WorldWideScience

Sample records for noise figure characterization

  1. Noise figure of amplified dispersive Fourier transformation

    International Nuclear Information System (INIS)

    Goda, Keisuke; Jalali, Bahram

    2010-01-01

    Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.

  2. Noise destroys feedback enhanced figure-ground segmentation but not feedforward figure-ground segmentation

    Science.gov (United States)

    Romeo, August; Arall, Marina; Supèr, Hans

    2012-01-01

    Figure-ground (FG) segmentation is the separation of visual information into background and foreground objects. In the visual cortex, FG responses are observed in the late stimulus response period, when neurons fire in tonic mode, and are accompanied by a switch in cortical state. When such a switch does not occur, FG segmentation fails. Currently, it is not known what happens in the brain on such occasions. A biologically plausible feedforward spiking neuron model was previously devised that performed FG segmentation successfully. After incorporating feedback the FG signal was enhanced, which was accompanied by a change in spiking regime. In a feedforward model neurons respond in a bursting mode whereas in the feedback model neurons fired in tonic mode. It is known that bursts can overcome noise, while tonic firing appears to be much more sensitive to noise. In the present study, we try to elucidate how the presence of noise can impair FG segmentation, and to what extent the feedforward and feedback pathways can overcome noise. We show that noise specifically destroys the feedback enhanced FG segmentation and leaves the feedforward FG segmentation largely intact. Our results predict that noise produces failure in FG perception. PMID:22934028

  3. Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser

    International Nuclear Information System (INIS)

    Santiago-Hernandez, H; Pottiez, O; Paez-Aguirre, R; Ibarra-Villalon, H E; Tenorio-Torres, A; Duran-Sanchez, M; Ibarra-Escamilla, B; Kuzin, E A; Hernandez-Garcia, J C

    2015-01-01

    We report an experimental study of the noise-like pulses generated by a ∼300 m long passively mode-locked erbium-doped figure-eight fibre laser. Non-self-starting mode locking yields the formation of ns scale bunches of sub-ps pulses. Depending on birefringence adjustments, noise-like pulses with a variety of temporal profiles and optical spectra are obtained. In particular, for some adjustments the Raman-enhanced spectrum reaches a 10 dB bandwidth of ∼130 nm. For the first time to our knowledge, we extract information on the inner structure of the noise-like pulses, using a birefringent Sagnac interferometer as a spectral filter and a nonlinear optical loop mirror as an intensity filter. In particular we show that the different spectral components of the bunch are homogeneously distributed within the temporal envelope of the bunch, whereas the amplitude and/or the density of the sub-pulses present substantial variations along the envelope. In some cases, the analysis reveals the existence of an intermediate level of organization in the structure of the noise-like pulse, between the ns bunch and the sub-ps inner pulses, suggesting that these objects may be even more complex than previously recognized. (paper)

  4. Improvement of the noise figure of the CEBAF switched electrode electronics BPM system

    International Nuclear Information System (INIS)

    Powers, T.

    1998-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a high-intensity continuous wave electron accelerator for nuclear physics located at Thomas Jefferson National Accelerator Facility. A beam energy of 4 GeV is achieved by recirculating the electron beam five times through two anti-parallel 400 MeV linacs. In the linacs, where there is recirculated beam, the BPM specifications must be met for beam intensities between 1 and 100 μA. In the transport lines the BPM specifications must be met for beam intensities between 100 nA and 200 μA. To avoid a complete redesign of the existing electronics, we investigated ways to improve the noise figure of the linac BPM switched-electrode electronics (SEE) so that they could be used in the transport lines. We found that the out-of-band noise contributed significantly to the overall system noise figure. This paper will focus on the source of the excessive out-of-band noise and how it was reduced. The development, commissioning and operational results of this low noise variant of the linac style SEE BPMs as well as techniques for determining the noise figure of the rf chain will also be presented. copyright 1998 American Institute of Physics

  5. Design and analysis of high gain and low noise figure CMOS low noise amplifier for Q-band nano-sensor application

    Science.gov (United States)

    Suganthi, K.; Malarvizhi, S.

    2018-03-01

    A high gain, low power, low Noise figure (NF) and wide band of milli-meter Wave (mmW) circuits design at 50 GHz are used for Radio Frequency (RF) front end. The fundamental necessity of a receiver front-end includes perfect output and input impedance matching and port-to-port isolation with high gain and low noise over the entire band of interest. In this paper, a design of Cascade-Cascode CMOS LNA circuit at 50 GHz for Q-band application is proposed. The design of Low noise amplifier at 50 GHz using Agilent ADS tool with microstrip lines which provides simplicity in fabrication and less chip area. The low off-leakage current Ioff can be maintained with high K-dielectrics CMOS structure. Nano-scale electronics can be achieved with increased robustness. The design has overall gain of 11.091 dB and noise figure of 2.673 dB for the Q-band of 48.3 GHz to 51.3 GHz. Impedance matching is done by T matching network and the obtained input and output reflection coefficients are S11 = <-10 dB and S22 = <-10 dB. Compared to Silicon (Si) material, Wide Band Gap semiconductor materials used attains higher junction temperatures which is well matched to ceramics used in packaging technology, the protection and reliability also can be achieved with the electronic packaging. The reverse transmission coefficient S21 is less than -21 dB has shown that LNA has better isolation between input and output, Stability factor greater than 1 and Power is also optimized in this design. Layout is designed, power gain of 4.6 dB is achieved and area is optimized which is nearly equal to 502 740 μm2. The observed results show that the proposed Cascade-Cascode LNA design can find its suitability in future milli-meter Wave Radar application.

  6. Precise Characterization and Multiobjective Optimization of Low Noise Amplifiers

    Directory of Open Access Journals (Sweden)

    J. Dobes

    2015-09-01

    Full Text Available Although practically all function blocks of the satellite navigation receivers are realized using the CMOS digital integrated circuits, it is appropriate to create a separate low noise antenna preamplifier based on a low noise pHEMT. Such an RF front end can be strongly optimized to attain a suitable tradeoff between the noise figure and transducer power gain. Further, as all the four principal navigation systems (GPS, GLONASS, Galileo, and COMPASS work in similar frequency bands (roughly from 1.1 to 1.7 GHz, it is reasonable to create the low noise preamplifier for all of them. In the paper, a sophisticated method of the amplifier design is suggested based on multiobjective optimization. A substantial improvement of a standard optimization method is also outlined to satisfy a uniform coverage of Pareto front. Moreover, for enhancing efficiency of many times repeated solutions of large linear systems during the optimization, a new modification of the Markowitz criterion is suggested compatible with fast modes of the LU factorization. Extraordinary attention was also given to the accuracy of modeling. First, an extraction of pHEMT model parameters was performed including its noise part, and several models were compared. The extraction was carried out by an original identification procedure based on a combination of metaheuristic and direct methods. Second, the equations of the passive elements (including transmission lines and T-splitters were carefully defined using frequency dispersion of their parameters as Q, ESR, etc. Third, an optimal selection of the operating point and essential passive elements was performed using the improved optimization method. Finally, the s-parameters and noise figure of the amplifier were measured, and stability and third-order intermodulation products were also checked.

  7. Fractal characterization for noise signal validation in power reactors

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2003-01-01

    Up to now, a great variety of methods is used for the dynamical characterization of different components of Nuclear Power Plants (NPPs). With this aim, time and spectral analysis are usually considered, and different tools of non-stationary and non-gaussian analysis are also presented. When applying non-lineal dynamics theory for noise signal validation purposes in power reactors, the extraction of fractal echoes plays a main role. Fractal characterization for noise signal validation purposes can be integrated to the task of processing and acquisition of time signals in noise (fluctuation parameters) analysis systems. The possibility of discrimination between deterministic chaotic signals and pure noise signals has been incorporated, as a complement; to noise signals analysis in normal and anomalous operational conditions in NPPs using a fractal approach. In this work the detailed analysis of a neutronic sensor response is considered and the fractal characterization of its dynamics state (i.e. sensor line) for noise signal classification, it is presented. The experiment from where the time series (signals) were obtained, was carried out at the Research Reactor of the Technical University of Budapest, Hungary, during a model experiment for ageing process study of in-core neutron detectors (author)

  8. Noise characterization of oil and gas operations.

    Science.gov (United States)

    Radtke, Cameron; Autenrieth, Daniel A; Lipsey, Tiffany; Brazile, William J

    2017-08-01

    In cooperation with The Colorado Oil and Gas Conservation Commission, researchers at Colorado State University performed area noise monitoring at 23 oil and gas sites throughout Northern Colorado. The goals of this study were to: (1) measure and compare the noise levels for the different phases of oil and gas development sites; (2) evaluate the effectiveness of noise barriers; and (3) determine if noise levels exceeded the Colorado Oil and Gas Conservation Commission noise limits. The four phases of oil and gas development include drilling, hydraulic fracturing, completion and production. Noise measurements were collected using the A- and C-weighted sound scales. Octave band analysis was also performed to characterize the frequency spectra of the noise measurements.  Noise measurements were collected using noise dosimeters and a hand-held sound-level meter at specified distances from the development sites in each cardinal direction. At 350 ft (107 m), drilling, hydraulic fracturing, and completion sites without noise barriers exceeded the maximum permissible noise levels for residential and commercial zones (55 dBA and 60 dBA, respectively). In addition, drilling and hydraulic fracturing sites with noise barriers exceeded the maximum permissible noise level for residential zones (55 dBA). However, during drilling, hydraulic fracturing, and completion operations, oil producers are allowed an exception to the noise permissible limits in that they only must comply with the industrial noise limit (80 dBA). It is stated in Rule 604.c.(2)A. that: "Operations involving pipeline or gas facility installation or maintenance, the use of a drilling rig, completion rig, workover rig, or stimulation is subject to the maximum permissible noise levels for industrial zones (80dBA)." [8] Production sites were within the Colorado Oil and Gas Conservation Commission permissible noise level criteria for all zones. At 350 ft (107 m) from the noise source, all drilling

  9. Static and low frequency noise characterization of ultra-thin body InAs MOSFETs

    Science.gov (United States)

    Karatsori, T. A.; Pastorek, M.; Theodorou, C. G.; Fadjie, A.; Wichmann, N.; Desplanque, L.; Wallart, X.; Bollaert, S.; Dimitriadis, C. A.; Ghibaudo, G.

    2018-05-01

    A complete static and low frequency noise characterization of ultra-thin body InAs MOSFETs is presented. Characterization techniques, such as the well-known Y-function method established for Si MOSFETs, are applied in order to extract the electrical parameters and study the behavior of these research grade devices. Additionally, the Lambert-W function parameter extraction methodology valid from weak to strong inversion is also used in order to verify its applicability in these experimental level devices. Moreover, a low-frequency noise characterization of the UTB InAs MOSFETs is presented, revealing carrier trapping/detrapping in slow oxide traps and remote Coulomb scattering as origin of 1/f noise, which allowed for the extraction of the oxide trap areal density. Finally, Lorentzian-like noise is also observed in the sub-micron area devices and attributed to both Random Telegraph Noise from oxide individual traps and g-r noise from the semiconductor interface.

  10. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    OpenAIRE

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In contrast, this paper presents a feedforward noise-canceling technique, which allows for simultaneous noise and impedance matching, while canceling the noise and distortion contributions of the matching d...

  11. Noise characterization of enhancement-mode AlGaN graded barrier MIS-HEMT devices

    Science.gov (United States)

    Mohanbabu, A.; Saravana Kumar, R.; Mohankumar, N.

    2017-12-01

    This paper reports a systematic theoretical study on the microwave noise performance of graded AlGaN/GaN metal-insulator semiconductor high-electron mobility transistors (MIS-HEMTs) built on an Al2O3 substrate. The HfAlOx/AlGaN/GaN MIS-HEMT devices designed for this study show an outstanding small signal analog/RF and noise performance. The results on 1 μm gate length device show an enhancement mode operation with threshold voltage, VT = + 5.3 V, low drain leakage current, Ids,LL in the order of 1 × 10-9 A/mm along with high current gain cut-off frequency, fT of 17 GHz and maximum oscillation frequency fmax of 47 GHz at Vds = 10 V. The device Isbnd V and low-frequency noise estimation of the gate and drain noise spectral density and their correlation are evaluated using a Green's function method under different biasing conditions. The devices show a minimum noise figure (NFmin) of 1.053 dB in combination with equivalent noise resistance (Rn) of 23 Ω at 17 GHz, at Vgs = 6 V and Vds = 5 V which is relatively low and is suitable for broad-band low-noise amplifiers. This study shows that the graded AlGaN MIS-HEMT with HfAlOX gate insulator is appropriate for application requiring high-power and low-noise.

  12. Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization

    DEFF Research Database (Denmark)

    Zibar, Darko; de Carvalho, Luis Henrique Hecker; Piels, Molly

    2015-01-01

    In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms...

  13. Experimental characterization of vertical-axis wind turbine noise.

    Science.gov (United States)

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  14. Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Lee

    Full Text Available White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences, have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs. Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response.

  15. Noise Characterization and Performance of MODIS Thermal Emissive Bands

    Science.gov (United States)

    Madhavan, Sriharsha; Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian; Chiang, Kwofu; Chen, Na; Wang, Zhipeng; Li, Yonghong

    2016-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for

  16. Methods to characterize non-Gaussian noise in TAMA

    International Nuclear Information System (INIS)

    Ando, Masaki; Arai, K; Takahashi, R; Tatsumi, D; Beyersdorf, P; Kawamura, S; Miyoki, S; Mio, N; Moriwaki, S; Numata, K; Kanda, N; Aso, Y; Fujimoto, M-K; Tsubono, K; Kuroda, K

    2003-01-01

    We present a data characterization method for the main output signal of the interferometric gravitational-wave detector, in particular targeting at effective detection of burst gravitational waves from stellar core collapse. The time scale of non-Gaussian events is evaluated in this method, and events with longer time scale than real signals are rejected as non-Gaussian noises. As a result of data analysis using 1000 h of real data with the interferometric gravitational-wave detector TAMA300, the false-alarm rate was improved 10 3 times with this non-Gaussian noise evaluation and rejection method

  17. Demonstration of biased membrane static figure mapping by optical beam subpixel centroid shift

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Fabrizio, E-mail: fpinto@jazanu.edu.sa [Laboratory for Quantum Vacuum Applications, Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, Gizan 45142 (Saudi Arabia)

    2016-06-10

    The measurement of Casimir forces by means of condenser microphones has been shown to be quite promising since its early introduction almost half-a-century ago. However, unlike the remarkable progress achieved in characterizing the vibrating membrane in the dynamical case, the accurate determination of the membrane static figure under electrostatic bias remains a challenge. In this paper, we discuss our first data obtained by measuring the centroid shift of an optical beam with subpixel accuracy by charge coupled device (CCD) and by an extensive analysis of noise sources present in the experimental setup.

  18. Noise in distributed erbium-doped fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    Theoretical limits in noise figure for a long-haul transmission line based on lumped amplification are contrasted with distributed amplification. The latter results in a reduction of approximately 60% of the required number of pump power stations. The distributed optical amplification is provided...... by an erbium-doped fiber and comparisons of aluminum and germanium as codopant materials are shown. The pump power consumption and noise figure are analyzed with respect to the background loss...

  19. Study of the background noise in microwave GaAsFET devices

    International Nuclear Information System (INIS)

    Serrano S, A.

    1984-01-01

    One of the most important properties of the gallium arsenide field effect transistor is its low noise figure in the microwave frequency range (approx. 1 dB, 4 GHz). The applications of this device in components and systems in the high frequency range require analysis of background noise in terms of basic static and dynamic properties of the device. The purpose of this paper is to review GaAsFET noise properties; from this review, a description of precise noise measurement techniques is made. Some experimental and theoretical results on the minimum noise figure are shown for several GaAsFET devices. (author)

  20. On the role of magnetic field intensity for better micro-structural characterization during Barkhausen Noise analysis

    Science.gov (United States)

    Yusufzai, Mohd Zaheer Khan; Vashista, M.

    2018-04-01

    Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.

  1. Separating figure from ground with a parallel network.

    Science.gov (United States)

    Kienker, P K; Sejnowski, T J; Hinton, G E; Schumacher, L E

    1986-01-01

    The differentiation of figure from ground plays an important role in the perceptual organization of visual stimuli. The rapidity with which we can discriminate the inside from the outside of a figure suggests that at least this step in the process may be performed in visual cortex by a large number of neurons in several different areas working together in parallel. We have attempted to simulate this collective computation by designing a network of simple processing units that receives two types of information: bottom-up input from the image containing the outlines of a figure, which may be incomplete, and a top-down attentional input that biases one part of the image to be the inside of the figure. No presegmentation of the image was assumed. Two methods for performing the computation were explored: gradient descent, which seeks locally optimal states, and simulated annealing, which attempts to find globally optimal states by introducing noise into the computation. For complete outlines, gradient descent was faster, but the range of input parameters leading to successful performance was very narrow. In contrast, simulated annealing was more robust: it worked over a wider range of attention parameters and a wider range of outlines, including incomplete ones. Our network model is too simplified to serve as a model of human performance, but it does demonstrate that one global property of outlines can be computed through local interactions in a parallel network. Some features of the model, such as the role of noise in escaping from nonglobal optima, may generalize to more realistic models.

  2. Measurement, characterization, and modeling of noise in staring infrared focal plane arrays

    International Nuclear Information System (INIS)

    Scribner, D.A.; Kruer, M.R.; Gridley, C.J.; Sarkady, K.

    1987-01-01

    An account is given of selected methods for the measurement and characterization of spatial and temporal noise in staring focal plane arrays (FPAs), in order to demonstrate how these results can be used in simulations and analytic models to predict the performance of selected staring sensors. Attention is given to MIR FPAs applicable to the detection and tracking of point sources, and to the ways in which these spatial and temporal noise measurements can be incorporated into simulations and sensors having staring FPAs. Methods for predicting the performance of selected staring sensor systems are derivable from spatial and temporal noise values. 13 references

  3. High Velocity Jet Noise Source Location and Reduction. Task 6. Noise Abatement Nozzle Design Guide.

    Science.gov (United States)

    1979-04-01

    the Conical Nozzle 255 on the Bertin Aerotrain . xvi ji4 ’ . _______ p .. LIST OF ILLUSTRATIONS (Continued) Figure Page D-37. Predicted and Measured...Moving-Frame Noise from the 256 Conical Nozzle on the Bertin Aerotrain . D-38. Predicted and Measured Static Noise from the 104-Tube 257 Nozzle on the...Bertin Aerotrain . D-39. Predicted and Measured Moving-Frame Noise from the 104- 258 Tube Nozzle on the Bertin Aerotrain . D-40. Relative Velocity Index m

  4. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In

  5. Thermal Noise Canceling in LNAs : A Review

    NARCIS (Netherlands)

    Nauta, Bram; Klumperink, Eric A.M.; Bruccoleri, Frederico

    2004-01-01

    Most wide-band amplifiers suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the

  6. Amplifiers Exploiting Thermal Noise Canceling: A Review

    NARCIS (Netherlands)

    Klumperink, Eric A.M.; Bruccoleri, F.; Stroet, P.M.; Stroet, Peter; Nauta, Bram

    2004-01-01

    Wide-band LNAs suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and

  7. Analytical model and figures of merit for filtered Microwave Photonic Links.

    Science.gov (United States)

    Gasulla, Ivana; Capmany, José

    2011-09-26

    The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America

  8. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Science.gov (United States)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  9. Reduced impact of induced gate noise on inductively degenerated LNAs in deep submicron CMOS technologies

    DEFF Research Database (Denmark)

    Rossi, P.; Svelto, F.; Mazzanti, A.

    2005-01-01

    Designers of radio-frequency inductively-degenerated CMOS low-noise-amplifiers have usually not followed the guidelines for achieving minimum noise figure. Nonetheless, state-of-the- art implementations display noise figure values very close to the theoretical minimum. In this paper, we point out...... that this is due to the effect of the parasitic overlap capacitances in the MOS device. In particular, we show that overlap capacitances lead to a significant induced-gate-noise reduction, especially when deep sub-micron CMOS processes are used....

  10. Noise Parameter Analysis of SiGe HBTs for Different Sizes in the Breakdown Region

    Directory of Open Access Journals (Sweden)

    Chie-In Lee

    2016-01-01

    Full Text Available Noise parameters of silicon germanium (SiGe heterojunction bipolar transistors (HBTs for different sizes are investigated in the breakdown region for the first time. When the emitter length of SiGe HBTs shortens, minimum noise figure at breakdown decreases. In addition, narrower emitter width also decreases noise figure of SiGe HBTs in the avalanche region. Reduction of noise performance for smaller emitter length and width of SiGe HBTs at breakdown resulted from the lower noise spectral density resulting from the breakdown mechanism. Good agreement between experimental and simulated noise performance at breakdown is achieved for different sized SiGe HBTs. The presented analysis can benefit the RF circuits operating in the breakdown region.

  11. A capacitor cross-coupled common-gate low-noise amplifier

    NARCIS (Netherlands)

    Zhuo, W.; Li, X.; Shekhar, S.; Embabi, S.H.K.; Pineda de Gyvez, J.; Allstot, D.J.; Sanchez-Sinencio, E.

    2005-01-01

    The conventional common-gate low-noise amplifier (CGLNA) exhibits a relatively high noise figure (NF) at low operating frequencies relative to the MOSFET fT, which has limited its adoption notwithstanding its superior linearity, input matching, and stability compared to the inductively degenerated

  12. Low noise InP-based MMIC receivers for W-band

    Science.gov (United States)

    Leonard, Regis F.

    1991-01-01

    A program to develop a monolithic W-band low noise amplifier (a critical element in any W-band communications, sensors, or radar application) is described. Goals of the program include a completely monolithic low noise amplifier, less than a 3.5 dB noise figure, and a monolithic mixer suitable for integration with the LNA.

  13. Noise propagation in x-ray phase-contrast imaging and computed tomography

    International Nuclear Information System (INIS)

    Nesterets, Yakov I; Gureyev, Timur E

    2014-01-01

    Three phase-retrieval algorithms, based on the transport-of-intensity equation and on the contrast transfer function for propagation-based imaging, and on the linearized geometrical optics approximation for analyser-based imaging, are investigated. The algorithms are compared in terms of their effect on propagation of noise from projection images to the corresponding phase-retrieved images and further to the computed tomography (CT) images/slices of a monomorphous object reconstructed using filtered backprojection algorithm. The comparison is carried out in terms of an integral noise characteristic, the variance, as well as in terms of a simple figure-of-merit, i.e. signal-to-noise ratio per unit dose. A gain factor is introduced that quantitatively characterizes the effect of phase retrieval on the variance of noise in the reconstructed projection images and in the axial slices of the object. Simple analytical expressions are derived for the gain factor and the signal-to-noise ratio, which indicate that the application of phase-retrieval algorithms can increase these parameters by up to two orders of magnitude compared to raw projection images and conventional CT, thus allowing significant improvement in the image quality and/or reduction of the x-ray dose delivered to the patient. (paper)

  14. High internal noise and poor external noise filtering characterize perception in autism spectrum disorder.

    Science.gov (United States)

    Park, Woon Ju; Schauder, Kimberly B; Zhang, Ruyuan; Bennetto, Loisa; Tadin, Duje

    2017-12-14

    An emerging hypothesis postulates that internal noise is a key factor influencing perceptual abilities in autism spectrum disorder (ASD). Given fundamental and inescapable effects of noise on nearly all aspects of neural processing, this could be a critical abnormality with broad implications for perception, behavior, and cognition. However, this proposal has been challenged by both theoretical and empirical studies. A crucial question is whether and how internal noise limits perception in ASD, independently from other sources of perceptual inefficiency, such as the ability to filter out external noise. Here, we separately estimated internal noise and external noise filtering in ASD. In children and adolescents with and without ASD, we computationally modeled individuals' visual orientation discrimination in the presence of varying levels of external noise. The results revealed increased internal noise and worse external noise filtering in individuals with ASD. For both factors, we also observed high inter-individual variability in ASD, with only the internal noise estimates significantly correlating with severity of ASD symptoms. We provide evidence for reduced perceptual efficiency in ASD that is due to both increased internal noise and worse external noise filtering, while highlighting internal noise as a possible contributing factor to variability in ASD symptoms.

  15. Finnish and English Children's Color Use to Depict Affectively Characterized Figures

    Science.gov (United States)

    Burkitt, Esther; Tala, Katri; Low, Jason

    2007-01-01

    Recent research has shown that children use colors systematically in relation to how they feel about certain colors and the figures that they draw. This study explored cultural differences between Finnish and English children's use of color to represent figures with contrasting emotional characters. One hundred and eight children (54 Finnish, 54…

  16. An inductorless wideband LNA with a new noise canceling technique

    OpenAIRE

    MOGHADAM, POURIA PAZHOUHESH; ABRISHAMIFAR, ADIB

    2017-01-01

    An inductorless wideband low-noise amplifier (LNA) employing a new noise canceling technique for multistandard applications is presented. The main amplifier has a cascode common gate structure, which provides good input impedance matching and isolation. The proposed noise canceling technique not only improves the noise figure and power gain but also embeds a g$_{m}$-boosting technique in itself, which reduces the power consumption of the main amplifier. Using current-steering and ...

  17. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2012-05-07

    We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.

  18. Characterization of noise sources in nuclear power reactors

    International Nuclear Information System (INIS)

    Andhill, Gustav

    2004-03-01

    Algorithms for unfolding noise sources in nuclear power reactors are investigated. No preliminary knowledge of the functional form of the space dependence is assumed in contrast to the usual methods. The advantage of this is that the algorithms can be applied to various noise sources and the results can be interpreted without expert knowledge. The results can therefore be directly displayed to the plant operators. The precision will however be lower than that of the traditional methods because of the arbitrariness in the type of the noise source. Two different reactor models are studied. First a simple one-dimensional and homogeneous core is considered. Three methods for finding the noise source from the measured flux noise are investigated here. The first one is based on the inversion of an appropriate pre-calculated noise source-to-measured induced neutron noise transfer function. The second one relies on the use of the measured neutron noise as the solution of the equations giving the neutron noise induced by a given noise source. The advantage of this second method is that the noise source can be determined directly, i.e., without any Inversion of a transfer function. The second method is thus called the direct method. The last method is based on a reconstruction of the noise source by spatial Fourier expansion. The two latter techniques are found usable for different locations of the actual noise source in the 1D core. They are therefore tried on more sophisticated two-dimensional models of cores. The direct method is able both to determine the nature of the noise source and its location in 2D

  19. Characterization of noise sources in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Andhill, Gustav

    2004-03-01

    Algorithms for unfolding noise sources in nuclear power reactors are investigated. No preliminary knowledge of the functional form of the space dependence is assumed in contrast to the usual methods. The advantage of this is that the algorithms can be applied to various noise sources and the results can be interpreted without expert knowledge. The results can therefore be directly displayed to the plant operators. The precision will however be lower than that of the traditional methods because of the arbitrariness in the type of the noise source. Two different reactor models are studied. First a simple one-dimensional and homogeneous core is considered. Three methods for finding the noise source from the measured flux noise are investigated here. The first one is based on the inversion of an appropriate pre-calculated noise source-to-measured induced neutron noise transfer function. The second one relies on the use of the measured neutron noise as the solution of the equations giving the neutron noise induced by a given noise source. The advantage of this second method is that the noise source can be determined directly, i.e., without any Inversion of a transfer function. The second method is thus called the direct method. The last method is based on a reconstruction of the noise source by spatial Fourier expansion. The two latter techniques are found usable for different locations of the actual noise source in the 1D core. They are therefore tried on more sophisticated two-dimensional models of cores. The direct method is able both to determine the nature of the noise source and its location in 2D.

  20. Characterization of Noise Signatures of Involuntary Head Motion in the Autism Brain Imaging Data Exchange Repository

    Science.gov (United States)

    Caballero, Carla; Mistry, Sejal; Vero, Joe; Torres, Elizabeth B

    2018-01-01

    The variability inherently present in biophysical data is partly contributed by disparate sampling resolutions across instrumentations. This poses a potential problem for statistical inference using pooled data in open access repositories. Such repositories combine data collected from multiple research sites using variable sampling resolutions. One example is the Autism Brain Imaging Data Exchange repository containing thousands of imaging and demographic records from participants in the spectrum of autism and age-matched neurotypical controls. Further, statistical analyses of groups from different diagnoses and demographics may be challenging, owing to the disparate number of participants across different clinical subgroups. In this paper, we examine the noise signatures of head motion data extracted from resting state fMRI data harnessed under different sampling resolutions. We characterize the quality of the noise in the variability of the raw linear and angular speeds for different clinical phenotypes in relation to age-matched controls. Further, we use bootstrapping methods to ensure compatible group sizes for statistical comparison and report the ranges of physical involuntary head excursions of these groups. We conclude that different sampling rates do affect the quality of noise in the variability of head motion data and, consequently, the type of random process appropriate to characterize the time series data. Further, given a qualitative range of noise, from pink to brown noise, it is possible to characterize different clinical subtypes and distinguish them in relation to ranges of neurotypical controls. These results may be of relevance to the pre-processing stages of the pipeline of analyses of resting state fMRI data, whereby head motion enters the criteria to clean imaging data from motion artifacts. PMID:29556179

  1. Characterization of Noise Signatures of Involuntary Head Motion in the Autism Brain Imaging Data Exchange Repository

    Directory of Open Access Journals (Sweden)

    Carla Caballero

    2018-03-01

    Full Text Available The variability inherently present in biophysical data is partly contributed by disparate sampling resolutions across instrumentations. This poses a potential problem for statistical inference using pooled data in open access repositories. Such repositories combine data collected from multiple research sites using variable sampling resolutions. One example is the Autism Brain Imaging Data Exchange repository containing thousands of imaging and demographic records from participants in the spectrum of autism and age-matched neurotypical controls. Further, statistical analyses of groups from different diagnoses and demographics may be challenging, owing to the disparate number of participants across different clinical subgroups. In this paper, we examine the noise signatures of head motion data extracted from resting state fMRI data harnessed under different sampling resolutions. We characterize the quality of the noise in the variability of the raw linear and angular speeds for different clinical phenotypes in relation to age-matched controls. Further, we use bootstrapping methods to ensure compatible group sizes for statistical comparison and report the ranges of physical involuntary head excursions of these groups. We conclude that different sampling rates do affect the quality of noise in the variability of head motion data and, consequently, the type of random process appropriate to characterize the time series data. Further, given a qualitative range of noise, from pink to brown noise, it is possible to characterize different clinical subtypes and distinguish them in relation to ranges of neurotypical controls. These results may be of relevance to the pre-processing stages of the pipeline of analyses of resting state fMRI data, whereby head motion enters the criteria to clean imaging data from motion artifacts.

  2. Characterization of noise in different industrial workstations

    Science.gov (United States)

    Correia, Aldina; Lopes, Miguel; de Almeida, M. Fátima

    2017-11-01

    The damage caused by noise in workers' health is well known. The European Agency for Safety and Health at Work presented in 2005 a summary of main effects of workplace noise, defining the loss of hearing as the principal effect of noise exposure, however, it can also exacerbate stress and increase the risk of accidents. The problem to be addressed is this work is about noise analysis, performed under the PREVENIR program. The data was collected in industrial workplaces from 280 Portuguese industrial companies distributed by different sectors. The program was implemented between 2005 and 2011. The aim of this work is identify differences of intensity of noise exposure between these industrial sectors in different workplaces, using inference techniques. The existence of significance differences between average levels of Equivalent Sound Level (LAeq,TdB(A)) are verified using ANOVA.

  3. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    Abstract — A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB,

  4. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB, while

  5. LNA A 1.9 GHZ low noise amplifier

    Directory of Open Access Journals (Sweden)

    Jorge Julián Moreno-Rubio

    2006-12-01

    Full Text Available This paper shows the design, the simulation, and the layout from a low noise amplifier (LNA, designed with and approximate band from 25 to 80 MHz. The design results of the matching neworks are shown, its noise figure, its available and transduced gain according to its non lineal model (TOM, the DC network, crash inductors and matching capacitors with the large impedance transmission lines.

  6. Impulsive Noise Characterization in Narrowband Power Line Communication

    Directory of Open Access Journals (Sweden)

    Li Bai

    2018-04-01

    Full Text Available Currently, narrowband Power line communication (PLC is considered an attractive communication system in smart grid environments for applications such as advanced metering infrastructure (AMI. In this paper, we will present a comprehensive comparison and analysis in time and frequency domain of noise measured in China and Italy. In addition, impulsive noise in these two countries are mainly analyzed and modeled using two probability based models, Middleton Class A (MCA model and α stable distribution model. The results prove that noise measured in China is rich in impulsive noise, and can be modeled well by α stable distribution model, while noise measured in Italy has less impulsive noise, and can be better modeled by the MCA model.

  7. Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongjun [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Weifang Vocational College, Weifang 261041 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, Quanlong [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-07-18

    This Letter designs an asynchronous hyper chaotic secure communication system, which possesses high stability against noise, using dynamic delay and state variables switching to ensure the high security. The relationship between the bit error ratio (BER) and the signal-to-noise ratio (SNR) is analyzed by simulation tests, the results show that the BER can be ensured to reach zero by proportionally adjusting the amplitudes of the state variables and the noise figure. The modules of the transmitter and receiver are implemented, and numerical simulations demonstrate the effectiveness of the system. -- Highlights: → Asynchronous anti-noise hyper chaotic secure communication system. → Dynamic delay and state switching to ensure the high security. → BER can reach zero by adjusting the amplitudes of state variables and noise figure.

  8. Automatic figure ranking and user interfacing for intelligent figure search.

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2010-10-01

    Full Text Available Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org. Existing research in figure search treats each figure equally, but we introduce a novel concept of "figure ranking": figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery.We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation.The evaluation results conclude that automatic figure ranking and user

  9. Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers.......Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers....

  10. Characterizing transient noise in the LIGO detectors

    Science.gov (United States)

    Nuttall, L. K.

    2018-05-01

    Data from the LIGO detectors typically contain many non-Gaussian noise transients which arise due to instrumental and environmental conditions. These non-Gaussian transients can be an issue for the modelled and unmodelled transient gravitational-wave searches, as they can mask or mimic a true signal. Data quality can change quite rapidly, making it imperative to track and find new sources of transient noise so that data are minimally contaminated. Several examples of transient noise and the tools used to track them are presented. These instances serve to highlight the diverse range of noise sources present at the LIGO detectors during their second observing run. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  11. Coherent tools for physics-based simulation and characterization of noise in semiconductor devices oriented to nonlinear microwave circuit CAD

    Science.gov (United States)

    Riah, Zoheir; Sommet, Raphael; Nallatamby, Jean C.; Prigent, Michel; Obregon, Juan

    2004-05-01

    We present in this paper a set of coherent tools for noise characterization and physics-based analysis of noise in semiconductor devices. This noise toolbox relies on a low frequency noise measurement setup with special high current capabilities thanks to an accurate and original calibration. It relies also on a simulation tool based on the drift diffusion equations and the linear perturbation theory, associated with the Green's function technique. This physics-based noise simulator has been implemented successfully in the Scilab environment and is specifically dedicated to HBTs. Some results are given and compared to those existing in the literature.

  12. Amplifiers Exploiting Thermal Noise Canceling: A Review

    OpenAIRE

    Klumperink, Eric A.M.; Bruccoleri, Federico; Stroet, Peter; Nauta, Bram

    2004-01-01

    Wide-band LNAs suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and its key properties. Although the technique has been applied to wideband CMOS LNAs, it can just as well be implemented exploiting transconductance elements realized with oth...

  13. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2015-01-01

    The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... and trailing edge noise, recognized to be the two main sources of noise from wind turbines, this work contributes to a more detailed insight into noise from wind turbines. The study comprises analysis and interpretation of measurement data that were acquired during an experimental campaign involving a 2 MW...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...

  14. Computational reduction of specimen noise to enable improved thermography characterization of flaws in graphite polymer composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  15. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  16. Data for Figures and Tables in "Impacts of Different Characterizations of Large-Scale Background on Simulated Regional-Scale Ozone Over the Continental U.S."

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data used in the Figures and Tables of the manuscript "Impacts of Different Characterizations of Large-Scale Background on Simulated...

  17. Analytical high frequency GaN HEMT model for noise simulations

    Science.gov (United States)

    Eshetu Muhea, Wondwosen; Mulugeta Yigletu, Fetene; Lazaro, Antonio; Iñiguez, Benjamin

    2017-12-01

    A compact high frequency model for AlGaN/GaN HEMT device valid for noise simulations is presented in this paper. The model is developed based on active transmission line approach and linear two port noise theory that makes it applicable for quasi static as well as non-quasi static device operation. The effects of channel length modulation and velocity saturation are discussed. Moreover, the effect of the gate leakage current on the noise performance of the device is investigated. It is shown that there is an apparent increase in noise generated in the device due to the gate current related shot noise. The common noise figures of merit for HFET are calculated and verified with experimental data.

  18. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  19. Thermal Noise Canceling in LNAs: A Review

    OpenAIRE

    Nauta, Bram; Klumperink, Eric A.M.; Bruccoleri, Frederico

    2004-01-01

    Most wide-band amplifiers suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and its key properties. Although the technique has been applied to wideband CMOS LNAs, it can just as well be implemented exploiting transconductance elements realized with other types of t...

  20. Fading-Figure Tracing in Williams Syndrome

    Science.gov (United States)

    Nagai, Chiyoko; Inui, Toshio; Iwata, Makoto

    2011-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder characterized by severe impairment of visuospatial abilities. Figure-drawing abilities, which are thought to reflect visuospatial abilities, have yet to be fully investigated in WS. The purpose of the present study was to clarify whether drawing abilities differ between WS individuals and…

  1. Figure-ground assignment in pigeons: evidence for a figural benefit.

    Science.gov (United States)

    Lazareva, Olga E; Castro, Leyre; Vecera, Shaun P; Wasserman, Edward A

    2006-07-01

    Four pigeons discriminated whether a target spot appeared on a colored figural shape or on a differently colored background by first pecking the target and then reporting its location: on the figure or the background. We recorded three dependent variables: target detection time, choice response time, and choice accuracy. The birds were faster to detect the target, to report its location, and to learn the correct response on figure trials than on background trials. Later tests suggested that the pigeons might have attended to the figural region as a whole rather than using local properties in performing the figure-background discrimination. The location of the figural region did not affect figure-ground assignment. Finally, when 4 other pigeons had to detect and peck the target without making a choice report, no figural advantage emerged in target detection time, suggesting that the birds' attention may not have been automatically summoned to the figural region.

  2. Figure 7

    Data.gov (United States)

    U.S. Environmental Protection Agency — Two files provided. The ENS.tar file contains text data files (*.csv) used to create Figure 7 and Figure 8. The Figure7.txt is an R script that reads these files and...

  3. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T.; Morello, Andrea, E-mail: a.morello@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney NSW 2052 (Australia)

    2016-07-15

    Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5–10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.

  4. A wideband CMOS inductorless low noise amplifier employing noise cancellation for digital TV tuner applications

    International Nuclear Information System (INIS)

    Zhang Jihong; Bai Xuefei; Huang Lu

    2013-01-01

    A wideband inductorless low noise amplifier for digital TV tuner applications is presented. The proposed LNA scheme uses a composite NMOS/PMOS cross-coupled transistor pair to provide partial cancellation of noise generated by the input transistors. The chip is implemented in SMIC 0.18 μm CMOS technology. Measurement shows that the proposed LNA achieves 12.2–15.2 dB voltage gain from 300 to 900 MHz, the noise figure is below 3.1 dB and has a minimum value of 2.3 dB, and the best input-referred 1-dB compression point (IP1dB) is − 17 dBm at 900 MHz. The core consumes 7 mA current with a supply voltage of 1.8 V and occupies an area of 0.5 × 0.35 mm 2 . (semiconductor integrated circuits)

  5. Op-amp based low noise amplifier for magnetic particle spectroscopy

    Directory of Open Access Journals (Sweden)

    Malhotra Ankit

    2017-09-01

    Full Text Available Magnetic particle spectrometry (MPS is a novel technique used to measure the magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs. Therefore, it is one of the most important tools for the characterization of the SPIONs for imaging modalities such as magnetic particle imaging (MPI and Magnetic Resonance Imaging (MRI. In MPS, change in the particle magnetization induces a voltage in a dedicated receive coil. The amplitude of the signal can be very low (ranging from a few nV to 100 μV depending upon the concentration of the nanoparticles. Hence, the received signal needs to be amplified with a low noise amplifier (LNA. LNA’s paramount task is to amplify the received signal while keeping the noise induced by its own circuitry minimum. In the current research, we purpose modeling, design, and development of a prototyped LNA for MPS. The designed prototype LNA is based on the parallelization technique of Op-amps. The prototyped LNA consists of 16 Op-amps in parallel and is manufactured on a printed circuit board (PCB, with a size of 110.38 mm × 59.46 mm and 234 components. The input noise of the amplifier is approx. 546 pV/√Hz with a noise figure (NF of approx. 1.4 dB with a receive coil termination. Furthermore, a comparison between the prototyped LNA and a commercially available amplifier is shown.

