Many rock mechanics tests are performed in situ, most of them underground since 1936 at the Beni Bahdel dam. The chief tests for understanding the rock mass behaviour are deformability tests (plate test and pressure cavern test, including creep experiments) and strength tests (compression of a mine pillar, shear test on rock mass or joint). Influence of moisture, heat, cold and freeze are other fields of investigation which deserve underground laboratories. Behaviour of test galleries, either unsupported or with various kinds of support, often is studied along time, and along the work progression, tunnel face advance, enlargement or deepening of the cross section. The examples given here help to clarify the concept of underground laboratory in spite of its many different objectives. 38 refs.; 1 figure; 1 table

  9. Development of excavation technologies at the Canadian underground research laboratory

    International Nuclear Information System (INIS)

    Kuzyk, Gregory W.; Martino, Jason B.

    2008-01-01

    Several countries, Canada being among them, are developing concepts for disposal of used fuel from power generating nuclear reactors. As in underground mining operations, the disposal facilities will require excavation of many kilometres of shafts and tunnels through the host rock mass. The need to maintain the stability of excavations and safety of workers will be of paramount importance. Also, excavations required for many radioactive waste repositories will ultimately need to be backfilled and sealed to maintain stability and minimize any potential for migration of radionuclides, should they escape their disposal containers. The method used to excavate the tunnels and shafts, and the rock damage that occurs due to excavation, will greatly affect the performance characteristics of repository sealing systems. The underground rock mechanics and geotechnical engineering work performed at the Canadian Underground Research Laboratory (URL) has led to the development of excavation technologies that reduce rock damage in subsurface excavations. This paper discusses the excavation methods used to construct the URL and their application in planning for the construction of similar underground laboratories and repositories for radioactive wastes. (author)

  10. Mission of mediation on planting underground research laboratories

    International Nuclear Information System (INIS)

    Bataille, C.

    1994-01-01

    France, who chose to have a strong nuclear industry, is confronted to the problem of management, treatment, storage and elimination of radioactive waste. The law defined an important research program with a study of underground storage in laboratories. Here is the report of this mission. A problem of people confidence arose; there is a difference between the great level of science or technology and the level of understanding of public opinion. The only answer brought by a democratic society is to develop information

  11. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  12. Proposal for the establishment of a national underground physics laboratory

    International Nuclear Information System (INIS)

    Mann, A.K.; Sharp, R.R. Jr.

    1982-01-01

    Advances in elementary particles physics and astrophysics during the past decade have indicated certain areas in those fields in which experiments of high potential significance, albeit great difficulty, need to be done. In general, these are experiments that seek to uncover rare, new physical phenomena, or to study quantitatively phenomena that are especially difficult to observe. Among them are: (1) the study of solar and other cosmic neutrinos; (2) the search for nucleon instability; (3) the search for non-zero neutrino mass through the study of neutrino stability and double beta-decay; and (4) intensive searches for and attempts to measure accurately very energetic, rare elementary particle interactions such as may be manifested, for example, in the so-called Centauro events. The nature of these experiments requires that they be shielded from the intense flux of cosmic ray muons and air showers on the earth's surface, and therefore that the experimental apparatus be located deep underground or in the deep sea. However, for most of the experiments, and the apparatus also needs to be very large in mass and volume, and highly instrumented to achieve the necessary measurement capability. It is proposed to establish a laboratory deep underground of sufficient scope to be capable of housing and maintaining a variety of experiments that employ the most advanced technology. A specific channel is discussed whereby a national underground physics laboratory might be formed. The desirable characteristics of such a laboratory are described, and a possible location is recommended. Detailed cost estimates are provided

  13. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  14. The Deep Underground Science and Engineering Laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T [Department of Physics, University of California Berkeley and the Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS50R5239, Berkeley, CA 94720-8146 (United States)], E-mail: KTLesko@lbl.gov

    2008-11-01

    The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.

  15. Low background Ge spectrometry at Gran Sasso underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Preusse, W [Istituto Nazionale di Fisica Nucleare, Lab. Nazionali del Gran Sasso, Assergi (Italy); Bucci, C [Istituto Nazionale di Fisica Nucleare, Lab. Nazionali del Gran Sasso, Assergi (Italy); Arpesella, C [Istituto Nazionale di Fisica Nucleare, Lab. Nazionali del Gran Sasso, Assergi (Italy)

    1997-03-01

    Under the shelter of 1400 m limestone rock the Gran Sasso underground laboratories in the Apennines (110 km north-east of Rome at a turn-off inside the Gran Sasso motorway tunnel) were designed for running large experiments in the field of neutrino, particle and astrophysics by international collaborations. These experiments have in common the basic requirement to be capable to detect very rare events like e.g. neutrino interactions and double beta decays. Due to this their permanent demands for selecting radiopure materials have led to the equipping of a Ge detector laboratory - at present with 6 large detectors. (orig./DG)

  16. Low background Ge spectrometry at Gran Sasso underground laboratories

    International Nuclear Information System (INIS)

    Preusse, W.; Bucci, C.; Arpesella, C.

    1997-01-01

    Under the shelter of 1400 m limestone rock the Gran Sasso underground laboratories in the Apennines (110 km north-east of Rome at a turn-off inside the Gran Sasso motorway tunnel) were designed for running large experiments in the field of neutrino, particle and astrophysics by international collaborations. These experiments have in common the basic requirement to be capable to detect very rare events like e.g. neutrino interactions and double beta decays. Due to this their permanent demands for selecting radiopure materials have led to the equipping of a Ge detector laboratory - at present with 6 large detectors. (orig./DG)

  17. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  18. Noise study in laboratories with exhaust fans

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Hashmi, R.; Shareef, A.

    2005-01-01

    Noise study has been carried out in 25 laboratories fitted with exhaust fans. We have studied A- Weighted equivalent sound pressure levels (dB(A) LAeJ and equivalent octave band sound pressure levels (dB L/sub eq/ in each of the laboratories surveyed. The data collected has been analyzed for Preferred Speech Interference Levels (PSIL). The results show that the interior noise levels in these laboratories vary from 59.6 to 72.2 dB(A) L/sub Aeq/, which are very high and much beyond the interior noise limits recommended for laboratories. Some ways and means to limit emission of high-level noise from exhaust fans are also discussed. (author)

  19. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    Ohta, M.M.; Chandler, N.A.

    1997-03-01

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)

  20. The deep underground science and engineering laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T, E-mail: ktlesko@lbl.go [Department of Physics, University of California Berkeley and Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50R5239, Berkeley, CA 94720-8156 (United States)

    2009-06-01

    The US National Science Foundation and the US underground science community are well into the campaign to establish a world-class, multi-disciplinary deep underground science and engineering laboratory - DUSEL. The NSF's review committee, following the first two NSF solicitations, selected Homestake as the prime site to be developed into an international, multidisciplinary, world-class research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer of the former Homestake Gold Mine and has initiated re-entry and rehabilitation of the facility to host a modest interim science program with state funds and those from a substantial philanthropic donor. I review the scientific case for DUSEL and the progress in developing the preliminary design of DUSEL in Homestake and the initial suite of experiments to be funded along with the facility.

  1. Radon and environmental radioactivity in the Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Bandac, I.; Bettini, A.; Borjabad, S.; Nunez-Lagos, R.; Perez, C.; Rodriguez, S.; Sanchez, P.; Villar, J. A.

    2014-01-01

    The results of more than one year of measurements of Radon and environmental radioactivity in the Canfranc Underground Laboratory (LSC) are presented. Radon and atmospheric parameters have registered by an Alpha guard P30 equipment and the environmental radioactivity has been measured by means of UD-802A Panasonic thermoluminescent dosimeters (TLD) processed by an UD716 Panasonic unit. Series of results along with their possible correlations are presented. Both the Radon level and the ambient dose equivalent H (10) are much lower than the allowed ones so no radiological risk exists to persons working in the LSC. Also its excellent environmental radiological quality has been confirmed. (Author)

  2. Neutron background measurements in the underground laboratory of Modane

    International Nuclear Information System (INIS)

    Chazal, V.; Chambon, B.; De Jesus, M.; Drain, D.; Pastor, C.; Vagneron, L.; Brissot, R.; Cavaignac, J.F.; Stutz, A.; Giraud-Heraud, Y.

    1997-07-01

    Measurements of the background neutron environment, at a depth of 1780 m (4800 mWe) in the Underground Laboratory of Modane (L.S.M) are reported. Using a 6 Li liquid scintillator, the energy spectrum of the fast neutron flux has been determined. Monte-Carlo calculations of the (α,n) and spontaneous fission processes in the surrounding rock has been performed and compared to the experimental result. In addition, using two 3 He neutron counters, the thermal neutron flux has been measured. (author)

  3. Studies and researches in the underground laboratory at Pasquasia mine

    International Nuclear Information System (INIS)

    Tassoni, E.; Cautilli, F.; Polizzano, C.; Zarlenga, F.

    1989-01-01

    The reliability of the geological disposal of radioactive wastes has to be verified both by laboratory and on site researches, under both surface and underground conditions. The tests carried out under high lithostatic stress can allow extrapolations to be made having absolute value at the depths planned for the construction of the repository. An underground laboratory was excavated at the Pasquasia mine (Enna-Sicilia). On the selected area a detailed geological survey (1:5000 scale) was carried out; for the purpose of studying the effects induced by the advancement of the excavation's face into the clayey mass and over the cross section of the transversal tunnel, several geotechnical measurement stations were installed. Structural observations were made on both the fronts and the walls of the tunnel for the purpose of characterizing the mechanical behaviour of the clayey mass. The 37 cubic blocks and the 72 samples collected during the excavation were analyzed from different point of view (sedimentological, mineralogical, geotechnical, etc.). After the excavation of the tunnel and the installation of the geotechnical stations, the measurements were carried out up to March 1987. At this date the work programme was unfortunately stopped by local authorities, unfoundly suspecting Pasquasia mine would be used as waste repository

  4. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  5. The Mile Deep Muon Detector at Sanford Underground Laboratory

    Science.gov (United States)

    McMahan, Margaret; Gabriel, Steve

    2012-03-01

    For educating students and teachers about basic nuclear and particle physics, you can't go wrong with cosmic rays muons as a cheap and reliable source of data. A simple and relatively inexpensive detector gives a myriad of possibilities to cover core material in physical science, chemistry, physics, and statistics and gives students opportunities to design their own investigations. At Sanford Underground Laboratory at Homestake, in Lead, SD, cosmic ray muon detectors are being used to answer the first question always asked by any visitor to the facility, ``Why are you building the lab a mile underground'' A conventional Quarknet-style detector is available in the education facility on the surface, with a much larger companion detector, the Mile Deep Muon Detector, set up 4850 feet below the surface. Using the Quarknet data acquisition board, the data will be made available to students and teachers through the Cosmic Ray E-lab website. The detector was tested and installed as part of a summer program for students beginning their first or second year of college.

  6. Monitoring and information management system at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J.

    1996-01-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  7. Monitoring and information management system at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  8. Characterization of BEGe detectors in the HADES underground laboratory

    Science.gov (United States)

    Andreotti, Erica; Gerda Collaboration

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope 76Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼ 25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼ 500 m water equivalent) in Mol, Belgium.

  9. Characterization of BEGe detectors in the HADES underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, Erica, E-mail: Erica.ANDREOTTI@ec.europa.eu [Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope {sup 76}Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼500m water equivalent) in Mol, Belgium.

  10. Environmental gamma background measurements in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Zhi Zeng; Jian Su; Hao Ma; Hengguan Yi; Jianping Cheng; Qian Yue; Junli Li; Hui Zhang

    2014-01-01

    To determine the environmental gamma background levels which affects rare events experiments, we measured in situ gamma spectrum at four locations in the China Jinping Underground Laboratory. The integral background count rates (40-2,700 keV) varied from 3.76 to 74.1 cps. The average count rate of the measurements inside the CJPL was 73.4 cps. The spectrometer was calibrated with a 152 Eu point source and Monte Carlo simulation to obtain the activity conversion factors for the rock and the air, respectively. The rocks that surrounded the CJPL was characterized by very low activity concentrations of 238 U (3.69-4.21 Bq kg -1 ), 232 Th (0.52-0.64 Bq kg -1 ) and 40 K (4.28 Bq kg -1 ). (author)

  11. The role of underground laboratories in nuclear waste disposal programmes

    International Nuclear Information System (INIS)

    2001-01-01

    Underground research laboratories (URLs) are essential to provide the scientific and technical information and practical experience that are needed for the design and construction of nuclear waste disposal facilities, as well as for the development of the safety case that must be presented at various stages of repository development. This report provides an overview of the purpose of URLs within repository development programmes; the range of URLs that have been developed, or are planned, in NEA Member countries to date; the various contributions that such facilities can make to repository development programmes and the development of a safety case; considerations on the timing of developing a URL within a national programme; and the opportunities and benefits of international co-operation in relation to URLs. (author)

  12. Room 209 excavation response test in the underground research laboratory

    International Nuclear Information System (INIS)

    Lang, P.A.

    1989-01-01

    An in situ excavation response test was conducted at the Canadian Underground Research Laboratory (URL) in conjunction with excavation of a tunnel (Room 209) through a near-vertical water-bearing fracture oriented perpendicular to the tunnel axis. Encountering a fracture with such desirable characteristics provided a unique opportunity during construction of the URL to try out instrumentation and analytical methods for use in the Excavation Response Experiment (ERE) planned as one of the major URL experiments. The test has produced a valuable data set for validating numerical models. Four modelling groups predicted the response that would be monitored by the instruments. The predictions of the mechanical response were generally good. However, the predictions of the permeability and hydraulic pressure changes in the fracture, and the water flows into the tunnel, were poor. It is concluded that we may not understand the mechanisms that occur in the fracture in response to excavation. Laboratory testing, and development of a contracting joint code, has been initiated to further investigate this phenomenon. Preliminary results indicate that the excavation damaged zone in the walls and crown is less than 0.5 m thick and has relatively low permeability. The damaged zone in the floor is at least 1 m thick and has relatively high permeability. The damage in the floor could be reduced in future excavations by using controlled blasting methods similar to those used for the walls and crown

  13. Mizunami Underground Research Laboratory project. Plan for fiscal year 2017

    International Nuclear Information System (INIS)

    Ishibashi, Masayuki; Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Takeuchi, Ryuji; Ikeda, Koki; Mikake, Shinichiro; Iyatomi, Yosuke; Sasao, Eiji; Koide, Kaoru

    2017-10-01

    The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: 'Development of countermeasure technologies for reducing groundwater inflow', 'Development of modelling technologies for mass transport' and 'Development of drift backfilling technology', based on the latest results of the synthesizing research and development (R and D). The R and D on three remaining important issues has been carrying out on the MIU Project. This report summarizes the R and D activities planned for fiscal year 2017 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase. (author)

  14. Tidal tilts observations in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Iafolla, V.; Nozzoli, S.; Milyukov, V.

    2001-01-01

    A new tilt meter, based on the technology for building a space-borne high-sensitivity accelerometer and manufactured at IFSI/CNR, has a been operating during several years in the INFN Gran Sasso underground laboratory. The results of the analysis of a three-year data set, processed with the program package ETERNA, to estimate earth tidal parameters are reported. For the best series of data (1998) tide measurement accuracies are: 0.5-1% for the M 2 (lunar principal) amplitude and 3-4% for the O 1 (lunar declination) amplitude. The tilt meter installed at a depth of 1400 m shows no clear evidence of meteorological effects. Observed tidal parameters are compared with theoretical tidal parameters predicted for a non-hydrostatic inelastic Earth model and demonstrate good agreement for the M 2 component. Due to the high accuracy of the tidal components prediction (better than 1%) tidal measurements were used to estimate the long-term stability of the instrument response

  15. Horonobe Underground Research Laboratory project. Plans of investigations during shaft and drift excavation (Construction of underground facilities: Phase II)

    International Nuclear Information System (INIS)

    2005-06-01

    Horonobe Underground Research Laboratory Project is planned for over 20 years to establish the scientific and technical basis for the underground disposal of high-level radioactive wastes in Japan. The investigations are conducted by JNC in three phases, from the surface (Phase I), during the construction of the underground facilities (Phase II), and using the facilities (Phase III). This report concerns the investigation plans for Phase II. During excavation of shafts and drifts, detailed geological and borehole investigation will be conducted and the geological model constructed in Phase I is evaluated and revised by newly acquired data of geophysical and geological environment. Detailed in-situ experiments, as well as the effects of shaft excavation, are also done to study long-term changes, rock properties, groundwater flow and chemistry to ensure the reliability of repository technology and establish safety assessment methodology. (S. Ohno)

  16. Measurement of cosmic ray flux in the China Jinping underground laboratory

    International Nuclear Information System (INIS)

    Wu Yucheng; Hao Xiqing; Yue Qian

    2013-01-01

    The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10 -10 /(cm 2 ·s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL. (authors)

  17. [Analysis on occupational noise-induced hearing loss of different type workers in underground mining].

    Science.gov (United States)

    Liu, Q C; Duo, C H; Wang, Z; Yan, K; Zhang, J; Xiong, W; Zhu, M

    2017-11-20

    Objective: To investigate hearing loss status of blasters, drillers mechanics and so on in underground mining, and put forward suggestion diagnosis of occupational explosive deafness and occupational deafness. Methods: Underground excavation workers in a metal mine were recruited in this study, those with a history of ear disease and non-occupational deafness were all excluded. Finally, the features of pure tone audiometry of 459 noise-exposed workers were analyzed. Results: High-frequency hearing loss occurred on 351workers and the positive detection rate was 74.29%, workers who had both high-frequency and linguistic frequency hearing loss were 51 and the positive detection rate was 11.11%. The positive detection of high-frequency hearing loss in right ear (χ(2)=9.427 and P = 0.024) and in left ear (χ(2)=14.375, P =0.002) was significantly different between different exposure age groups. The positive detection of high-frequency hearing loss of driving group was the highest, followed by blasting group, mining group and machine repair group. The characteristics of the hearing loss caused by drilling noise of the blasting workers with no accident occurred were in line with that of noise-induced hearing loss. Conclusion: The diagnosis grading should be carried out according to the diagnostic criteria of occupational noise-induced deafness for the employees who engaged in the blasting operation with no record of blast accident.

  18. Investigating properties of white noise in the undergraduate laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Umer; Shamim, Sohaib; Anwar, M Sabieh [School of Science and Engineering, Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A, Lahore 54792 (Pakistan)], E-mail: umersiddiqui@lums.edu.pk, E-mail: sohaibshamim@lums.edu.pk, E-mail: sabieh@lums.edu.pk

    2009-09-15

    This paper describes a simple noise circuit for the undergraduate physics laboratory. Students use this circuit to study the properties of electrical noise on a personal computer. This is made possible by using a data acquisition system that allows the experimenters to obtain large amounts of data on the computer, suitable for subsequent mathematical computations. Various properties such as mean, noise power, noise power density and the probability distribution of noise voltages are also explored.

  19. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  20. Horonobe Underground Research Laboratory project. Investigation report for the 2006 fiscal year

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Nakayama, Masashi; Sanada, Hiroyuki

    2008-05-01

    The Horonobe Underground Research Laboratory is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2006 fiscal year (2006/2007), the second year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2006 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in, collaboration with experts from domestic and overseas research organisation. (author)

  1. Horonobe Underground Research Laboratory project investigation report for the 2008 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sano, Michiaki; Sanada, Hiroyuki; Sugita, Yutaka

    2009-11-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations' 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2008 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  2. Horonobe Underground Research Laboratory project. Investigation report for the 2010 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sawada, Sumiyuki; Sugita, Yutaka

    2011-09-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2010 fiscal year (2010/2011). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2010 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  3. Effectiveness evaluation of existing noise controls in a deep shaft underground mine.

    Science.gov (United States)

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R; Lee, Vivien; Hu, Chengcheng

    2015-01-01

    Noise exposures and hearing loss in the mining industry continue to be a major problem, despite advances in noise control technologies. This study evaluated the effectiveness of engineering, administrative, and personal noise controls using both traditional and in-ear dosimetry by job task, work shift, and five types of earplug. The noise exposures of 22 miners performing deep shaft-sinking tasks were evaluated during 56 rotating shifts in an underground mine. Miners were earplug-insertion trained, earplug fit-tested, and monitored utilizing traditional and in-ear dosimetry. The mean TWA8 noise exposure via traditional dosimetry was 90.1 ± 8.2 dBA, while the mean in-ear TWA8 was 79.6 ± 13.8 dBA. The latter was significantly lower (p < 0.05) than the Mine Safety and Health Administration (MSHA) personal exposure limit (PEL) of 90 dBA. Dosimetry mean TWA8 noise exposures for bench blowing (103.5 ± 0.9 dBA), jumbo drill operation (103.0 ± 0.8 dBA), and mucking tasks (99.6 ± 4.7 dBA) were significantly higher (p < 0.05) than other tasks. For bench blowing, cable pulling, grinding, and jumbo drill operation tasks, the mean in-ear TWA8 was greater than 85 dBA. Those working swing shift had a significantly higher (p < 0.001) mean TWA8 noise exposure (95.4 ± 7.3 dBA) than those working day shift. For percent difference between traditional vs. in-ear dosimetry, there was no significant difference among types of earplug used. Reflective of occupational hearing loss rate trends across the mining industry, this study found that, despite existing engineering and administrative controls, noise exposure levels exceeded regulatory limits, while the addition of personal hearing protection limited excessive exposures.

  4. Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Yue Qian; Wong, Henry T

    2012-01-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  5. The underground research laboratory room 209 excavation response test

    International Nuclear Information System (INIS)

    Simmons, G.R.

    1992-02-01

    The response of the rock mass to excavation is an important factor in the design and performance of underground excavations and installations. This is particularly true in the excavation of vaults for the disposal of nuclear fuel waste, where the conditions in the rock mass around the disposal areas may affect the performance of engineered sealing systems installed to isolate the waste. The factors influencing, and mechanisms controlling, rock mass response to excavation must be understood in order to accommodate excavation response effects in disposal vault design and construction

  6. The Gran Sasso underground laboratories (measurements of rock radioactivity and neutron fluxes)

    International Nuclear Information System (INIS)

    Bellotti, E.; Buraschi, M.; Fiorini, E.; Liguori, C.

    1985-01-01

    The authors report on measurements of rock radioactivity and neutron flux performed in the Gran Sasso underground laboratories of the INFN in Italy. The Gran Sasso' Laboratories of the INFN are located underground, in galleries which have been excavated under the Gran Sasso mountain range. The minimum rock thickness covering the laboratories is about 1400 m of rock of average density 2.8 g cm/sup -3/, corresponding to a thickness of some 4000 m of water equivalent. The laboratories are located at about 1000 m above sea level. The main destination of these laboratories is to shelter very huge particle detectors which shall detect extremely rare nuclear events of extraordinary interest for particle physics as well as for astrophysics and cosmology. In these laboratories, the radiation background is expected to be extremely low, which is the main condition for performing the proposed experiments

  7. The planning of future research program of underground laboratories in overseas

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Tanai, Kenji; Hasegawa, Hiroshi

    2002-02-01

    The objectives of this study is to identify the research issues, which are to be conducted in the future underground research laboratory, about operation and logistics systems for the planning of future research and development program. The research programs and experiments, etc. were investigated for the geological disposal projects in overseas sedimentary rocks and coastal geological environments aiming to reflect in the future underground research facility plan in Japan. In the investigation, information on the engineered-barrier performance, design and construction of underground facilities, tunnel support, transportation and emplacement, and backfilling technology, etc. were collected. Based on these informations, the purpose, the content, and the result of each investigations and tests were arranged. The strategy and the aim in the entire underground research facility, and the flow of investigations and tests, etc. were also arranged from the purpose, the relations and the sequence of each investigation and experiment, and the usage of results, etc. (author)

  8. Noise Levels in Dental Offices and Laboratories in Hamedan, Iran

    Directory of Open Access Journals (Sweden)

    F. Mojarad

    2009-12-01

    Full Text Available Objective: Noise pollution is one of the most important situations requiring a solution by the contemporary world. The National Institute for Occupational Safety and Health has identified noise as one of the ten leading causes of work-related diseases and injuries.Dentists and dental auxiliaries are exposed to different noise levels while working in dental offices or laboratories. The purpose of this study was to measure the noise level made by different dental instruments in dental offices and laboratories.Materials and Methods: Measurement of the noise level was performed in 89 dental offices and nine dental laboratories. The noise levels were determined using a sound level meter; type SL-4011(Lutron ,which was placed at the operator’s ear level in dental offices and laboratories and also at two-meter distance from the technician’s ear in laboratories.Results: The maximum sound level was 85.8 dB in dental offices and 92.0 dB in laboratories.In dental clinics, the highest noise was produced by the ultrasonic-scaler (85.8 dB and the lowest noise (49.7 dB by the high-volume aspirator, whereas in the laboratory,the highest noise was caused during grinding by the stonecutter (92.0 dB and the lowest by the denture-polishing unit (41.0 dB.Conclusion: After close evaluation, we believe that the maximum noise level in dental offices, although often beneath the damaging noise level for the human ear, is very close to the limit of hearing loss (85.0 dB. However, laboratory technicians may be at risk ifthey choose not to wear ear protection (earplugs or earmuffs.

  9. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  10. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  11. Results of single borehole hydraulic testing in the Mizunami Underground Research Laboratory project. Phase 2

    International Nuclear Information System (INIS)

    Daimaru, Shuji; Takeuchi, Ryuji; Onoe, Hironori; Saegusa, Hiromitsu

    2012-09-01

    This report summarize the results of the single borehole hydraulic tests of 79 sections conducted as part of the Construction phase (Phase 2) in the Mizunami Underground Research Laboratory (MIU) Project. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical method used are presented in this report. (author)

  12. Measurement of low radioactivity in underground laboratories by means of many-dimensional spectrometry

    International Nuclear Information System (INIS)

    Niese, Siegfried

    2008-01-01

    In this contribution beside the possibilities for the measurements in underground laboratories also the application of the many-dimensional spectrometry is considered, under which coincidence, anticoincidence, and time-resolving spectrometric are to be understood. Very extensively the interaction of cosmic radiation with matter is considered

  13. Study on an equivalent continuum model at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tanno, Takeo; Sato, Toshinori; Matsui, Hiroya; Sanada, Hiroyuki; Kumasaka, Hiroo; Tada, Hiroyuki

    2012-01-01

    The Japan Atomic Energy Agency (JAEA) is conducting the MIzunami Underground research laboratory (MIU) Project in order to develop comprehensive geological investigation and engineering techniques for deep underground applications (e.g. geological disposal of HLW). This modelling study has a two-fold objective, to contribute to the evaluation of the mechanical stability of shaft and research drifts, and to plan the future studies. A crack tensor model, a method of an equivalent continuum model, has been studied at the MIU. In this study, the relationship between the estimated crack tensor parameters and the rock mass classification was revealed. (author)

  14. Groundwater flow modeling in construction phase of the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Takeuchi, Ryuji

    2016-01-01

    This paper comprehensively describes the result of groundwater flow modeling using data of hydraulic responses due to construction of Mizunami Underground Research Laboratory (MIU) in Mizunami, Gifu, in order to update hydrogeological model based on stepwise approach for crystalline fractured rock in Japan. The results showed that large scale hydraulic compartment structures which has significant influence on change of groundwater flow characteristics are distributed around MIU. Furthermore, it is concluded that hydrogeological monitoring data and groundwater flow modeling during construction of deep underground facilities are effective for hydrogeological characterization of heterogeneous fractured rock. (author)

  15. The underground laboratory. A unique scientific tool to design a reversible storage

    International Nuclear Information System (INIS)

    2010-07-01

    The National Radioactive Waste Management Agency (Andra), was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. The Andra is carrying out studies on deep reversible waste storage for high-level and long living intermediate-level radioactive wastes thanks to the underground laboratory of its Meuse/Haute-Marne center. This brochure presents the geologic surveys which have led to the selection of the Callovo-Oxfordian argillite formation for the sitting of the underground lab and the underground architecture of the lab. The rock mechanic, heat transfer and rock-fluid interaction experiments carried out in the lab in collaboration with several scientific partners are briefly summarised

  16. Wireless transmission of monitoring data out of the Hades underground laboratory

    International Nuclear Information System (INIS)

    Schroeder, T.J.; Hart, J.

    2012-01-01

    Document available in extended abstract form only. For the monitoring of geological waste disposal in the post-closure phase, data acquired by the underground monitoring system inside the repository need to be transmitted wirelessly through the underground to the surface. Low frequency magneto-induction techniques as applied in mine communication and rescue can potentially be used for the wireless transmission of data from the repository to the surface. However, the propagation of magnetic fields through porous argillaceous rocks like the Boom Clay is hindered by the high electrical conductivity of the rock. As part of the European 7. framework project MoDeRn, Monitoring Developments for safe Repository operation and staged closure, NRG is conducting tests on the wireless transmission of monitoring data under conditions representative for a generic Dutch disposal in Boom Clay. This should help to judge the general feasibility of long-term wireless data transmission from an underground repository through the enclosing host rock and the overlying geosphere to the surface. Experimental work As contribution to the MoDeRn Work Package 3, In-situ demonstration of innovative monitoring techniques, NRG conducts tests on the wireless transmission of signals and data. The wireless data transmission experiments of NRG are being performed at the HADES Underground Research Laboratory (URL) in Mol, Belgium, situated at 225 m depth in a 100 m thick layer of Boom Clay. The main objective of the contribution is to quantify and optimise the energy efficiency of the transmission technique used. Because the Boom Clay and the overlying aquifers attenuate the magnetic fields more strongly than other host rocks, it is assumed that transmission experiments performed in the HADES give a more realistic picture on field propagation than experiments performed e.g. in granite, salt rock or Opalinus clay. Although the generic depth for the Dutch disposal design is 500 m, the experiments

  17. Horonobe Underground Research Laboratory project. Investigation report for the 2007 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sanada, Hiroyuki; Sugita, Yutaka

    2008-09-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2007 fiscal year (2007/2008), the 3rd year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2007 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in collaboration with experts from domestic and overseas research organisation. (author)

  18. Increasing the Signal to Noise Ratio in a Chemistry Laboratory ...

    African Journals Online (AJOL)

    Increasing the Signal to Noise Ratio in a Chemistry Laboratory - Improving a Practical for Academic Development Students. ... Analysis of data collected in 2001 shows that the changes made a significant impact on the effectiveness of the laboratory session. South African Journal of Chemistry Vol.56 2003: 47-53 ...

  19. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    Noda, Masaru; Suyama, Yasuhiro; Nobuto, Jun; Ijiri, Yuji; Mikake, Shinichiro; Matsui, Hiroya

    2009-07-01

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  20. Horonobe Underground Research Laboratory project. Investigation program for the 2008 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sanada, Hiroyuki; Yamaguchi, Takehiro; Sugita, Yutaka

    2008-09-01

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. In the 2008 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for long-term monitoring of the geological environment', 'development of engineering techniques for use in the deep underground environment' and studies on the long-term stability of the geological environment', are continuously carried out. Investigations in 'research and development on geological disposal technology', including 'improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies', are also continuously carried out

  1. Neutrino astrophysics with the MACRO detector in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Ronga, F.

    1998-01-01

    We present the results of a search for neutrino emission from celestial objects and of a search for coincidences with gamma ray bursts. We have computed flux limits for WIMPS coming from the center of the Earth and of the Sun. For this search we used 605 upward-going muons produced by neutrino interactions in the rock below the MACRO detector in the underground Gran Sasso Laboratory. (orig.)

  2. HA Cells monitoring at the Underground Research Laboratory (URL) in the CMHM (Andra)

    International Nuclear Information System (INIS)

    Gay, Olivier; Allagnat, Dominique; Morel, Jacques; Armand, Gilles

    2010-01-01

    The experimental monitoring program of the HA (High Activity) cells was carried out at the Underground Research Laboratory (URL) in the Meuse Haute Marne department in France (CMHM Andra). Inspections made by video and photographs, section measurements and geo-referenced trajectories, in addition to measurements of convergence, temperature and hygrometry over time, allowed a better analysis of the behaviour of the HA cells after excavation, and subsequently over the long term. (authors)

  3. The Horonobe Underground Research Laboratory (Tentative name) Project. A program on survey and research performed from earth surface

    International Nuclear Information System (INIS)

    2001-03-01

    The Horonobe Underground Research Laboratory (Tentative name) Project under planning at Horonobe-machi by the Japan Nuclear Cycle Development Institute (JNC) is a research facility on deep underground shown in the Long-term program on research, development and application of nuclear energy (June, 1994)' (LPNE), where some researches on the deep underground targeted at sedimentary rocks are carried out. The plan on The Horonobe Underground Research Laboratory performed at Horonobe-machi' is an about 20 years plan ranging from beginning to finishing of its survey and research, which is carried out by three steps such as 'Survey and research performed from earth surface', 'Survey and research performed under excavation of road', and Survey and research performed by using the road'. The Horonobe Underground Research Laboratory is one of research facilities on deep underground shown its importance in LPNE, and carries out some researches on the deep underground at a target of the sedimentary rocks. And also The Horonobe Underground Research Laboratory confirms some technical reliability and support on stratum disposal shown in the 'Technical reliability on stratum disposal of the high level radioactive wastes. The Second Progress Report of R and D on geological disposal' summarized on November, 1999 by JNC through actual tests and researches at the deep stratum. The obtained results are intended to reflect to disposal business of The Horonobe Underground Research Laboratory and safety regulation and so on performed by the government, together with results of stratum science research, at the Tono Geoscience Center, of geological disposal R and D at the Tokai Works, or of international collaborations. For R and D at the The Horonobe Underground Research Laboratory after 2000, following subjects are shown: 1) Survey technique on long-term stability of geological environment, 2) Survey technique on geological environment, 3) Engineering technique on engineered barrier and

  4. A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

    Science.gov (United States)

    Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.

    2018-04-01

    The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

  5. Low-level counting techniques in the underground laboratory `Felsenkeller` in Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Niese, S [Nuclear Engineering and Analytics Rossendorf, Inc., Dresden (Germany); Koehler, M [Nuclear Engineering and Analytics Rossendorf, Inc., Dresden (Germany)

    1997-03-01

    Low radioactivity measurements are characterized by low detection limits. They are mainly determined by the background. The contribution of cosmic rays may be reduced drastically by installation of measurement devices in an underground laboratory. In 1982 we installed a chamber with a shield of ultramafic rock for low-level measurements within a cave of an old brewery named `Felsenkeller`. In this laboratory we used low-level {gamma}-spectrometry for the measurement of neutron activated samples of semiconductor silicon (Niese (1986)), of cosmic induced radioactivity in meteorites, chemically separated long-lived nuclides in low-level wastes, contaminated materials and of environmental samples. (orig./DG)

  6. The second-phase development of the China JinPing underground Laboratory

    OpenAIRE

    Li, Jainmin; Ji, Xiangdong; Haxton, Wick; Wang, Joseph S. Y.

    2014-01-01

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m^3, which can be compared to the existing CJPL-I volume of 4,000 m^3. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to ...

  7. Collection of measurement data in 2013 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Kawate, Satoshi

    2015-12-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, “Geoscientific Research” and “R and D on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations were planned. At the beginning of the Phase II investigations, an investigation report titled “Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project” (hereinafter referred to as “Observational Construction Programs”) and an investigation report titled “Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project” were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the West Shaft and the drifts in 2013 fiscal year for the purpose of the basic data for carrying out the Observational Construction Program. A DVD-ROM is

  8. Collection of URL measurement data in 2010 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke; Sawada, Sumiyuki; Tokiwa, Tetsuya; Tsusaka, Kimikazu; Amano, Yuki; Niinuma, Hiroaki

    2012-09-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the begining of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2010 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  9. Collection of URL measurement data in 2011 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke; Tokiwa, Tetsuya; Murakami, Hiroaki

    2013-02-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2011 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  10. Collection of measurement data in 2012 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke

    2014-03-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the begining of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2012 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition of the basic data

  11. Synthesized research report in the second mid-term research phase. Mizunami Underground Research Laboratory project, Horonobe Underground Research Laboratory project and geo-stability project (Translated document)

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Osawa, Hideaki; Nagae, Isako; Natsuyama, Ryoko; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; Nakayama, Masashi; Miyakawa, Kazuya; Ito, Hiroaki; Ohyama, Takuya; Senba, Takeshi; Amano, Kenji

    2016-08-01

    We have synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second mid-term research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High-quality construction techniques and field investigation methods have been developed and implemented, which will be directly applicable to the National Disposal Program (together with general assessments of hazardous natural events and processes). Acquisition of technical knowledge on decisions of partial backfilling and final closure from actual field experiments in the Mizunami/Horonobe URLs will be crucial as the main theme for the next phases. (author)

  12. The Mizunami underground research laboratory in Japan - programme for study of the deep geological environment

    International Nuclear Information System (INIS)

    Sakuma, Hideki; Sugihara, Kozo; Koide, Kaoru; Mikake, Shinichiro

    1998-01-01

    This paper is an overview of the PNC's Mizunami Underground Research Laboratory project in Mizunami City, central Japan. The Mizunami Underground Research Laboratory now will succeed the Kamaishi Mine as the main facility for the geoscientific study of the crystalline environment. The site will never be considered as a site for a repository. The surface-based investigations, planned to continue for some 5 years commenced in the autumn 1997. The construction of the facility to the depth of 1000 m is currently planned to: Develop comprehensive investigation techniques for geological environment; Acquire data on the deep geological environment and to; Develop a range of engineering techniques for deep underground application. Besides PNC research, the facility will also be used to promote deeper understanding of earthquakes, to perform experiments under micro-gravity conditions etc. The geology of the site is shortly as follows: The sedimentary overburden some 20 - 100 m in thickness is of age 2 - 20 million years. The basement granite is approx. 70 million years. A reverse fault is crosscutting the site. The identified fault offers interesting possibilities for important research. Part of the work during the surface-based investigations, is to drill and test deep boreholes to a planned depth up to 2000 m. Based on the investigations, predictions will be made what geological environment will be encountered during the Construction Phase. Also the effect of construction will be predicted. Methodology for evaluation of predictions will be established

  13. Data of fractures based on the deep borehole investigations in the Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Kusano, Tomohiro; Ishii, Eiichi

    2016-02-01

    Japan Atomic Energy Agency (JAEA) is performing the Horonobe Underground Research Laboratory Project, which includes a scientific study of the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes (HLW), in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the sedimentary rock. This report aims at compiling fracture data of drill core obtained from the Horonobe Underground Research Laboratory Project (Phase 1). (author)

  14. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  15. Addressing issues raised by stakeholders: example of the underground research laboratory of Meuse/Haute-Marne

    International Nuclear Information System (INIS)

    Piguet, Jacques-Pierre

    2004-01-01

    The aim of the Underground Research Laboratory (URL) project is the feasibility assessment of a deep underground repository of high activity / long life radioactive wastes, located at about 300 km from Paris near the border of the Lorraine and Champagne-Ardennes regions. It appears that the confidence relating to the URL project needs to be built upon excellent and strong relations and collaboration with the scientific community. The necessary condition for the acceptance of citizens is to be based upon the conviction that the scientific work is carried on seriously, with the best specialists and up-to-date methods, under a rigorous control, and in opened context. However, these considerations today only concern the URL project, and there is no clear indication about the potential acceptance of an eventual repository

  16. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    Energy Technology Data Exchange (ETDEWEB)

    Ilgner, Ch. [Nuclear Astrophysics group, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2015-07-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the

  17. Wireless Transmission of Monitoring Data out of an Underground Repository: Results of Field Demonstrations Performed at the HADES Underground Laboratory - 13589

    International Nuclear Information System (INIS)

    Schroeder, T.J.; Rosca-Bocancea, E.; Hart, J.

    2013-01-01

    As part of the European 7. framework project MoDeRn, Nuclear Research and Consultancy Group (NRG) performed experiments in order to demonstrate the feasibility of wireless data transmission through the subsurface over large distances by low frequency magnetic fields in the framework of the geological disposal of radioactive waste. The main objective of NRG's contribution is to characterize and optimize the energy use of this technique within the specific context of post-closure monitoring of a repository. For that, measurements have been performed in the HADES Underground Research Laboratory (URL) located at Mol, Belgium, at 225 m depth. The experimental set-up utilizes a loop antenna for the transmitter that has been matched to the existing infrastructure of the HADES. Between 2010 and 2012 NRG carried out several experiments at the HADES URL in order to test the technical set-up and to characterize the propagation behavior of the geological medium and the local background noise pattern. Transmission channels have been identified and data transmission has been demonstrated at several frequencies, with data rates up to 10 bit/s and bit error rates <1%. A mathematical model description that includes the most relevant characteristics of the transmitter, transmission path, and receiver has been developed and applied to analyze possible options to optimize the set-up. With respect to the energy-efficiency, results so far have shown that data transmission over larger distances through the subsurface is a feasible option. To support the conclusions on the energy need per bit of transmitted data, additional experiments are foreseen. (authors)

  18. Scientific investigation in deep boreholes at the Meuse/Haute Marne underground research laboratory, northeastern France

    International Nuclear Information System (INIS)

    Rebours, H.; Delay, J.; Vinsot, A.

    2006-01-01

    From 1994 to 1996, the preliminary investigation carried out by Andra, identified a sector favourable for hosting a laboratory in argillaceous Callovo-Oxfordian formation which has a thickness of 130 m and lies more than 400 m below ground level. In November 1999 Andra began building an Underground Research Laboratory (URL) with a 3D seismic survey over 4 km 2 . From 2000 to 2004, large programs of boreholes were carried out on site and on the sector in order to define the characteristics of formations, to improve the regional geological and hydrogeological knowledge and to provide an accurate definition of structural features in Callovo-Oxfordian argillites and Dogger limestones. These drilling programs have provided a fine characterization of the argillites on the laboratory area and a good correlation of geological properties at a sector scale. (author)

  19. Horonobe Underground Research Laboratory project investigation program for the 2007 fiscal year (Translated document)

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Nakayama, Masashi; Sanada, Hiroyuki; Yamaguchi, Takehiro

    2008-09-01

    As past of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2007 fiscal year (2007/2008), the third year of the Phase 2 investigations. In the 2007 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for use in the deep underground environment' and 'studies on the long-term stability of the geological environment', is continuously carried out. Investigations in 'research and development on geological disposal technology', including improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies' are also continuously carried out. Construction of the underground facilities is ongoing at the Ventilation Shaft and the East Shaft

  20. The ICARUS T600 Liquid Argon Detector Operation in the Underground Gran Sasso Laboratory

    CERN Document Server

    Vignoli, C

    2014-01-01

    The ICARUS T600 Module is the largest liquid argon detector (760 t LAr mass) ever realized to study neutrino oscill ations and matter stability in the deep underground Gran Sasso Laboratory. One of t he key elements for the detector performance is the liquid argon purity: residual electronegative compounds in argon have to be kept as low as 0.1 part s per billion all over the detector run. The T600 Module design was finalized by the ICARUS Collaboration after years of R&D studies that brought to the viable and scalable industrial solutions necessary for sized experiments with severe safety prescriptions for the underground operation . We present the T600 Module successful commissioning and the 3-years efficient, stable and continuous operation with extraordinary LAr purity, high performance and zero dead time data taking . This result demonstrates for the first time the feasibility of activation and long-term run in safe conditions of sized cryogenic detectors even in a confined underground location and r...

  1. Field observations and failure analysis of an excavation damaged zone in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Ishii, Eiichi; Ishida, Tsuyoshi

    2017-01-01

    In the construction of a deep underground facility, the hydromechanical properties of the rock mass around an underground opening are changed significantly due to stress redistribution. This zone is called an excavation damaged zone (EDZ). In high-level radioactive waste disposal, EDZs can provide a shortcut for the escape of radionuclides to the surface environment. Therefore, it is important to develop a method for predicting the detailed characteristics of EDZs. For prediction of the EDZ in the Horonobe Underground Research Laboratory of Japan, we conducted borehole televiewer surveys, rock core analyses, and repeated hydraulic conductivity measurements. We observed that niche excavation resulted in the formation of extension fractures within 0.2 to 1.0 m into the niche wall, i.e., the extent of the EDZ is within 0.2 to 1.0 m into the niche wall. These results are largely consistent with the results of a finite element analysis implemented with the failure criteria considering failure mode. The hydraulic conductivity in the EDZ was increased by 3 to 5 orders of magnitude compared with the outer zone. The hydraulic conductivity in and around the EDZ has not changed significantly in the two years following excavation of the niche. These results show that short-term unloading due to excavation of the niche created a highly permeable EDZ. (author)

  2. Field tracer transport experiments at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Frost, L.H.; Davison, C.C.; Vandergraaf, T.T.; Scheier, N.W.; Kozak, E.T.

    1997-01-01

    To gain a better understanding of the processes affecting solute transport in fractured crystalline rock, groundwater tracer experiments are being performed within natural fracture domains and excavation damage zones at various scales at the site of AECL's Underground Research Laboratory (URL). The main objective of these experiments is to develop and demonstrate methods for characterizing the solute transport properties within fractured crystalline rock. Estimates of these properties are in turn being used in AECL's conceptual and numerical models of groundwater flow and solute transport through the geosphere surrounding a nuclear fuel waste disposal vault in plutonic rock of the Canadian Shield. (author)

  3. VIRTUS. Virtual underground laboratory in rock salt; VIRTUS. Virtuelles Untertagelabor im Steinsalz

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Behlau, Joachim; Heemann, Ulrich [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Masik, Steffen; Raab, Michael [Fraunhofer-Institut fuer Fabrikbetrieb und -Automatisierung (IFF), Magdeburg (Germany); Mueller, Christian; Simo, Eric Kuate [DBE Technology GmbH, Peine (Germany)

    2014-12-15

    Germany does not have an underground laboratory to study the behavior of geological formations for the use as final repository for radioactive high-level wastes. VIRTUS was developed to have an adequate tool to study the complex and safety relevant processes in geological structures for a fast and effective planning and testing of final repository design. The three-dimensional visualization of the numerical simulations results will help n the scientists and the interested public to understand the process flows in a final repository.

  4. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    Science.gov (United States)

    Mitrica, Bogdan; Stanca, Denis; Brancus, Iliana; Margineanu, Romul; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Saftoiu, Alexandra; Toma, Gabriel; Rebel, Heinigerd; Haungs, Andreas; Sima, Octavian; Gherghel-Lascu, Alexandru; Niculescu-Oglinzanu, Mihai

    2015-02-01

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting

  5. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Mitrica, Bogdan; Stanca, Denis; Brancus, Iliana; Margineanu, Romul; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Saftoiu, Alexandra; Toma, Gabriel; Gherghel-Lascu, Alexandru; Niculescu-Oglinzanu, Mihai [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, P.O.B. MG-6, Bucharest (Romania); Rebel, Heinigerd; Haungs, Andreas [Institute of Experimental Nuclear Physics, Karlsruhe Institute of Technology-Campus North, 76021 Karlsruhe (Germany); Sima, Octavian [Department of Physics, University of Bucharest, 077125 Magurele (Romania)

    2015-02-24

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting

  6. Horonobe Underground Research Laboratory Project. Plans for surface-based investigations. Phase 1

    International Nuclear Information System (INIS)

    Goto, Junichi; Hama, Katsuhiro

    2003-10-01

    The Horonobe Underground Research Laboratory Project is an investigation project which is planned over 20 years. The investigations are conducted in the three phases: investigations from surface (Phase 1), investigations during construction of the underground facility (Phase 2) and investigations using the facility (Phase 3). Taking into account the results from 'H12: Project of Establish the Scientific and Technical Basis for HLW Disposal in Japan - Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan-' (JNC, 2000), research and development goals for the Horonobe URL project were re-defined as follows; a) Development of investigation technologies for the geological environment, b) Development of monitoring technologies for the geological environment, c) Study on the long-term stability of the geological environment, d) Development of the basis for engineering technologies in deep underground, e) Verification of technologies for engineered barriers, f) Development of detailed designing technologies of the repositories, and g) Improvement of safety assessment methodologies. Investigations for the goals a) to d) and e) to g) are conducted in the 'Geoscientific Research' and 'Research and Development on Geological Disposal', respectively. In Phase 1, a 'laboratory construction area' of a few kilometers square is selected based on the results from early stage investigations. Subsequent investigations are concentrated in the selected area and its periphery. Acquisition of data by surface-based investigations, modeling of the geological environment and predictions of changes in the geological environment caused by the construction of the underground facility, are conducted in a) Development of investigation technologies for the geological environment. Development and installation of monitoring equipments and data acquisition prior to the construction of the underground facility fall under b) Development of monitoring technologies

  7. Measurement of the fast neutron background at the China Jinping Underground Laboratory

    Science.gov (United States)

    Du, Q.; Lin, S. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wei, W. W.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-05-01

    We report on the measurements of the fluxes and spectra of the environmental fast neutron background at the China Jinping Underground Laboratory (CJPL) with a rock overburden of about 6700 meters water equivalent, using a liquid scintillator detector doped with 0.5% gadolinium. The signature of a prompt nuclear recoil followed by a delayed high energy γ-ray cascade is used to identify neutron events. The large energy deposition of the delayed γ-rays from the (n , γ) reaction on gadolinium, together with the excellent n- γ discrimination capability provides a powerful background suppression which allows the measurement of a low intensity neutron flux. The neutron flux of (1 . 51 ± 0 . 03(stat .) ± 0 . 10(syst .)) × 10-7cm-2s-1 in the energy range of 1-10 MeV in the Hall A of CJPL was measured based on 356 days of data. In the same energy region, measurement with the same detector placed in a room surrounding with one meter thick polyethylene shielding gives a significantly lower flux of (4 . 9 ± 0 . 9(stat .) ± 0 . 5(syst .)) × 10-9cm-2s-1 with 174 days of data. This represents a measurement of the lowest environmental fast neutron background among the underground laboratories in the world, prior to additional experiment-specific attenuation. Additionally, the fast neutron spectra both in the Hall A and the polyethylene room were reconstructed with the help of GEANT4 simulations.

  8. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Su Jian; Zeng Zhi; Liu Yue; Yue Qian; Ma Hao; Cheng Jianping

    2012-01-01

    Muon radiation background of China Jinping Underground Laboratory (CJPL) was simulated by Monte Carlo method. According to the Gaisser formula and the MUSIC soft, the model of cosmic ray muons was established. Then the yield and the average energy of muon-induced photons and muon-induced neutrons were simulated by FLUKA. With the single-energy approximation, the contribution to the radiation background of shielding structure by secondary photons and neutrons was evaluated. The estimation results show that the average energy of residual muons is 369 GeV and the flux is 3.17 × 10 -6 m -2 · s -1 . The fluence rate of secondary photons is about 1.57 × 10 -4 m -2 · s -1 , and the fluence rate of secondary neutrons is about 8.37 × 10 -7 m -2 · s -1 . The muon radiation background of CJPL is lower than those of most other underground laboratories in the world. (authors)

  9. Cosmic ray muon flux at the Sanford Underground Laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Gray, F.E., E-mail: fgray@regis.ed [Regis University, Department of Physics and Computational Science, 3333 Regis Blvd., Denver, CO 80221 (United States); Colorado School of Mines, Department of Physics, 1523 Illinois St., Golden, CO 80401 (United States); Ruybal, C.; Totushek, J. [Regis University, Department of Physics and Computational Science, 3333 Regis Blvd., Denver, CO 80221 (United States); Mei, D.-M.; Thomas, K. [University of South Dakota, Department of Physics, 414 E. Clark St., Vermillion, SD 57069 (United States); Zhang, C. [University of South Dakota, Department of Physics, 414 E. Clark St., Vermillion, SD 57069 (United States); China Three Gorges University, College of Science, Yichang 443002 (China)

    2011-05-11

    Measuring the muon flux is important to the Sanford Underground Laboratory at Homestake, for which several low background experiments are being planned. The nearly vertical cosmic ray muon flux was measured in three locations at this laboratory: on the surface (1.149{+-}0.017 x10{sup -2} cm{sup -2} s{sup -1} sr{sup -1}), at the 800 ft (0.712 km w.e.) level (2.67{+-}0.06 x10{sup -6} cm{sup -2} s{sup -1} sr{sup -1}), and at the 2000 ft (1.78 km w.e.) level (2.56{+-}0.25 x10{sup -7} cm{sup -2} s{sup -1} sr{sup -1}). These fluxes agree well with model predictions.

  10. Cosmic ray muon flux at the Sanford Underground Laboratory at Homestake

    International Nuclear Information System (INIS)

    Gray, F.E.; Ruybal, C.; Totushek, J.; Mei, D.-M.; Thomas, K.; Zhang, C.

    2011-01-01

    Measuring the muon flux is important to the Sanford Underground Laboratory at Homestake, for which several low background experiments are being planned. The nearly vertical cosmic ray muon flux was measured in three locations at this laboratory: on the surface (1.149±0.017 x10 -2 cm -2 s -1 sr -1 ), at the 800 ft (0.712 km w.e.) level (2.67±0.06 x10 -6 cm -2 s -1 sr -1 ), and at the 2000 ft (1.78 km w.e.) level (2.56±0.25 x10 -7 cm -2 s -1 sr -1 ). These fluxes agree well with model predictions.

  11. Standard test method for laboratory evaluation of magnesium sacrificial anode test specimens for underground applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers a laboratory procedure that measures the two fundamental performance properties of magnesium sacrificial anode test specimens operating in a saturated calcium sulfate, saturated magnesium hydroxide environment. The two fundamental properties are electrode (oxidation potential) and ampere hours (Ah) obtained per unit mass of specimen consumed. Magnesium anodes installed underground are usually surrounded by a backfill material that typically consists of 75 % gypsum (CaSO4·2H2O), 20 % bentonite clay, and 5 % sodium sulfate (Na2SO4). The calcium sulfate, magnesium hydroxide test electrolyte simulates the long term environment around an anode installed in the gypsum-bentonite-sodium sulfate backfill. 1.2 This test method is intended to be used for quality assurance by anode manufacturers or anode users. However, long term field performance properties may not be identical to property measurements obtained using this laboratory test. Note 1—Refer to Terminology G 15 for terms used ...

  12. Selection of a site adapted to the realization of an underground laboratory in clay formations

    International Nuclear Information System (INIS)

    Benvegnu, F.

    1984-01-01

    Research carried out in Italy by ENEA for site selection of an underground laboratory in a clay formation are presented. Mine roadways, abandoned tunnels, natural or artificial escarpments are prospected. The Pasquasia potash mine in Sicily was selected. The decline reach the lower pliocen starta from -110m to -200m below surface through a clay formation. The site selected for the laboratory is 160 m deep. A 50 meter-long horizontal tunnel will be dug. Experiments planned include thermal, hydrological, mechanical and thermomechanical behavior of clays. Data on temperature variations, interstitial fluid pressure, total pressure, deformations produced by a heater placed in clay will be obtained. Data related to mechanical behavior of formation will be recorded before, during and after the construction of the gallerie. Convergence of borehole will be also studied

  13. Final report on the surface-based investigation (phase 1) at the Mizunami Underground Laboratory project

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Seno, Yasuhiro; Nakama, Shigeo; Tsuruta, Tadahiko; Amano, Kenji; Takeuchi, Ryuji; Matsuoka, Toshiyuki; Onoe, Hironori; Mizuno, Takashi; Ohyama, Takuya; Hama, Katsuhiro; Sato, Toshinori; Kuji, Masayoshi; Kuroda, Hidetaka; Semba, Takeshi; Uchida, Masahiro; Sugihara, Kozo; Sakamaki, Masanori; Iwatsuki, Teruki

    2007-03-01

    The Mizunami Underground Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal procedure from

  14. Collection of measurement data in 2014 fiscal year at the Horonobe Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Sakurai, Akitaka; Aoyagi, Kazuhei

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations were planned. At the beginning of the Phase II investigations, investigation reports related to measurement plan and observational construction program on shaft and drift excavation were published. The observational construction program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. Currently, Phase III investigation related to geological disposal in underground facilities has been conducting. Also, measurement for consideration of long-term stability of the tunnel has been continued. This report summarizes the measurements data acquired at the West Shaft in 2014 fiscal year for the purpose of the basic data for carrying out the Observational Construction Program. A DVD-ROM is attached as an appendix. (J.P.N.)

  15. Mizunami Underground Research Laboratory project. Rock mechanical investigations annual report for fiscal year 2013

    International Nuclear Information System (INIS)

    Sato, Toshinori; Sanada, Hiroyuki; Tanno, Takeo

    2015-02-01

    In order to establish the scientific and technical basis for geological disposal of technology, Japan Atomic Energy Agency (JAEA) is pursuing the geoscientific research project namely the Mizunami Underground Research Laboratory (MIU) in the crystalline rock environment at Tono Geoscience Center (TGC). In the MIU Project, geoscientific research is being carried out in three overlapping phases; Surface-based Investigation Phase (Phase I: FY1996 - 2004), Construction Phase (Phase II: FY2004- in progress) and Operation Phase (Phase III: FY2010- in progress). In the rock mechanical investigations at the Phase II, the research aims at “Characterization of geological environment in the Excavation Disturbed Zone (EDZ)” from the viewpoint of safety assessment. For the research, the specific information of the EDZ such as (1) size and structures, (2) petrophysical/geomechanical properties, and (3) stress state are required. The research also aims at “Characterization of geomechanical stability around tunnel” from the viewpoint of design and construction of underground facilities. For the research, the specific information such as (4) local stress regime, (5) spatial variability of petrophysical/geomechanical properties of rocks, and (6) distribution of discontinuities intersecting underground tunnels are required. The measurement system for rock mass behavior has been manufactured and set for groundwater recovery experiment in the Phase III. This report presents the results of following rock mechanical investigations conducted in FY 2013. In-situ stress measurements using Compact Conical-ended Borehole Overcoring Technique were performed at the - 500m stage. Measurement system for rock mass displacement using optical fiber was installed at the - 500m stage as part of the groundwater recovery experiment. Study on the modeling based on equivalent continuum model was continued. Phenomenological study and theoretical study on long-term behavior of crystalline rock were

  16. Study on construction method of concrete in the underground research laboratory

    International Nuclear Information System (INIS)

    Iriya, Keshiro; Mikami, Tetsuji; Yasuoka, Tetsuji; Uegaki, Yoshiaki

    2001-05-01

    Although there are several types in low alkalinity cements, highly fly ash contained silicafume cement (HFSC) has been studied in JNC. It is demonstrated that pH of pore water of the cement indicates below 10.5 as results of other TRU study. However although chemical properties and basic mechanical behavior are well understood, workability so on in constructing is little investigated. Since the underground research laboratory plays a important role in investigating constructing technology, HFSC will be adopted for supporting rock cavern so on. It is required that workability of low alkalinity cements should be assessed. Major performance of workability in tunnel construction in rock will be investigated and R and D planning will be done toward the laboratory construction. Conclusion obtained in this study is described as followings. 1) As results of laboratory test, HFSC and LHHPC developed by AECL fulfil the requirements of shotcrete using by hardening accelerator with calcium-salpho-aluminate. It is concluded that HFSC and LHHPC can be applied for shotcrete. 2) The experiment upon corrosion of re-bars by facing saline water at a offshore is planned. 3) It is noted that pH decreases significantly with rise of silicafume content and that silicafume should be used as much as OPC. 4) It is investigated where the low alkalinity cement should be applied in a actual radio waste repository and R and D program in the laboratory is planned. (author)

  17. Operation and performance of the ICARUS-T600 cryogenic plant at Gran Sasso underground Laboratory

    CERN Document Server

    Antonello, M.; Baibussinov, B.; Boffelli, F.; Bubak, A.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieślik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dermenev, A.; Disdier, J.M.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.R.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.

    2015-12-04

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discusse...

  18. The French underground research laboratory program, contribution to the feasibility and safety studies of geological disposal

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.; Niezborala, J.M.; Ben Slimane, K.

    2001-01-01

    The paper presents the content of the research program to be performed during the construction and the operation of the National Agency for Radioactive Waste Management's (ANDRA) underground laboratory, located in the east of France. The general architecture of the program is presented. Emphasis is put on an iterative process, the purpose of which is mainly to: Prepare site behavior models before starting each phase of the field work (bore hole drilling, shaft sinking, construction of underground galleries, specific experiments); Test and check each model through actual observations and measurements; Adjust the models to take into account the results of the former phase and predict the results expected during the following one. All these models, after validation, will be exploited during the assessment of the safety related performance of the components of the potential repository as well as the whole facility; Obtain necessary data related to the feasibility study of the disposal facility (mechanical design, thermal design, etc.,) and its safety assessment. The relationship between the experimental program, the conceptual design program and the safety evaluation program is explained in order to reach the project objectives which is the final document set to be provided to French authorities in 2006 according to the French law of December 1991. (author)

  19. Influence of rock spalling on concrete lining in shaft sinking at the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tsusaka, Kimikazu; Inagaki, Daisuke; Nago, Makito; Koike, Masashi; Matsubara, Makoto; Sugawara, Kentaro

    2013-01-01

    A shaft is the shortest way to access the deep underground. In shaft sinking through large-scale faults or under low competence factor, spalling of shaft walls is likely to occur. Although earlier studies indicated that rock spalling is an undesirable phenomenon that threatens safety in excavation work and causes delay in construction schedule, there have been few studies which discussed damage to concrete lining induced by spalling. Japan Atomic Energy Agency has been constructing three shafts (one for ventilation and the others for access) to a depth of 500 m in the Horonobe Underground Research Laboratory. During the construction of the Ventilation Shaft (4.5 m diameter) below a depth of 250 m, rock spalling occurred at several depths and an open crack developed in the concrete lining installed just above the location of the rock spalling. In this study, the geometry of the shaft wall was measured using a three-dimensional laser scanner. Numerical analysis was also conducted to estimate changes in stress distribution and deformation induced by rock spalling in both the concrete lining and the surrounding rock. As a result, it was clarified that rock spalling induced a vertical tensile stress in the concrete lining. Especially, the tensile stress in a concrete lining was likely to exceed the tensile strength of the concrete lining when it developed more than 100 cm into the wall rock. (author)

  20. Low frequency vibration tests on a floating slab track in an underground laboratory

    Institute of Scientific and Technical Information of China (English)

    De-yun DING; Wei-ning LIU; Ke-fei LI; Xiao-jing SUN; Wei-feng LIU

    2011-01-01

    Low frequency vibrations induced by underground railways have attracted increasing attention in recent years. To obtain the characteristics of low frequency vibrations and the low frequency performance of a floating slab track (FST), low frequency vibration tests on an FST in an underground laboratory at Beijing Jiaotong University were carried out. The FST and an unbalanced shaker SBZ30 for dynamic simulation were designed for use in low frequency vibration experiments. Vibration measurements were performed on the bogie of the unbalanced shaker, the rail, the slab, the tunnel invert, the tunnel wall, the tunnel apex, and on the ground surface at distances varying from 0 to 80 m from the track. Measurements were also made on several floors of an adjacent building. Detailed results of low frequency vibration tests were reported. The attenuation of low frequency vibrations with the distance from the track was presented, as well as the responses of different floors of the building. The experimental results could be regarded as a reference for developing methods to control low frequency vibrations and for adopting countermeasures.

  1. Development and enhancement of grouting technologies in the Mizunami Underground Research Laboratory (Contract research)

    International Nuclear Information System (INIS)

    Nobuto, Jun; Mikake, Shinichiro

    2008-03-01

    In the Tono Geoscience Center of Japan Atomic Energy Agency (hereafter, JAEA), Mizunami Underground Research Laboratory project is being advanced to develop a scientific and technological basis for geological disposal. The concept of geological disposal is based on a multi-barrier system which combines a stable geological environment with an engineered barrier system (EBS). In order to develop a engineering basis for the construction of disposal system, the enhancement of grouting technologies among engineering technologies is needed. In this study, the comprehensive performance of suspension type grouting materials to seal rock fractures encountered in excavation works at deep underground has been checked, and the clogging phenomenon at the entrance of rock fractures has been investigated following the previous year. Research issues are as follows; Study on grouting concept to secure high-level water sealing, study on the test method to check grout clogging under high injection pressure, study on grouting material which can penetrate into finer fractures. Among these, in the study on penetrability test method, prototype test instruments were made and a series of preliminary tests were conducted. (author)

  2. Study on construction method of concrete in the underground research laboratory. 4

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Tajima, Takatoshi; Noda, Masaru

    2004-02-01

    Low alkaline cement is planned to use in construction of Horonobe Underground Research Center as one of in situ experiments. These experiments will be carried out in a part of the vertical shafts and horizontal excavated tunnels. The problems in actual using should be solved and improved until starting construction. This study has been carried out in order to improve the HFSC taking the Horonobe environment into account. Model analysis and preliminary laboratory experiment on hyper alkaline alteration of bentonite and rock have been carried out. And a long term permeability experiment on procedure. (author)or the superfluous exposure dose prevention in IVRbased on results of pH measuring for 546 days and geo-chemical code. Open data and undefined reaction were pointed out in order to accomplish the model on low alkalinity cement with high pozollan content. The effects on fresh concrete properties and harden concrete due to changing properties of fly ash were investigated. Experimental basic planning in situ test of low alkaline cement in Horonobe are proposed. And finally, procedure of improvement HFSC in Horonobe construction are investigated and proposed. It is concluded that HFSC can be applied for construction work of Horonobe underground research center. (author)

  3. Results of single borehole hydraulic tests in the Mizunami Underground Research Laboratory project. FY 2012 - FY 2015

    International Nuclear Information System (INIS)

    Onoe, Hironori; Takeuchi, Ryuji

    2016-11-01

    This report summarize the results of the single borehole hydraulic tests of 151 sections carried out at the -300 m Stage and the -500 m Stage of the Mizunami Underground Research Laboratory from FY 2012 to FY 2015. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical methods used are presented in this report. Furthermore, the previous results of the single borehole hydraulic tests carried out in the Regional Hydrogeological Study Project and the Mizunami Underground Research Laboratory Project before FY 2012 are also summarized in this report. (author)

  4. Mizunami Underground Research Laboratory Project. Annual report for fiscal year 2015

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Mikake, Shinichiro; Ishibashi, Masayuki; Onoe, Hironori; Takeuchi, Ryuji; Nohara, Tsuyoshi; Sasao, Eiji; Ikeda, Koki; Koide, Kaoru

    2016-12-01

    The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the research program and management system revision of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: 'Development of countermeasure technologies for reducing groundwater inflow', 'Development of modeling technologies for mass transport' and 'Development of drift backfilling technologies', based on the latest results of the synthesizing research and development (R and D). The R and D on three important issues has been carrying out on the MIU project. In this report, the current status of R and D activities and construction in 2015 is summarized. (author)

  5. Blast damage predictions from vibration measurements at the SKB underground laboratories at Aespoe in Sweden

    International Nuclear Information System (INIS)

    Ouchterlony, F.; Sjoeberg, C.; Jonsson, B.A.

    1993-01-01

    This contribution reports an investigation of the blasting damage in the contour of an access ramp to a Swedish underground laboratory for nuclear waste related studies. Near zone vibration measurements were made for 7 rounds and the results converted to a site specific scaling law. A simple engineering correction for the influence of the charge length was developed and the resulting equations used to predict the damage zone depths of three different drilling and charging patterns. These predictions were then compared with actual blast damage measurements. The agreement with geophysical borehole logging results is remarkably good. This gives good support to the engineering method in which a critical vibration velocity is used to predict the zones of blast damage around bore holes

  6. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  7. Hydrogeological characterization of deep subsurface structures at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Saegusa, Hiromitsu; Amano, Kenji; Takeuchi, Ryuji

    2013-01-01

    Several hydrogeological investigation techniques have been used at the Mizunami Underground Research Laboratory site to assess hydrogeological structures and their control on groundwater flow. For example, the properties of water-conducting features (WCFs) can be determined using high-resolution electrical conductivity measurements of fluids, and compared to measurements using conventional logging techniques. Connectivity of WCFs can be estimated from transmissivity changes over time, calculated from the pressure derivative of hydraulic pressure data obtained from hydraulic testing results. Hydraulic diffusivity, obtained from hydraulic interference testing by considering the flow dimension, could be a key indicator of the connectivity of WCFs between boreholes. A conceptual hydrogeological model of several hundred square meters to several square kilometers, bounded by flow barrier structures, has been developed from pressure response plots, based on interference hydraulic testing. The applicability of several methods for developing conceptual hydrogeological models has been confirmed on the basis of the hydrogeological investigation techniques mentioned above. (author)

  8. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  9. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2007

    International Nuclear Information System (INIS)

    Nishio, Kazuhisa; Matsuoka, Toshiyuki; Tsuruta, Tadahiko; Amano, Kenji; Ohyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Mizuno, Takashi; Sai, Masataka; Hirano, Toru; Iyatomi, Yosuke; Shimada, Akiomi; Matsui, Hiroya; Ogata, Nobuhisa; Uchida, Masahiro; Sugihara, Kozo; Mikake, Shinichiro; Ikeda, Koki; Yamamoto, Masaru

    2009-03-01

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2007, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, 1) Investigation at the MIU Construction Site and the Shobasama Site, 2) Construction at the MIU Construction Site, 3) Research Collaboration. (author)

  10. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2005

    International Nuclear Information System (INIS)

    Nishio, Kazuhisa; Matsuoka, Toshiyuki; Tsuruta, Tadahiko; Amano, Kenji; Ohyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Mizuno, Takashi; Sai, Masataka; Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Uchida, Masahiro; Sugihara, Kozo; Mikake, Shinichiro; Ikeda, Koki; Yamamoto, Masaru; Yoshida, Haruo; Nakama, Shigeo; Seno, Yasuhiro; Kuroda, Hidetaka; Semba, Takeshi

    2009-03-01

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2005 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, 1) Investigation at the MIU Construction Site and the Shobasama Site, 2) Construction at the MIU Construction Site, 3) Research Collaboration. (author)

  11. Overview of the current and planned activities in the French underground research laboratory at Bure

    International Nuclear Information System (INIS)

    Delay, J.

    2006-01-01

    In November 1999 Andra began building an Underground Research Laboratory (URL) on the border of the Meuse and Haute-Marne departments in eastern France. The research activities of the URL are dedicated to reversible, deep geological disposal of high-activity, long-lived radioactive wastes in an argillaceous host rock. The studies covered four complementary aspects: acquisition of data (waste packages, material behaviour and clay medium), repository design and reversibility studies, analysis of the long term behaviour of the repository, safety analyses. For the next phase starting in 2007, Andra will carry out integrated tests of a technological scope, i.e. trial drift, demonstrator of current drift. The results should make it possible to assess the safety of a disposal over several tens and even hundreds of thousands of years and submit in 2015 a file for permission request for the HLW and ILW deep disposal. (author)

  12. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1996-07-01

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  13. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2008

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Kunimaru, Takanori; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Ohyama, Takuya; Mizuno, Takashi; Hirano, Toru; Ogata, Nobuhisa; Hama, Katsuhiro; Iyatomi, Yosuke; Shimada, Akiomi; Matsui, Hiroya; Ito, Hiroaki; Sugihara, Kozo; Mikake, Shinichiro; Ikeda, Koki; Yamamoto, Masaru

    2010-07-01

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2008, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, 1) Investigation at the MIU Construction Site and the Shobasama Site, 2) Construction at the MIU Construction Site, 3) Research Collaboration. (author)

  14. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    Science.gov (United States)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  15. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  16. Collection of URL measurement data in 2007 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Yamasaki, Masanao; Funaki, Hironori; Niinuma, Hiroaki; Fujikawa, Daisuke; Sanada, Hiroyuki; Hiraga, Naoto; Tsusaka, Kimikazu; Yamaguchi, Takehiro

    2008-11-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The Phase I geoscientific research was planned from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') was published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2007 based on the Observational Construction Program. The report summarizes for the purpose of the following: sharing the investigation and measurements data, preventing the loss of them and acquisition the basic data for carrying out the Observational Construction Program. Two DVD-ROMs are attached as an appendix. (J.P.N.)

  17. Collection of URL measurement data in 2006 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Kumagai, Yasuhito; Funaki, Hironori; Yamasaki, Masanao; Yamaguchi, Takehiro; Sanada, Hiroyuki; Abe, Hironobu; Orukawa, Go

    2008-07-01

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists two major research area, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2005 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was carried out. At the inception of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as Observational Construction Program') was published. The Observational Construction Program summarizes followings lessons learnt from the Phase I investigations: measurements for safety/reasonable construction, measurements for R and D on enhancement of shaft design/construction technology, and measurements for verification of the deep geological environment estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft (to approx. 50m depth) and the East Shaft (to approx. 40m depth) in 2006 based on the Observational Construction Program. CD-ROM and DVD-ROM are attached as an appendix. (J.P.N.)

  18. Road traffic noise-induced sleep disturbances: a comparison between laboratory and field settings

    Science.gov (United States)

    Skånberg, Annbritt

    2004-10-01

    Due to the ongoing discussion about the relevance of sleep studies performed in the laboratory, the aim of this study was to assess the effects of road traffic noise exposure on sleep in laboratory and in field settings. Eighteen healthy young subjects participated in the study. They were exposed to noise from road traffic in the laboratory and exposed to the same recorded traffic noise exposure in their own homes. Their sleep was evaluated with wrist actigraphs and questionnaires on sleep. No significant increase in effects of noise on sleep in the laboratory was found. The results indicate that laboratory experiments do not exaggerate effects of noise on sleep.

  19. Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory project. 2011-2010

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yuki; Yamamoto, Yoichi; Nanjyo, Isao; Murakami, Hiroaki; Yokota, Hideharu; Yamazaki, Masanori; Iwatsuki, Teruki [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Horonobe, Hokkaido (Japan); Kunimaru, Takanori [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Mizunami, Gifu (Japan); Oyama, Takahiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2012-02-15

    In the Horonobe Underground Research Laboratory (URL) Project, groundwater from boreholes, river water and precipitation have been analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2010. (author)

  20. Mineral and chemical composition of rock core and surface gas composition in Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Hiraga, Naoto; Ishii, Eiichi

    2008-02-01

    The following three kinds of analyses were conducted for the 1st phase of the Horonobe Underground Research Laboratory Project. Mineral composition analysis of core sample. Whole rock chemical composition analysis of core sample. Surface gas composition analysis. This document summarizes the results of these analyses. (author)

  1. Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory project. 2011-2010

    International Nuclear Information System (INIS)

    Amano, Yuki; Yamamoto, Yoichi; Nanjyo, Isao; Murakami, Hiroaki; Yokota, Hideharu; Yamazaki, Masanori; Iwatsuki, Teruki; Kunimaru, Takanori; Oyama, Takahiro

    2012-02-01

    In the Horonobe Underground Research Laboratory (URL) Project, groundwater from boreholes, river water and precipitation have been analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2010. (author)

  2. Study on construction method of concrete in the underground research laboratory. 3

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Mikami, Tetsuji; Takeda, Nobufumi; Akiyoshi, Kenji

    2003-02-01

    The Horonobe underground research laboratory project doesn't carry on only safety assessment study but also demonstration of construction technique upon nuclear waste repositories. Low alkalinity cement is one of candidates for engineered barrier in order to prevent alteration of bentonite and rock by hyper alkaline solution. JNC has developed low alkalinity cement (HFSC) which contains a lot of fly ash, and has studied the physical and chemical properties by laboratory test. Effect on variety of quality of fly ash and monitoring corrosion of rebars in off-shore condition has been studied. In-situ test for actual use of HFSC in constructing the facility was planned. The results are summarized as below. Effects of variety of flay ash upon lower pH are relatively small by testing two type of fly ash and several fly as content. Variety of fly ash effects properties of fresh concrete but its effect is not significant. And it little effects on mechanical behavior. However, it doesn't effect on properties of shotcrete. Although rebars corrode in HFSC in spite of no intrusion of chloride, increment of corrosion is not significant in half an year until an year. Applicability for structural members is demonstrated by loading test of tunnel concrete segments of HFSC. Pre-mixed HFSC can be supplied by mixing fly ash and silica fume in Sapporo and carry to Horonobe by cement truck. (author)

  3. Hydrogeochemical investigations at the ANDRA Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Vinsot, A.; Delay, J.; Rebours, H.

    2006-01-01

    In November 1999 Andra began building an Underground Research Laboratory (URL) in eastern France. The geological formation selected for this laboratory is a 130-meter thick argillaceous rock level. This clay rich layer is located at a 400 to 600 meter depth. To characterize the confining properties of the clay, pore water composition had to be studied. For this purpose an innovative device was designed for gas equilibration and direct sampling of the pore water. The experimental device consists of a vertical ascending borehole with a 5 meter long test interval at its far end in which a gas circulation is established. After a few weeks, due to the hydraulic gradient between the test interval and the rock formation, the water flows freely at a rate of 0.5 to 1.3 litters per month in the borehole and it is sampled. The chemical composition of this water is compared with a theoretical composition deduced from core analyses and thermodynamic modelling. (author)

  4. MBC model analysis for predicting the rock behavior in excavating the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Mori, Takayuki; Iwano, Keita; Nakajima, Makoto; Morikawa, Seiji; Tabei, Kazuto

    2005-03-01

    As a Phase 1 of MIU project (Mizunami Underground Research Laboratory project), through the laboratory and borehole in-situ tests, JNC Tono Geoscience Center plans to constitute the comprehensive geological model and predicts the rock behaviors in excavating the shaft and gallery. These model and results leads to be reflected by the next step research projects. So far, the Phase 1 of MIU project is coming to final stage, and the Phase 2 will start at next year in which the in-situ researches are planned through the excavation. In this study, the comprehensive geometrical model was drawn out through the Phase 1 data, and MBC model analysis was carried out to predict the rock mass behavior around the shaft and gallery. The following results are obtained. 1. With MIZ-1 borehole core, artificial joints, which are assumed to be produced by rock blasting, were formed through the Brazilian test. And through the rock shear test for these joints, these mechanical properties were obtained. 2. By examining the MIZ-1 borehole research data, Mizunami site was classified by mechanical and joint properties and the Geomechanical model were made up. 3. Through the MBC model, the shaft and gallery cases were analyzed which depend on the rock mass classification, Excavation Damaged Zone, and the direction of the galleries. These results showed that in most cases, the joint opening were little because of the rock stiffness, but by the existence of high inclined joints, the side wall of the galleries were damaged by the excavation. (author)

  5. Background study of absorbed dose in biological experiments at the Modane Underground Laboratory

    Directory of Open Access Journals (Sweden)

    Lampe Nathanael

    2016-01-01

    Full Text Available Aiming to explore how biological systems respond to ultra-low background environ-ments, we report here our background studies for biological experiments in the Modane Under-ground Laboratory. We find that the minimum radioactive background for biology experiments is limited by the potassium content of the biological sample itself, coming from its nutritive me-dium, which we find in our experimental set-up to be 26 nGy hr-1. Compared to our reference radiation environment in Clermont-Ferrand, biological experiments can be conducted in the Modane laboratory with a radiation background 8.2 times lower than the reference above-ground level. As the radiation background may be further reduced by using different nutritive media, we also provide measurements of the potassium concentration by gamma spectroscopy of yeast extract (63.3±1.2 mg g-1 and tryptone (2.5±0.2 mg g-1 in order to guide media selection in future experiments.