  6. The assessment and rating of noise from wind farms. Final report

    International Nuclear Information System (INIS)

    1996-09-01

    The findings of a Working Group on Wind Turbine Noise in the United Kingdom are presented. The broad topics covered are: the philosophy and practice of noise emission control; description of noise emission from wind turbines; a review of current practice and guidance; a survey of public reaction to noise from wind farms; recommendations on noise limits; noise monitoring; the planning obligation. In deriving suggested noise limits, a reasonable degree of protection to wind farm neighbours has been sought which will not place unreasonable restrictions and undue added costs and administrative burdens on wind farm developers or local authorities. Examples of practice in the control of noise emissions at wind farms in the United Kingdom and the USA are assembled in an Appendix. (29 figures; 13 tables; 32 references) (UK)

  7. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    International Nuclear Information System (INIS)

    Takano, H.; Hosogi, K.; Kato, T.

    1995-01-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier with an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs

  8. On the nature of data collection for soft-tissue image-to-physical organ registration: a noise characterization study

    Science.gov (United States)

    Collins, Jarrod A.; Heiselman, Jon S.; Weis, Jared A.; Clements, Logan W.; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2017-03-01

    In image-guided liver surgery (IGLS), sparse representations of the anterior organ surface may be collected intraoperatively to drive image-to-physical space registration. Soft tissue deformation represents a significant source of error for IGLS techniques. This work investigates the impact of surface data quality on current surface based IGLS registration methods. In this work, we characterize the robustness of our IGLS registration methods to noise in organ surface digitization. We study this within a novel human-to-phantom data framework that allows a rapid evaluation of clinically realistic data and noise patterns on a fully characterized hepatic deformation phantom. Additionally, we implement a surface data resampling strategy that is designed to decrease the impact of differences in surface acquisition. For this analysis, n=5 cases of clinical intraoperative data consisting of organ surface and salient feature digitizations from open liver resection were collected and analyzed within our human-to-phantom validation framework. As expected, results indicate that increasing levels of noise in surface acquisition cause registration fidelity to deteriorate. With respect to rigid registration using the raw and resampled data at clinically realistic levels of noise (i.e. a magnitude of 1.5 mm), resampling improved TRE by 21%. In terms of nonrigid registration, registrations using resampled data outperformed the raw data result by 14% at clinically realistic levels and were less susceptible to noise across the range of noise investigated. These results demonstrate the types of analyses our novel human-to-phantom validation framework can provide and indicate the considerable benefits of resampling strategies.

  9. 76 FR 60962 - Noise Exposure Map Update for Buffalo Niagara International Airport, Buffalo, NY

    Science.gov (United States)

    2011-09-30

    ... ``2008 Noise Exposure Map with Land Use'' and Figure 9 ``2013 Noise Exposure Map & Affected Land Uses... meet applicable regulations and which depict non-compatible land uses as of the date of submission of... land use control and planning responsibilities of local government. These local responsibilities are...

  10. Individual differences in the perception of biological motion and fragmented figures are not correlated

    Directory of Open Access Journals (Sweden)

    Eunice L Jung

    2013-10-01

    Full Text Available We live in a cluttered, dynamic visual environment that poses a challenge for the visual system: for objects, including those that move about, to be perceived, information specifying those objects must be integrated over space and over time. Does a single, omnibus mechanism perform this grouping operation, or does grouping depend on separate processes specialized for different feature aspects of the object? To address this question, we tested a large group of healthy young adults on their abilities to perceive static fragmented figures embedded in noise and to perceive dynamic point-light biological motion figures embedded in dynamic noise. There were indeed substantial individual differences in performance on both tasks, but none of the statistical tests we applied to this data set uncovered a significant correlation between those performance measures. These results suggest that the two tasks, despite their superficial similarity, require different segmentation and grouping processes that are largely unrelated to one another. Whether those processes are embodied in distinct neural mechanisms remains an open question.

  11. Noise effects on reproduction— animal experiments

    Science.gov (United States)

    Takigawa, H.; Sakamoto, H.; Murata, M.; Matsumura, Y.

    1988-12-01

    Noise effects on fetal development were observed in animals. While the copulatory function was not affected, birth rate decreased when the animals were exposed to noise. An increased number of stunted fetuses was observed when the animals were intermittently exposed. However, malformations in the fetuses increased with exposure to both intermittent and continuous noise. Two phases of hormonal change were observed in connection with noise exposure. One is the initial response phase, characterized by the increment of 11-OHCS in the adrenal gland. The other is the end phenomena phase, characterized by a disorder in central control. It is discussed that the disturbance of fetal development by exposure to noise is related to these changes in the hormonal condition.

  12. Nuisance levels of noise effects radiologists' performance

    Science.gov (United States)

    McEntee, Mark F.; Coffey, Amina; Ryan, John; O'Beirne, Aaron; Toomey, Rachel; Evanoff, Micheal; Manning, David; Brennan, Patrick C.

    2010-02-01

    This study aimed to measure the sound levels in Irish x-ray departments. The study then established whether these levels of noise have an impact on radiologists performance Noise levels were recorded 10 times within each of 14 environments in 4 hospitals, 11 of which were locations where radiologic images are judged. Thirty chest images were then presented to 26 senior radiologists, who were asked to detect up to three nodular lesions within 30 posteroanterior chest x-ray images in the absence and presence of noise at amplitude demonstrated in the clinical environment. The results demonstrated that noise amplitudes rarely exceeded that encountered with normal conversation with the maximum mean value for an image-viewing environment being 56.1 dB. This level of noise had no impact on the ability of radiologists to identify chest lesions with figure of merits of 0.68, 0.69, and 0.68 with noise and 0.65, 0.68, and 0.67 without noise for chest radiologists, non-chest radiologists, and all radiologists, respectively. the difference in their performance using the DBM MRMC method was significantly better with noise than in the absence of noise at the 90% confidence interval (p=0.077). Further studies are required to establish whether other aspects of diagnosis are impaired such as recall and attention and the effects of more unexpected noise on performance.

  13. Nonlinearities and noise in micromechanical resonators: From understanding to characterization and design tools

    Science.gov (United States)

    Polunin, Pavel M.

    In this work we consider several nonlinearity-based and/or noise-related phenomena that have been recently observed in micro-electromechanical vibratory systems. The main goals are to closely examine these phenomena, develop an understanding of their underlying physics, derive techniques for characterizing parameters in relevant mathematical models, and determine ways to improve the performance of specific classes of micro-electromechanical systems (MEMS) used in applications. The general perspective of this work is based on the fact that nonlinearity and noise represent integral parts of the models needed to describe the response of these systems, and the focus is on situations where these generally undesirable features can be utilized or accounted for in design. We consider three different, but related, topics in this general area. The first topic uses the slowly varying states in a rotating frame of reference where we analyze the stationary probability distribution of a nonlinear parametrically-driven resonator subjected to Poisson pulses and thermal noise. We show that Poisson pulses with low pulse rates, as compared with the resonator decay rate, cause a power-law divergence of the probability density at the resonator equilibrium in both the underdamped (overdamped) regimes, in which the response does (does not) spiral in the rotating frame. We have also found that the shape of the probability distribution away from the equilibrium position is qualitatively different for the overdamped and underdamped cases. In particular, in the overdamped regime, the form of the secondary singularity in the probability distribution depends strongly on the reference phase of the resonator response and the pulse modulation phase, while in the underdamped regime several singular peaks occur in the distribution, and their locations are determined by the resonator frequency and decay rate in the rotating frame. Finally, we show that even weak Gaussian noise smoothens out the

  14. Noise Pollution Aspects of Barge, Railroad, and Truck Transportation,

    Science.gov (United States)

    1975-04-01

    dBA Trolley 88 dBA 82 dBA 78 dBA 72 dBA Truck 87 dBA 81 dBA 76 dBA 74 dBA Bus 81 dBA 76 dBA 72 dBA 68 dBA Automobile 78 dBA 74 dBA 65 dBA 63 dBA I NO...Environmlent~al Prot~ect~ion Agency, Background Document/linvironment~al Explanat~ion f~or Proposed Int~erstate Rail Carriler Noise Emission Regulat~ions (1974...2). By way of comparison only 0.1 percent automobiles produced this noise level at 70 miles per hour (Figure E-1). Bus and motorcycle noise levels (at

  15. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    International Nuclear Information System (INIS)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta

    2015-01-01

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping

  16. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta, E-mail: paulo.zannin@pesquisador.cnpq.br

    2015-02-15

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.

  17. Presenting Fake Figures: A Tool to Teach Effective Scientific Figure Design

    Directory of Open Access Journals (Sweden)

    Veronica A. Segarra

    2013-08-01

    Full Text Available As trained scientists, we become adept not only at analyzing and understanding figures in the scientific literature, but also at designing figures to effectively represent our own data and findings. As educators, we strive to pass on these skills to our students, some of whom will ultimately become scientists themselves. Conveying the principles of effective figure design can be challenging, particularly when students have had little exposure to the process of reading scientific literature, much less writing a piece of scientific literature. Improvisational activities in the classroom reinforce teaching goals such as spontaneity, risk-taking, creativity, communication skills, team-building, and critical thinking (2. Indeed, improv training for scientists is becoming more common, helping scientists to communicate more spontaneously about their work and connect with their audience (1. In this article, we present an improvisational game that can aid in the teaching of effective scientific figure design. This “Present-a-Fake-Figure Exercise” is applicable to both the classroom and laboratory settings. In this learning activity, students improvise presenting fake scientific figures to an audience of their peers. These fake figures are prepared beforehand by the instructor and exemplify the do’s and don’ts of scientific figure design. Some of the learning outcomes of the activity include (1 identifying what makes a scientific figure cohesive, easy to analyze, and reader-friendly, and (2 identifying strategies that are useful in the design of a multi-panel figure to convey a scientific story.

  18. Noise frame duration, masking potency and whiteness of temporal noise.

    Science.gov (United States)

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  19. A novel full scale experimental characterization of wind turbine aero-acoustic noise sources - preliminary results

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas

    2016-01-01

    of the blade and the noise on the ground in a distance of about one rotor diameter. In total six surface microphones were used to measure the SP at the leading edge (LE) and trailing edge (TE) of the blade. In parallel noise was measured by eight microphones placed on plates on the ground around the turbine......The paper describes a novel full scale experiment on a 500 kW wind turbine with the main objective to characterize the aero-acoustic noise sources. The idea behind the instrumentation is to study the link and correlation between the surface pressure (SP) fluctuations in the boundary layer...... in equidistant angles on a circle with a radius of about one rotor diameter. The data were analyzed in segments of 2.2 s which is the time for one rotor revolution. The spectra for the TE microphones on the suction side of the blade show a characteristic roll-off pattern around a frequency of 600-700 Hz...

  20. Un lieu pour les figures dans la théorie de l’argumentation A Place for Rhetorical Figures in Argumentation Theory

    Directory of Open Access Journals (Sweden)

    Christian Plantin

    2009-04-01

    figures in argumentation theory. The contrast between “a rhetoric of figures” and “a rhetoric of argument,” which can be traced back to Ramus, was revived in the seventies by the perception of an incommensurability between TA and the École de Liège’s “General Rhetoric”. Modern theories of argumentation, oriented towards characterizing and denouncing fallacious discourse, emphasize the gap between sound argumentative discourse and discourse that is a « powerful instrument of error and deceit » (Locke. This concept of a gap envisions language as ideal / transparent - a revised language that is not the language of ordinary argumentation. In contrast, we argue that figures are not basically “decorative”; they are manifestations of the complex process of language structuring in speech. Thus rejecting figures amounts to a negation of discourse as such. We then turn to a somewhat neglected aspect of the TA, its both decisive and somewhat cavalier theory of figures of speech, and its extended use and re-definition of a complex set of figures. We argue that the TA, in its quest for descriptive adequacy, breaks with the traditional and comfortable concept of figures as useless fallacious “ornaments”, and provides us with the first description of what could be characterized as the semantic level of ordinary argumentative discourse. This will be shown on the case of “figures of choice, presence and communion”, and could be extended to the discursive construction of objects and participants, including the speaker and her emotions.

  1. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension.

    Science.gov (United States)

    Yu, Hong; Agarwal, Shashank; Johnston, Mark; Cohen, Aaron

    2009-01-06

    Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39-68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension

  2. Figure5

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is an R statistics package script that allows the reproduction of Figure 5. The script includes the links to large NetCDF files that the figures access for O3,...

  3. Internal noise sources limiting contrast sensitivity.

    Science.gov (United States)

    Silvestre, Daphné; Arleo, Angelo; Allard, Rémy

    2018-02-07

    Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.

  4. Ambient noise levels and characterization in Aegean region, Turkey

    Science.gov (United States)

    Sevim, Fatih; Zor, Ekrem; Açıkgöz, Cem; Tarancıoğlu, Adil

    2018-03-01

    We assessed the ambient noise level in the Aegean region and analyzed its diurnal variation and its relation to the earthquake detection capability of the Aegean Region Seismic Network (ARSN). We prepared probability density functions (PDFs) for 19 broadband stations in the Aegean region operated by the Earth and Marine Sciences Institute (EMSI) of the Marmara Research Center (MRC) of the Turkish Scientific Research Council (TÜBİTAK). The power spectral densities (PSDs) used to construct PDFs for each station were computed for the periods between 0.02 and 180 s. In addition, we generated noise map of the Aegean region for different periods using the PDFs to assess the origin of the noise. We analyzed earthquake activity in the region and found that there are more local events recorded at night than during the day for each station. This difference is strongly related to diurnal variation of background noise level for the period range mostly covering the frequency range for the local events. We observed daytime noise level 15 to 20 dB higher than that at the nighttime in high frequencies for almost all stations caused by its proximity to settled areas and roads. Additionally, we observed a splitting peak within the Double Frequency (DF) microseism band; it showed a clear noise increase around the short period DF band at all the stations, decreasing inland. This peak may be related to sea waves locally generated in the Aegean Sea. We also identified a prominent increase related to marble saw companies in some stations' noise PDFs.

  5. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  6. An Analysis of FM Jamming and Noise Quality Measures

    Science.gov (United States)

    1993-12-01

    equipment setup is shown in figure 6. For reasons of practicality and manageability , all equipment was chosen to be commercially available and of a fairly...bins based on the size of the parameter F. It computes a smoothed "Turner Noise Qaulity " similar to the noise quality measure employed by Daly in his...recý.orate for :nf-,aton Doe,A-,ým5 1o- A c-t•s. )2 15 efferso Oarts H,9gPay, Srte 1204. ArtOngton, VA 222024302 and to the Of"ce of Management and aucige

  7. Characterizing Sources of Small DC Motor Noise and Vibration

    Directory of Open Access Journals (Sweden)

    Yong Thung Cho

    2018-02-01

    Full Text Available Small direct current (DC motors are widely used due to their low cost and compact structure. Small DC motors of various designs are available on the market in different sizes. The smaller the motor, the more closely it may be used by individuals. Contrary to the size and simplicity of these motors in terms of structural design, sources of motor noise and vibration can be quite diverse and complicated. In this study, the source of motor noise and vibration was visualized over a very wide range of frequencies. The particle velocity of the motor was reconstructed from nearfield sound pressure measurements of motor noise. In addition to noncontact measurements conducted on a motor running at constant speed, the particle velocity of a stationary motor due to the impulse of an impact hammer was measured with an accelerometer. Furthermore, motor noise was measured under motor run-up conditions with different rotational speeds. As a result, by combination of these three methods, the sources of motor noise were accurately identified over a wide range of frequencies.

  8. Exploration of Action Figure Appeals Using Evaluation Grid Method and Quantification Theory Type I

    Science.gov (United States)

    Chang, Hua-Cheng; Chen, Hung-Yuan

    2017-01-01

    Contemporary toy is characterized by accelerating social, cultural and technological change. An attractive action figure can grab consumers' attention, influence the latent consuming preference and evoke their pleasure. However, traditional design of action figure is always dependent on designer's opinion, subjective experience and preference. It…

  9. Characterization and Impact of Low Frequency Wind Turbine Noise Emissions

    Science.gov (United States)

    Finch, James

    Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.

  10. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Villanueva Ibáñez, Guillermo Eduardo; Lægsgaard, Jesper

    2013-01-01

    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength around 600 nm, based on an Yb-fiber laser and a highly-nonlinear photonic crystal fiber. A relative intensity noise as low as - 103 dBc/Hz, corresponding to 2.48 % pulse-to-pulse...... fluctuation in energy, was observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ pulse energy. This pulse-to-pulse fluctuation is at least 10.6 dB lower compared to spectrally-sliced supercontinuum sources traditionally used for ultrafast fiberbased generation at visible wavelengths. Low noise...... makes allfiber Cherenkov sources promising for biophotonics applications such as multi-photon microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum....

  11. Noise analysis of gate electrode work function engineered recessed channel (GEWE-RC) MOSFET

    International Nuclear Information System (INIS)

    Agarwala, Ajita; Chaujar, Rishu

    2012-01-01

    This paper discusses the noise assessment, using ATLAS device simulation software, of a gate electrode work function engineered recessed channel (GEWE-RC) MOSFET involving an RC and GEWE design integrated onto a conventional MOSFET. Furthermore, the behaviour of GEWE-RC MOSFET is compared with that of a conventional MOSFET having the same device parameters. This paper thus optimizes and predicts the feasibility of a novel design, i.e., GEWE-RC MOSFET for high-performance applications where device and noise reduction is a major concern. The noise metrics taken into consideration are: minimum noise figure and optimum source impedance. The statistical tools auto correlation and cross correlation are also analysed owing to the random nature of noise.

  12. Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.

    Science.gov (United States)

    Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin

    2017-09-01

    Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200  mm×200  mm×12  mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.

  13. Noise characterization of silicon strip detectors-comparison of sensors with and without integrated jfet source-follower.

    CERN Document Server

    Giacomini, Gabriele

    Noise is often the main factor limiting the performance of detector systems. In this work a detailed study of the noise contributions in different types of silicon microstrip sensors is carried on. We investigate three sensors with double-sided readout fabricated by different suppliers for the ALICE experiment at the CERN LHC, in addition to detectors including an integrated JFET Source-Follower as a first signal conditioning stage. The latter have been designed as an attempt at improving the performance when very long strips, obtained by gangling together several sensors, are required. After a description of the strip sensors and of their operation, the “static” characterization measurements performed on them (current and capacitance versus voltage and/or frequency) are illustrated and interpreted. Numerical device simulation has been employed as an aid in interpreting some of the measurement results. The commonly used models for expressing the noise of the detector-amplifier system in terms of its relev...

  14. Handbook for industrial noise control

    Science.gov (United States)

    The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.

  15. A 0.18 μm CMOS inductorless complementary-noise-canceling-LNA for TV tuner applications

    International Nuclear Information System (INIS)

    Yuan Haiquan; Lin Fujiang; Fu Zhongqian; Huang Lu

    2010-01-01

    This paper presents an inductorless complementary-noise-canceling LNA (CNCLNA) for TV tuners. The CNCLNA exploits single-to-differential topology, which consists of a common gate stage and a common source stage. The complementary topology can save power and improve the noise figure. Linearity is also enhanced by employing a multiple gated transistors technique. The chip is implemented in SMIC 0.18 μm CMOS technology. Measurement shows that the proposed CNCLNA achieves 13.5-16 dB voltage gain from 50 to 860 MHz, the noise figure is below 4.5 dB and has a minimum value of 2.9 dB, and the best P 1dB is -7.5 dBm at 860 MHz. The core consumes 6 mA current with a supply voltage of 1.8 V, while the core area is only 0.2 x 0.2 mm 2 . (semiconductor integrated circuits)

  16. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  17. Auditory skills of figure-ground and closure in air traffic controllers.

    Science.gov (United States)

    Villar, Anna Carolina Nascimento Waack Braga; Pereira, Liliane Desgualdo

    2017-12-04

    To investigate the auditory skills of closure and figure-ground and factors associated with health, communication, and attention in air traffic controllers, and compare these variables with those of other civil and military servants. Study participants were sixty adults with normal audiometric thresholds divided into two groups matched for age and gender: study group (SG), comprising 30 air traffic controllers and control group (CG), composed of 30 other military and civil servants. All participants were asked a number of questions regarding their health, communication, and attention, and underwent the Speech-in-Noise Test (SIN) to assess their closure skills and the Synthetic Sentence Identification Test - Ipsilateral Competitive Message (SSI-ICM) in monotic listening to evaluate their figure-ground abilities. Data were compared using nonparametric statistical tests and logistic regression analysis. More individuals in the SG reported fatigue and/or burnout and work-related stress and showed better performance than that of individuals in the CG for the figure-ground ability. Both groups performed similarly and satisfactorily in the other hearing tests. The odds ratio for participants belonging in the SG was 5.59 and 1.24 times regarding work-related stress and SSI-ICM (right ear), respectively. Results for the variables auditory closure, self-reported health, attention, and communication were similar in both groups. The SG presented significantly better performance in auditory figure-ground compared with that of the CG. Self-reported stress and right-ear SSI-ICM were significant predictors of individuals belonging to the SG.

  18. Investigation of LO-leakage cancellation and DC-offset influence on flicker-noise in X-band mixers

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus; Johansen, Tom; Tamborg, Kjeld

    2012-01-01

    This paper describes an investigation on the influences in 1/f noise of LO-leakage and DC-offset cancellation for X-band mixers. Conditions for LO-leakage cancellation and zero DC-offset is derived. Measurements on a double balanced diode mixer shows an improvement in noise figure from 14.3dB to ...

  19. Potential Application of Environmental Noise Recordings in Geoarchaeological Site Characterization

    Science.gov (United States)

    Di Luzio, E.

    2015-12-01

    Environmental noise recordings are commonly applied in seismic microzonation studies. By calculating the H/V spectral ratio, the fundamental frequency of soft terrains overlying a rigid bedrock can be determined (Nakamura (1989). In such a simple two-layer system, equation f = n Vs/4H (1) links the resonance frequency "f" to the thickness "H" and shear waves velocity "Vs "of the resonating layer. In recent years, this methodology has been applied generally to obtain information on the seismostratigraphy of an investigated site in different environmental context. In this work, its potential application in the characterization of archaeological features hosted in shallow geological levels is discussed. Field cases are identified in the Appia Antica archaeological site which is placed in central Italy. Here, acknowledged targets correspond to: i) empty tanks carved by the Romans into Cretaceous limestone in the IV-III cen. BC and ii): the basaltic stone paving of the ancient road track which is locally buried beneath colluvial deposits. Narrowly-spaced recordings of environmental noise were carried using a portable digital seismograph equipped with three electrodynamic orthogonal sensors (velocimeters) responding in the band 0.1 ÷1024 Hz and adopting a sampling frequency of 256 Hz.. Results are discussed in terms of absolute H/V values and related distribution maps in the very high-frequency interval of 10-40Hz. In the tanks hosting area, interpolation of H/V maximum values around 13Hz matches caves location and alignment, which is also evidenced by clear inversions (H/V<1) at lower frequencies (10-1Hz). Correlation between H/V peaks and the top surface of the buried stone paving along the prosecution of the road track is even more straightforward. Finally, the depth variations of the tank roofs and the basaltic paving were reconstructed combining in equation (1) results of noise recordings with borehole data and geophysical surveys (SASW analysis).

  20. 1/f noise: diffusive systems and music

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.

    1975-11-01

    Measurements of the 1/f voltage noise in continuous metal films are reported. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by 10/sup 5/) of similar volume had comparable noise. The results suggest that the noise arises from equilibrium temperature fluctuations modulating the resistance. Spatial correlation of the noise implied that the fluctuations obey a diffusion equation. The empirical inclusion of an explicit 1/f region and appropriate normalization lead to excellent agreement with the measured noise. If the fluctuations are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region in the power spectrum. The temperature response of a sample to delta and step function power inputs is shown to have the same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations, respectively. The spectrum obtained from the cosine transform of the measured step function response is in excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium temperature fluctuations are not the dominant source of 1/f noise in semiconductors and metal films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square Johnson noise voltage and the resistance fluctuation spectrum measured in the presence of a current demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations. Loudness fluctuations in music and speech and pitch fluctuations in music also show the 1/f behavior. 1/f noise sources, consequently, are demonstrated to be the natural choice for stochastic composition. 26 figures, 1 table. (auth)

  1. New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM

    Science.gov (United States)

    Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.

    2016-01-01

    Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.

  2. The Microwave Noise Behaviour Of Dual Material Gate Silicon On Insulator

    Science.gov (United States)

    Jafar, N.; Soin, N.

    2009-06-01

    This work presents the noise behaviour due to the applied Dual Material Gate (DMG) on the 75 nm n-channel Silicon On Insulator (SOI) device operating in the fully depletion mode, particularly for microwave circuit design. Influences of DMG properties namely the gate length ratio (L1:L2) and gate material workfunction difference (ΔΦM) as well as structural and operational parameters which are silicon thickness (TSi) and threshold voltage (VTH) setting variation on the noise performance were carried out on simulation basis using ATLAS 2D. Results show better noise performance in DMG as compare to the standard gate structure of FD-SOI devices. Higher VTH for DMG design is recommended for minimized noise figure in line with the advantage of inverse VTH roll-off characteristics for short channel effects suppression.

  3. PUBLIK FIGUR DALAM IKLAN TESTIMONIAL

    Directory of Open Access Journals (Sweden)

    Deddi Duto Hartanto

    2000-01-01

    Full Text Available Testimonial advertising seemingly identical with famous figure such as artist%2C sportmen or others. They are all branded as "public figure" because they are well known by public. A lot of advertising creators using public figure in order to gain a high brand awareness. Is the use of public figure in testimonial advertising more profitable? Is their able quite representative for the products they represent ? Abstract in Bahasa Indonesia : Iklan testimonial identik dengan tokoh terkenal%2C baik itu artis%2C tokoh masyarakat%2C olahragawan%2C atau yang lainnya. Semuanya di cap sebagai "publik figur%2C" karena sudah dikenal masyarakat.Banyak kreator iklan menggunakan publik figur dengan harapan dapat mencapai brand awareness yang tinggi. Apakah penggunaan publik figur dalam iklan testimonial lebih menguntungkan ?%2C Apakah peran publik figur (sudah mewakili produk yang dibawakan?. testimonial advertising%2C public figure

  4. Design of a SiGe BiCMOS canceller for low frequency noise reduction in direct conversion receivers

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Johansen, Tom Keinicke; Michaelsen, Rasmus Schandorph

    of the local oscillator (LO) toward the RF port of the mixer (Figure 1(a)). This causes the LO self-mixing phenomenon, which is responsible of a significant DC offset at the output of the receiver (Figure 1(b)). In turn, this DC offset gives rise to a high level of low frequency noise affecting the signal...

  5. Noise Characterization of Devices for Optical Computing

    National Research Council Canada - National Science Library

    Walkup, John

    1998-01-01

    The major objective of the research effort is to investigate the noise characteristics of advanced optical Sources, spatial light modulators, and other devices which are candidates for applications in optical computers...

  6. A Figure-of-Merit for Beta Cell Detector Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Brian W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suarez, Rey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-02

    In order to decrease the minimum detectable activities (MDAs) of beta-gamma radioxenon detectors, it is important to increase the ability to resolve the individual isotopes. One proposed method for doing this is to increase the energy resolution of the beta cell through the use of silicon detectors. While silicon detectors can improve the energy resolution, it is accompanied with a decrease in detection efficiency compared to plastic scintillator beta cells. Due to the uncertainty on the impact of the competing variables, we have developed a figure-of-merit (FOM) capable of determining the impact of detector parameters on the MDAs. By utilizing the FOM to analyze different detectors, we are able to directly compare current and future detectors and estimate their impact on the radioxenon MDAs.

  7. Estimating achievable signal-to-noise ratios of MRI transmit-receive coils from radiofrequency power measurements: applications in quality control

    International Nuclear Information System (INIS)

    Redpath, T.W.

    2000-01-01

    The inverse relationship between the radiofrequency (RF) power needed to transmit a 90 deg. RF pulse, and the signal-to-noise ratio (SNR) available from a transmit-receive RF coil is well known. The theory is restated and a formula given for the signal-to-noise ratio from water, achievable from a single-shot MRI experiment, in terms of the net forward RF power needed for a rectangular 90 deg. RF pulse of known shape and duration. The result is normalized to a signal bandwidth of 1 Hz and a sample mass of 1 g. The RF power information needed is available on most commercial scanners, as it is used to calculate specific absorption rates for RF tissue heating. The achievable SNR figure will normally be larger that that actually observed, mainly because of receiver noise, but also because of inaccuracies in setting RF pulse angles, and relaxation effects. Phantom experiments were performed on the transmit-receive RF head coil of a commercial MRI system at 0.95 T using a projection method. The measured SNR agreed with that expected from the formula for achievable SNR once a correction was made for the noise figure of the receiving chain. Comparisons of measured SNR figures with those calculated from RF power measurements are expected to be of value in acceptance testing and quality control. (author)

  8. Statistical prediction of far-field wind-turbine noise, with probabilistic characterization of atmospheric stability

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Barlas, Emre; Sogachev, Andrey

    2018-01-01

    Here we provide statistical low-order characterization of noise propagation from a single wind turbine, as affected by mutually interacting turbine wake and environmental conditions. This is accomplished via a probabilistic model, applied to an ensemble of atmospheric conditions based upon......; the latter solves Reynolds-Averaged Navier-Stokes equations of momentum and temperature, including the effects of stability and the ABL depth, along with the drag due to the wind turbine. Sound levels are found to be highest downwind for modestly stable conditions not atypical of mid-latitude climates...

  9. Nonlinearly stacked low noise turbofan stator

    Science.gov (United States)

    Schuster, William B. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  10. 'Breath figure' PLGA films as implant coatings for controlled drug release

    Science.gov (United States)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected

  11. Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — data for figures 1-8 in journal article "Assessment of port-related air quality impacts: geographic analysis of population", International Journal of Environment and...

  12. Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Bozkurt, Ayhan; Yaralioglu, G Goksenin

    2016-11-01

    This paper presents an analysis of thermal (Johnson) noise received from the radiation medium by otherwise noiseless capacitive micromachined ultrasonic transducer (CMUT) membranes operating in their fundamental resonance mode. Determination of thermal noise received by multiple numbers of transducers or a transducer array requires the assessment of cross-coupling through the radiation medium, as well as the self-radiation impedance of the individual transducer. We show that the total thermal noise received by the cells of a CMUT has insignificant correlation, and is independent of the radiation impedance, but is only determined by the mass of each membrane and the electromechanical transformer ratio. The proof is based on the analytical derivations for a simple transducer with two cells, and extended to transducers with numerous cells using circuit simulators. We used a first-order model, which incorporates the fundamental resonance of the CMUT. Noise power is calculated by integrating over the entire spectrum; hence, the presented figures are an upper bound for the noise. The presented analyses are valid for a transimpedance amplifier in the receive path. We use the analysis results to calculate the minimum detectable pressure of a CMUT. We also provide an analysis based on the experimental data to show that output noise power is limited by and comparable to the theoretical upper limit.

  13. Statistical characterization of speckle noise in coherent imaging systems

    Science.gov (United States)

    Yaroslavsky, Leonid; Shefler, A.

    2003-05-01

    Speckle noise imposes fundamental limitation on image quality in coherent radiation based imaging and optical metrology systems. Speckle noise phenomena are associated with properties of objects to diffusely scatter irradiation and with the fact that in recording the wave field, a number of signal distortions inevitably occur due to technical limitations inherent to hologram sensors. The statistical theory of speckle noise was developed with regard to only limited resolving power of coherent imaging devices. It is valid only asymptotically as much as the central limit theorem of the probability theory can be applied. In applications this assumption is not always applicable. Moreover, in treating speckle noise problem one should also consider other sources of the hologram deterioration. In the paper, statistical properties of speckle due to the limitation of hologram size, dynamic range and hologram signal quantization are studied by Monte-Carlo simulation for holograms recorded in near and far diffraction zones. The simulation experiments have shown that, for limited resolving power of the imaging system, widely accepted opinion that speckle contrast is equal to one holds only for rather severe level of the hologram size limitation. For moderate limitations, speckle contrast changes gradually from zero for no limitation to one for limitation to less than about 20% of hologram size. The results obtained for the limitation of the hologram sensor"s dynamic range and hologram signal quantization reveal that speckle noise due to these hologram signal distortions is not multiplicative and is directly associated with the severity of the limitation and quantization. On the base of the simulation results, analytical models are suggested.

  14. Characterization of classical static noise via qubit as probe

    Science.gov (United States)

    Javed, Muhammad; Khan, Salman; Ullah, Sayed Arif

    2018-03-01

    The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.

  15. Influence of Spatial and Chromatic Noise on Luminance Discrimination.

    Science.gov (United States)

    Miquilini, Leticia; Walker, Natalie A; Odigie, Erika A; Guimarães, Diego Leite; Salomão, Railson Cruz; Lacerda, Eliza Maria Costa Brito; Cortes, Maria Izabel Tentes; de Lima Silveira, Luiz Carlos; Fitzgerald, Malinda E C; Ventura, Dora Fix; Souza, Givago Silva

    2017-12-05

    Pseudoisochromatic figures are designed to base discrimination of a chromatic target from a background solely on the chromatic differences. This is accomplished by the introduction of luminance and spatial noise thereby eliminating these two dimensions as cues. The inverse rationale could also be applied to luminance discrimination, if spatial and chromatic noise are used to mask those cues. In this current study estimate of luminance contrast thresholds were conducted using a novel stimulus, based on the use of chromatic and spatial noise to mask the use of these cues in a luminance discrimination task. This was accomplished by presenting stimuli composed of a mosaic of circles colored randomly. A Landolt-C target differed from the background only by the luminance. The luminance contrast thresholds were estimated for different chromatic noise saturation conditions and compared to luminance contrast thresholds estimated using the same target in a non-mosaic stimulus. Moreover, the influence of the chromatic content in the noise on the luminance contrast threshold was also investigated. Luminance contrast threshold was dependent on the chromaticity noise strength. It was 10-fold higher than thresholds estimated from non-mosaic stimulus, but they were independent of colour space location in which the noise was modulated. The present study introduces a new method to investigate luminance vision intended for both basic science and clinical applications.

  16. External noise distinguishes attention mechanisms.

    Science.gov (United States)

    Lu, Z L; Dosher, B A

    1998-05-01

    We developed and tested a powerful method for identifying and characterizing the effect of attention on performance in visual tasks as due to signal enhancement, distractor exclusion, or internal noise suppression. Based on a noisy Perceptual Template Model (PTM) of a human observer, the method adds increasing amounts of external noise (white gaussian random noise) to the visual stimulus and observes the effect on performance of a perceptual task for attended and unattended stimuli. The three mechanisms of attention yield three "signature" patterns of performance. The general framework for characterizing the mechanisms of attention is used here to investigate the attentional mechanisms in a concurrent location-cued orientation discrimination task. Test stimuli--Gabor patches tilted slightly to the right or left--always appeared on both the left and the right of fixation, and varied independently. Observers were cued on each trial to attend to the left, the right, or evenly to both stimuli, and decide the direction of tilt of both test stimuli. For eight levels of added external noise and three attention conditions (attended, unattended, and equal), subjects' contrast threshold levels were determined. At low levels of external noise, attention affected threshold contrast: threshold contrasts for non-attended stimuli were systematically higher than for equal attention stimuli, which were, in turn, higher than for attended stimuli. Specifically, when the rms contrast of the external noise is below 10%, there is a consistent 17% elevation of contrast threshold from attended to unattended condition across all three subjects. For higher levels of external noise, attention conditions did not affect threshold contrast values at all. These strong results are characteristic of a signal enhancement, or equivalently, an internal additive noise reduction mechanism of attention.

  17. Neural Networks for Segregation of Multiple Objects: Visual Figure-Ground Separation and Auditory Pitch Perception.

    Science.gov (United States)

    Wyse, Lonce

    An important component of perceptual object recognition is the segmentation into coherent perceptual units of the "blooming buzzing confusion" that bombards the senses. The work presented herein develops neural network models of some key processes of pre-attentive vision and audition that serve this goal. A neural network model, called an FBF (Feature -Boundary-Feature) network, is proposed for automatic parallel separation of multiple figures from each other and their backgrounds in noisy images. Figure-ground separation is accomplished by iterating operations of a Boundary Contour System (BCS) that generates a boundary segmentation of a scene, and a Feature Contour System (FCS) that compensates for variable illumination and fills-in surface properties using boundary signals. A key new feature is the use of the FBF filling-in process for the figure-ground separation of connected regions, which are subsequently more easily recognized. The new CORT-X 2 model is a feed-forward version of the BCS that is designed to detect, regularize, and complete boundaries in up to 50 percent noise. It also exploits the complementary properties of on-cells and off -cells to generate boundary segmentations and to compensate for boundary gaps during filling-in. In the realm of audition, many sounds are dominated by energy at integer multiples, or "harmonics", of a fundamental frequency. For such sounds (e.g., vowels in speech), the individual frequency components fuse, so that they are perceived as one sound source with a pitch at the fundamental frequency. Pitch is integral to separating auditory sources, as well as to speaker identification and speech understanding. A neural network model of pitch perception called SPINET (SPatial PItch NETwork) is developed and used to simulate a broader range of perceptual data than previous spectral models. The model employs a bank of narrowband filters as a simple model of basilar membrane mechanics, spectral on-center off-surround competitive

  18. Extinction risk under coloured environmental noise

    OpenAIRE

    Heino, M; Ripa, Jörgen; Kaitala, V

    2000-01-01

    Positively autocorrelated red environmental noise is characterized by a strong dependence of expected sample variance on sample length. This dependence has to be taken into account when assessing extinction risk under red and white uncorrelated environmental noise. To facilitate a comparison between red and white noise, their expected variances can be scaled to be equal, but only at a chosen time scale. We show with a simple one-dimensional population dynamics model that the different but equ...

  19. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... of noisy environments and will alter their speech accordingly....

  20. Laser Noise and its Impact on the Performance of Intensity-Modulation with Direct-Detection Analog Photonic Links

    National Research Council Canada - National Science Library

    Urick, Vincent J; Devgan, Preetpaul S; McKinney, Jason D; Dexter, James L

    2007-01-01

    The equations for radio-frequency gain, radio-frequency noise figure, compression dynamic range and spurious-free dynamic range are derived for an analog photonic link employing intensity modulation and direct detection...

  1. Figure mining for biomedical research.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Iossifov, Ivan

    2009-08-15

    Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.

  2. Advancements in ion beam figuring of very thin glass plates (Conference Presentation)

    Science.gov (United States)

    Civitani, M.; Ghigo, M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Cotroneo, V.; DeRoo, C. T.; Schwartz, E. D.; Reid, P. B.

    2017-09-01

    The high-quality surface characteristics, both in terms of figure error and of micro-roughness, required on the mirrors of a high angular resolution x-ray telescope are challenging, but in principle well suited with a deterministic and non-contact process like the ion beam figuring. This process has been recently proven to be compatible even with very thin (thickness around 0.4mm) sheet of glasses (like D263 and Eagle). In the last decade, these types of glass have been investigated as substrates for hot slumping, with residual figure errors of hundreds of nanometres. In this view, the mirrors segments fabrication could be envisaged as a simple two phases process: a first replica step based on hot slumping (direct/indirect) followed by an ion beam figuring which can be considered as a post-fabrication correction method. The first ion beam figuring trials, realized on flat samples, showed that the micro-roughness is not damaged but a deeper analysis is necessary to characterize and eventually control/compensate the glass shape variations. In this paper, we present the advancements in the process definition, both on flat and slumped glass samples.