  6. Horonobe underground research laboratory project investigation report for the 2005 fiscal year

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Niizato, Tadafumi; Yamaguchi, Takehiro

    2006-11-01

    The investigations in 2005 fiscal year (2005/2006) were focused on the Hokushin area, which was selected as the area for laboratory construction. The main investigation region extends over approximately 3 km x 3 km. Geophysical, geological and surface hydrogeological investigations are carried out to acquire the geoscientific data needed to develop techniques for investigating the geological environment. And the borehole investigation at HDB-11 was finished in 2005. About development of techniques for long-term monitoring of the geological environment, long-term monitoring systems were operative in boreholes drilled in a previous investigation, and were also installed in the remaining boreholes (HDB-9, 10; drilled in 2004). A remotely operated monitoring system (ACROSS) was also installed and tested. About study on long-term stability of the geological environment, for tracing tectonic changes at Horonobe, geological survey and ground penetrating radar were carried out. Observations using seismograph, global positioning system (GPS) and electromagnetic exploration system installed until 2006 were continuing. About improving the reliability of disposal technology, laboratory tests of low alkaline concrete, shotcrete test at full-size simulated tunnel were carried out. Applicability confirmation of EBS designing methods was carried out with geological environmental data of Phase 1. About sophistication of safety assessment methodologies, Sorption test using drill core was carried out. Solute transport analysis was also carried out. In parallel with these investigations, Phase 2 investigation program were planned. About surface facility, Research and Administration Facility and Test Facility were constructed and started to use since February 2006. Public information house was begun to construct. About underground facility, temporary surplus soil (muck) yard was constructed. Surplus soil yard and drainage line were designed. These caused by toxic substance founded in

  7. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    International Nuclear Information System (INIS)

    Gascoyne, M.; Kotzer, T.

    1995-09-01

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL's experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, 2 H/ 18 O, 14 C, 34 S) of groundwaters, but will determine values of more exotic and unusual ratios, such as 6 Li/ 7 Li, and B 11 /B 10 , whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine 3 He/ 4 He, 36 Cl/Cl and 129 I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs

  8. Low alkaline cement used in the construction of a gallery in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sato, Haruo; Sugita, Yutaka; Ito, Seiji; Minamide, Masashi; Kitagawa, Yoshito

    2011-01-01

    In Japan, any high level radioactive waste (HLW) pos is to be constructed at over 300 m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various admixtures. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly Flyash Contained Silicafume Cement), containing over 60wt% of silica-fume (SF) and fly-ash (FA). HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in the Horonobe Underground Research Laboratory (URL). The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40 wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC. The total length of tunnel using HFSC shotcrete is about 73 m and about 500 m 3 of HESC was used. The workability of HESC shotcrete was confirmed in this experimental construction. (author)

  9. Synthesis of borehole geophysical data at the Underground Research Laboratory, Manitoba, Canada

    International Nuclear Information System (INIS)

    Keys, W.S.

    1984-07-01

    A suite of borehole-geophysical logs, supported by core data, was used to describe the rock matrix and fractures in a granitic pluton near Lac du Bonnet, Manitoba, Canada. The site is being developed by Atomic Energy of Canada Limited, as an underground research laboratory to conduct geotechnical research and to validate predictive models as part of Canada's nuclear-fuel, waste-management program. However, the site is not planned to be used for waste disposal. Geophysical well logs were used to distinguish and correlate rock types and fractures between drill holes. Two significant fracture zones that are two of the major zones of ground-water movement at the site were identified by acoustic-televiewer logs. A new heat-pulse flowmeter provided repeatable measurements of very low-velocity, vertical flow in drill holes which enabled the identification of specific fractures that were transmitting water. Borehole gamma spectra showed that some fractures are enriched in uranium, and others may be depleted. This study demonstrates some of the advantages of synthesizing available borehole-geophysical logs at a site in fractured plutonic rocks and indicates how this information can contribute to an understanding of the geophysical conditions at the site

  10. TEAM Science Advances STEM through Experiential Learning about Karst Geology at the Ozark Underground Laboratory.

    Science.gov (United States)

    Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.

    2017-12-01

    Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)

  11. A study on rock mass behaviour induced by shaft sinking in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tsusaka, Kimikazu; Tokiwa, Tetsuya; Inagaki, Daisuke; Hatsuyama, Yoshihiro; Koike, Masashi; Ijiri, Yuji

    2012-01-01

    Japan Atomic Energy Agency has been excavating three deep shafts through soft sedimentary rock in the Horonobe Underground Research Laboratory. In this paper, the authors discussed rock mass behaviour induced by a 6.5 m diameter shaft sinking. They conducted geological mapping in an excavation face and boreholes digged around the shaft wall, field measurements such as convergence measurements and monitoring of rock displacements using multi-interval borehole extensometers around a shaft at around 160 m and 220 m in depths, and three-dimensional numerical analysis which models the shaft excavation procedure such as timing of installation of support elements and setting and removal of a concrete form. As a result, it was clarified that remarkably large compressive strains occurred within about 1 m into the shaft wall in a radial direction since the rock mass behaviour was controlled by the concrete lining and that the behaviour would predominantly be induced by the fractures closing which opened significantly and propagated during excavation steps before the installation of a concrete lining and the directions where the strains occurred heavily depended on the fracture orientation around the shaft. (author)

  12. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi

    2007-01-01

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)

  13. Underground Research Laboratory room 209 instrument array. Vol. 1,2

    International Nuclear Information System (INIS)

    Lang, P.A.; Kuzyk, G.W.; Babulic, P.J.; Bilinsky, D.M.; Everitt, R.A.; Spinney, M.H.; Kozak, E.T.; Davison, C.C.

    1991-06-01

    An in situ excavation response test was conducted at the 240 Level of the Underground Research Laboratory (URL). The test was carried out in conjunction with the drill-and-blast excavation of a near-circular tunnel (Room 209), about 3.5 m in diameter. The tunnel was excavated through a tunnel axis. Three modelling groups made predictions of the response of the rock mass and hydraulic behaviour of the water-bearing fracture to excavation. The tunnel was excavated in two stages, a pilot tunnel followed by a slash, providing two complete sets of response measurements. Careful excavation was carried out to ensure the excavation shape after each blast round agreed closely with the planned shape incorporated in the numerical models. Instrumentation installed before the tunnel was extended monitored the complete strain tensor at eight locations around the tunnel, radial displacements and piezometric pressures at nine locations in the fracture. As well, tunnel convergence, water flows from the fracture, and hydraulic conductivity of the fracture at nine locations, were measured after each excavation step. The final tunnel profiles were accurately surveyed, and the geology was mapped in detail. The results are presented in this report for comparison with the modellers' predictions (reported in AECL--9566-2). Some preliminary conclusions and recommendations regarding the field testing are presented

  14. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    Energy Technology Data Exchange (ETDEWEB)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  15. Control of blast overpressure and vibrations at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Mohanty, B.

    1991-01-01

    AECL Research (AECL) has constructed an Underground Research Laboratory (URL) as a facility for research and development in the Canadian Nuclear Fuel Waste Management Program. The objectives of the program are to develop and evaluate the technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. Several multidisciplinary experiments and engineering demonstrations are planned for the URL over the next ten years. In 1989, AECL excavated a test room for the Buffer/Container Experiment at the 240 Level. The blasts were designed to limit vibration and overpressure damage because the excavation was located close to existing furnishings and services that were very susceptible to blast-induced vibration and overpressure. An experimental room, which contained sensitive instrumentation, was located within 30 m of the initial blasts. A concrete floor slab, timber curtains and a bulkhead were installed to protect furnishings and services from fly-rock and overpressure. Five of the initial blasts were monitored. This paper describes the results of the monitoring program and the effectiveness of the blast design, floor slab and timber curtains and bulkhead in reducing blast overpressure and vibrations at the blast site. It is shown that greater than a 20-fold reduction in both blast vibrations and air overpressures can be achieved with specific combinations of blast design, installation of timber curtains and construction of a concrete floor slab

  16. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.; Kotzer, T

    1995-09-01

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL`s experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, {sup 2}H/{sup 18}O, {sup 14}C, {sup 34}S) of groundwaters, but will determine values of more exotic and unusual ratios, such as {sup 6}Li/{sup 7}Li, and B{sup 11}/B{sup 10}, whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine {sup 3}He/{sup 4}He, {sup 36}Cl/Cl and {sup 129}I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs.

  17. Verification and characterization of continuum behavior of fractured rock at AECL Underground Research Laboratory

    International Nuclear Information System (INIS)

    Long, J.C.S.

    1985-02-01

    The purposes of this study are to determine when a fracture system behaves as a porous medium and what the corresponding permeability tensor is. A two-dimensional fracture system model is developed with density, size, orientation, and location of fractures in an impermeable matrix as random variables. Simulated flow tests through the models measure directional permeability, K/sub g/. Polar coordinate plots of 1/√K/sub g/, which are ellipses for equivalent anistropic homogeneous porous media, are graphed and best fit ellipses are calculated. Fracture length and areal density were varied such that fracture frequency was held constant. The examples showed the permeability increased with fracture length. The modeling techniques were applied to data from the Atomic Energy of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada by assuming the fracture pattern at the surface persists at depth. Well test data were used to estimate the aperture distribution by both correlating and not correlating the aperture with fracture length. The permeability of models with uncorrelated length and aperture were smaller than those for correlated models. A Monte Carlo type study showed that analysis of steady state packer tests consistently underestimate the mean aperture. Finally, a three-dimensional model in which fractures are discs randomly located in space, interactions between the fractures are line segments, and the solution of the steady state flow equations is based on image theory was discussed

  18. Study on construction method of concrete in the underground research laboratory. 2

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Mikami, Tetsuji; Akiyoshi, Kenji; Uegaki, Yoshiaki

    2002-02-01

    The underground research laboratory, which will be constructed in Horonobe, plays a role of demonstration of construction technique upon nuclear waste repositories. Low alkalinity cement is one of candidates for repositories as a cementitious material in order to prevent alteration of bentonite and rock by hyper alkaline solution. JNC has developed a low alkalinity cement (HFSC) which contains a lot of fly ash, and has studied the physical and chemical properties by laboratory test. However workability which is required for construction procedure of repositories has not been studied enough yet. This study shows if requirements in actual construction, such as shotcreting, self-compacting, and, grouting, are fulfilled, and if the workability is preferable for tunneling construction. It is demonstrated that HFSC is applicable for shotcreting by testing in a modeled tunnel. It is pointed out that re-bars have a possibility of corrosion in low alkalinity cement. In-site test for saline water which may accelerate corrosion is started by setting specimen made in last year. Analyzing and assessing will be done next year. Construction method of tunnel lining is investigated in case of applying pre-cast segments. Self-compacting concrete is adopted, since added silica-fume needs superplasticizer and its workability is very flowable. Two piece of segment were made for the section which designed for a ordinary urban tunnel. It is noted that pre-casting concrete can be made by HFSC. Super fine cement powder for grouting which indicate low alkalinity can be selected by combination of grinned lime stone powder and silica fume with grinned ordinary Portland cement. The items to be improved toward using in Horonobe construction are pointed out by results of this study and summarized a study plan is described. Major problem to be solved is delaying compressive strength generation of HFSC. It is recognized in shotcrete and self-compacting concrete. Selecting types of fly ash and

  19. Fruit Flies Provide New Insights in Low-Radiation Background Biology at the INFN Underground Gran Sasso National Laboratory (LNGS).

    Science.gov (United States)

    Morciano, Patrizia; Cipressa, Francesca; Porrazzo, Antonella; Esposito, Giuseppe; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-06-04

    Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and

  20. Statistical Properties of Seismic Noise Measured in Underground Spaces During Seismic Swarm

    Czech Academy of Sciences Publication Activity Database

    Lyubushin, A. A.; Kaláb, Zdeněk; Lednická, Markéta

    2014-01-01

    Roč. 49, č. 2 (2014), s. 209-224 ISSN 2213-5812 R&D Projects: GA ČR GA105/09/0089; GA MŠk LM2010008 Institutional support: RVO:68145535 Keywords : seismic noise * multifractals * wavelets * kurtosis * West Bohemia seismic swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.543, year: 2014 http://link.springer.com/article/10.1007/s40328-014-0051-y

  1. The Mizunami Underground Research Laboratory Project. A fiscal year program (at fiscal year 2001). Technical report

    International Nuclear Information System (INIS)

    2001-06-01

    Study on stratum science in the Mizunami Underground Research Laboratory (MIU) Project is planned to classify it to the following three steps to progress them by considering some differences such as construction process, subject/object/scale and so on of its survey research accompanied with it in facilities in the MIU; 1) A study step on survey forecasting from earth surface, 2) A study step accompanied with excavation of road for study, and 3) A study step using the road for study. In fiscal year 2001, a trial drilling survey at No. MIU04 hole and a long-term water pumping test in the research items at objects of a series of processes on survey, analysis and evaluation, are planned to carry out. The trial survey is planned to finish at early half of the fiscal year, and its report will be summarized after analysis and evaluation of the trial survey at the No. MIU-4 hole and comparison and evaluation with already made geological environment models. According to these results, by carrying out some investigations on an engineering plan and detailed survey and research plan at the second step, renewal of the engineering plan on the road for study from later half of fiscal year 2001 to fiscal year 2002 and preparation of a basic flow on survey/analysis/evaluation of the second step will be progressed. And, as the long-term water pumping test is planned to be carried out at later half of fiscal year 2001, so its analysis and evaluation are planned to carry continuously out to fiscal year 2002. According to these results, after fiscal year 2002, renewal of engineering plan on the road for study and preparation of detailed survey and research plan at the second step will be progressed. (G.K.)

  2. Mechanical response of jointed granite during shaft sinking at the Canadian Underground Research Laboratory

    International Nuclear Information System (INIS)

    Chan, T.; Lang, P.A.; Thompson, P.M.

    1985-01-01

    As part of the geoscience research within the Canadian Nuclear Fuel Waste Management Program, Atomic Energy of Canada Limited (AECL) is constructing an underground research laboratory (URL) in a previously undisturbed portion of a granitic intrusive, the Lac du Bonnet batholith, approximately 100 km northeast of Winnipeg, Manitoba. The overall geotechnical objectives of the URL are to assess and improve our ability to interpret and predict the geological, geophysical, geochemical, geomechanical and hydrogeological conditions of large bodies of plutonic rock, as well as to assess the accuracy of mathematical models used to predict the near-field mechanical and hydrogeological responses of the rock mass to excavation and thermal loading. Construction will be completed in July, 1986. Large-scale testing will commence soon afterwards and will last until the facility is decommissioned in the year 2000. A rectangular access shaft, 255 m deep x 2.8 m x 4.8 m, was sunk during the period May 1984 to March 1985. Rock displacements and stress changes were monitored as the excavation face (bottom) of the shaft advanced. The major objectives of this monitoring were (a) to evaluate and improve the ability of numerical models in predicting the mechanical response of the rock mass, (b) to back-calculate the rock-mass deformation modulus as a function of depth, (c) to assess the influence of natural fractures on the mechanical response of the granitic rock mass, and (d) to evaluate the quality of the geomechanical instrumentation, to determine instrumentation needs for future field experiments. Analysis of the data from this monitoring will aid the design and modelling of further experiments in the URL. In this paper, the rock displacements measured by an array of extensometers at 15 m below ground surface are presented and compared with predictions by a three-dimensional elastic continuum finite-element model

  3. Horonobe Underground Research Laboratory project. Synthesis of phase I investigation 2001-2005. Volume 'geoscientific research'

    International Nuclear Information System (INIS)

    Ota, Kunio; Abe, Hironobu; Kunimaru, Takanori

    2011-03-01

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe in Hokkaido, northern Japan. The project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The present report summarises the results of the Phase I geoscientific research carried out from March 2001 to March 2005. Integration of the results from different disciplines ensures that the Phase I goals have been successfully achieved and identifies key issues that need to be addressed in Phases II and III. More importantly, efforts are made to summarise as many lessons learnt from the Phase I investigations and other technical achievements as possible to form a 'knowledge base' that will reinforce the technical basis for both implementation and the formulation of safety regulations. Based on experiences of selecting the URL area and site in Horonobe Town, important factors that should be taken into consideration in such selection processes and their rationale are demonstrated. In the course of stepwise surface-based investigations, a number of achievements have been made, which can eventually provide examples of integrated methodologies for characterising the sedimentary formations. The relevant surface-based investigation techniques have thus been further developed. The Horonobe URL has been designed based on geoscientific information accumulated during the surface-based investigations and the plans for safe construction and operation of the URL have been defined in a feasible manner. In addition, a variety of environmental measures taken during Phase I have proved to be

  4. Hydrogeology of the rock mass encountered at the 240 level of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kozak, E.T.; Davison, C.C.

    1992-09-01

    The rock mass surrounding the 240 level of Canada's Underground Research Laboratory (URL) has been hydrogeologically characterized through observations made in the tunnel and room excavations and from a network of radiating low-dipping boreholes. The 240 level complex sits in a wedge of grey-to-pink granite between two important, low-dipping, hydraulically active fracture zones, known as Fracture Zone 2 (FZ2) and Fracture Zone 2.5 (FZ2.5), a splay of FZ2. There is no apparent seepage into the 240 level room and tunnel network from the surrounding rock mass except from a vertical fracture intersected by the Room 209 tunnel. Extensive hydraulic and geomechanical tests have been conducted in boreholes intersecting the Room 209 vertical fracture, and transmissivities were found to range from 10 -10 to 10 -6 m 2 /s. FZ2 and FZ2.5 occur at the 240 m depth approximately 10 m to the west and 100 m to the south respectively of the 240 level tunnel network. Hydraulic testing within packer-isolated boreholes intersecting these fracture zones showed that transmissivities ranged from 10 -7 to 10 -5 m 2 /s in FZ2, and 10 -9 to 10 -7 m 2 /s in FZ2.5. No naturally-occurring fractures were encountered east of the 240 level complex up to 300 m away. The rock mass to the north of the 240 level is dominated by the Room 209 vertical fracture, which tends to splay with distance and has been intersected 95 m from the Room 209 tunnel. (Author) (50 figs., 5 tabs., 10 refs.)

  5. Small scale model and underground laboratory study of engineered barrier thermal behaviour

    International Nuclear Information System (INIS)

    Dardaine, M.; Beziat, A.; Gatabin, C.; Lefevre, I.; Plas, F.; Fontan, N.; Moyne, C.

    1991-01-01

    This is the final report of the contract CCE FI1W/0061, which had the objective of studying the thermal behaviour of the engineered barrier having the selected French clay Fo-Ca (natural calcic smectite) as its major constituent. After being installed this barrier was subjected simultaneously to the heat flux dissipated by the container and to a possible rehydration by contact with the host medium. It consists of three parts. The first part is devoted to R and D studies concerning detectors suitable for the point measurement of the water concentration. Among the techniques that can be envisaged, capacitor methods, which are very temperature sensitive, would require a great deal of effort to be satisfactory. On the other hand, the water concentration can, in principle, be derived from the measurement of the thermal conductivity in the transient regime. Although the carrying out of this measurement is somewhat critical, it can give good results under certain conditions. The second part reports experiments carried out in the laboratory concerning both the study of heat transfer during the so-called dry phase of the disposal (without any water being supplied externally) and the study of the phenomenon of fissuration. Finally, the third part describes the in situ experiment BACCHUS, carried out in the underground test facility at Mol (Belgium), in collaboration with the CEN/SCK. In the course of the five months of the thermal phase of this experiment a large variation in the amplitude of the temperature gradients was recorded, which may be explained, on one hand, by the convergence of the medium and, on the other hand, by a much more rapid rehydration than that predicted

  6. The effect of noise in a performance measure on work motivation: A real effort laboratory experiment

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2008-01-01

    This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is

  7. The effect of noise in a performance measure on work motivation: A real effort laboratory experiment

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2010-01-01

    This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is

  8. In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory

    Science.gov (United States)

    Garavito, A. M.; De Cannière, P.; Kooi, H.

    Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest for osmosis-induced effects in this reference formation in Belgium. Indeed, water flow and solute transport may be associated with several types of driving forces, or gradients (chemical, electrical, thermal), in addition to the hydraulic forces, resulting in the so-called coupled flows. Fluid flow caused by driving forces different than hydraulic gradients is referred to as osmosis. Chemical osmosis, the water flow induced by a chemical gradient across a semi-permeable membrane, can generate pressure increase. The question thus arises if there is a risk to create high pore pressures that could damage the near-field of medium-level waste (MLW) galleries, if osmotically driven water flows towards the galleries are produced by the release of large amounts of NaNO 3 (750 t) in the formation. To what extent a low-permeability clay formation such as the Boom Clay acts as an osmotic membrane is thus a key issue to assess the relevance of osmosis phenomena for the disposal of medium-level waste. An in situ osmosis experiment has been conducted at the H ADES underground research laboratory to determine the osmotic efficiency of Boom Clay at the field scale. A recently developed chemical osmosis flow continuum model has been used to design the osmosis experiment, and to interpret the water pressure measurements. Experimental data could be reproduced quite accurately by the model, and the inferred parameter values are consistent with independent determinations for Boom Clay. A rapid water pressure increase (but limited to about a 2 m water column) was observed after 12 h in the filter containing the more saline water. Then, the osmotically induced water pressure slowly decays on several months. So, the experimental results obtained in situ confirm the occurrence of non-hydraulic flow phenomena (chemical osmosis) in a low

  9. Laboratory Investigation of Noise-Canceling Headphones Utilizing "Mr. Blockhead"

    Science.gov (United States)

    Koser, John

    2013-01-01

    While I was co-teaching an introductory course in musical acoustics a few years ago, our class investigated several pieces of equipment designed for audio purposes. One piece of such equipment was a pair of noise-canceling headphones. Our students were curious as to how these devices were in eliminating background noise and whether they indeed…

  10. First Microbial Community Assessment of Borehole Fluids from the Deep Underground Science and Engineering Laboratory (DUSEL)

    Science.gov (United States)

    Moser, D. P.; Anderson, C.; Bang, S.; Jones, T. L.; Boutt, D.; Kieft, T.; Sherwood Lollar, B.; Murdoch, L. C.; Pfiffner, S. M.; Bruckner, J.; Fisher, J. C.; Newburn, J.; Wheatley, A.; Onstott, T. C.

    2010-12-01

    Fluid and gas samples were collected from two flowing boreholes at the 4100 (1,250 m) and 4850 ft (1478 m) levels of the former Homestake Gold Mine in Lead, South Dakota. Service- and flood water samples were also collected as comparative benchmarks. With a maximum depth of 8,000 ft, (2,438 m), this mine currently hosts the Sanford Laboratory and is the proposed location for the US Deep Underground Science and Engineering Laboratory (DUSEL). The uncased 4100L hole is a legacy of mining; whereas, the cased 4850 hole was drilled in 2009 in support of large cavity construction. Both were packered or valved to exclude mine air and sampled anaerobically using aseptic technique. Physical measurements, aquatic and dissolved gas chemistry, cell counts, and microbial community assessments (SSU rRNA libraries) were performed on all samples. This study represents the first at Sanford Lab/DUSEL specifically focused on the deep biosphere rather than mine microbiology. Fluids from the two holes differed markedly, with that from 4100L being characterized by NaHCO3 and 4850 by Na2SO4. pH values of 8.2 vs. 7.5, conductivities (μS) of 1790 vs. 7667 and alkalinities (mg/L) of 767 vs. 187 were obtained from 4100L and 4850, respectively. As expected, the deeper 4850L hole had the higher temperature (38 vs. 30 oC). Neither had measureable nitrate, but both had similar dissolved organic C (DOC) concentrations (0.8 vs. 0.9 mg/L). Sulfate was present at 337 vs. 4,470 mg/L in 4100L and 4850L. Major dissolved gases were N2 (91 and 81 vol%), O2 (12 and 16 vol%) and CH4 (0.07 and 3.35 vol%) in 4100L and 4850L. The δ13C of CH4 was -51 and -56.7 permil in 4100L and 4850, respectively. The uncorrected 14C age of DIC was calculated at 25,310 (+/- 220) and 47,700 (+/-3,100) years for the two fluids. Cell counts were 5.9e3 and 2.01e5 in 4100L and 4850. Microbial community structure was diverse in both holes and distinct from that of service water. A large proportion of rRNA library clones were

  11. Measurement plan and observational construction program on drift excavation at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Yamasaki, Masanao; Yamaguchi, Takehiro; Funaki, Hironori; Fujikawa, Daisuke; Tsusaka, Kimikazu

    2008-09-01

    The Horonobe URL Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, 'Geoscientific Research' and 'R and D' on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. On the Horonobe URL Project, 'Phase 1' was finished in 2005FY and construction of the underground facility was started since then. Now, 'Phase 2' (investigations during construction of the underground facilities) is on-going. On the 'Development of engineering techniques for use in the deep underground environment' in Phase 1, based on the various types of data acquired on investigations from the surface, the design of underground facility in advance was planned. At the inception of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe URL Project' (hereinafter referred to as 'Observational Construction Program') was published. The Observational Construction Program summarizes followings from the Phase I investigations: measurements for safety/reasonable construction, measurements for R and D on enhancement of shaft design/construction technology, and measurements for verification of the deep geological environment model estimated before shaft excavation, and it is on-going. This report summarizes the measurement plan during construction of drifts based on the design in advance and the observational construction program for feedback measurements data into design and construction on subsequent steps. This report also describes about design and construction management program of underground facility and R and D program on

  12. Upscaling laboratory results for water quality prediction at underground collieries in South Africa's Highveld Coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Usher, B.H. [University of Orange Free State, Bloemfontein (South Africa). Institute for Groundwater Studies

    2009-01-15

    The prediction of future acidity and water quality is a key aspect of water management in mining environments. In this paper, different prediction techniques tested in an isolated underground compartment at a colliery in the Highveld Coalfield of South Africa are discussed. Considerations for upscaling these results are explained, and a methodology for upscaling is tested at this facility. Over 30 samples were collected around the compartment and through cored boreholes. These samples were tested using acid-base accounting tests, humidity cells, and mineralogy. From this, an integrated interpretation of potential water quality evolution was made, supported by detailed water quality sampling with the use of surface boreholes, stratified sampling underground, and pumped qualities over a period of two years. The results show that analytical tests play an integral role in water quality predictions at underground collieries. The results also show that, despite the vast differences between laboratory test conditions and the situation in the field, by taking site conditions into account to properly contextualise the results, improved predictions of expected water quality can be obtained.

  13. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    Science.gov (United States)

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  14. Parameters of a simple whole body counter and thyroid monitor established at the Dresden Felsenkeller underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sahre, P [Rossendorf Nuclear Engineering and Analytics, Inc., Dresden (Germany); Schoenmuth, T [Rossendorf Nuclear Engineering and Analytics, Inc., Dresden (Germany)

    1997-03-01

    At the Rossendorf Nuclear Engineering and Analytics Inc. a simple whole body counter and an iodine-thyroid monitor are used for measuring the internal contamination of workers. There is no shielding chamber in both cases. By using the chamber at the Dresden Felsenkeller underground laboratory the lower limit of detection could be improved by a factor of about 3 for whole body counting and by a factor of 2,5 for thyroid monitoring (I 131, I 125). Concerning the lower limit of detection the applicability of the German standard DIN 25 482 implemented in the Gamma-Vision software packadge is discussed in the paper. (orig.)

  15. Low-level multicounter {beta}/{gamma} systems with external guards in surface and shallow underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Theodorsson, P [Iceland Univ. (Iceland). Science Inst.

    1997-03-01

    When weak samples are measured it is important that they can be given ample counting time in order to obtain satisfactory accuracy and that the background count rate can be checked well. This calls for a high counting capacity, which multidetectors can bring us. I will discuss development possibilities of low-level {beta}/{gamma} multidetector systems with an external anticosmic shield that will in many cases be operated in underground laboratories. These simple and low-cost system can frequently help us in increasing the number of detectors. Three concepts are combined in these systems: (1) multidetectors, (2) an external anticosmic (or guard) detector arrangement and (3) overburden shielding. (orig.)

  16. Low-level multicounter β/γ systems with external guards in surface and shallow underground laboratories

    International Nuclear Information System (INIS)

    Theodorsson, P.

    1997-01-01

    When weak samples are measured it is important that they can be given ample counting time in order to obtain satisfactory accuracy and that the background count rate can be checked well. This calls for a high counting capacity, which multidetectors can bring us. I will discuss development possibilities of low-level β/γ multidetector systems with an external anticosmic shield that will in many cases be operated in underground laboratories. These simple and low-cost system can frequently help us in increasing the number of detectors. Three concepts are combined in these systems: (1) multidetectors, (2) an external anticosmic (or guard) detector arrangement and (3) overburden shielding. (orig.)

  17. Laboratory Investigation of Noise-Canceling Headphones Utilizing ``Mr. Blockhead''

    Science.gov (United States)

    Koser, John

    2013-09-01

    While I was co-teaching an introductory course in musical acoustics a few years ago, our class investigated several pieces of equipment designed for audio purposes. One piece of such equipment was a pair of noise-canceling headphones. Our students were curious as to how these devices were in eliminating background noise and whether they indeed block low-frequency sounds as advertised.

  18. Low background germanium detectors: From environmental laboratory to underground counting facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceuppens, M [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States); Verplancke, J [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States); Tench, O [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States)

    1997-03-01

    Presentation and overview of different Low Level measuring systems ranging from the environmental lab to low-background detection systems and to the deep underground counting facility. Examples and performances for each of these will be given. Attention will be given to the standardised ultra low-background detectors and shields which provide excellent performance without the high cost in time and money associated with custom designed systems. (orig./DG)

  19. Low background germanium detectors: From environmental laboratory to underground counting facility

    International Nuclear Information System (INIS)

    Ceuppens, M.; Verplancke, J.; Tench, O.

    1997-01-01

    Presentation and overview of different Low Level measuring systems ranging from the environmental lab to low-background detection systems and to the deep underground counting facility. Examples and performances for each of these will be given. Attention will be given to the standardised ultra low-background detectors and shields which provide excellent performance without the high cost in time and money associated with custom designed systems. (orig./DG)

  20. Horonobe Underground Research Laboratory project. Current status on the surface-based investigation

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Ishii, Eiichi

    2004-01-01

    Aims of the Horonobe URL project are presenting concrete geological environment as an example of sedimentary formation and confirming reliability of technologies for geological disposal of High-Level Radioactive Waste (HLW) by applying them to actual geological condition of sedimentary formation. Social aim is providing opportunities for general public to experience the actual deep underground circumstance and R and D activities to be conducted there. (author)

  1. Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Takeuchi, Shinji; Takeuchi, Ryuji; Ohyama, Takuya

    2007-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

  2. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami Group and the Toki Granite. Fiscal year 2014

    International Nuclear Information System (INIS)

    Hayashida, Kazuki; Munemoto, Takashi; Iwatsuki, Teruki; Aosai, Daisuke; Inui, Michiharu

    2016-06-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2014. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  3. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami group and the Toki granite. Fiscal year 2015

    International Nuclear Information System (INIS)

    Hayashida, Kazuki; Kato, Toshihiro; Munemoto, Takashi; Kubota, Mitsuru; Iwatsuki, Teruki; Aosai, Daisuke; Inui, Michiharu

    2017-03-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2015. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described. (author)

  4. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami group and the Toki granite. Fiscal year 2013

    International Nuclear Information System (INIS)

    Ohmori, Kazuaki; Hasegawa, Takashi; Munemoto, Takashi; Iwatsuki, Teruki; Masuda, Kaoru; Aosai, Daisuke; Inui, Michiharu

    2014-12-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2013. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  5. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in Mizunami group and Toki granite. Fiscal year 2012

    International Nuclear Information System (INIS)

    Ohmori, Kazuaki; Iwatsuki, Teruki; Shingu, Shinya; Masuda, Kaoru; Aosai, Daisuke; Inui, Michiharu

    2014-03-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2012. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  6. Final report on the surface-based investigation phase (phase 1) at the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Matsuoka, Toshiyuki

    2011-03-01

    The Mizunami Underground Research Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal

  7. Study on applicability of low alkaline cement in Horonobe Underground Research Laboratory project (2) (Contract research)

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Kobayashi, Yasushi; Matsuda, Takeshi; Noda, Masaru; Iriya, Keishiro; Takeda, Nobufumi

    2009-11-01

    In Horonobe Underground Research Center construction of underground facility began in 2005 and a construction practicality test with HFSC (Highly Fly-ash contained Silica-fume Cement) is planned in a part of the gallery. Before the HFSC is used as a tunnel support in the gallery, it is necessary to validate that the HFSC is valid under the actual construction condition. The research results in the FY 2007 are as follows. For evaluating corrosion behavior in the HFSC and the durability of the HFSC, reinforced concrete specimen with HFSC 226 have been exposed to off-shore condition in saline water and splashed zone for 6 years and analyzed the corrosion rate and the amount of chloride intrusion. The durability of the HFSC reinforced concrete was assessed to be more than 50 years until cracking due to corrosion is generated. The pH measurements and the analysis of the chemical composition of solid and liquid phase in the HFSC cocrete-water immersion experiments, which were started in the FY 2002, were carried out. Also for the experiments of cement paste for shotcreting, which were started in the FY 2005, were analyzed. Furthermore, results and findings obtained in earlier studies including this study were summarized, and based on those, method of quality control including test method, frequency, standards etc. was suggested. (author)

  8. Noise reduction techniques used on the high power klystron modulators at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Russell, T.J.

    1993-01-01

    The modulators used in the Advanced Photon Source at Argonne National Laboratory have been redesigned with an emphasis on electrical noise reduction. Since the modulators are 100 MW modulators with <700 ns rise time, electrical noise can be coupled very easily to other electronic equipment in the area. This paper will detail the efforts made to reduce noise coupled to surrounding equipment. Shielding and sound grounding techniques accomplished the goal of drastically reducing the noise induced in surrounding equipment. The approach used in grounding and shielding will be discussed, and data will be presented comparing earlier designs to the improved design

  9. Applicability of initial stress measurement methods to Horonobe Siliceous rocks and initial stress state around Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya; Fujii, Yoshiaki

    2009-01-01

    Understanding initial stress condition in deep underground is important for such construction as rock cavern for geological disposal of HLW and underground power plant. Neogene sedimentary rock is widely distributed in Japan. There are only a few studies of initial stress measurement in Neogene sedimentary rock mass in Japan due to difficulty of measurement. Evaluation of initial stress condition around Horonobe Underground Research Laboratory Project was carried out in order to understand initial stress condition and applicability of AE, DSCA and hydraulic fracturing (HF) methods to Neogene sedimentary rock. Initial stress values obtained from AE method is smaller than overburden pressure due to time dependency of Kaizer effect. It would be difficult to use AE method as initial stress measurement method for Horonobe Siliceous rocks. Principal stress values by DSCA are similar to those by HF tests. Directions of maximum horizontal principal stresses are approximately in E-W and corresponded to HF results. In HF, rod type and wire-line type systems were compared. Workability of rod type was much better than wire-line type. However, re-opening pressure were not able to be precisely measured in case of rod type system due to the large compliance of the packers and rods. Horizontal maximum and minimum principal stresses increase linearly in HF results. Deviatoric stress is acting at shallow depth. Initial stress condition approaches hydrostatic condition with depth. Direction of maximum horizontal principal stress was in E-W direction which was similar to tectonic movement around Horonobe URL by triangular surveying. (author)

  10. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2014-04-01

    Full Text Available Underground research laboratories (URLs, including “generic URLs” and “site-specific URLs”, are underground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a “generic URL”, but also acts as a “site-specific URL” to some extent. Considering the current situation in China, the most suitable option is to build an “area-specific URL” in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 may be achieved, but the time left is limited.

  11. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  12. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  13. Countermeasures planned for reducing water inflow into deep shafts at the Mizunami Underground Research Laboratory. Research for post-excavation grouting

    International Nuclear Information System (INIS)

    Kuji, Masayoshi; Matsui, Hiroya; Hara, Masato; Mikake, Shinichiro; Takeuchi, Shinji; Asai, Hideaki; Minamide, Masashi; Sato, Toshinori

    2009-01-01

    A large amount of water inflow is frequently occurs during the excavation of an underground cavern, such as road and railway tunnels, and underground electric facilities etc. The reduction of water inflow is sometimes quite important for the cost reduction for the water treatment and pumping during the construction of an underground cavern. The Mizunami Underground Research Laboratory (MIU) is currently being constructed by Japan Atomic Energy Agency. During its excavation, a large amount of water inflow into the shafts has been increasing and affecting the project progress. Therefore, a field experiment of post-excavation grouting around the Ventilation Shaft in a sedimentary formation carried out to confirm the effect of existing grouting technology for sedimentary formations in MIU project. The result shows that the applied methods in this field experiment are effective to prevent water inflow. This report describes the summary of the field experiment and the knowledge obtained through the experiment. (author)

  14. Cigeo. The French deep geological repository for radioactive waste. Excavation techniques and technologies tested in underground laboratory and forecasted for the future construction of the project

    International Nuclear Information System (INIS)

    Chauvet, Francois; Bosgiraud, Jean-Michel

    2015-01-01

    Cigeo is the French project for the repository of the high activity and intermediate long-lived radioactive waste. It will be situated at a depth of 500 m, In a clayish rock formation. An underground laboratory was built in the year 2000 and numerous tests are performed since 15 years, in order to know in detail the behavior of the rock and its ability to confine radioactive elements. In addition, this underground laboratory has brought and will continue to bring many lessons on the excavation methods to be chosen for the construction of Cigeo.

  15. Residual strain, scale effects, and time-dependent behaviour at the 240-m level of the underground research laboratory

    International Nuclear Information System (INIS)

    Read, R.S.

    1990-01-01

    Two subhorizontal, orthogonal boreholes were monitored continuously during concentric overcoring at the 240-m level of the Underground Research Laboratory (URL). The magnitude and orientation of principal residual strain components in the near-field stress regime were determined assuming linear elastic behaviour of the rock mass and isotropic conditions. In terms of magnitude, results compared favourably with those from previous tests at the 240-m level. However, orientation results were inconclusive. The effects of scale and borehole orientation relative to the principal stress direction on the results from a modified CSIR triaxial cell overcore test were also investigated; no scale effects were apparent in the experiment, but borehole orientation did affect results. Finally, time-dependent behaviour was detected in the Lac du Bonnet granite, and was monitored between successive overcore tests in one of the boreholes. Results on residual strain, scale effects, and time-dependent behaviour are presented, along with limitations and possible modifications to the testing procedure

  16. A large area transition radiation detector to measure the energy of muons in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Barbarito, E.; Bellotti, R.; Cafagna, F.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Mongelli, M.; Montaruli, T.; Perchiazzi, M.; Raino, A.; Sacchetti, A.; Spinelli, P.

    1995-01-01

    We have designed and built a transition radiation detector of 36 m 2 area in order to measure the residual energy of muons penetrating in the Gran Sasso cosmic ray underground laboratory up to the TeV region. It consists of three adjacent modules, each of 2x6 m 2 area. Polystyrene square tubes, filled with a argon-carbon dioxide gas mixture, and polyethylene foam layers are used as proportional detectors and radiators respectively. We cover such a large surface with only 960 channels that provide adequate energy resolution and particle tracking for the astroparticle physics items to investigate. The detector has been calibrated using a reduced size prototype in a test beam. Results from one module exposed to cosmic rays at sea level are shown. (orig.)

  17. The use of scientific and technical results from underground research laboratory investigations for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-09-01

    The objective of the report is to provide information on the use of results obtained from underground research laboratory investigations for the development of a deep geological repository system for long lived and/or high level radioactive waste including spent fuel. Specifically, it should provide Member States that intend to start development of a geological disposal system with an overview of existing facilities and of the sorts and quality of results that have already been acquired. The report is structured into six main themes: rock characterization methodologies and testing; assessment of the geological barrier; assessment of the engineered barrier system; respository construction techniques; demonstration of repository operations; confidence building and international co-operation

  18. Evaluating the potential for large-scale fracturing at a disposal vault: an example using the underground research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C D; Chandler, N A; Brown, Anton

    1994-09-01

    The potential for large-scale fracturing (> 10 m{sup 2}) around a nuclear fuel waste disposal vault is investigated in this report. The disposal vault is assumed to be located at a depth of 500 m in the plutonic rocks of the Canadian Shield. The rock mass surrounding the disposal vault is considered to have similar mechanical properties and in situ stress conditions to that found at a depth of 420 m at the Underground Research Laboratory. Theoretical, experimental and field evidence shows that Mode I fractures propagate in a plane perpendicular to {sigma}{sub 3} and only if the tensile stress at the tip of the advancing crack is sufficient to overcome the tensile strength of the rock. Because the stress state at a depth of 500 m or more is compressive, and will very probably stay so during the 10,000 year life of the disposal vault, there does not appear to be any mechanism which could propagate large-scale Mode I fracturing in the rock mass surrounding the vault. In addition because {sigma}{sub 3} is near vertical any Mode I fracture propagation that might occur would be in a horizontal plane. The development of either Mode I or large-scale shear fractures would require a drastic change in the compressive in situ stress state at the depth of the disposal vault. The stresses developed as a result of both thermal and glacial loading do not appear sufficient to cause new fracturing. Glacial loading would reduce the shear stresses in the rock mass and hence improve the stability of the rock mass surrounding the vault. Thus, it is not feasible that large-scale fracturing would occur over the 10,000 year life of a disposal vault in the Canadian Shield, at depths of 500 m or greater, where the compressive stress state is similar to that found at the Underground Research Laboratory. 107 refs., 44 figs.

  19. Evaluating the potential for large-scale fracturing at a disposal vault: an example using the underground research laboratory

    International Nuclear Information System (INIS)

    Martin, C.D.; Chandler, N.A.; Brown, Anton.

    1994-09-01

    The potential for large-scale fracturing (> 10 m 2 ) around a nuclear fuel waste disposal vault is investigated in this report. The disposal vault is assumed to be located at a depth of 500 m in the plutonic rocks of the Canadian Shield. The rock mass surrounding the disposal vault is considered to have similar mechanical properties and in situ stress conditions to that found at a depth of 420 m at the Underground Research Laboratory. Theoretical, experimental and field evidence shows that Mode I fractures propagate in a plane perpendicular to σ 3 and only if the tensile stress at the tip of the advancing crack is sufficient to overcome the tensile strength of the rock. Because the stress state at a depth of 500 m or more is compressive, and will very probably stay so during the 10,000 year life of the disposal vault, there does not appear to be any mechanism which could propagate large-scale Mode I fracturing in the rock mass surrounding the vault. In addition because σ 3 is near vertical any Mode I fracture propagation that might occur would be in a horizontal plane. The development of either Mode I or large-scale shear fractures would require a drastic change in the compressive in situ stress state at the depth of the disposal vault. The stresses developed as a result of both thermal and glacial loading do not appear sufficient to cause new fracturing. Glacial loading would reduce the shear stresses in the rock mass and hence improve the stability of the rock mass surrounding the vault. Thus, it is not feasible that large-scale fracturing would occur over the 10,000 year life of a disposal vault in the Canadian Shield, at depths of 500 m or greater, where the compressive stress state is similar to that found at the Underground Research Laboratory. 107 refs., 44 figs

  20. Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, R.D.; Krantz, W.B.

    1987-03-01

    The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

  1. Measurement of low radioactivity in underground laboratories by means of many-dimensional spectrometry; Messung geringer Radioaktivitaet in Untertagelaboratorien mit Hilfe mehrdimensionaler Spektrometrie

    Energy Technology Data Exchange (ETDEWEB)

    Niese, Siegfried

    2008-01-15

    In this contribution beside the possibilities for the measurements in underground laboratories also the application of the many-dimensional spectrometry is considered, under which coincidence, anticoincidence, and time-resolving spectrometric are to be understood. Very extensively the interaction of cosmic radiation with matter is considered.

  2. Confirmation of the applicability of low alkaline cement-based material in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Niunoya, Sumio; Minamide, Masashi

    2016-01-01

    In Japan, high-level radioactive waste repository will be constructed in a stable host rock formation more than 300 m underground. Tunnel support is used for safety during the construction and operation, so, shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement, water and various additives. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed the low alkaline cement, named as HFSC (Highly fly-ash contained silicafume cement), containing over 60wt% of silicafume (SF) and Fly-ash (FA). JAEA is presently constructing the underground research laboratory (URL) at Horonobe for research and development in the geosciences and repository engineering technology. HFSC was used experimentally as the shotcrete material in construction of part of the 350 m deep gallery in the Horonobe URL in 2013. The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC in normal concrete. The total length of tunnel constructed using HFSC shotcrete is about 112 m at 350 m deep drift. The workability of HFSC shotcrete was confirmed by this experimental construction. In this report, we present detailed results of the in-situ construction test. (author)

  3. Survey of in situ testing at underground laboratories with application to geologic disposal of spent fuel waste in crystalline rock

    International Nuclear Information System (INIS)

    Hardin, E.

    1992-04-01

    This report is intended for use in designing testing programs, or as backup material for the review of 'R and D 92' which will be the next three-year plan for spent fuel repository siting and characterization activities in Sweden. There are eight major topics, each of which is addressed in a chapter of around 2000 to 10000 words. The major topics are defined to capture the reasons for testing, in a way that limits overlap between chapters. Other goals of this report are to provide current information on recent or ongoing tests in crystalline rock, and to describe insights which are important but not obvious from the literature. No data are presented, but the conclusions of testing programs are summarized. The principal sources were reports (in English) produced by the laboratory projects particularly the Stripa Project (SKB), the Underground Research Laboratory in Canada (AECL), and the Grimsel Test Site in Switzerland (Nagra). Articles from refereed journals have been used in lieu of project literature where possible and appropriate. (au)

  4. Principal provisions of engineering and geological survey methodology in designing and construction of underground laboratory as a part of facility of RW underground isolation

    International Nuclear Information System (INIS)

    Prokopova, O.A.

    2006-01-01

    The most critical moment is the choice of a site for radioactive waste geological repository. Here the role of engineering and geological prospecting as a basis for the construction of a facility for underground isolation appears especially important; it is followed by finding a suitable area and subsequent allocation of the site and facility construction sites. The decision on the selection of construction site for the underground repository is taken by the principle 'descent from the general to the particular', which is a continuous process with the observance of stages in research for the design and exploration work. Each stage of research is typified by specific scale and methods of geological and geophysical studies and scientific research to be fulfilled in scopes sufficient for solution of basic problems for the designing. (author)

  5. Development of a tomographic method using cosmic ray muons: application to the Mont Terri underground laboratory and la Soufriere de Guadeloupe

    International Nuclear Information System (INIS)

    Lesparre, N.

    2011-01-01

    Cosmic muons are produced in cascade processes following the interactions of cosmic rays with the atmosphere. Muons are fundamental particles with a mass 200 times higher than electrons. Their low interaction probability with matter allows them to cross the atmosphere and even the first kilometers of the Earth crust. The muons flux is attenuated through a media as function of the quantity of matter crossed. The study of the muon flux attenuation allows then to obtain a direct measurement of the rock opacity. This opacity corresponds to the media density, integrated along the muon path through rock. Muons' trajectory is indeed considered to be straight when crossing rock. It is then possible to realise geophysical tomographies by setting a sensor network around geological objects in order to determine the internal structures geometry inside these objects. An underground muon flux model is developed herein from flux models estimated at surface and a model of muon flux attenuation through rock. A feasibility equation of the muon tomography is then established in order to determine the minimum time of data acquisition to distinguish heterogeneities. Four muons telescopes have been built during this thesis and conditioned to bear field installation, notably in tropical media. These telescopes are made by two or three matrices of detection constituted of scintillating bars linked to photomultipliers. The modeling of the telescopes detection capacity and angular resolution is realised as function of their geometrical configuration. A calibration method is also established in order to correct the signal from any distortion. Moreover, arrangements to reduce the backward noise produced by low energy particles are set up and evaluated. The development of this new tomographic method is then illustrated by two geophysical applications. The measurements realised in the Mont Terri underground laboratory (Switzerland) allowed us to benefit from stable acquisition conditions to

  6. Exploratory simulations of multiphase effects in gas injection and ventilation tests in an underground rock laboratory

    International Nuclear Information System (INIS)

    Finsterle, S.

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects was sponsored by the US Department of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL) and the Swiss Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaella (Nagra) and concluded in September 1989. 16 refs., 29 figs., 4 tabs

  7. Historical Jeroným Mine in Čistá – Underground Experimental Geotechnical Laboratory

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Hrubešová, E.; Kořínek, R.; Žůrek, P.; Kukutsch, Radovan

    2012-01-01

    Roč. 21, č. 1 (2012), s. 54-65 ISSN 1211-0728 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z3086906 Keywords : Jeroným Mine * geotechnical laboratory * monitoring Subject RIV: DC - Siesmology, Volcanology, Earth Structure http://www.ita-aites.cz/files/tunel/komplet/tunel_1_12.pdf

  8. Application of the results of excavation response experiments at climax and the Colorado School of Mines to the development of an experiment for the underground research laboratory

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.; Hustrulid, W.A.

    1988-01-01

    Large-scale underground experiment programs to examine excavation response have been performed at the Climax facility in Nevada and at the Colorado School of Mines. These two programs provided fundamental information on the behavior of rock and the effects of excavation; on instrument performance and configuration; and on the relationship between test geometry and test behavior. This information is being considered in the development of a major excavation response experiment to be carried out in the Canadian Underground Research Laboratory. 11 refs., 3 figs

  9. On the dominant noise components of tactical aircraft: Laboratory to full scale

    Science.gov (United States)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  10. Modelling of the damaged zone induced by the shaft sinking of the Meuse/Haute-Marne underground laboratory (East argilites)

    International Nuclear Information System (INIS)

    Miehe, Baptiste

    2004-01-01

    From a geomechanical point of view, the safety of an underground storage for the radioactive waste requires to characterize the damaged zone induced by the shaft sinking for the storage cavities. Then, the objective of this thesis is to simulate the hydro-mechanical response of the East argilites to the shaft sinking for the Meuse/Haute-Marne underground laboratory, in order to compare the results to the in situ measurements which will be recorded in 2005 (REP experiment). Firstly we have analysed all the mechanical tests which had been carried out from 1995 to 2001. We have observed that each series has his own coherence, in terms of elastic parameters, mechanical strength or creep capacity. But there are some strong differences between the series. These differences, which are due to the experimental protocols and not to the material itself, have shown three important results: the re-saturation phases imposed by several laboratories have deteriorated the mechanical properties of the East argilites, the existence of an effective stress is not evident for these argilites, and their mechanical strength increases when they are dried. From these tests, we have distinguished three mechanisms that produce irreversible strains: compaction, pre-failure, failure. We have described each of them by a straightforward elasto-plastic model, based on the Mohr-Coulomb or Drucker-Prager criterion, with a linear softening. Thus we obtain a complete rheological model for the East argilites by considering simultaneously the three mechanisms (multi-criterion plasticity). Lastly, from the modelling we carried out, we can conclude that: to take into account the irreversible strains that occur before the failure has a great influence on the seize of the failure zone around the shaft (it is very small with respect to the case where the behaviour is elastic until the failure); the pore pressure diffusion modifies very little the mechanical response of the massif (the plastic strains created

  11. Migration of THO and Np in a fractured granite core at deep underground laboratory

    International Nuclear Information System (INIS)

    Park, Chung Kyun; Cho, Won Zin; Hahn, Pil Soo; Kienzler, B.

    2005-01-01

    Migration experiments of THO and 237Np have performed through a sampled granite core in Chemlab2 probe at the Aspo hard Rock laboratory. The elution curves of THO were analysed to determine hydraulic properties such as the extent of dispersion effect according to flow rates. The retardation phenomena of the solutes were observed and described with elution curves and migration plumes. After migration test, the rock core was opened, and the remaining radioactivities on the rock fracture surfaces were measured. The transport process was simulated with a two-dimensional channel model. The mass transport process was described with three types of basic processes: advection, sorption and matrix diffusion. By the combination of these processes, effects of each process on transport were described in terms of elution curves and migration plumes. By comparing the simulation results to the experimental one, it was possible to analyse the retardation effect quantitatively

  12. Rock stress measurements in the Grimsel Underground Rock Laboratory and their geological interpretation

    International Nuclear Information System (INIS)

    Braeuer, V.; Heusermann, S.; Pahl, A.

    1989-01-01

    Rock stress is being studied as part of the Swiss-German cooperation between the National Cooperative for the Storage of Radioactive Waste (NAGRA), the Research Centre for Environmental Sciences (GSF), and the Federal Institute for Geosciences and Natural Resources (BGR) in the Grimsel Rock Laboratory in Switzerland. Several methods and various equipment for measuring rock stress have been developed and tested in an approximately 200-m borehole drilled from a gallery at a depth of 450 m. The measurements were made continually during overcoring; the data were recorded and processed in a computer located downhole or outside the borehole. The results of the overcoring tests and of frac tests indicate a principle horizontal stress of 25-40 MPa, directed mainly NW-SE. Detailed geological mapping shows relationships between stress and rock structure. A zone of nearly unfractured rock exhibits an increase in stress and a change in stress direction. (orig.)

  13. GRS' research on clay rock in the Mont Terri underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus; Czaikowski, Oliver [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH, Braunschweig (Germany)

    2016-07-15

    For constructing a nuclear waste repository and for ensuring the safety requirements are met over very long time periods, thorough knowledge about the safety-relevant processes occurring in the coupled system of waste containers, engineered barriers, and the host rock is indispensable. For respectively targeted research work, the Mont Terri rock laboratory is a unique facility where repository research is performed in a clay rock environment. It is run by 16 international partners, and a great variety of questions are investigated. Some of the work which GRS as one of the Mont Terri partners is involved in is presented in this article. The focus is on thermal, hydraulic and mechanical behaviour of host rock and/or engineered barriers.

  14. Mizunami Underground Research Laboratory project. A project on research stage of investigating prediction from ground surface. Project report at fiscal year of 2000 to 2004

    International Nuclear Information System (INIS)

    2000-04-01

    This was a detailed plan after fiscal year 2000 on the first stage of the Research stage at investigating prediction from ground surface' in three researches carried out at the Mizunami Underground Research Laboratory (MIU) according to the 'Basic plan on research of underground science at MIU', based on progress of investigation and research before fiscal year 1999. This project contains following three items as its general targets; establishment of general investigating techniques for geological environment, collection of informations on deep underground environment, and development on foundation of engineering technology at super-deep underground. And, targets at investigating prediction stage from ground surface contain acquisition of geological environment data through investigations from ground surface to predict changes of the environment accompanied with underground geological environment and construction of experimental tunnel, to determine evaluating method on prediction results, and to determine plannings of an investigating stage accompanied with excavation of the tunnel by carrying out detail design of the tunnel. Here were introduced about results and problems on the investigation of the first phase, the integration of investigating results, and the investigation and researches on geology/geological structure, hydrology and geochemistry of groundwater, mechanical properties of rocks, and the mass transfer. (G.K.)

  15. In Situ Observation of Rock Spalling in the Deep Tunnels of the China Jinping Underground Laboratory (2400 m Depth)

    Science.gov (United States)

    Feng, Xia-Ting; Xu, Hong; Qiu, Shi-Li; Li, Shao-Jun; Yang, Cheng-Xiang; Guo, Hao-Sen; Cheng, Yuan; Gao, Yao-Hui

    2018-04-01

    To study rock spalling in deep tunnels at China Jinping Underground Laboratory Phase II (CJPL-II), photogrammetry method and digital borehole camera were used to quantify key features of rock spalling including orientation, thickness of slabs and the depth of spalling. The failure mechanism was analysed through scanning electron microscope and numerical simulation based on FLAC3D. Observation results clearly showed the process of rock spalling failure: a typical spalling pattern around D-shaped tunnels after top-heading and bottom bench were discovered. The orientation and thickness of the slabs were obtained. The slabs were parallel to the excavated surfaces of the tunnel and were related to the shape of the tunnel surface and orientation of the principal stress. The slabs were alternately thick and thin, and they gradually increased in thickness from the sidewall inwards. The form and mechanism of spalling at different locations in the tunnels, as influenced by stress state and excavation, were analysed. The result of this study was helpful to those rethinking the engineering design, including the excavation and support of tunnels, or caverns, at high risk of spalling.

  16. New numerical modelling of the mechanical long-term behaviour of the GMR gallery in ANDRA's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Blanco Martin, L.; Hadj-Hassen, F.; Tijani, M.; Armand, G.

    2011-01-01

    This paper deals with a new macroscopic numerical modelling of the mechanical long-term behaviour of ANDRA's Underground Research Laboratory. The study focuses on the GMR gallery, oriented along the minor horizontal principal stress and located at the main level 490 m deep. The simulations are made using the finite element method (FEM).Convergence measurements in this gallery exhibit an important dis-symmetry between the vertical and horizontal directions, as well as a significant time effect in the vertical trend. In attempts to both understand the phenomena that lie beneath such dis-symmetry and reproduce the experimental data, a modification to Lemaitre's creep law has been proposed. The new viscoplastic law takes into account the following aspects: rock transverse isotropy, creep behaviour and rock expansion. The excavation history of the GMR gallery has also been considered in the numerical modelling. The numerical results are very satisfactory for the GMR drift. However, the mechanisms of anisotropic shear and expansion on which the new law is based do not lead to an accurate reproduction of the data measured in the galleries oriented in the perpendicular direction. Therefore, a thorough insight into the mechanical behaviour of the rock mass and into the proposed new law is needed before the latter can be applied to the Callovo-Oxfordian layer. (authors)

  17. Search for time modulations in the decay constant of 40K and 226Ra at the underground Gran Sasso Laboratory

    Science.gov (United States)

    Bellotti, E.; Broggini, C.; Di Carlo, G.; Laubenstein, M.; Menegazzo, R.

    2018-05-01

    Time modulations at per mil level have been reported to take place in the decay constant of several nuclei with period of one year (most cases) but also of about one month or one day. On the other hand, experiments with similar or better sensitivity have been unable to detect any modulation. In this letter we give the results of the activity study of two different sources: 40K and 226Ra. The two gamma spectrometry experiments have been performed underground at the Gran Sasso Laboratory, this way suppressing the time dependent cosmic ray background. Briefly, our measurements reached the sensitivity of 3.4 and 3.5 parts over 106 for 40K and 226Ra, respectively (1 sigma) and they do not show any statistically significant evidence of time dependence in the decay constant. We also give the results of the activity measurement at the time of the two strong X-class solar flares which took place in September 2017. Our data do not show any unexpected time dependence in the decay rate of 40K in correspondence with the two flares. To the best of our knowledge, these are the most precise and accurate results on the stability of the decay constant as function of time.

  18. Horonobe Underground Research Laboratory project. Synthesis of phase II (construction phase) investigations to a depth of 350 m

    International Nuclear Information System (INIS)

    Sato, Toshinori; Sasamoto, Hiroshi; Ishii, Eiichi; Matsuoka, Toshiyuki; Hayano, Akira; Miyakawa, Kazuya; Fujita, Tomoo; Tanai, Kenji; Nakayama, Masashi; Takeda, Masaki; Yokota, Hideharu; Aoyagi, Kazuhei; Ohno, Hirokazu; Shigeta, Naotaka; Hanamuro, Takahiro; Ito, Hiroaki

    2017-03-01

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. This report summarizes the results of the Phase II investigations carried out from April 2005 to June 2014 to a depth of 350 m. Integration of work from different disciplines into a 'geosynthesis' ensures that the Phase II goals have been successfully achieved and identifies key issues that need to be addressed in the Phase II investigations. Efforts are made to summarize as many lessons learnt from the Phase II investigations and other technical achievements as possible to form a 'knowledge base' that will reinforce the technical basis for both implementation and the formulation of safety regulations. (author)

  19. The Meuse-Haute Marne underground research laboratory. A scientific research tool for the study of deep geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    The Meuse-Haute Marne underground research laboratory, is an essential scientific tool for the achievement of one of the ANDRA's mission defined in the framework of the law from December 30, 1991 about the long-term management of high-level and long-living radioactive wastes. This document presents this laboratory: site characterization, characteristics of the Callovo-Oxfordian clay, and laboratory creation, coordinated experiments carried out at the surface and in depth, and the results obtained (published in an exhaustive way in the 'Clay 2005' dossier). (J.S.)

  20. Factors controlling the population size of microbes in groundwater from AECL's Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S.; Hamon, C. [Atomic Energy of Canada Limited, Whiteshell Labs., Pinawa, Manitoba (Canada); Mills, K. [University of Saskatoon, Saskatoon, SK (Canada); Rana, S.; Vaidyanathan, S. [Deep River Science Academy, Whiteshell Campus Summer 1997, Pinawa, Manitoba (Canada)

    2001-01-01

    Microbial populations in groundwaters from AECL's Underground Research Laboratory (URL) range from 10{sup 3} to 10{sup 5} cells/mL. Based on the total dissolved organic carbon (DOC), nitrate and phosphate content of these waters, populations of about 10{sup 5} to 10{sup 7} cells/mL should be possible. Upon storage of groundwater samples, total cell counts generally increase and viable cell counts always increase. A study was undertaken to determine what controls the in situ microbial population size in groundwater and what causes this population to grow upon sampling. Fresh URL groundwater was filter-sterilized, inoculated with small quantities of the unaltered water and incubated in the absence and presence of added nutrients (nitrate, phosphate and glucose). Unfiltered groundwater and R2A growth medium inoculated with unaltered groundwater, were also incubated. Microbial changes over time were followed by total and viable (on R2A medium) cell counts. Results showed that in the absence of any nutrient addition, populations grew to between 5 x 10{sup 5} to 4 x 10{sup 6} cells/mL, regardless of the initial size of the population ({approx}10{sup 1} to 10{sup 4} cells/mL), suggesting that nutrients for growth were available in the unamended groundwater. It was hypothesized that the original groundwater population was in 'equilibrium' with the underground environment, which likely included a large population of sessile cells in biofilms on fracture surfaces. Sampling of the groundwater removed the large demand on nutrient supplies by the sessile population which subsequently allowed the planktonic population to grow to a new 'equilibrium' with the available nutrients in the sample bottles. Addition of single nutrients (C, N or P) did not increase cell numbers, suggesting that more than one nutrient is limiting growth. Glucose was used very efficiently aerobically in the presence of both added N and P, but somewhat less under anaerobic

  1. Diffusion and retention experiment at the Mont Terri underground rock laboratory in St. Ursanne

    International Nuclear Information System (INIS)

    Leupin, O.X.; Wersin, P.; Gimmi, Th.; Van Loon, L.; Eikenberg, J.; Baeyens, B.; Soler, J.M.; Dewonck, S.; Wittebroodt, C.; Samper, J.; Yi, S.; Naves, A.

    2010-01-01

    Document available in extended abstract form only. Because of their favourable hydraulic and retention properties that limit the migration of radionuclides, indurated clays are being considered as potential host rocks for radioactive waste disposal. Migration of radionuclides by diffusion and retention is thereby one of the main concerns for safety assessment and therefore carefully investigated at different scales. The transfer from dispersed sorption batch and diffusion data from lab experiments to field scale is however not always straightforward. Thus, combined sorption and diffusion experiments at both lab and field scale are instrumental for a critical verification of the applicability of such sorption and diffusion data. The present migration field experiment 'DR' (Diffusion and Retention experiment) at the Mont Terri Rock Laboratory (Switzerland) is the continuation of a series of successful diffusion experiments. The design is based on these previous diffusion experiments and has been extended to two diffusion chambers in a single borehole drilled perpendicular to the bedding plane. The radionuclides were injected as a pulse in both upper and lower loops where artificial pore water is circulating. The injected tracers were tritium, iodide, bromide, sodium-22, strontium-85, caesium (stable) for the lower diffusion chamber and deuterium caesium-137, barium-133, cobalt-60, europium-152, selenium (stable) and selenium-75 for the lower diffusion chamber. Their decrease in the circulation fluid - as they diffuse into the clay - is continuously monitored by online?-detection and regular sampling. The goals are fourfold (i) obtain diffusion and retention data for moderately to strongly sorbing tracers and to verify the corresponding data obtained on small-scale lab samples, (ii) improve diffusion data for the rock anisotropy, (iii) quantify effects of the borehole-disturbed zone for non-reactive tracers and (iv) improve data for long term diffusion. The

  2. LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Beek, P. van; Souhaut, M.; Lansard, B.; Bourquin, M.; Reyss, J.-L.; Ballmoos, P. von; Jean, P.

    2013-01-01

    We describe a new underground laboratory, namely LAFARA (for “LAboratoire de mesure des FAibles RAdioactivités”), that was recently created in the French Pyrénées. This laboratory is primarily designed to analyze environmental samples that display low radioactivity levels using gamma-ray spectrometry. Two high-purity germanium detectors were placed under 85 m of rock (ca. 215 m water equivalent) in the tunnel of Ferrières (Ariège, France). The background is thus reduced by a factor of ∼20 in comparison to above-ground laboratories. Both detectors are fully equipped so that the samples can be analyzed in an automatic mode without requiring permanent presence of a technician in the laboratory. Auto-samplers (twenty positions) and systems to fill liquid nitrogen automatically provide one month of autonomy to the spectrometers. The LAFARA facility allows us to develop new applications in the field of environmental sciences based on the use of natural radionuclides present at low levels in the environment. As an illustration, we present two of these applications: i) dating of marine sediments using the decay of 226 Ra in sedimentary barite (BaSO 4 ), ii) determination of 227 Ac ( 231 Pa) activities in marine sediment cores. - Highlights: ► We describe a new underground laboratory that allows us to conduct low-background gamma-ray spectrometry. ► The background in the underground laboratory is reduced by a factor of ∼20 in comparison to above-ground laboratories. ► The 2 gamma spectrometers are equipped so that they can run automatically (one month of autonomy).

  3. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  4. Study on development of evaluation technique of in-situ tracer test in Horonobe Underground Research Laboratory project (Contract research)

    International Nuclear Information System (INIS)

    Yokota, Hideharu; Amano, Kenji; Maekawa, Keisuke; Kunimaru, Takanori; Naemura, Yumi; Ijiri, Yuji; Motoshima, Takayuki; Suzuki, Shunichi; Teshima, Kazufumi

    2013-06-01

    In the Horonobe Underground Research Laboratory Project, in-situ tracer tests are valuable and important as the investigations to obtain the mass transportation data of fractures in hostrock. However, it is difficult that the in-situ tests are executed under various conditions due to long test period and the tests results are evaluated about permeable heterogeneity in a fracture and/or scale effects. In this study, a number of tracer tests are simulated in a fictitious single plate fracture generated on computer. And the transport parameters are identified by fitting one- and two-dimensional models to the breakthrough curves obtained from the simulations in order to investigate the applicability of these models to the evaluation of in-situ tracer test. As a result, one-dimensional model yields larger longitudinal dispersion length than two-dimensional model in the both cases of homogeneous and heterogeneous hydraulic conductivity fields of the fictitious fracture. This is because that the effect of transverse dispersion has to be included in the longitudinal dispersion length parameter in the one-dimensional model. It is also found that the larger dipole ratio and the larger natural groundwater flow crossing the flow generated between two boreholes make the identified longitudinal dispersion length larger. And, the longitudinal dispersion length identified from a tracer test is smaller and/or larger than the macroscopic longitudinal dispersion length identified from whole fracture. It is clarified that these are occurred by shorter or longer distance between boreholes compare to the correlation length of geostatistical heterogeneity of fictitious fracture. (author)

  5. Temporary threshold shift after impulse-noise during video game play: laboratory data.

    Science.gov (United States)

    Spankovich, C; Griffiths, S K; Lobariñas, E; Morgenstein, K E; de la Calle, S; Ledon, V; Guercio, D; Le Prell, C G

    2014-03-01

    Prevention of temporary threshold shift (TTS) after laboratory-based exposure to pure-tones, broadband noise, and narrowband noise signals has been achieved, but prevention of TTS under these experimental conditions may not accurately reflect protection against hearing loss following impulse noise. This study used a controlled laboratory-based TTS paradigm that incorporated impulsive stimuli into the exposure protocol; development of this model could provide a novel platform for assessing proposed therapeutics. Participants played a video game that delivered gunfire-like sound through headphones as part of a target practice game. Effects were measured using audiometric threshold evaluations and distortion product otoacoustic emissions (DPOAEs). The sound level and number of impulses presented were sequentially increased throughout the study. Participants were normal-hearing students at the University of Florida who provided written informed consent prior to participation. TTS was not reliably induced by any of the exposure conditions assessed here. However, there was significant individual variability, and a subset of subjects showed TTS under some exposure conditions. A subset of participants demonstrated reliable threshold shifts under some conditions. Additional experiments are needed to better understand and optimize stimulus parameters that influence TTS after simulated impulse noise.

  6. Flow and transport properties of a 200 meters multi scale fractured block at the Aespoe (Sweden) underground laboratory

    International Nuclear Information System (INIS)

    Grenier, C.; Bernard-Michel, G.; Fourno, A.; Benaderrahmane, H.

    2005-01-01

    Full text of publication follows: Within the framework of nuclear spent fuel storage, special care is put on experimentation and modelling work to improve the modelling capabilities for the transfers of radionuclides within a natural fractured media. Several aspects make it a challenging task, among which the heterogeneity of the system, the scarcity of the available information, the strong contrasts in the parameter values between mobile and immobile zones. In addition to these difficulties relative to the system, the assessment of storage capacity of a repository involves predictions at very large time scales (typically 100.000 years) which are not accessible to experimentation. We provide here with some of the results obtained within the SKB Task Force (Task6) related with the Aespoe granitic underground laboratory in Sweden. The purpose of this task, involving several other modelling teams, is to provide a bridge between detailed SC (Site Characterization) models operating at experimental and local time scale and more simple PA (Performance Assessment) models operating at large spatial and time scales used for sensitivity analysis to different scenarios. The present step involves a study of a 200 meters complex and realistic fractured system considering several scales of fracturing or heterogeneity according to the in situ observations: deterministic features identified from the Block Scale project, synthetic background fractures simulated based on in situ measurements of smaller scale fracturing and finally complexity of the fractures at different scales (fault zones with several channels along Cataclasite to simple joints with fracture coating). Tracer tests conducted within local portions of the system during Block Scale project are provided as well as laboratory measurements of the properties of the system. We present an overview of our modelling strategy and transport results as well as associated studies highlighting the role played by the different sub

  7. Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

  8. An outline of 1994-1996 geological studies for underground laboratory siting in the Charroux-Civray sediment-capped granitic massif-(southern Vienne-Poitou-France)

    Energy Technology Data Exchange (ETDEWEB)

    Virlogeux, D. [ANDRA, Chatenay-Malabry (France)

    1998-09-01

    Following the selection of four potentially favourable districts, ANDRA carried out a comprehensive geological investigation in the cantons of Charroux and Civray in order to assess the suitability of a large volume of granitic rocks to host an underground laboratory according to safety regulations. Surface mapping, regional aeromagnetic and gravimetric surveys, seismic reflection lines and 16 cored boreholes led to the selection of a tonalitic unit near La Chapelle-Baton as the target formation to be proposed for detailed study. This volume extends over an area of more than 3x4 km at the surface and at least 800m vertically. There appears to be no prohibitive factors to installation of an underground laboratory for further exploration, particularly from the hydrogeological standpoint. Magmatic joint-type small fracturing shows no variation with depth and polyphasic hydrothermal history has led to plugging the fractures with clays and carbonates. Alkaline fluids crystallising Adular (-126 My) has led to a strong reduction in the initial permeability of basement paleo-weathering zone. The horizontal and relatively fault-free sedimentary cover reveals a simple tectonic history during the last 200 My. One of the objectives of the laboratory study program will be to confirm the conceptual model of slow, shallow circulation in depth, based on the following data: Low frequency water inflows, obtained in the boreholes by pumping and testing, show the very low permeability of (pluri)hectometric blocks delineated by conducting faults. Low hydraulic gradients recorded in the boreholes are consistent with regional topography, and hydraulic heads in the granite similar or lower than those recorded in the overlying sedimentary aquifers. The chemical composition of granitic waters exhibits significant salinity at depth, and is different from the Lias and Dogger aquifer waters, indicating limited hydraulic relationships. The origin and age of the salinity is still under debate

  9. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gunja, Ateka; Pandey, Yagya [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Xie, Hui [Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL (United States); Faculty of Health Sciences, Simon Fraser University, Burnaby, BC (Canada); Wolska, Beata M. [Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL (United States); Shroff, Adhir R.; Ardati, Amer K. [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States)

    2017-04-15

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm{sup 2}). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm{sup 2} ± 74.0 vs. 41.9 mGy cm{sup 2} ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise

  10. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Gunja, Ateka; Pandey, Yagya; Xie, Hui; Wolska, Beata M.; Shroff, Adhir R.; Ardati, Amer K.; Vidovich, Mladen I.

    2017-01-01

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm"2). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm"2 ± 74.0 vs. 41.9 mGy cm"2 ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise compared to

  11. Stepwise hydrogeological characterisation utilising a geo-synthesis methodology - A case study from the Mizunami Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Saegusa, H.; Osawa, H.; Onoe, H.; Ohyama, T.; Takeuchi, R.; Takeuchi, S.

    2009-01-01

    The Mizunami Underground Research Laboratory (MIU) is now under construction by Japan Atomic Energy Agency (JAEA) in the Cretaceous Toki granite in the Tono area of central Japan. One of the main goals of the MIU project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. For this purpose, a geo-synthesis methodology has been developed and will be tested in a dry run to determine if it produces the data required for repository design and associated integrated safety assessment modelling. Surface-based hydrogeological characterisation, intended to develop conceptual models of the deep geological environment based on an understanding of the undisturbed conditions before excavation of this URL, was carried out in a stepwise manner. This allows field investigations, construction of geological and hydrogeological models and interpretation of resultant groundwater flow simulations to develop in an iterative manner. Investigations have the goal of obtaining information on factors relevant to repository design, associated construction, operational and postclosure safety assessment, evaluation of the practicality of implementation and environmental impact assessment. Such factors include bulk hydraulic conductivity, the locations and properties of water conducting features, direct and indirect indicators of regional and local flow (e.g. based on chemistry or isotopes), etc. Following evaluation of pre-existing site information, field investigations began with fault mapping. This was followed by reflection seismic and vertical seismic profile surveys. In addition, a large programme of investigations was carried out in boreholes, including cross-hole tomography and hydraulic tests. Such input is utilised for the construction

  12. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  13. Water flow in the Oxfordian and Dogger limestone around the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Linard, Y.; Vinsot, A.; Delay, J.; Scholz, E.; Lundy, M.; Garry, B.; La Vaissiere, R. de; Cruchaudet, M.; Dewonck, S.; Vigneron, G.; Vincent, B.; Wechner, S.

    2010-01-01

    Document available in extended abstract form only. Within its scientific program to study the feasibility of a high level radioactive waste disposal in the Callovo-Oxfordian argillaceous rock (COx) of the eastern Paris Basin, Andra has conducted an extensive characterization of the Oxfordian and Dogger limestone formations above and below the COx. More than 35 wells ranging from 400 to 700 meters deep were drilled over 15 years to study a 400 km 2 area around the Andra's Meuse / Haute-Marne Underground Research Laboratory (URL). An original methodology was applied in these wells to characterize the geology, the hydrogeology and the geochemistry of the Jurassic carbonates. This multidisciplinary effort provided a unique set of 3D data. The first purpose of this study is to integrate the geological, hydrogeological and geochemical data into a water flow conceptual model. Geological data include the study of cored wells, complete modern wire-line log sets in both cored and un-cored wells, and outcrop analogues. Hydrogeological data include transmissivity and hydraulic head measurements in the Oxfordian and Dogger limestone formations. Geochemical data include several on site measurements (pH, alkalinity, electrical conductivity, temperature) and chemical and isotopic analyses performed on water samples taken at selected depths. More than one hundred hydraulic tests have been performed since 1994 to measure transmissivity distribution in the Oxfordian and Dogger limestone. Several hydraulic testing methods were used in each well: global pumping tests, fluid logging tests, thermal flow logging tests and packer tests. After completion of the hydraulic tests, hydraulic heads were deduced from long term pressure measurements in open wells or in multi-packer completions; pressure monitoring lasted between a few months and more than 10 years. Long term/high volume pumping tests were also performed after the hydraulic tests to obtain a stationary composition of the well

  14. Atmospheric radiation environment analyses based-on CCD camera at various mountain altitudes and underground sites

    Directory of Open Access Journals (Sweden)

    Li Cavoli Pierre

    2016-01-01

    Full Text Available The purpose of this paper is to discriminate secondary atmospheric particles and identify muons by measuring the natural radiative environment in atmospheric and underground locations. A CCD camera has been used as a cosmic ray sensor. The Low Noise Underground Laboratory of Rustrel (LSBB, France gives the access to a unique low-noise scientific environment deep enough to ensure the screening from the neutron and proton radiative components. Analyses of the charge levels in pixels of the CCD camera induced by radiation events and cartographies of the charge events versus the hit pixel are proposed.

  15. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10 16 Bq (7.5 x 10 5 Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation of the new hydrofracture facility include: (1) significant 90 Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations. The facility also falls under the provisions of part 3004(u) of the Resource Conservation and Recovery Act pertaining to corrective actions. Nationally, there is an uncertain outlook for the disposal of wastes by underground injection. All wells used for the injection of hazardous wastes (Class I wells) are being reviewed. 8 refs., 4 figs., 2 tabs

  16. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2014

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2015-09-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, “Geoscientific Research” and “Research and Development on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal – Hydrological – Mechanical – Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2015. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  17. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2015

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, 'Geoscientific Research' and 'Research and Development on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal - Hydrological - Mechanical - Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2016. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  18. Critical examination of the ANDRA program on researches performed in Bure underground laboratory and on the transposition zone to define a ZIRA

    International Nuclear Information System (INIS)

    2011-01-01

    After an introductive chapter which notably presents the definition criteria for a ZIRA (area of interest for extended reconnaissance), an area chosen to study its potential use as intermediate and high level long life radioactive waste deep storage. The second chapter reports the collection of seismic data, investigations, researches and analyses for the selection of a ZIRA, a deeper investigation on earthquakes (seismic risk, seismic history, maximum possible earthquake, site response to earthquakes). The third chapter reports the characterization and properties of the concerned geological formations which may influence contaminant transportation in geological media and long term storage performance. The fourth chapter reports a rock mechanics analysis: possible non-homogeneities of mechanical properties, comparison of in situ stress with interstitial pressure parameters between the ZIRA and the underground laboratory, and so on. The fifth chapter addresses thermal aspects: thermal response of the host formation, rock thermal properties, and review of thermal models and of thermal effects. The last chapter compares six programs of underground researches aimed at the selection of ZIRA

  19. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10/sup 16/ Bq (7.5 x 10/sup 5/ Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation and the new hydrofracture facility include: (1) significant /sup 90/Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. There are no plans to reactivate the hydrofracture process. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations and under provision 3004(u) of the Resource Conservation and Recovery Act

  20. Molecular characterisation of dissolved organic matter (DOM) in groundwaters from the Aespoe Underground Research Laboratory (Sweden)): A novel 'finger printing' tool for palaeo-hydrological assessment

    International Nuclear Information System (INIS)

    Vane, C. H.; Kim, A. W.; Milodowski, A. E.; Smellie, J.; Tullborg, E. L.; West, J. M.