  3. Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise

    Science.gov (United States)

    Moore, R. Channing; Lee, Tyler; Theunissen, Frédéric E.

    2013-01-01

    Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex. PMID:23505354

  4. Noise-invariant neurons in the avian auditory cortex: hearing the song in noise.

    Science.gov (United States)

    Moore, R Channing; Lee, Tyler; Theunissen, Frédéric E

    2013-01-01

    Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex.

  5. Noise-invariant neurons in the avian auditory cortex: hearing the song in noise.

    Directory of Open Access Journals (Sweden)

    R Channing Moore

    Full Text Available Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex.

  6. Figure text extraction in biomedical literature.

    Directory of Open Access Journals (Sweden)

    Daehyun Kim

    2011-01-01

    Full Text Available Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures.We first evaluated an off-the-shelf Optical Character Recognition (OCR tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons.The evaluation on 382 figures (9,643 figure texts in total randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for

  7. Chicago transit authority train noise exposure.

    Science.gov (United States)

    Phan, Linh T; Jones, Rachael M

    2017-06-01

    To characterize noise exposure of riders on Chicago Transit Authority (CTA) trains, we measured noise levels twice on each segment of 7 of the 8 CTA train lines, which are named after colors, yielding 48 time-series measurements. We found the Blue Line has the highest noise levels compared to other train lines, with mean 76.9 dBA; and that the maximum noise level, 88.9 dBA occurred in the tunnel between the Chicago and Grand stations. Train segments involving travel through a tunnel had significantly higher noise levels than segments with travel on elevated and ground level tracks. While 8-hr doses inside the passenger cars were not estimated to exceed occupational exposure limits, train operators ride in a separate cab with operational windows and may therefore have higher noise exposures than riders. Despite the low risk of hearing loss for riders on CTA trains, in part because transit noise accounts for a small part of total daily noise exposure, 1-min average noise levels exceeded 85 dBA at times. This confirms anecdotal observations of discomfort due to noise levels, and indicates a need for noise management, particularly in tunnels.

  8. Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds

    International Nuclear Information System (INIS)

    Pineda, Angel R.; Barrett, Harrison H.

    2004-01-01

    The current paradigm for evaluating detectors in digital radiography relies on Fourier methods. Fourier methods rely on a shift-invariant and statistically stationary description of the imaging system. The theoretical justification for the use of Fourier methods is based on a uniform background fluence and an infinite detector. In practice, the background fluence is not uniform and detector size is finite. We study the effect of stochastic blurring and structured backgrounds on the correlation between Fourier-based figures of merit and Hotelling detectability. A stochastic model of the blurring leads to behavior similar to what is observed by adding electronic noise to the deterministic blurring model. Background structure does away with the shift invariance. Anatomical variation makes the covariance matrix of the data less amenable to Fourier methods by introducing long-range correlations. It is desirable to have figures of merit that can account for all the sources of variation, some of which are not stationary. For such cases, we show that the commonly used figures of merit based on the discrete Fourier transform can provide an inaccurate estimate of Hotelling detectability

  9. Characterization and reduction of noise in Mo/Au transition edge sensors

    International Nuclear Information System (INIS)

    Lindeman, Mark A.; Bandler, Simon; Brekosky, Regis P.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Saab, Tarek; Stahle, Caroline K.

    2004-01-01

    We measured noise in a variety of Mo/Au transition-edge sensor (TES) X-ray calorimeters. We investigated the relationship between the noise, bias, and the superconducting phase transition in the TESs. Our square TES calorimeters have achieved very good energy resolutions (2.4 eV at 1.5 keV) but their resolutions have been limited by broadband white excess noise generated by the TES when it is biased in the phase transition. We have recently fabricated Mo/Cu TESs with interdigitated normal metal bars deposited on top of the bilayer. The new TES calorimeters have demonstrated little or no excess noise in the phase transition. These results point the way to development of TES calorimeters with higher energy resolution

  10. Figure and finish characterization of high performance metal mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Church, E.L.

    1991-10-01

    Most metal mirrors currently used in synchrotron radiation (SR) beam lines to reflect soft x-rays are made of electroless nickel plate on an aluminum substrate. This material combination has allowed optical designers to incorporate exotic cylindrical aspheres into grazing incidence x-ray beam-handling systems by taking advantage of single-point diamond machining techniques. But the promise of high-quality electroless nickel surfaces has generally exceeded the performance. We will examine the evolution of electroless nickel surfaces through a study of the quality of mirrors delivered for use at the National Synchrotron Light Source over the past seven years. We have developed techniques to assess surface quality based on the measurement of surface roughness and figure errors with optical profiling instruments. It is instructive to see how the quality of the surface is related to the complexity of the machine operations required to produce it

  11. Exogenous spatial attention influences figure-ground assignment.

    Science.gov (United States)

    Vecera, Shaun P; Flevaris, Anastasia V; Filapek, Joseph C

    2004-01-01

    In a hierarchical stage account of vision, figure-ground assignment is thought to be completed before the operation of focal spatial attention. Results of previous studies have supported this account by showing that unpredictive, exogenous spatial precues do not influence figure-ground assignment, although voluntary attention can influence figure-ground assignment. However, in these studies, attention was not summoned directly to a region in a figure-ground display. In three experiments, we addressed the relationship between figure-ground assignment and visuospatial attention. In Experiment 1, we replicated the finding that exogenous precues do not influence figure-ground assignment when they direct attention outside of a figure-ground stimulus. In Experiment 2, we demonstrated that exogenous attention can influence figure-ground assignment if it is directed to one of the regions in a figure-ground stimulus. In Experiment 3, we demonstrated that exogenous attention can influence figure-ground assignment in displays that contain a Gestalt figure-ground cue; this result suggests that figure-ground processes are not entirely completed prior to the operation of focal spatial attention. Exogenous spatial attention acts as a cue for figure-ground assignment and can affect the outcome of figure-ground processes.

  12. An experimental evaluation of a new approach to aircraft noise modelling

    NARCIS (Netherlands)

    Roo, F. de; Salomons, E.M.

    2008-01-01

    Common engineering models for aircraft noise, such as INM, yield noise levels by interpolation of Noise Power Distance (NPD) tables. In the European project Imagine (2004 - 2006), a different approach was proposed: the source is characterized by an emission spectrum and the received noise spectrum

  13. Surveillance of instruments by noise analysis

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    Random fluctuations of neutron flux, temperature, and pressure in a reactor provide multifrequency excitation of the corresponding instrumentation chains. Mathematical descriptors suitable for characterizing the output, or noise, of the instrumentation are reviewed with a view toward using such noise in detecting instrument faults. Demonstrations of the feasibility of this approach in a number of reactors provide illustrative examples. Comparisons with traditional surveillance testing are made, and a number of advantages and some disadvantages of using noise analysis as a supplementary technique are pointed out

  14. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; et al.

    2017-05-20

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.

  15. A Ka-band low-noise amplifier with a coplanar waveguide (CPW) structure with 0.15-μm GaAs pHEMT technology

    International Nuclear Information System (INIS)

    Wu Chia-Song; Chang Chien-Huang; Liu Hsing-Chung; Lin Tah-Yeong; Wu Hsien-Ming

    2010-01-01

    This investigation explores a low-noise amplifier (LNA) with a coplanar waveguide (CPW) structure, in which a two-stage amplifier is associated with a cascade schematic circuit, implemented in 0.15-μm GaAs pseudomorphic high electron mobility transistor (pHEMT) technology in a Ka-band (26.5-40.0 GHz) microwave monolithic integrated circuit (MMIC). The experimental results demonstrate that the proposed LNA has a peak gain of 12.53 dB at 30 GHz and a minimum noise figure of 3.3 dB at 29.5 GHz, when biased at a V ds of 2 V and a V gs of -0.6 V with a drain current of 16 mA in the circuit. The results show that the millimeter-wave LNA with coplanar waveguide structure has a higher gain and wider bandwidth than a conventional circuit. Finally, the overall LNA characterization exhibits high gain and low noise, indicating that the LNA has a compact circuit and favorable RF characteristics. The strong RF character exhibited by the LNA circuit can be used in millimeter-wave circuit applications. (semiconductor integrated circuits)

  16. Summer Student Report 2014: Schottky component qualification and RF filter characterization

    CERN Document Server

    Egidos Plaja, Nuria

    2014-01-01

    This Summer Student project has been developed in BE-BI-QP department under the supervision of Manfred Wendt. Main goals of the task to be performed are the following: 1)\tFilter characterization: the student will get familiar with the Vector Network Analizer (VNA), S-parameter measurement and PSPICE modelling of low-pass filters. 2)\tFilter response matching: an algorithm to compare and classify filter responses into best-matching pairs will be developed. 3)\tSchottky monitor filter qualification: S-parameter and time domain measurements will be carried out with filters related to Schottky monitor and results will be benchmarked. 4)\tSchottky monitor amplifier measurement: noise figure and gain at a given frequency will be measured for a set of Low Noise Amplifiers related to Schottky monitor. -1dB compression point and 3rd order interception point will be measured too for education purposes. For the development of this project, the student will get familiar with RF measure devices (VNA, VSA), theoretical concep...

  17. Annoyance rating of wind turbine noise

    International Nuclear Information System (INIS)

    Iredale, R.

    1993-01-01

    Annoyance rating is important, but more important still is agreement on techniques for formulating minimal complaint criteria for design and specification purposes thus integrating noise control into the plant at the outset. A minimal complaint design criteria is suggested that finds its origin in the logic and techniques used successfully over many years for a wide range of power plant and other installations. The criterion is based on the masking of the wind turbine noise by the wind generated background noise. Satisfactory use of the criterion depends on the specification of inaudibility for the tones generated by the mechanical plant. Wind turbines generate more drive train noise than is realized and this contains many tones which tend to characterize the noise. Reduction of drive train noise would not only reduce the overall noise level but also give it a more acceptable character providing a margin against complaint in unusual circumstances of propagation. This requires very careful design of noise and vibration control in individual components. Vibration isolation between the support structures and the nacelle also requires careful attention. (UK)

  18. Temperature characterization of deep and shallow defect centers of low noise silicon JFETs

    International Nuclear Information System (INIS)

    Arnaboldi, Claudio; Fascilla, Andrea; Lund, M.W.; Pessina, Gianluigi

    2004-01-01

    We have selected different low noise JFET processes that have shown outstanding dynamic and noise performance at both room temperature and low temperatures. We have studied JFETs made with a process optimized for cryogenic operation, testing several devices of varying capacitance. For most of them, we have been able to detect the presence of shallow individual traps at low temperature which create low frequency (LF) Generation-Recombination (G-R) noise. For one device type no evidence of traps has been observed at the optimum temperature of operation (around 100 K). It had a very small residual LF noise. This device has been cooled down to 14 K. From below 100 K down to 14 K the noise was observed to increase due to G-R noise originating from donor atoms (dopants) inside the channel. A very simple theoretical interpretation confirms the nature of G-R noise from these very shallow trapping centers. We also studied devices from a process optimized for room temperature operation and found noise corresponding to the presence of a single deep level trap. Even for this circumstance the theory was experimentally confirmed. The measurement approach we used allowed us to achieve a very high accuracy in the modeling of the measured G-R noise. The ratio of the density of the atoms responsible for G-R noise above the doping concentration, N T /N d , has been verified with a sensitivity around 10 -7

  19. Design and Characterization of Low-noise Dewar for High-sensitivity SQUID Operation

    International Nuclear Information System (INIS)

    Yu, K. K.; Lee, Y. H.; Kim, K.; Kwon, H.; Kim, J. M.

    2010-01-01

    We have fabricated the low noise liquid helium(LHe) dewar with a different shape of thermal shield to apply the 64-channel SQUID(Superconducting Quantum Interference Device) gradiometer. The first shape of thermal shield was made of an aluminum plate with a wide width of 100 mm slit and the other shape was modified with a narrow width of 20 mm slit. The two types of dewars were estimated by comparing the thermal noise and the signal-to-noise ratio(SNR) of magnetocardiography(MCG) using the 1st order SQUID gradiometer system cooled each dewar. The white noise was different as a point of the dewar. The noise was increased as close as the edge of dewar, and also increased at the thermal shield with the more wide width slit. The white noise of the dewar with thermal shield of 100 mm slit was 6.5 fT/Hz 1/2 at the center of dewar and 25 fT/Hz 1/2 at the edge, and the white noise of the other one was 3.5 - 7 fT/Hz 1/2 . We measured the MCG using 64-channel SQUID gradiometer cooled at each LHe dewar and compared the SNR of MCG signal. The SNR was improved of 10 times at the LHe dewar with a modified thermal shield.

  20. Noise and vibration analysis system

    International Nuclear Information System (INIS)

    Johnsen, J.R.; Williams, R.L.

    1985-01-01

    The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results

  1. Sound and noise in urban parks

    OpenAIRE

    António P. O. Carvalho; Ricardo A. F. Cleto

    2012-01-01

    The main goal of this work is to study the soundscape of city gardens and urban parks using a sample of ten sites in Oporto, Portugal to analyze their soundscape through the acoustic characterization of the park's exterior and interior noise levels (LAeq, LA10, LA50 and LA90) and by a socio-acoustic survey to the visitors to check their perception of acoustic quality. The measurements showed gardens/parks with interior noise levels from 47 to 61 dB(A) (with exterior noise levels up to 67 dB(A...

  2. Student figures in friction

    DEFF Research Database (Denmark)

    Nielsen, Gritt B.

    , students' room for participation in their own learning, influenced by demands for efficiency, flexibility and student-centred education. The thesis recasts the anthropological endeavour as one of ‘figuration work'. That is, ‘frictional events' are explored as moments when conflicting figures...

  3. Facts and figures in 2004

    International Nuclear Information System (INIS)

    Lavergne, R.; Meuric, L.; Scherrer, S.; Paquel, V.; Louati, S.; Thienard, H.

    2005-01-01

    This document gathers a series of articles dedicated to the situation of the energy sector in France at the end of 2004: -) the energy balance sheet, -) the trend concerning energy consumption since 1973, -) the energy bill, -) figures about electrical power, -) figures about natural gas, -) figures about solid fossil fuels, -) figures about oil, and -) figures about renewable energies. The important fact to note is that the energy bill has soared by 24.1% to reach 28.35 milliard euros which represents 1.75% of the gross national product (PIB). The evolution over the year 2004 of the factors that contribute to the level of the energy bill is: - the import-export energy quantity differential: +7.5%, - the import-export energy cost differential (in Usa dollar): +27.1%, and - the fall of the dollar: -9.1%. (A.C.)

  4. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  5. Enhanced spatial resolution on figures versus grounds.

    Science.gov (United States)

    Hecht, Lauren N; Cosman, Joshua D; Vecera, Shaun P

    2016-07-01

    Much is known about the cues that determine figure-ground assignment, but less is known about the consequences of figure-ground assignment on later visual processing. Previous work has demonstrated that regions assigned figural status are subjectively more shape-like and salient than background regions. The increase in subjective salience of figural regions could be caused by a number of processes, one of which may be enhanced perceptual processing (e.g., an enhanced neural representation) of figures relative to grounds. We explored this hypothesis by having observers perform a perceptually demanding spatial resolution task in which targets appeared on either figure or ground regions. To rule out a purely attentional account of figural salience, observers discriminated targets on the basis of a region's color (red or green), which was equally likely to define the figure or the ground. The results of our experiments showed that targets appearing on figures were discriminated more accurately than those appearing in ground regions. In addition, targets appearing on figures were discriminated better than those presented in regions considered figurally neutral, but targets appearing within ground regions were discriminated more poorly than those appearing in figurally neutral regions. Taken together, our findings suggest that when two regions share a contour, regions assigned as figure are perceptually enhanced, whereas regions assigned as ground are perceptually suppressed.

  6. Enhanced spatial resolution on figures versus grounds

    Science.gov (United States)

    Hecht, Lauren N.; Cosman, Joshua D.; Vecera, Shaun P.

    2016-01-01

    Much is known about the cues that determine figure-ground assignment, but less is known about the consequences of figure-ground assignment on later visual processing. Previous work has demonstrated that regions assigned figural status are subjectively more shape-like and salient than background regions. The increase in subjective salience of figural regions could be caused by a number of processes, one of which may be enhanced perceptual processing (e.g., an enhanced neural representation) of figures relative to grounds. We explored this hypothesis by having observers perform a perceptually demanding spatial resolution task in which targets appeared either on figure or ground regions. To rule out a purely attentional account of figural salience, observers discriminated targets on the basis of a region’s color (red or green), which was equally likely to define the figure or the ground. The results of our experiments show that targets appearing on figures were discriminated more accurately than those appearing in ground regions. In addition, targets appearing on figures were discriminated better than those presented in regions considered figurally neutral, but targets appearing within ground regions were discriminated more poorly than those appearing in figurally neutral regions. Taken together, our findings suggest that when two regions share a contour, regions assigned as figure are perceptually enhanced, whereas regions assigned as grounds are perceptually suppressed. PMID:27048441

  7. Figure-associated text summarization and evaluation.

    Directory of Open Access Journals (Sweden)

    Balaji Polepalli Ramesh

    Full Text Available Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903.

  8. Figure-associated text summarization and evaluation.

    Science.gov (United States)

    Polepalli Ramesh, Balaji; Sethi, Ricky J; Yu, Hong

    2015-01-01

    Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903).

  9. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; /Fermilab

    2001-12-18

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  10. Mixed, charge and heat noises in thermoelectric nanosystems

    Science.gov (United States)

    Crépieux, Adeline; Michelini, Fabienne

    2015-01-01

    Mixed, charge and heat current fluctuations as well as thermoelectric differential conductances are considered for non-interacting nanosystems connected to reservoirs. Using the Landauer-Büttiker formalism, we derive general expressions for these quantities and consider their possible relationships in the entire ranges of temperature, voltage and coupling to the environment or reservoirs. We introduce a dimensionless quantity given by the ratio between the product of mixed noises and the product of charge and heat noises, distinguishing between the auto-ratio defined in the same reservoir and the cross-ratio between distinct reservoirs. From the linear response regime to the high-voltage regime, we further specify the analytical expressions of differential conductances, noises and ratios of noises, and examine their behavior in two concrete nanosystems: a quantum point contact in an ohmic environment and a single energy level quantum dot connected to reservoirs. In the linear response regime, we find that these ratios are equal to each other and are simply related to the figure of merit. They can be expressed in terms of differential conductances with the help of the fluctuation-dissipation theorem. In the non-linear regime, these ratios radically distinguish between themselves as the auto-ratio remains bounded by one, while the cross-ratio exhibits rich and complex behaviors. In the quantum dot nanosystem, we moreover demonstrate that the thermoelectric efficiency can be expressed as a ratio of noises in the non-linear Schottky regime. In the intermediate voltage regime, the cross-ratio changes sign and diverges, which evidences a change of sign in the heat cross-noise.

  11. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph J.

    2001-01-01

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  12. Stochastic resonance in a gain-noise model of a single-mode laser driven by pump noise and quantum noise with cross-correlation between real and imaginary parts under direct signal modulation

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Mei; Cao Li; Wu Da-Jin

    2007-01-01

    Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR)separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ and the deterministic steady-state intensity I0.In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of τand λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.

  13. Noise-induced transition in a quantum system

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pulak Kumar [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Barik, Debashis [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Ray, Deb Shankar [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2005-07-04

    We examine the noise-induced transition in a fluctuating bistable potential of a driven quantum system in thermal equilibrium. Making use of a Wigner canonical thermal distribution for description of the statistical properties of the thermal bath, we explore the generic effects of quantization like vacuum field fluctuation and tunneling in the characteristic stationary probability distribution functions undergoing transition from unimodal to bimodal nature and in signal-to-noise ratio characterizing the cooperative effect among the noise processes and the weak periodic signal.

  14. Noise-induced transition in a quantum system

    International Nuclear Information System (INIS)

    Ghosh, Pulak Kumar; Barik, Debashis; Ray, Deb Shankar

    2005-01-01

    We examine the noise-induced transition in a fluctuating bistable potential of a driven quantum system in thermal equilibrium. Making use of a Wigner canonical thermal distribution for description of the statistical properties of the thermal bath, we explore the generic effects of quantization like vacuum field fluctuation and tunneling in the characteristic stationary probability distribution functions undergoing transition from unimodal to bimodal nature and in signal-to-noise ratio characterizing the cooperative effect among the noise processes and the weak periodic signal

  15. Noise pollution mapping approach and accuracy on landscape scales.

    Science.gov (United States)

    Iglesias Merchan, Carlos; Diaz-Balteiro, Luis

    2013-04-01

    Noise mapping allows the characterization of environmental variables, such as noise pollution or soundscape, depending on the task. Strategic noise mapping (as per Directive 2002/49/EC, 2002) is a tool intended for the assessment of noise pollution at the European level every five years. These maps are based on common methods and procedures intended for human exposure assessment in the European Union that could be also be adapted for assessing environmental noise pollution in natural parks. However, given the size of such areas, there could be an alternative approach to soundscape characterization rather than using human noise exposure procedures. It is possible to optimize the size of the mapping grid used for such work by taking into account the attributes of the area to be studied and the desired outcome. This would then optimize the mapping time and the cost. This type of optimization is important in noise assessment as well as in the study of other environmental variables. This study compares 15 models, using different grid sizes, to assess the accuracy of the noise mapping of the road traffic noise at a landscape scale, with respect to noise and landscape indicators. In a study area located in the Manzanares High River Basin Regional Park in Spain, different accuracy levels (Kappa index values from 0.725 to 0.987) were obtained depending on the terrain and noise source properties. The time taken for the calculations and the noise mapping accuracy results reveal the potential for setting the map resolution in line with decision-makers' criteria and budget considerations. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  17. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    Science.gov (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  18. Hydroacoustic pile driving noise study - comprehensive report : final report.

    Science.gov (United States)

    2016-12-28

    Alaska DOT&PF and JASCO Applied Sciences partnered to characterize underwater noise from pile driving activities to inform the assessment of the potential impact of such noise on marine mammals. JASCO measured underwater sounds at the Kake, Auke Bay,...

  19. Cancelation and its simulation using Matlab according to active noise control case study of automotive noise silencer

    Science.gov (United States)

    Alfisyahrin; Isranuri, I.

    2018-02-01

    Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.

  20. 1/f Noise Characterization in CMOS Transistors in 0.13μm Technology

    DEFF Research Database (Denmark)

    Citakovic, J.; Stenberg, L J; Andreani, Pietro

    2006-01-01

    Low-frequency noise has been studied on a set of n- and p-channel CMOS transistors fabricated in a 0.13μm technology. Noise measurements have been performed on transistors with different gate lengths operating under wide bias conditions, ranging from weak to strong inversion. Noise origin has been...

  1. Figure 3

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Figure.tar.gz contains a directory for each WRF ensemble run. In these directories are *.csv files for each meteorology variable examined. These are comma...

  2. Chaos and noise.

    Science.gov (United States)

    He, Temple; Habib, Salman

    2013-09-01

    Simple dynamical systems--with a small number of degrees of freedom--can behave in a complex manner due to the presence of chaos. Such systems are most often (idealized) limiting cases of more realistic situations. Isolating a small number of dynamical degrees of freedom in a realistically coupled system generically yields reduced equations with terms that can have a stochastic interpretation. In situations where both noise and chaos can potentially exist, it is not immediately obvious how Lyapunov exponents, key to characterizing chaos, should be properly defined. In this paper, we show how to do this in a class of well-defined noise-driven dynamical systems, derived from an underlying Hamiltonian model.

  3. Sound quality prediction for engine-radiated noise

    Science.gov (United States)

    Liu, Hai; Zhang, Junhong; Guo, Peng; Bi, Fengrong; Yu, Hanzhengnan; Ni, Guangjian

    2015-05-01

    Diesel engine-radiated noise quality prediction is an important topic because engine noise has a significant impact on the overall vehicle noise. Sound quality prediction is based on subjective and objective evaluation of engine noise. The integrated satisfaction index (ISI) is proposed as a criterion for differentiate noise quality in the subjective evaluation, and five psychoacoustic parameters are selected for characterizing and analyzing the noise quality of the diesel engine objectively. The combination of support vector machines (SVM) and genetic algorithm (GA) is proposed in order to establish a model for predicting the diesel engine-radiated noise quality for all operation conditions. The performance of the GA-SVM model is compared with the BP neural network model, and the results show that the mean relative error of the GA-SVM model is smaller than the BP neural network model. The importance rank of the sound quality metrics to the ISI is indicated by the non-parametric correlation analysis. This study suggests that the GA-SVM model is very useful for accurately predicting the diesel engine-radiated noise quality.

  4. Figure6

    Data.gov (United States)

    U.S. Environmental Protection Agency — R script for the reproduction of Figure6. This script accesses archived CMAQ and WRF model output on US EPA's HPC sol computer system and plots forward trajectories...

  5. Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM

    Energy Technology Data Exchange (ETDEWEB)

    McGinty, J; Requejo-Isidro, J; Munro, I; Talbot, C B; Dunsby, C; Neil, M A A; French, P M W [Photonics Group, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BW (United Kingdom); Kellett, P A; Hares, J D, E-mail: james.mcginty@imperial.ac.u [Kentech Instruments Ltd, Isis Building, Howbery Park, Wallingford, OX10 8BA (United Kingdom)

    2009-07-07

    Time-gated imaging using gated optical intensifiers provides a means to realize high speed fluorescence lifetime imaging (FLIM) for the study of fast events and for high throughput imaging. We present a signal-to-noise characterization of CCD-coupled micro-channel plate gated intensifiers used with this technique and determine the optimal acquisition parameters (intensifier gain voltage, CCD integration time and frame averaging) for measuring mono-exponential fluorescence lifetimes in the shortest image acquisition time for a given signal flux. We explore the use of unequal CCD integration times for different gate delays and show that this can improve the lifetime accuracy for a given total acquisition time.

  6. LOW-NOISE PAVEMENT AS A WAY OF LIMITATION OF TRAFFIC NOISE LEVEL

    Directory of Open Access Journals (Sweden)

    Władysław Gardziejczyk

    2014-11-01

    Full Text Available Road surface can significantlyreduce the trafficnoise level. Depending on the characteristic of the upper surface layers the differences between the maximum rolling noise levels from passing vehicles to reach values about 10 dB (A. A special group is low-noise pavements characterized by the presence of voids above 15%. Application the porous asphalt layers or asphalt mixture type BBTM affects a significantreduction the width of land surrounded the roads where permissible equivalent sound level is exceeded. Such solutions in some cases can replace acoustic barriers. Road pavements with a higher content of voids require proper maintenance because their acoustic performances are reduced during operation.

  7. Advanced Analytical Tools for the Characterization of Fundamental Jet Noise Sources and Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for innovative technologies and methods for noise reduction, noise prediction, and noise diagnostics. A comprehensive approach to reducing noise from...

  8. Davis Canyon noise analysis: Revision 2

    International Nuclear Information System (INIS)

    1985-11-01

    A study was performed as part of the Civilian Radioactive Waste Management Program to quantify the level and effect of noise from the various major phases of development of the proposed potentially acceptable nuclear waste repository site at Davis Canyon, Utah. This report contains the results of a predictive noise level study for the site characterization, repository construction, and repository operational phases. Included herein are graphic representations of energy averaged sound levels, and of audibility levels representing impact zones expected during each phase. Sound levels from onsite and offsite activity including traffic on highways and railroad routes are presented in isopleth maps. A description of the Environmental Noise Prediction Model used for the study, the study basis and methodologies, and actual modeling data are provided. Noise and vibration levels from blasting are also predicted and evaluated. Protective noise criteria containing a margin of safety are used in relation to residences, schools, churches, noise-sensitive recreation areas, and noise-sensitive biological resources. Protective ground motion criteria for ruins and delicate rock formation in Canyonlands National Park and for human annoyance are used in the evaluation of blasting. The evaluations provide the basis for assessing the noise impacts from the related activities at the proposed repository. 45 refs., 21 figs., 15 tabs

  9. Process sensors characterization based on noise analysis technique and artificial intelligence

    International Nuclear Information System (INIS)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos

    2005-01-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  10. Process sensors characterization based on noise analysis technique and artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rnavarro@ipen.br; sperillo@ipen.br; rcsantos@ipen.br

    2005-07-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  11. Figure S1 Figure S2

    Indian Academy of Sciences (India)

    WINTEC

    6.8. 7.0. 7.2. 7.4. 7.6. 7.8. 8.0. 8.2. 8.4. 8.6. 8.8 ppm. 0.0. 1.8. 9.7. 5.4. 6.9. 8.1. 9.0. 10.8. 3.2. 10.3. Figure S3. NMR titration of DAN-Ia acid with NDI at 30% MeOH in CDCl3. The numbers represent the mole ratios of the DAN-acid to the repeat unit.

  12. The Emergence of Figural Effects in the Watercolor Illusion

    Science.gov (United States)

    Pinna, Baingio; Penna, Maria Pietronilla

    The watercolor illusion is characterized by a large-scale assimilative color spreading (coloration effect) emanating from thin colored edges. The watercolor illusion enhances the figural properties of the colored areas and imparts to the surrounding area the perceptual status of background. This work explores interactions between cortical boundary and surface processes by presenting displays and psychophysical experiments that exhibit new properties of the watercolor illusion. The watercolor illusion is investigated as supporting a new principle of figure-ground organization when pitted against principles of surroundedness, relative orientation, and Prägnanz. The work demonstrated that the watercolor illusion probes a unique combination of visual processes that set it apart from earlier Gestalt principles, and can compete successfully against them. This illusion exemplifies how long-range perceptual effects may be triggered by spatially sparse information. All the main effects are explained by the FACADE model of biological vision, which clarifies how local properties control depthful filling-in of surface lightness and color.

  13. Continuous-variable quantum key distribution with Gaussian source noise

    International Nuclear Information System (INIS)

    Shen Yujie; Peng Xiang; Yang Jian; Guo Hong

    2011-01-01

    Source noise affects the security of continuous-variable quantum key distribution (CV QKD) and is difficult to analyze. We propose a model to characterize Gaussian source noise through introducing a neutral party (Fred) who induces the noise with a general unitary transformation. Without knowing Fred's exact state, we derive the security bounds for both reverse and direct reconciliations and show that the bound for reverse reconciliation is tight.

  14. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    Science.gov (United States)

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.

  15. Global noise studies for CMS Tracker upgrade

    CERN Document Server

    Arteche, F; Echevarria, I; Iglesias, M; Rivetta, C; Vila, I; 10.1088/1748-0221/5/12/C12029

    2010-01-01

    The characterization of the noise emissions of DC-DC converters at system level is critical to optimize the design of the detector and define rules for the integration strategy. This paper presents the impedance effects on the noise emissions of DC-DC converters at system level. Conducted and radiated noise emissions at the input and at the output from DC-DC converters have been simulated for different types of power network and FEE impedances. System aspects as granularity, stray capacitances of the system and different working conditions of the DC-DC converters are presented too. This study has been carried out using simulation models of noise emissions of DC-DC converters in the real scenario. The results of these studies show important recommendations and criteria to be applied to integrate the DC-DC converters and decrease the system noise level

  16. Modeling and characterization of the low frequency noise behavior for amorphous InGaZnO thin film transistors in the subthreshold region

    Science.gov (United States)

    Cai, Minxi; Yao, Ruohe

    2017-10-01

    An analytical model of the low-frequency noise (LFN) for amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) in the subthreshold region is developed. For a-IGZO TFTs, relations between the device noise and the subgap defects are characterized based on the dominant multiple trapping and release (MTR) mechanism. The LFN is considered to be contributed from trapping/detrapping of carriers both into the border traps and the subgap density of states (DOS). It is revealed that the LFN behavior of a-IGZO TFTs in the subthreshold region is significantly influenced by the distribution of tail states, where MTR process prevails. The 1/f α (with α < 1) spectrum of the drain current noise is also related to the characteristic temperature of the tail states. The new method is introduced to calculate the LFN of devices by extracting the LFN-related DOS parameters from the current-voltage characteristics.

  17. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    International Nuclear Information System (INIS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L.S.; Tavolaro, A.

    2016-01-01

    Highlights: • Graphene was exfoliated in liquid phase also in the presence of zeolite 4A. • Films were obtained by drop-casting. • SEM, Raman, low-frequency noise and thermal electric measurements show that the presence of zeolite improves the quality of the FLG films. - Abstract: In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al 2 O 3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm 2 . The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  18. Characterization and simulation of noise in PET images reconstructed with OSEM: Development of a method for the generation of synthetic images.

    Science.gov (United States)

    Castro, P; Huerga, C; Chamorro, P; Garayoa, J; Roch, M; Pérez, L

    2018-04-17

    The goals of the study are to characterize imaging properties in 2D PET images reconstructed with the iterative algorithm ordered-subset expectation maximization (OSEM) and to propose a new method for the generation of synthetic images. The noise is analyzed in terms of its magnitude, spatial correlation, and spectral distribution through standard deviation, autocorrelation function, and noise power spectrum (NPS), respectively. Their variations with position and activity level are also analyzed. This noise analysis is based on phantom images acquired from 18 F uniform distributions. Experimental recovery coefficients of hot spheres in different backgrounds are employed to study the spatial resolution of the system through point spread function (PSF). The NPS and PSF functions provide the baseline for the proposed simulation method: convolution with PSF as kernel and noise addition from NPS. The noise spectral analysis shows that the main contribution is of random nature. It is also proven that attenuation correction does not alter noise texture but it modifies its magnitude. Finally, synthetic images of 2 phantoms, one of them an anatomical brain, are quantitatively compared with experimental images showing a good agreement in terms of pixel values and pixel correlations. Thus, the contrast to noise ratio for the biggest sphere in the NEMA IEC phantom is 10.7 for the synthetic image and 8.8 for the experimental image. The properties of the analyzed OSEM-PET images can be described by NPS and PSF functions. Synthetic images, even anatomical ones, are successfully generated by the proposed method based on the NPS and PSF. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  20. Figures and First Years: An Analysis of Calculus Students' Use of Figures in Technical Reports

    Directory of Open Access Journals (Sweden)

    Nathan J. Antonacci

    2017-07-01

    Full Text Available This three-year study focused on first-year Calculus I students and their abilities to incorporate figures in technical reports. In each year, these calculus students wrote a technical report as part of the Polar Bear Module, an educational unit developed for use in partner courses in biology, computer science, mathematics, and physics as part of the Multidisciplinary Sustainability Education (MSE project at Ithaca College. In the first year of the project, students received basic technical report guidelines. In year two, the report guidelines changed to include explicit language on how to incorporate figures. In year three, a grading rubric was added to the materials provided to one of the two classes. In all three years, the students performed below expectations in their use of graphs in their reports. Reviews of the figures in the 78 technical reports written by the 106 students showed repeated deficiencies in the figures and how the students used them in the discussion sections and in evidence-based arguments. In year three the student’s quantitative literacy (QL skills were assessed using an extract from a QL assessment instrument published in Numeracy. The results indicated that the students could both read and interpret figures, suggesting that issues with QL were not the main contributor to student difficulty with written discussion about graphs. The study underscores the need that explicit instructional attention be given to developing student knowhow in the use of figures in technical reports.

  1. A wideband LNA employing gate-inductive-peaking and noise-canceling techniques in 0.18 μm CMOS

    International Nuclear Information System (INIS)

    Bao Kuan; Fan Xiangning; Li Wei; Zhang Li; Wang Zhigong

    2012-01-01

    This paper presents a wideband low noise amplifier (LNA) for multi-standard radio applications. The low noise characteristic is achieved by the noise-canceling technique while the bandwidth is enhanced by gate-inductive-peaking technique. High-frequency noise performance is consequently improved by the flattened gain over the entire operating frequency band. Fabricated in 0.18 μm CMOS process, the LNA achieves 2.5 GHz of −3 dB bandwidth and 16 dB of gain. The gain variation is within ±0.8 dB from 300 MHz to 2.2 GHz. The measured noise figure (NF) and average IIP3 are 3.4 dB and −2 dBm, respectively. The proposed LNA occupies 0.39 mm 2 core chip area. Operating at 1.8 V, the LNA drains a current of 11.7 mA. (semiconductor integrated circuits)

  2. Subjective assessment of simulated helicopter blade-slap noise

    Science.gov (United States)

    Lawton, B. W.

    1976-01-01

    The effects of several characteristics of helicopter blade slap upon human annoyance are examined. Blade slap noise was simulated by using continuous and impulsive noises characterized by five parameters: The number of sine waves in a single impulse; the frequency of the sine waves; the impulse repetition frequency; the sound pressure level (SPL) of the continuous noise; and the idealized crest factor of the impulses. Ten second samples of noise were synthesized with each of the five parameters at representative levels. The annoyance of each noise was judged by 40 human subjects. Analysis of the subjective data indicated that each of the five parameters had a statistically significant effect upon the annoyance judgments. The impulse crest factor and SPL of the continuous noise had very strong positive relationships with annoyance. The other parameters had smaller, but still significant, effects upon the annoyance judgments.

  3. Adventures with Lissajous Figures

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2018-06-01

    Lissajous Figures are produced by combining two oscillations at right angles to each other. The figures, drawn by mechanical devices called harmonographs, have scientific uses, but are also enjoyed for their own beauty. The author has been working with harmonographs since his undergraduate days, building several of them, lecturing on them and has written articles about them. This book is intended for people who enjoy physics or art or both.

  4. The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance

    International Nuclear Information System (INIS)

    Seher, Matthias; Challis, Richard

    2016-01-01

    This paper is concerned with the electrical properties of an electromagnetic acoustic transducer (EMAT) formed of a flat spiral coil coupled to steel sheet components and operating over a narrow band of frequencies around 50 kHz, well below significant resonances. The electromagnetic skin effect is a significant contributor to the terminal impedance of the EMAT and hence to signal sensitivity, Johnson noise generation and the achievable signal-to-noise ratios (SNR). A transformer model is developed to simulate these effects and to assist in the optimization of the SNR. In this analysis Johnson noise in the system is compared to the unknown emf generated in the eddy current path by an incident acoustic wave to yield a fundamental SNR. The attainable SNR of the whole system is normalized to this in the form of a noise figure. (paper)

  5. String figures as mathematics? an anthropological approach to string figure-making in oral tradition societies

    CERN Document Server

    Vandendriessche, Eric

    2015-01-01

    This book addresses the mathematical rationality contained in the making of string figures. It does so by using interdisciplinary methods borrowed from anthropology, mathematics, history and philosophy of mathematics. The practice of string figure-making has long been carried out in many societies, and particularly in those of oral tradition. It consists in applying a succession of operations to a string (knotted into a loop), mostly using the fingers and sometimes the feet, the wrists or the mouth. This succession of operations is intended to generate a final figure. The book explores differ

  6. Figure-ground segmentation can occur without attention.

    Science.gov (United States)

    Kimchi, Ruth; Peterson, Mary A

    2008-07-01

    The question of whether or not figure-ground segmentation can occur without attention is unresolved. Early theorists assumed it can, but the evidence is scant and open to alternative interpretations. Recent research indicating that attention can influence figure-ground segmentation raises the question anew. We examined this issue by asking participants to perform a demanding change-detection task on a small matrix presented on a task-irrelevant scene of alternating regions organized into figures and grounds by convexity. Independently of any change in the matrix, the figure-ground organization of the scene changed or remained the same. Changes in scene organization produced congruency effects on target-change judgments, even though, when probed with surprise questions, participants could report neither the figure-ground status of the region on which the matrix appeared nor any change in that status. When attending to the scene, participants reported figure-ground status and changes to it highly accurately. These results clearly demonstrate that figure-ground segmentation can occur without focal attention.

  7. Deaf Smith County noise analysis: Revision 2

    International Nuclear Information System (INIS)

    1985-11-01

    An analysis of activities proposed for the three major phases of development of the proposed nuclear waste repository site in Deaf Smith County, Texas, was conducted to quantify the noise levels and the effect of noise resulting from these activities. The report provides additional details of the predictive noise level modeling conducted for the site characterization, repository construction, and repository operation phases. Equivalent day/night sound levels are presented for each phase as sound level contours. Sound levels from onsite and offsite activities are addressed including traffic on access routes, and railroad construction and operation. A description of the predictive models, the analysis methodologies, the noise source inventories, the model outputs, and the evaluation criteria are included. 35 refs., 6 figs., 2 tabs

  8. Time-Distance Helioseismology: Noise Estimation

    Science.gov (United States)

    Gizon, L.; Birch, A. C.