    2008-01-01

    The molecular signature of dissolved organic matter (DOM) in groundwaters can be used as a tool when investigating the palaeo-hydrological response of groundwater systems in relation to changes in recharge environment, and also for examining groundwater compartmentalisation, mixing and transport at underground repositories for radioactive waste. The DOM in groundwaters from two compartmentalised bodies of groundwater of distinctly different origin within the Aespoe Underground Research Laboratory (URL) (Sweden)) and in Baltic seawater has been isolated using tangential flow ultrafiltration (TUF) and dia-filtration. Recoveries of DOM ranged from 34.7 to 0.1 mg/L with substantial differences in the concentrations of the groundwaters collected only 120 m apart. Analysis by infrared spectroscopy (IR) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) of the isolated DOM revealed that the groundwaters contained abundant alkylphenols which may represent heavily decomposed proteins or lignins originating from biopolymers contained within soils. The difference in the distribution and relative abundance of major pyrolysis products groups such as alkylphenols confirmed that the groundwater and Baltic seawater DOM samples were chemically distinct indicating minimal infiltration of marine groundwater derived by recharge from the Baltic or earlier Littorina Sea within the two compartmentalised groundwater bodies. (authors)

  1. Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

    CERN Document Server

    British Standards Institution. London

    1998-01-01

    Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

  2. Hydro-mechanical modelling of an excavation in an underground research laboratory with an elasto-viscoplastic behaviour law and regularization by second gradient of dilation

    International Nuclear Information System (INIS)

    Plassart, Roland; Giraud, Albert; Hoxha, Dashnor; Laigle, Francois

    2013-01-01

    In the context of nuclear waste disposals, this paper deals with hydro-mechanical modelling in saturated conditions in deep geological formation, using a specific elasto-viscoplastic model hereafter called the L and K model. While classical Biot's framework is followed for the hydro-mechanical coupling, the mechanical L and K model offers a coupling between instantaneous and delayed behaviour and a variation of dilation of ten related to softening. These volumetric strains are especially highlighted in coupled hydro-mechanical conditions. In order to avoid mesh dependency and numerical localized solutions, this type of modelling needs the use of a regularization method which is here referred to as the second gradient dilation model. After describing the numeric tools, we use them for simulating a gallery of the underground research laboratory of Bure. The approach is validated by the good general agreement found between numeric results and in situ measures for both hydraulic pressure and displacement. (authors)

  3. Application of virtual reality technology to activities for offering information to the general public in the Mizunami Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Kawase, Keiichi; Sugihara, Kozo; Yamamoto, Junta

    2000-01-01

    The Tono Geoscience Center is carrying out the Mizunami Underground Research Laboratory Project (MIU Project), as part of its scientific research program, in Mizunami City, Gifu Prefecture. We believe that the public and especially the local residents should have a precise understanding of the MIU project. Therefore, to provide information we have used virtual reality (VR) technology in the project since 1996. Software to introduce both the MIU Project and the geology of the Tono district has been completed. The Tono district is characterized by uranium ore deposits, and by clay deposits which are used by the pottery industry. Software with some amusement value, such as hot spring drilling, has also been completed. We plan further software development of VR technology to increase the feeling of realism. (author)

  4. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2018-06-01

    Full Text Available With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET, which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ, and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. Keywords: Beishan, Xinchang site, Granite

  5. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-01-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H 2 , CO, NH 3 , CH 4 , and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  6. Experiments in the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB in the Asse II salt mine - summary highlighting work performed and outlook

    International Nuclear Information System (INIS)

    Neumaier, S.; Zwiener, R.; Boehm, J.

    2003-03-01

    Due to its extremely low area dose rate, the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB at the 925 m level of the Asse II Salt Mine offers unique possibilities for the investigation and calibration of dosimetry systems of high sensitivity as are used, for example, in environmental monitoring. Due to its low area dose rate, this laboratory has an outstanding position worldwide. The low ambient dose equivalent rate in the UDO of approx. 1 nSv/h, that means of only approx. 1 percent of the ambient dose rate typically encountered at the Earth's surface, is mainly due to the following reasons: - At the depth at which the UDO is situated, the penetrating muon component of cosmic radiation which considerably contributes to the environmental equivalent dose rate at the Earth's surface (in Braunschweig, for example, approx. one third) is already attenuated by more than five orders of magnitude and is therefore completely negligible for dosimetric investigations; - The activity concentration of the pure rock salt surrounding the UDO is extremely low; it amounts only to a few becquerel per kg (from 40 K), which is approx. one hundredth of the values usually found for 'common construction materials'. Uranium and thorium have not been detected so far (upper limits for U and Th: 0,1 Bq/kg and 0,01 Bq/kg, respectively); - The radon concentration of the air is about 10 to 20 becquerel per m 3 and stems from the ventilation of the mine with outside air; - The laboratory building consists of selected materials with very low natural activity. The PTB is thus the only National Metrology Institute capable of investigating dosimetry systems free from the disturbing influences of natural ambient radiation. The objective of the present report is to illustrate, by means of selected examples, the activities which have so far been carried out at the UDO and which are planned for the few remaining years to come. The final chapter is devoted to whether the PTB will

  7. The use of HANDIDET reg-sign non-electric detonator assemblies to reduce blast-induced overpressure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W.

    1996-01-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD reg-sign non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure

  8. The use of HANDIDET{reg_sign} non-electric detonator assemblies to reduce blast-induced overpressure at AECL`s Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W. [AECL, Pinawa, Manitoba (Canada). Underground Research Lab.; Proudfoot, D.F. [ICI Explosives Canada, North Delta, British Columbia (Canada)

    1996-12-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada`s nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD{reg_sign} non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure.

  9. The in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. Examination of backfill material using muck from URL construction

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Tanai, Kenji; Fujita, Tomoo; Sugita, Yutaka

    2016-06-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, “Geoscientific Research” and “Research and Development on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) was prepared from 2013 to 2014 fiscal year at G.L.-350m gallery (Niche No.4), and heating by electric heater in simulated overpack started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal – Hydrological – Mechanical – Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. In EBS experiment, the backfill material using mixture of bentonite and muck from Horonobe URL construction was used for backfilling a part of Niche No.4. This report shows the results of properties of the backfill material, confirmation test of compaction method and making backfill material block, and so on. From these results, it was confirmed that the backfill material would satisfy target value of the permeability and the swelling pressure. (author)

  10. Experiments in the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB in the Asse II salt mine - summary highlighting work performed and outlook

    CERN Document Server

    Neumaier, S; Zwiener, R

    2003-01-01

    Due to its extremely low area dose rate, the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB at the 925 m level of the Asse II Salt Mine offers unique possibilities for the investigation and calibration of dosimetry systems of high sensitivity as are used, for example, in environmental monitoring. Due to its low area dose rate, this laboratory has an outstanding position worldwide. The low ambient dose equivalent rate in the UDO of approx. 1 nSv/h, that means of only approx. 1 percent of the ambient dose rate typically encountered at the Earth's surface, is mainly due to the following reasons: - At the depth at which the UDO is situated, the penetrating muon component of cosmic radiation which considerably contributes to the environmental equivalent dose rate at the Earth's surface (in Braunschweig, for example, approx. one third) is already attenuated by more than five orders of magnitude and is therefore completely negligible for dosimetric investigations; - The activity concentration...

  11. Monitoring and modelling of thermo-hydro-mechanical processes - main results of a heater experiment at the Mont Terri underground rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ingeborg, G.; Alheid, H.J. [BGR - Federal Institute for Geosciences and Natural Resources, Hannover (Germany); Jockwerz, N. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) - Final Repository Research Division, Braunschweig (Germany); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Garcia-Siner, J.L. [AITEMIN -Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid, (Spain); Alonso, E. [CIMNE - Centre Internacional de Metodos Numerics en Ingenyeria, UPC, Barcelona (Spain); Weber, H.P. [NAGRA - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Plotze, M. [ETHZ - Swiss Federal Institute of Technology Zurich, IGT, Zurich, (Switzerland); Klubertanz, G. [COLENCO Power Engineering Ltd., Baden (Switzerland)

    2005-07-01

    The long-term safety of permanent underground repositories relies on a combination of engineered and geological barriers, so that the interactions between the barriers in response to conditions expected in a high-level waste repository need to be identified and fully understood. Co-financed by the European Community, a heater experiment was realized on a pilot plant scale at the underground laboratory in Mont Terri, Switzerland. The experiment was accompanied by an extensive programme of continuous monitoring, experimental investigations on-site as well as in laboratories, and numerical modelling of the coupled thermo-hydro-mechanical processes. Heat-producing waste was simulated by a heater element of 10 cm diameter, held at a constant surface temperature of 100 C. The heater element (length 2 m) operated in a vertical borehole of 7 m depth at 4 to 6 m depth. It was embedded in a geotechnical barrier of pre-compacted bentonite blocks (outer diameter 30 cm) that were irrigated for 35 months before the heating phase (duration 18 months) began. The host rock is a highly consolidated stiff Jurassic clay stone (Opalinus Clay). After the heating phase, the vicinity of the heater element was explored by seismic, hydraulic, and geotechnical tests to investigate if the heating had induced changes in the Opalinus Clay. Additionally, rock mechanic specimens were tested in the laboratory. Finally, the experiment was dismantled to provide laboratory specimens of post - heating buffer and host rock material. The bentonite blocks were thoroughly wetted at the time of the dismantling. The volume increase amounted to 5 to 9% and was thus below the bentonite potential. Geo-electrical measurements showed no decrease of the water content in the vicinity of the heater during the heating phase. Decreasing energy input to the heater element over time suggests hence, that the bentonite dried leading to a decrease of its thermal conductivity. Gas release during the heating period occurred

  12. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Weaver, P.C.

    2010-01-01

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 5 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the concrete duct from Trench 5 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 5 was appropriate based on recent verification results from Trenches 2, 3, and 4, and the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch pipe from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 5. Based on the pre-excavation sample results of the soil overburden the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that resolved each ORISE comment adequately (BNL 2010a). ORISE referred to the revised HFBR Underground Utilities FSP FSS data to conduct the Type A verification

  13. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    Science.gov (United States)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  14. An lesson learned from the consultation activity with community regarding the Mizunami Underground Laboratory project. From a viewpoint of procedural and distributive justice

    International Nuclear Information System (INIS)

    Nishio, Kazuhisa; Osawa, Hideaki

    2016-01-01

    Japan Atomic Energy Agency (JAEA) has promoted the Mizunami Underground Research Laboratory (Mizunami URL) as one of generic URL to perform basic research of waste disposal technology for about twenty years. JAEA had carried out consultation activities with local people and community from 1995 when the plan of Mizunami URL opened at the time, because an early approach of JAEA caused a sense of social distrust and concern, which the study area of Mizunami URL would be candidate site of real repository. In this paper, we conducted normative analysis intended for the consultation activities from a viewpoint of procedural justice and distributed justice, used as the social psychological framework in terms of public NIMBY facility. The results show that it is important to develop local partnership, composed of representative local people and organization, at early start in the light of procedural justice and to support deliberation regarding distributive justice and so on by local partnership in the aspect of information and financial administration. (author)

  15. Investigations for a change of an excavation damaged zone with time at the 250 m gallery in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Tsusaka, Kimikazu; Kondo, Keiji; Inagaki, Daisuke; Kubota, Kenji; Tokiwa, Tetsuya

    2014-01-01

    The authors have been conducting seismic and resistivity tomography surveys in a gallery of the Horonobe Underground Research Laboratory in order to investigate an extent of an Excavation Damaged Zone (EDZ) along time. The objective of this paper is to discuss an influence of fracture distribution and water saturation of a rock mass on variations in seismic velocity and the value of apparent resistivity in an EDZ. Based on the result of seismic tomography survey, the extent of a layer which has low seismic velocity was about 1.0 m from the gallery wall after excavation of the tomography area. From the results of resistivity tomography survey, the value of apparent resistivity has not changed remarkably along time. To investigate a relationship between variations in seismic velocity and density of fracture in the survey area, the authors built a three dimensional fracture model around the tomography area. From the comparison of seismic velocity with density of fracture, seismic velocity decreased almost linearly as the density of fracture increased. Also, it was found that density of fracture in the layer of low seismic velocity could be estimated using a simple numeric model. >From this result, seismic tomography survey and investigation of density of fracture are suitable method for evaluation of an EDZ. (author)

  16. Identification of light and very heavy cosmic ray primaries at E0 ∼ 1015 eV from surface and deep underground measurements at the Gran Sasso Laboratories

    International Nuclear Information System (INIS)

    Navarra, G.

    1999-01-01

    'Very heavy' (iron-like) and 'light' (proton-like) cosmic ray primaries are identified at primary energies E 0 ∼ 10 15 eV by means of simultaneous measurements of shower size N e , N μ GeV (= N μ (E μ > 1 GeV)) at the surface, and N μ TeV (= N μ (E μ > 1.3 TeV)) and ΔE μ /ΔL (i.e. muon energy losses per unit of track length) at the Gran Sasso Laboratories by EAS-TOP at the surface (2000 m a.s.l.) and LVD deep underground (3400 m w.e. depth). 'Very heavy' primaries are selected using large muon numbers detected by LVD; 'light' primaries using high muon energy losses in the LVD scintillation counters, the two selections operating in two different predefined ranges of N e . Their identification is confirmed from the analysis at the surface in the N e - N μ GeV domain, by their 'location' in regions of 'high' and 'low' muon numbers. The experimental points lay around the average predictions from the CORSIKA-HDPM code. This procedure provides the first interpretation of individual events at such primary energies through the Extensive Air Shower technique, and the verification (at least on average) of the CORSIKA-HDPM code. The presence of iron-like primaries is proved up to primary energies E 0 ∼ 5.10 15 eV

  17. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2014. Development of recovery and mitigation technology on excavation damage (Contract research)

    International Nuclear Information System (INIS)

    Fukaya, Masaaki; Hata, Koji; Akiyoshi, Kenji; Sato, Shin; Takeda, Nobufumi; Miura, Norihiko; Uyama, Masao; Kanata, Tsutomu; Ueda, Tadashi; Hara, Akira; Torisu, Seda; Ishida, Tomoko; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

    2016-03-01

    The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consist of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security and (5) development of technologies for restoration and/or reduction of the excavation damage. As a part of the second phase of the MIU project, research has been focused on the evaluation of engineering technologies including the initial design based on the data obtained during construction. In this research, examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/or reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As a result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained. A CD-ROM is attached as an appendix. (J.P.N.)

  18. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Harpenau, E.M.

    2010-01-01

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 1 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the 42-inch duct and 14-inch line in Trench 1 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 1 was appropriate based on recent verification results from Trenches 2, 3, 4, and 5, and the minimal potential for residual radioactivity in the area. The removal of underground utilities has been performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch duct from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 1. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the gamma spectroscopy results for 14 FSS soil samples, four core samples, and one duplicate sample collected from Trench 1. Sample results for the radionuclides of concern were below the established cleanup goals. However, in sample PH-3

  19. Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015). Development of design and construction planning and countermeasure technologies (Contract research)

    International Nuclear Information System (INIS)

    Toguri, Satohito; Kobayashi, Shinji; Tsuji, Masakuni; Yahagi, Ryoji; Yamada, Toshiko; Matsui, Hiroya; Mikake, Shinichiro; Aoyagi, Yoshiaki; Sato, Toshinori

    2017-03-01

    The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1)development of design and construction planning technologies, (2)development of construction technology, (3)development of countermeasure technology, (4)development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. So far, the verification of the initial design based on the data obtained during excavation was mainly conducted as a research in the Construction Phase, also the countermeasure technologies to control groundwater inflow were examined as a research in the Operation Phase. In FY2015, as a part of the important issues on the research program, “Development of countermeasure technologies for reducing groundwater inflow” in the Japan Atomic Energy Agency 3rd Midterm Plan, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized. (author)

  20. Limits on light WIMPs with a 1 kg-scale germanium detector at 160 eVee physics threshold at the China Jinping Underground Laboratory

    Science.gov (United States)

    Yang, Li-Tao; Li, Hau-Bin; Yue, Qian; Kang, Ke-Jun; Cheng, Jian-Ping; Li, Yuan-Jing; Tsz-King Wong, Henry; Aǧartioǧlu, M.; An, Hai-Peng; Chang, Jian-Ping; Chen, Jing-Han; Chen, Yun-Hua; Deng, Zhi; Du, Qiang; Gong, Hui; He, Li; Hu, Jin-Wei; Hu, Qing-Dong; Huang, Han-Xiong; Jia, Li-Ping; Jiang, Hao; Li, Hong; Li, Jian-Min; Li, Jin; Li, Xia; Li, Xue-Qian; Li, Yu-Lan; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Liu, Zhong-Zhi; Ma, Hao; Ma, Jing-Lu; Pan, Hui; Ren, Jie; Ruan, Xi-Chao; Sevda, B.; Sharma, Vivek; Shen, Man-Bin; Singh, Lakhwinder; Singh, Manoj Kumar; Tang, Chang-Jian; Tang, Wei-You; Tian, Yang; Wang, Ji-Min; Wang, Li; Wang, Qing; Wang, Yi; Wu, Shi-Yong; Wu, Yu-Cheng; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hai-Jun; Yue, Jian-Feng; Zeng, Xiong-Hui; Zeng, Ming; Zeng, Zhi; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhou, Ji-Fang; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Zhong-Hua; CDEX Collaboration

    2018-01-01

    We report results of a search for light weakly interacting massive particle (WIMP) dark matter from the CDEX-1 experiment at the China Jinping Underground Laboratory (CJPL). Constraints on WIMP-nucleon spin-independent (SI) and spin-dependent (SD) couplings are derived with a physics threshold of 160 eVee, from an exposure of 737.1 kg-days. The SI and SD limits extend the lower reach of light WIMPs to 2 GeV and improve over our earlier bounds at WIMP mass less than 6 GeV. Supported by the National Key Research and Development Program of China (2017YFA0402200, 2017YFA0402201), the National Natural Science Foundation of China (11175099, 11275107, 11475117, 11475099, 11475092, 11675088), the National Basic Research Program of China (973 Program) (2010CB833006). We thank the support of grants from the Tsinghua University Initiative Scientific Research Program (20121088494, 20151080354) and the Academia Sinica Investigator Award 2011-15, contracts 103-2112-M-001-024 and 104-2112-M-001-038-MY3 from the Ministry of Science and Technology of Taiwan.

  1. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-09-01

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides 90 Sr, 137 Cs, and 233 U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak

  2. Deeper underground

    Energy Technology Data Exchange (ETDEWEB)

    Brearley, D. [Pantek Ltd. (United Kingdom)

    2005-12-01

    The paper describes how efficient data gathering has led to production and uptime improvements in UK Coal's Daw Mill colliery in Warwickshire. Software called FactorySuite A{sup 2} from Wonderware is being used to control and monitor all underground production and conveying. 3 photos.

  3. Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France

    Science.gov (United States)

    Delay, Jacques; Rebours, Hervé; Vinsot, Agnès; Robin, Pierre

    Andra, the French National Radioactive Waste Management Agency, is constructing an underground test facility to study the feasibility of a radioactive waste disposal in the Jurassic-age Callovo-Oxfordian argillites. This paper describes the processes, the methods and results of a scientific characterization program carried out from the surface via deep boreholes with the aim to build a research facility for radioactive waste disposal. In particular this paper shows the evolution of the drilling programs and the borehole set up due to the refinement of the scientific objectives from 1994 to 2004. The pre-investigation phase on the Meuse/Haute-Marne site started in 1994. It consisted in drilling seven scientific boreholes. This phase, completed in 1996, led to the first regional geological cross-section showing the main geometrical characteristics of the host rock. Investigations on the laboratory site prior to the sinking of two shafts started in November 1999. The sinking of the shafts started in September 2000 with the auxiliary shaft completed in October 2004. The experimental gallery, at a depth of 445 m in the main shaft, was in operation by end 2004. During the construction of the laboratory, two major scientific programs were initiated to improve the existing knowledge of the regional hydrogeological characteristics and to accelerate the process of data acquisition on the shales. The aim of the 2003 hydrogeological drilling program was to determine, at regional scale, the properties of groundwater transport and to sample the water in the Oxfordian and Dogger limestones. The 2003-2004 programs consisted in drilling nine deep boreholes, four of which were slanted, to achieve an accurate definition of the structural features.

  4. Reliability of laboratory tests of VSTOL and other long duration noises

    Science.gov (United States)

    Kryter, K. D.; Peeler, D. J.; Dobbs, M. E.; Lukas, J. S.

    1974-01-01

    Paired-comparison and magnitude estimations of the subjective noisiness or unacceptability of noise from fixed wing jet aircraft and simulated noise of VSTOL aircraft were obtained from groups of subjects given different instructions. These results suggest that VSTOL noises can be evaluated in terms of their noisiness or unwantedness to people with reasonable accuracy by units of the physical measures designated as PNdBM, with or without tone corrections, and dBD sub 2. Also, that consideration should be given to the use of D sub 2 as an overall frequency weighting function for sound level meters instead of the presently available A weighting. Two new units of noise measurement, PLdB and dB(E), used for predicting subjective noisiness, were found to be less accurate than PNdBM or dBD sub 2 in this regard.

  5. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    Science.gov (United States)

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.

    2009-12-01

    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform

  6. Rokibaar Underground = Rock bar Underground

    Index Scriptorium Estoniae

    2008-01-01

    Rokibaari Underground (Küütri 7, Tartu) sisekujundus, mis pälvis Eesti Sisearhitektide Liidu 2007. a. eripreemia. Sisearhitekt: Margus Mänd (Tammat OÜ). Margus Männist, tema tähtsamad tööd. Plaan, 5 värv. vaadet, foto M. Männist

  7. Underground Politics

    DEFF Research Database (Denmark)

    Galis, Vasilis; Summerton, Jane

    Public spaces are often contested sites involving the political use of sociomaterial arrangements to check, control and filter the flow of people (see Virilio 1977, 1996). Such arrangements can include configurations of state-of-the-art policing technologies for delineating and demarcating borders...... status updates on identity checks at the metro stations in Stockholm and reports on locations and time of ticket controls for warning travelers. Thus the attempts by authorities to exert control over the (spatial) arena of the underground is circumvented by the effective developing of an alternative...... infrastructural "underground" consisting of assemblages of technologies, activists, immigrants without papers, texts and emails, homes, smart phones and computers. Investigating the embedded politics of contested spatial arrangements as characteristic of specific societies one can discover not only the uses...

  8. Broadband seismic noise attenuation versus depth at the Albuquerque Seismological Laboratory

    Science.gov (United States)

    Hutt, Charles R.; Ringler, Adam; Gee, Lind

    2017-01-01

    Seismic noise induced by atmospheric processes such as wind and pressure changes can be a major contributor to the background noise observed in many seismograph stations, especially those installed at or near the surface. Cultural noise such as vehicle traffic or nearby buildings with air handling equipment also contributes to seismic background noise. Such noise sources fundamentally limit our ability to resolve earthquake‐generated signals. Many previous seismic noise versus depth studies focused separately on either high‐frequency (>1  Hz">>1  Hz) or low‐frequency (shallow surface vaults) up to 100 m or more (boreholes) in the permanent observatories of the Global Seismographic Network (GSN). It is important for managers and planners of these and similar arrays and networks of seismograph stations to understand the attenuation of surface‐generated noise versus depth so that they can achieve desired performance goals within their budgets as well as their frequency band of focus. The results of this study will assist in decisions regarding BB and VBB seismometer installation depths. In general, we find that greater installation depths are better and seismometer emplacement in hard rock is better than in soil. Attenuation for any given depth varies with frequency. More specifically, we find that the dependence of depth will be application dependent based on the frequency band and sensitive axes of interest. For quick deployments (like aftershock studies), 1 m may be deep enough to produce good data, especially when the focus is on vertical data where temperature stability fundamentally limits the low‐frequency noise levels and little low‐frequency data will be used. For temporary (medium‐term) deployments (e.g., TA) where low cost can be very important, 2–3 m should be sufficient, but such shallow installations will limit the ability to resolve low‐frequency signals, especially on horizontal components. Of course, one should try for

  9. Effects of divided attention and operating room noise on perception of pulse oximeter pitch changes: a laboratory study.

    Science.gov (United States)

    Stevenson, Ryan A; Schlesinger, Joseph J; Wallace, Mark T

    2013-02-01

    Anesthesiology requires performing visually oriented procedures while monitoring auditory information about a patient's vital signs. A concern in operating room environments is the amount of competing information and the effects that divided attention has on patient monitoring, such as detecting auditory changes in arterial oxygen saturation via pulse oximetry. The authors measured the impact of visual attentional load and auditory background noise on the ability of anesthesia residents to monitor the pulse oximeter auditory display in a laboratory setting. Accuracies and response times were recorded reflecting anesthesiologists' abilities to detect changes in oxygen saturation across three levels of visual attention in quiet and with noise. Results show that visual attentional load substantially affects the ability to detect changes in oxygen saturation concentrations conveyed by auditory cues signaling 99 and 98% saturation. These effects are compounded by auditory noise, up to a 17% decline in performance. These deficits are seen in the ability to accurately detect a change in oxygen saturation and in speed of response. Most anesthesia accidents are initiated by small errors that cascade into serious events. Lack of monitor vigilance and inattention are two of the more commonly cited factors. Reducing such errors is thus a priority for improving patient safety. Specifically, efforts to reduce distractors and decrease background noise should be considered during induction and emergence, periods of especially high risk, when anesthesiologists has to attend to many tasks and are thus susceptible to error.

  10. Effects of divided attention and operating room noise on perception of pulse oximeter pitch changes: A laboratory study

    Science.gov (United States)

    Stevenson, Ryan A.; Fellow, Postdoctoral; Schlesinger, Joseph J.; Physician, Resident; Wallace, Mark T.

    2012-01-01

    Background Anesthesiology requires performing visually-oriented procedures while monitoring auditory information about a patient’s vital signs. A concern in operating rooms environments is the amount of competing information and the effects that divided attention have on patient monitoring, such as detecting auditory changes in arterial oxygen saturation via pulse oximetry. Methods We measured the impact of visual attentional load and auditory background noise on the ability of anesthesia residents to monitor the pulse oximeter auditory display in a laboratory setting. Accuracies and response times were recorded reflecting anesthesiologists’ abilities to detect changes in oxygen saturation across three levels of visual attention in quiet and with noise. Results Results show that visual attentional load substantially impacts the ability to detect changes in oxygen saturation levels conveyed by auditory cues signaling 99 and 98% saturation. These effects are compounded by auditory noise, with up to a 17% decline in performance. These deficits are seen in the ability to accurately detect a change in oxygen saturation and in speed of response. Conclusions Most anesthesia accidents are initiated by small errors that cascade into serious events. Lack of monitor vigilance and inattention are two of the more commonly cited factors. Reducing such errors is thus a priority for improving patient safety. Specifically, efforts to reduce distractors and lower background noise should be considered during induction and emergence, periods of especially high risk, when anesthesiologists must attend to many tasks and are thus susceptible to error. PMID:23263015

  11. Los Alamos National Laboratory environmental restoration program group audit report for underground storage tank removal: Audit ER-92- 04, July 22--August 11, 1992

    International Nuclear Information System (INIS)

    Gillespie, P.F.

    1992-01-01

    Audit ER-92-04 was conducted on activities being performed by Waste Management (EM-7), Environmental Protection (EM-8), and Environmental Restoration (EM-13) groups for the LANL's underground storage tank removal program. Scope of the audit was limited to an evaluation of the implementation of the State of New Mexico requirements for underground storage-tank removal. Activities were evaluated using requirements specified in the State of New Mexico Environmental Improvement Board Underground Storage Tank Regulations, EIB/USTR. Two recommendations are made: (1) that a single organization be given the responsibility and authority for the implementation of the program, and (2) that the requirements of the NM State environmental improvement board underground storage tank regulations be reviewed and a Los Alamos procedure written to address requirements and interfaces not contained in SOP-EM7-D ampersand D-001

  12. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    International Nuclear Information System (INIS)

    Lombardi, Mara; Garzia, Fabio; Guarascio, Massimo; Giovannone, Enzo Paolo; Giampaoli, Antonio; Musti, Mafalda; Ranalli, Maria Teresa; Perruzza, Roberto; Tartaglia, Roberto

    2017-01-01

    The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS) of the Italian National Institute for Nuclear Physics (INFN). The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m"3 of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m"3 ) at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability. (author)

  13. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    Directory of Open Access Journals (Sweden)

    Mara Lombardi

    Full Text Available Abstract The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS of the Italian National Institute for Nuclear Physics (INFN. The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m3 of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m3 at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability.

  14. Development of groundwater treatment method using radiation-induced graft polymerization adsorbent at the Mizunami Underground Research Laboratory. Annual report on 2007 fiscal year (Joint research)

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Seko, Noriaki; Kasai, Noboru; Hoshina, Hiroyuki; Ueki, Yuji; Tamada, Masao

    2009-11-01

    The concentrations of fluorine (7.2-10mg/L) and boron (0.8-1.5mg/L) dissolved in groundwater pumped from shafts during excavation at the Mizunami Underground Research Laboratory (MIU), Tono Geoscience Centre, must be reduced to the levels below the environmental standards (fluorine:0.8mg/L, boron:1mg/L). Coagulation treatment and ion exchange treatment are applied for fluorine and boron at a current water treatment facility in MIU, respectively. A collaborative research on groundwater treatment for fluorine and boron was started by the Environment and Industrial Materials Research Division, Quantum Beam Science Directorate and the Tono Geoscientific Research Unit, Geological Isolation Research and Development Directorate in 2006. This is because the Quantum Beam Science Directorate has synthesized fibrous adsorbents with radiation-induced graft polymerization and applied them to collect rare metals dissolved in hot springs and sea water. Boron adsorbent synthesized by grafting showed higher removal rate than that of the ion-exchange resin. Additionally, the durability and the repetitive use of the boron adsorbent were evaluated to estimate the capacity of the boron adsorption. Therefore we produced a test equipment to do scale-up test of the adsorbent. Effects of flow rate and the repetitive use on the adsorption capacity of boron were investigated. As a result, it concluded that the adsorption capacity of the boron adsorbent did not change even when the flow rate increased from SV 50h -1 to 100h -1 . In addition, enough durability was confirmed for the repetitive use of the adsorbent. The adsorption capacity of the adsorbent was affected by pH of the groundwater especially in high alkaline range above a pH of 10. (author)

  15. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Mara; Garzia, Fabio; Guarascio, Massimo; Giovannone, Enzo Paolo; Giampaoli, Antonio; Musti, Mafalda; Ranalli, Maria Teresa; Perruzza, Roberto; Tartaglia, Roberto, E-mail: mara.lombardi@uniroma1.it, E-mail: fabio.garzia@uniroma1.it, E-mail: massimo.guarascio@uniroma1.it [Universita degli Studi di Roma La Sapienza-Engineering Roma (Italy); Corpo Nazionale Vigili del Fuoco L' Aquila (CNVF) (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori del Gran Sasso L' Aquila, Abruzzo (Italy)

    2017-07-15

    The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS) of the Italian National Institute for Nuclear Physics (INFN). The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m{sup 3} of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m{sup 3} ) at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability. (author)

  16. Mizunami Underground Research Laboratory project. Rock mechanical investigations measurement of the rock strain and displacement during shaft excavation at GL.-200m level of research galley

    International Nuclear Information System (INIS)

    Hirano, Toru; Seno, Yasuhiro; Hikima, Ryoichi; Matsui, Hiroya

    2011-09-01

    In order to establish the scientific and technical basis for geological disposal of high-level radioactive waste, Japan Atomic Energy Agency (JAEA) is proceeding with the geoscientific research in the research galleries excavated at the Mizunami Underground Research Laboratory (MIU). One of the scientific and technical objectives of this project is to understand the change of geological environment due to excavation of research galleries. The investigation described herein is the measurement of the rock strain / displacement while pre-excavation grouting or excavating of the shaft around the GL.-200m level of research gallery. A brief summary is presented as follows. 1) Apparent strain with pre-excavation grouting: Injection pressure during pre-excavation grouting could explain the observed strain. Maximum principal strain 'E1' (extension) was oriented to NS direction. The measured fracture system at the site includes a fracture set perpendicular to E1. We infer that these fracture expanded due to grout injection pressure. 2) Apparent strain during excavation of the shaft: Rock behavior of stress release was observed when the bottom of shaft passed by and lining of shaft was constructed. The observed strain was very small and almost same scale as the expected strain for elastic material. But the observed strain of radial direction was compression whereas the expected strain was extension. Therefore it was estimated that rock behavior was affected by cracks. 3) Applicability of the FBG sensors for in situ displacement measurement near the shaft: FBG sensors were stable and reliable in comparison to strain meters or inclinometers. There was no electrical equipment trouble nor large drift in measurements. FBG results can lead to understand bending mode of borehole. But we cannot specify the displacement direction from these data in some cases. (author)

  17. Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

    1999-01-01

    The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper

  18. Annoyance of Low Frequency Noise (LFN) in the laboratory assessed by LFN-sufferers and non-sufferers

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2003-01-01

    In a series of listening tests, test subjects listened to eight different environmental low frequency noises to evaluate their loudness and annoyance. The noises were continuous noise with and without tones, intermittent noise, music, traffic noise and low frequency noises with an impulsive...

  19. Underground storage

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-10

    A procedure is described for making an underground storage cavity in a soluble formation. Two holes are drilled, and fluid is pumped into the first hole. This fluid is a non-solute for the formation material. Then pressure is applied to the fluid until the formation is fractured in the direction of the second hole. More non-solute fluid is injected to complete the fracture between the 2 holes. A solute fluid is then circulated between the 2 holes, which results in removal of that part of the formation next to the fracture and the forming of a chamber.

  20. The Mitigation of Radio Noise from External Sources at Receiving Sites

    Science.gov (United States)

    2007-05-01

    53 3.1.7 Underground Distribution Lines...available newer models were preferred for laboratory measurements of time- stable signals and noise. 9 An ELF Engineering Model 7200B 3-Axis... communications terminal was located about 1 km from an HF and VHF receiving site. The satellite terminal was equipped with an Uninterruptible Power Supply (UPS

  1. Is there a risk to safety when working in the New South Wales underground coal-mining industry while having binaural noise-induced hearing loss?

    Energy Technology Data Exchange (ETDEWEB)

    Viljoen, D.A.; Nie, V.; Guest, M. [University of Newcastle, Newcastle, NSW (Australia)

    2006-03-15

    This study is designed to investigate the possible association between hearing loss and accidents in the New South Wales underground coal-mining industry. The study was conducted, gathering data over a 10-year period from 1994 to 2003, which identified 97 cases that have had accidents and 983 controls that have had no accidents. Hearing loss levels were noted and compared in the cases and controls. Multiple logistic regression was used to determine whether the variables were significant risk factors in the occurrence of accidents. Hearing loss levels in the total cohort varied from 0 to 54%. The proportion of cases with hearing loss appeared to be significantly higher in the young age group of {lt} 29 years than in the controls, but was not significantly different in the older age groups. This study indicates that workers who have lost up to 54% binaural high tone hearing and are older than 29 years do not appear to have an increased risk to safety when compared with workers who do not have hearing loss. However, workers in the young age group of {lt} 29 years who have high tone hearing loss may be at an increased risk of accident.

  2. Developing a Fracture Model of the Granite Rocks Around the Research Tunnel at the Mizunami Underground Research Laboratory in Central Japan

    Science.gov (United States)

    Kalinina, E.; Hadgu, T.; Wang, Y.

    2017-12-01

    The Mizunami Underground Research Laboratory (MIU) is located in Tono area in Central Japan. It is operated by the Japan Atomic Energy Agency (JAEA) with the main purpose of providing scientific basis for the research and development of technologies needed for deep geological disposal of radioactive waste in fractured crystalline rocks. The current work is focused on the research and experiments in the tunnel located at 500 m depth. The data collected in the tunnel and exploratory boreholes were shared with the participants of the DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX), an international research and model comparison collaboration. This study describes the development of the fracture model representing granite rocks around the research tunnel. The model domain is 100x150x100m with the main experimental part of the tunnel, Closure Test Drift, located approximately in the center. The major input data were the fracture traces measured on the tunnel walls (total of 2,023 fractures), fractures observed in the horizontal borehole parallel to the tunnel, and the packer tests conducted in this borehole and one vertical borehole located within the modeling domain. 78 fractures (the ones with the inflow) in the tunnel were incorporated in the development of the fracture model. Fracture size was derived from the fracture trace analysis. It was shown that the fracture radius followed lognormal distributions. Fracture transmissivity was estimated from an analytical solution of inflow into the tunnel through an individual fracture and the total measured inflow into the tunnel. 16 fractures were incorporated in the model along the horizontal borehole. The packer test data in the different well intervals were used to estimate the range in fracture transmissivity. A relationship between the fracture transmissivity and fracture radius was developed. The fractures in the tunnel and borehole were used to derive fracture orientation and

  3. The use of novel DNA nanotracers to determine groundwater flow paths - a test study at the Grimsel Deep Underground Geothermal (DUG) Laboratory in Switzerland

    Science.gov (United States)

    Kittilä, Anniina; Evans, Keith; Puddu, Michela; Mikutis, Gediminas; Grass, Robert N.; Deuber, Claudia; Saar, Martin O.

    2016-04-01

    earlier test. In this study, we present the results of tests of applying novel DNA nanotracers to characterize groundwater flow properties and the flow pathways in a fracture-dominated reservoir in the Deep Underground Geothermal (DUG) Laboratory at the Grimsel Test Site in the Swiss Alps. This study is motivated by subsequent comparisons of similar characterizations of fractured rock masses after hydraulic stimulation. These will take place at the DUG Lab at the end of 2016. The results of the flow-path characterization are also compared with those obtained from classical solute tracer tests.

  4. Development of groundwater treatment methods using radiation-induced graft polymerization adsorbent at the Mizunami Underground Research Laboratory. Annual report for 2008 fiscal year (Joint research)

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2011-02-01

    The concentrations of fluorine (7.2-10mg/L) and boron (0.8-1.5mg/L) dissolved in groundwater pumped from the shafts during excavation of the Mizunami Underground Research Laboratory (MIU), Tono Geoscience Center, shall be reduced to levels below the environmental standards for fluorine: 0.8mg/L and boron: 1mg/L. Coagulation and ion exchange methods are being applied for fluorine and boron, respectively, at the operating water treatment facility at the MIU. As well, collaborative research on groundwater treatment started in 2006 between the Environmental and Industrial Materials Research Division, Quantum Beam Science Directorate and the Tono Geoscientific Research Unit, Geological Isolation Research and Development Directorate on a novel method to remove the fluorine and boron. The Quantum Beam Directorate has synthesized fibrous adsorbents with radiation-induced graft polymerization and applied the adsorbents to collect rare metals dissolved in hot springs and sea water. The results of previous testing indicated that the adsorbent was able to remove more than 95% of the boron and fluorine and that performance of adsorbent for boron removal was better than the performance using ion-exchange resin. It was also apparent that the pH of groundwater had an influence on the performance of the adsorbent with respect to boron removal. Therefore we reran the recycling tests using groundwater from the neutralization tank at the groundwater treatment facility were repeated. The results indicated that the performance of the adsorbent using neutral groundwater for boron removal was higher than using uncontrolled groundwater. However the bed volume (BV) with recycled adsorbent decreased compared to first use. It is thought that sulfur added at the groundwater treatment facility was retained by the adsorbent despite elution, and affected the performance such that repeat usage resulted in decreased efficiency. In addition, it is considered that the goals established in the first

  5. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Thoeny, R.

    2014-01-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  6. Characterisation and monitoring of the Excavation Disturbed Zone (EDZ) in fractured gneisses of the Roselend underground laboratory: permeability measurements, transport property changes and related radon bursts

    Science.gov (United States)

    Wassermann, Jérôme; Sabroux, Jean-Christophe; Richon, Patrick; Pontreau, Sébastien; Guillon, Sophie; Pili, Eric

    2010-05-01

    The Roselend tunnel was drilled in the fifties by blasting in the micashists, granites and gneisses of the Méraillet massif (French Alps). It is situated on the shore of the Roselend reservoir Lake near its dam. Several tectonic shear fractures related to the Alpine orogeny intersect the dead end tunnel (with length of 128 m and section about 2 m), indeed the fracture density varies from 0.45 to 1 fracture per meter along the tunnel (Dezayes and Villemin 2002). Some fractures are partially or totally filled with secondary minerals. The flow rates of percolating water through the fractured medium are seasonal dependent. Large fractures drain a large fluid volume unlike small ones that drain limited fluid volume (Patriarche et al. 2007). The Roselend underground laboratory allows the study of the geochemical and geophysical responses of a fractured rock mass to periodic sollicitations due to water level variations of the nearby Roselend reservoir Lake. The tunnel was instrumented in the nineties to understand the relationship between radon (Rn-222) concentration and water level variations of the Roselend reservoir Lake (Trique et al. 1999). In order to characterize the geometry and the extent of the EDZ, core drilling and permeability measurements through pneumatic testing are performed along the Roselend tunnel. Drilled core analysis consists of direct observations at a macroscopic scale of fractures (density of fractures from EDZ) and also at a microscopic scale via thin sections. Method of pressure build-up in wells (Jakubick and Franz 1993, Bossart et al. 2002) is used to determine permeability profile along each borehole and hence to precise the extent and geometry of the EDZ. A strong correlation is observed between permeability profiles and the density of fractures estimated from core analysis. The extent of the EDZ appears to be about one tunnel radius i.e. one meter around the tunnel corridor. Another experiment consisting of continuous differential

  7. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Thoeny, R.

    2014-07-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  8. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, F.J., E-mail: fjpearson@gmail.com [Ground-Water Geochemistry, 5108 Trent Woods Dr., New Bern, NC 28562 (United States); Tournassat, Christophe; Gaucher, Eric C. [BRGM, B.P. 36009, 45060 Orleans Cedex 2 (France)

    2011-06-15

    Highlights: > Equilibrium models of water-rock reactions in clay rocks are reviewed. > Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. > Results of modelling with various mineral controls are compared with the analyses. > Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. > This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  9. Water underground

    Science.gov (United States)

    de Graaf, Inge

    2015-04-01

    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  10. EZG08 project: acoustic experiments to monitor the EDZ during the gallery excavation process in the Mont Terri Underground Research Laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Le Gonidec, Y.; Kergosien, B.; Schubnel, A.; Gueguen, Y.; Wassermann, J.; Gibert, D.; Sarout, J.; Nussbaum, C.

    2010-01-01

    Document available in extended abstract form only. In the Underground Research Laboratory (URL) at Mont Terri, a new gallery G08 was planned to be excavated in 2008 following an original process: the excavation process allowed to monitor the Excavation Damaged Zone (EDZ) from geophysical measurements designed and installed at the end of face of the EZ-G04 gallery during the excavation from the other side, i.e. the end face of the EZ-G08 gallery. The objectives of the project concern spatio-temporal changes of the EDZ: among the methodological developments adapted for the EZG08 project to provide complementary information, acoustic experiments have been prepared in horizontal boreholes to perform the continuous acoustic monitoring of the Excavation Damaged Zone (EDZ). The acoustic measurements, performed on acoustic arrays of several receivers, have been recorded during one month, following two main steps: - Active acoustic surveys: a source is introduced in a central borehole (BEZG5) allowing tomography experiments in the far field and in the near field, i.e. close to and far from BEZG5, respectively. - Acoustic emissions: during the excavation process, numerous acoustic emissions can be detected and associated to micro-seismic events due to rapid crack propagation, generated by the rock relaxation, or simply associated to the excavation process. From the tomography measurements, the acoustic wave velocity field can be estimated, with P and S-wave velocities roughly equal to 2500 m/s-3500 m/s, and 1500 m/s, respectively. The acoustic setup does not show variations of P-wave velocity during the campaign, but spatial variations which could be associated to anisotropic elastic properties of the rock with the maximum P-wave velocities close to the bedding plane. An original method based on a multifrequency approach puts in evidence a frequency dependence of the velocity, with a striking phenomena since the wave velocity decreases with increasing frequency. This effect

  11. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    CERN Document Server

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  12. Underground Explosions

    Science.gov (United States)

    2015-09-09

    determined by the ratios of radioactive isotopes in the samples collected in places of the venting. Using known venting times for the radioactive products...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S...76  2.2.4 Ground material/ soil  parameters in the laboratory model

  13. Going Underground in Singapore

    CERN Multimedia

    John Osborne (GS/SEM)

    2010-01-01

    Singapore has plans to build a massive Underground Science City (USC) housing R&D laboratories and IT data centres. A delegation involved in the planning to build the subterranean complex visited CERN on 18 October 2010 to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities.   The delegation from Singapore. The various bodies and corporations working on the USC project are currently studying the feasibility of constructing up to 40 caverns (60 m below ground) similar in size to an LHC experiment hall, in a similar type of rock. Civil engineering and geotechnical experts are calculating the maximum size of the cavern complex that can be safely built. The complex could one day accommodate between 3000 and 5000 workers on a daily basis, so typical issues of size and number of access shafts need to be carefully studied. At first glance, you might not think the LHC has much in common with the USC project; as Rolf Heuer pointed out: &ldq...

  14. Earth tidal and barometric responses observed in the Callovo-Oxfordian formation at ANDRA Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Delcourt-Honorez, M.; Scholz, E.

    2012-01-01

    Document available in extended abstract form only. Fluid pressure or hydraulic head measured in wells in geological formations can respond to Earth tidal forces and atmospheric pressure variations. At Andra Meuse/Haute-Marne underground research laboratory located in Bure (France), water level and fluid pressure are measured in several boreholes in the Callovo-Oxfordian clay formation (COX) and in overlying geological formations. One of these boreholes (EST207) is equipped with a multi-packer system monitoring 11 intervals, including 8 in the COX. The recorded fluid pressures in EST207 were analyzed to determine possible Earth tidal responses. In this borehole, the fluid pressure and atmospheric pressure variations data are recorded every fifteen minutes and 6.5 years of such data from 2004/06/02 to 2010/12/31 were analyzed. Various perturbed data, gaps, drift and abnormal data were corrected through a data preprocessing process. Data interpolation and filtering processes were performed to have data available every 15 minutes at 0, 15, 30 and 45 minutes on the hour. A spectral analysis (Fast Fourier Transform) of each pressure data series shows amplitude peaks at frequencies corresponding to various Earth tidal frequencies: diurnal and semi diurnal waves can be identified. Spectral analyses were also performed on the atmospheric pressure data. The solar semi diurnal wave (S2) was identified. The 'Earth Tides ETERNA package' was used to separate the waves according to the frequencies bands. The analyses performed using ETERNA are indicated as 'Earth Tidal Analyses' (ETAN). Tidal parameters are estimated from ETAN: amplitudes A and its standard deviation σ(A)[hPa], phase φ for the main waves in diurnal and semi diurnal frequencies bands before and after atmospheric pressure variations correction. The barometric efficiency (BE) and its standard deviation σ (BE) as regression coefficient is calculated. The atmospheric pressure data are also analyzed with ETERNA; the

  15. Laboratory study on streaming potential for exploring underground water flow; Shitsunai jikken ni yoru ryudo den`i wo mochiita mizu michi tansa no kanosei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H; Shima, H [Oyo Corp., Tokyo (Japan)

    1997-05-27

    To investigate a possibility of exploration of underground water flow as well as to grasp the underground fluid flow by measuring streaming potential at the ground surface, some experiments were conducted using a model unit by considering the difference of permeability. For this experimental unit, water is driven by adding head difference between the polyethylene vessel filled with water and the experimental water tank. The size of water tank is 350{times}160 mm with a height of 160 mm. Twenty platinum electrodes are set on the cover of water tank. Toyoura standard sand and Kanto loam were used for the experiments. For the experiments, fluid was injected in various combined models by considering the permeability, to measure the streaming potential. As a result, it was explained by the streaming potential that the fluid flows in a form of laminar flow in the experimental water tank, and that the movement of fluid in the Kanto loam is quite slow. It was also confirmed that the streaming potential method is an effective technique for grasping the movement of fluid. 3 refs., 8 figs.

  16. How Might People Near National Roads Be Affected by Traffic Noise as Electric Vehicles Increase in Number? A Laboratory Study of Subjective Evaluations of Environmental Noise.

    Science.gov (United States)

    Walker, Ian; Kennedy, John; Martin, Susanna; Rice, Henry

    2016-01-01

    We face a likely shift to electric vehicles (EVs) but the environmental and human consequences of this are not yet well understood. Simulated auditory traffic scenes were synthesized from recordings of real conventional and EVs. These sounded similar to what might be heard by a person near a major national road. Versions of the simulation had 0%, 20%, 40%, 60%, 80% and 100% EVs. Participants heard the auditory scenes in random order, rating each on five perceptual dimensions such as pleasant-unpleasant and relaxing-stressful. Ratings of traffic noise were, overall, towards the negative end of these scales, but improved significantly when there were high proportions of EVs in the traffic mix, particularly when there were 80% or 100% EVs. This suggests a shift towards a high proportion of EVs is likely to improve the subjective experiences of people exposed to traffic noise from major roads. The effects were not a simple result of EVs being quieter: ratings of bandpass-filtered versions of the recordings suggested that people's perceptions of traffic noise were specifically influenced by energy in the 500-2000 Hz band. Engineering countermeasures to reduce noise in this band might be effective for improving the subjective experience of people living or working near major roads, even for conventional vehicles; energy in the 0-100 Hz band was particularly associated with people identifying sound as 'quiet' and, again, this might feed into engineering to reduce the impact of traffic noise on people.

  17. Underground transmission tomography

    International Nuclear Information System (INIS)

    Geibka, C.

    1990-01-01

    Several underground tomographic transmission surveys have been carried out. Targets were cavities, ore veins and fault zones. Examples from measurements in a german heavy/fluor spar mine a lead/zinc mine and a rock laboratory of the Swiss National Cooperative for the Storage of Radioactive waste are presented. Measurements were carried out between boreholes and road ways. The recording equipment was the intrinsically safe SEAMEX85 system built and sold by WBK. Receivers were mounted in a chain of 6 two-component probes. Sources were an inhole hammer a sledge hammer a sparker and explosives from a single detonator to 180 g depending on the distance and absorption of the rock material. Cavities showed very distinct velocity reductions between 30 and 50%. Different vein material showed velocity reduction as well as velocity increase relative to the surrounding rock

  18. Underground Layout Configuration

    International Nuclear Information System (INIS)

    A. Linden

    2003-01-01

    The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings

  19. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  20. Laboratory evaluation of an optimised internet-based speech-in-noise test for occupational high-frequency hearing loss screening: Occupational Earcheck.

    Science.gov (United States)

    Sheikh Rashid, Marya; Leensen, Monique C J; de Laat, Jan A P M; Dreschler, Wouter A

    2017-11-01

    The "Occupational Earcheck" (OEC) is a Dutch online self-screening speech-in-noise test developed for the detection of occupational high-frequency hearing loss (HFHL). This study evaluates an optimised version of the test and determines the most appropriate masking noise. The original OEC was improved by homogenisation of the speech material, and shortening the test. A laboratory-based cross-sectional study was performed in which the optimised OEC in five alternative masking noise conditions was evaluated. The study was conducted on 18 normal-hearing (NH) adults, and 15 middle-aged listeners with HFHL. The OEC in a low-pass (LP) filtered stationary background noise (test version LP 3: with a cut-off frequency of 1.6 kHz, and a noise floor of -12 dB) was the most accurate version tested. The test showed a reasonable sensitivity (93%), and specificity (94%) and test reliability (intra-class correlation coefficient: 0.84, mean within-subject standard deviation: 1.5 dB SNR, slope of psychometric function: 13.1%/dB SNR). The improved OEC, with homogenous word material in a LP filtered noise, appears to be suitable for the discrimination between younger NH listeners and older listeners with HFHL. The appropriateness of the OEC for screening purposes in an occupational setting will be studied further.

  1. Cigeo. The French deep geological repository for radioactive waste. Excavation techniques and technologies tested in underground laboratory and forecasted for the future construction of the project; Cigeo. Das franzoesische Tiefenlager fuer radioaktive Abfaelle. Im Untertagelabor getestete und fuer den kuenftigen Bau des Projekts vorgesehene Vortriebstechniken und -technologien

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Francois [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), Chatenay-Malabry (France). Infrastructure Engineering Dept.; Bosgiraud, Jean-Michel [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), Chatenay-Malabry (France). Technological Development Program

    2015-07-01

    Cigeo is the French project for the repository of the high activity and intermediate long-lived radioactive waste. It will be situated at a depth of 500 m, In a clayish rock formation. An underground laboratory was built in the year 2000 and numerous tests are performed since 15 years, in order to know in detail the behavior of the rock and its ability to confine radioactive elements. In addition, this underground laboratory has brought and will continue to bring many lessons on the excavation methods to be chosen for the construction of Cigeo.

  2. Underground science initiatives at Los Alamos

    International Nuclear Information System (INIS)

    Simmons, L.M. Jr.

    1985-01-01

    Recently, the Los Alamos National Laboratory has proposed two major new initiatives in underground science. Following the dissolution of the original gallium solar neutrino collaboration, Los Alamos has formed a new North American collaboration. We briefly review the rationale for solar neutrino research, outline the proposal and new Monte Carlo simulations, and describe the candidate locations for the experiment. Because there is no dedicated deep underground site in North America suitable for a wide range of experiments, Los Alamos has conducted a survey of possible sites and developed a proposal to create a new National Underground Science Facility. This paper also reviews that proposal

  3. Third symposium on underground mining

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Symposium on Underground Mining was held at the Kentucky Fair and Exposition Center, Louisville, KY, October 18--20, 1977. Thirty-one papers have been entered individually into EDB and ERA. The topics covered include mining system (longwall, shortwall, room and pillar, etc.), mining equipment (continuous miners, longwall equipment, supports, roof bolters, shaft excavation equipment, monitoring and control systems. Maintenance and rebuilding facilities, lighting systems, etc.), ventilation, noise abatement, economics, accidents (cost), dust control and on-line computer systems. (LTN)

  4. A delegation from Singapore came to CERN on 18 October. The visitors are involved in planning a vast Underground Science City housing R&D laboratories and IT data centres.

    CERN Multimedia

    Hoch, Michael

    2010-01-01

    They came to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities. They visited the CMS site at Cessy, including the above-ground control room and the Underground Service Cavern.

  5. The underground seismic array of Gran Sasso (UNDERSEIS), central Italy

    Science.gov (United States)

    Scarpa, R.; Muscente, R.; Tronca, F.; Fischione, C.; Rotella, P.; Abril, M.; Alguacil, G.; Martini, M.; de Cesare, W.

    2003-04-01

    Since early May, 2002, a small aperture seismic array has been installed in the underground Physics Laboratories of Gran Sasso, located near seismic active faults of central Apennines, Italy. This array is presently composed by 21 three-component short period seismic stations (Mark L4C-3D), with average distance 90 m and semi-circular aperture of 400 m x 600 m. It is intersecting a main seismogenic fault where the presence of slow earthquakes has been recently detected through two wide band geodetic laser interferometers. The underground Laboratories are shielded by a limestone rock layer having 1400 m thickness. Each seismometer is linked, through a 24 bits A/D board, to a set of 6 industrial PC via a serial RS-485 standard. The six PC transmit data to a server through an ethernet network. Time syncronization is provided by a Master Oscillator controlled by an atomic clock. Earthworm package is used for data selection and transmission. High quality data have been recorded since May 2002, including local and regional earthquakes. In particular the 31 October, 2002, Molise (Mw=5.8 earthquake) and its aftershocks have been recorded at this array. Array techniques such as polarisation and frequency-slowness analyses with the MUSIC noise algorithm indicate the high performance of this array, as compared to the national seismic network, for identifying the basic source parameters for earthquakes located at distance of few hundreds of km.

  6. Comparison of objective methods for assessment of annoyance of low frequency noise with the results of a laboratory listening test

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2003-01-01

    Subjective assessments made by test persons were compared to results from a number of objective measurement and calculation methods for the assessment of low frequency noise. Eighteen young persons with normal hearing listened to eight environmental low frequency noises and evaluated the annoyance...

  7. 4th February 2011 - Austrian Academy of Sciences President H. Denk visiting CMS underground area with Collaboration Spokesperson G. Tonelli, Austrian Academy of Sciences Secretary General A. Suppan, CERN Head of International Relations F. Pauss and Director, High Energy Physics Laboratory, Austrian Academy of Sciences C Fabjan.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    4th February 2011 - Austrian Academy of Sciences President H. Denk visiting CMS underground area with Collaboration Spokesperson G. Tonelli, Austrian Academy of Sciences Secretary General A. Suppan, CERN Head of International Relations F. Pauss and Director, High Energy Physics Laboratory, Austrian Academy of Sciences C Fabjan.

  8. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    International Nuclear Information System (INIS)

    Holcomb, D.J.; Zeuch, D.H.; Morin, K.; Hardy, R.; Tormey, T.V.

    1995-09-01

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0 degree, ±45 degrees relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole

  9. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, D.J.; Zeuch, D.H.; Morin, K.; Hardy, R.; Tormey, T.V.

    1995-09-01

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0{degree}, {plus_minus}45{degrees} relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole.

  10. Application for the renewable of the authorisation of exploitation of the Meuse/Haute-Marne underground research laboratory for the 2012-2030 period and of authorisation of exploitation of installations classified for the protection of the environment. Non technical summary of the hazard study

    International Nuclear Information System (INIS)

    2009-12-01

    This publication first briefly presents the project of deep geological storage of radioactive wastes, and then the present activities of its underground research laboratory (installations, activities) and the future activities of this laboratory (projected extension by 2015, by 2029 and 2030). It evokes the application for an extension of the exploitation of the laboratory, the application as classified installation for the protection of the environment, the hazard study, and the definition of accidental scenarios. It briefly presents some aspects of the environment (local geology and hydrography, human environment), briefly indicates products present on this site. It proposes a brief overview of hazards related to activities (related to products and materials, to digging activities, to underground and surface structures and equipment, to research activities, to transfer activities and equipment). It indicates measures envisaged to reduce potential hazards, discusses a brief risk analysis, indicates risks related to the installation itself. It presents the two main accidental scenarios: oil tanker truck fire, and explosion

  11. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  12. Estimation of groundwater flow at the site of Mizunami Underground Research Laboratory by the inversion of surface tilt during drainage, submergence and re-drainage in excavation of shafts

    International Nuclear Information System (INIS)

    Narikawa, Tatsuya; Matsuki, Koji; Arai, Takashi; Ohyama, Takuya; Takeuchi, Ryuji; Takeuchi, Shinji

    2009-01-01

    The distribution of the change in groundwater volume at the site of Mizunami Underground Research Laboratory in the Tono area, Japan, was estimated by the inverse method proposed by the authors, using tilt data measured with four tiltmeters at the surface during drainage, submergence and re-drainage in excavation of shafts. Furthermore, the reliability of the results was evaluated by a model analysis for groundwater flow in a single ellipsoidal field. The results showed that the hydrogeological structure for the region of 1000 m x 1000 m in area and 100 m to 180 m in depth is such that groundwater flow occurs mainly in a region between two impermeable faults with the center at 100 m to 150 m south of the Main shaft and this region tends to shrink toward north-west and be widened toward south to south-east. However, at the same time, the model analysis showed that areas north-west and south-east of the Main shaft in the corners of the region are vacua for estimation due to the aligned layout of the tiltmeters. (author)

  13. Geological data summary for a borehole drilled between 1991 September 16 and 1991 October 1 for the Transport Properties in Highly Fractured Rock Experiment at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, D. R.; Everitt, R. A.

    1992-08-01

    Borehole 101-013-HG4 was drilled between 1991 September 16 and October 1 from the 130 Level station, as part of the Transport Properties in Highly Fractured Rock Experiment, to explore the geological, hydrogeological and geochemical conditions of the rock mass in an area northwest of the Underground Research Laboratory (URL) shaft. The borehole was drilled to provide information at an intersection with Fracture Zone 2.0, 100 m to the west of boreholes collared from Room 211 of the 240 Level for future solute transport experiments within Fracture Zone 2.0, and to further our understanding of the rock mass in the area. Fracture Zones 2.5, 2.0, 1.9 and a subvertical joint zone in the footwall were all intersected in the borehole. Preliminary results from detailed core logging show that the lithostructural domains intersected in the borehole correlate with those previously identified in the URL shaft, and in nearby exploration boreholes drilled from the 130 Level. The domains are shallow-dipping toward the southeast and are parallel to the three main fracture zones intersected in the borehole.

  14. Talk of Francois Loos, delegate minister of industry, at the Meuse prefecture (Bar-le-Duc). Visit of the underground laboratory of research on the geologic disposal of radioactive wastes, Bure (Meuse)

    International Nuclear Information System (INIS)

    2005-01-01

    In this talk, the French minister of industry recalls, first, the context of the management of radioactive wastes and the research programs launched in the framework of the 'Bataille' law from December 30, 1991. Then, he stresses on the importance of the work carried out so far in the three ways of research on radioactive wastes: separation/transmutation, deep underground disposal and long duration surface storage. He introduces the government will of organizing a public debate about the management of radioactive wastes before the preparation of the law project for the implementation of the technological and scientifical choices (the 'road-map') of France in the domain of radioactive wastes management. He stresses also on the importance of the financing warranties of this management and of the public information in this domain. He concludes on the economical support of the government in consideration of the regions that have accepted or would accept the setting up of waste management research laboratories and industrial facilities. (J.S.)

  15. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  16. Meuse/Haute-Marne underground research laboratory examination, on a shaft wall, of pluri-decametric features induced by borehole hydro fracturing tests

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, L.; Gros, Y. [ANTER, Direction Technique, 45 - Orleans (France); Reboursz, H.; Wileveauz, Y. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA/DP/EST/SS), 55 - Bure (France); Proudhon, B. [GEO-TER, subcontractor to EDF-TEGG, 13 - Aix en Provence (France)

    2005-07-01

    In the year 2000, prior to the sinking of the two shafts of the laboratory, two vertical cored boreholes were drilled according to the axis of each of the shafts. The EST205 borehole drilled along the axis of the auxiliary shaft intersects the Callovo-Oxfordian layers in its lower part. Stress measurements were performed there by hydraulic fracturing method, on the one hand at the bottom of the Oxfordian limestone (6 tests between 375 and 416 m depth), on the other hand in the more clayey Callovo-Oxfordian layer (8 tests between 417 and 500 m depth). Both boreholes were subsequently sealed by cement. During shaft sinking, a detailed geological survey of the walls was performed at each blast round. During this survey, positioned by means of a grid of targets whose locations are recorded by topographical measurements, lithological changes as well as structural features visible on the wall are carefully recorded. In this context, the wall of 3 successive blast rounds are seen to display, roughly aligned with the West and South generating lines of the shaft, two sub-vertical joints with nil aperture and an average strike of N155 degree. These joints can be traced over more than 15 m height, between levels -434 and -451 m. More at depth, the walls display four parallel sub-horizontal joints, recorded between 466,5 and 476 m depth. These smoothly undulating joints are observed over the entire shaft wall perimeter. (authors)

  17. Judgments of aircraft noise in a traffic noise background

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  18. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    Science.gov (United States)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  19. The Meuse-Haute Marne underground research laboratory. A scientific research tool for the study of deep geologic disposal of radioactive wastes; Le Laboratoire de Recherche souterrain de Meuse/Haute-Marne. Un outil de recherche scientifique pour etudier le stockage geologique profond de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Meuse-Haute Marne underground research laboratory, is an essential scientific tool for the achievement of one of the ANDRA's mission defined in the framework of the law from December 30, 1991 about the long-term management of high-level and long-living radioactive wastes. This document presents this laboratory: site characterization, characteristics of the Callovo-Oxfordian clay, and laboratory creation, coordinated experiments carried out at the surface and in depth, and the results obtained (published in an exhaustive way in the 'Clay 2005' dossier). (J.S.)

  20. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 D/F WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Weaver, P.C.

    2010-01-01

    Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 2; the D/F Waste Line removal at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed the final status survey (FSS) of the D/F Waste Line that provided the conduit for pumping waste from Building 750 to Building 801. Sample results have been submitted as required to demonstrate that the cleanup goals of 15 mrem/yr above background to a resident in 50 years have been met. Four rounds of sampling, from pre-excavation to final status survey (FSS), were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the US Departmental of Energy (DOE) to perform independent verifications of decontamination and decomissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task at the HFBR. ORISE together with DOE determined that a Type A verification of the D/F Waste Line was appropriate based on its method of construction and upon the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages in the process to decommission the HFBR facility and support structures. Phase 2 of this project included the grouting and removal of 1100 feet of 2-inch pipe and 640 feet of 4-inch pipe that served as the D/F Waste Line. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that addressed each ORISE comment adequately (BNL 2010a). ORISE referred to the revised Phase 2 D/F Waste Line removal FSP FSS data to conduct the Type A verification and determine whether the intent odf

  1. Statistics and vertical directionality of low-frequency ambient noise at the North Pacific Acoustics Laboratory site

    Science.gov (United States)

    Baggeroer, Arthur B.; NPAL Group; Colosi, J. A.; Cornuelle, B. D.; Dushaw, B. D.; Dzieciuch, M. A.; Howe, B. M.; Mercer, J. A.; Munk, W. H.; Spindel, R. C.; Worcester, P. F.

    2005-03-01

    We examine statistical and directional properties of the ambient noise in the 10-100 Hz frequency band from the NPAL array. Marginal probability densities are estimated as well as mean square levels, skewness and kurtoses in third octave bands. The kurotoses are markedly different from Gaussian except when only distant shipping is present. Extremal levels reached ~150 dB re 1 μ Pa, suggesting levels 60dB greater than the mean ambient were common in the NPAL data sets. Generally, these were passing ships. We select four examples: i) quiescent noise, ii) nearby shipping, iii) whale vocalizations and iv) a micro earthquake for the vertical directional properties of the NPAL noise since they are representative of the phenomena encountered. We find there is modest broadband coherence for most of these cases in their occupancy band across the NPAL aperture. Narrowband coherence analysis from VLA to VLA was not successful due to ambiguities. Examples of localizing sources based upon this coherence are included. kw diagrams allow us to use data above the vertical aliasing frequency. Ducted propagation for both the quiescent and micro earthquake (T phase) are identified and the arrival angles of nearby shipping and whale vocalizations. MFP localizations were modestly successful for nearby sources, but long range ones could not be identified, most likely because of signal mismatch in the MFP replica. .

  2. Comparison of modulation transfer function, noise power spectrum, and sensitometric measurements of x-ray screen-film systems made in two different laboratories

    International Nuclear Information System (INIS)

    Sandrik, J.M.; Jennings, R.J.; Wagner, R.F.

    1980-01-01

    A project to develop standardization in the measurement of fundamental characteristics of screen-film systems is described. This project is a comparison of measurements on the same film samples performed by both the Kurt Rossmann Laboratories for Radiologic Image Research at the University of Chicago and by the Radiologic Imaging Section in the Medical Physics Branch, Division of Electronic Products. For this comparison we are making three fundamental measurements that characterize the operation of the screen-film systems. One is sensitometry of the characteristic or H and D curve. The film darkening is studied as a function of x-ray exposure to the screen-film system. This provides information on the speed and contrast of the system and it is also used in the determination of the MTF. The second measurement is the spatial frequency response or the MTF. For this measurement the screen-film system is exposed through a slit about 10 microns wide. This provides information on the fidelity with which contrast in the object is transferred to the image and information on the resolution of the image receptor. The third measure is the noise power or Wiener spectrum. In this case the film is exposed to a uniform x-ray field and the image provides information on the noise content of the receptor as a function of spatial frequency so that the effect of noise on the signal can be assessed

  3. Development of a smart rock bolt for underground monitoring operations

    CSIR Research Space (South Africa)

    Moema, JS

    2003-07-01

    Full Text Available of magnetic methods in measuring the stress or microstructural transformation in an individual bolt in both laboratory and underground environment. The corrosion performance of the smart bolt alloy was evaluated in synthetic mine water and compared...

  4. The underground macroeconomics

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-01-01

    Full Text Available Like Physics, which cannot yet explain 96% of the substance in the Universe, so is Economics, unprepared to understand and to offer a rational explicative model to the underground economy.

  5. Locating underground uranium deposits

    International Nuclear Information System (INIS)

    Felice, P.E.

    1979-01-01

    Underground uranium deposits are located by placing wires of dosimeters each about 5 to 18 mg/cm 2 thick underground in a grid pattern. Each dosimeter contains a phosphor which is capable of storing the energy of alpha particles. In each pair one dosimeter is shielded from alpha particles with more than 18 mg/cm 2 thick opaque material but not gamma and beta rays and the other dosimeter is shielded with less than 1 mg/cm 2 thick opaque material to exclude dust. After a period underground the dosimeters are heated which releases the stored energy as light. The amount of light produced from the heavily shielded dosimeter is subtracted from the amount of light produced from the thinly shielded dosimeter to give an indication of the location and quantity of uranium underground

  6. Proximity detection system underground

    Energy Technology Data Exchange (ETDEWEB)

    Denis Kent [Mine Site Technologies (Australia)

    2008-04-15

    Mine Site Technologies (MST) with the support ACARP and Xstrata Coal NSW, as well as assistance from Centennial Coal, has developed a Proximity Detection System to proof of concept stage as per plan. The basic aim of the project was to develop a system to reduce the risk of the people coming into contact with vehicles in an uncontrolled manner (i.e. being 'run over'). The potential to extend the developed technology into other areas, such as controls for vehicle-vehicle collisions and restricting access of vehicle or people into certain zones (e.g. non FLP vehicles into Hazardous Zones/ERZ) was also assessed. The project leveraged off MST's existing Intellectual Property and experience gained with our ImPact TRACKER tagging technology, allowing the development to be fast tracked. The basic concept developed uses active RFID Tags worn by miners underground to be detected by vehicle mounted Readers. These Readers in turn provide outputs that can be used to alert a driver (e.g. by light and/or audible alarm) that a person (Tag) approaching within their vicinity. The prototype/test kit developed proved the concept and technology, the four main components being: Active RFID Tags to send out signals for detection by vehicle mounted receivers; Receiver electronics to detect RFID Tags approaching within the vicinity of the unit to create a long range detection system (60 m to 120 m); A transmitting/exciter device to enable inner detection zone (within 5 m to 20 m); and A software/hardware device to process & log incoming Tags reads and create certain outputs. Tests undertaken in the laboratory and at a number of mine sites, confirmed the technology path taken could form the basis of a reliable Proximity Detection/Alert System.

  7. Orpheus in the Underground

    Directory of Open Access Journals (Sweden)

    Puskás Dániel

    2015-12-01

    Full Text Available In my study I deal with descents to the underworld and hell in literature in the 20th century and in contemporary literature. I will focus on modem literary reinterpretations of the myth of Orpheus, starting with Rilke’s Orpheus. Eurydice. Hermes. In Seamus Heaney’s The Underground. in the Hungarian Istvan Baka’s Descending to the Underground of Moscow and in Czesław Miłosz’s Orpheus and Eurydice underworld appears as underground, similarly to the contemporary Hungarian János Térey’s play entitled Jeramiah. where underground will also be a metaphorical underworld which is populated with the ghosts of the famous deceased people of Debrecen, and finally, in Péter Kárpáti’s Everywoman the grave of the final scene of the medieval Everyman will be replaced with a contemporary underground station. I analyse how an underground station could be parallel with the underworld and I deal with the role of musicality and sounds in the literary works based on the myth of Orpheus.

  8. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  9. Comparison of objective methods for assessment of annoyance of low frequency noise with the results of a laboratory listening test

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2007-01-01

    The effect of low frequency noise and vibration on people is an important issue for communities around many industrial facilities and an transportation systems. There are a number of research groups throughout the world which have been actively researching these effects. This book brings together...... and vibration on people is widespread; thus this work will appeal to researchers in disciplines as diverse as acoustics, vibration, psychology, occupational health and environmental health It will also appeal to researchers in academia and designers of all kinds of industrial equipment, in terms of its...

  10. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  11. Seismic Correlation and Coupling from Underground, Surface, to the Ionosphere

    Science.gov (United States)

    Wang, J. S.; Waysand, G.

    2009-12-01

    , especially for post-earthquake periods with displacements associated with seismic wave arrivals at the ground surfaces. We assess the correlation and coupling among signals measured at depths, on the surface, and in the sky. While the main focus is on electromagnetic signals associated with earthquakes, there are many relevant measurements and analyses among seismic, rock mechanical, hydrochemical, electromagnetic, atmospheric, ionospheric and other processes and phenomena. The correlation of different signals in space and time can elucidate the different coupling and channeling of signals. The demonstrated low noise advantage of underground seismic-magnetic detections of global signals at the Laboratoire Souterrain Bas Bruit de Rustrel-Pays d'Apt should set the example for the establishment of equivalent stations worldwide in other underground research laboratories. We emphasize the adoption of international and inter-disciplinary approaches that can contribute to better understanding of mechanisms among different earthquake and tectonic forces, and lead to improved assessment of earthquake and related natural hazards.

  12. IRMM low level underground laboratory in HADES

    Energy Technology Data Exchange (ETDEWEB)

    Mouchel, D [CEC-JRC, Inst. for Reference Materials and Measurements (IRMM), Geel (Belgium); Wordel, R [CEC-JRC, Inst. for Reference Materials and Measurements (IRMM), Geel (Belgium)

    1997-03-01

    The operation of low background HPGe detectors at a depth of 225 m, reduced the background by two orders of magnitude; a large amount of the remaining background is still attributable to the cosmic rays. The selection of radiopure materials, the characterization of reference matrices and the measurements of low radioactivities in environmental samples are performed. Coupling the low level spectrometry with additional techniques, e.g. neutron activation, will allow to measure extremely low radioactivities. (orig.)

  13. Long term seismic noise acquisition and analysis with tunable monolithic horizontal sensors at the INFN Gran Sasso National Laboratory

    Science.gov (United States)

    Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2012-10-01

    In this paper we present the scientific data recorded by tunable mechanical monolithic horizontal seismometers located in the Gran Sasso National Laboratory of the INFN, within thermally insulating enclosures onto concrete slabs connected to the bedrock. The main goals of this long term test are a preliminary seismic characterization of the site in the frequency band 10-7÷1Hz and the acquisition of all the relevant information for the optimization of the sensors.

  14. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  15. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  16. Underground gasification in Britain

    Energy Technology Data Exchange (ETDEWEB)

    1952-08-29

    A report of the discussion held on the paper Underground Gasification in Britain, by C.A. Masterman (Iron and Coal Trades Rev., Vol. 165, Aug. 22, 1952, pp. 413-422). The water question, preheating the air, controlling the gas, using the product, choosing the site, thickness of seam and faulted areas are discussed.

  17. Underground nuclear power plant

    International Nuclear Information System (INIS)

    Takahashi, Hideo.

    1997-01-01

    In an underground-type nuclear power plant, groups of containing cavities comprising a plurality of containing cavities connected in series laterally by way of partition walls are disposed in parallel underground. Controlled communication tunnels for communicating the containing cavities belonging to a control region to each other, and non-controlled communication tunnels for communicating containing cavities belonging to a non-controlled area to each other are disposed underground. A controlled corridor tunnel and a non-controlled corridor tunnel extended so as to surround the containing cavity groups are disposed underground, and the containing cavities belonging to the controlled area are connected to the controlled corridor tunnel respectively, and the containing cavities belonging to the non-controlled area are connected to the non-controlled corridor tunnel respectively. The excavating amount of earth and sand upon construction can be reduced by disposing the containing cavity groups comprising a plurality of containing cavities connected in series laterally. The time and the cost for the construction can be reduced, and various excellent effects can be provided. (N.H.)

  18. Underground neutrino astronomy

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium

  19. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site in Support of the Underground Test Area Project and the Hydrologic Resources Management Program, October 1, 2002 - September 30, 2003

    International Nuclear Information System (INIS)

    D.L.Finnegan; J.L. Thompson; B.A. Martinez

    2004-01-01

    This report details the work of Chemistry Division personnel from Los Alamos National Laboratory in FY 2003 for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) under its Defense Programs and Environmental Restoration divisions. Los Alamos is one of a number of agencies collaborating in an effort to describe the present and future movement of radionuclides in the underground environment of the Nevada Test Site. This fiscal year we collected and analyzed water samples from a number of expended test locations at the Nevada Test Site. We give the results of these analyses and summarize the information gained over the quarter century that we have been studying several of these sites. We find that by far most of the radioactive residues from a nuclear test are contained in the melt glass in the cavity. Those radionuclides that are mobile in water can be transported if the groundwater is moving due to hydraulic or thermal gradients. The extent to which they move is a function of their chemical speciation, with neutral or anionic materials traveling freely relative to cationic materials that tend to sorb on rock surfaces. However, radionuclides sorbed on colloids may be transported if the colloids are moving. Local conditions strongly influence the distribution and movement of radionuclides, and we continue to study sites such as Cheshire, RNM-2s, Camembert and Almendro where radionuclides have been measured in the past. We collected samples from monitoring wells in Yucca Flat (ER-12-2, ER-6-1 No.2 and ER-7-1) and Frenchman Flat (ER-5-4 No.2) to obtain baseline radiochemistry data in those areas. We, in collaboration with LLNL, assembled all of the hot well data that have been collected over the past 30 years and submitted the data to Shaw for future inclusion in the geochemistry database. We have again used a field probe that allows us to measure important groundwater properties in situ. We begin the report with a

  20. Transient Calibration of a Variably-Saturated Groundwater Flow Model By Iterative Ensemble Smoothering: Synthetic Case and Application to the Flow Induced During Shaft Excavation and Operation of the Bure Underground Research Laboratory

    Science.gov (United States)

    Lam, D. T.; Kerrou, J.; Benabderrahmane, H.; Perrochet, P.

    2017-12-01

    The calibration of groundwater flow models in transient state can be motivated by the expected improved characterization of the aquifer hydraulic properties, especially when supported by a rich transient dataset. In the prospect of setting up a calibration strategy for a variably-saturated transient groundwater flow model of the area around the ANDRA's Bure Underground Research Laboratory, we wish to take advantage of the long hydraulic head and flowrate time series collected near and at the access shafts in order to help inform the model hydraulic parameters. A promising inverse approach for such high-dimensional nonlinear model, and which applicability has been illustrated more extensively in other scientific fields, could be an iterative ensemble smoother algorithm initially developed for a reservoir engineering problem. Furthermore, the ensemble-based stochastic framework will allow to address to some extent the uncertainty of the calibration for a subsequent analysis of a flow process dependent prediction. By assimilating the available data in one single step, this method iteratively updates each member of an initial ensemble of stochastic realizations of parameters until the minimization of an objective function. However, as it is well known for ensemble-based Kalman methods, this correction computed from approximations of covariance matrices is most efficient when the ensemble realizations are multi-Gaussian. As shown by the comparison of the updated ensemble mean obtained for our simplified synthetic model of 2D vertical flow by using either multi-Gaussian or multipoint simulations of parameters, the ensemble smoother fails to preserve the initial connectivity of the facies and the parameter bimodal distribution. Given the geological structures depicted by the multi-layered geological model built for the real case, our goal is to find how to still best leverage the performance of the ensemble smoother while using an initial ensemble of conditional multi

  1. Global Pursuits: The Underground Railroad

    Science.gov (United States)

    School Arts: The Art Education Magazine for Teachers, 2004

    2004-01-01

    This brief article describes Charles T. Webber's oil on canvas painting, "The Underground Railroad, 1893." The subject of this painting is the Underground Railroad, which today has become an American legend. The Underground Railroad was not a systematic means of transportation, but rather a secretive process that allowed fugitive slaves…

  2. Blasting Impact by the Construction of an Underground Research Tunnel in KAERI

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2005-12-01

    The underground research tunnel, which is under construction in KAERI for the validation of HLW disposal system, is excavated by drill and blasting method using high-explosives. In order not to disturb the operation at the research facilities such as HANARO reactor, it is critical to develop a blasting design , which will not influence on the facilities, even though several tens of explosives are detonated almost simultaneously. To develop a reasonable blasting design, a test blasting at the site should be performed. A preliminary analysis for predicting the expected vibration and noise by the blasting for the construction of the underground research tunnel was performed using a typical empirical equation. From the study, a blasting design could be developed not to influence on the major research facilities in KAERI. For the validation of the blasting design, a test blasting was carried out at the site and the parameters of vibration equation could be determined using the measured data during the test blasting. Using the equation, it was possible to predict the vibration at different locations at KAERI and to conclude that the blasting design would meet the design criteria at the major facilities in KAERI. The study would verify the applicability of blasting method for the construction of a research tunnel in a rock mass and that would help the design and construction of large scale underground research laboratory, which might be carried out in the future. It is also meaningful to accumulate technical experience for enhancing the reliability and effectiveness of the design and construction of the HLW disposal repository, which will be constructed in deep underground by drill and blasting technique

  3. Sixth underground coal-conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  4. Nuclear plant undergrounding

    International Nuclear Information System (INIS)

    Brown, R.C.; Bastidas, C.P.