    2004-10-01

    As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.

  9. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  10. Noise suppression via generalized-Markovian processes

    Science.gov (United States)

    Marshall, Jeffrey; Campos Venuti, Lorenzo; Zanardi, Paolo

    2017-11-01

    It is by now well established that noise itself can be useful for performing quantum information processing tasks. We present results which show how one can effectively reduce the error rate associated with a noisy quantum channel by counteracting its detrimental effects with another form of noise. In particular, we consider the effect of adding on top of a purely Markovian (Lindblad) dynamics, a more general form of dissipation, which we refer to as generalized-Markovian noise. This noise has an associated memory kernel and the resulting dynamics are described by an integrodifferential equation. The overall dynamics are characterized by decay rates which depend not only on the original dissipative time scales but also on the new integral kernel. We find that one can engineer this kernel such that the overall rate of decay is lowered by the addition of this noise term. We illustrate this technique for the case where the bare noise is described by a dephasing Pauli channel. We analytically solve this model and show that one can effectively double (or even triple) the length of the channel, while achieving the same fidelity, entanglement, and error threshold. We numerically verify this scheme can also be used to protect against thermal Markovian noise (at nonzero temperature), which models spontaneous emission and excitation processes. A physical interpretation of this scheme is discussed, whereby the added generalized-Markovian noise causes the system to become periodically decoupled from the background Markovian noise.

  11. Characterizing the continuously acquired cardiovascular time series during hemodialysis, using median hybrid filter preprocessing noise reduction.

    Science.gov (United States)

    Wilson, Scott; Bowyer, Andrea; Harrap, Stephen B

    2015-01-01

    The clinical characterization of cardiovascular dynamics during hemodialysis (HD) has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP) changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP) readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF) algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information.

  12. Richton Dome noise analysis: Revision 2

    International Nuclear Information System (INIS)

    1985-11-01

    A study was performed as part of the Civilian Radioactive Waste Management Program to quantify the level and effect of noise from the various major phases of development of the proposed potentially acceptable nuclear waste repository site at Richton Dome, Mississippi. This report contains the results of a predictive noise level study for the site characterization, repository construction, and repository operational phases. Included herein are graphic representations of energy averaged day/night sound levels representing impact zones expected during each phase. Sound levels from onsite and offsite activity including traffic on highways and railroad routes are presented in isopleth maps. A description of the Environmental Noise Prediction Model used for the study, the study basis and methodologies, and actual modeling data are provided. Noise and vibration levels from blasting are also predicted and evaluated. Protective noise criteria containing a margin of safety are used for persons in relation to residences, schools, churches, and agricultural areas. Protective ground motion criteria for residential dwelling and for human annoyance are used in the evaluation. The evaluation provides the bases for assessing the noise impacts from the related activities at the proposed repository. 24 refs., 8 figs., 8 tabs

  13. Noise as a Probe of Ising Spin Glass Transitions

    Science.gov (United States)

    Chen, Zhi; Yu, Clare

    2009-03-01

    Noise is ubiquitous and and is often viewed as a nuisance. However, we propose that noise can be used as a probe of the fluctuations of microscopic entities, especially in the vicinity of a phase transition. In recent work we have used simulations to show that the noise increases in the vicinity of phase transitions of ordered systems. We have recently turned our attention to noise near the phase transitions of disordered systems. In particular, we are studying the noise near Ising spin glass transitions using Monte Carlo simulations. We monitor the system as a function of temperature. At each temperature, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization. We look at different quantities, such as the noise power spectrum and the second spectrum of the noise, to analyze the fluctuations.

  14. Noise and Quality of Life

    Directory of Open Access Journals (Sweden)

    Michael D. Seidman

    2010-10-01

    Full Text Available Noise is defined as an unwanted sound or a combination of sounds that has adverse effects on health. These effects can manifest in the form of physiologic damage or psychological harm through a variety of mechanisms. Chronic noise exposure can cause permanent threshold shifts and loss of hearing in specific frequency ranges. Noise induced hearing loss (NIHL is thought to be one of the major causes of preventable hearing loss. Approximately 10 million adults and 5.2 million children in the US are already suffering from irreversible noise induced hearing impairment and thirty million more are exposed to dangerous levels of noise each day. The mechanisms of NIHL have yet to be fully identified, but many studies have enhanced our understanding of this process. The role of oxidative stress in NIHL has been extensively studied. There is compelling data to suggest that this damage may be mitigated through the implementation of several strategies including anti-oxidant, anti-ICAM 1 Ab, and anti JNK intervention. The psychological effects of noise are usually not well characterized and often ignored. However, their effect can be equally devastating and may include hypertension, tachycardia, increased cortisol release and increased physiologic stress. Collectively, these effects can have severe adverse consequences on daily living and globally on economic production. This article will review the physiologic and psychologic consequences of noise and its effect on quality of life.

  15. Low-frequency noise characterization of single CuO nanowire gas sensor devices

    NARCIS (Netherlands)

    Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W.; Vandamme, L.K.J.; Pogany, D.

    2015-01-01

    Low-frequency noise properties of single CuO nanowire devices were investigated under gas sensor operation conditions in dry and humid synthetic air at 350¿°C. A 1/f noise spectrum was found with the normalized power spectral density of current fluctuations typically a factor of 2 higher for humid

  16. Prediction and comparison of noise levels from ground and elevated flare systems

    International Nuclear Information System (INIS)

    Obasi, E.

    2009-01-01

    Flaring is a process to dispose of hydrocarbons during clean-up, emergency shut downs or dispose a small volume waste streams of mixed gasses that cannot easily or safely be separated. This presentation discussed flaring as a noise issue. It focused on flaring noise characterization; flare noise modeling; flare sound power levels; and flare sound pressure level comparison at a distance of 1.5 km. The presentation included a photograph of flaring at a gas plant in Nigeria. The presentation listed some of the potential health effects associated with long term exposure to excessive noise, such as hearing loss; headaches; stress; fatigue; sleep disturbance; and high blood pressure. Companies flare gas to dispose waste gases in a safe and reliable manner through combustion and to depressurize gas lines during maintenance and emergencies. This presentation also discussed ground and elevated flares; components of flare noise characterization; and key factors affecting flare noise. A model to predict flaring noise was also presented. It demonstrated that at the same gas mass flow rate, the noise level from elevated flare stacks are significantly higher than ground flares. tabs., figs.

  17. Prediction and comparison of noise levels from ground and elevated flare systems

    Energy Technology Data Exchange (ETDEWEB)

    Obasi, E. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2009-07-01

    Flaring is a process to dispose of hydrocarbons during clean-up, emergency shut downs or dispose a small volume waste streams of mixed gasses that cannot easily or safely be separated. This presentation discussed flaring as a noise issue. It focused on flaring noise characterization; flare noise modeling; flare sound power levels; and flare sound pressure level comparison at a distance of 1.5 km. The presentation included a photograph of flaring at a gas plant in Nigeria. The presentation listed some of the potential health effects associated with long term exposure to excessive noise, such as hearing loss; headaches; stress; fatigue; sleep disturbance; and high blood pressure. Companies flare gas to dispose waste gases in a safe and reliable manner through combustion and to depressurize gas lines during maintenance and emergencies. This presentation also discussed ground and elevated flares; components of flare noise characterization; and key factors affecting flare noise. A model to predict flaring noise was also presented. It demonstrated that at the same gas mass flow rate, the noise level from elevated flare stacks are significantly higher than ground flares. tabs., figs.

  18. Core component vibration monitoring in BWRs using neutron noise

    International Nuclear Information System (INIS)

    Fry, D.N.; Robinson, J.C.; Kryter, R.C.; Cole, O.C.

    1975-01-01

    Neutron noise from in-core fission detectors in a BWR was investigated to determine its effectiveness as a monitor of mechanical vibrations of core components. In this study the general properties of BWR neutron noise were characterized, and a signal enhancement method was implemented to improve the measurement sensitivity. (auth)

  19. Noise Reduction with Microphone Arrays for Speaker Identification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Z

    2011-12-22

    Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identification algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?

  20. Figure-ground segregation: A fully nonlocal approach.

    Science.gov (United States)

    Dimiccoli, Mariella

    2016-09-01

    We present a computational model that computes and integrates in a nonlocal fashion several configural cues for automatic figure-ground segregation. Our working hypothesis is that the figural status of each pixel is a nonlocal function of several geometric shape properties and it can be estimated without explicitly relying on object boundaries. The methodology is grounded on two elements: multi-directional linear voting and nonlinear diffusion. A first estimation of the figural status of each pixel is obtained as a result of a voting process, in which several differently oriented line-shaped neighborhoods vote to express their belief about the figural status of the pixel. A nonlinear diffusion process is then applied to enforce the coherence of figural status estimates among perceptually homogeneous regions. Computer simulations fit human perception and match the experimental evidence that several cues cooperate in defining figure-ground segregation. The results of this work suggest that figure-ground segregation involves feedback from cells with larger receptive fields in higher visual cortical areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Characterization of a low frequency magnetic noise from a two stage pulse tube cryocooler

    International Nuclear Information System (INIS)

    Eshraghi, Mohamad Javad; Sasada, Ichiro; Kim, Jin Mok; Lee, Yong Ho

    2008-01-01

    Magnetic noise of a two stage pulse tube cryocooler(PT) has been measured by a fundamental mode orthogonal fluxgate magnetometer and by a LTS SQUID gradiometer. The magnetometer was installed in a Dewar made of aluminum at 12 cm apart from a section containing magnetic regenerative materials of the PT. The magnetic noise shows a clear peak at 1.8 Hz which is the fundamental frequency of the He gas pumping rate. The 1.8 Hz magnetic noise took a peak, during the cooling process, when the cold stage temperature was at (or close to) 12 K, which resembles the variation of the temperature of the second cold stage of 1.8 Hz. Hence we attributed the main source of this magnetic noise to the temperature dependency of magnetic susceptibility of magnetic regenerative materials such as Er3Ni and HoCu2 used at the second stage. We pointed out that the superconducting magnetic shield by lead sheets reduced the interfering magnetic noise generated from this part. With this scheme, the magnetic noise amplitude measured with the first order gradiometer DROS, mounted in the vicinity of the magnetic regenerator, when the noise amplitude is minimum, which could be found from the fluxgate measurement results, was less than 500 pT peak to peak. Whereas without lead shielding the noise level was higher than the dynamic range of SQUID instrumentations which is around ±10nT. (author)

  2. Effect of multiplicative noise on stationary stochastic process

    Science.gov (United States)

    Kargovsky, A. V.; Chikishev, A. Yu.; Chichigina, O. A.

    2018-03-01

    An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The stationary state of the system results from a balance of deterministic damping and random pumping simulated as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological, and technical problems of natural and humanitarian sciences are discussed.

  3. Instrumentation for Gate Current Noise Measurements on sub-100 nm MOS Transistors

    CERN Document Server

    Gaioni, L; Ratti, L; Re, V; Speziali, V; Traversi, G

    2008-01-01

    This work describes a measuring system that was developed to characterize the gate current noise performances of CMOS devices with minimum feature size in the 100 nm span. These devices play an essential role in the design of present daymixedsignal integrated circuits, because of the advantages associated with the scaling process. The reduction in the gate oxide thickness brought about by CMOS technology downscaling leads to a non-negligible gate current due to direct tunneling phenomena; this current represents a noise source which requires an accurate characterization for optimum analog design. In this paper, two instruments able to perform measurements in two different ranges of gate current values will be discussed. Some of the results of gate current noise characterization will also be presented.

  4. Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring.

    Science.gov (United States)

    Everss-Villalba, Estrella; Melgarejo-Meseguer, Francisco Manuel; Blanco-Velasco, Manuel; Gimeno-Blanes, Francisco Javier; Sala-Pla, Salvador; Rojo-Álvarez, José Luis; García-Alberola, Arcadi

    2017-10-25

    Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported

  5. Evaluation of the pole figure

    International Nuclear Information System (INIS)

    Cabrera B, E.; Macias B, L.R.

    1984-01-01

    In the present work it's shown the possibility of obtaining a pole-figure from the data generated in a conventional X-ray equipment, with a commercial goniometer and no electronic device to process the data. The way to plot the pole-figure on-line is by means of measuring the diffractogram and plot manually the stereographic projections. The atainable precision is very low in such a cumbersome process. In this paper we substitute such method by storing the data in a punched tape from a conventional teletype. The data is processed in a computer and the pole-figure is recorded by a plotter attached to the computer. (author)

  6. Investigation of mode partition noise in Fabry-Perot laser diode

    Science.gov (United States)

    Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping

    2014-09-01

    Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.

  7. Design of CMOS Tunable Image-Rejection Low-Noise Amplifier with Active Inductor

    Directory of Open Access Journals (Sweden)

    Ler Chun Lee

    2008-01-01

    Full Text Available A fully integrated CMOS tunable image-rejection low-noise amplifier (IRLNA has been designed using Silterra's industry standard 0.18 μm RF CMOS process. The notch filter is designed using an active inductor. Measurement results show that the notch filter designed using active inductor contributes additional 1.19 dB to the noise figure of the low-noise amplifier (LNA. A better result is possible if the active inductor is optimized. Since active inductors require less die area, the die area occupied by the IRLNA is not significantly different from a conventional LNA, which was designed for comparison. The proposed IRLNA exhibits S21 of 11.8 dB, S11 of −17.8 dB, S22 of −10.7 dB, and input 1 dB compression point of −12 dBm at 3 GHz

  8. Noise adaptation in integrate-and fire neurons.

    Science.gov (United States)

    Rudd, M E; Brown, L G

    1997-07-01

    The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.

  9. Purely temporal figure-ground segregation.

    Science.gov (United States)

    Kandil, F I; Fahle, M

    2001-05-01

    Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.

  10. Figures of merit for surface plasmon waveguides

    Science.gov (United States)

    Berini, Pierre

    2006-12-01

    Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of hree popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.

  11. Using Figure and Concept Knowledge in Geometry

    Directory of Open Access Journals (Sweden)

    Yavuz Karpuz

    2014-08-01

    Full Text Available In this study, we aim to investigate how students build interaction between concepts and figure in geometry. For this purpose we developed two type data collection tool. First one called shapely is formed eight open ended question which has concepts and figure. Second one called shapeless is formed eight open ended question which has only concepts. To prepare this data collection tools’ difficulty level we took two math teachers’ opinions. Developed data collection tools were applied 120 students at 9th grade and 11th grade in Trabzon Gazi Anatolian High School. First of all we applied shapeless questions. One month later we applied shapely questions. We investigated students’ answer and the data showed that students more succeed in shapely questions than shapeless questions. We concluded that the difficulty of solving shapeless question result from students didn’t manage to draw figure representing concept knowledge or draw wrong figure, figure drawn by students can’t fulfıl generalizability condition and students who have little knowledge of concept in geometry is under the influence of prototype figure.Key Words:    Figural concepts theory, geometrical reasoning, geometry teaching

  12. Figure-ground mechanisms provide structure for selective attention.

    Science.gov (United States)

    Qiu, Fangtu T; Sugihara, Tadashi; von der Heydt, Rüdiger

    2007-11-01

    Attention depends on figure-ground organization: figures draw attention, whereas shapes of the ground tend to be ignored. Recent research has revealed mechanisms for figure-ground organization in the visual cortex, but how these mechanisms relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2 in Macaca mulatta. Although we found assignment of border ownership for attended and for ignored figures, attentional modulation was stronger when the attended figure was located on the neuron's preferred side of border ownership. When the border between two overlapping figures was placed in the receptive field, responses depended on the side of attention, and enhancement was generally found on the neuron's preferred side of border ownership. This correlation suggests that the neural network that creates figure-ground organization also provides the interface for the top-down selection process.

  13. Study on phase noise induced by 1/f noise of the modulator drive circuit in high-sensitivity fiber optic gyroscope

    Science.gov (United States)

    Teng, Fei; Jin, Jing; Li, Yong; Zhang, Chunxi

    2018-05-01

    The contribution of modulator drive circuit noise as a 1/f noise source to the output noise of the high-sensitivity interferometric fiber optic gyroscope (IFOG) was studied here. A noise model of closed-loop IFOG was built. By applying the simulated 1/f noise sequence into the model, a gyroscope output data series was acquired, and the corresponding power spectrum density (PSD) and the Allan variance curve were calculated to analyze the noise characteristic. The PSD curve was in the spectral shape of 1/f, which verifies that the modulator drive circuit induced a low frequency 1/f phase noise into the gyroscope. The random walk coefficient (RWC), a standard metric to characterize the noise performance of the IFOG, was calculated according to the Allan variance curve. Using an operational amplifier with an input 1/f noise of 520 nV/√Hz at 1 Hz, the RWC induced by this 1/f noise was 2 × 10-4°/√h, which accounts for 63% of the total RWC. To verify the correctness of the noise model we proposed, a high-sensitivity gyroscope prototype was built and tested. The simulated Allan variance curve gave a good rendition of the prototype actual measured curve. The error percentage between the simulated RWC and the measured value was less than 13%. According to the model, a noise reduction method is proposed and the effectiveness is verified by the experiment.

  14. Photonic microwave signals with zeptosecond-level absolute timing noise

    Science.gov (United States)

    Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann

    2017-01-01

    Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.

  15. Effects of background noise on total noise annoyance

    Science.gov (United States)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  16. Acoustic-noise-optimized diffusion-weighted imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  17. Jet engine noise and infrared plume correlation field campaign

    Science.gov (United States)

    Cunio, Phillip M.; Weber, Reed A.; Knobel, Kimberly R.; Smith, Christine; Draudt, Andy

    2015-09-01

    Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.

  18. Maximizing noise energy for noise-masking studies.

    Science.gov (United States)

    Jules Étienne, Cédric; Arleo, Angelo; Allard, Rémy

    2017-08-01

    Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

  19. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  20. Compact modelling of InAlN/GaN HEMT for low noise applications

    International Nuclear Information System (INIS)

    Sakalas, P; Šimukovič, A; Matulionis, A; Piotrowicz, S; Jardel, O; Delage, S L; Mukherjee, A

    2014-01-01

    This paper presents results of high-frequency noise modelling of InAlN/GaN high electron mobility transistors (HEMTs) with different formulations of the minimum noise figure NF min . Current–voltage characteristics and s-parameters of 0.15 μm gate length and 2 × 75 μm gate width InAlN/GaN HEMTs were measured at room temperature in a wide frequency range (300 MHz to 50 GHz) and bias range (V GS from −4.8 to 1 V and V DS from 0 to 21 V). Both the EEHEMT1 and Angelov GaN compact models yielded excellent agreement for transfer and output characteristics, transconductance g m , and f T , f max. High-frequency noise parameters NF min , R n , Γ OPT of InAlN/GaN HEMT were measured in 8–50 GHz frequency band. Noise formulation within the EEHEMT1 model underestimates the measured NF min and R n . The well known three-parameter PRC noise model is in a better agreement with the measured data but neglects the shot noise resulting from the gate leakage. The inductive degenerated source matching method and EEHEMT1 were used to design a single stage LNA operated at 8 GHz frequency. A 10 dB gain with an input reflection of −12 dB with a 2.5 dB of noise factor were obtained at 8 GHz. (paper)

  1. Michigan transportation facts & figures : public transportation

    Science.gov (United States)

    2002-08-16

    This on-line document is part of a series, Transportation Facts & Figures, by the Michigan Department of Transportation (MDOT). The Public Transit section of Transportation Facts & Figures cover such topics as intercity bus service, intercity rail se...

  2. Figural properties are prioritized for search under conditions of uncertainty: Setting boundary conditions on claims that figures automatically attract attention.

    Science.gov (United States)

    Peterson, Mary A; Mojica, Andrew J; Salvagio, Elizabeth; Kimchi, Ruth

    2017-01-01

    Nelson and Palmer (2007) concluded that figures/figural properties automatically attract attention, after they found that participants were faster to detect/discriminate targets appearing where a portion of a familiar object was suggested in an otherwise ambiguous display. We investigated whether these effects are truly automatic and whether they generalize to another figural property-convexity. We found that Nelson and Palmer's results do generalize to convexity, but only when participants are uncertain regarding when and where the target will appear. Dependence on uncertainty regarding target location/timing was also observed for familiarity. Thus, although we could replicate and extend Nelson and Palmer's results, our experiments showed that figures do not automatically draw attention. In addition, our research went beyond Nelson and Palmer's, in that we were able to separate figural properties from perceived figures. Because figural properties are regularities that predict where objects lie in the visual field, our results join other evidence that regularities in the environment can attract attention. More generally, our results are consistent with Bayesian theories in which priors are given more weight under conditions of uncertainty.

  3. RF dynamic and noise performance of Metallic Source/Drain SOI n-MOSFETs

    Science.gov (United States)

    Martin, Maria J.; Pascual, Elena; Rengel, Raúl

    2012-07-01

    This paper presents a detailed study of the RF and noise performance of n-type Schottky barrier (SB) MOSFETs with a particular focus on the influence of the Schottky barrier height (SBH) on the main dynamic and noise figures of merit. With this aim, a 2D Monte Carlo simulator including tunnelling transport across Schottky interfaces has been developed, with special care to consider quantum transmission coefficients and the influence of image charge effects at the Schottky junctions. Particular attention is paid to the microscopic transport features, including carrier mean free paths or number of scattering events along the channel for investigating the optimization of the device topology and the strategic concepts related to the noise performance of this new architecture. A more effective control of the gate electrode over drain current for low SBH (discussed in terms of internal physical quantities) is translated into an enhanced transconductance gm, cut-off frequency fT, and non-quasistatic dynamic parameters. The drain and gate intrinsic noise sources show a noteworthy degradation with the SBH reduction due to the increased current, influence of hot carriers and reduced number of phonon scatterings. However, the results evidence that this effect is counterbalanced by the extremely improved dynamic performance in terms of gm and fT. Therefore, the deterioration of the intrinsic noise performance of the SB-MOSFET has no significant impact on high-frequency noise FoMs as NFmin, Rn and Gass for low SBH and large gate overdrive conditions. The role of the SBH on Γopt, optimum noise reactance and susceptance has been also analyzed.

  4. Figure_2_data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data for Figure 2. This dataset is associated with the following publication: Sarwar, G., D. Kang, K. Foley, D. Schwede, B. Gantt, and R. Mathur. Technical note:...

  5. Speech perception in noise in unilateral hearing loss

    OpenAIRE

    Mondelli, Maria Fernanda Capoani Garcia; dos Santos, Marina de Marchi; José, Maria Renata

    2016-01-01

    ABSTRACT INTRODUCTION: Unilateral hearing loss is characterized by a decrease of hearing in one ear only. In the presence of ambient noise, individuals with unilateral hearing loss are faced with greater difficulties understanding speech than normal listeners. OBJECTIVE: To evaluate the speech perception of individuals with unilateral hearing loss in speech perception with and without competitive noise, before and after the hearing aid fitting process. METHODS: The study included 30 adu...

  6. Multiscale KF Algorithm for Strong Fractional Noise Interference Suppression in Discrete-Time UWB Systems

    Directory of Open Access Journals (Sweden)

    Liyun Su

    2011-01-01

    Full Text Available In order to suppress the interference of the strong fractional noise signal in discrete-time ultrawideband (UWB systems, this paper presents a new UWB multi-scale Kalman filter (KF algorithm for the interference suppression. This approach solves the problem of the narrowband interference (NBI as nonstationary fractional signal in UWB communication, which does not need to estimate any channel parameter. In this paper, the received sampled signal is transformed through multiscale wavelet to obtain a state transition equation and an observation equation based on the stationarity theory of wavelet coefficients in time domain. Then through the Kalman filter method, fractional signal of arbitrary scale is easily figured out. Finally, fractional noise interference is subtracted from the received signal. Performance analysis and computer simulations reveal that this algorithm is effective to reduce the strong fractional noise when the sampling rate is low.

  7. data for figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — Figures 1-10 and Table 1. This dataset is associated with the following publication: Chang, S.Y., S. Arunachalam, A. Valencia, B. Naess, V. Isakov , M. Breen , T....

  8. Shot noise reduction in the AlGaAs/GaAs- and InGaP/GaAs-based HBTs

    Science.gov (United States)

    Sakalas, Paulius; Schroeter, Michael; Zampardi, Peter; Zirath, Herbert

    2003-05-01

    Noise parameters of AlGaAs/GaAs and InGaP/GaAs HBTs were measured in microwave frequency range and modeled using the small-signal equivalent circuit approach. Correlated current noise sources in the base and collector currents with thermal noise in the circuit resistive elements were accounted for by the model and yielded good agreement with the measured data. This enabled an extraction of the different noise source contributions to minimum noise figure (NFmin) in AlGaAs/GaAs and InGaP/GaAs HBTs. Decomposition of the (NFmin) in to the different contributors showed that the main noise sources in investigated HBTs are correlated base and collector current shot noise. The observed minimum of NFmin versus frequency at lower collector current is explained by the reduction of the emitter/base junction shot noise component due to the spike in the emitter/base junction and associated accumulation of the quasi-thermalized electrons forming a space charge, which screens the electron transfer through the barrier. The bias (VCE) increase creates an efficient electric field in collector/base junction, capable of 'washing out' the accumulated charge. Such shot noise reduction in HBTs could be exploited in the LNA for the RF application.

  9. Effect of noise in computed tomographic reconstructions on detectability

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1982-01-01

    The detectability of features in an image is ultimately limited by the random fluctuations in density or noise present in that image. The noise in CT reconstructions arising from the statistical fluctuations in the one-dimensional input projection measurements has an unusual character owing to the reconstruction procedure. Such CT image noise differs from the white noise normally found in images in its lack of low-frequency components. The noise power spectrum of CT reconstructions can be related to the effective density of x-ray quanta detected in the projection measurements, designated as NEQ (noise-equivalent quanta). The detectability of objects that are somewhat larger than the spatial resolution is directly related to NEQ. Since contrast resolution may be defined in terms of the ability to detect large, low-contrast objects, the measurement of a CT scanner's NEQ may be used to characterize its contrast sensitivity

  10. Retorical figures in advertising language

    Directory of Open Access Journals (Sweden)

    Radenković-Šošić Bojana

    2012-01-01

    Full Text Available Promotional activities are very often based on advertising and diverse types of public relations. In order to attract consumers' attention and achieve communication goals set by the corporate strategy, advertisers frequently use rhetorical elements in advertising discourse. The advertisers try to convey a desired message and to communicate with the recipient of the message by using various rhetorical figures. It is argued that understanding the structure and function of rhetorical figures in advertising requires a "text- and reader-aware approach". The use of rhetorical figures in advertising has been overlooked in consumer research. This paper shows that the use of rhetorical elements in the advertising discourse is very frequent, but at the same time it is questioned if the function of the rhetorical figures is just a communication with the target market (which is a base of communication models and if the consequences of linguistic influences are much more serious. The complex nature of advertising language with various rhetorical figures (thropes and schemes do not just stimulate recipients to demonstrate a desirable behavior, but indirectly it constructs a concept of desirable lifestyle and it induces them to identify themselves with the explained model. Moreover, the analyzed corpus included advertising slogans of social responsible companies as well as advertising campaigns with elements of diverse ideologies. In the time of digitization and a rapid information flow, consumer's attention is less dedicated to the advertising messages. Therefore, it should be expected that in the future advertisers will have to adjust linguistic, audio and visual techniques to the unfocused message recipients.

  11. Random noise characterization on the carrying capacities of a ...

    African Journals Online (AJOL)

    The process of the survival of species dependent on a limited resource in a polluted environment which isnot a new idea can be described by the technique of a mathematical modelling. We have utilised the technique of a numerical simulation to study the impact of environmental random noise on the carrying capacities of ...

  12. Figuring Out Food Labels (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... English Español Figuring Out Food Labels KidsHealth / For Kids / Figuring Out Food Labels What's in this article? ...

  13. A record/replay system for the harmonic analysis of nuclear reactor flux noise

    International Nuclear Information System (INIS)

    Lawrence, L.A.J.; Corran, E.R.

    1960-02-01

    The design of a record/replay system for the determination of neutron flux spectra is discussed and circuit details and performance figures are given. Frequency modulation is used with a carrier frequency of 1,000 cycles per second, the complete system having an overall bandwidth of 100 cycles per second. The noise is recorded on magnetic tape and when replayed is analysed into a spectrum by means of a selective amplifier used in conjunction with an infinitely variable speed control on the tape. It is shown that if the lowest spectral frequency is .01 cycles per second a recording time of many hours is necessary. The DIDO noise spectrum is analysed and shown to be contained in a bandwidth of a few cycles per second. (author)

  14. Does the central limit theorem always apply to phase noise? Some implications for radar problems

    Science.gov (United States)

    Gray, John E.; Addison, Stephen R.

    2017-05-01

    The phase noise problem or Rayleigh problem occurs in all aspects of radar. It is an effect that a radar engineer or physicist always has to take into account as part of a design or in attempt to characterize the physics of a problem such as reverberation. Normally, the mathematical difficulties of phase noise characterization are avoided by assuming the phase noise probability distribution function (PDF) is uniformly distributed, and the Central Limit Theorem (CLT) is invoked to argue that the superposition of relatively few random components obey the CLT and hence the superposition can be treated as a normal distribution. By formalizing the characterization of phase noise (see Gray and Alouani) for an individual random variable, the summation of identically distributed random variables is the product of multiple characteristic functions (CF). The product of the CFs for phase noise has a CF that can be analyzed to understand the limitations CLT when applied to phase noise. We mirror Kolmogorov's original proof as discussed in Papoulis to show the CLT can break down for receivers that gather limited amounts of data as well as the circumstances under which it can fail for certain phase noise distributions. We then discuss the consequences of this for matched filter design as well the implications for some physics problems.

  15. Characterization of a subset of large amplitude noise events in VIRGO science run 1 (VSR1)

    International Nuclear Information System (INIS)

    Del Prete, M

    2009-01-01

    We report about a characterization study of a subset of large amplitude noise events present in the main data channel of the VIRGO detector. The main motivation of this study is the identification of auxiliary channels which can be used to define veto procedures. We characterized large amplitude events both in the time and in the frequency domain. We found evidence of coincidences among these and disturbances detected by magnetometer's sensors or inside the main power supply. In some cases the disturbances were produced by events in the VIRGO environment such as lightnings, main power supply glitches and airplane traffic. We have found two auxiliary channels that can be used to veto events generated by main power supply glitches or lightnings. A procedure to clean the main channel based on them has been successfully tested. We have also identified two auxiliary channels which are useful for the identification of events generated by airplane traffic. These can be used to implement a vetoing procedure both in the time and in the frequency domain.

  16. Characterization of a subset of large amplitude noise events in VIRGO science run 1 (VSR1)

    Energy Technology Data Exchange (ETDEWEB)

    Del Prete, M [Universita di Pisa, Lungarno Pacinotti, 43, 56126 Pisa Instituto Nazionale di Fisica Nucleare sez. di Pisa, ED C polo Fibonacci, Via F Buonarroti 2, 56127, Pisa (Italy)

    2009-10-21

    We report about a characterization study of a subset of large amplitude noise events present in the main data channel of the VIRGO detector. The main motivation of this study is the identification of auxiliary channels which can be used to define veto procedures. We characterized large amplitude events both in the time and in the frequency domain. We found evidence of coincidences among these and disturbances detected by magnetometer's sensors or inside the main power supply. In some cases the disturbances were produced by events in the VIRGO environment such as lightnings, main power supply glitches and airplane traffic. We have found two auxiliary channels that can be used to veto events generated by main power supply glitches or lightnings. A procedure to clean the main channel based on them has been successfully tested. We have also identified two auxiliary channels which are useful for the identification of events generated by airplane traffic. These can be used to implement a vetoing procedure both in the time and in the frequency domain.

  17. Comparison of the noise performance of 10GHz QW and QD mode-locked laser diodes

    DEFF Research Database (Denmark)

    Carpintero, Guillermo; Thompson, Mark G.; Yvind, Kresten

    2010-01-01

    This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes.......This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes....

  18. Four-jet impingement: Noise characteristics and simplified acoustic model

    International Nuclear Information System (INIS)

    Brehm, C.; Housman, J.A.; Kiris, C.C.; Barad, M.F.; Hutcheson, F.V.

    2017-01-01

    Highlights: • Large eddy simulation of unique four jet impingement configuration. • Characterization of flow features using POD, FFT, and wavelet decomposition. • Noise source identification utilizing causality method. • Development of simplified acoustic model utilizing equivalent source method. • Comparison with experimental data from BENS experiment. - Abstract: The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order weighted essentially non-oscillatory scheme. Although these types of impinging jet configurations have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortical flow structures in the center of the four-jet impingement region. The causality method based on Lighthills acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a simplified acoustic model of the four-jet impingement device by utilizing the equivalent source method. Finally, three linear acoustic four-jet impingement models of the four-jet impingement device are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  19. Facts and Figures

    Science.gov (United States)

    ... Saves Lives Facts & Figures My Blood, Your Blood Blood Donation Types Did you know there is more than one type of blood donation? Learn more about blood donation types here. Blood Safety and Testing The blood supply ...

  20. Retorical figures in advertising language

    OpenAIRE

    Radenković-Šošić Bojana

    2012-01-01

    Promotional activities are very often based on advertising and diverse types of public relations. In order to attract consumers' attention and achieve communication goals set by the corporate strategy, advertisers frequently use rhetorical elements in advertising discourse. The advertisers try to convey a desired message and to communicate with the recipient of the message by using various rhetorical figures. It is argued that understanding the structure and function of rhetorical figur...

  1. Familiar shapes attract attention in figure-ground displays.

    Science.gov (United States)

    Nelson, Rolf A; Palmer, Stephen E

    2007-04-01

    We report five experiments that explore the effect of figure-ground factors on attention. We hypothesized that figural cues, such as familiar shape, would draw attention to the figural side in an attentional cuing task using bipartite figure-ground displays. The first two experiments used faces in profile as the familiar shape and found a perceptual advantage for targets presented on the meaningful side of the central contour in detection speed (Experiment 1) and discrimination accuracy (Experiment 2). The third experiment demonstrated the figural advantage in response time (RT) with nine other familiar shapes (including a sea horse, a guitar, a fir tree, etc.), but only when targets appeared in close proximity to the contour. A fourth experiment obtained a figural advantage in a discrimination task with the larger set of familiar shapes. The final experiment ruled out eye movements as a possible confounding factor by replicating the RT advantage for targets on the figural side of face displays when all trials containing eye movements were eliminated. The results are discussed in terms of ecological influences on attention, and are cast within the framework of Yantis and Jonides's hypothesis that attention is exogenously drawn to the onset of new perceptual objects. We argue that the figural side constitutes an "object" whereas the ground side does not, and that figural cues such as shape familiarity are effective in determining which areas represent objects.

  2. Noise-induced temporal dynamics in Turing systems

    KAUST Repository

    Schumacher, Linus J.; Woolley, Thomas E.; Baker, Ruth E.

    2013-01-01

    We examine the ability of intrinsic noise to produce complex temporal dynamics in Turing pattern formation systems, with particular emphasis on the Schnakenberg kinetics. Using power spectral methods, we characterize the behavior of the system using

  3. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  4. Gene regulation and noise reduction by coupling of stochastic processes.

    Science.gov (United States)

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  5. Figure-ground representation and its decay in primary visual cortex.

    Science.gov (United States)

    Strother, Lars; Lavell, Cheryl; Vilis, Tutis

    2012-04-01

    We used fMRI to study figure-ground representation and its decay in primary visual cortex (V1). Human observers viewed a motion-defined figure that gradually became camouflaged by a cluttered background after it stopped moving. V1 showed positive fMRI responses corresponding to the moving figure and negative fMRI responses corresponding to the static background. This positive-negative delineation of V1 "figure" and "background" fMRI responses defined a retinotopically organized figure-ground representation that persisted after the figure stopped moving but eventually decayed. The temporal dynamics of V1 "figure" and "background" fMRI responses differed substantially. Positive "figure" responses continued to increase for several seconds after the figure stopped moving and remained elevated after the figure had disappeared. We propose that the sustained positive V1 "figure" fMRI responses reflected both persistent figure-ground representation and sustained attention to the location of the figure after its disappearance, as did subjects' reports of persistence. The decreasing "background" fMRI responses were relatively shorter-lived and less biased by spatial attention. Our results show that the transition from a vivid figure-ground percept to its disappearance corresponds to the concurrent decay of figure enhancement and background suppression in V1, both of which play a role in form-based perceptual memory.

  6. Noise-enhanced categorization in a recurrently reconnected neural network

    International Nuclear Information System (INIS)

    Monterola, Christopher; Zapotocky, Martin

    2005-01-01

    We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent network. We show that the performance of the reconnected network has features reminiscent of nondynamic stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in which noise-mediated categorization fails

  7. Noise-enhanced categorization in a recurrently reconnected neural network

    Science.gov (United States)

    Monterola, Christopher; Zapotocky, Martin

    2005-03-01

    We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent network. We show that the performance of the reconnected network has features reminiscent of nondynamic stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in which noise-mediated categorization fails.

  8. Noise Exposures of Rural Adolescents

    Science.gov (United States)

    Humann, Michael; Sanderson, Wayne; Flamme, Greg; Kelly, Kevin M.; Moore, Genna; Stromquist, Ann; Merchant, James A.

    2011-01-01

    Purpose: This project was conducted to characterize the noise exposure of adolescents living in rural and agricultural environments. Methods: From May to October, 25 adolescents ages 13 through 17, living either on a farm or a rural nonfarm, were enrolled in the study. Subjects received training on the correct operation and use of personal noise…

  9. Figure-ground mechanisms provide structure for selective attention

    OpenAIRE

    Qiu, Fangtu T.; Sugihara, Tadashi; von der Heydt, Rüdiger

    2007-01-01

    Attention depends on figure-ground organization: figures draw attention, while shapes of the ground tend to be ignored. Recent research has demonstrated mechanisms of figure-ground organization in the visual cortex, but how they relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2. While assignment of border ownership was found for attended as well as for ignore...

  10. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    Directory of Open Access Journals (Sweden)

    Sabine A. Janssen

    2011-05-01

    Full Text Available In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A‑weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  11. When emotions are expressed figuratively: Psycholinguistic and Affective Norms of 619 Idioms for German (PANIG).

    Science.gov (United States)

    Citron, Francesca M M; Cacciari, Cristina; Kucharski, Michael; Beck, Luna; Conrad, Markus; Jacobs, Arthur M

    2016-03-01

    Despite flourishing research on the relationship between emotion and literal language, and despite the pervasiveness of figurative expressions in communication, the role of figurative language in conveying affect has been underinvestigated. This study provides affective and psycholinguistic norms for 619 German idiomatic expressions and explores the relationships between affective and psycholinguistic idiom properties. German native speakers rated each idiom for emotional valence, arousal, familiarity, semantic transparency, figurativeness, and concreteness. They also described the figurative meaning of each idiom and rated how confident they were about the attributed meaning. The results showed that idioms rated high in valence were also rated high in arousal. Negative idioms were rated as more arousing than positive ones, in line with results from single words. Furthermore, arousal correlated positively with figurativeness (supporting the idea that figurative expressions are more emotionally engaging than literal expressions) and with concreteness and semantic transparency. This suggests that idioms may convey a more direct reference to sensory representations, mediated by the meanings of their constituting words. Arousal correlated positively with familiarity. In addition, positive idioms were rated as more familiar than negative idioms. Finally, idioms without a literal counterpart were rated as more emotionally valenced and arousing than idioms with a literal counterpart. Although the meanings of ambiguous idioms were less correctly defined than those of unambiguous idioms, ambiguous idioms were rated as more concrete than unambiguous ones. We also discuss the relationships between the various psycholinguistic variables characterizing idioms, with reference to the literature on idiom structure and processing.

  12. A high-efficiency, low-noise power solution for a dual-channel GNSS RF receiver

    International Nuclear Information System (INIS)

    Shi Jian; Mo Taishan; Gan Yebing; Ma Chengyan; Ye Tianchun; Le Jianlian

    2012-01-01

    A high-efficiency low-noise power solution for a dual-channel GNSS RF receiver is presented. The power solution involves a DC—DC buck converter and a followed low-dropout regulator (LDO). The pulse-width-modulation (PWM) control method is adopted for better noise performance. An improved low-power high-frequency PWM control circuit is proposed, which halves the average quiescent current of the buck converter to 80 μA by periodically shutting down the OTA. The size of the output stage has also been optimized to achieve high efficiency under a light load condition. In addition, a novel soft-start circuit based on a current limiter has been implemented to avoid inrush current. Fabricated with commercial 180-nm CMOS technology, the DC—DC converter achieves a peak efficiency of 93.1% under a 2 MHz working frequency. The whole receiver consumes only 20.2 mA from a 3.3 V power supply and has a noise figure of 2.5 dB. (semiconductor integrated circuits)

  13. The precision segmented reflectors: Moderate mission figure control subsystem

    Science.gov (United States)

    Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.

    1991-01-01

    A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.

  14. EEG signatures accompanying auditory figure-ground segregation.

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P; Szerafin, Ágnes; Shinn-Cunningham, Barbara G; Winkler, István

    2016-11-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased - i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. Copyright © 2016. Published by Elsevier Inc.

  15. EEG signatures accompanying auditory figure-ground segregation

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P.; Szerafin, Ágnes; Shinn-Cunningham, Barbara; Winkler, István

    2017-01-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased – i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. PMID:27421185

  16. Human Figure Drawings: Abusing the Abused.

    Science.gov (United States)

    Bardos, Achilles N.

    1993-01-01

    Responds to previous article (Motta, Little, and Tobin, this issue) which reviewed data-based studies on figure drawings and found little support for their validity or use in assessing personality, behavior, emotion, or intellectual functioning. Notes recent approaches to interpretation of human figure drawings and cites flaws in argument against…

  17. Efficiently characterizing the total error in quantum circuits

    Science.gov (United States)

    Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph

    A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.

  18. Deficit in figure-ground segmentation following closed head injury.

    Science.gov (United States)

    Baylis, G C; Baylis, L L

    1997-08-01

    Patient CB showed a severe impairment in figure-ground segmentation following a closed head injury. Unlike normal subjects, CB was unable to parse smaller and brighter parts of stimuli as figure. Moreover, she did not show the normal effect that symmetrical regions are seen as figure, although she was able to make overt judgments of symmetry. Since she was able to attend normally to isolated objects, CB demonstrates a dissociation between figure ground segmentation and subsequent processes of attention. Despite her severe impairment in figure-ground segmentation, CB showed normal 'parallel' single feature visual search. This suggests that figure-ground segmentation is dissociable from 'preattentive' processes such as visual search.

  19. Key figures for the regional- and distribution grid

    International Nuclear Information System (INIS)

    Vikingstad, S.

    1996-02-01

    In Norway, improving the efficiency of the hydroelectric grid operation is a stated goal of the Energy Act. Several studies have identified potential profits of such improvement. This publication focuses on costs and improvement potentials. Publication of key figures may stimulate grid owners, boards and administrations to improve the operating efficiency of their grids. The publication shows key figures for the regional- and distribution grid and is based on accounting data for 1994. The key figures are divided into: (1) Cost structure: The key figures express the relative contributions of each cost component to the total income of the grid, (2) Costs and physical quantities: The key figures show the cost of delivering the transport services, (3) Physical quantities: The key figures describe the working conditions of the energy utility. It appears that the cost structure of the sector varies considerably. The same is true of the cost related to the delivery of grid services. 30 figs., 6 tabs

  20. Fast flux test facility noise data management

    International Nuclear Information System (INIS)

    Thie, J.A.

    1988-01-01

    An extensive collection of spectra from an automated data collection system at the Fast Flux Facility has features from neutron data extracted and managed by database software. Inquiry techniques, including screening, applied to database results show the influences of control rods on wideband noise and, more generally, abilities to detect diverse types of off-normal noise. Uncovering a temporary 0.1-Hz resonance shift gave additional diagnostic information on a 13-Hz mechanical motion characterized by the interference of two resonances. The latter phenomenon is discussed generically for possible application to other reactor types. (author)

  1. Noise pollution in iron and steel industry

    International Nuclear Information System (INIS)

    Bisio, G.; Piromalli, W.; Acerbo, P.

    1999-01-01

    Iron and steel industry is characterized by high energy consumption and thus present remarkable problems from the point of view of noise pollution. The aims of this paper is to examine characteristic and acoustical emissions and immisions of some fundamentals iron and steel plants with several remarks on the possible measures to reduce noise pollution. For a large integrate iron and steel system, some surveys are shown with all devices running and, in addition, comparisons are made with other surveys when the main devices were out of service owing to great maintenance works [it

  2. Figures in clinical trial reports: current practice & scope for improvement.

    Science.gov (United States)

    Pocock, Stuart J; Travison, Thomas G; Wruck, Lisa M

    2007-11-19

    Most clinical trial publications include figures, but there is little guidance on what results should be displayed as figures and how. To evaluate the current use of figures in Trial reports, and to make constructive suggestions for future practice. We surveyed all 77 reports of randomised controlled trials in five general medical journals during November 2006 to January 2007. The numbers and types of figures were determined, and then each Figure was assessed for its style, content, clarity and suitability. As a consequence, guidelines are developed for presenting figures, both in general and for each specific common type of Figure. Most trial reports contained one to three figures, mean 2.3 per article. The four main types were flow diagram, Kaplan Meier plot, Forest plot (for subgroup analyses) and repeated measures over time: these accounted for 92% of all figures published. For each type of figure there is a considerable diversity of practice in both style and content which we illustrate with selected examples of both good and bad practice. Some pointers on what to do, and what to avoid, are derived from our critical evaluation of these articles' use of figures. There is considerable scope for authors to improve their use of figures in clinical trial reports, as regards which figures to choose, their style of presentation and labelling, and their specific content. Particular improvements are needed for the four main types of figures commonly used.

  3. Figures in clinical trial reports: current practice & scope for improvement

    Directory of Open Access Journals (Sweden)

    Travison Thomas G

    2007-11-01

    Full Text Available Abstract Background Most clinical trial publications include figures, but there is little guidance on what results should be displayed as figures and how. Purpose To evaluate the current use of figures in Trial reports, and to make constructive suggestions for future practice. Methods We surveyed all 77 reports of randomised controlled trials in five general medical journals during November 2006 to January 2007. The numbers and types of figures were determined, and then each Figure was assessed for its style, content, clarity and suitability. As a consequence, guidelines are developed for presenting figures, both in general and for each specific common type of Figure. Results Most trial reports contained one to three figures, mean 2.3 per article. The four main types were flow diagram, Kaplan Meier plot, Forest plot (for subgroup analyses and repeated measures over time: these accounted for 92% of all figures published. For each type of figure there is a considerable diversity of practice in both style and content which we illustrate with selected examples of both good and bad practice. Some pointers on what to do, and what to avoid, are derived from our critical evaluation of these articles' use of figures. Conclusion There is considerable scope for authors to improve their use of figures in clinical trial reports, as regards which figures to choose, their style of presentation and labelling, and their specific content. Particular improvements are needed for the four main types of figures commonly used.

  4. Road traffic noise: self-reported noise annoyance versus GIS modelled road traffic noise exposure.

    Science.gov (United States)

    Birk, Matthias; Ivina, Olga; von Klot, Stephanie; Babisch, Wolfgang; Heinrich, Joachim

    2011-11-01

    self-reported road traffic noise annoyance is commonly used in epidemiological studies for assessment of potential health effects. Alternatively, some studies have used geographic information system (GIS) modelled exposure to road traffic noise as an objective parameter. The aim of this study was to analyse the association between noise exposure due to neighbouring road traffic and the noise annoyance of adults, taking other determinants into consideration. parents of 951 Munich children from the two German birth cohorts GINIplus and LISAplus reported their annoyance due to road traffic noise at home. GIS modelled road traffic noise exposure (L(den), maximum within a 50 m buffer) from the noise map of the city of Munich was available for all families. GIS-based calculated distance to the closest major road (≥10,000 vehicles per day) and questionnaire based-information about family income, parental education and the type of the street of residence were explored for their potential influence. An ordered logit regression model was applied. The noise levels (L(den)) and the reported noise annoyance were compared with an established exposure-response function. the correlation between noise annoyance and noise exposure (L(den)) was fair (Spearman correlation r(s) = 0.37). The distance to a major road and the type of street were strong predictors for the noise annoyance. The annoyance modelled by the established exposure-response function and that estimated by the ordered logit model were moderately associated (Pearson's correlation r(p) = 0.50). road traffic noise annoyance was associated with GIS modelled neighbouring road traffic noise exposure (L(den)). The distance to a major road and the type of street were additional explanatory factors of the noise annoyance appraisal.

  5. Judgments of aircraft noise in a traffic noise background

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  6. 252Cf-source-driven noise analysis measurements for characterization of concrete highly enriched uranium (HEU) storage vaults

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1993-01-01

    The 252 Cf-source-driven noise analysis method has been used in measurements for subcritical configurations of fissile systems for a variety of applications. Measurements of 25 fissile systems have been performed with a wide variety of materials and configurations. This method has been applied to measurements for (1) initial fuel loading of reactors, (2) quality assurance of reactor fuel elements, (3) fuel preparation facilities, (4) fuel processing facilities, (5) fuel storage facilities, (6) zero-power testing of reactors, and (7) verification of calculational methods for assemblies with the neutron k 252 Cf source and commercially available detectors was feasible and to determine if the measurement could characterize the ability of the concrete to isolate the fissile material

  7. A single-to-differential low-noise amplifier with low differential output imbalance

    International Nuclear Information System (INIS)

    Duan Lian; Ma Chengyan; He Xiaofeng; Ye Tianchun; Huang Wei; Jin Yuhua

    2012-01-01

    This paper presents a single-ended input differential output low-noise amplifier intended for GPS applications. We propose a method to reduce the gain/amplitude and phase imbalance of a differential output exploiting the inductive coupling of a transformer or center-tapped differential inductor. A detailed analysis of the theory of imbalance reduction, as well as a discussion on the principle of choosing the dimensions of a transformer, are given. An LNA has been implemented using TSMC 0.18 μm technology with ESD-protected. Measurement on board shows a voltage gain of 24.6 dB at 1.575 GHz and a noise figure of 3.2 dB. The gain imbalance is below 0.2 dB and phase imbalance is less than 2 degrees. The LNA consumes 5.2 mA from a 1.8 V supply. (semiconductor integrated circuits)

  8. "Blessed": Musical Talent, Smartness, & Figured Identities

    Science.gov (United States)

    Hoffman, Adria R.

    2015-01-01

    The purpose of this study is to explore smartness and talent as social constructs. Drawing on Holland et al.'s (1998) figured identities, this article explores the figuring of abilities by elucidating the voices of African American high school chorus students. Critical Race Theory (CRT) helps to unpack normalized language and practices that…

  9. Attention and competition in figure-ground perception.

    Science.gov (United States)

    Peterson, Mary A; Salvagio, Elizabeth

    2009-01-01

    What are the roles of attention and competition in determining where objects lie in the visual field, a phenomenon known as figure-ground perception? In this chapter, we review evidence that attention and other high-level factors such as familiarity affect figure-ground perception, and we discuss models that implement these effects. Next, we consider the Biased Competition Model of Attention in which attention is used to resolve the competition for neural representation between two nearby stimuli; in this model the response to the stimulus that loses the competition is suppressed. In the remainder of the chapter we discuss recent behavioral evidence that figure-ground perception entails between-object competition in which the response to the shape of the losing competitor is suppressed. We also describe two experiments testing whether more attention is drawn to resolve greater figure-ground competition, as would be expected if the Biased Competition Model of Attention extends to figure-ground perception. In these experiments we find that responses to targets on the location of a losing strong competitor are slowed, consistent with the idea that the location of the losing competitor is suppressed, but responses to targets on the winning competitor are not speeded, which is inconsistent with the hypothesis that attention is used to resolve figure-ground competition. In closing, we discuss evidence that attention can operate by suppression as well as by facilitation.

  10. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  11. Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Camp, Jordan B.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  12. Characterization of the aging and excess noise of a Hamamatsu fine mesh photopentode

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, D., E-mail: fujimoto@phas.ubc.ca; Hearty, C., E-mail: hearty@physics.ubc.ca

    2016-07-01

    The excess noise factor and the aging characteristics of 16 Hamamatsu R11283 photopentodes have been tested. These fine-mesh phototubes are to be paired with pure CsI scintillation crystals considered for use in the endcap calorimeter of the Belle II detector. The average excess noise factor was found to be 1.9±0.1±0.4. The electronic noise of a custom preamplifier produced by the University of Montreal was found as a consequence of this measurement and was 1730±33 electrons, in agreement with previous values. On average, the gain×quantum efficiency was reduced to 92±3% of the initial value after passing an average of 7 C through the anode. This corresponds to 70 years of standard Belle II operation.

  13. Intensity Noise Transfer Through a Diode-pumped Titanium Sapphire Laser System

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Hansen, Anders Kragh; Jensen, Ole Bjarlin

    2017-01-01

    higher RIN than a setup with only a single nonlinear crystal. The Ti:S is shown to have a cut-off frequency around 500 kHz, which means that noise structures of the pump laser above this frequency are strongly suppressed. Finally, the majority of the Ti:S noise seems to originate from the laser itself......In this paper, we investigate the noise performance and transfer in a titanium sapphire (Ti:S) laser system. This system consists of a DBR tapered diode laser, which is frequency doubled in two cascaded nonlinear crystals and used to pump the Ti:S laser oscillator. This investigation includes...... electrical noise characterizations of the utilized power supplies, the optical noise of the fundamental light, the second harmonic light, and finally the optical noise of the femtosecond pulses emitted by the Ti:S laser. Noise features originating from the electric power supply are evident throughout...

  14. 'Quantization' of stochastic variables: description and effects on the input noise sources in a BWR

    International Nuclear Information System (INIS)

    Matthey, M.

    1979-01-01

    A set of macrostochastic and discrete variables, with Markovian properties, is used to characterize the state of a BWR, whose input noise sources are of interest. The ratio between the auto-power spectral density (APSD) of the neutron noise fluctuations and the square modulus of the transfer function (SMTF) defines 'the total input noise source' (TINS), the components of which are the different noise source corresponding to the relevant variables. A white contribution to TINS arises from the birth and death processes of neutrons in the reactor and corresponds to a 'shot noise' (SN). Non-white contributions arise from fluctuations of the neutron cross-sections caused by fuel temperature and steam content variations. These terms called 'Flicker noises' (FN) are characterized by cut-off frequencies related to time constants of reactivity feedback effects. The respective magnitudes of the shot and flicker noises depend not only on the frequency, the feedback reactivity coefficients or the power of the reactor, but also on the 'quantization' of the continuous variables introduced such as fuel temperature and steam content. The effects of this last 'quantization' on the shapes of the noise sources and their sum are presented in this paper. (author)

  15. The limiting dynamics of a bistable molecular switch with and without noise.

    Science.gov (United States)

    Mackey, Michael C; Tyran-Kamińska, Marta

    2016-08-01

    We consider the dynamics of a population of organisms containing two mutually inhibitory gene regulatory networks, that can result in a bistable switch-like behaviour. We completely characterize their local and global dynamics in the absence of any noise, and then go on to consider the effects of either noise coming from bursting (transcription or translation), or Gaussian noise in molecular degradation rates when there is a dominant slow variable in the system. We show analytically how the steady state distribution in the population can range from a single unimodal distribution through a bimodal distribution and give the explicit analytic form for the invariant stationary density which is globally asymptotically stable. Rather remarkably, the behaviour of the stationary density with respect to the parameters characterizing the molecular behaviour of the bistable switch is qualitatively identical in the presence of noise coming from bursting as well as in the presence of Gaussian noise in the degradation rate. This implies that one cannot distinguish between either the dominant source or nature of noise based on the stationary molecular distribution in a population of cells. We finally show that the switch model with bursting but two dominant slow genes has an asymptotically stable stationary density.

  16. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  17. Ambient noise levels in the Taiwan region

    Science.gov (United States)

    Liang, W.; Liu, C.; Chen, R.; Huang, B.; Wu, F. T.; Wang, C.

    2008-12-01

    To characterize the island-wide background seismic noise in Taiwan, we estimate the power spectral density (PSD) at broadband stations of both the BATS (Broadband Array in Taiwan for Seismology) and the TAIGER experiment (Apr. 2006~Apr. 2008) for periods ranging from ~0.2 to 100 seconds. A new approach to calculate the probability density functions of noise power (PDFs, MaNamara and Buland, 2004) is used in this study. The results indicate that the cultural noise at higher frequencies is significant at populated area, which shows diurnal and weekly variation as what we expected. The noise power for microseisms centered at a period of ~5 seconds around the western costal plain show ~20dB higher than what observed at eastern Taiwan. This observation supports the inference that the coastal regions having narrow shelf with irregular coastlines are know to be especially efficient at radiating the predominat microseisms. Results from the linear array across central Taiwan demonstrate that the average noise power is quietest at the eastern Central Range. We have mapped the PDF mode for stations at various periods to see the spatial distribution of ambient noise levels, which could be used as the basic information for future station siting. Temporal variation of noise PSD is also present to provide a quantitative description of the seismic data quality collected by both BATS and TAIGER experiment. Some operational problems like base tilt, sensitivity change can be identified easily as well.

  18. Spatial variation in environmental noise and air pollution in New York City.

    Science.gov (United States)

    Kheirbek, Iyad; Ito, Kazuhiko; Neitzel, Richard; Kim, Jung; Johnson, Sarah; Ross, Zev; Eisl, Holger; Matte, Thomas

    2014-06-01

    Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (Leq) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including Leq during different time periods (night, day, weekday, weekend), Ldn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week Leq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r > 0.83), while indices of intermittent noise were not well correlated with average noise levels (r noise levels and traffic intensity within 100 m of the monitoring sites (r = 0.58). The high levels of noise observed in NYC often exceed recommended guidelines for outdoor and personal exposures, suggesting unhealthy levels in many locations

  19. Moderators of noise-induced cognitive change in healthy adults.

    Science.gov (United States)

    Wright, Bernice Al; Peters, Emmanuelle R; Ettinger, Ulrich; Kuipers, Elizabeth; Kumari, Veena

    2016-01-01

    Environmental noise causes cognitive impairment, particularly in executive function and episodic memory domains, in healthy populations. However, the possible moderating influences on this relationship are less clear. This study assessed 54 healthy participants (24 men) on a cognitive battery (measuring psychomotor speed, attention, executive function, working memory, and verbal learning and memory) under three (quiet, urban, and social) noise conditions. IQ, subjective noise sensitivity, sleep, personality, paranoia, depression, anxiety, stress, and schizotypy were assessed on a single occasion. We found significantly slower psychomotor speed (urban), reduced working memory and episodic memory (urban and social), and more cautious decision-making (executive function, urban) under noise conditions. There was no effect of sex. Variance in urban noise-induced changes in psychomotor speed, attention, Trail Making B-A (executive function), and immediate recall and social noise-induced changes in verbal fluency (executive function) and immediate recall were explained by a combination of baseline cognition and paranoia, noise sensitivity, sleep, or cognitive disorganization. Higher baseline cognition (but not IQ) predicted greater impairment under urban and social noise for most cognitive variables. Paranoia predicted psychomotor speed, attention, and executive function impairment. Subjective noise sensitivity predicted executive function and memory impairment. Poor sleep quality predicted less memory impairment. Finally, lower levels of cognitive disorganization predicted slower psychomotor speed and greater memory impairment. The identified moderators should be considered in studies aiming to reduce the detrimental effects of occupational and residential noise. These results highlight the importance of studying noise effects in clinical populations characterized by high levels of the paranoia, sleep disturbances, noise sensitivity, and cognitive disorganization.

  20. Equilibrium figures in geodesy and geophysics.

    Science.gov (United States)

    Moritz, H.

    There is an enormous literature on geodetic equilibrium figures, but the various works have not always been interrelated, also for linguistic reasons (English, French, German, Italian, Russian). The author attempts to systematize the various approaches and to use the standard second-order theory for a study of the deviation of the actual earth and of the equipotential reference ellipsoid from an equilibrium figure.

  1. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  2. Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Lu Huaixin; Zhao Jiaqiang; Cao Lianzhen; Wang Xiaoqin

    2011-01-01

    There are different families of inequalities that can be used to characterize the entanglement of multiqubit entangled states by the violation of quantum mechanics prediction versus local realism prediction. In a noisy environment, the violation of different inequalities distinguishes a direct from a noise-free environment. That is, each inequality has a different robustness against noise. We investigate theoretically and experimentally this proposition with the Mermin inequality, Bell inequality, and Svetlichny inequality using three-qubit GHZ states for different levels of noise. Our purpose is to determine which one of the inequalities is more robust against noise and thus more suitable to characterize entanglement of states. Our results show that the Mermin inequality is the most robust against stronger noise and is, thus, more suitable for characterizing the entanglement of three-qubit GHZ states in a noisy environment.

  3. Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger-Horne-Zeilinger states

    Energy Technology Data Exchange (ETDEWEB)

    Lu Huaixin; Zhao Jiaqiang; Cao Lianzhen; Wang Xiaoqin [Department of Physics and Electronic Science, Weifang University, Weifang, Shandong 261061 (China)

    2011-10-15

    There are different families of inequalities that can be used to characterize the entanglement of multiqubit entangled states by the violation of quantum mechanics prediction versus local realism prediction. In a noisy environment, the violation of different inequalities distinguishes a direct from a noise-free environment. That is, each inequality has a different robustness against noise. We investigate theoretically and experimentally this proposition with the Mermin inequality, Bell inequality, and Svetlichny inequality using three-qubit GHZ states for different levels of noise. Our purpose is to determine which one of the inequalities is more robust against noise and thus more suitable to characterize entanglement of states. Our results show that the Mermin inequality is the most robust against stronger noise and is, thus, more suitable for characterizing the entanglement of three-qubit GHZ states in a noisy environment.

  4. Noise level in neonatal incubators: A comparative study of three models.

    Science.gov (United States)

    Fernández Zacarías, F; Beira Jiménez, J L; Bustillo Velázquez-Gaztelu, P J; Hernández Molina, R; Lubián López, Simón

    2018-04-01

    Preterm infants usually have to spend a long time in an incubator, excessive noise in which can have adverse physiological and psychological effects on neonates. In fact, incubator noise levels typically range from 45 to 70 dB but differences in this respect depend largely on the noise measuring method used. The primary aim of this work was to assess the extent to which noise in an incubator comes from its own fan and how efficiently the incubator can isolate external noise. Three different incubator models were characterized for acoustic performance by measuring their internal noise levels in an anechoic chamber, and also for noise isolation efficiency by using a pink noise source in combination with an internal and an external microphone that were connected to an SVAN958 noise analyzer. The incubators studied produced continuous equivalent noise levels of 53.5-58 dB and reduced external noise by 5.2-10.4 dB. A preterm infant in an incubator is exposed to noise levels clearly exceeding international recommendations even though such levels usually comply with the limit set in the standard IEC60601-2-19: 2009 (60 dBA) under normal conditions of use. Copyright © 2018. Published by Elsevier B.V.

  5. Forskerklummen: Figured Worlds of literacy

    DEFF Research Database (Denmark)

    Møller, Hanne

    2017-01-01

    Figured worlds”, altså forestillede verdener, er et teoretisk begreb, som i øjeblikket dukker op i flere og flere forskningssammenhænge. Det bliver anvendt på mange forskellige måder både inden for uddannelsesforskning og i forskning i literacy.......”Figured worlds”, altså forestillede verdener, er et teoretisk begreb, som i øjeblikket dukker op i flere og flere forskningssammenhænge. Det bliver anvendt på mange forskellige måder både inden for uddannelsesforskning og i forskning i literacy....

  6. Environmental noise in downtown Medellin 2002

    International Nuclear Information System (INIS)

    Bedoya, Julian; Correa E, Alexander

    2003-01-01

    A total of 6400 noise measurements were taken in downtown Medellin, a 2km x 2km area to characterize noise levels. The area was divided into a grid of 160 blocks with a length 154 m each; 40 measurements were taken in each block Sampling was conducted for 10 days, with simultaneous measurements in four sampling zones selected randomly and with coverage of four sampling periods 7:00-9:00 AM, 9:30-11:30 AM, 12:00 AM-2:00 PM, y 5:00-7:00 PM). The zone between 44 and 49 streets and between 40 and 49 avenues has the maximum average noise level with 74 dBA (decibels in scale A). Four of the noisiest sites were measured during 48 hours continuously by usage of a dosimeter Auto correlation results allowed use of Geo statistics to built isophones for the tour time periods. Isophones plots over imposed on physical layout of the city shows a good correlation between high noise levels and heavy traffic through main avenues (Avenida Oriental, Calle San Juan, Avenida del Ferrocarril, Bazar de los Puentes, Glorieta de la Minorista). Medellin is a noisy city that does not meet existing national regulations. The proposed methodology based on Geo statistics and experimental design is a feasible and comprehensive approach to manage urban noise

  7. Crystalline texture study of Zr-2.5%Nb pressure pipes by DRX pole figures

    International Nuclear Information System (INIS)

    Buioli, C P; Banchik, A D; Vizcaino, P; Samper, R; Testone, S

    2012-01-01

    This work presents the study of crystalline texture of Zr-2.5%Nb pressure tubes (A, B and C); structural components of CANDU nuclear power reactors [1]. The study of texture was made using the RX diffraction technique, making measurements of direct pole figures [2], in a Phillips diffractometer with pole goniometer (IFIR-CONICET). The texture was determined calculating the coefficients of JJ Kearns [3]. The samples used correspond to transversal sections of the tubes, front and back, and were characterized making de measurements of five pole figures with Miller index (001), (100), (101), (102) and (110), in order to represent in a complete way the texture in the material. The calculated Kearns coefficients were compared with the specifications given by the designer of pressure tubes AECL [4] (author)

  8. Masking interrupts figure-ground signals in V1.

    Science.gov (United States)

    Lamme, Victor A F; Zipser, Karl; Spekreijse, Henk

    2002-10-01

    In a backward masking paradigm, a target stimulus is rapidly (figure-ground segregation can be recorded. Here, we recorded from awake macaque monkeys, engaged in a task where they had to detect figures from background in a pattern backward masking paradigm. We show that the V1 figure-ground signals are selectively and fully suppressed at target-mask intervals that psychophysically result in the target being invisible. Initial response transients, signalling the features that make up the scene, are not affected. As figure-ground modulations depend on feedback from extrastriate areas, these results suggest that masking selectively interrupts the recurrent interactions between V1 and higher visual areas.

  9. Surface reconstruction, figure-ground modulation, and border-ownership.

    Science.gov (United States)

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2013-01-01

    The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.

  10. Characterizing the continuously acquired cardiovascular time series during hemodialysis, using median hybrid filter preprocessing noise reduction

    Directory of Open Access Journals (Sweden)

    Wilson S

    2015-01-01

    Full Text Available Scott Wilson,1,2 Andrea Bowyer,3 Stephen B Harrap4 1Department of Renal Medicine, The Alfred Hospital, 2Baker IDI, Melbourne, 3Department of Anaesthesia, Royal Melbourne Hospital, 4University of Melbourne, Parkville, VIC, Australia Abstract: The clinical characterization of cardiovascular dynamics during hemodialysis (HD has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information. Keywords: continuous monitoring, blood pressure

  11. Direct-reading dial for noise temperature and noise resistance

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1967-01-01

    An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance.......An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance....

  12. Preliminary Assessment of Noise Pollution Prevention in Wind Turbines Based on an Exergy Approach

    Directory of Open Access Journals (Sweden)

    Ofelia A. Jianu

    2017-06-01

    Full Text Available Most existing methods for energy transformation and use are inadvertently contaminating our watersupplies, releasing greenhouse gasses into the atmosphere, emitting compounds that diminish the earth'sprotective blanket of ozone, and depleting the earth's crust of natural resources. As a result, scientists andengineers are increasingly pursuing sustainable technologies so that costs associated with global warmingcan be minimized and adverse impact on living organisms can be prevented. A promising sustainablemethod is to harness energy from the wind via wind turbines. However, the noise generated by wind turbinesproves to be one of the most significant hindrances to the extensive use of wind turbines. In this study,noise generation produced by flow over objects is investigated to characterize the noise generated due toflow-structure interaction and aeroacoustics. As a benchmark, flow over a cylinder has been chosen for thisstudy, with the aim of correlating three main characteristics in noise generation. Hence, the generated soundpressure level, exergy destroyed and the normal flow velocity (∪ ∞ are employed to characterize the systemin order to relate the exergy destruction to the noise generated in the flow. The correlation has the potentialto be used in wind turbine designs to minimize noise pollution due to aerodynamic noise.

  13. Noise Reduction Potential of Cellular Metals

    Directory of Open Access Journals (Sweden)

    Björn Hinze

    2012-06-01

    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  14. Characterization of site-effects in the urban area of Canakkale, Turkey, using ambient noise measurements

    Science.gov (United States)

    Demirci, Alper; Bekler, Tolga; Karagöz, Özlem

    2010-05-01

    The local site conditions can cause variations in the ground motion during the earthquake events. These local effects can be estimated by Nakamura method (1989) which is based on the analysis and treatment of earth vibration records by calculating the ratio of horizontal spectrum to vertical spectrum (H/V). This approach uses ambient noises and aids to estimate the dynamic soil conditions like fundamental vibration period and soil amplification of the surface layers, to characterize the seismic hazard during earthquakes and to provide detailed information for seismic microzonation in small scale urban areas. Due to these advantages, the method has been frequently used by a great number of seismologists and engineers. In this study, we aimed at explaining the soil conditions in Çanakkale and Kepez basins by using H/V technique. Çanakkale and Kepez (NW, Turkey) have fairly complex tectonic structure and have been exposed to serious earthquake damages in historical and instrumental period. Active faults, which have influence on the Çanakkale and Kepez settlements, are the Yenice-Gönen fault, Saroz-Gaziköy fault and Etili fault. It is well known that, these faults have produced high magnitude earthquakes such as 7.2 in 1912 and 7.3 in 1953. The surface geology of the surveyed area is covered by quaternary aged sediments. Sarıçay river, which originates from the eastern hilly area, accumulates sediment deposits and forms this alluvial basin. Considering the geological conditions, ambient noises were recorded at 88 measurement points which were selected to provide good coverage of the study area. All records were acquired during the midnight (between 1:00 am and 6:00 am) to reduce the artificial effects in the urban area. Taking into account the effects of undesirable traffic and industrial noises in the vicinity of measurements stations, record lengths were chosen in the range of 25-75 minutes with the sampling rate of 100 Hz. Once the required signal processes

  15. White noise on bialgebras

    CERN Document Server

    Schürmann, Michael

    1993-01-01

    Stochastic processes with independent increments on a group are generalized to the concept of "white noise" on a Hopf algebra or bialgebra. The main purpose of the book is the characterization of these processes as solutions of quantum stochastic differential equations in the sense of R.L. Hudsonand K.R. Parthasarathy. The notes are a contribution to quantum probability but they are also related to classical probability, quantum groups, and operator algebras. The Az ma martingales appear as examples of white noise on a Hopf algebra which is a deformation of the Heisenberg group. The book will be of interest to probabilists and quantum probabilists. Specialists in algebraic structures who are curious about the role of their concepts in probablility theory as well as quantum theory may find the book interesting. The reader should havesome knowledge of functional analysis, operator algebras, and probability theory.

  16. Noise characteristics of the Transrapid TR08 Maglev System

    Science.gov (United States)

    2002-07-01

    As part of the Federal Railroad Administration's (FRA) Magnetic Levitation Transportation Technology Deployment Program, this technical report has been prepared to characterize the noise associated with the operation of the Transrapid International (...

  17. Moderators of noise-induced cognitive change in healthy adults

    Directory of Open Access Journals (Sweden)

    Bernice AL Wright

    2016-01-01

    Full Text Available Environmental noise causes cognitive impairment, particularly in executive function and episodic memory domains, in healthy populations. However, the possible moderating influences on this relationship are less clear. This study assessed 54 healthy participants (24 men on a cognitive battery (measuring psychomotor speed, attention, executive function, working memory, and verbal learning and memory under three (quiet, urban, and social noise conditions. IQ, subjective noise sensitivity, sleep, personality, paranoia, depression, anxiety, stress, and schizotypy were assessed on a single occasion. We found significantly slower psychomotor speed (urban, reduced working memory and episodic memory (urban and social, and more cautious decision-making (executive function, urban under noise conditions. There was no effect of sex. Variance in urban noise-induced changes in psychomotor speed, attention, Trail Making B-A (executive function, and immediate recall and social noise-induced changes in verbal fluency (executive function and immediate recall were explained by a combination of baseline cognition and paranoia, noise sensitivity, sleep, or cognitive disorganization. Higher baseline cognition (but not IQ predicted greater impairment under urban and social noise for most cognitive variables. Paranoia predicted psychomotor speed, attention, and executive function impairment. Subjective noise sensitivity predicted executive function and memory impairment. Poor sleep quality predicted less memory impairment. Finally, lower levels of cognitive disorganization predicted slower psychomotor speed and greater memory impairment. The identified moderators should be considered in studies aiming to reduce the detrimental effects of occupational and residential noise. These results highlight the importance of studying noise effects in clinical populations characterized by high levels of the paranoia, sleep disturbances, noise sensitivity, and cognitive

  18. Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data

    International Nuclear Information System (INIS)

    Puthanmadam Subramaniyam, Narayan; Hyttinen, Jari

    2014-01-01

    In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states. - Highlights: • We study the influence of noise on the recurrence network measures C and L. • We propose the application of C and L to healthy and epileptic EEG data. • The influence of noise can be minimized by increasing the recurrence rate. • Measures C and L can describe the structural complexity of EEG data. • In case of epileptic EEG, C performs better than L

  19. Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data

    Energy Technology Data Exchange (ETDEWEB)

    Puthanmadam Subramaniyam, Narayan, E-mail: npsubramaniyam@gmail.com [Department of Electronics and Communications, Tampere University of Technology, Tampere (Finland); BioMediTech, Tampere (Finland); Hyttinen, Jari [Department of Electronics and Communications, Tampere University of Technology, Tampere (Finland); BioMediTech, Tampere (Finland)

    2014-10-24

    In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states. - Highlights: • We study the influence of noise on the recurrence network measures C and L. • We propose the application of C and L to healthy and epileptic EEG data. • The influence of noise can be minimized by increasing the recurrence rate. • Measures C and L can describe the structural complexity of EEG data. • In case of epileptic EEG, C performs better than L.

  20. Active noise control in a duct to cancel broadband noise

    Science.gov (United States)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  1. Figure 1. T. tor species. Figure 2. Long PCR products of ...

    Indian Academy of Sciences (India)

    Annam

    Figure 2. Long PCR products of mitochondrial DNA from the fish T. tor. Lane 1, amplified product using L-12321-Leu and S-LA-16S-H primers. Lane 2, amplified product using H-12321 –Leu and S-LA-16S-L primers. Lane M, 1-Kb DNA ladder. 8 kb ...

  2. Brain bases for auditory stimulus-driven figure-ground segregation.

    Science.gov (United States)

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  3. Shape recognition contributions to figure-ground reversal: which route counts?

    Science.gov (United States)

    Peterson, M A; Harvey, E M; Weidenbacher, H J

    1991-11-01

    Observers viewed upright and inverted versions of figure-ground stimuli, in which Gestalt variables specified that the center was figure. In upright versions, the surround was high in denotivity, in that most viewers agreed it depicted the same shape; in inverted versions, the surround was low in denotivity. The surround was maintained as figure longer and was more likely to be obtained as figure when the stimuli were upright rather than inverted. In four experiments, these effects reflected inputs to figure-ground computations from orientation-specific shape representations only. To account for these findings, a nonratiomorphic mechanism is proposed that enables shape recognition processes before figure-ground relationships are determined.

  4. Impact-limiting materials characterization

    International Nuclear Information System (INIS)

    Glass, R.E.; Duffey, T.A.; McConnell, P.

    1993-01-01

    Three types of impact-limiting materials have been characterized which have applications in packages for the transport of radioactive materials. These materials are aluminum honeycombs, polyurethane foams, and aluminum foams. The results of the materials characterization have indicated strengths and weaknesses for each type of material. The polyurethane foams provide good impact limiting ability and excellent thermal insulation. However, they burn when subjected to the regulatory thermal event in the presence of air. The aluminum honeycombs provide excellent impact resistance in specific impact orientations. However, they provide relatively poor resistance to thermal assault. Finally, the aluminum foams exhibit relatively poor impact energy absorption capacities, significant variability in energy absorption, and limited thermal insulation. The development of the figures of merit examined the response of the materials to the impact event with the intent of maximizing the energy absorption of the materials with respect to either the volume or mass of the materials. Three figures of merit will be presented for the structural response. The figure of merit for the thermal event is based on minimizing the heat flux to the containment boundary. The paper presents a discussion of the test methods, a summary of the data and the figures of merit for each material. (J.P.N.)

  5. Local figure-ground cues are valid for natural images.

    Science.gov (United States)

    Fowlkes, Charless C; Martin, David R; Malik, Jitendra

    2007-06-08

    Figure-ground organization refers to the visual perception that a contour separating two regions belongs to one of the regions. Recent studies have found neural correlates of figure-ground assignment in V2 as early as 10-25 ms after response onset, providing strong support for the role of local bottom-up processing. How much information about figure-ground assignment is available from locally computed cues? Using a large collection of natural images, in which neighboring regions were assigned a figure-ground relation by human observers, we quantified the extent to which figural regions locally tend to be smaller, more convex, and lie below ground regions. Our results suggest that these Gestalt cues are ecologically valid, and we quantify their relative power. We have also developed a simple bottom-up computational model of figure-ground assignment that takes image contours as input. Using parameters fit to natural image statistics, the model is capable of matching human-level performance when scene context limited.

  6. Effect of Wind Farm Noise on Local Residents' Decision to Adopt Mitigation Measures.

    Science.gov (United States)

    Botelho, Anabela; Arezes, Pedro; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M Costa

    2017-07-11

    Wind turbines' noise is frequently pointed out as the reason for local communities' objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes' noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people's decision to adopt mitigating measures, independently of the reported annoyance.

  7. Effect of Wind Farm Noise on Local Residents’ Decision to Adopt Mitigation Measures

    Science.gov (United States)

    Botelho, Anabela; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M. Costa

    2017-01-01

    Wind turbines’ noise is frequently pointed out as the reason for local communities’ objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes’ noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people’s decision to adopt mitigating measures, independently of the reported annoyance. PMID:28696404

  8. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    Science.gov (United States)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  9. Ranking TEM cameras by their response to electron shot noise

    International Nuclear Information System (INIS)

    Grob, Patricia; Bean, Derek; Typke, Dieter; Li, Xueming; Nogales, Eva; Glaeser, Robert M.

    2013-01-01

    We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator–coupled camera plus a silicon-pixel (direct detection) camera. - Highlights: ► Fourier amplitude spectra of noise are well fitted by a single Lorentzian. ► This measures how closely, or not, the response approaches the single-pixel ideal. ► Noise in the Fourier amplitudes is (1−π/4) times the shot noise power spectrum. ► Finite variance in the single-electron responses adds to the output noise. ► This excess noise may be equal to or greater than shot noise itself

  10. Sounds and Noises. A Position Paper on Noise Pollution.

    Science.gov (United States)

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  11. Fabrication and characterization of active nanostructures

    Science.gov (United States)

    Opondo, Noah F.

    Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique

  12. Lower region: a new cue for figure-ground assignment.

    Science.gov (United States)

    Vecera, Shaun P; Vogel, Edward K; Woodman, Geoffrey F

    2002-06-01

    Figure-ground assignment is an important visual process; humans recognize, attend to, and act on figures, not backgrounds. There are many visual cues for figure-ground assignment. A new cue to figure-ground assignment, called lower region, is presented: Regions in the lower portion of a stimulus array appear more figurelike than regions in the upper portion of the display. This phenomenon was explored, and it was demonstrated that the lower-region preference is not influenced by contrast, eye movements, or voluntary spatial attention. It was found that the lower region is defined relative to the stimulus display, linking the lower-region preference to pictorial depth perception cues. The results are discussed in terms of the environmental regularities that this new figure-ground cue may reflect.

  13. Human figure drawings by children with Duchenne's muscular dystrophy.

    Science.gov (United States)

    Pope-Grattan, M M; Burnett, C N; Wolfe, C V

    1976-02-01

    Seventy-two human figure drawings by forty-three patients who had a diagnosis of Duchenne's muscular dystrophy were examined. The study includes a description of these human figure drawings according to eleven emotional indicators and according to directionality quadrants. When the human figure drawings were used as a projective tool, four personality traits of some of the children were identified: physical inadequacy, immaturity, body anxiety, and insecurity. Both the emotional indicators and the quadrant in which the figures appeared were examined in relation to stages of the disease process to see if the human figure drawings of the children might reflect more stress and anxiety at a particular stage of the disease. Suggestions for improvements and recommendations for future study are given.

  14. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    deployed by the California Institute of Technology in cooperation with other institutions.A map showing the approximate locations of the stations used in this study is provided in Figure 1. One might hope for a better distribution of stations in the southern hemisphere, especially Africa and South America, in order to look for regional variations in seismic noise (apart from the major differences between continental, coastal and island sites). Unfortunately, anyone looking for subtle regional variations in seismic noise is probably going to be disappointed by the spectral data presented in this report because much of the station data appear to be dominated by local disturbances caused by instrumental, environmental, cultural, or surf noise. Better instruments and better instrument siting, or a well-funded field program, will be needed before a global isoseismal noise map can be produced. However, by assembling a composite of background noise from a large network of stations, many of the local station variables are masked, and it is possible to create generalized spectral plots of Earth noise for hypothetical quiet and noisy station sites.

  15. Feature Assignment in Perception of Auditory Figure

    Science.gov (United States)

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  16. Learning to rank figures within a biomedical article.

    Directory of Open Access Journals (Sweden)

    Feifan Liu

    Full Text Available Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of their interest, the process of which is crucial for validating research facts and for formulating or testing novel research hypotheses. Current figure search applications can't fully meet this challenge as the "bag of figures" assumption doesn't take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure's importance at their discretion, referred to as "figure ranking". Using this collection of annotated data, we investigated computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by comparing BioFigRank with three-level competitive domain-specific human experts: (1 First Author, (2 Non-Author-In-Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding author of the article, and (3 Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underperforms First Author, since most biomedical researchers are either in- or

  17. Learning to rank figures within a biomedical article.

    Science.gov (United States)

    Liu, Feifan; Yu, Hong

    2014-01-01

    Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of their interest, the process of which is crucial for validating research facts and for formulating or testing novel research hypotheses. Current figure search applications can't fully meet this challenge as the "bag of figures" assumption doesn't take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure's importance at their discretion, referred to as "figure ranking". Using this collection of annotated data, we investigated computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by comparing BioFigRank with three-level competitive domain-specific human experts: (1) First Author, (2) Non-Author-In-Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding author of the article, and (3) Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underperforms First Author, since most biomedical researchers are either in- or out

  18. Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    J. Sturm

    2014-04-01

    Full Text Available The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends.

  19. Noise Budget and Interstellar Medium Mitigation Advances in the NANOGrav Pulsar Timing Array

    Science.gov (United States)

    Dolch, T.; NANOGrav Collaboration; Chatterjee, S.; Cordes, J. M.; Demorest, P. B.; Ellis, J. A.; Jones, M. L.; Lam, M. T.; Lazio, T. J. W.; Levin, L.; McLaughlin, M. A.; Palliyaguru, N. T.; Stinebring, D. R.

    2018-02-01

    Gravitational wave (GW) detection with pulsar timing arrays (PTAs) requires accurate noise characterization. The noise of our Galactic-scale GW detector has been systematically evaluated by the Noise Budget and Interstellar Medium Mitigation working groups within the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Intrinsically, individual radio millisecond pulsars (MSPs) used by NANOGrav can have some degree of achromatic red spin noise, as well as white noise due to pulse phase jitter. Along any given line-of-sight, the ionized interstellar medium contributes chromatic noise through dispersion measure (DM) variations, interstellar scintillation, and scattering. These effects contain both red and white components. In the future, with wideband receivers, the effects of frequency-dependent DM will become important. Having anticipated and measured these diverse sources of detector noise, the NANOGrav PTA remains well-poised to detect low-frequency GWs.

  20. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    Science.gov (United States)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  1. Running the figure to the ground: figure-ground segmentation during visual search.

    Science.gov (United States)

    Ralph, Brandon C W; Seli, Paul; Cheng, Vivian O Y; Solman, Grayden J F; Smilek, Daniel

    2014-04-01

    We examined how figure-ground segmentation occurs across multiple regions of a visual array during a visual search task. Stimuli consisted of arrays of black-and-white figure-ground images in which roughly half of each image depicted a meaningful object, whereas the other half constituted a less meaningful shape. The colours of the meaningful regions of the targets and distractors were either the same (congruent) or different (incongruent). We found that incongruent targets took longer to locate than congruent targets (Experiments 1, 2, and 3) and that this segmentation-congruency effect decreased when the number of search items was reduced (Experiment 2). Furthermore, an analysis of eye movements revealed that participants spent more time scrutinising the target before confirming its identity on incongruent trials than on congruent trials (Experiment 3). These findings suggest that the distractor context influences target segmentation and detection during visual search. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Comparison of two dose-response relationship of noise exposure evaluation results with high frequency hearing loss.

    Science.gov (United States)

    Zhang, Hua; Li, Nan; Yang, Qiu-Ling; Qiu, Wei; Zhu, Liang-Liang; Tao, Li-Yuan; Davis, Robert I; Heyer, Nicholas; Zhao, Yi-Ming

    2015-03-20

    Complex noise and its relation to hearing loss are difficult to measure and evaluate. In complex noise measurement, individual exposure results may not accurately represent lifetime noise exposure. Thus, the mean L Aeq,8 h values of individuals in the same workgroup were also used to represent L Aeq,8 h in our study. Our study aimed to explore whether the mean exposure levels of workers in the same workgroup represented real noise exposure better than individual exposure levels did. A cross-sectional study was conducted to establish a model for cumulative noise exposure (CNE) and hearing loss in 205 occupational noise-exposed workers who were recruited from two large automobile manufacturers in China. We used a personal noise dosimeter and a questionnaire to determine the workers' occupational noise exposure levels and exposure times, respectively. A qualified audiologist used standardized audiometric procedures to assess hearing acuity after at least 16 h of noise avoidance. We observed that 88.3% of workers were exposed to more than 85 dB(A) of occupational noise (mean: 89.3 ± 4.2 dB(A)). The personal CNE (CNEp) and workgroup CNE (CNEg) were 100.5 ± 4.7 dB(A) and 100.5 ± 2.9 dB(A), respectively. In the binary logistic regression analysis, we established a regression model with high-frequency hearing loss as the dependent variable and CNE as the independent variable. The Wald value was 5.014 with CNEp as the independent variable and 8.653 with CNEg as the independent variable. Furthermore, we found that the figure for CNEg was more similar to the stationary noise reference than CNEp was. The CNEg model was better than the CNEp model. In this circumstance, we can measure some subjects instead of the whole workgroup and save manpower. In a complex noise environment, the measurements of average noise exposure level of the workgroup can improve the accuracy and save manpower.

  3. Comparison of Two Dose-response Relationship of Noise Exposure Evaluation Results with High Frequency Hearing Loss

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2015-01-01

    Full Text Available Background: Complex noise and its relation to hearing loss are difficult to measure and evaluate. In complex noise measurement, individual exposure results may not accurately represent lifetime noise exposure. Thus, the mean L Aeq,8 h values of individuals in the same workgroup were also used to represent L Aeq,8 h in our study. Our study aimed to explore whether the mean exposure levels of workers in the same workgroup represented real noise exposure better than individual exposure levels did. Methods: A cross-sectional study was conducted to establish a model for cumulative noise exposure (CNE and hearing loss in 205 occupational noise-exposed workers who were recruited from two large automobile manufacturers in China. We used a personal noise dosimeter and a questionnaire to determine the workers′ occupational noise exposure levels and exposure times, respectively. A qualified audiologist used standardized audiometric procedures to assess hearing acuity after at least 16 h of noise avoidance. Results: We observed that 88.3% of workers were exposed to more than 85 dB(A of occupational noise (mean: 89.3 ± 4.2 dB(A. The personal CNE (CNEp and workgroup CNE (CNEg were 100.5 ± 4.7 dB(A and 100.5 ± 2.9 dB(A, respectively. In the binary logistic regression analysis, we established a regression model with high-frequency hearing loss as the dependent variable and CNE as the independent variable. The Wald value was 5.014 with CNEp as the independent variable and 8.653 with CNEg as the independent variable. Furthermore, we found that the figure for CNEg was more similar to the stationary noise reference than CNEp was. The CNEg model was better than the CNEp model. In this circumstance, we can measure some subjects instead of the whole workgroup and save manpower. Conclusions: In a complex noise environment, the measurements of average noise exposure level of the workgroup can improve the accuracy and save manpower.

  4. Figure ground discrimination in age-related macular degeneration.

    Science.gov (United States)

    Tran, Thi Ha Chau; Guyader, Nathalie; Guerin, Anne; Despretz, Pascal; Boucart, Muriel

    2011-03-01

    To investigate impairment in discriminating a figure from its background and to study its relation to visual acuity and lesion size in patients with neovascular age-related macular degeneration (AMD). Seventeen patients with neovascular AMD and visual acuity Figure/ground segregation is impaired in patients with AMD. A white space surrounding an object is sufficient to improve the object's detection and to facilitate figure/ground segregation. These results may have practical applications to the rehabilitation of the environment in patients with AMD.

  5. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    Science.gov (United States)

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  6. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    Directory of Open Access Journals (Sweden)

    Hans Supèr

    Full Text Available In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  7. A figure control sensor for the Large Deployable Reflector (LDR)

    Science.gov (United States)

    Bartman, R.; Dubovitsky, S.

    1988-01-01

    A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.

  8. Approximations of noise covariance in multi-slice helical CT scans: impact on lung nodule size estimation.

    Science.gov (United States)

    Zeng, Rongping; Petrick, Nicholas; Gavrielides, Marios A; Myers, Kyle J

    2011-10-07

    Multi-slice computed tomography (MSCT) scanners have become popular volumetric imaging tools. Deterministic and random properties of the resulting CT scans have been studied in the literature. Due to the large number of voxels in the three-dimensional (3D) volumetric dataset, full characterization of the noise covariance in MSCT scans is difficult to tackle. However, as usage of such datasets for quantitative disease diagnosis grows, so does the importance of understanding the noise properties because of their effect on the accuracy of the clinical outcome. The goal of this work is to study noise covariance in the helical MSCT volumetric dataset. We explore possible approximations to the noise covariance matrix with reduced degrees of freedom, including voxel-based variance, one-dimensional (1D) correlation, two-dimensional (2D) in-plane correlation and the noise power spectrum (NPS). We further examine the effect of various noise covariance models on the accuracy of a prewhitening matched filter nodule size estimation strategy. Our simulation results suggest that the 1D longitudinal, 2D in-plane and NPS prewhitening approaches can improve the performance of nodule size estimation algorithms. When taking into account computational costs in determining noise characterizations, the NPS model may be the most efficient approximation to the MSCT noise covariance matrix.

  9. Investigating potential correlations between jet engine noise and plume dynamics in the hypertemporal infrared domain

    Science.gov (United States)

    Cunio, Phillip M.; Weber, Reed; Knobel, Kimberly; Wager, Jason; Lopez, Gerardo

    2014-09-01

    Jet engine noise can be a hazard and environmental pollutant, affecting personnel working in close proximity to jet engines. Mitigating the effects of jet engine noise could reduce the potential for hearing loss in runway workers, but engine noise is not yet sufficiently well-characterized that it can easily be mitigated for new engine designs. That is, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels. In this paper, we propose to evaluate the utility of high-speed imaging (also called hypertemporal imaging) in correlating the infrared signatures of jet aircraft engines with acoustic noise from the jet engines. This paper will focus on a theoretical analysis of jet engine infrared signatures, and will define potentially-detectable characteristics of such signatures in the hypertemporal domain. A systematic test campaign to determine whether such signatures actually exist and can be correlated with acoustic jet engine characteristics will be proposed. The detection of any hypertemporal signatures in association with acoustic signatures of jet engines will enable the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to benefits for operators of large numbers of jet engines.

  10. Relative resilience to noise of standard and sequential approaches to measurement-based quantum computation

    Science.gov (United States)

    Gallagher, C. B.; Ferraro, A.

    2018-05-01

    A possible alternative to the standard model of measurement-based quantum computation (MBQC) is offered by the sequential model of MBQC—a particular class of quantum computation via ancillae. Although these two models are equivalent under ideal conditions, their relative resilience to noise in practical conditions is not yet known. We analyze this relationship for various noise models in the ancilla preparation and in the entangling-gate implementation. The comparison of the two models is performed utilizing both the gate infidelity and the diamond distance as figures of merit. Our results show that in the majority of instances the sequential model outperforms the standard one in regard to a universal set of operations for quantum computation. Further investigation is made into the performance of sequential MBQC in experimental scenarios, thus setting benchmarks for possible cavity-QED implementations.

  11. Edge effect correction using ion beam figuring.

    Science.gov (United States)

    Yang, Bing; Xie, Xuhui; Li, Furen; Zhou, Lin

    2017-11-10

    The edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, as it can greatly reduce the key performance of the optical system. Ion beam figuring (IBF) has the advantage of no edge effect, so we can use it to remove high points on the edge and improve surface accuracy. The edge local correction method (ELCM) of IBF processes only the surface edge zone, and is very different from the current full caliber figuring method (FCFM). Therefore, it is necessary to study the ELCM of IBF. In this paper, the key factors of ELCM are analyzed, such as dwell time algorithm, edge data extension methods, and the outward dimension of the starting figuring point. At the same time, the distinctions between ELCM and FCFM are compared. Finally, a 142 mm diameter fused silica mirror is fabricated to verify the validity of the theoretical of ELCM. The experimental results indicate that the figuring precision and efficiency can be obviously improved by ELCM.

  12. Noise-induced hearing loss: a recreational noise perspective.

    Science.gov (United States)

    Ivory, Robert; Kane, Rebecca; Diaz, Rodney C

    2014-10-01

    This review will discuss the real-world risk factors involved in noise-induced hearing loss as a result of common and popular recreational activities prone to mid and high levels of noise exposure. Although there are currently no interventional measures available to reverse or mitigate preexisting hearing loss from noise, we discuss the vital importance of hearing loss prevention from noise exposure avoidance and reduction. Despite a seeming understanding of the effects of noise exposure from various recreational activities and devices, a large percentage of the general public who is at risk of such noise-induced hearing loss still chooses to refrain from using hearing protection instruments. While occupational exposures pose the greatest traditional risk to hearing conservation in selected workers, recreational risk factors for noise-induced hearing loss may be more insidious in overall effect given the indifferent attitude of much of the general public and particularly our youths toward hearing protection during recreational activities. Active counseling regarding the consequences of excessive noise exposure and the potential benefits to hearing from usage of hearing protection instruments is critical to providing best possible care in the hearing health professions.

  13. Wavelet Adaptive Algorithm and Its Application to MRE Noise Control System

    Directory of Open Access Journals (Sweden)

    Zhang Yulin

    2015-01-01

    Full Text Available To address the limitation of conventional adaptive algorithm used for active noise control (ANC system, this paper proposed and studied two adaptive algorithms based on Wavelet. The twos are applied to a noise control system including magnetorheological elastomers (MRE, which is a smart viscoelastic material characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Simulation results reveal that the Decomposition LMS algorithm (D-LMS and Decomposition and Reconstruction LMS algorithm (DR-LMS based on Wavelet can significantly improve the noise reduction performance of MRE control system compared with traditional LMS algorithm.

  14. Advancing Sustainable Materials Management: Facts and Figures Report

    Science.gov (United States)

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  15. Figure-ground segregation can rely on differences in motion direction.

    Science.gov (United States)

    Kandil, Farid I; Fahle, Manfred

    2004-12-01

    If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.

  16. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    Science.gov (United States)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  17. Two critical periods in early visual cortex during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-11-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure-ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure-ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure-ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96-119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236-259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure-ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure-ground segregation such as surface segregation.

  18. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise

    NARCIS (Netherlands)

    Salomons, E.M.; Janssen, S.A.

    2011-01-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a

  19. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers

    Science.gov (United States)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.

    2017-12-01

    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation

  20. Spatial noise correlations of a chain of ultracold fermions: A numerical study

    International Nuclear Information System (INIS)

    Luescher, Andreas; Laeuchli, Andreas M.; Noack, Reinhard M.

    2007-01-01

    We present a numerical study of noise correlations, i.e., density-density correlations in momentum space, in the extended fermionic Hubbard model in one dimension. In experiments with ultracold atoms, these noise correlations can be extracted from time-of-flight images of the expanding cloud. Using the density-matrix renormalization group method to investigate the Hubbard model at various fillings and interactions, we confirm that the noise correlations contain full information on the most important fluctuations present in the system. We point out the importance of the sum rules fulfilled by the noise correlations and show that they yield nonsingular structures beyond the predictions of bosonization approaches. Noise correlations can thus serve as a universal probe of order and can be used to characterize the many-body states of cold atoms in optical lattices

  1. Figure-Ground Processing: A Reassessment of Gelb and Granit.

    Science.gov (United States)

    Nelson, Rolf; Hebda, Nicholas

    2018-03-01

    In 1923, Adhemar Gelb and Ragnar Granit, two prominent researchers in early Gestalt perceptual theory, reported a lower threshold for detection of a target (a small colored dot) on the ground region of an image than on an adjacent figural region. Although their results had a wide influence on the understanding of figure-ground perception, they are at odds with more recent investigations in which figural regions appear to have a processing advantage over ground regions. The two present studies replicated Gelb and Granit's experiment using a similar figure-ground stimulus albeit with a two-alternative forced choice procedure rather than their original method of adjustment. Experiment 1 found that, contrary to Gelb and Granit's findings, a detection advantage was found for the figural over the ground region. Experiment 2 indicated that explicit contours might have played a role in detection.

  2. Effects of a traffic noise background on judgements of aircraft noise

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1974-01-01

    A study was conducted in which subjects judged aircraft noises in the presence of road traffic background noise. Two different techniques for presenting the background noises were evaluated. For one technique, the background noise was continuous over the whole of a test session. For the other, the background noise was changed with each aircraft noise. A range of aircraft noise levels and traffic noise levels were presented to simulate typical indoor levels.

  3. Karna Particle Size Dataset for Tables and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains 1) table of bulk Pb-XAS LCF results, 2) table of bulk As-XAS LCF results, 3) figure data of particle size distribution, and 4) figure data for...

  4. Measurement and analysis of noise power spectrum of computerized tomography in images

    International Nuclear Information System (INIS)

    Castro Tejero, P.; Garayoa Roca, J.

    2013-01-01

    This paper examines the implementation of the spectrum of powers of the noise, NPS, as metric to characterize the noise, both in magnitude and in texture, for CT scans. The NPS found show that you for convolution filters that assume a greater softening in the reconstructed image, spectrum is concentrated in the low frequencies, while for filters sharp, the spectrum extends to high frequencies. In the analyzed cases, there is a low frequency component, largely due to the structure-borne noise, which can be a potential negative effect on the detectability of injuries. (Author)

  5. Evaluation of noise pollution in oil extracting region of Lavan and the effect of noise enclosure on noise abatement

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2007-09-01

    Full Text Available Background and aims   Overexposure to industrial noise pollution induce hearing loss workers. Occupational hearing loss may cause interference whit oral communication, so it may  increase the risk of occupational accidents in workplace as well as affects whit social activities.  This study was conducted on Lavan Island, are of oil extracting regions in the south of Iran. The  object of this study was to evaluate noise pollution and determining the effect of noise enclosure  on noise abatement.   Methods   The noise sources were recognized and noise pressure level was measured by CEL- 440. Noise dose of the exposed workers in high level noise area were measured by CEL 272.   Results   Major noise sources were gas turbines, diesel generators, compressors, fans and gas containing pips, noise contour map revealers that noise level were higher than the recommended national exposure limit. The results of workers noise dose show that their noise exposure were  higher than the recommended value, (p<0.001. Finally, by using the results of noise frequency  analysis of different noise sources, the noise pressure level of each sources was determined in   terms of enclosing them.   Conclusion   By enclosing the noise sources, noise pressure levels can be lowered douse to  acceptable levels but limitation of applying enclosure should be regarded.  

  6. Noise cancellation properties of displacement noise free interferometer

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kawamura, Seiji; Nishizawa, Atsushi; Chen Yanbei

    2010-01-01

    We have demonstrated the practical feasibility of a displacement- and frequency-noise-free laser interferometer (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach-Zehnder interferometers (MZIs). The noise cancellation efficiency was evaluated by comparing the displacement noise spectrum of the MZIs and the DFI, demonstrating up to 50 dB of noise cancellation. In addition, the possible extension of DFI as QND device is explored.

  7. Masking potency and whiteness of noise at various noise check sizes.

    Science.gov (United States)

    Kukkonen, H; Rovamo, J; Näsänen, R

    1995-02-01

    The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.

  8. Laser line shape and spectral density of frequency noise

    International Nuclear Information System (INIS)

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-01-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise

  9. The role of shape recognition in figure/ground perception in infancy.

    Science.gov (United States)

    White, Hannah; Jubran, Rachel; Heck, Alison; Chroust, Alyson; Bhatt, Ramesh S

    2018-04-30

    In this study we sought to determine whether infants, like adults, utilize previous experience to guide figure/ground processing. After familiarization to a shape, 5-month-olds preferentially attended to the side of an ambiguous figure/ground test stimulus corresponding to that shape, suggesting that they were viewing that portion as the figure. Infants' failure to exhibit this preference in a control condition in which both sides of the test stimulus were displayed as figures indicated that the results in the experimental condition were not due to a preference between two figure shapes. These findings demonstrate for the first time that figure/ground processing in infancy is sensitive to top-down influence. Thus, a critical aspect of figure/ground processing is functional early in life.

  10. Figure-ground segregation modulates apparent motion.

    Science.gov (United States)

    Ramachandran, V S; Anstis, S

    1986-01-01

    We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.

  11. Lighting, backlighting and watercolor illusions and the laws of figurality.

    Science.gov (United States)

    Pinna, Baingio; Reeves, Adam

    2006-01-01

    We report some novel 'lighting' and 'backlighting' effects in plane figures similar to those which induce the 'watercolor illusion', that is, figures made with outlines composed of juxtaposed parallel lines varying in brightness and chromatic color. These new effects show 'illumination' as an emergent percept, and show how arrangements of 'dark and light' along the boundaries of various plane figures model the volume and strengthen the illusion of depth. To account for these various effects we propose several phenomenological 'laws of figurality' to add to the Gestalt laws of organization and figure-ground segregation. We offer a set of meta-laws which are speculative but which serve to integrate and organize the phenomenological laws. These laws indicate how luminance gradient profiles across boundary contours define both the 3D appearance of figures and the properties of the light reflected from their volumetric shapes.

  12. Scaling model for a speed-dependent vehicle noise spectrum

    Directory of Open Access Journals (Sweden)

    Giovanni Zambon

    2017-06-01

    Full Text Available Considering the well-known features of the noise emitted by moving sources, a number of vehicle characteristics such as speed, unladen mass, engine size, year of registration, power and fuel were recorded in a dedicated monitoring campaign performed in three different places, each characterized by different number of lanes and the presence of nearby reflective surfaces. A full database of 144 vehicles (cars was used to identify statistically relevant features. In order to compare the vehicle transit noise in different environmental condition, all 1/3-octave band spectra were normalized and analysed. Unsupervised clustering algorithms were employed to group together spectrum levels with similar profiles. Our results corroborate the well-known fact that speed is the most relevant characteristic to discriminate between different vehicle noise spectrum. In keeping with this fact, we present a new approach to predict analytically noise spectra for a given vehicle speed. A set of speed-dependent analytical functions are suggested in order to fit the normalized average spectrum profile at different speeds. This approach can be useful for predicting vehicle speed based purely on its noise spectrum pattern. The present work is complementary to the accurate analysis of noise sources based on the beamforming technique.

  13. The effect of recognizability on figure-ground processing: does it affect parsing or only figure selection?

    Science.gov (United States)

    Navon, David

    2011-03-01

    Though figure-ground assignment has been shown to be probably affected by recognizability, it appears sensible that object recognition must follow at least the earlier process of figure-ground segregation. To examine whether or not rudimentary object recognition could, counterintuitively, start even before the completion of the stage of parsing in which figure-ground segregation is done, participants were asked to respond, in a go/no-go fashion, whenever any out of 16 alternative connected patterns (that constituted familiar stimuli in the upright orientation) appeared. The white figure of the to-be-attended stimulus-target or foil-could be segregated from the white ambient ground only by means of a frame surrounding it. Such a frame was absent until the onset of target display. Then, to manipulate organizational quality, the greyness of the frame was either gradually increased from zero (in Experiment 1) or changed abruptly to a stationary level whose greyness was varied between trials (in Experiments 2 and 3). Stimulus recognizability was manipulated by orientation angle. In all three experiments the effect of recognizability was found to be considerably larger when organizational quality was minimal due to an extremely faint frame. This result is argued to be incompatible with any version of a serial thesis suggesting that processing aimed at object recognition starts only with a good enough level of organizational quality. The experiments rather provide some support to the claim, termed here "early interaction hypothesis", positing interaction between early recognition processing and preassignment parsing processes.

  14. Non-Markovian noise

    International Nuclear Information System (INIS)

    Fulinski, A.

    1994-01-01

    The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process

  15. Stochastic correlative firing for figure-ground segregation.

    Science.gov (United States)

    Chen, Zhe

    2005-03-01

    Segregation of sensory inputs into separate objects is a central aspect of perception and arises in all sensory modalities. The figure-ground segregation problem requires identifying an object of interest in a complex scene, in many cases given binaural auditory or binocular visual observations. The computations required for visual and auditory figure-ground segregation share many common features and can be cast within a unified framework. Sensory perception can be viewed as a problem of optimizing information transmission. Here we suggest a stochastic correlative firing mechanism and an associative learning rule for figure-ground segregation in several classic sensory perception tasks, including the cocktail party problem in binaural hearing, binocular fusion of stereo images, and Gestalt grouping in motion perception.

  16. Human figure drawing distinguishes Alzheimer's patients: a cognitive screening test study.

    Science.gov (United States)

    Stanzani Maserati, Michelangelo; D'Onofrio, Renato; Matacena, Corrado; Sambati, Luisa; Oppi, Federico; Poda, Roberto; De Matteis, Maddalena; Naldi, Ilaria; Liguori, Rocco; Capellari, Sabina

    2018-05-01

    To study human figure drawing in a group of Alzheimer's disease (AD) patients and compare it with a group of patients with mild cognitive impairment (MCI) and controls. We evaluated consecutive outpatients over a one-year period. Patients were classified as affected by AD or by MCI. All patients and controls underwent a simplified version of the human-figure drawing test and MMSE. A qualitative and quantitative analysis of all human figures was obtained. 112 AD, 100 MCI patients and 104 controls were enrolled. AD patients drew human figures poor in details and globally smaller than MCI patients and controls. Human figures drawn by MCI patients are intermediate in body height between those of the AD patients and the healthy subjects. The head-to-body ratio of human figures drawn by AD patients is greater than controls and MCI patients, while the human figure size-relative-to-page space index is significantly smaller. Body height is an independent predictor of cognitive impairment correlating with its severity and with the number of the figure's details. Human figures drawn by AD patients are different from those drawn by healthy subjects and MCI patients. Human figure drawing test is a useful tool for orienting cognitive impairment's diagnosis.

  17. Identification of neutron noise sources in a boiling water reactor

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.; Mathis, M.V.; Smith, C.M.

    1977-01-01

    Measurements were made at units 2 and 3 of the Browns Ferry Nuclear Power Plant in order to characterize the noise signatures of the neutron and process signals and to determine the usefulness of such signatures for anomaly detection in BWR-4s. Previous measurements and theoretical analyses of BWR noise by others were concerned with the determination of steam velocity and void fraction (using the local component of neutron noise) and with the sources of global noise. The work described is under a five-part program to develop a complete and systematic analysis and representation of BWR neutron and process noise through complementary measurements and stochastic model developments. The parts are: (1) recording as many neutron detector and process noise signals as are available in a BWR-4; (2) reducing these data to noise signatures in order to perform an empirical analysis of these signatures, and documenting the relationships between the signals from spatially separated neutron detectors and between neutron and process variables; (3) developing spatially dependent neutronic models coupled with thermal-hydraulic models to aid in interpreting the observed relationships among the measured noise signatures, (4) comparing measured noise signatures with model predictions to obtain additional insight into BWR-4 dynamic behavior and to validate the models; and (5) using these models to predict the sensitivity of noise monitoring for detection, surveillance, and diagnosis of postulated in-core anomalies in BWRs. The paper describes the procedures used to obtain the noise recordings and presents initial empirical analysis and observations pertaining to the noise signatures and the relationships between several noise variables in the 0.01- to 1-Hz range. The mathematical models have not been developed sufficiently to report theoretical results or to compare measured spectra with model predictions at this time

  18. The edge complex: implicit memory for figure assignment in shape perception.

    Science.gov (United States)

    Peterson, Mary A; Enns, James T

    2005-05-01

    Viewing a stepped edge is likely to prompt the perceptual assignment of one side of the edge as figure. This study demonstrates that even a single brief glance at a novel edge gives rise to an implicit memory regarding which side was seen as figure; this edge complex enters into the figure assignment process the next time the edge is encountered, both speeding same-different judgments when the figural side is repeated and slowing these judgments when the new figural side is identical to the former ground side (Experiments 1A and 1B). These results were obtained even when the facing direction of the repeated edge was mirror reversed (Experiment 2). This study shows that implicit measures can reveal the effects of past experience on figure assignment, following a single prior exposure to a novel shape, and supports a competitive model of figure assignment in which past experience serves as one of many figural cues.

  19. Frequency-domain Harman technique for rapid characterization of bulk and thin film thermoelectric materials

    Science.gov (United States)

    Moran, Samuel

    Nanostructured thermoelectrics, often in the form of thin films, may potentially improve the generally poor efficiency of bulk thermoelectric power generators and coolers. In order to characterize the efficiency of these new materials it is necessary to measure their thermoelectric figure of merit, ZT. The only direct measurement of ZT is based on the Harman technique and relies on measuring the voltage drop across a sample subjected to a passing continuous current. Application of this technique to thin films is currently carried out as a time-domain measurement of the voltage as the thermal component decays after switching off an applied voltage. This work develops a technique for direct simultaneous measurement of figure of merit and Seebeck coefficient from the harmonic response of a thermoelectric material under alternating current excitation. A thermocouple mounted on the top surface measures voltage across the device as the frequency of the applied voltage is varied. A thermal model allows the sample thermal conductivity to also be determined and shows good agreement with measurements. This technique provides improved signal-to-noise ratio and accuracy compared to time-domain ZT measurements for comparable conditions while simultaneously measuring Seebeck coefficient. The technique is applied to both bulk and thin film thermoelectric samples.

  20. A new clinical unit for digital radiography based on a thick amorphous Selenium plate: Physical and psychophysical characterization

    International Nuclear Information System (INIS)

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Acchiappati, Domenico

    2011-01-01

    Purpose: Here, we present a physical and psychophysical characterization of a new clinical unit (named AcSelerate) for digital radiography based on a thick a-Se layer. We also compared images acquired with and without a software filter (named CRF) developed for reducing sharpness and noise of the images and making them similar to images coming from traditional computed radiography systems. Methods: The characterization was achieved in terms of physical figures of merit [modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE)], and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). We accomplished measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9. Results: The system shows an excellent MTF (about 50% at the Nyquist frequency). The DQE is about 55% at 0.5 lp/mm and above 20% at the Nyquist frequency and is almost independent from exposure. The contrast-detail curves are comparable to some of the best published data for other systems devoted to imaging in general radiography. The CRF filter influences both the MTF and NPS, but it does lead to very small changes on DQE. Also the visibility of CDRAD details is basically unaltered, when the filter is activated. Conclusions: As normally happens with detector based on direct conversion, the system presents an excellent MTF. The improved efficiency caused by the thick layer allows getting good noise characteristics and DQE results better (about 10% on average) than many of the computed radiography (CR) systems and comparable to those obtained by the best systems for digital radiography available on the market.

  1. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    Science.gov (United States)

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  2. AUDITORY NUCLEI: DISTINCTIVE RESPONSE PATTERNS TO WHITE NOISE AND TONES IN UNANESTHETIZED CATS.

    Science.gov (United States)

    GALIN, D

    1964-10-09

    Electrical responses to "white" noise and tonal stimuli were recorded from unanesthetized cats with permanently implanted bipolar electrodes. The cochlear nucleus, inferior colliculus, and medial geniculate each showed distinctive patterns of evoked activity. White noise and tones produced qualitatively different types of response. A decrease in activity characterized the response of the inferior colliculus to tonal stimuli.

  3. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    Science.gov (United States)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  4. A search asymmetry reversed by figure-ground assignment.

    Science.gov (United States)

    Humphreys, G W; Müller, H

    2000-05-01

    We report evidence demonstrating that a search asymmetry favoring concave over convex targets can be reversed by altering the figure-ground assignment of edges in shapes. Visual search for a concave target among convex distractors is faster than search for a convex target among concave distractors (a search asymmetry). By using shapes with ambiguous local figure-ground relations, we demonstrated that search can be efficient (with search slopes around 10 ms/item) or inefficient (with search slopes around 30-40 ms/item) with the same stimuli, depending on whether edges are assigned to concave or convex "figures." This assignment process can operate in a top-down manner, according to the task set. The results suggest that attention is allocated to spatial regions following the computation of figure-ground relations in parallel across the elements present. This computation can also be modulated by top-down processes.

  5. Environmental noise and noise modelling-some aspects in Malaysian development

    International Nuclear Information System (INIS)

    Leong, Mohd Salman; Mohd Shafiek bin Hj Yaacob

    1994-01-01

    Environmental noise is of growing concern in Malaysia with the increasing awareness of the need for an environmental quality consistent with improved quality of life. While noise is one of the several elements in an Environmental Impact Assessment report, the degree of emphasis in the assessment is not as thorough as other aspects in the EIA study. The measurements, prediction (if at all any), and evaluation tended to be superficial. The paper presents a summary of correct noise descriptors and annoyance assessment parameters appropriate for the evaluation of environmental noise. The paper further highlights current inadequacies in the Environmental Quality Act for noise pollution, and annoyance assessment. Some examples of local noise pollution are presented. A discussion on environmental noise modelling is presented. Examples illustrating environmental noise modelling for a mining operation and a power station are given. It is the authors' recommendation that environmental noise modelling be made mandatory in all EIA studies such that a more definitive assessment could be realised

  6. Annoyance of low frequency noise and traffic noise

    DEFF Research Database (Denmark)

    Mortensen, F.R.; Poulsen, Torben

    2001-01-01

    The annoyance of different low frequency noise sources was determined and compared to the annoyance from traffic noise. Twenty-two subjects participated in laboratory listening tests. The sounds were presented by loudspeakers in a listening room and the spectra of the low frequency noises were...

  7. INFORMATIONAL MODEL OF MENTAL ROTATION OF FIGURES

    Directory of Open Access Journals (Sweden)

    V. A. Lyakhovetskiy

    2016-01-01

    Full Text Available Subject of Study.The subject of research is the information structure of objects internal representations and operations over them, used by man to solve the problem of mental rotation of figures. To analyze this informational structure we considered not only classical dependencies of the correct answers on the angle of rotation, but also the other dependencies obtained recently in cognitive psychology. Method.The language of technical computing Matlab R2010b was used for developing information model of the mental rotation of figures. Such model parameters as the number of bits in the internal representation, an error probability in a single bit, discrete rotation angle, comparison threshold, and the degree of difference during rotation can be changed. Main Results.The model reproduces qualitatively such psychological dependencies as the linear increase of time of correct answers and the number of errors on the angle of rotation for identical figures, "flat" dependence of the time of correct answers and the number of errors on the angle of rotation for mirror-like figures. The simulation results suggest that mental rotation is an iterative process of finding a match between the two figures, each step of which can lead to a significant distortion of the internal representation of the stored objects. Matching is carried out within the internal representations that have no high invariance to rotation angle. Practical Significance.The results may be useful for understanding the role of learning (including the learning with a teacher in the development of effective information representation and operations on them in artificial intelligence systems.

  8. Using Correlated Photons to Suppress Background Noise

    Science.gov (United States)

    Jackson, Deborah; Hockney, George; Dowling, Jonathan

    2003-01-01

    A proposed method of suppressing the effect of background noise in an optical communication system would exploit the transmission and reception of correlated photons at the receiver. The method would not afford any advantage in a system in which performance is limited by shot noise. However, if the performance of the system is limited by background noise (e.g., sunlight in the case of a free-space optical communication system or incoherently scattered in-band photons in the case of a fiber-optic communication system), then the proposed method could offer an advantage: the proposed method would make it possible to achieve a signal-to-noise ratio (S/N) significantly greater than that of an otherwise equivalent background- noise-limited optical communication system based on the classical transmission and reception of uncorrelated photons. The figure schematically depicts a classical optical-communication system and a system according to the proposed method. In the classical system, a modulated laser beam is transmitted along an optical path to a receiver, the optics of which include a narrow-band-pass filter that suppresses some of the background noise. A photodetector in the receiver detects the laser-beam and background photons, most or all of which are uncorrelated. In the proposed system, correlated photons would be generated at the transmitter by making a modulated laser beam pass through a nonlinear parametric down-conversion crystal. The sum of frequencies of the correlated photons in each pair would equal the frequency of the incident photon from which they were generated. As in the classical system, the correlated photons would travel along an optical path to a receiver, where they would be band-pass filtered and detected. Unlike in the classical system, the photodetector in the receiver in this system would be one that intrinsically favors the detection of pairs of correlated photons over the detection of uncorrelated photons. Even though there would be no

  9. Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.

    Science.gov (United States)

    Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A

    2015-05-13

    Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.

  10. Competition-strength-dependent ground suppression in figure-ground perception.

    Science.gov (United States)

    Salvagio, Elizabeth; Cacciamani, Laura; Peterson, Mary A

    2012-07-01

    Figure-ground segregation is modeled as inhibitory competition between objects that might be perceived on opposite sides of borders. The winner is the figure; the loser is suppressed, and its location is perceived as shapeless ground. Evidence of ground suppression would support inhibitory competition models and would contribute to explaining why grounds are shapeless near borders shared with figures, yet such evidence is scarce. We manipulated whether competition from potential objects on the ground side of figures was high (i.e., portions of familiar objects were potentially present there) or low (novel objects were potentially present). We predicted that greater competition would produce more ground suppression. The results of two experiments in which suppression was assessed via judgments of the orientation of target bars confirmed this prediction; a third experiment showed that ground suppression is short-lived. Our findings support inhibitory competition models of figure assignment, in particular, and models of visual perception entailing feedback, in general.

  11. Logo design: examining consumer response to figurativeness across cultures

    OpenAIRE

    Machado, Joana César; Vacas de Carvalho, Leonor; Torres, Anna; Van de Velden, Michel; Costa, Patrício

    2014-01-01

    Literature concerned with logo strategy suggests that the aesthetic appeal of brand logo significantly influences consumer reactions. The main purpose of this research is to study the influence of the different categories of figurative logo designs on consumer response. Through two studies in three countries, this research sheds light on consumer logo preferences, by investigating the psychological properties of the figurativeness of logo design. Results showed that figurativeness is an essen...

  12. Shot noise of spin current and spin transfer torque

    Science.gov (United States)

    Yu, Yunjin; Zhan, Hongxin; Wan, Langhui; Wang, Bin; Wei, Yadong; Sun, Qingfeng; Wang, Jian

    2013-04-01

    We report the theoretical investigation of the shot noise of the spin current (Sσ) and the spin transfer torque (Sτ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear Sσ - V and Sτ - V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage Nτ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque Nτ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period Nτ(θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters.

  13. Evaluating noise abatement measures using strategic noise maps

    NARCIS (Netherlands)

    Borst, H.C.; Miedema, H.M.E.; Laan, W.P.N. van der; Lohman, W.J.A.

    2006-01-01

    Noise annoyance due to transportation is widespread in industrialized countries and in urban areas in the developing countries. The European Noise Directive (END) requires an assessment of the noise situation as well as the formulation of action plans for the reduction of the number of people

  14. Globally inconsistent figure/ground relations induced by a negative part.

    Science.gov (United States)

    Kim, Sung-Ho; Feldman, Jacob

    2009-09-10

    Figure/ground interpretation is a dynamic and complex process involving the cooperation and competition of a number of perceptual factors. Most research has assumed that figure/ground assignment is globally consistent along the entire contour of a single figure, meaning that the one side of each boundary is interpreted as figure along the entire length of the boundary, and the other side interpreted as ground. We investigated a situation that challenges this assumption, because local cues to figure/ground conflict with global cues: a "negative part," a contour region that appears locally convex but that the global form requires be concave. To measure figure/ground assignment, we use a new task based on local contour motion attribution that allows us to measure border ownership locally at points along the contour. The results from two experiments showed that the more salient a negative part is, the more border ownership tended to locally reverse within it, creating an inconsistency in figure/ground assignments along the contour. This suggests that border ownership assignment is not an all-or-none process, but rather a locally autonomous process that is not strictly constrained by global cues.

  15. Biased figure-ground assignment affects conscious object recognition in spatial neglect.

    Science.gov (United States)

    Eramudugolla, Ranmalee; Driver, Jon; Mattingley, Jason B

    2010-09-01

    Unilateral spatial neglect is a disorder of attention and spatial representation, in which early visual processes such as figure-ground segmentation have been assumed to be largely intact. There is evidence, however, that the spatial attention bias underlying neglect can bias the segmentation of a figural region from its background. Relatively few studies have explicitly examined the effect of spatial neglect on processing the figures that result from such scene segmentation. Here, we show that a neglect patient's bias in figure-ground segmentation directly influences his conscious recognition of these figures. By varying the relative salience of figural and background regions in static, two-dimensional displays, we show that competition between elements in such displays can modulate a neglect patient's ability to recognise parsed figures in a scene. The findings provide insight into the interaction between scene segmentation, explicit object recognition, and attention.

  16. Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data

    Science.gov (United States)

    Puthanmadam Subramaniyam, Narayan; Hyttinen, Jari

    2014-10-01

    In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states.

  17. Figure Structure, Figure Action, and Framing in Drawings by American and Egyptian Children.

    Science.gov (United States)

    Wilson, Brent; Wilson, Marjorie

    1979-01-01

    The purpose of this study is to investigate the interaction of biological unfolding and culturally related factors on sequences of narrative figure drawings by American and Egyptian elementary students. Findings support hypotheses relating to the interaction of natural and nurtural influences on children's drawings. (Author/SJL)

  18. Noise annoys: effects of noise on breeding great tits depend on personality but not on noise characteristics

    NARCIS (Netherlands)

    Naguib, M.; Van Oers, K.; Braakhuis, A.; Griffioen, M.; De Goede, P.; Waas, J.R.

    2013-01-01

    Anthropogenic noise can have serious implications for animals, especially when they communicate acoustically. Yet, the impacts of noise may depend not only on noise characteristics but also on an individual's coping style or personality. We tested whether noise is more disturbing if it masks

  19. IIR digital filter design for powerline noise cancellation of ECG signal using arduino platform

    Science.gov (United States)

    Rahmatillah, Akif; Ataulkarim

    2017-05-01

    Powerline noise has been one of significant noises of Electrocardiogram (ECG) signal measurement. This noise is characterized by a sinusoidal signal which has 50 Hz of noise and 0.3 mV of maximum amplitude. This paper describes the design of IIR Notch filter design to reject a 50 Hz power line noise. IIR filter coefficients were calculated using pole placement method with three variations of band stop cut off frequencies of (49-51)Hz, (48 - 52)Hz, and (47 - 53)Hz. The algorithm and coefficients of filter were embedded to Arduino DUE (ARM 32 bit microcontroller). IIR notch filter designed has been able to reject power line noise with average square of error value of 0.225 on (49-51) Hz filter design and 0.2831 on (48 - 52)Hz filter design.

  20. A critical review of principal traffic noise models: Strategies and implications

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Naveen, E-mail: ngarg@mail.nplindia.ernet.in [Apex Level Standards and Industrial Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India); Maji, Sagar [Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India)

    2014-04-01

    The paper presents an exhaustive comparison of principal traffic noise models adopted in recent years in developed nations. The comparison is drawn on the basis of technical attributes including source modelling and sound propagation algorithms. Although the characterization of source in terms of rolling and propulsion noise in conjunction with advanced numerical methods for sound propagation has significantly reduced the uncertainty in traffic noise predictions, the approach followed is quite complex and requires specialized mathematical skills for predictions which is sometimes quite cumbersome for town planners. Also, it is sometimes difficult to follow the best approach when a variety of solutions have been proposed. This paper critically reviews all these aspects pertaining to the recent models developed and adapted in some countries and also discusses the strategies followed and implications of these models. - Highlights: • Principal traffic noise models developed are reviewed. • Sound propagation algorithms used in traffic noise models are compared. • Implications of models are discussed.

  1. Novel Signal Noise Reduction Method through Cluster Analysis, Applied to Photoplethysmography.

    Science.gov (United States)

    Waugh, William; Allen, John; Wightman, James; Sims, Andrew J; Beale, Thomas A W

    2018-01-01

    Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on cluster analysis for selecting similar repetitions or pulses from a periodic single. This method selects individual pulses without noise, returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received. The algorithm is designed to be sufficiently compact to be implemented on a microcontroller embedded within a medical device. It has been validated through the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals.

  2. A Computationally-Efficient Numerical Model to Characterize the Noise Behavior of Metal-Framed Walls

    Directory of Open Access Journals (Sweden)

    Arun Arjunan

    2015-08-01

    Full Text Available Architects, designers, and engineers are making great efforts to design acoustically-efficient metal-framed walls, minimizing acoustic bridging. Therefore, efficient simulation models to predict the acoustic insulation complying with ISO 10140 are needed at a design stage. In order to achieve this, a numerical model consisting of two fluid-filled reverberation chambers, partitioned using a metal-framed wall, is to be simulated at one-third-octaves. This produces a large simulation model consisting of several millions of nodes and elements. Therefore, efficient meshing procedures are necessary to obtain better solution times and to effectively utilise computational resources. Such models should also demonstrate effective Fluid-Structure Interaction (FSI along with acoustic-fluid coupling to simulate a realistic scenario. In this contribution, the development of a finite element frequency-dependent mesh model that can characterize the sound insulation of metal-framed walls is presented. Preliminary results on the application of the proposed model to study the geometric contribution of stud frames on the overall acoustic performance of metal-framed walls are also presented. It is considered that the presented numerical model can be used to effectively visualize the noise behaviour of advanced materials and multi-material structures.

  3. Feedback Enhances Feedforward Figure-Ground Segmentation by Changing Firing Mode

    Science.gov (United States)

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforwardspiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses withthe responses to a homogenous texture. We propose that feedback controlsfigure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons. PMID:21738747

  4. Electromagnetic noise spectrum at John TS [transmission station

    International Nuclear Information System (INIS)

    Hatanaka, G.K.

    1992-01-01

    Canadian National (CN) is proposing the development of a commercial office tower on a site directly south of John Transmission Station (TS). CN is concerned about the potential effects of fields originating from John TS and other nearby sources on the operation of sensitive equipment and occupants of the building. Potential equipment and tenants might include data processing equipment and television and radio broadcasting companies. A study was conducted to characterize the severity of the electromagnetic environment at the site in order to address these concerns. Measurements of the electromagnetic spectrum from 100 kHz to 300 MHz were performed from a mobile test facility that features a 5 kW diesel generator and an extendible antenna mast. Peak measurements were made using a selectable measurement time of 0.05 s. It was found that the highest noise levels result from micro-gap discharges under dry weather conditions. The micro-gap discharges are characteristic of defect noise sources associated with substation hardware. At 0.5 MHz the noise levels are typical of median noise levels expected for the International Radio Consultive Committee (CCIR) defined business environment. At 74 MHz the noise levels are more severe than the expected levels for this type of environment. However, levels more representative of the business environment will be achieved by eliminating the micro-gap noise sources attributed to John TS. 6 refs., 11 figs., 2 tabs

  5. Impact of cyclostationarity on fan broadband noise prediction

    Science.gov (United States)

    Wohlbrandt, A.; Kissner, C.; Guérin, S.

    2018-04-01

    One of the dominant noise sources of modern Ultra High Bypass Ratio (UHBR) engines is the interaction of the rotor wakes with the leading edges of the stator vanes in the fan stage. While the tonal components of this noise generation mechanism are fairly well understood by now, the broadband components are not. This calls to further the understanding of the broadband noise generation in the fan stage. This article introduces a new extension to the Random Particle Mesh (RPM) method, which accommodates in-depth studies of the impact of cyclostationary wake characteristics on the broadband noise in the fan stage. The RPM method is used to synthesize a turbulence field in the stator domain using a URANS simulation characterized by time-periodic turbulence and mean flow. The rotor-stator interaction noise is predicted by a two-dimensional CAA computation of the stator cascade. The impact of cyclostationarity is decomposed into various effects, which are separately investigated. This leads to the finding that the periodic turbulent kinetic energy (TKE) and periodic flow have only a negligible effect on the radiated sound power. The impact of the periodic integral length scale (TLS) is, however, substantial. The limits of a stationary representation of the TLS are demonstrated making this new extension to the RPM method indispensable when background and wake TKE are of comparable level. Good agreement of the predictions with measurements obtained from the 2015 AIAA Fan Broadband Noise Prediction Workshop are also shown.

  6. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    Science.gov (United States)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  7. Speckle noise reduction on a laser projection display via a broadband green light source.

    Science.gov (United States)

    Yu, Nan Ei; Choi, Ju Won; Kang, Heejong; Ko, Do-Kyeong; Fu, Shih-Hao; Liou, Jiun-Wei; Kung, Andy H; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik; Peng, Lung-Han

    2014-02-10

    A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 °C, respectively, spectral bandwidth was 36 times broader than the periodically poled case. Although the conversion efficiency was smaller than in the periodic case, the TPLN device had a good figure of merit owing to the extremely large bandwidth for wavelength and temperature. The developed broadband green light source exhibited speckle noise approximately one-seventh of that in the conventional approach for a laser projection display.

  8. Effects of orientation on Rey complex figure performance.

    Science.gov (United States)

    Ferraro, F Richard; Grossman, Jennifer; Bren, Amy; Hoverson, Allysa

    2002-10-01

    An experiment was performed that examined the impact of stimulus orientation on performance on the Rey complex figure. A total of 48 undergraduates (24 men, 24 women) were randomly assigned to one of four Rey figure orientation groups (0 degrees, 90 degrees, 180 degrees, and 270 degrees ). Participants followed standard procedures for the Rey figure, initially copying it in whatever orientation group they were assigned to. Next, all participants performed a 15-20 min lexical decision experiment, used as a filler task. Finally, and unbeknownest to them, participants were asked to recall as much of the figure as they could. As expected, results revealed a main effect of Task (F = 83.92, p orientation was not significant, nor did orientation interact with task (Fs .57). The results are important from an applied setting, especially if testing conditions are less than optimal and a fixed stimulus position is not possible (e.g., testing at the bedside).

  9. Ethical considerations in psychiatric profiling of political figures.

    Science.gov (United States)

    Post, Jerrold M

    2002-09-01

    Questions concerning such matters as the effects of health and alcoholism on Boris Yeltsin's decision making; the mind of the Unabomber; the psychology and decision making of Saddam Hussein of Iraq, who was initially characterized by the US Government as "the madman of the Middle East"; the psychology of David Koresh and the Branch Davidians, who were involved in an extended siege with the Bureau of Alcohol, Tobacco, and Firearms and the Federal Bureau of Investigation that ended tragically on April 19, 1993; and, most recently, the psychology of the nineteen al-Qaeda terrorists responsible for the tragic events of September 11, 2001 in which they claimed thousands of lives while giving their own, "killing in the name of God," and of their charismatic leader Osama bin Laden have led journalists to turn to social scientists, including psychiatrists, to offer commentary on public figures.

  10. Noise in state of the art clocks and their impact for fundamental physics

    Science.gov (United States)

    Maleki, L.

    2001-01-01

    In this paper a review of the use of advanced atomic clocks in testing the fundamental physical laws will be presented. Noise sources of clocks will be discussed, together with an outline their characterization based on current models. The paper will conclude with a discussion of recent attempts to reduce the fundamental, as well as technical noise in atomic clocks.

  11. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Join the Cause alz.org >> Alzheimer's & Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: Download the Infographic: English Spanish Share the ...

  12. The effects of noise reduction technologies on the acceptance of background noise.

    Science.gov (United States)

    Lowery, Kristy Jones; Plyler, Patrick N

    2013-09-01

    Directional microphones (D-Mics) and digital noise reduction (DNR) algorithms are used in hearing aids to reduce the negative effects of background noise on performance. Directional microphones attenuate sounds arriving from anywhere other than the front of the listener while DNR attenuates sounds with physical characteristics of noise. Although both noise reduction technologies are currently available in hearing aids, it is unclear if the use of these technologies in isolation or together affects acceptance of noise and/or preference for the end user when used in various types of background noise. The purpose of the research was to determine the effects of D-Mic, DNR, or the combination of D-Mic and DNR on acceptance of noise and preference when listening in various types of background noise. An experimental study in which subjects were exposed to a repeated measures design was utilized. Thirty adult listeners with mild sloping to moderately severe sensorineural hearing loss participated (mean age 67 yr). Acceptable noise levels (ANLs) were obtained using no noise reduction technologies, D-Mic only, DNR only, and the combination of the two technologies (Combo) for three different background noises (single-talker speech, speech-shaped noise, and multitalker babble) for each listener. In addition, preference rankings of the noise reduction technologies were obtained within each background noise (1 = best, 3 = worst). ANL values were significantly better for each noise reduction technology than baseline; and benefit increased significantly from DNR to D-Mic to Combo. Listeners with higher (worse) baseline ANLs received more benefit from noise reduction technologies than listeners with lower (better) baseline ANLs. Neither ANL values nor ANL benefit values were significantly affected by background noise type; however, ANL benefit with D-Mic and Combo was similar when speech-like noise was present while ANL benefit was greatest for Combo when speech spectrum noise was

  13. Temporal dynamics of figure-ground segregation in human vision.

    Science.gov (United States)

    Neri, Peter; Levi, Dennis M

    2007-01-01

    The segregation of figure from ground is arguably one of the most fundamental operations in human vision. Neural signals reflecting this operation appear in cortex as early as 50 ms and as late as 300 ms after presentation of a visual stimulus, but it is not known when these signals are used by the brain to construct the percepts of figure and ground. We used psychophysical reverse correlation to identify the temporal window for figure-ground signals in human perception and found it to lie within the range of 100-160 ms. Figure enhancement within this narrow temporal window was transient rather than sustained as may be expected from measurements in single neurons. These psychophysical results prompt and guide further electrophysiological studies.

  14. A feedback model of figure-ground assignment.

    Science.gov (United States)

    Domijan, Drazen; Setić, Mia

    2008-05-30

    A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output from the dorsal stream is projected to the surface network which serves as a blackboard on which the surface representation is formed. The surface network is a recurrent network which segregates different surfaces by assigning different firing rates to them. The figure is labeled by the maximal firing rate. Computer simulations showed that the model correctly assigns figural status to the surface with a smaller size, a greater contrast, convexity, surroundedness, horizontal-vertical orientation and a higher spatial frequency content. The simple gradient of activity in the dorsal stream enables the simulation of the new principles of the lower region and the top-bottom polarity. The model also explains how the exogenous attention and the endogenous attention may reverse the figural assignment. Due to the local excitation in the surface network, neural activity at the cued region will spread over the whole surface representation. Therefore, the model implements the object-based attentional selection.

  15. Determination of the crystallite orientation distribution from direct pole figures

    International Nuclear Information System (INIS)

    Araujo Gomes, P.A.M. de.

    1977-01-01

    A method is described which allows to calculate the crystallite orientation distribution in polycrystalline material, from direct pole figures data of its crystallographic planes (Roe's Method). The programme was applied to (1010), (0002), (1011) and (1120) complete pole figures data for a commercial, thin sheet Zircaloy-4 tubing specimen. A semi-automatic Rigaku-Denki texture goniometer, which scans the reciprocal lattice sphere pointwise outputting the data in a punched tape, was used to obtain the pole figures. This is consistent with the results obtained through direct conclusion from the pole figures. (author)

  16. Plotter of pole figure using data from x-ray diffraction

    International Nuclear Information System (INIS)

    Lima, A.F.

    1990-01-01

    Any polycrystalline aggregate normally has a preferred crystallographic orientation, or texture which depends on its thermal and or mechanical history. Preferred orientation is best described by means of a pole figure. A pole figure is a stereographic projection which shows the variation in pole density with pole orientation, for a selected set of crystal planes. In this work, computer programs was developed to plot pole figures. The corrected intensities are calculated and directly transmitted to the plotter. The different intensities levels are represented by different colors in the pole figure. (author)

  17. Community noise

    Science.gov (United States)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  18. Development of Emittance Analysis Software for Ion Beam Characterization

    International Nuclear Information System (INIS)

    Padilla, M.J.; Liu, Yuan

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a figure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally, a high-quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifield Radioactive Ion Beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profiles, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fitting are also incorporated into the software. The software will provide a simplified, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate

  19. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  20. The Use and Abuse of Human Figure Drawings.

    Science.gov (United States)

    Motta, Robert W.; And Others

    1993-01-01

    Notes widespread use of human figure drawings to describe and predict psychological functioning. Reviews data-based studies on figure drawings and concludes that there is little support for their validity or for their use as devices to assess personality, behavior, emotion, or intellectual functioning. Presents ease of administration and anecdotal…

  1. Alzheimer's Disease Facts and Figures

    Science.gov (United States)

    ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: ... twice as high. Invest in a world without Alzheimer's. Donate Caregivers Eighty-three percent of the help ...

  2. Design and Characterization of a 5.2 GHz/2.4 GHz Fractional- Frequency Synthesizer for Low-Phase Noise Performance

    Directory of Open Access Journals (Sweden)

    Dai Foster F

    2006-01-01

    Full Text Available This paper presents a complete noise analysis of a -based fractional- phase-locked loop (PLL based frequency synthesizer. Rigorous analytical and empirical formulas have been given to model various phase noise sources and spurious components and to predict their impact on the overall synthesizer noise performance. These formulas have been applied to an integrated multiband WLAN frequency synthesizer RFIC to demonstrate noise minimization through judicious choice of loop parameters. Finally, predicted and measured phase jitter showed good agreement. For an LO frequency of 4.3 GHz, predicted and measured phase noise was rms and rms, respectively.

  3. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    Science.gov (United States)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  4. Report on inter-noise 99; Inter-noise 99 sanka hokok

    Energy Technology Data Exchange (ETDEWEB)

    Koike, H. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    2000-04-01

    Inter-Noise (International Congress on Noise Control Engineering) is a society on noise/vibration and the control technology. Inter-Noise 99 was held on December 6, 7 and 8, 1999, at Fort Lauderdale, Florida, the U.S. The theme was Noise Control in the New Millennium. The number of the participants registered was 555 (151 from the U.S., 89 from Japan, 248 from European countries, and 69 from Asian/other countries). Dr. Harold Marshall gave a keynote lecture titled Noise Control by Design in the 21st Century - An Architectural Acoustic Perspective. From a standpoint of architectural acoustics, he stated the perspective, subjects, and course of the technical development pertaining to technologies needed in the 21st century. The papers read are mostly from the following fields: measuring technology, military exercise noise, modeling, forecast and simulation, aerodynamic/underwater sound, etc. In the session on the tire noise where the author read a paper, 14 papers were read. The number of the papers read was more than that in 1998, probably influenced by the tire noise regulation in Europe and Japan. (translated by NEDO)

  5. Noise frame duration, masking potency and whiteness of temporal noise

    OpenAIRE

    Kukkonen, Helja; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antii

    2002-01-01

    PURPOSE. Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. \\ud \\ud METHODS. Contrast energy thresho...

  6. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties

    Science.gov (United States)

    Kargovsky, A. V.; Chichigina, O. A.; Anashkina, E. I.; Valenti, D.; Spagnolo, B.

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  7. Contextual effects on perceived contrast: figure-ground assignment and orientation contrast.

    Science.gov (United States)

    Self, Matthew W; Mookhoek, Aart; Tjalma, Nienke; Roelfsema, Pieter R

    2015-02-02

    Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual areas increase their firing rate when responding to a figure compared to responding to the background. We hypothesized that similar changes in neural firing would take place in early visual areas of the human visual system, leading to changes in the perception of low-level visual features. In this study, we investigated whether contrast perception is affected by figure-ground assignment using stimuli similar to those in the electrophysiological studies in monkeys. We measured contrast discrimination thresholds and perceived contrast for Gabor probes placed on figures or the background and found that the perceived contrast of the probe was increased when it was placed on a figure. Furthermore, we tested how this effect compared with the well-known effect of orientation contrast on perceived contrast. We found that figure-ground assignment and orientation contrast produced changes in perceived contrast of a similar magnitude, and that they interacted. Our results demonstrate that figure-ground assignment influences perceived contrast, consistent with an effect of figure-ground assignment on activity in early visual areas of the human visual system. © 2015 ARVO.

  8. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  9. Noise-enhanced coding in phasic neuron spike trains.

    Science.gov (United States)

    Ly, Cheng; Doiron, Brent

    2017-01-01

    The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.

  10. Neural dynamics of feedforward and feedback processing in figure-ground segregation.

    Science.gov (United States)

    Layton, Oliver W; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.

  11. Dissociation of color and figure-ground effects in the watercolor illusion.

    Science.gov (United States)

    Von der Heydt, Rüdiger; Pierson, Rachel

    2006-01-01

    Two phenomena can be observed in the watercolor illusion: illusory color spreading and figure-ground organization. We performed experiments to determine whether the figure-ground effect is a consequence of the color illusion or due to an independent mechanism. Subjects were tested with displays consisting of six adjacent compartments--three that generated the illusion alternating with three that served for comparison. In a first set of experiments, the illusory color was measured by finding the matching physical color in the alternate compartments. Figureness (probability of 'figure' responses, 2AFC) of the watercolor compartments was then determined with and without the matching color in the alternate compartments. The color match reduced figureness, but did not abolish it. There was a range of colors in which the watercolor compartments dominated as figures over the alternate compartments although the latter appeared more saturated in color. In another experiment, the effect of tinting alternate compartments was measured in displays without watercolor illusion. Figureness increased with color contrast, but its value at the equivalent contrast fell short of the figureness value obtained for the watercolor pattern. Thus, in both experiments, figureness produced by the watercolor pattern was stronger than expected from the color effect, suggesting independent mechanisms. Considering the neurophysiology, we propose that the color illusion follows from the principles of representation of surface color in the visual cortex, while the figure-ground effect results from two mechanisms of border ownership assignment, one that is sensitive to asymmetric shape of edge profile, the other to consistency of color borders.

  12. Neural dynamics of feedforward and feedback processing in figure-ground segregation

    Science.gov (United States)

    Layton, Oliver W.; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation. PMID:25346703

  13. Noise-induced temporal dynamics in Turing systems

    KAUST Repository

    Schumacher, Linus J.

    2013-04-25

    We examine the ability of intrinsic noise to produce complex temporal dynamics in Turing pattern formation systems, with particular emphasis on the Schnakenberg kinetics. Using power spectral methods, we characterize the behavior of the system using stochastic simulations at a wide range of points in parameter space and compare with analytical approximations. Specifically, we investigate whether polarity switching of stochastic patterns occurs at a defined frequency. We find that it can do so in individual realizations of a stochastic simulation, but that the frequency is not defined consistently across realizations in our samples of parameter space. Further, we examine the effect of noise on deterministically predicted traveling waves and find them increased in amplitude and decreased in speed. © 2013 American Physical Society.

  14. Stochastic dynamics: Crossover from 1/f3 to flicker noise

    International Nuclear Information System (INIS)

    Canessa, E.; Nguyen, V.L.

    1993-01-01

    Finite time processes within the limits of the Newton equation and zero inertia motion (i.e., road to chaos) are studied by numerically solving the ordinary, stochastic Langevin equation in 1D for a free particle with inertial moving in a medium with viscosity γ. In this simulations, the scaling behaviour of particle trajectories χ(t) and velocities v(t) with time are derived and the inclusion of non-zero particle masses is shown to define the asymptotic time limit τ c at which - independently of γ - the system evolves into the well-known statistically stationary state characterized by 2 (t) > is proportional to t and flicker noise. The time τ c is further analysed from the correlation length given by the 2-point autocorrelation function of the particle velocity at each value of γ. It is found that the noise power spectrum of v(t) is characterized by flicker noise for frequencies f ≤ f c ∼ 1/τ c , whereas for f > f c , the noise power spectra behave as 1/f υ , where υ varies between the limits of Newton's equation (i.e., υ = 3) and road to chaos (i.e., υ = 1). Furthermore, at times τ c and 0 f (γ) while the single particle trajectories are shown to display a rather different subset of exponents on increasing γ. Generic features of this transition are nicely given by Poincare maps in the velocity space. (author). 23 refs, 8 figs

  15. Distinguishing between Realistic and Fantastical Figures in Iran

    Science.gov (United States)

    Davoodi, Telli; Corriveau, Kathleen H.; Harris, Paul L.

    2016-01-01

    Children in the United States come to distinguish historical from fictional story figures between the ages of 3 and 5 years, guided by the plausibility of the story events surrounding the figure (Corriveau, Kim, Schwalen, & Harris, 2009; Woolley & Cox, 2007). However, U.S. children vary in their reactions to stories that include…

  16. The role of Urbis' noise and noise effects maps in local policy

    NARCIS (Netherlands)

    Borst, H.C.

    2001-01-01

    An important aspect of the EU noise policy is mapping of noise and noise effects and the formulation of noise action plans. In the Netherlands, due to the new policy on noise (MIG), the municipalities will be responsible for the formulation of a local noise policy. An instrument for the assessment

  17. Altered figure-ground perception in monkeys with an extra-striate lesion.

    Science.gov (United States)

    Supèr, Hans; Lamme, Victor A F

    2007-11-05

    The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.

  18. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  19. A method to establish seismic noise baselines for automated station assessment

    Science.gov (United States)

    McNamara, D.E.; Hutt, C.R.; Gee, L.S.; Benz, H.M.; Buland, R.P.

    2009-01-01

    We present a method for quantifying station noise baselines and characterizing the spectral shape of out-of-nominal noise sources. Our intent is to automate this method in order to ensure that only the highest-quality data are used in rapid earthquake products at NEIC. In addition, the station noise baselines provide a valuable tool to support the quality control of GSN and ANSS backbone data and metadata. The procedures addressed here are currently in development at the NEIC, and work is underway to understand how quickly changes from nominal can be observed and used within the NEIC processing framework. The spectral methods and software used to compute station baselines and described herein (PQLX) can be useful to both permanent and portable seismic stations operators. Applications include: general seismic station and data quality control (QC), evaluation of instrument responses, assessment of near real-time communication system performance, characterization of site cultural noise conditions, and evaluation of sensor vault design, as well as assessment of gross network capabilities (McNamara et al. 2005). Future PQLX development plans include incorporating station baselines for automated QC methods and automating station status report generation and notification based on user-defined QC parameters. The PQLX software is available through the USGS (http://earthquake. usgs.gov/research/software/pqlx.php) and IRIS (http://www.iris.edu/software/ pqlx/).

  20. Characterizing Surface Transport Barriers in the South China Sea

    Science.gov (United States)

    2015-09-30

    to a coral reef system flow, rigorously identifying hyperbolic and elliptic flow structures. 2 RESULTS The FTLE approach was found to be...quite robust in the face of noise and discretization, lending more weight to it being potentially widely applicable to the interpretation of HF Radar...included in real world applications (Allshouse et al. 2015). Figure 3: The impact of windage on a hypothetical tracer release event of Ningaloo Reef

  1. Assessment of the impulse noise attenuation by earplugs in metalworking processes

    Directory of Open Access Journals (Sweden)

    Rafał Młyński

    2014-04-01

    Full Text Available Background: The aim of the study was to answer the question of whether earplugs provide sufficient protection in the exposure to impulse noise generated during metalworking processes. Material and Methods: The noise generated by die forging hammer and punching machine was characterized. Using an acoustic test fixture, noise parameters (LCpeak, LAmax under 24 earplugs, foam, winged and no-roll, were measured. Octave band method was used to calculate values of LAeq under earplugs. Results: It was found that in the case of punching machine the exposure limit value of A-weighted noise exposure level, normalized to an 8-h working day (LEX,8h = 94.8 dB of noise present at the workstation, was exceeded, while in the case of die forging hammer both the exposure limit value of this parameter (LEX,8h = 108.3 dB and the exposure limit value of peak sound pressure level (LCpeak = 148.9 dB were exceeded. The assessment of noise parameters (LCpeak, LAmax, LAeq under earplugs revealed that the noise attenuation can be insufficient, sufficient, or too high. Conclusions: Earplugs can be suitable hearing protection devices in metalworking processes. Of the 24 earplugs included in this study, 9 provided appropriate noise attenuation in the case of tested die forging hammer and 10 in the case of tested punching machine. Med Pr 2014;65(2:197–207

  2. Musical training during early childhood enhances the neural encoding of speech in noise.

    Science.gov (United States)

    Strait, Dana L; Parbery-Clark, Alexandra; Hittner, Emily; Kraus, Nina

    2012-12-01

    For children, learning often occurs in the presence of background noise. As such, there is growing desire to improve a child's access to a target signal in noise. Given adult musicians' perceptual and neural speech-in-noise enhancements, we asked whether similar effects are present in musically-trained children. We assessed the perception and subcortical processing of speech in noise and related cognitive abilities in musician and nonmusician children that were matched for a variety of overarching factors. Outcomes reveal that musicians' advantages for processing speech in noise are present during pivotal developmental years. Supported by correlations between auditory working memory and attention and auditory brainstem response properties, we propose that musicians' perceptual and neural enhancements are driven in a top-down manner by strengthened cognitive abilities with training. Our results may be considered by professionals involved in the remediation of language-based learning deficits, which are often characterized by poor speech perception in noise. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: Download ... about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease ...

  4. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... 2018 Alzheimer's Disease Facts and Figures report contains data on the impact of this disease in every ... with third parties. Please read our security and privacy policy . Plan ahead Get help and support I ...

  5. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... home care. Take action. Become an advocate SPECIAL REPORT: FINANCIAL AND PERSONAL BENEFITS OF EARLY DIAGNOSIS Early ... State The 2018 Alzheimer's Disease Facts and Figures report contains data on the impact of this disease ...

  6. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease Facts and Figures report ... on the impact of this disease in every state across the nation. Click below to see the ...

  7. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... 272.3900 Donate Alzheimer's & Dementia What Is Alzheimer's? Brain Tour Younger/Early Onset Risk Factors Genetics Myths ... Dementia Korsakoff Syndrome Related Conditions CTE MCI Traumatic Brain Injury Facts and Figures Know the 10 Signs ...

  8. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: ... twice as high. Invest in a world without Alzheimer's. Donate Caregivers Eighty-three percent of the help ...

  9. Figure drawing as an expression of self-esteem.

    Science.gov (United States)

    Coopersmith, S; Sakai, D; Beardslee, B; Coopersmith, A

    1976-08-01

    Figure drawings were obtained from 97 preadolescent males who differed in self and behavioral assessments of self-esteem. These subjects had been selected from a much larger sample and represented five different types of self-esteem. The figure drawings were scored for 15 variables, dealing with formal characteristics, content, and global-interpretations of the total drawings. Five significant differences were obtained, with the content and global-interpretative categories proving more differentiating between self-esteem groups than did the formal characteristics. Behavioral expressions of self-esteem were more associated with figure drawing characteristics than were subjective evaluations. Discussion focuses on the nature of self-concept and self-esteem in children as a sensorimotor rather than symbolic expression.

  10. The meaning of city noises: Investigating sound quality in Paris (France)

    Science.gov (United States)

    Dubois, Daniele; Guastavino, Catherine; Maffiolo, Valerie; Guastavino, Catherine; Maffiolo, Valerie

    2004-05-01

    The sound quality of Paris (France) was investigated by using field inquiries in actual environments (open questionnaires) and using recordings under laboratory conditions (free-sorting tasks). Cognitive categories of soundscapes were inferred by means of psycholinguistic analyses of verbal data and of mathematical analyses of similarity judgments. Results show that auditory judgments mainly rely on source identification. The appraisal of urban noise therefore depends on the qualitative evaluation of noise sources. The salience of human sounds in public spaces has been demonstrated, in relation to pleasantness judgments: soundscapes with human presence tend to be perceived as more pleasant than soundscapes consisting solely of mechanical sounds. Furthermore, human sounds are qualitatively processed as indicators of human outdoor activities, such as open markets, pedestrian areas, and sidewalk cafe districts that reflect city life. In contrast, mechanical noises (mainly traffic noise) are commonly described in terms of physical properties (temporal structure, intensity) of a permanent background noise that also characterizes urban areas. This connotes considering both quantitative and qualitative descriptions to account for the diversity of cognitive interpretations of urban soundscapes, since subjective evaluations depend both on the meaning attributed to noise sources and on inherent properties of the acoustic signal.

  11. Noise propagation in resolution modeled PET imaging and its impact on detectability

    International Nuclear Information System (INIS)

    Rahmim, Arman; Tang, Jing

    2013-01-01

    Positron emission tomography imaging is affected by a number of resolution degrading phenomena, including positron range, photon non-collinearity and inter-crystal blurring. An approach to this issue is to model some or all of these effects within the image reconstruction task, referred to as resolution modeling (RM). This approach is commonly observed to yield images of higher resolution and subsequently contrast, and can be thought of as improving the modulation transfer function. Nonetheless, RM can substantially alter the noise distribution. In this work, we utilize noise propagation models in order to accurately characterize the noise texture of reconstructed images in the presence of RM. Furthermore we consider the task of lesion or defect detection, which is highly determined by the noise distribution as quantified using the noise power spectrum. Ultimately, we use this framework to demonstrate why conventional trade-off analyses (e.g. contrast versus noise, using simplistic noise metrics) do not provide a complete picture of the impact of RM and that improved performance of RM according to such analyses does not necessarily translate to the superiority of RM in detection task performance. (paper)

  12. THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Lam, M. T.; Jones, M. L.; McLaughlin, M. A.; Pennucci, T. T. [Department of Physics, West Virginia University, White Hall, Morgantown, WV 26506 (United States); Cordes, J. M.; Chatterjee, S. [Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Arzoumanian, Z. [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Crowter, K.; Fonseca, E.; Gonzalez, M. E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, P. B. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM, 87801 (United States); Dolch, T. [Department of Physics, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242 (United States); Ellis, J. A [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA, 91109 (United States); Ferdman, R. D. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Jones, G. [Department of Physics, Columbia University, 550 W. 120th Street, New York, NY 10027 (United States); Levin, L. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Madison, D. R.; Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Shannon, R. M., E-mail: michael.lam@mail.wvu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping NSW 1710 (Australia); and others

    2017-01-01

    Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum for 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon and Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies.

  13. The electrophysiological correlate of saliency: evidence from a figure-detection task.

    Science.gov (United States)

    Straube, Sirko; Fahle, Manfred

    2010-01-11

    Although figure-ground segregation in a natural environment usually relies on multiple cues, we experience a coherent figure without usually noticing the individual single cues. It is still unclear how various cues interact to achieve this unified percept and whether this interaction depends on task demands. Studies investigating the effect of cue combination on the human EEG are still lacking. In the present study, we combined psychophysics, ERP and time-frequency analysis to investigate the interaction of orientation and spatial frequency as visual cues in a figure detection task. The figure was embedded in a matrix of Gabor elements, and we systematically varied figure saliency by changing the underlying cue configuration. We found a strong correlation between the posterior P2 amplitude and the perceived saliency of the figure: the P2 amplitude decreased with increasing saliency. Analogously, the power of the theta-band decreased for more salient figures. At longer latencies, the posterior P3 component was modulated in amplitude and latency, possibly reflecting increased decision confidence at higher saliencies. In conclusion, when the cue composition (e.g. one or two cues) or cue strength is changed in a figure detection task, first differences in the electrophysiological response reflect the perceived saliency and not directly the underlying cue configuration.

  14. Low Temperature Noise and Electrical Characterization of the Company Heterojunction Field-Effect Transistor

    Science.gov (United States)

    Cunningham, Thomas J.; Gee, Russell C.; Fossum, Eric R.; Baier, Steven M.

    1993-01-01

    This paper discusses the electrical properties of the complementary heterojunction field-effect transistor (CHFET) at 4K, including the gate leakage current, the subthreshold transconductance, and the input-referred noise voltage.

  15. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  16. Figure 1. Associations between pre-ART clinical and laboratory ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Figure 1. Associations between pre-ART clinical and laboratory characteristics with subsequent TB-IRIS events. Figure 1. Associations between pre-ART clinical and laboratory characteristics with subsequent TB-IRIS events.

  17. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    Science.gov (United States)

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  18. The Assessment of Noise Exposure and Noise Annoyance at a Petrochemical Company

    Directory of Open Access Journals (Sweden)

    S. Farhang Dehghan

    2013-12-01

    .Conclusion: Based on the obtained results of investigating the noise level (objective exposure as well as the noise annoyance (subjective exposure at the studied company, it is necessary to adopt the management –technical noise reduction measures at manufacturing sectors as the personal noise exposure and environmental noise exposure and also noise personal exposure of administrative staff can be decreased.

  19. Full text and figure display improves bioscience literature search.

    Science.gov (United States)

    Divoli, Anna; Wooldridge, Michael A; Hearst, Marti A

    2010-04-14

    When reading bioscience journal articles, many researchers focus attention on the figures and their captions. This observation led to the development of the BioText literature search engine, a freely available Web-based application that allows biologists to search over the contents of Open Access Journals, and see figures from the articles displayed directly in the search results. This article presents a qualitative assessment of this system in the form of a usability study with 20 biologist participants using and commenting on the system. 19 out of 20 participants expressed a desire to use a bioscience literature search engine that displays articles' figures alongside the full text search results. 15 out of 20 participants said they would use a caption search and figure display interface either frequently or sometimes, while 4 said rarely and 1 said undecided. 10 out of 20 participants said they would use a tool for searching the text of tables and their captions either frequently or sometimes, while 7 said they would use it rarely if at all, 2 said they would never use it, and 1 was undecided. This study found evidence, supporting results of an earlier study, that bioscience literature search systems such as PubMed should show figures from articles alongside search results. It also found evidence that full text and captions should be searched along with the article title, metadata, and abstract. Finally, for a subset of users and information needs, allowing for explicit search within captions for figures and tables is a useful function, but it is not entirely clear how to cleanly integrate this within a more general literature search interface. Such a facility supports Open Access publishing efforts, as it requires access to full text of documents and the lifting of restrictions in order to show figures in the search interface.

  20. Full text and figure display improves bioscience literature search.

    Directory of Open Access Journals (Sweden)

    Anna Divoli

    Full Text Available When reading bioscience journal articles, many researchers focus attention on the figures and their captions. This observation led to the development of the BioText literature search engine, a freely available Web-based application that allows biologists to search over the contents of Open Access Journals, and see figures from the articles displayed directly in the search results. This article presents a qualitative assessment of this system in the form of a usability study with 20 biologist participants using and commenting on the system. 19 out of 20 participants expressed a desire to use a bioscience literature search engine that displays articles' figures alongside the full text search results. 15 out of 20 participants said they would use a caption search and figure display interface either frequently or sometimes, while 4 said rarely and 1 said undecided. 10 out of 20 participants said they would use a tool for searching the text of tables and their captions either frequently or sometimes, while 7 said they would use it rarely if at all, 2 said they would never use it, and 1 was undecided. This study found evidence, supporting results of an earlier study, that bioscience literature search systems such as PubMed should show figures from articles alongside search results. It also found evidence that full text and captions should be searched along with the article title, metadata, and abstract. Finally, for a subset of users and information needs, allowing for explicit search within captions for figures and tables is a useful function, but it is not entirely clear how to cleanly integrate this within a more general literature search interface. Such a facility supports Open Access publishing efforts, as it requires access to full text of documents and the lifting of restrictions in order to show figures in the search interface.

  1. Noise pollution resources compendium

    Science.gov (United States)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  2. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  3. The Vanished Child: An inquiry into figures and their modes of appearance

    Directory of Open Access Journals (Sweden)

    Bertrand Gervais

    2010-12-01

    Full Text Available Sophie Calle's texts are elaborate devices that facilitate the production of figures, of complex symbolic entities. In fact, her work enables us to better understand how figures emerge and unfold in the imaginary. Thus, we find in her Disparitions (Disappearances, a startling figure, which we can name the "Vanished Child". I will present this figure and explain how it stems from the description of a painting by Rembrandt, stolen at the Gardner Museum in Boston. I will start by identifying some of the essential processes implied in the identification of a figure, and, to do so, I will give two short examples, drawn from Witold Gombrowicz and Don DeLillo. Then, after having described in details the figure of the Vanished Child, I will argue, following the French art historian Georges Didi-Huberman in his reading of Walter Benjamin, that figures are auratic objects. Dans ses textes, Sophie Calle emploie des techniques détaillées qui facilitent la production de figures, d'entités symboliques complexes. Son œuvre nous permet effectivement de mieux comprendre comment les figures émergent et se déploient dans l'imaginaire. Ainsi, nous trouvons dans ses Disparitions (Disappearances une figure surprenante que nous pouvons désigner comme « l'enfant disparu ». Je présenterai cette figure en expliquant comment elle découle de la description d'un tableau de Rembrandt volé au musée Gardner à Boston. J'identifierai d'abord quelques-uns des procédés essentiels à l'identification d'une figure, et pour ce faire je donnerai deux exemples, tirés des œuvres de Witold Gombrowicz et Don DeLillo. Puis je décrirai de façon détaillée la figure de l'enfant disparu, avant de démontrer le caractère auratique des figures à partir de la lecture de Walter Benjamin qu'exécute l'historien de l'art français Georges Didi-Huberman.

  4. Inhibitory competition in figure-ground perception: context and convexity.

    Science.gov (United States)

    Peterson, Mary A; Salvagio, Elizabeth

    2008-12-15

    Convexity has long been considered a potent cue as to which of two regions on opposite sides of an edge is the shaped figure. Experiment 1 shows that for a single edge, there is only a weak bias toward seeing the figure on the convex side. Experiments 1-3 show that the bias toward seeing the convex side as figure increases as the number of edges delimiting alternating convex and concave regions increases, provided that the concave regions are homogeneous in color. The results of Experiments 2 and 3 rule out a probability summation explanation for these context effects. Taken together, the results of Experiments 1-3 show that the homogeneity versus heterogeneity of the convex regions is irrelevant. Experiment 4 shows that homogeneity of alternating regions is not sufficient for context effects; a cue that favors the perception of the intervening regions as figures is necessary. Thus homogeneity alone does not alone operate as a background cue. We interpret our results within a model of figure-ground perception in which shape properties on opposite sides of an edge compete for representation and the competitive strength of weak competitors is further reduced when they are homogeneous.

  5. A Method to Estimate Students’ Exposure to Road Traffic Noise Events

    Directory of Open Access Journals (Sweden)

    Simone Secchi

    2018-03-01

    Full Text Available The correlation between exposure to traffic noise and students’ performance and annoyance has been investigated in literature mainly considering the relationship between indoor equivalent A-weighted sound pressure level (LAeq and students’ cognitive impairment. Annoyance is frequently related to the effect of short-duration noise events characterized by high sound pressure levels, such as those due to aircraft fly-over and pass-by of buses, heavy trucks, motorcycles, or street sweepers. These noise events are often described, over specific measurement periods, in terms of maximum A-weighted sound pressure level, LAmax, or statistical levels, such as LA1 or LA10. This aspect is not considered in the noise maps drawn in accordance with the European Environmental Noise Directive, as they provide the LAeq only, determined over day, evening, and night periods. In this paper, students’ exposure to road traffic noise is analyzed by means of regression equations obtained by the authors between LAeq and A-weighted maximum and statistical levels due to road traffic noise. The traffic noise of 28 urban streets was monitored during the opening period of Italian schools. A method is described to estimate students’ exposure to noise from data made available on noise maps by the municipalities of metropolitan areas. The application of this method to the case study of Florence shows that almost 60% of students from municipal primary and lower secondary schools could be exposed to the maximum sound pressure level (SPL inside the classroom greater than 55 dB(A every hour, probably exceeding the typical background noise in classrooms by more than 10 dB.

  6. Low noise constant current source for bias dependent noise measurements

    International Nuclear Information System (INIS)

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.; Chakraborty, R. K.

    2011-01-01

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 μA to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.

  7. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: Download ... worried about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease ...

  8. Static and Dynamic Reservoir Characterization Using High Resolution P-Wave Velocity Data in Delhi Field, la

    Science.gov (United States)

    Hussain, S.; Davis, T.

    2012-12-01

    Static and dynamic reservoir characterization was done on high resolution P-wave seismic data in Delhi Field, LA to study the complex stratigraphy of the Holt-Bryant sands and to delineate the CO2 flow path. The field is undergoing CO2 injection for enhanced oil recovery. The seismic data was bandwidth extended by Geotrace to decrease the tuning thickness effect. Once the authenticity of the added frequencies in the data was determined, the interpretation helped map thin Tuscaloosa and Paluxy sands. Cross-equalization was done on the baseline and monitor surveys to remove the non-repeatable noise in the data. Acoustic impedance (AI) inversion was done on the baseline and monitor surveys to map the changes in AI with CO2 injection in the field. Figure 1 shows the AI percentage change at Base Paluxy. The analysis helped identify areas that were not being swept by CO2. Figure 2 shows the CO2 flow paths in Tuscaloosa formation. The percentage change of AI with CO2 injection and pressure increase corresponded with the fluid substitution modeling results. Time-lapse interpretation helped in delineating the channels, high permeability zones and the bypassed zones in the reservoir.; Figure 1: P-impedance percentage difference map with a 2 ms window centered at the base of Paluxy with the production data from June 2010 overlain; the black dashed line is the oil-water contact; notice the negative impedance change below the OWC. The lighter yellow color shows area where Paluxy is not being swept completely. ; Figure 2: P-impedance percentage difference map at TUSC 7 top; the white triangles are TUSC 7 injectors and the white circles are TUSC 7 producers; the black polygons show the flow paths of CO2.

  9. Logical stochastic resonance in triple-well potential systems driven by colored noise.

    Science.gov (United States)

    Zhang, Huiqing; Xu, Yong; Xu, Wei; Li, Xiuchun

    2012-12-01

    In this work, the logic stochastic resonance (LSR) phenomenon in a class of stochastic triple-well potential systems is investigated. Approximate Fokker-Planck equation is first obtained by using decoupling approximation. Then, we show that LSR can be successfully induced by additive or multiplicative Gaussian colored noise in some cases. In the absence of internal noise, LSR implementation seems impossible for a = 0 (The parameter a characterizes the depth of the potential well) since the two side wells are so deep that the particle cannot hop over the barrier into the middle well when the input signal is 0. With the increasing of a, the optimal noise band to yield flexible logic gates appears and moves to higher level of noise as the correlation time of noise increases. Compared with the Gaussian white noise, the reliable region in the parameter plane of potential depth parameter a and additive noise strength D first expands and then shrinks with increasing noise color. Furthermore, the effects of multiplicative Gaussian colored noise on LSR are investigated. It was found that the flexible and reliable logic behavior can be yielded for a = 0 due to the fact that the multiplicative Gaussian colored noise strongly affects the shape of the potential function. With the increasing of a, i.e., a = 0.25, multiplicative Gaussian white noise cannot yield desired logic behavior. Fortunately, LSR can also be expected by adjusting the correlation time of Gaussian colored noise. It can also be observed that the reliable region in the parameter plane of potential depth parameter a and multiplicative noise strength Q is small for the case of Gaussian white noise and it becomes larger with the increasing of noise color.

  10. Figure-ground organization and object recognition processes: an interactive account.

    Science.gov (United States)

    Vecera, S P; O'Reilly, R C

    1998-04-01

    Traditional bottom-up models of visual processing assume that figure-ground organization precedes object recognition. This assumption seems logically necessary: How can object recognition occur before a region is labeled as figure? However, some behavioral studies find that familiar regions are more likely to be labeled figure than less familiar regions, a problematic finding for bottom-up models. An interactive account is proposed in which figure-ground processes receive top-down input from object representations in a hierarchical system. A graded, interactive computational model is presented that accounts for behavioral results in which familiarity effects are found. The interactive model offers an alternative conception of visual processing to bottom-up models.

  11. How Iconic Figures Influence Thinking ? : Comparison of University and Lower Secondary Students

    OpenAIRE

    添田, 佳伸; 藤井, 良宜

    1992-01-01

    In learning geometry we often use iconic figures to give children conditions and questions in word problems. But the figure becomes an object of thinking after finishing plaing the role of giving some information. Children think the problem by using the given figure. If figures influence chidren's thinking, a rate of correct answer of each problem must be different according to being presented each figure. ### Thus we investigated the differences of rates of correct answer by using three type...

  12. Proceedings of the 2009 spring noise conference : noise awareness : supporting sound partnerships

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for industry, government, public, academics and acoustical professionals to discuss innovations in environmental and occupational noise identification, measurement, regulation and control. In addition to raising awareness about expanding noise issues, the conference objectives were to promote responsible industrial development and to identify strategies for reducing workplace noise exposure. The papers focused on research, developments and case studies and highlighted current issues and advancements in technology and software. Speakers from around the world discussed topics ranging from occupational noise issues to low frequency. The 8 sessions were entitled: (1) plenary session, (2) architecture, community planning and public health: effects of noise and noise control, (3) modeling, measurement and technology; (4) noise awareness and education: public, occupational and industrial, (5) regulations and economics: bylaws, legislation and the economics of noise control; (6) student papers, (7) vibration, industrial noise, transportation noise and occupational noise control, and (8) lunch speakers. The conference featured 46 presentations, of which 19 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  13. Evaluation of substitution monopole models for tire noise sound synthesis

    Science.gov (United States)

    Berckmans, D.; Kindt, P.; Sas, P.; Desmet, W.

    2010-01-01

    Due to the considerable efforts in engine noise reduction, tire noise has become one of the major sources of passenger car noise nowadays and the demand for accurate prediction models is high. A rolling tire is therefore experimentally characterized by means of the substitution monopole technique, suiting a general sound synthesis approach with a focus on perceived sound quality. The running tire is substituted by a monopole distribution covering the static tire. All monopoles have mutual phase relationships and a well-defined volume velocity distribution which is derived by means of the airborne source quantification technique; i.e. by combining static transfer function measurements with operating indicator pressure measurements close to the rolling tire. Models with varying numbers/locations of monopoles are discussed and the application of different regularization techniques is evaluated.

  14. Dynamics of two competing species in the presence of Lévy noise sources

    Science.gov (United States)

    La Cognata, A.; Valenti, D.; Dubkov, A. A.; Spagnolo, B.

    2010-07-01

    We consider a Lotka-Volterra system of two competing species subject to multiplicative α -stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive α -stable Lévy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasiperiodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analyzing the role of the Lévy noise sources.

  15. Pilot task-based assessment of noise levels among firefighters.

    Science.gov (United States)

    Neitzel, Rl; Hong, O; Quinlan, P; Hulea, R

    2013-11-01

    exposure characterization and additional hearing loss prevention efforts. Firefighters may be at risk of noise-induced hearing loss, which can affect their fitness for duty and ability to respond effectively to emergencies. The results of this study suggest that additional efforts at hearing loss prevention among firefighters are warranted.

  16. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  17. Feed-forward segmentation of figure-ground and assignment of border-ownership.

    Directory of Open Access Journals (Sweden)

    Hans Supèr

    Full Text Available Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown. To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual system uses feed forward suppression for figure-ground segmentation and border-ownership assignment.

  18. Feed-forward segmentation of figure-ground and assignment of border-ownership.

    Science.gov (United States)

    Supèr, Hans; Romeo, August; Keil, Matthias

    2010-05-19

    Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown. To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual system uses feed forward suppression for figure-ground segmentation and border-ownership assignment.

  19. Figure output program for JFT-2M experimental data

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Mori, Masahiro; Matsuda, Toshiaki; Takada, Susumu.

    1991-11-01

    The software for the figure output of JFT-2M experimental data is reported. Since the configuration of a figure is determined by some easy input parameters, then any format of each experimental output is configured freely by this software. (author)

  20. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Science.gov (United States)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  1. Classical noise, quantum noise and secure communication

    International Nuclear Information System (INIS)

    Tannous, C; Langlois, J

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems. (review)

  2. ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Shannon, Ryan M.; Cordes, James M.

    2010-01-01

    We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity of timing noise in millisecond pulsars because the long-term stability of these objects is required to detect nanohertz gravitational radiation. We show that a single scaling law is sufficient to characterize timing noise in millisecond and canonical pulsars while the same scaling law underestimates the levels of timing noise in magnetars. The scaling law, along with a detailed study of the millisecond pulsar B1937+21, leads us to conclude that timing noise is latent in most millisecond pulsars and will be measurable in many objects when better arrival time estimates are obtained over long data spans. The sensitivity of a pulsar timing array to gravitational radiation is strongly affected by any timing noise. We conclude that detection of proposed gravitational wave backgrounds will require the analysis of more objects than previously suggested over data spans that depend on the spectra of both the gravitational wave background and of the timing noise. It is imperative to find additional millisecond pulsars in current and future surveys in order to reduce the effects of timing noise.

  3. Neural Dynamics of Feedforward and Feedback Processing in Figure-Ground Segregation

    Directory of Open Access Journals (Sweden)

    Oliver W. Layton

    2014-09-01

    Full Text Available Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure’s interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells, and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells. Neurons (convex cells that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.

  4. Airfoil noise prediction from 2D3C PIV data

    NARCIS (Netherlands)

    De Santana, Leandro Dantas; Schram, C.; Desmet, W.

    2015-01-01

    The noise emitted by incoming turbulence interacting with an airfoil has many technological applications, and has accordingly received much attention in the literature. While numerous developments are focused on the determination of the airfoil response to a given incoming gust, the characterization

  5. Noise measurements on NbN thin films with a negative temperature resistance coefficient deposited on sapphire and on SiO2

    NARCIS (Netherlands)

    Leroy, G.; Gest, J.; Vandamme, L.K.J.; Bourgeois, O.

    2007-01-01

    We characterize granular NbNx thin cermet films deposited on either sapphire substrate or on SiO2 and compare the 1/f noise at 300 K and 80 K. The films were characterized with an impedance analyzer from 20 Hz to 1 MHz and analyzed as a resistor R in parallel with a capacitor C. The calculated noise

  6. Multiple cues add up in defining a figure on a ground.

    Science.gov (United States)

    Devinck, Frédéric; Spillmann, Lothar

    2013-01-25

    We studied the contribution of multiple cues to figure-ground segregation. Convexity, symmetry, and top-down polarity (henceforth called wide base) were used as cues. Single-cue displays as well as ambiguous stimulus patterns containing two or three cues were presented. Error rate (defined by responses to uncued stimuli) and reaction time were used to quantify the figural strength of a given cue. In the first experiment, observers were asked to report which of two regions, left or right, appeared as foreground figure. Error rate did not benefit from adding additional cues if convexity was present, suggesting that responses were based on convexity as the predominant figural determinant. However, reaction time became shorter with additional cues even if convexity was present. For example, when symmetry and wide base were added, figure-ground segregation was facilitated. In a second experiment, stimulus patterns were exposed for 150ms to rule out eye movements. Results were similar to those found in the first experiment. Both experiments suggest that under the conditions of our experiment figure-ground segregation is perceived more readily, when several cues cooperate in defining the figure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A new principle of figure-ground segregation : The accentuation

    NARCIS (Netherlands)

    Pinna, Baingio; Reeves, Adam; Koenderink, Jan; van Doorn, Andrea; Deiana, Katia

    2018-01-01

    The problem of perceptual organization was studied by Gestalt psychologists in terms of figure-ground segregation. In this paper we explore a new principle of figure-ground segregation: accentuation. We demonstrate the effectiveness of accentuation relative to other Gestalt principles, and also

  8. Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics

    Science.gov (United States)

    Reinhardt, Christoph; Müller, Tina; Bourassa, Alexandre; Sankey, Jack C.

    2016-04-01

    In force sensing, optomechanics, and quantum motion experiments, it is typically advantageous to create lightweight, compliant mechanical elements with the lowest possible force noise. Here, we report the fabrication and characterization of high-aspect-ratio, nanogram-scale Si3 N4 "trampolines" having quality factors above 4 ×107 and ringdown times exceeding 5 min (mHz linewidth). These devices exhibit thermally limited force noise sensitivities below 20 aN /Hz1 /2 at room temperature, which is the lowest among solid-state mechanical sensors. We also characterize the suitability of these devices for high-finesse cavity readout and optomechanics applications, finding no evidence of surface or bulk optical losses from the processed nitride in a cavity achieving finesse 40,000. These parameters provide access to a single-photon cooperativity C0˜8 in the resolved-sideband limit, wherein a variety of outstanding optomechanics goals become feasible.

  9. Two critical periods in early visual cortex during figure-ground segregation

    NARCIS (Netherlands)

    Wokke, M.E.; Sligte, I.G.; Scholte, H.S.; Lamme, V.A.F.

    2012-01-01

    .The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual

  10. Figurative Language and Multicultural Education: Metaphors of Language Acquisition and Retention

    Science.gov (United States)

    Erdmann, Susan

    2016-01-01

    Linguistics has long recognised that figurative language in the form of metaphorical expressions structures and communicates attitudes towards the ideas and concepts being expressed and that multilingual students also employ linguistic figures frequently in their writing. In this study, multilingual students use figurative language to both…

  11. Triple play service under the impact of nonstationary noise in a DSL system: an Amazon approach

    Science.gov (United States)

    de Souza, Lamartine V.; Cardoso, Diego; Silva, Marcelino; Seruffo, Marcos; Francês, Carlos R. L.; Costa, João C. W. A.; Castro, Agostinho L. S.; Cavalcante, Gervásio; Rius i Riu, Jaume

    2007-09-01

    The Brazilian Amazon has sui generis characteristics that affect strongly the communication technologies, such as high humidity and temperature. These characteristics cause impact in the existent infrastructure, especially in twisted-pair copper lines. At the moment, new services are based on multimedia applications, as voice over internet protocol (VoIP), video on demand (VoD), and internet protocol television (IPTV). Such services use digital broadband networks such as ADSL2+ (Asymmetric Digital Subscriber Line) to transmit the data. Broadband services require data rates which can only be achieved by using relatively high spectrum frequencies. At high frequencies the DSL signal is more susceptible to external noise sources, such as radio frequency interference and impulsive noise. For this purpose, an experimental setup has been built at UFPA that consists of noise generator, traffic generator, real cables, modems and DSLAM (digital subscriber line access multiplexer). This paper aims at characterizing how the noise impacts on triple play services for a broadband system using a DSL loop on Amazon environment. The objective of the noise impact experimentation is to observe the behavior of a DSL system under more realistic but controlled line conditions. Metrics as lost packet, jitter, latency, and throughput are used to characterize the triple play service in a DSL loop under the noise impact. Through the real experiments and controlled loop conditions, this paper allow identify, from application level point of view, how robust DSL system is in respect to noise occurrence. Additionally, it is described a methodology for noise impact measurements using a DSL system.

  12. Thermoelectric System in Different Thermal and Electrical Configurations: Its Impact in the Figure of Merit

    Directory of Open Access Journals (Sweden)

    Alexander Vargas-Almeida

    2013-05-01

    Full Text Available In this work, we analyze different configurations of a thermoelectric system (TES composed of three thermoelectric generators (TEGs. We present the following considerations: (a TES thermally and electrically connected in series (SC; (b TES thermally and electrically connected in parallel (PSC; and (c parallel thermally and series electrical connection (SSC. We assume that the parameters of the TEGs are temperature-independent. The systems are characterized by three parameters, as it has been showed in recent investigations, namely, its internal electrical resistance, R, thermal conductance under open electrical circuit condition, K, and Seebeck coefficient α. We derive the equivalent parameters for each of the configurations considered here and calculate the Figure of Merit Z for the equivalent system. We show the impact of the configuration of the system on Z, and we suggest optimum configuration. In order to justify the effectiveness of the equivalent Figure of Merit, the corresponding efficiency has been calculated for each configuration.

  13. Variable-spot ion beam figuring

    International Nuclear Information System (INIS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-01-01

    This paper introduces a new scheme of ion beam figuring (IBF), or rather variable-spot IBF, which is conducted at a constant scanning velocity with variable-spot ion beam collimated by a variable diaphragm. It aims at improving the reachability and adaptation of the figuring process within the limits of machine dynamics by varying the ion beam spot size instead of the scanning velocity. In contrast to the dwell time algorithm in the conventional IBF, the variable-spot IBF adopts a new algorithm, which consists of the scan path programming and the trajectory optimization using pattern search. In this algorithm, instead of the dwell time, a new concept, integral etching time, is proposed to interpret the process of variable-spot IBF. We conducted simulations to verify its feasibility and practicality. The simulation results indicate the variable-spot IBF is a promising alternative to the conventional approach.

  14. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  15. Rating environmental noise on the basis of noise maps

    NARCIS (Netherlands)

    Miedema, H.M.E.; Borst, H.C.

    2006-01-01

    A system that rates noise on the basis of noise maps has been developed which is based on empirical exposure-response relationships, so that effects in the community will be lower if the system gives a better rating. It is consistent with noise metrics and effect endpoint chosen in the EU, i.e., it

  16. Adding temporally localized noise can enhance the contribution of target knowledge on contrast detection.

    Science.gov (United States)

    Silvestre, Daphné; Cavanagh, Patrick; Arleo, Angelo; Allard, Rémy

    2017-02-01

    External noise paradigms are widely used to characterize sensitivity by comparing the effect of a variable on contrast threshold when it is limited by internal versus external noise. A basic assumption of external noise paradigms is that the processing properties are the same in low and high noise. However, recent studies (e.g., Allard & Cavanagh, 2011; Allard & Faubert, 2014b) suggest that this assumption could be violated when using spatiotemporally localized noise (i.e., appearing simultaneously and at the same location as the target) but not when using spatiotemporally extended noise (i.e., continuously displayed, full-screen, dynamic noise). These previous findings may have been specific to the crowding and 0D noise paradigms that were used, so the purpose of the current study is to test if this violation of noise-invariant processing also occurs in a standard contrast detection task in white noise. The rationale of the current study is that local external noise triggers the use of recognition rather than detection and that a recognition process should be more affected by uncertainty about the shape of the target than one involving detection. To investigate the contribution of target knowledge on contrast detection, the effect of orientation uncertainty was evaluated for a contrast detection task in the absence of noise and in the presence of spatiotemporally localized or extended noise. A larger orientation uncertainty effect was observed with temporally localized noise than with temporally extended noise or with no external noise, indicating a change in the nature of the processing for temporally localized noise. We conclude that the use of temporally localized noise in external noise paradigms risks triggering a shift in process, invalidating the noise-invariant processing required for the paradigm. If, instead, temporally extended external noise is used to match the properties of internal noise, no such processing change occurs.

  17. Yesterday's noise - today's signal

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1978-01-01

    Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)

  18. Noise suppression in duct

    International Nuclear Information System (INIS)

    Ahmed, A.; Barfeh, M.A.G.

    2001-01-01

    In air-conditioning system the noise generated by supply fan is carried by conditioned air through the ductwork. The noise created in ductwork run may be transmission, regenerative and ductborne. Transmission noise is fan noise, regenerative noise is due to turbulence in flow and ductborne noise is the noise radiating from duct to surroundings. Some noise is attenuated in ducts also but if noise level is high then it needs to be attenuated. A simple mitre bend can attenuate-noise. This principle is extended to V and M-shape ducts with inside lining of fibreglass, which gave maximum attenuation of 77 dB and 62 dB respectively corresponding to 8 kHz frequency as compared to mitre, bend giving maximum 18 dB attenuation. Sound level meter measured sound levels with octave band filter and tests were conducted in anechoic room. A V-shape attenuator can be used at fan outlet and high frequency noise can be minimized greatly. (author)

  19. Estimation of noise-free variance to measure heterogeneity.

    Directory of Open Access Journals (Sweden)

    Tilo Winkler

    Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.

  20. Shot noise of spin current and spin transfer torque

    International Nuclear Information System (INIS)

    Yu Yunjin; Zhan Hongxin; Wan Langhui; Wang Bin; Wei Yadong; Sun Qingfeng; Wang Jian

    2013-01-01

    We report the theoretical investigation of the shot noise of the spin current (S σ ) and the spin transfer torque (S τ ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear S σ − V and S τ − V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage N τ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque N τ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period N τ (θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters. (paper)

  1. Energy in Sweden: Facts and figures 2009; Energilaeget 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-12-15

    Energy in Sweden 2009: Facts and figures contains the tabular for most of the diagrams in the main publication (STEM-ET--2009-30). These data consist primarily of the results of the Agency's processing of basic data from Statistics Sweden. Statistics are of preliminary character for the two last published years (2007 and 2008). Breakdowns into certain types of fuels vary somewhat depending on whether preliminary or final data is used. Please note that the figures have been rounded up or down, therefore totals do not always comply with the sum of individual figures

  2. Brand logo design: Examining consumer responses to figurativeness

    OpenAIRE

    Machado, J. C.; Vacas-Carvalho, Leonor; Costa, P.; Torres, A.

    2013-01-01

    In a previous investigation, aimed at studying brand identity preferences in a merger context, researchers found the most preferred logos are figurative ones. Additionally, results suggested the aesthetic appeal of the logo significantly influences consumers’ identity choices. These results find support in logo strategy literature. The main purpose of this study is to investigate more thoroughly the influence of logo design characteristics, and particularly of figurativeness, o...

  3. Facts and figures

    International Nuclear Information System (INIS)

    1987-01-01

    Whereas most of the data are, naturally, about oil, a few figures concern nuclear energy. There is in Part 1 a flow chart of worldwide primary energy consumption by type, from 1974 to 1986, where nuclear energy consumption can be seen in relation to oil, gas, coal and hydro. The same is also given for the regions of the South. In section 3/18 the numbers of nuclear plants in construction and operation are listed separately for developing countries, centrally planned economies and industrialized countries, for 1986. (qui)

  4. Les figures de l'usager de Twitter

    OpenAIRE

    Domenget , Jean-Claude

    2016-01-01

    International audience; L’analyse des figures de l’usager de Twitter représente un enjeu de recherche pour comprendre la construction de ces représentations diverses. L’objectif de cet article est d’analyser la notion d’usager dans le cadre de ce dispositif et d’interroger ses relations avec les notions de public(s), d’audience(s) et de communautés. Les quatre principales figures distinguées (twitto, consommateur, abonné, expert) sont étudiées à partir de deuxcritères majeurs : les principes ...

  5. Analysis of log rate noise in Ontario's CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, H.W. [Dynamic Simulation and Analysis Corp., Deep River, Ontario (Canada); Banica, C.; Arguner, D. [Ontario Power Generation, Ajax, Ontario (Canada); Scharfenberg, R. [Bruce Power, Tiverton, Ontario (Canada)

    2007-07-01

    In the fall of 2003, the operators noticed that in the recently-refurbished Bruce A Shutdown System no. 1 (SDS1) the noise level in Log Rate signals were much larger than before. At the request of the Canadian Nuclear Safety Commission (CNSC), all Canadian CANDU reactors took action to characterize their Log Rate noise. Staff of the Inspection and Maintenance Services division of Ontario Power Generation (OPG) has collected high-speed high-accuracy noise data from nearly all 16 Ontario reactors, either as part of routine measurements before planned outages or as a dedicated noise recording. This paper gives the results of examining a suitable subset of this data, with respect to the characteristics and possible causes of Log Rate noise. The reactor and instrumentation design is different at each station: the locations of the moderator injection nozzles, the location of the ion chambers for each system, and the design of the Log Rate amplifiers. It was found that the Log noise (source of Log Rate noise) was much larger for those ion chambers in the path of the moderator injection nozzles, compared to those which were not in the path. This 'extra' Log noise would then be either attenuated or amplified depending on the transfer function (time constants) of the Log Rate amplifier. It was also observed that most of the Log and Log Rate noise is independent of any other signal measured. Although all CANDU reactors in Ontario have Log and Log Rate noise, the Bruce A SDS1 system has the largest amount of Log Rate noise, because (a) its SDS1 (and RRS) ion chambers are at the top of the reactor in the path of the moderator injection nozzles, and (b) its SDS1 Log Rate amplifiers have the smallest time constants. (author)

  6. Enhancement of TEM Data and Noise Characterization by Principal Component Analysis

    Science.gov (United States)

    2010-05-01

    include simply thresholding a noise level and ignoring any signal below the chosen value ( Pasion and Oldenburg, 2001b), stacking, and median filters...to de-trend the data ( Pasion and Oldenburg, 2001a). To date, there has not been a concentrated research effort focused on separating the various...Negative values not displayed) 27 Magnetic soil at Kaho’olawe (and in general) exhibits a t−1 decay in TEM surveys ( Pasion et al., 2002). This signal

  7. Disturbance of Traffic Noise: Evaluation on the Effects and Management on Road Corridors

    Science.gov (United States)

    Mutalib, Nur Hazliyana Abdul; Mashros, Nordiana; Aminudin, Eeydzah; Zakaria, Rozana; Haron, Zaiton; Talib, Muhammad Hilmi Abd; Hamid, Abdul Rahim Abdul

    2018-04-01

    Several adverse of stimuli can cause annoyance due to the characterized by such effects of distraction on health and delay in activities. Noise annoyance mainly due to the increasing in traffic volume has recognized as important environmental stressor which associated to anxiety and depression. In this manner, it can impose serious damage to human wellbeing, human comfort ability and reduces labour productivity. Hence, this paper aims in evaluating the effects on traffic noise and managing the precaution on road corridors in order to reduce the traffic noise. This case study had been conducted at residential area which is located at Taman Mutiara Rini, residential area located in the southern region of West Peninsular Malaysia. The traffic noise index (TNI) and noise pollution level (NPL) were recorded for a whole day in order to evaluate noise performance with different time durations. From the study, it was shown that the noise level at the Mutiara Rini is above than 75 dBA at most of time which is exceed the permissible limit from the guidelines recommended by the World Health Organization (WHO) and Department of Environment (DOE). According to the guidelines, the maximum limitation for noise pollution during daytime at residential area is about 55 dBA. From the interviewed conducted, it shows that reduction on the traffic noise can be improved by proposing and providing the noise barrier which includes the restoration of trees and concrete wall which can reduce the effects on the traffic noise.

  8. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  9. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler.

    Science.gov (United States)

    Xu, Dan; Yang, Fei; Chen, Dijun; Wei, Fang; Cai, Haiwen; Fang, Zujie; Qu, Ronghui

    2015-08-24

    A laser phase and frequency noise measurement method by an unbalanced Michelson interferometer composed of a 3 × 3 optical fiber coupler is proposed. The relations and differences of the power spectral density (PSD) of differential phase and frequency fluctuation, PSD of instantaneous phase and frequency fluctuation, phase noise and linewidth are derived strictly and discussed carefully. The method obtains the noise features of a narrow linewidth laser conveniently without any specific assumptions or noise models. The technique is also used to characterize the noise features of a narrow linewidth external-cavity semiconductor laser, which confirms the correction and robustness of the method.

  10. Estimating the Volumes of Solid Figures with Curved Surfaces.

    Science.gov (United States)

    Cohen, Donald

    1991-01-01

    Several examples of solid figures that calculus students can use to exercise their skills at estimating volume are presented. Although these figures are bounded by surfaces that are portions of regular cylinders, it is interesting to note that their volumes can be expressed as rational numbers. (JJK)

  11. Propagation of Partial Discharge and Noise Pulses in Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Stone, G. C.; Kurtz, M.

    1986-01-01

    Changes with time in the partial discharge (PD) activity originating in a generator stator's insulation system provide information about the electrical integrity of the stator winding. It is desirable to measure PD during normal service to minimize costs. To do this successfully, the influence...... of electrical interference must be reduced. Tests are reported which characterize the nature of discharge and noise pulses when using capacitive couplers mounted on each of the phase leads and an RF current transformer mounted on the neutral lead for signal detection. Significant differences between PD...... and electrical noise have been observed....

  12. Listen to the noise: noise is beneficial for cognitive performance in ADHD.

    Science.gov (United States)

    Söderlund, Göran; Sikström, Sverker; Smart, Andrew

    2007-08-01

    Noise is typically conceived of as being detrimental to cognitive performance. However, given the mechanism of stochastic resonance, a certain amount of noise can benefit performance. We investigate cognitive performance in noisy environments in relation to a neurocomputational model of attention deficit hyperactivity disorder (ADHD) and dopamine. The Moderate Brain Arousal model (MBA; Sikström & Söderlund, 2007) suggests that dopamine levels modulate how much noise is required for optimal cognitive performance. We experimentally examine how ADHD and control children respond to different encoding conditions, providing different levels of environmental stimulation. Participants carried out self-performed mini tasks (SPT), as a high memory performance task, and a verbal task (VT), as a low memory task. These tasks were performed in the presence, or absence, of auditory white noise. Noise exerted a positive effect on cognitive performance for the ADHD group and deteriorated performance for the control group, indicating that ADHD subjects need more noise than controls for optimal cognitive performance. The positive effect of white noise is explained by the phenomenon of stochastic resonance (SR), i.e., the phenomenon that moderate noise facilitates cognitive performance. The MBA model suggests that noise in the environment, introduces internal noise into the neural system through the perceptual system. This noise induces SR in the neurotransmitter systems and makes this noise beneficial for cognitive performance. In particular, the peak of the SR curve depends on the dopamine level, so that participants with low dopamine levels (ADHD) require more noise for optimal cognitive performance compared to controls.

  13. Experimental Validation Of An Innovative Procedure For The Rolling Noise Correction

    Directory of Open Access Journals (Sweden)

    Viscardi Massimo

    2017-01-01

    Full Text Available Among the wide contest of the train vehicles rolling noise evaluation, the aim of the paper is the development, implementation and experimental testing of a new method for roughness calculation according to FprCEN/TR 16891:2015 and the successive evaluation of the correction parameters of the measured rolling noise due to the presence of not compliant rail roughness. It is, in-fact, a very often operative condition, the execution of rolling noise tests over standard in-operation rails that are characterized by roughness profiles very different from standard one as those prescribed within the ISO 3095 procedure. Very often, this difference lead to the presence of an exceeding noise that needs to be evaluated and revised for a correct definition of the phenomena. Within the paper, the procedure implementation is presented and later on verified in operative experimental contest; forecasted and measured data are compared and successively commented.

  14. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Directory of Open Access Journals (Sweden)

    Alejandro Wolf

    2016-07-01

    Full Text Available Images rendered by uncooled microbolometer-based infrared (IR cameras are severely degraded by the spatial non-uniformity (NU noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array’s temperature varies by approximately 15 ∘ C.

  15. Research as Art: Using figures to make science approachable

    Science.gov (United States)

    Rabinowitz, H. S.; Barth, A.; Russell, J. B.; Frischkorn, K.; Yehudai, M.

    2017-12-01

    As scientists, we spend a significant amount of time thinking about how best to express the results of our research through figures. These can range from graphs to microscope images to movies, but they all serve the purpose of communicating complicated ideas to our colleagues in the scientific community. One component of scientific data representation that is often overlooked is the aesthetic of the image. Many images produced for data communication and publication are visually engaging even to a lay audience, allowing them to serve as a point of entry to learning about scientific research for the non-specialist. To help researchers embrace this secondary goal of scientific figures, we have instituted an annual event at the Lamont-Doherty Earth Observatory of Columbia University (LDEO) called Research as Art. For this event, scientists submit figures from their work that they see as artistic. These figures are displayed in a gallery-type exhibit for the community to appreciate. This year, the exhibit included movie and sculpture categories, allowing for attendees to interact with a broader range of scientific work. Each piece is accompanied by a brief, non-technical caption. Research as Art provides a gateway for scientists from a broad range of disciplines within the Earth Sciences to learn about work that is entirely unrelated to their own. After the event, attendees commented that they had never before thought about how a non-specialist would view their figures and that they would keep this in mind when making future figures. Thus, one of the biggest benefits of exhibits such as this is to teach scientists to view our work through a non-specialist's eyes. However, future plans for Research as Art include establishing a temporary exhibit at a local bar to expand the reach to a broader segment of the Columbia University area community. Our figures are art, and when we start to treat them that way, we open a world of possibilities for teaching the public about our

  16. Speech-in-Noise Perception Deficit in Adults with Dyslexia: Effects of Background Type and Listening Configuration

    Science.gov (United States)

    Dole, Marjorie; Hoen, Michel; Meunier, Fanny

    2012-01-01

    Developmental dyslexia is associated with impaired speech-in-noise perception. The goal of the present research was to further characterize this deficit in dyslexic adults. In order to specify the mechanisms and processing strategies used by adults with dyslexia during speech-in-noise perception, we explored the influence of background type,…

  17. Force induced unzipping of DNA with long range correlated noise

    International Nuclear Information System (INIS)

    Lam, Pui-Man; Zhen, Yi

    2011-01-01

    We derive and solve a Fokker–Planck equation for the stationary distribution of the free energy, in a model of unzipping of double-stranded DNA under external force. The autocorrelation function of the random DNA sequence can be of a general form, including long range correlations. In the case of Ornstein–Uhlenbeck noise, characterized by a finite correlation length, our result reduces to the exact result of Allahverdyan et al, with the average number of unzipped base pairs going as (X) ∼ 1/f 2 in the white noise limit, where f is the deviation from the critical force. In the case of long range correlated noise, where the integrated autocorrelation is divergent, we find that (X) is finite at f = 0, with its value decreasing as the correlations become of longer range. This shows that long range correlations actually stabilize the DNA sequence against unzipping. Our result is also in agreement with the findings of Allahverdyan et al obtained using numerical generation of the long range correlated noise

  18. Prewhitening for Rank-Deficient Noise in Subspace Methods for Noise Reduction

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2005-01-01

    A fundamental issue in connection with subspace methods for noise reduction is that the covariance matrix for the noise is required to have full rank, in order for the prewhitening step to be defined. However, there are important cases where this requirement is not fulfilled, e.g., when the noise...... has narrow-band characteristics, or in the case of tonal noise. We extend the concept of prewhitening to include the case when the noise covariance matrix is rank deficient, using a weighted pseudoinverse and the quotient SVD, and we show how to formulate a general rank-reduction algorithm that works...... also for rank deficient noise. We also demonstrate how to formulate this algorithm by means of a quotient ULV decomposition, which allows for faster computation and updating. Finally we apply our algorithm to a problem involving a speech signal contaminated by narrow-band noise....

  19. BWR noise spectra and application of noise analysis to FBR

    International Nuclear Information System (INIS)

    Nomura, T.

    1975-01-01

    Work related to noise analysis, in Tokyo Shibaura Electric Co. Ltd. (Toshiba) and Nippon Atomic Industry Group Co. Ltd. (NAIG) for the past several years is reviewed. After considering the Japan-United States Seminar on Reactor Noise Analysis in 1968, other subjects discussed were boiling water reactor noise analysis and work in relation to FBR. Parts of these are related to each other. For example, boiling detection and temperature fluctuations are problems pertinent to both fields. As the main problems in zero-power-reactor noise are now basically understood, only a brief description of the experiments involving the advanced two detector method is made. Focus is rather placed on the area of power plant noise. (author)

  20. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    Science.gov (United States)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.