    1978-01-01

    Under Section 25524.3 of the Public Resources Code, the California Energy Resources Conservation and Development Commission (CERCDC) was directed to study ''the necessity for '' and the effectiveness and economic feasibility of undergrounding and berm containment of nuclear reactors. The author discusses the basis for the study, the Sargent and Lundy (S and L) involvement in the study, and the final conclusions reached by S and L

  5. Monitoring underground movements

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 16 September 2015 at 22:54:33 (UTC), an 8.3-magnitude earthquake struck off the coast of Chile. 11,650 km away, at CERN, a new-generation instrument – the Precision Laser Inclinometer (PLI) – recorded the extreme event. The PLI is being tested by a JINR/CERN/ATLAS team to measure the movements of underground structures and detectors.   The Precision Laser Inclinometer during assembly. The instrument has proven very accurate when taking measurements of the movements of underground structures at CERN.    The Precision Laser Inclinometer is an extremely sensitive device capable of monitoring ground angular oscillations in a frequency range of 0.001-1 Hz with a precision of 10-10 rad/Hz1/2. The instrument is currently installed in one of the old ISR transfer tunnels (TT1) built in 1970. However, its final destination could be the ATLAS cavern, where it would measure and monitor the fine movements of the underground structures, which can affect the precise posi...

  6. The arrangement of the seismic design method of the underground facility

    International Nuclear Information System (INIS)

    Tanai, Kenji; Horita, Masakuni; Dewa, Katsuyuki; Gouke, Mitsuo

    2002-03-01

    Earthquake resistance for the underground structure is higher than the ground structure. Therefore, the case of examining the earthquake resistance of underground structure was little. However, it carries out the research on the aseismic designing method of underground structure, since the tunnel was struck by Hyogo-ken Nanbu Earthquake, and it has obtained a much knowledge. However, an object of the most study was behavior at earthquake of the comparatively shallow underground structure in the alluvial plain board, and it not carry out the examination on behavior at earthquake of underground structure in the deep rock mass. In the meantime, underground disposal facility of the high level radioactive waste constructs in the deep underground, and it carries out the operation in these tunnels. In addition, it has made almost the general process of including from the construction start to the backfilling to be about 60 years (Japan Nuclear Fuel Cycle Development Institute, 1999). During these periods, it is necessary to also consider the earthquake resistance as underground structure from the viewpoint of the safety of facilities. Then, it extracted future problem as one of the improvement of the basis information for the decision of the safety standard and guideline of the country on earthquake-resistant design of the underground disposal facility, while it carried out investigation and arrangement of earthquake-resistant design cases, guidelines and analysis method on existing underground structure, etc. And, the research items for the earthquake resistance assessment of underground structure as case study of the underground research laboratory. (author)

  7. Low frequency noise study.

    Science.gov (United States)

    2007-04-01

    This report documents a study to investigate human response to the low-frequency : content of aviation noise, or low-frequency noise (LFN). The study comprised field : measurements and laboratory studies. The major findings were: : 1. Start-of-takeof...

  8. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  9. Dynamic underground stripping. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993

  10. The Sanford underground research facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J.

    2014-01-01

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability

  11. Reliability assessment of underground shaft closure

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.

    1994-01-01

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties

  12. Underground engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M D [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    Developments of any underground engineering application utilizing nuclear explosives involve answering the same questions one encounters in any new area of technology: What are the characteristics of the new tool? How is it applicable to the job to be done? Is it safe to use? and, most importantly, is its use economically acceptable? The many facets of the answers to these questions will be explored. The general types of application presently under consideration will also be reviewed, with particular emphasis on those specific projects actively being worked on by commercial interests and by the U.S. Atomic Energy Commission. (author)

  13. Underground engineering applications

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1969-01-01

    Developments of any underground engineering application utilizing nuclear explosives involve answering the same questions one encounters in any new area of technology: What are the characteristics of the new tool? How is it applicable to the job to be done? Is it safe to use? and, most importantly, is its use economically acceptable? The many facets of the answers to these questions will be explored. The general types of application presently under consideration will also be reviewed, with particular emphasis on those specific projects actively being worked on by commercial interests and by the U.S. Atomic Energy Commission. (author)

  14. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  15. Underground water stress release models

    Science.gov (United States)

    Li, Yong; Dang, Shenjun; Lü, Shaochuan

    2011-08-01

    The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.

  16. Annoyance of low frequency noise and traffic noise

    DEFF Research Database (Denmark)

    Mortensen, F.R.; Poulsen, Torben

    2001-01-01

    The annoyance of different low frequency noise sources was determined and compared to the annoyance from traffic noise. Twenty-two subjects participated in laboratory listening tests. The sounds were presented by loudspeakers in a listening room and the spectra of the low frequency noises were...

  17. RP delves underground

    CERN Document Server

    Anaïs Schaeffer

    2011-01-01

    The LHC’s winter technical stop is rapidly approaching. As in past years, technical staff in their thousands will be flocking to the underground areas of the LHC and the Linac2, Booster, PS and SPS injectors. To make sure they are protected from ionising radiation, members of the Radiation Protection Group will perform an assessment of the levels of radioactivity in the tunnels as soon as the beams have stopped.   Members of the Radiation Protection Group with their precision instruments that measure radioactivity. At 7-00 a.m. on 8 December the LHC and all of the upstream accelerators will begin their technical stop. At 7-30 a.m., members of the Radiation Protection Group will enter the tunnel to perform a radiation mapping, necessary so that the numerous teams can do their work in complete safety. “Before we proceed underground, we always check first to make sure that the readings from the induced radioactivity monitors installed in the tunnels are all normal,&rdqu...

  18. Multinational underground nuclear parks

    Energy Technology Data Exchange (ETDEWEB)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  19. CASPAR - Nuclear Astrophysics Underground

    Science.gov (United States)

    Senarath, Chamaka; Caspar Collaboration

    2017-09-01

    The CASPAR mainly focuses on Stellar Nucleosynthesis, its impact on the production of heavy elements and study the strength of stellar neutron sources that propels the s-process, 13C(α,n)16O and 22Ne(α,n)25Mg. Currently, implementation of a 1MV fully refurbished Van de Graaff accelerator that can provide a high intensity Î+/- beam, is being done at the Sanford Underground Research Facility (SURF). The accelerator is built among a collaboration of South Dakota School of Mines and Technology, University of Notre Dame and Colorado School of Mines. It is understood that cosmic ray neutron background radiation hampers experimental Nucleosynthesis studies, hence the need to go underground in search for a neutron free environment, to study these reactions at low energies is evident. The first beam was produced in the middle of summer 2017. The entire accelerator will be run before the end of this year. A detailed overview of goals of CASPAR will be presented. NFS Grant-1615197.

  20. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  1. Low frequency seismic noise acquisition and analysis in the Homestake Mine with tunable monolithic horizontal sensors

    Science.gov (United States)

    Acernese, Fausto; De Rosa, Rosario; DeSalvo, Riccardo; Giordano, Gerardo; Harms, Jan; Mandic, Vuk; Sajeva, Angelo; Trancynger, Thomas; Barone, Fabrizio

    2010-04-01

    In this paper we describe the scientific data recorded along one month of data taking of two mechanical monolithic horizontal sensor prototypes located in a blind-ended (side) tunnel 2000 ft deep in the Homestake (South Dakota, USA) mine chosen to host the Deep Underground Science and Engineering Laboratory (DUSEL). The two mechanical monolithic sensors, developed at the University of Salerno, are placed, in thermally insulating enclosures, onto concrete slabs connected to the bedrock, and behind a sound-proofing wall. The main goal of this experiment is to characterize the Homestake site in the frequency band 10-4 - 30Hz and to estimate the level of Newtonian noise in a deep underegropund laboratory. The horizontal semidiurnal Earth tide and the Peterson's New Low Noise Model have been measured.

  2. Radiometric surveys in underground environment

    Science.gov (United States)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  3. Comments on the final report of the critical analysis of the Andra's program on researches performed in the Bure underground laboratory and the transposition zone to define a ZIRA, prepared by the IEER for the CLIS (March-April 2011)

    International Nuclear Information System (INIS)

    2011-07-01

    This report is an answer to the conclusions and recommendations of a report made by the IEER about researches performed in the field of deep geological storage of nuclear wastes. It also proposes an analysis of the whole content of this report. The IEER report addressed seismic data and seismic characterization of the transposition area, the characteristics and properties of host geological formations, rock mechanics, thermal aspects, and the comparison with other underground research programs aimed at the selection of a ZIRA (area of interest for deeper research for a future storage)

  4. Long term seismic noise acquisition and analysis in the Homestake mine with tunable monolithic sensors

    Science.gov (United States)

    Acernese, Fausto; De Rosa, Rosario; De Salvo, Riccardo; Giordano, Gerardo; Harms, Jan; Mandic, Vuk; Sajeva, Angelo; Trancynger, Thomas; Barone, Fabrizio

    2009-09-01

    In this paper we describe the scientific data recorded along one month of data taking of two mechanical monolithic horizontal sensor prototypes located in a blind-ended (side) tunnel 2000 ft deep in the Homestake (South Dakota, USA) mine chosen to host the Deep Underground Science and Engineering Laboratory (DUSEL). The two mechanical monolithic sensors, developed at the University of Salerno, are placed, in thermally insulating enclosures, onto concrete slabs connected to the bedrock, and behind a sound-proofing wall. The main goal of this experiment is to characterize the Homestake site in the frequency band 10-4 ÷ 30 H z and to estimate the level of Newtonian noise, providing also the necessary preliminary information to understand the feasibility of underground gravitational-wave interferometers sensitive at 1 H z and below.

  5. Regulating and Combating Underground Banking

    NARCIS (Netherlands)

    Borgers, M.J.

    2009-01-01

    In combating and regulating underground banking, a choice can be made of roughly two models, the risk model and the assimilation model. The risk model comes down to a complete prohibition of underground banking combined with an active investigation and prosecution policy. In the assimilation model,

  6. Laboratory evaluation of an optimised internet-based speech-in-noise test for occupational high-frequency hearing loss screening: Occupational Earcheck

    NARCIS (Netherlands)

    Sheikh Rashid, Marya; Leensen, Monique C. J.; de Laat, Jan A. P. M.; Dreschler, Wouter A.

    2017-01-01

    Objective: The "Occupational Earcheck'' (OEC) is a Dutch onlineself-screening speech-in-noise test developed for the detection of occupational high-frequency hearing loss (HFHL). This study evaluates an optimised version of the test and determines the most appropriate masking noise. Design: The

  7. The underground economy in Romania

    Directory of Open Access Journals (Sweden)

    Adriana Veronica LITRA

    2016-07-01

    Full Text Available The paper aims at covering issues related to the underground economy, activities that compound this phenomenon, its magnitude in Romania and reported to the European average. Underground economy in Romania consists of undeclared work (2/3 from the total and unreported income; it decreased from 33.6% of GDP in 2003 to 28% in 2014, but remained over EU-28 average with about 10 p.p. Among EU-28 countries, only Bulgaria exceeds the size of the underground economy of Romania. The underground economy is a challenge for the leadership of the state which must act simultaneously to stop illegal activities, and to discourage non-declaration of the legal activities. Corruption favours maintaining the underground economy, delays economic development, obstructs democratic processes and affects justice and the law state.

  8. Underground risk management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, S.; Inoue, M.; Sakai, T.

    2006-03-15

    JCOAL has conducted Joint Research on an Underground Communication and Risk Management Information System with CSIRO of Australia under a commissioned study project for the promotion of coal use starting in fiscal 2002. The goal of this research project is the establishment of a new Safety System focusing on the comprehensive risk management information system by the name of Nexsys. The main components of the system are the Ethernet type underground communication system that represents the data communication base, and the risk management information system that permits risk analysis in real-time and provides decision support based on the collected data. The Nexsys is an open system and is a core element of the underground monitoring system. Using a vast amount of underground data, it is capable of accommodating a wide range of functions that were not available in the past. Because of it, it is possible to construct an advanced underground safety system. 14 figs., 4 tabs.

  9. Jet Propulsion Laboratory/NASA Lewis Research Center space qualified hybrid high temperature superconducting/semiconducting 7.4 GHz low-noise downconverter for NRL HTSSE-II program

    International Nuclear Information System (INIS)

    Javadi, H.H.S.; Bowen, J.G.; Rascoe, D.L.; Chorey, C.M.

    1996-01-01

    A deep space satellite downconverter receiver was proposed by Jet Propulsion Laboratory (JPL) and NASA Lewis Research Center (LeRC) for the Naval Research Laboratory's (NRL) high temperature superconductivity space experiment, phase-II (HTSSE-II) program. Space qualified low-noise cryogenic downconverter receivers utilizing thin-film high temperature superconducting (HTS) passive circuitry and semiconductor active devices were developed and delivered to NRL. The downconverter consists of an HTS preselect filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. HTS components were inserted as the front-end filter and the local oscillator resonator for their superior 77 K performance over the conventional components. The semiconducting low noise amplifier also benefited from cooling to 77 K. The mixer was designed specifically for cryogenic applications and provided low conversion loss and low power consumption. In addition to an engineering model, two space qualified units (qualification, flight) were built and delivered to NRL. Manufacturing, integration and test of the space qualified downconverters adhered to the requirements of JPL class-D space instruments and partially to MIL-STD-883D specifications. The qualification unit has ∼50 K system noise temperature which is a factor of three better than a conventional downconverter at room temperature

  10. Underground gasification in Russia

    Energy Technology Data Exchange (ETDEWEB)

    1956-11-21

    A paper in Pravda by the Deputy Chief Engineer of the Underground Gasification Department indicates that there are at least three or four pilot plants in operation; one plant near Moscow has operated for 14 years and one in the Donbas for 8 years. The first plant has a daily output of gas corresponding to 400 tons of coal a day and produces a gas of low calorific value. A plant opened in 1956 in the Kuzbas to produce gas of a higher quality. A plant, being built near Moscow in conjunction with a gas turbine electrical power station, will produce gas equivalent in heating value to 220,000 tons of coal a year. A larger plant, being built at Angren in central Asia, will produce gas equivalent in heating value to 700,000 tons of coal a year.

  11. Underground layout tradeoff study

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the results of a technical and economic comparative study of four alternative underground layouts for a nuclear waste geologic repository in salt. The four alternatives considered in this study are (1) separate areas for spent fuel (SF) and commercial high-level waste (CHLW); (2) panel alternation, in which SF and CHLW are emplaced in adjacent panels of rooms; (3) room alternation, in which SF and CHLW are emplaced in adjacent rooms within each panel; and (4) intimate mixture, in which SF and CHLW are emplaced in random order within each storage room. The study concludes that (1) cost is not an important factor; (2) the separate-areas and intimate-mixture alternatives appear, technically, to be more desirable than the other alternatives; and (3) the selection between the separate-areas and intimate mixture alternatives depends upon future resolution of site-specific and reprocessing questions. 5 refs., 6 figs., 12 tabs

  12. Urban underground infrastructure mapping and assessment

    Science.gov (United States)

    Huston, Dryver; Xia, Tian; Zhang, Yu; Fan, Taian; Orfeo, Dan; Razinger, Jonathan

    2017-04-01

    This paper outlines and discusses a few associated details of a smart cities approach to the mapping and condition assessment of urban underground infrastructure. Underground utilities are critical infrastructure for all modern cities. They carry drinking water, storm water, sewage, natural gas, electric power, telecommunications, steam, etc. In most cities, the underground infrastructure reflects the growth and history of the city. Many components are aging, in unknown locations with congested configurations, and in unknown condition. The technique uses sensing and information technology to determine the state of infrastructure and provide it in an appropriate, timely and secure format for managers, planners and users. The sensors include ground penetrating radar and buried sensors for persistent sensing of localized conditions. Signal processing and pattern recognition techniques convert the data in information-laden databases for use in analytics, graphical presentations, metering and planning. The presented data are from construction of the St. Paul St. CCTA Bus Station Project in Burlington, VT; utility replacement sites in Winooski, VT; and laboratory tests of smart phone position registration and magnetic signaling. The soil conditions encountered are favorable for GPR sensing and make it possible to locate buried pipes and soil layers. The present state of the art is that the data collection and processing procedures are manual and somewhat tedious, but that solutions for automating these procedures appear to be viable. Magnetic signaling with moving permanent magnets has the potential for sending lowfrequency telemetry signals through soils that are largely impenetrable by other electromagnetic waves.

  13. SuperCDMS Underground Detector Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.; Orrell, John L.

    2018-03-01

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discovery of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.

  14. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J.

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability

  15. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J

    2015-01-01

    The former Homestakegold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinolessdouble-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low- background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long- baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability. (paper)

  16. Underground space planning in Helsinki

    Directory of Open Access Journals (Sweden)

    Ilkka Vähäaho

    2014-10-01

    Full Text Available This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy efficiency. The need for underground space use in city areas has grown rapidly since the 21st century; at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city's underground construction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to ‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  17. 3D hydro-mechanical homogenization and equivalent continuum properties of a fractured porous clay-stone around a gallery: application to the damaged and fractured zone at the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Ababou, Rachid; Canamon, Israel; Poutrel, Adrien

    2012-01-01

    Document available in extended abstract form only. The present work focuses on 3D homogenization, or 'up-scaling', of coupled Hydro-Mechanical (HM) equations and coefficients in a water-filled fractured and fissured porous clay rock. The parameters used in the up-scaling calculations correspond to the Meuse / Haute-Marne (MHM) Underground Research Laboratory (URL) located at Bure and operated by ANDRA (France). We focus on the fractured zone around a cylindrical excavation (gallery 'GMR') located in the Callovo-Oxfordian formation, a thick 130 m clay-stone layer between depths 400 m and 600 m. For up-scaling, we take into account two different sets of hydraulic and mechanical parameters: (i) the permeability and the stiffness coefficients of the intact porous matrix, and (ii) the crack properties, including their apertures, their hydraulic transmissivity (Darcy/Poiseuille), and their specific normal/shear stiffnesses. The geometry of cracks is summarized below. We consider two different types of 'cracks': (I) relatively small decimeter-scale 'dense fractures'; and (II) large distinct shear fractures organized in a 'chevron' pattern. A synthetic set comprising both the 'dense fractures' and the 'large fractures' is generated in 3D. Each subset is generated as follows: I. A statistical isotropic system of small fractures ('fissures'), consisting of isotropically oriented planar discs, with random diameters, apertures, and positions. All statistics are radially inhomogeneous, e.g., density decreases away from the wall. II. A periodic set of large curved fractures, organized along the axis of the gallery in a 'chevron' pattern. Each curved fracture is individually modelled as a parametric conoidal surface. Each surface is then discretized as a set of triangular patches. The local HM coefficients of the water-filled porous rock, with dense near-wall fractures and large distinct 'chevron' fractures, are homogenized using a quasi-linear superposition approach. This leads

  18. Hydrologic resources management program and underground test area operable unit fy 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  19. Estimation of radon daughter levels in the ventilation planning of an underground uranium mine

    International Nuclear Information System (INIS)

    Gan, T.H.; Wise, K.N.; Leach, V.A.

    1981-01-01

    Diffusion parameters determined by laboratory measurements can be utilized for predictions of radon daughter exposures in underground mining environments, as well as providing data for ventilation planning purposes. Wherever possible field measured data for the various diffusion parameters should be used. Underground mining methods, the tunnel model and diffusion theory are considered

  20. Noise reduction in long‐period seismograms by way of array summing

    Science.gov (United States)

    Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin

    2016-01-01

    Long‐period (>100  s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.

  1. Civil Engineering Construction of Underground Works

    CERN Document Server

    Rammer, H

    1999-01-01

    For the first time at CERN, new shafts and caverns will be excavated inside a surface building. The LHC civil engineering construction for the ATLAS experiment has been designed such that the experimental hall will be completed to the extent that it can provide a secure, weatherproof and sound insulated covering to the shaft excavation area. The construction of the two access shafts and the experimental cavern will follow and will be carried out inside the building. This unconventional method of working allows the excavation of the Molasse rock in the dry, which is essential for this type of rock, and ensures reduced environmental pollution by noise and dust. The paper will present the technical infrastructure required for this particular construction method, explain its advantages and disadvantages, and compare it with a conventional method of underground excavations to be used on the same work site for the construction of the service cavern.

  2. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  3. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  4. FAST goes underground

    International Nuclear Information System (INIS)

    Fridlund, P.S.

    1985-01-01

    The FAST-M Cost Estimating Model is a parametric model designed to determine the costs associated with mining and subterranean operations. It is part of the FAST (Freiman Analysis of Systems Techniques) series of parametric models developed by Freiman Parametric Systems, Inc. The rising cost of fossil fuels has created a need for a method which could be used to determine and control costs in mining and subterranean operations. FAST-M fills this need and also provides scheduling information. The model works equally well for a variety of situations including underground vaults for hazardous waste storage, highway tunnels, and mass transit tunnels. In addition, costs for above ground structures and equipment can be calculated. The input for the model may be on a macro or a micro level. This allows the model to be used at various stages in a project. On the macro level, only general conditions and specifications need to be known. On the micro level, the smallest details may be included. As with other FAST models, reference cases are used to more accurately predict costs and scheduling. This paper will address how the model can be used for a variety of subterranean purposes

  5. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  6. Tenth annual underground coal gasification symposium: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Burwell, E.; Docktor, L.; Martin, J.W. (eds.)

    1984-12-01

    The Tenth Annual Underground Coal Gasification Symposium was cosponsored by the Fossil Energy Division of the US Department of Energy and the Morgantown Energy Technology Center's Laramie Projects Office. The purpose of the symposium was to provide a forum for presenting research results and for determining additional research needs in underground coal gasification. This years' meeting was held in Williamsburg, Virginia, during the week of August 12 through 15, 1984. Approximately 120 attendees representing industry, academia, national laboratories, Government, and eight foreign countries participated in the exchange of ideas, results, and future research plans. International representatives included participants from Belgium, Brazil, France, the Netherlands, New Zealand, Spain, West Germany, and Yugoslavia. During the three-day symposium, sixty papers were presented and discussed in four formal presentation sessions and two informal poster sessions. The papers describe interpretation of field test data, results of environmental research, and evaluations of laboratory, modeling, and economic studies. All papers in this Proceedings have been processed for inclusion in the Energy Data Base.

  7. Studies on muon showers underground

    Energy Technology Data Exchange (ETDEWEB)

    Bergamasco, L; Castagnoli, C; Dardo, M; D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Picchi, P; Visentin, R [Comitato Nazionale per l' Energia Nucleare, Frascati (Italy). Laboratori Nazionali di Frascati; Sitte, K [Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-08-21

    The 4 m/sup 2/ spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, and to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm/sup 2/ of rock.

  8. Studies on muon showers underground

    International Nuclear Information System (INIS)

    Bergamasco, L.; Castagnoli, C.; Dardo, M.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Visentin, R.; Sitte, K.

    1976-01-01

    The 4 m 2 spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, adn to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm 2 of rock

  9. Underground treatment of combustible minerals

    Energy Technology Data Exchange (ETDEWEB)

    Sarapuu, E

    1954-10-14

    A process is described for treating oil underground, consisting in introducing several electrodes spaced one from the other in a bed of combustibles underground so that they come in electric contact with this bed of combustibles remaining insulated from the ground, and applying to the electrodes a voltage sufficient to produce an electric current across the bed of combustibles, so as to heat it and create an electric connection between the electrodes on traversing the bed of combustibles.

  10. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  11. Model based, sensor-directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Thunborg, S.

    1990-01-01

    Sensor-rich, intelligent robots that function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories (SNL) is performing technology development and experimental investigations into the application of intelligent robot control technology to the problem of cleaning up waste stored in underground tanks. The tasks addressed in the SNL experiments are in situ physical characterizations of underground storage tanks (USTs) as well as the contained waste and the removal of the waste from the tank both for laboratory analysis and as part of the tank cleanup process. Both fully automatic and manual robot control technologies are being developed and demonstrated. The SNL-developed concept of human-assisted computer control will be employed whenever manual control of the robot is required. The UST Robot Technology Development Laboratory (URTDL) consists of a commercial gantry robot modified to allow hybrid force/position control

  12. Noise Pollution

    Science.gov (United States)

    ... Regulated by EPA EPA or a designated Federal agency regulates noise sources, such as rail and motor carriers, low noise emission products, construction equipment, transport equipment, trucks, motorcycles, and the labeling of hearing ...

  13. The CNGS underground structures

    CERN Multimedia

    CERN-AC/DI/MM

    2001-01-01

    The protons supplied by the SPS will travel along a transfer line some 800 metres in length before entering a 125-m long target chamber, where they will bombard a graphite target. This process will produce pions and kaons, which will decay into muons and muon neutrinos inside the 1000-metre decay tube. The neutrinos will then commence their 730-km journey through the earth's crust to the detectors at the Gran Sasso Laboratory.

  14. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  15. Community noise

    Science.gov (United States)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  16. Effects of road traffic background noise on judgments of individual airplane noises. Ph.D. Thesis

    Science.gov (United States)

    Powell, C. A.

    1979-01-01

    Two laboratory experiments were conducted to investigate the effects of road-traffic background noise on judgments of individual airplane flyover noises. In the first experiment, 27 subjects judged a set of 16 airplane flyover noises in the presence of traffic-noise sessions of 30-min duration consisting of the combinations of 3 traffic-noise types and 3 noise levels. In the second experiment, 24 subjects judged the same airplane flyover noises in the presence of traffic-noise sessions of 10-min duration consisting of the combinations of 2 traffic-noise types and 4 noise levels. In both experiments the airplane noises were judged less annoying in the presence of high traffic-noise levels than in the presence of low traffic-noise levels.

  17. Dynamic Underground Stripping Demonstration Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92

  18. Logistics background study: underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  19. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  20. Slavery and the Underground Railroad.

    Science.gov (United States)

    Anderson, Nancy Comfort

    2000-01-01

    Presents a bibliography of sources to help children understand slavery and the Underground Railroad and recommends a combination of fiction and nonfiction for a better understanding. Includes picture books, biographies of people who played prominent roles during the time of slavery, nonfiction books for older readers, and videotape. (LRW)

  1. Uranium extraction from underground deposits

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1982-01-01

    Uranium is extracted from underground deposits by passing an aqueous oxidizing solution of carbon dioxide over the ore in the presence of calcium ions. Complex uranium carbonate or bicarbonate ions are formed which enter the solution. The solution is forced to the surface and the uranium removed from it

  2. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  3. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  4. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    Science.gov (United States)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  5. Pedestrian detection for underground mine vehicles using thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-09-01

    Full Text Available , ?Proximity detection,? August 2010. [On- line]. Available: http://www.cdc.gov/niosh/mining/topics/ topicpage58.htm [4] P. Laliberte?, ?Summary study of underground commu- nications technologies,? CANMET Mining and Mineral Sciences Laboratories, Tech. Rep... Institute of Mining and Metallurgy, vol. 101, no. 3, pp. 127?134, May 2001. [12] W. M. Marx and R. M. Franz, ?Determine appropriate criteria for acceptable environmental conditions,? CSIR: Division of Mining Technology, DeepMine Research Task 6...

  6. Numerical modeling of underground openings behavior with a viscoplastic approach

    International Nuclear Information System (INIS)

    Kleine, A.

    2007-01-01

    Nature is complex and must be approached in total modesty by engineers seeking to predict the behavior of underground openings. The engineering of industrial projects in underground situations, with high economic and social stakes (Alpine mountain crossings, nuclear waste repository), mean striving to gain better understanding of the behavioral mechanisms of the openings to be designed. This improvement necessarily involves better physical representativeness of macroscopic mechanisms and the provision of prediction tools suited to the expectations and needs of the engineers. The calculation tools developed in this work is in step with this concern for satisfying industrial needs and developing knowledge related to the rheology of geo-materials. These developments led to the proposing of a mechanical constitutive model, suited to lightly fissured rocks, comparable to continuous media, while integrating more particularly the effect of time. Thread of this study, the problematics ensued from the subject of the thesis is precisely about the rock mass delayed behavior in numerical modeling and its consequences on underground openings design. Based on physical concepts of reference, defined in several scales (macro/meso/micro), the developed constitutive model is translated in a mathematical formalism in order to be numerically implemented. Numerical applications presented as illustrations fall mainly within the framework of nuclear waste repository problems. They concern two very different configurations of underground openings: the AECL's underground canadian laboratory, excavated in the Lac du Bonnet granite, and the GMR gallery of Bure's laboratory (Meuse/Haute-Marne), dug in argillaceous rock. In this two cases, this constitutive model use highlights the gains to be obtained from allowing for delayed behavior regarding the accuracy of numerical tunnel behavior predictions in the short, medium and long terms. (author)

  7. Construction experiences from underground works at Oskarshamn. Compilation report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Anders (Vattenfall Power Consultant AB, Stockholm (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-12-15

    The main objective with this report is to compile experiences from the underground works carried out at Oskarshamn, primarily construction experiences from the tunnelling of the cooling water tunnels of the Oskarshamn nuclear power units 1,2 and 3, from the underground excavations of Clab 1 and 2 (Central Interim Storage Facility for Spent Nuclear Fuel), and Aespoe Hard Rock Laboratory. In addition, an account is given of the operational experience of Clab 1 and 2 and of the Aespoe HRL on primarily scaling and rock support solutions. This report, as being a compilation report, is in its substance based on earlier published material as presented in the list of references. Approximately 8,000 m of tunnels including three major rock caverns with a total volume of about 550,000 m3 have been excavated. The excavation works of the various tunnels and rock caverns were carried out during the period of 1966-2000. In addition, minor excavation works were carried out at the Aespoe HRL in 2003. The depth location of the underground structures varies from near surface down to 450 m. As an overall conclusion it may be said that the rock mass conditions in the area are well suited for underground construction. This conclusion is supported by the experiences from the rock excavation works in the Simpevarp and Aespoe area. These works have shown that no major problems occurred during the excavation works; nor have any stability or other rock engineering problems of significance been identified after the commissioning of the Oskarshamn nuclear power units O1, O2 and O3, BFA, Clab 1 and 2, and Aespoe Hard Rock Laboratory. The underground structures of these facilities were built according to plan, and since than been operated as planned. Thus, the quality of the rock mass within the construction area is such that it lends itself to excavation of large rock caverns with a minimum of rock support

  8. Construction experiences from underground works at Oskarshamn. Compilation report

    International Nuclear Information System (INIS)

    Carlsson, Anders; Christiansson, Rolf

    2007-12-01

    The main objective with this report is to compile experiences from the underground works carried out at Oskarshamn, primarily construction experiences from the tunnelling of the cooling water tunnels of the Oskarshamn nuclear power units 1,2 and 3, from the underground excavations of Clab 1 and 2 (Central Interim Storage Facility for Spent Nuclear Fuel), and Aespoe Hard Rock Laboratory. In addition, an account is given of the operational experience of Clab 1 and 2 and of the Aespoe HRL on primarily scaling and rock support solutions. This report, as being a compilation report, is in its substance based on earlier published material as presented in the list of references. Approximately 8,000 m of tunnels including three major rock caverns with a total volume of about 550,000 m 3 have been excavated. The excavation works of the various tunnels and rock caverns were carried out during the period of 1966-2000. In addition, minor excavation works were carried out at the Aespoe HRL in 2003. The depth location of the underground structures varies from near surface down to 450 m. As an overall conclusion it may be said that the rock mass conditions in the area are well suited for underground construction. This conclusion is supported by the experiences from the rock excavation works in the Simpevarp and Aespoe area. These works have shown that no major problems occurred during the excavation works; nor have any stability or other rock engineering problems of significance been identified after the commissioning of the Oskarshamn nuclear power units O1, O2 and O3, BFA, Clab 1 and 2, and Aespoe Hard Rock Laboratory. The underground structures of these facilities were built according to plan, and since than been operated as planned. Thus, the quality of the rock mass within the construction area is such that it lends itself to excavation of large rock caverns with a minimum of rock support

  9. Initial status of the environment. Environmental marks of the Meuse-Haute Marne underground research laboratory; L'etat initial de l'environnement. Reperes environnementaux du Laboratoire de Recherche souterrain de Meuse/Haute-Marne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    On August 3, 1999, the French government gave the permission to the national agency of radioactive wastes (ANDRA) to build up a research laboratory devoted to the feasibility study of a facility for the reversible disposal of high level and long living radioactive wastes in deep geologic beds. The site retained is located at Bure, at the boundary of the Meuse and Haute-Marne departements. Before starting the construction of this research facility, the ANDRA has carried out a careful survey of the initial environmental status of the site which will serve as a reference. This brochure presents the results of this survey: geo-morphology, agriculture, natural ecosystems, radioecology, sound levels, air quality, surface and groundwater quality. The ANDRA has implemented an environmental monitoring plan for each phase of the development of the project. (J.S.)

  10. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  11. Detecting and identifying underground nuclear explosions

    International Nuclear Information System (INIS)

    Spiliopoulos, S.

    1996-01-01

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called 'array beams'. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  12. Detecting and identifying underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiliopoulos, S. [Australian Geological Survey Organisation, Anzac Park, Canberra, ACT (Australia). Department of Primary Industry

    1996-12-31

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called `array beams`. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  13. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  14. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  15. Study of underground radon transport

    International Nuclear Information System (INIS)

    Csige, I.; Hakl, J.; Lenart, L.

    1990-01-01

    The soil gas radon content measurements with solid state nuclear track detectors (SSNTDs) are widely used in geoscience, for instance in uranium exploration and earthquake prediction. In these applications the radon frequently is used as a natural tracer of underground fluid transport processes. Obviously, to get the soil radon measuring method more and more effective the study of these transport processes in deeper part of the Earth is fundamental. The Track Detector Group in the Institute of Nuclear Research of the Hungarian Academy of Sciences in Debrecen has been performing environmental radon activity concentration measurements since 1977 with alpha sensitive SSNTDs. These types of measurements were initiated and widely used by the late head of the group Dr. G. Somogyi, who devoted his life to better understanding of the nature. The measurements in caves, springs and drilled wells proved to be effective to study these underground radon transport processes. We are glad to present some results of our investigations. 7 refs, 7 figs

  16. Background intercomparison with escape-suppressed germanium detectors in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, Tamas; Bemmerer, Daniel [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany)

    2014-07-01

    A key requirement for underground nuclear astrophysics experiments is the very low background level in germanium detectors underground. The reference for these purposes is the world's so far only underground accelerator laboratory for nuclear astrophysics, LUNA. LUNA is located deep underground in the Gran Sasso laboratory in Italy, shielded from cosmic rays by 1400 m of rock. The background at LUNA was studied in detail using an escape-suppressed Clover-type HPGe detector. Exactly the same detector was subsequently transported to the Felsenkeller underground laboratory in Dresden, shielded by 45 m of rock, and the background was shown to be only a factor of three higher than at LUNA when comparing the escape-suppressed spectra, with interesting consequences for underground nuclear astrophysics. As the next step of a systematic study of the effects of a combination of active and passive shielding on the cosmic ray induced background, this detector is now being brought to the ''Reiche Zeche'' mine in Freiberg/Sachsen, shielded by 150 m of rock. The data from the Freiberg measurement are shown and discussed.

  17. The Underground Economy in Romania

    Directory of Open Access Journals (Sweden)

    Cleopatra Sendroiu

    2006-07-01

    Full Text Available Underground economic activities exist in most countries around the world, and they usually have the same causes: inadequate tax systems, excessive state interference in the economy and the lack of coordination in establishing economic policies. Through this paper, we aim to offer certain recommendations, which, in our opinion, would lead to solving the issue of inadequate allocation of resources and would also contribute to restoration of the worldwide economy.

  18. The stress and underground environment

    Science.gov (United States)

    Chama, A.

    2009-04-01

    Currently,the program of prevention in occupational health needs mainly to identify occupational hazards and strategy of their prevention.Among these risks,the stress represents an important psycho-social hazard in mental health,which unfortunately does not spare no occupation.My Paper attempts to highlight and to develop this hazard in its different aspects even its regulatory side in underground environment as occupational environment.In the interest of better prevention ,we consider "the information" about the impact of stress as the second prevention efficient and no expensive to speleologists,hygienists and workers in the underground areas. In this occasion of this event in Vienna,we also highlight the scientific works on the stress of the famous viennese physician and endocrinologist Doctor Hans Selye (1907-1982),nicknamed "the father of stress" and note on relation between biological rhythms in this underground area and psychological troubles (temporal isolation) (Jurgen Aschoff’s works and experiences out-of time).

  19. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  20. Radionuclides in an underground environment

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1996-01-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ''experiments'' conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes

  1. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  2. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  3. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  4. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  5. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  6. Several rotor noise sources and treatments

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J. [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-31

    Noise has been a design consideration in the development of advanced blades and turbines at the National Renewable Energy Laboratory. During atmospheric testing associated with these efforts various types of aeroacoustic noise have been encountered. This presentation discusses several of these noise sources and treatments used to mitigate or eliminate the noise. Tonal noise resulting from tip-vortex/trailing-edge interaction and laminar separation bubbles was found to be easily eliminated. Impulsive noise resulting from blade/vortex interaction for rotors that furl and that due to tower shadow can be mitigated by various means. (au)

  7. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  8. UNDERGROUND-1: ICARUS prepares to fly; UNDERGROUND-2: New Soudan detector nears completion

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Operating at CERN since 1991 is a 3-tonne liquid argon time projection chamber, a detector breakthrough which combines the visual advantages of bubble chamber tracks with the flexibility of fully electronic data acquisition. The 3-tonne chamber is a prototype for a much larger configuration for the ICARUS* solar neutrino and proton decay detector to be installed in the Italian Gran Sasso underground laboratory. ICARUS (Imaging Cosmic And Rare Underground Signals) is built around the cryogenic imaging chamber idea initially proposed by Carlo Rubbia in 1977. With electrons drifting for a relatively long time (several milliseconds) and with sensitive amplifiers picking up the ionization from just a few millimetres of track, events can be imaged inside the cryogenic volume. A special arrangement of readout wires provides drift time measurements and ensures simultaneous imaging in several different views. The prototype has shown that the challenges of obtaining ultra-pure argon and operating readout techniques for large sensitive volumes have been met. The full ICARUS detector (with three liquid argon modules each containing 5,000 tonnes) will be able to detect low energy electrons (down to a few MeV) emerging from solar neutrino interactions, proton decays, or other rare events over a large volume

  9. UNDERGROUND-1: ICARUS prepares to fly; UNDERGROUND-2: New Soudan detector nears completion

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-04-15

    Operating at CERN since 1991 is a 3-tonne liquid argon time projection chamber, a detector breakthrough which combines the visual advantages of bubble chamber tracks with the flexibility of fully electronic data acquisition. The 3-tonne chamber is a prototype for a much larger configuration for the ICARUS* solar neutrino and proton decay detector to be installed in the Italian Gran Sasso underground laboratory. ICARUS (Imaging Cosmic And Rare Underground Signals) is built around the cryogenic imaging chamber idea initially proposed by Carlo Rubbia in 1977. With electrons drifting for a relatively long time (several milliseconds) and with sensitive amplifiers picking up the ionization from just a few millimetres of track, events can be imaged inside the cryogenic volume. A special arrangement of readout wires provides drift time measurements and ensures simultaneous imaging in several different views. The prototype has shown that the challenges of obtaining ultra-pure argon and operating readout techniques for large sensitive volumes have been met. The full ICARUS detector (with three liquid argon modules each containing 5,000 tonnes) will be able to detect low energy electrons (down to a few MeV) emerging from solar neutrino interactions, proton decays, or other rare events over a large volume.

  10. Biogeochemical processes in a clay formation in situ experiment: Part A - Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P., E-mail: paul.wersin@gruner.ch [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Gruner Ltd., Gellertstrasse 55, 4020 Basel (Switzerland); Leupin, O.X. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland); Mettler, S. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Solexperts Ltd., Mettlenbachstrasse 25, 8617 Moenchaltorf (Switzerland); Gaucher, E.C. [BRGM, 3 avenue Claude Guillemin, B.P. 36009, 45060 Orleans Cedex 2 (France); Maeder, U. [University of Bern, Institute of Geological Sciences, Baltzerstrasse 3, CH-3012 Bern (Switzerland); De Canniere, P. [SCK.CEN, Waste and Disposal Project, Boeretang 200, 2400 Mol (Belgium); Vinsot, A. [ANDRA, Laboratoire de Recherche Souterrain de Meuse/Haute-Marne, RD960 BP9, 55290 Bure (France); Gaebler, H.E. [BGR, Stilleweg 2, 30655 Hannover (Germany); Kunimaro, T. [JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kiho, K. [CRIEPI, 1646 Abiko, Abiko-city Chiba 270-1194 (Japan); Eichinger, L. [Hydroisotop, 85301 Schweitenkirchen (Germany)

    2011-06-15

    Highlights: > The composition was affected by the complex interplay of diffusion, mineral and surface reactions. > The {sup 13}C signals for carbon species showed significant variations which could only be partly explained. > The main cations remained remarkably constant during the experiment. > This underlines the strong buffering via cation exchange and carbonate dissolution/precipitation. - Abstract: An in situ test in the Opalinus Clay formation, termed porewater chemistry (PC) experiment, was carried out for a period of 5 years. It was based on the concept of diffusive equilibration whereby a traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed-off borehole. The main original focus was to obtain reliable data on the pH/pCO{sub 2} conditions of the porewater, but because of unexpected microbiologically-induced redox reactions, the objective was extended to elucidate the biogeochemical processes occurring in the borehole and to understand their impact on pH/pCO{sub 2} and porewater chemistry in the low permeability clay formation. The behaviour of the conservative tracers {sup 2}H and Br{sup -} could be explained by diffusive dilution in the clay and moreover the results showed that diffusive equilibration between the borehole water and the formation occurred within about 3 year's time. However, the composition and pH/pCO{sub 2} conditions differed considerably from those of the in situ porewater. Thus, pH was lower and pCO{sub 2} was higher than indicated by complementary laboratory investigations. The noted differences are explained by microbiologically-induced redox reactions occurring in the borehole and in the interfacial wall area which were caused by an organic source released from the equipment material. The degradation of this source was accompanied by sulfate reduction and - to a lesser extent - by methane generation, which induced a high rate of acetogenic reactions

  11. Biogeochemical processes in a clay formation in situ experiment: Part A - Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Wersin, P.; Leupin, O.X.; Mettler, S.; Gaucher, E.C.; Maeder, U.; De Canniere, P.; Vinsot, A.; Gaebler, H.E.; Kunimaro, T.; Kiho, K.; Eichinger, L.

    2011-01-01

    Highlights: → The composition was affected by the complex interplay of diffusion, mineral and surface reactions. → The 13 C signals for carbon species showed significant variations which could only be partly explained. → The main cations remained remarkably constant during the experiment. → This underlines the strong buffering via cation exchange and carbonate dissolution/precipitation. - Abstract: An in situ test in the Opalinus Clay formation, termed porewater chemistry (PC) experiment, was carried out for a period of 5 years. It was based on the concept of diffusive equilibration whereby a traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed-off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 conditions of the porewater, but because of unexpected microbiologically-induced redox reactions, the objective was extended to elucidate the biogeochemical processes occurring in the borehole and to understand their impact on pH/pCO 2 and porewater chemistry in the low permeability clay formation. The behaviour of the conservative tracers 2 H and Br - could be explained by diffusive dilution in the clay and moreover the results showed that diffusive equilibration between the borehole water and the formation occurred within about 3 year's time. However, the composition and pH/pCO 2 conditions differed considerably from those of the in situ porewater. Thus, pH was lower and pCO 2 was higher than indicated by complementary laboratory investigations. The noted differences are explained by microbiologically-induced redox reactions occurring in the borehole and in the interfacial wall area which were caused by an organic source released from the equipment material. The degradation of this source was accompanied by sulfate reduction and - to a lesser extent - by methane generation, which induced a high rate of acetogenic reactions corresponding to very high acetate

  12. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  13. An algorithm for leak point detection of underground pipelines

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin

    2004-01-01

    Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300 m.

  14. A Look into Miners' Health in Prevailing Ambience of Underground Coal Mine Environment

    Science.gov (United States)

    Dey, N. C.; Pal, S.

    2012-04-01

    Environmental factors such as noise, vibration, illumination, humidity, temperature and air velocity, etc. do play a major role on the health, comfort and efficient performance of underground coal miners at work. Ergonomics can help to promote health, efficiency and well being of miners and to make best use of their capabilities within the ambit of underground coal mine environment. Adequate work stretch and work-rest scheduling have to be determined for every category of miners from work physiology point of view so as to keep better health of the miners in general and to have their maximum efficiency at work in particular.

  15. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  16. A Psychosocial Approach to Understanding Underground Spaces

    Directory of Open Access Journals (Sweden)

    Eun H. Lee

    2017-03-01

    Full Text Available With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges.

  17. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    Science.gov (United States)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  18. Salt creep design consideration for underground nuclear waste storage

    International Nuclear Information System (INIS)

    Li, W.T.; Wu, C.L.; Antonas, N.J.

    1983-01-01

    This paper summarizes the creep consideration in the design of nuclear waste storage facilities in salt, describes the non-linear analysis method for evaluating the design adequacy, and presents computational results for the current storage design. The application of rock mechanics instrumentation to assure the appropriateness of the design is discussed. It also describes the design evolution of such a facility, starting from the conceptual design, through the preliminary design, to the detailed design stage. The empirical design method, laboratory tests and numerical analyses, and the underground in situ tests have been incorporated in the design process to assure the stability of the underground openings, retrievability of waste during the operation phase and encapsulation of waste after decommissioning

  19. Neutron- and muon-induced background in underground physics experiments

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Tomasello, V.; Pandola, L.

    2008-01-01

    Background induced by neutrons in deep underground laboratories is a critical issue for all experiments looking for rare events, such as dark matter interactions or neutrinoless ββ decay. Neutrons can be produced either by natural radioactivity, via spontaneous fission or (α, n) reactions, or by interactions initiated by high-energy cosmic rays. In all underground experiments, Monte Carlo simulations of neutron background play a crucial role for the evaluation of the total background rate and for the optimization of rejection strategies. The Monte Carlo methods that are commonly employed to evaluate neutron-induced background and to optimize the experimental setup, are reviewed and discussed. Focus is given to the issue of reliability of Monte Carlo background estimates. (orig.)

  20. Neutron- and muon-induced background in underground physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, V.A.; Tomasello, V. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Pandola, L. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy)

    2008-05-15

    Background induced by neutrons in deep underground laboratories is a critical issue for all experiments looking for rare events, such as dark matter interactions or neutrinoless {beta}{beta} decay. Neutrons can be produced either by natural radioactivity, via spontaneous fission or ({alpha}, n) reactions, or by interactions initiated by high-energy cosmic rays. In all underground experiments, Monte Carlo simulations of neutron background play a crucial role for the evaluation of the total background rate and for the optimization of rejection strategies. The Monte Carlo methods that are commonly employed to evaluate neutron-induced background and to optimize the experimental setup, are reviewed and discussed. Focus is given to the issue of reliability of Monte Carlo background estimates. (orig.)

  1. Laplace Synthesis Validation through Measurements on Underground Transmission Cables

    Directory of Open Access Journals (Sweden)

    Uribe-Campos Felipe Alejandro

    2014-10-01

    Full Text Available Underground cable electrical parameters ZY as well as their modal propagation characteristics are highly frequency dependent which in certain cases turns its analysis difficult. To perform electromagnetic transient studies of cables the calculation of electrical parameters is essential to obtain the waves propagation solution through the multiconductor system. At the same time this requires to solve the inverse Laplace transform on a numerical form. Although the analytic Laplace transform has an indisputable accuracy, the application of its numerical version up-to-date has not been completely accepted. A complete methodology is developed in this work to guide analyst engineers or graduate students in the calculation of electromagnetic transients of underground cable systems. Finally, to help the validation of the numerical inverse Laplace transform a scaled prototype experiment is performed in the laboratory in which a transient step-response at the remote end of an energized conductor is measured.

  2. Underground design Laxemar, Layout D2

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    Laxemar candidate area is located in the province of Smaaland, some 320 km south of Stockholm. The area is located close to the shoreline of the Baltic Sea and is within the municipality of Oskarshamn, and immediately west of the Oskarshamn nuclear power plant and the Central interim storage facility for spent fuel (Clab). The easternmost part (Simpevarp subarea) includes the Simpevarp peninsula, which hosts the power plants and the Clab facility. The island of Aespoe, containing the Aespoe Hard Rock Laboratory is located some three kilometres northeast of the central parts of Laxemar. The Laxemar subarea covers some 12.5 km2, compared with the Simepvarp subarea, which is approximately 6.6 km2. The Laxemar candidate area has been investigated in stages, referred to as the initial site investigations (ISI) and the complete site investigations (CSI). These investigations commenced in 2002 and were completed in 2008. During the site investigations, several studies and design steps (D0, D1 and D2) were carried out to ensure that sufficient space was available for the 6,000-canister layout within the target volume at a depth of approximately 500 m. The findings from design Step D2 for the underground facilities including the access ramp, shafts, rock caverns in a Central Area, transport tunnels, and deposition tunnels and deposition holes are contained in this report. The layout for these underground excavations at the deposition horizon requires an area of 5.7 km2, and the total rock volume to be excavated is 3,008 x 103 m3 using a total tunnel length of approximately 115 km. The behaviour of the underground openings associated with this layout is expected to be similar to the behaviour of other underground openings in the Scandinavian shield at similar depths. The dominant mode of instability is expected to be structurally controlled wedge failure. Stability of the openings will be achieved with traditional underground rock support and by orienting the openings

  3. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  4. Process for fracturing underground formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O M

    1974-01-25

    This invention concerns a process for fracturing underground formations and has as one object the mixing of viscous compositions. Through a borehole, a fluid is injected into the formation. This fluid contains a complex prepared by the reaction of an aliphatic quaternary ammonium compound with a water-soluble compound chosen from monosaccharides, disaccharides, trisaccharides, polysaccharides, and synthetic hydroxylated polymers with long chains. These complexes are formed at temperatures between 20/sup 0/ and 205/sup 0/C. The process also includes production of formation fluid into the borehole.

  5. Proposed underground gasification. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An underground coal gasification experiment which could provide the key to recovering the energy in millions of tonnes of otherwise inaccessible undersea coal reserves is proposed by the NCB. The Board's Headquarters Technical Department hope to carry out a field trial in a six foot thick coal seam about 2000 feet beneath a former wartime airfield near the hamlet of Ossington near Newark, Notts, UK. This paper describes briefly the proposed project, which could cost up to 15 million pounds over five years. It has the backing and financial support of the European Economic Community.

  6. Intensive use of diesels underground

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, R W

    1980-07-01

    At a US mine, coal is extracted by room and pillar mining. Tyred diesel vehicles are used to transport men and materials, to spread gravel on the roadway, and to tow and provide hydraulic power to rock dusting machines. Hydraulic power take-offs from the vehicles are used to operate equipment such as drills and chain saws. A deisel ambulance is kept underground, and diesel lubrication units and maintenance tracks are used. A diesel generator provides electrical power when or where no permanent electricity supply is available e.g. for tramming continuous miners in to or out of the mine.

  7. Underground storage of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J E

    1977-12-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commercial radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects.

  8. Henderson Deep Underground Science and Engineering Lab: Unearthing the secrets of the Universe, underground

    International Nuclear Information System (INIS)

    Jung, C.K.

    2011-01-01

    The Henderson Mine near Empire, Colorado is proposed to be the site to host a Deep Underground Science and Engineering Laboratory (DUSEL), which will have a rich program for forefront research in physics, biology, geosciences, and mining engineering. The mine is owned by the Climax Molybdenum Company (CMC). It is located about 50 miles west of Denver and is easily accessible via major highways. The mine is modern and has extensive infrastructure with reserve capacity well-suited to the demands of DUSEL. CMC owns all land required for DUSEL, including the tailings site. It also has all environmental and mining permits required for DUSEL excavation, core drilling, and rock disposal. The mine owners are enthusiastic supporters of this initiative. In support of the Henderson DUSEL project, the State of Colorado has pledged substantial funding for surface construction.

  9. UNDERGROUND ECONOMY, GDP AND STOCK MARKET

    Directory of Open Access Journals (Sweden)

    Caus Vasile Aurel

    2012-07-01

    Full Text Available Economic growth is affected by the size and dynamics of underground economy. Determining this size is a subject of research for many authors. In this paper we present the relationship between underground economy dynamics and the dynamics of stock markets. The observations are based on regression used by Tanzi (1983 and the relationship between GDP and stock market presented in Tudor (2008. The conclusion of this paper is that the dynamics of underground economy is influenced by dynamic of financial markets. Thus, using specific stock market mathematical tools analysis, one can analyze the dynamic of underground economy

  10. Capital Subsidies and the Underground Economy

    DEFF Research Database (Denmark)

    Busato, Francesco; Chiarini, Bruno; Angelis, Pasquale de

    In this paper we investigate the effects of different fiscal policies on the firm choice to produce underground. We consider a tax evading firm operating simultaneously both in the regular and in the underground economy. We suggest that such a kind of firm, referred to as moonlighting firm, is able...... allocation in the underground production. In fact, a strong and inverse relationship is found, and tax reduction is the best policy to reduce the convenience to produce underground. Wealso confirm the depressing effect on investment of taxation (see, for instance, Summers,1981), so that tax reduction has...

  11. Cathode protection for underground steel tanks

    International Nuclear Information System (INIS)

    Angelovski, Zoran

    1998-01-01

    Cathodic protection of underground petroleum storage tanks and piping systems is acceptable for both economic and ecological reasons. With out the cathodic protection of underground steel reservoirs, short time after the exploitation, there was a bore as a result of underground corrosion. The bore causes ecological consequences and at the same time its repair needs big investments. Furthermore, there are great number of tanks placed near cities, so in the future this problem needs a special attention in order to preserve ecological surrounding. The topic of this paper is underground corrosion as well as cathodic protection of steel tanks for oil derivatives storage. (author)

  12. Conceptual design for relocation of the underground monitoring systems to ground surface

    International Nuclear Information System (INIS)

    Toya, Naruhisa; Ogawa, Ken; Iwatsuki, Teruki; Ohnuki, Kenji

    2015-09-01

    One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on a recovery of the geological environment during and after the facility closure. Then it is necessary to plan the observation system which can be use of after the backfill of research tunnels. The main purpose of this report is contribution to the detailed design for relocation of the underground monitoring systems to ground surface. We discussed the restriction and requirement for the underground monitoring systems which can be use of after the backfill. Furthermore, we made the conceptual design for relocation of the current underground monitoring systems to ground surface. (author)

  13. Drone noise

    Science.gov (United States)

    Tinney, Charles; Sirohi, Jayant; University of Texas at Austin Team

    2017-11-01

    A basic understanding of the noise produced by single and multirotor drones operating at static thrust conditions is presented. This work acts as an extension to previous efforts conducted at The University of Texas at Austin (Tinney et al. 2017, AHS Forum 73). Propeller diameters ranging from 8 inch to 12 inch are examined for configurations comprising an isolated rotor, a quadcopter configuration and a hexacopter configuration, and with a constant drone pitch of 2.25. An azimuthal array of half-inch microphones, placed between 2 and 3 hub-center diameters from the drone center, are used to assess the acoustic near-field. Thrust levels, acquired using a six degree-of-freedom load cell, are then used to correlate acoustic noise levels to aerodynamic performance for each drone configuration. The findings reveal a nearly logarithmic increase in noise with increasing thrust. However, for the same thrust condition, considerable noise reduction is achieved by increasing the number of propeller blades thereby reducing the blade passage frequency and both the thickness and loading noise sources that accompany it.

  14. 30 CFR 75.804 - Underground high-voltage cables.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section...

  15. Underground storage tank management plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  16. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  17. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  18. Searching for Dark Matter at the Stawell Underground Physics Laboratory

    Directory of Open Access Journals (Sweden)

    Urquijo Phillip

    2016-01-01

    Full Text Available facility to be built in 2016, located 1 km below the surface in western Victoria, Australia. I will discuss the status of the proposed SABRE experiment, which will be comprised of a pair of high purity 50-60 kg NaI crystal detectors with active veto shielding to be located in labs in the Northern and Southern Hemispheres respectively. I also discuss projects beyond SABRE, including directional dark matter detectors, which will be used to determine the origin of any true dark matter signals.

  19. The search for sterile neutrinos at reactors and underground laboratories

    Science.gov (United States)

    Langford, Thomas

    2017-01-01

    From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.

  20. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Bemmerer D.

    2015-01-01

    Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  1. Laboratory Investigation Of Containment In Underground Nuclear Tests.

    Science.gov (United States)

    1982-02-15

    34 eSite 3181 I ~ 6 0.04 0.02 2 0 0 0.00 0.02 0.04 0.06 0.08 0.10 TIME FROM DETONATION - mst (b? REFLECTED IMPULSE FIGURE CA6 REFLECTED PRESSURE AND...neighborhood of the final elastic-plastic interface and as a result most of the wave propagation beyond PV2 was elastic. For the theoretical treatment

  2. Modelling Underground Coal Gasification—A Review

    Directory of Open Access Journals (Sweden)

    Md M. Khan

    2015-11-01

    Full Text Available The technical feasibility of underground coal gasification (UCG has been established through many field trials and laboratory-scale experiments over the past decades. However, the UCG is site specific and the commercialization of UCG is being hindered due to the lack of complete information for a specific site of operation. Since conducting UCG trials and data extraction are costly and difficult, modeling has been an important part of UCG study to predict the effect of various physical and operating parameters on the performance of the process. Over the years, various models have been developed in order to improve the understanding of the UCG process. This article reviews the approaches, key concepts, assumptions, and limitations of various forward gasification UCG models for cavity growth and product gas recovery. However, emphasis is given to the most important models, such as packed bed models, the channel model, and the coal slab model. In addition, because of the integral part of the main models, various sub-models such as drying and pyrolysis are also included in this review. The aim of this study is to provide an overview of the various simulation methodologies and sub-models in order to enhance the understanding of the critical aspects of the UCG process.

  3. Study of the Pasquasia underground cavity

    International Nuclear Information System (INIS)

    1988-01-01

    The reliability of the geological disposal of radioactive wastes have to be verified both by laboratory and on site research, under both surface and underground conditions. The tests carried out under high lithostatic stress can allow extrapolations to be made having absolute value at the depths planned for the construction of the repository. On the area around the Pasquasia mine, a detailed geological mapping (1: 5000 scale) has been carried out. For the purpose of studying the effects induced by the advancement of the excavation's face into the clayey mass and over the cross section of the transversal tunnel, several measurement stations were installed (multibase straingauges, convergency rods, pressure cells, centering and concrete straingauges). Structural observations were made on both the fronts and the walls of the tunnel for the purpose of characterizing the mechanical behaviour of a clayey mass. The 37 cubic blocks, their sides measuring measurement 30cm, along 72 samples collected during the excavation, have been analyzed from different point of view (sedimentological, mineralogical, geochemical, micropaleontological, interstitial water content, thermal properties, etc). After the excavation of the tunnel and the installation of the geotechnical stations, the measurements have been carried on up to March 1987. At this date the work programme has been unfortunately stopped by local authorities unfoundly suspecting Pasquasia mine would be used as waste repository

  4. Concept of underground nuclear power plant

    International Nuclear Information System (INIS)

    Onishi, Sotoaki

    1976-01-01

    The concept of constructing nuclear power plants on the sea or underground as the future sitting is based on moving the present power plants on the ground with actual results to the sea or underground without changing the design. The underground nuclear power plants have many similar points to underground hydro-electric power stations with many achievements in the construction viewpoint, though they have their proper difficult problems. Of course, it requires to excavate larger underground caves than the case of underground hydro-electric power plants. The maximum dimensions of the caves have been determined through experience in practice. Therefore the developments of design theory and construction technique are desirable in this field. In discussing underground construction, two evaluating methods are considered for the shielding effect of base rocks. The minimum vertical distance up to ground surface from the center of the cave differs depending upon the in-cave pressure, and the conditions of base rock, soil and underground water in case of the accident assumed in the design, and is approximately 60m, if the cave is assumed to be an indefinite cylindrical shape, by the safer side calculation in the above two evaluations. (Wakatsuki, Y.)

  5. UNDERGROUND ECONOMY, INFLUENCES ON NATIONAL ECONOMIES

    Directory of Open Access Journals (Sweden)

    CEAUȘESCU IONUT

    2015-04-01

    Full Text Available The purpose of research is to improve the understanding of nature underground economy by rational justification of the right to be enshrined a reality that, at least statistically, can no longer be neglected. So, we propose to find the answer to the question: has underground economy to stand-alone?

  6. 30 CFR 57.4761 - Underground shops.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and... toxic gases from a fire originating in an underground shop where maintenance work is routinely done on...

  7. Radionuclide behavior at underground environment

    International Nuclear Information System (INIS)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Chun, Kwan Sik; Park, Hyun Soo

    2000-03-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal

  8. Seismic verification of underground explosions

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1985-06-01

    The first nuclear test agreement, the test moratorium, was made in 1958 and lasted until the Soviet Union unilaterally resumed testing in the atmosphere in 1961. It was followed by the Limited Test Ban Treaty of 1963, which prohibited nuclear tests in the atmosphere, in outer space, and underwater. In 1974 the Threshold Test Ban Treaty (TTBT) was signed, limiting underground tests after March 1976 to a maximum yield of 250 kt. The TTBT was followed by a treaty limiting peaceful nuclear explosions and both the United States and the Soviet Union claim to be abiding by the 150-kt yield limit. A comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, has also been discussed. However, a verifiable CTBT is a contradiction in terms. No monitoring technology can offer absolute assurance that very-low-yield illicit explosions have not occurred. The verification process, evasion opportunities, and cavity decoupling are discussed in this paper

  9. Toxic hazards of underground excavation

    International Nuclear Information System (INIS)

    Smith, R.; Chitnis, V.; Damasian, M.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards

  10. Radiogenic cancer in underground miners

    International Nuclear Information System (INIS)

    Radford, E.P.

    1984-01-01

    Multiple studies have yielded remarkably consistent results relating radon daughter exposure to lung cancer risk in underground mining populations. The U.S. uranium miner study appears to be at variance with the other results. The primary reason is that the doses in the U.S. miner study were systematically overestimated, resulting in a risk coefficient that is lower than all the others. The significance of these findings for radiogenic lung cancer goes well beyond mining populations, because one is now aware of the implications of radon daughters detected in homes. The highest cumulative levels from radon exposures within homes have been found in Sweden, evidently because of their unusual geology with uranium-bearing ores near the surface. The Swedish authorities view this as a major public health problem that needs to be addressed

  11. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  12. Swedish mines. Underground exploitation methods

    International Nuclear Information System (INIS)

    Paucard, A.

    1960-01-01

    Between 1949 and 1957, 10 engineers of the Mining research and exploitation department of the CEA visited 17 Swedish mines during 5 field trips. This paper presents a compilation of the information gathered during these field trips concerning the different underground mining techniques used in Swedish iron mines: mining with backfilling (Central Sweden and Boliden mines); mining without backfilling (mines of the polar circle area). The following techniques are described successively: pillar drawing and backfilled slices (Ammeberg, Falun, Garpenberg, Boliden group), sub-level pillar drawing (Grangesberg, Bloettberget, Haeksberg), empty room and sub-level pillar drawing (Bodas, Haksberg, Stripa, Bastkarn), storage chamber pillar drawing (Bodas, Haeksberg, Bastkarn), and pillar drawing by block caving (ldkerberget). Reprint of a paper published in Revue de l'Industrie Minerale, vol. 41, no. 12, 1959 [fr

  13. Radionuclide behavior at underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Chun, Kwan Sik; Park, Hyun Soo

    2000-03-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal.

  14. Toxic hazards of underground excavation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  15. Underground repository for radioactive wastes

    International Nuclear Information System (INIS)

    Cassibba, R.O.

    1989-01-01

    In the feasibility study for an underground repository in Argentina, the conceptual basis for the final disposal of high activity nuclear waste was set, as well as the biosphere isolation, according to the multiple barrier concept or to the engineering barrier system. As design limit, the container shall act as an engineering barrier, granting the isolation of the radionuclides for approximately 1000 years. The container for reprocessed and vitrified wastes shall have three metallic layers: a stainless steel inner layer, an external one of a metal to be selected and a thick intermediate lead layer preselected due to its good radiological protection and corrosion resistance. Therefore, the study of the lead corrosion behaviour in simulated media of an underground repository becomes necessary. Relevant parameters of the repository system such as temperature, pressure, water flux, variation in salt concentrations and oxidants supply shall be considered. At the same time, a study is necessary on the galvanic effect of lead coupled with different candidate metals for external layer of the container in the same experimental conditions. Also temporal evaluation about the engineering barrier system efficiency is presented in this thesis. It was considered the extrapolated results of corrosion rates and literature data about the other engineering barriers. Taking into account that corrosion is of a generalized type, the integrity of the lead shall be maintained for more than 1000 years and according to temporal evaluation, the multiple barrier concept shall retard the radionuclide dispersion to the biosphere for a period of time between 10 4 and 10 6 years. (Author) [es

  16. Seismic effects on underground openings

    International Nuclear Information System (INIS)

    Marine, I.W.; Pratt, H.R.; Wahi, K.K.; Science Applications, Inc., La Jolla, CA; Science Applications, Inc., Albuquerque, NM)

    1982-01-01

    Numerical modeling techniques were used to determine the conditions required for seismic waves generated by an earthquake to cause instability to an underground opening or create fracturing and joint movement that would lead to an increase in the permeability of the rock mass. Three different rock types (salt, granite, and shale) were considered as host media for the repository located at a depth of 600 m. Special material models were developed to account for the nonlinear material behavior of each rock type. The sensitivity analysis included variations in the in situ stress ratio, joint geometry, and pore pressures, and the presence or absence of large fractures. Three different sets of earthquake motions were used to excite the rock mass. The methodology applied was found to be suitable for studying the effects of earthquakes on underground openings. In general, the study showed that moderate earthquakes (up to 0.41 g) did not cause instability of the tunnel or major fracturing of the rock mass; however, a tremor with accelerations up to 0.95 g was amplified around the tunnel, and fracturing occurred as a result of the seismic loading in salt and granite. In situ stress is a critical parameter in determining the subsurface effects of earthquakes but is nonexistent in evaluating the cause for surface damage. In shale with the properties assumed, even the moderate seismic load resulted in tunnel instability. These studies are all generic in nature and do not abrogate the need for site and design studies for specific facilities. 30 references, 14 figures, 8 tables

  17. Detection of elastic waves for the leakage locating of underground water supply pipes

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin; Jeong, Jung Chae; Lee, Seung Seok

    2003-01-01

    Leaks in underground pipelines can cause social, environmental and economical problems. One of a good countermeasures of leaks is to find and repair of leak points of pipes. Leak noise is a good source to identify the location of leak points of pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they were not so efficient tools. In this paper, two accelerometers are used to detect leak locations which could provide an easier and efficient method. The filtering, signal processing and algorithm is described for the detection of leak location. A 120 m-long pipeline system for experiment is installed and the results with the system show that the algorithm with the two accelerometers gives very accurate pinpointing of leaks. Theoretical analysis of sound wave propagation speed in underground pipes is also described.

  18. Detection of elastic waves for the leakage locating of underground water supply pipes

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin; Jeong, Jung Chae; Lee, Seung Seok

    2003-01-01

    Leaks in underground pipelines can cause social, environmental and economical problems. One of a good countermeasures of leaks is to find and repair of leak points of pipes. Leak noise is good source to identify the location of leak points of pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they were not so efficient tools. In this paper, two accelerometers are used to detect leak locations which could provide an easier and efficient method. The filtering signal processing and algorithm is described for the detection of leak location. A 120 m-long pipeline system for experiment is installed and the results with the system show that the algorithm with the two accelerometers gives very accurate pinpointing of leaks. Theoretical analysis of sound wave propagation speed in underground pipes is also described.

  19. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  20. Inherent security benefits of underground dry storage of nuclear materials

    International Nuclear Information System (INIS)

    Moore, R.D.; Zahn, T.

    1997-07-01

    This paper, augmented by color slides and handouts, will examine the inherent security benefits of underground dry storage of nuclear materials. Specific items to be presented include: the successful implementation of this type of storage configuration at Argonne National Laboratory - West; facility design concepts with security as a primary consideration; physical barriers achieved by container design; detection, assessment, and monitoring capabilities; and open-quotes self protectionclose quotes strategies. This is a report on the security features of such a facility. The technical operational aspects of the facility are beyond the scope of this paper

  1. Underground nuclear explosion effects in granite rock fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Centre d' Etude de Bruyeres-le-Chatel (France)

    1970-05-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  2. A new setup for the underground study of capture reactions

    CERN Document Server

    Casella, C; Lemut, A; Limata, B; Bemmerer, D; Bonetti, R; Broggini, C; Campajola, L; Cocconi, P; Corvisiero, P; Cruz, J; D'Onofrio, A; Formicola, A; Fülöp, Z; Gervino, G; Gialanella, L; Guglielmetti, A; Gustavino, C; Gyürky, G; Loiano, A; Imbriani, G; Jesus, A P; Junker, M; Musico, P; Ordine, A; Parodi, F; Parolin, M; Pinto, J V; Prati, P; Ribeiro, J P; Roca, V; Rogalla, D; Rolfs, C; Romano, M; Rossi-Alvarez, C; Rottura, A; Schuemann, F; Somorjai, E; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A; Zavatarelli, S

    2002-01-01

    For the study of astrophysically relevant capture reactions in the underground laboratory LUNA a new setup of high sensitivity has been implemented. The setup includes a windowless gas target, a 4 pi BGO summing crystal, and beam calorimeters. The setup has been recently used to measure the d(p,gamma) sup 3 He cross-section for the first time within its solar Gamow peak, i.e. down to 2.5 keV c.m. energy. The features of the optimized setup are described.

  3. Heat transfer in underground heating experiments in granite, Stipa, Sweden

    International Nuclear Information System (INIS)

    Chan, T.; Javandel, I.; Witherspoon, P.A.

    1980-04-01

    Electrical heater experiments have been conducted underground in granite at Stripa, Sweden, to investigate the effects of heating associated with nuclear waste storage. Temperature data from these experiments are compared with closed-form and finite-element solutions. Good agreement is found between measured temperatures and both types of models, but especially for a nonlinear finite-element heat conduction model incorporating convective boundary conditions, measured nonuniform initial rock temperature distribution, and temperature-dependent thermal conductivity. In situ thermal properties, determined by least-squares regression, are very close to laboratory values. A limited amount of sensitivity analysis is undertaken

  4. An Effective Belt Conveyor for Underground Ore Transportation Systems

    Science.gov (United States)

    Krol, Robert; Kawalec, Witold; Gladysiewicz, Lech

    2017-12-01

    Raw material transportation generates a substantial share of costs in the mining industry. Mining companies are therefore determined to improve the effectiveness of their transportation system, focusing on solutions that increase both its energy efficiency and reliability while keeping maintenance costs low. In the underground copper ore operations in Poland’s KGHM mines vast and complex belt conveyor systems have been used for horizontal haulage of the run-of-mine ore from mining departments to shafts. Basing upon a long-time experience in the field of analysing, testing, designing and computing of belt conveyor equipment with regard to specific operational conditions, the improvements to the standard design of an underground belt conveyor for ore transportation have been proposed. As the key elements of a belt conveyor, the energy-efficient conveyor belt and optimised carrying idlers have been developed for the new generation of underground conveyors. The proposed solutions were tested individually on the specially constructed test stands in the laboratory and in the experimental belt conveyor that was built up with the use of prototype parts and commissioned for the regular ore haulage in a mining department in the KGHM underground mine “Lubin”. Its work was monitored and the recorded operational parameters (loadings, stresses and strains, energy dissipation, belt tracking) were compared with those previously collected on a reference (standard) conveyor. These in-situ measurements have proved that the proposed solutions will return with significant energy savings and lower maintenance costs. Calculations made on the basis of measurement results in the specialized belt conveyor designing software allow to estimate the possible savings if the modernized conveyors supersede the standard ones in a large belt conveying system.

  5. Determination of radon and progeny concentrations in Brazilian underground mines

    International Nuclear Information System (INIS)

    Fraenkel, Mario O.; Gouvea, Vandir de Azevedo; Macacini, Jose F.; Cardozo, Katia; Carvalho Filho, Carlos A. de; Lima, Carlos E.

    2008-01-01

    The aim of this work is to present the activities related to the determination of radon and progeny concentrations in underground mines in Brazil. Radon is originated from decay of radium-226 and radium-228 present in rocks. Radon and its short-lived progeny can be retained in the workers pulmonary alveoli, and this way they bring about cancer risk to these mining professionals. The occurrence of high radon concentrations in underground coal and copper mines and the lack of systematic survey motivated CNEN, the regulatory agency, to develop the Radon Project, aiming to aid the formulation of a specific regulation with occupational dose limits consistent with international standards recommended by the International Atomic Energy Agency (IAEA). Dozens of underground mines are currently in operation in the national. It had to be noted that about 50% of these mines are located in Minas Gerais province, and for this reason it was chosen to start the Project. In each underground mine it is installed in selected points passive nuclear track etch radon detectors, type LEXAN and Cr-39, for periods from three to five months. It was also made local measurements with Dose Man Pro detectors from SARAD. The points are chosen according to geological features, radiometric activity and characteristics of prospect development. The determination of radon present in mines has been made in IEN (Nuclear Engineering Institute)/Rio de Janeiro-RJ, LAPOC (Pocos de Caldas Laboratory)/Pocos de Caldas-MG e ESPOA (Porto Alegre Office)/Porto Alegre-RS. Until now it was visited about 35 mines in a universe of about 50 mines, from which 20% showed concentration values higher than international limits (ICRP 65), between 500 and 1500 Bq.m -3 . (author)

  6. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  7. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Mr. Chandrashekhar

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  8. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Science.gov (United States)

    2010-07-01

    ... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... system by a nationally recognized independent testing laboratory and appropriate for installation at a... recommended inspection and maintenance program and as required by the nationally recognized independent...

  9. Age of underground waters: isotopes contribution

    International Nuclear Information System (INIS)

    Chery, L.; Olive, Ph.

    2006-01-01

    Does water has an age? The age of underground waters can be the duration of their underground travel between their infiltration inside the ground and their captation at a spring or a drilled well. The isotopic geochemistry comes to the support of classical geochemistry to estimate these residence times. Radio-isotopes, like tritium for young waters or carbon 14 for old waters, are used as chronometers to interpret the recharge ways, the flow mechanisms and the residence times of underground waters. Their use is presented in this article with some theoretical recalls and some examples of application. (J.S.)

  10. Electromagnetic Pulse (EMP) from the Magnetic Bubble Source as a Discriminator of Underground Nuclear Explosions, Including Cavity Decoupling

    Science.gov (United States)

    2011-02-01

    planned shock physics experiments (SPE) 4. Design/develop a very low frequency (VLF)/ELF pulsar to serve as an underground calibration source 5...Carry out underground (in tunnels, etc.) pulsar calibration experiments  A-1 APPENDIX A. ABBREVIATIONS AND ACRONYMS CORRTEX Continuous Reflectometry...Site Office P.O. Box 98521 M/S NLV 101 Las Vegas, NV 89193-8521 ATTN: Ping Lee 1 Los Alamos National Laboratory PO Box 1663 Los Alamos, NM 87545

  11. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  12. Strategy for future laboratory rock mechanics programs

    International Nuclear Information System (INIS)

    Butcher, B.M.; Jones, A.K.

    1985-01-01

    A strategy for future experimental rock mechanics laboratory programs at Sandia National Laboratories is described. This strategy is motivated by the need for long range planning of rock mechanics programs addressing the stability of complex underground structures, changes in in situ stress states during resource recovery and underground explosion technology. It is based on: (1) recent advances in underground structure stability analysis which make three-dimensional calculations feasible, and (2) new developments in load path control of laboratory stress-strain tests which permit duplication of stress and strain histories in critical parts of a structure, as determined by numerical analysis. The major constraint in the strategy is the assumption that there are no in situ joint features or sample size effects which might prevent simulation of in situ response in the laboratory. 3 refs., 5 figs

  13. Radionuclide behavior at underground environment

    International Nuclear Information System (INIS)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Park, Hyun Soo

    2003-04-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. This project is composed of 6 subjects such as data production required for safety assessments, sorption properties and mechanisms, nuclide migration in the fractured rock, colloid formation and migration, nuclide speciation in deep geological environments, and total evaluation of geochemical behaviors considering multi-factors. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal

  14. Dynamic underground stripping demonstration project

    International Nuclear Information System (INIS)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution

  15. The social side of noise annoyance

    NARCIS (Netherlands)

    Maris, Eveline

    2008-01-01

    Unfairness increases noise annoyance Noise annoyance increases due to unfair sound management. Fair sound management reduces annoyance, however only when the sound pressure level is high, concludes Eveline Maris based on two laboratory experiments. Being exposed to man-made sound is more than

  16. Noise pollution resources compendium

    Science.gov (United States)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  17. Yesterday's noise - today's signal

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1978-01-01

    Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)

  18. The First Great Migration: The Underground Railroad.

    Science.gov (United States)

    Goodstein, Carol

    1990-01-01

    Describes the Underground Railroad, a loosely organized system used by runaway Southern slaves to reach freedom in the North. Discusses the role of "conductors," who acted as guides and offered shelter along the route. (FMW)

  19. 47 CFR 32.2422 - Underground cable.

    Science.gov (United States)

    2010-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2422 Underground cable... manholes and ducts in connection with construction work and the cost of permits and privileges for the...

  20. State Certification of Underground Storage Tanks

    National Research Council Canada - National Science Library

    Granetto, Paul

    1998-01-01

    .... The audit was performed in response to a Senate Armed Services Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks...