WorldWideScience

Sample records for nmr downfield chemical

  1. Cyclohexanecarbonitriles: Assigning Configurations at Quaternary Centers From 13C NMR CN Chemical Shifts.1

    Science.gov (United States)

    Wei, Guoqing

    2009-01-01

    13C NMR chemical shifts of the nitrile carbon in cyclohexanecarbonitriles directly correlate with the configuration of the quaternary, nitrile-bearing stereocenter. Comparing 13C NMR chemical shifts for over 200 cyclohexanecarbonitriles reveals that equatorially oriented nitriles resonate 3.3 ppm downfield, on average, from their axial counterparts. Pairs of axial/equatorial diastereomers varying only at the nitrile-bearing carbon consistently exhibit downfield shifts of δ 0.4–7.2 for the equatorial nitrile carbon, even in angularly substituted decalins and hydrindanes. PMID:19348434

  2. Phosphorus-31, 15N, and 13C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    International Nuclear Information System (INIS)

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A.

    1989-01-01

    The herbicidal dead-end ternary complex (E S3P Glyph ) of glyphosate [N-(phosphonomethyl)glycine] with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by 31 P, 15 N, and 13 C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts (δ) for each of the three nuclei. By 31 P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The 13 C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The 15 N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the 31 P δ and the C-P-O bond angle, and the 13 C and 15 N δ values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield 31 P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P 31 P δ vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E S3P binary complex, while the E S3P Glyph complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle

  3. First NMR observation of 47Ti and 49Ti in cyclopentadienyl complexes

    International Nuclear Information System (INIS)

    Dormond, A.; Fauconet, M.; Leblanc, J.C.; Moise, C.

    1984-01-01

    47 Ti and 49 Ti NMR spectra of some mono and biscyclopentadienyl complexes are reported for the first time. The resonances span a relatively large range: electron donating substituents on the cyclopentadienyl ring cause an unexpected downfield shift. (author)

  4. Exploring the structure-activity relations of N-carbethoxyphthalimide by combining FTIR, FT-Raman and NMR spectroscopy with DFT electronic structure method.

    Science.gov (United States)

    Arjunan, V; Govindaraja, S Thillai; Ravindran, P; Mohan, S

    2014-01-01

    The complete vibrational assignment and analysis of N-carbethoxyphthalimide were carried out using the experimental FTIR and FT-Raman data in the range 4000-450 and 4000-100 cm(-1), respectively along with quantum chemical studies of the compound using DFT-B3LYP gradient calculations employing the 6-31G**, 6-311++G** and cc-pVDZ basis sets. The 1H (400 MHz; CDCl3) and 13C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. Due to the partial ionic nature of the carbonyl group, the carbon atoms C1 and C3 in NCEP show downfield effect and the corresponding observed chemical shift of both are observed at 163.76 ppm and the carbon atom C16 in the carbethoxy group also give signal in the downfield at 148.45 ppm. The active sites are determined by molecular electrostatic potential. The possible electronic transitions are determined by HOMO and LUMO orbital shapes and their energies. The structure-chemical reactivity relations of the compound were determined through chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Application of the Fenske-Hall molecular orbital method to the calculation of 11B NMR chemical shifts. Antipodal substituent effects in deltahedral clusters

    International Nuclear Information System (INIS)

    Fehlner, T.P.; Czech, P.T.; Fenske, R.F.

    1990-01-01

    Utilizing Fenske-Hall wave functions and eigenvalues combined with the Ramsey sum over states (SOS) approximation, it is demonstrated that the sign and magnitude of the paramagnetic contribution to the shielding correlates well with the observed 11 B chemical shifts of a substantial variety of boron- and metal-containing compounds. Analysis of the molecular orbital (MO) contributions in the SOS approximation leads to an explanation of the large downfield shifts associated with metal-rich metallaboranes. A similar analysis demonstrates the importance of selected cluster occupied and unoccupied MO's in explaining both exo-cage substituent effects in which the antipodal boron resonance is shifted upfield and endo-cage substituent effects (interchange of isolobal fragments within the cage framework) in which the antipodal boron resonance is shifted downfield. Exo- and endo-cage substitution perturbs these MO's in an understandable fashion, leading to an internally consistent explanation of the observed chemical shift changes. 36 refs., 8 figs., 4 tabs

  6. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  7. Conformational Change in the Mechanism of Inclusion of Ketoprofen in β-Cyclodextrin: NMR Spectroscopy, Ab Initio Calculations, Molecular Dynamics Simulations, and Photoreactivity.

    Science.gov (United States)

    Guzzo, T; Mandaliti, W; Nepravishta, R; Aramini, A; Bodo, E; Daidone, I; Allegretti, M; Topai, A; Paci, M

    2016-10-11

    Inclusion of drugs in cyclodextrins (CDs) is a recognized tool for modifying several properties such as solubility, stability, bioavailability, and so on. The photoreactive behavior of the β-CD/ketoprofen (KP) complex upon UV exposure showed a significant increase in photodecarboxylation, whereas the secondary degradation products by hydroxylation of the benzophenone moiety were inhibited. The results may account for an improvement of KP photophysical properties upon inclusion, thus better fostering its topical use. To correlate the structural details of the inclusion with these results, an NMR spectroscopic study of KP upon inclusion in β-CD was performed. Effects of the magnetically anisotropic centers of KP, changing their orientations upon inclusion and giving chemical shift variations, were specifically correlated with the results of the molecular dynamic simulations and ab initio calculations. In the large variety of papers focusing on the structural analysis of β-CD complexes, this work represents one of the few examples in which a detailed analysis of these simultaneous upfield-downfield NMR shifts of the same aromatic molecule upon inclusion is reported. Interestingly, the results demonstrate that the observed upfield and downfield shifts upon inclusion are not related to any direct magnetic role of β-CD. The conformational change of KP upon the inclusion process consists of a slight reduction in the angle between the two phenyl rings and in a remarkable reduction in the mobility of the carboxyl group, the latter being one of the main contributions to the NMR resonance shifts. These structural details help in understanding the features of the inclusion complex and, eventually, the driving force for its formation.

  8. Peptides containing internal residues of pyroglutamic acid: proton NMR characteristics

    International Nuclear Information System (INIS)

    Khan, S.A.

    1986-01-01

    The proton NMR characteristics of internal pyroglutamic acid (Glp; 5-oxoproline) residues in seven tripeptides of the general structure Boc-Xxx-Glp-Yyy-NH 2 were studied. In general, the chemical shifts of several diagnostic protons moved downfield on going from the Glu-containing peptides (Boc-Xxx-Glu-Yyy-NH 2 ) to the corresponding Glp-containing peptides. The C-2 proton of the Xxx residue was shifted by about 1.1 ppm. The N-2 proton of the Yyy residue was shifted by about 0.5 ppm. The C-2 proton of the Glx residue itself was shifted by about 0.5 ppm. One of the Glx C-3 protons was also shifted by about 0.5 ppm, but the other remained essentially unchanged. Finally, the Glx C-4 protons were shifted by about 0.3 ppm. Internal Glu residues are readily converted chemically into internal Glp residues. This conversion also occurs as a side reaction during HP cleavage of the protecting group from Glu(OBzl) residues. The spontaneous fragmentation of serum proteins C3, C4 and λ 2 -macroglobulin under denaturing conditions is probably due to regioselective hydrolysis of an internal Glp residue formed in each of these proteins upon denaturation. These proton NMR characteristics may be useful in establishing the presence of internal Glp residues in synthetic and natural peptides

  9. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  10. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  11. Chemical shifts of oxygen-17 NMR in polyoxotungstates

    International Nuclear Information System (INIS)

    Kazanskij, L.P.; Fedotov, M.A.; Spitsyn, V.I.

    1977-01-01

    17 O NMR spectra of aqueous solutions containing paratungstate BH 2 W 12 O 42 10- and metatungstate H 2 W 12 O 40 6- anions have been measured. On the basis of the obtained data a scale of chemical shifts for oxygen atoms connected by various bonds with tungsten atoms is suggested. The obtained data are compared with the Raman spectra of crystalline salts and their aqueous solutions. Chemical shifts of 17 O NMR spectra have been also measured in other heteropolyanions

  12. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  14. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  15. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Science.gov (United States)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  16. Database proton NMR chemical shifts for RNA signal assignment and validation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Shawn; Heng Xiao [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce@onemoonscientific.com [University of Maryland, Baltimore County, Department of Chemistry and Biochemistry (United States); Summers, Michael F., E-mail: summers@hhmi.umbc.edu [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States)

    2013-01-15

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4{sup 3} possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA {sup 1}H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  17. Spin coherence transfer in chemical transformations monitoredNMR

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, Sabieh M.; Hilty, Christian; Chu, Chester; Bouchard,Louis-S.; Pierce, Kimberly L.; Pines, Alexander

    2006-07-31

    We demonstrate the use of micro-scale nuclear magneticresonance (NMR) for studying the transfer of spin coherence innon-equilibrium chemical processes, using spatially separated NMRencoding and detection coils. As an example, we provide the map ofchemical shift correlations for the amino acid alanine as it transitionsfrom the zwitterionic to the anionic form. Our method is unique in thesense that it allows us to track the chemical migration of encodednuclear spins during the course of chemical transformations.

  18. A folding pathway for betapep-4 peptide 33mer: from unfolded monomers and beta-sheet sandwich dimers to well-structured tetramers.

    OpenAIRE

    Mayo, K. H.; Ilyina, E.

    1998-01-01

    It was recently reported that a de novo designed peptide 33mer, betapep-4, can form well-structured beta-sheet sandwich tetramers (Ilyina E, Roongta V, Mayo KH, 1997b, Biochemistry 36:5245-5250). For insight into the pathway of betapep-4 folding, the present study investigates the concentration dependence of betapep-4 self-association by using 1H-NMR pulsed-field gradient (PFG)-NMR diffusion measurements, and circular dichroism. Downfield chemically shifted alphaH resonances, found to arise o...

  19. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.

    Science.gov (United States)

    Boulton, Stephen; Selvaratnam, Rajeevan; Ahmed, Rashik; Melacini, Giuseppe

    2018-01-01

    Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

  20. Probabilistic validation of protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel; Ulrich, Eldon L.; Markley, John L.

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/

  1. Probabilistic validation of protein NMR chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Dashti, Hesam [University of Wisconsin-Madison, Graduate Program in Biophysics, Biochemistry Department (United States); Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States); Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu, E-mail: jmarkley@wisc.edu [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States)

    2016-01-15

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/.

  2. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    Science.gov (United States)

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  3. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    Science.gov (United States)

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes

    International Nuclear Information System (INIS)

    Gun’ko, Vladimir M.; Turov, Vladimir V.; Schur, Dmitry V.; Zarko, Vladimir I.; Prykhod’ko, Gennady P.; Krupska, Tetyana V.; Golovan, Alina P.; Skubiszewska-Zięba, Jadwiga; Charmas, Barbara; Kartel, Mykola T.

    2015-01-01

    Highlights: • Interfacial behavior of polar and nonpolar adsorbates vs. structure of fullerite and MWCNT. • Confined space effects on the characteristics of water bound to carbons. • Broadening of "1H NMR spectra of water adsorbed to carbons toward strong downfield and upfield shifts. • Strongly and weakly associated and strongly and weakly bound waters. • Decreased activity of bound water as a solvent. - Abstract: Interactions of water, methane, HCl, C_6H_6, F_3CCOOD, and hyaluronic acid with fullerite C_6_0/C_7_0 and multi-walled carbon nanotubes (MWCNT) were studied in various media using "1H NMR spectroscopy. The materials were characterized using microscopy, differential scanning calorimetry, Raman spectroscopy, and quantum chemical methods. Water with weakly (WAW) and strongly (SAW) associated molecules bound to fullerite demonstrates unusual downfield shifts δ_H < 18 ppm. WAW in contrast to SAW cannot dissolve acids. Water bound to MWCNT demonstrates the downfield shift smaller than that observed for fullerite. Fullerite possesses low porosity due dense packing of fullerenes in molecular crystals. Therefore, noticeable adsorption is observed only for compounds, which are capable for intercalation (benzene, toluene, water), but nitrogen cannot be adsorbed by fullerite. For MWCNT with much looser structure than that of fullerite, pre-adsorbed water weakly affects methane adsorption. An increase in pre-adsorption of water results in decrease in adsorption of methane onto MWCNT.

  5. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex

    International Nuclear Information System (INIS)

    Nikonowicz, E.; Roongta, V.; Jones, C.R.; Gorenstein, D.G.

    1989-01-01

    Assignment of the 1H and 31P NMR spectra of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex, d(CGCAGAATTCGCG)2, has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. The downfield 31P resonance previously noted by Patel et al. (1982) has been assigned by both 17O labeling of the phosphate as well as a pure absorption phase constant-time heteronuclear 31P-1H correlated spectrum and has been associated with the phosphate on the 3' side of the extrahelical adenosine. JH3'-P coupling constants for each of the phosphates of the tridecamer were obtained from the 1H-31P J-resolved selective proton-flip 2D spectrum. By use of a modified Karplus relationship the C4-C3'-O3-P torsional angles (epsilon) were obtained. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. The 31P chemical shifts and epsilon torsional angles follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. Because the extrahelical adenosine significantly distorts the deoxyribose phosphate backbone conformation even several bases distant from the extrahelical adenosine, 31P chemical shifts show complex site- and sequence-specific variations. Modeling and NOESY distance-restrained energy minimization and restrained molecular dynamics suggest that the extrahelical adenosine stacks into the duplex. However, a minor conformation is also observed in the 1H NMR, which could be associated with a structure in which the extrahelical adenosine loops out into solution

  6. The 40th anniversary of the discovery of NMR-chemical shift and nuclear spin-spin coupling

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Gou Qingquan

    1989-01-01

    After the discovery of NMR Phenomenon in the physics laboratories of E.M.Purcell at Harvard and F.Bloch at Stanford in 1946, W.G.Proctor and F.C.Yu made the successful discovery of NMR-chemical shift and nuclear spin-spin coupling at Stanford in 1950, Which brought NMR spectroscopy from the physics laboratory to the laboratories of many different fields. This is worth memorizing. Retrospecting the past 40 years, it is sure that chemical shift theory will be much more prosperous prospects

  7. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Science.gov (United States)

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  8. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Directory of Open Access Journals (Sweden)

    Diogo A R S Latino

    Full Text Available The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF, the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure

  9. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  10. A probabilistic approach for validating protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Wang Bowei; Wang, Yunjun; Wishart, David S.

    2010-01-01

    It has been estimated that more than 20% of the proteins in the BMRB are improperly referenced and that about 1% of all chemical shift assignments are mis-assigned. These statistics also reflect the likelihood that any newly assigned protein will have shift assignment or shift referencing errors. The relatively high frequency of these errors continues to be a concern for the biomolecular NMR community. While several programs do exist to detect and/or correct chemical shift mis-referencing or chemical shift mis-assignments, most can only do one, or the other. The one program (SHIFTCOR) that is capable of handling both chemical shift mis-referencing and mis-assignments, requires the 3D structure coordinates of the target protein. Given that chemical shift mis-assignments and chemical shift re-referencing issues should ideally be addressed prior to 3D structure determination, there is a clear need to develop a structure-independent approach. Here, we present a new structure-independent protocol, which is based on using residue-specific and secondary structure-specific chemical shift distributions calculated over small (3-6 residue) fragments to identify mis-assigned resonances. The method is also able to identify and re-reference mis-referenced chemical shift assignments. Comparisons against existing re-referencing or mis-assignment detection programs show that the method is as good or superior to existing approaches. The protocol described here has been implemented into a freely available Java program called 'Probabilistic Approach for protein Nmr Assignment Validation (PANAV)' and as a web server (http://redpoll.pharmacy.ualberta.ca/PANAVhttp://redpoll.pharmacy.ualberta.ca/PANAV) which can be used to validate and/or correct as well as re-reference assigned protein chemical shifts.

  11. Vanadium NMR Chemical Shifts of (Imido)vanadium(V) Dichloride Complexes with Imidazolin-2-iminato and Imidazolidin-2-iminato Ligands: Cooperation with Quantum-Chemical Calculations and Multiple Linear Regression Analyses.

    Science.gov (United States)

    Yi, Jun; Yang, Wenhong; Sun, Wen-Hua; Nomura, Kotohiro; Hada, Masahiko

    2017-11-30

    The NMR chemical shifts of vanadium ( 51 V) in (imido)vanadium(V) dichloride complexes with imidazolin-2-iminato and imidazolidin-2-iminato ligands were calculated by the density functional theory (DFT) method with GIAO. The calculated 51 V NMR chemical shifts were analyzed by the multiple linear regression (MLR) analysis (MLRA) method with a series of calculated molecular properties. Some of calculated NMR chemical shifts were incorrect using the optimized molecular geometries of the X-ray structures. After the global minimum geometries of all of the molecules were determined, the trend of the observed chemical shifts was well reproduced by the present DFT method. The MLRA method was performed to investigate the correlation between the 51 V NMR chemical shift and the natural charge, band energy gap, and Wiberg bond index of the V═N bond. The 51 V NMR chemical shifts obtained with the present MLR model were well reproduced with a correlation coefficient of 0.97.

  12. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

    Science.gov (United States)

    Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal

    2018-05-10

    The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide

  13. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba.

    Science.gov (United States)

    Napolitano, José G; Lankin, David C; Chen, Shao-Nong; Pauli, Guido F

    2012-08-01

    The complete and unambiguous (1)H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive (1)H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d(6) were obtained through the examination of 1D (1)H NMR and 2D (1)H,(1)H-COSY data, in combination with (1)H iterative full spin analysis (HiFSA). The computational analysis of discrete spin systems allowed a detailed characterization of all the (1)H NMR signals in terms of chemical shifts (δ(H)) and spin-spin coupling constants (J(HH)), regardless of signal overlap and higher order coupling effects. The capability of the HiFSA-generated (1)H fingerprints to reproduce experimental (1)H NMR spectra at different field strengths was also evaluated. As a result of this analysis, a revised set of (1)H NMR parameters for all ten phytoconstituents was assembled. Furthermore, precise (1)H NMR assignments of the sugar moieties of isoquercetin and rutin are reported for the first time. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates.

    Science.gov (United States)

    Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M

    2018-02-07

    The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.

  15. NMR characterization of simulated Hanford low-activity waste glasses and its use in understanding waste form chemical durability

    International Nuclear Information System (INIS)

    Darab, J.G.; Linehan, J.C.; McGrail, B.P.

    1999-01-01

    Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy has been used to characterize the structural and chemical environments of B, Al, and Si in model Hanford low-activity waste glasses. The average 29 Si NMR peak position was found to systematically change with changing glass composition and structure. From an understanding of the structural roles of Al and B obtained from MAS-NMR experiments, the authors first developed a model that reliably predicts the distribution of structural units and the average 29 Si chemical shift value, δ, based purely on glass composition. A product consistency test (PCT) was used to determine the normalized elemental release (NL) from the prepared glasses. Comparison of the NMR and PCT data obtained from sodium boro-aluminosilicate glasses indicates that a rudimentary exponential relationship exists between the 29 Si chemical shift value, and the boron NL value

  16. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    Science.gov (United States)

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  17. 1H NMR spectrum of the native human insulin monomer. Evidence for conformational differences between the monomer and aggregated forms.

    Science.gov (United States)

    Roy, M; Lee, R W; Brange, J; Dunn, M F

    1990-04-05

    The effects of high dilution on the 1H Fourier transform NMR spectrum of native human insulin at pH* 8.0 and 9.3 have been examined at 500 MHz resolution. The dependence of the spectrum on concentration and comparison with the spectrum of a biologically highly potent monomeric insulin mutant (SerB9----Asp) establish that at 36 microM (pH* 9.3) or 18 microM (pH* 8) and no added buffer or salts, human insulin is monomeric. Under these conditions of dilution, ionic strength, and pH*, human insulin and the SerB9----Asp mutant exhibit nearly identical 1H NMR spectra. At higher concentrations (i.e. greater than 36 microM to 0.91 mM), native human insulin dimerizes, and this aggregation causes a change in insulin conformation. Although there are many changes in the spectrum, the TyrB26 ring H3,5 proton signals located at 6.63 ppm and the methyl signal located at 0.105 ppm (characteristics of monomeric insulin) are particularly distinct signatures of the conformation change that accompanies dimerization. Magnetization transfer experiments show that the 0.105 ppm methyl signal shifts downfield to a new position at 0.45 ppm. We conclude that the 0.105 ppm methyl signal is due to a conformation in which a Leu methyl group is centered over and in van der Waals contact with the ring of an aromatic side chain. Dimerization causes a conformation change that alters this interaction, thereby causing the downfield shift. Nuclear Overhauser studies indicate that the methyl group involved is located within a cluster of aromatic side chains and that the closest ring-methyl group interaction is with the ring of PheB24.

  18. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  19. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    International Nuclear Information System (INIS)

    Harris, R.K.; Menezes, S.M. Cabral de; Granger, P.; Hoffman, R.E.; Zilm, K.W.

    2008-01-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the 1 H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating 13 C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  20. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  1. Identifying stereoisomers by ab-initio calculation of secondary isotope shifts on NMR chemical shieldings.

    Science.gov (United States)

    Böhm, Karl-Heinz; Banert, Klaus; Auer, Alexander A

    2014-04-23

    We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2H)ethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T) level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  2. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics.

    Science.gov (United States)

    Klukowski, Piotr; Schubert, Mario

    2018-06-15

    A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  3. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....

  4. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.

    Science.gov (United States)

    Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian

    2014-02-11

    An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.

  5. Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange

    International Nuclear Information System (INIS)

    Helgstrand, Magnus; Haerd, Torleif; Allard, Peter

    2000-01-01

    The McConnell equations combine the differential equations for a simple two-state chemical exchange process with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system. The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was tested by the simulation of a sensitivity enhanced 15 N-HSQC with pulsed field gradients during slow chemical exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization based experiment as a function of both chemical shift difference and exchange rate constants

  6. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  7. Identification of helix capping and β-turn motifs from NMR chemical shifts

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13 C β chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  8. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.

    Science.gov (United States)

    Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D

    2016-01-01

    Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.

  9. Chemical Ligation of Folded Recombinant Proteins: Segmental Isotopic Labeling of Domains for NMR Studies

    Science.gov (United States)

    Xu, Rong; Ayers, Brenda; Cowburn, David; Muir, Tom W.

    1999-01-01

    A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.

  10. Correlations between the 1H NMR chemical shieldings and the pKa values of organic acids and amines.

    Science.gov (United States)

    Lu, Juanfeng; Lu, Tingting; Zhao, Xinyun; Chen, Xi; Zhan, Chang-Guo

    2018-06-01

    The acid dissociation constants and 1 H NMR chemical shieldings of organic compounds are important properties that have attracted much research interest. However, few studies have explored the relationship between these two properties. In this work, we theoretically studied the NMR chemical shifts of a series of carboxylic acids and amines in the gas phase and in aqueous solution. It was found that the negative logarithms of the experimental acid dissociation constants (i.e., the pK a values) of the organic acids and amines in aqueous solution correlate almost linearly with the corresponding calculated NMR chemical shieldings. Key factors that affect the theoretically predicted pK a values are discussed in this paper. The present work provides a new way to predict the pK a values of organic/biochemical compounds. Graphical abstract The chemical shielding values of organic acids and amines correlate near linearly with their corresponding pK a values.

  11. 1H NMR spectra of vertebrate [2Fe-2S] ferredoxins. Hyperfine resonances suggest different electron delocalization patterns from plant ferredoxins

    International Nuclear Information System (INIS)

    Skjeldal, L.; Markley, J.L.; Coghlan, V.M.; Vickery, L.E.

    1991-01-01

    The authors report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. These results indicate that the contact-shifted resonances in the reduced vertebrate ferredoxins detect different spin magnetization from those in the reduced plant ferredoxins and suggest that plant and vertebrate ferredoxins have fundamentally different patterns of electron delocalization in the reduced [2Fe-2S] center

  12. Conformation and Complexation of Tannins: NMR Spectra and Molecular Search Modeling of Flavan-3-ols

    Science.gov (United States)

    Richard W. Hemingway; Fred L. Tohiason; G. Wayne McGraw; Jan P. Steynberg

    1996-01-01

    Studies offlavan-3-01sin their biologically significant phenolic form show that both H-6 and C-6 resonances are downfield from H-8 and C-8. Therefore, assignments for the H atoms of the A-ring are inverse to those commonly reported. By contrast, in the methyl ether and methyl ether acetate derivatives, both H-8 and C-8 are downfield from H-6 and C-6 and assignments...

  13. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    Science.gov (United States)

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  14. Nucleic acid helix structure determination from NMR proton chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Werf, Ramon M. van der; Tessari, Marco; Wijmenga, Sybren S., E-mail: S.Wijmenga@science.ru.nl [Radboud University Nijmegen, Department of Biophysical Chemistry, Institute of Molecules and Materials (Netherlands)

    2013-06-15

    We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.

  15. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    Science.gov (United States)

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  16. Calculation of the NMR chemical shift for a 4d1 system in a strong crystal field environment of trigonal symmetry with a threefold axis of quantization

    International Nuclear Information System (INIS)

    Ahn, Sang Woon; Oh, Se Woung; Ro, Seung Woo

    1986-01-01

    The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a 4d 1 system in a strong crystal field environment of trigonal symmetry, where the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. we observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R 3 ) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around R≥0.2 nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift. (Author)

  17. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, D.R. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)], E-mail: ekman.drew@epa.gov; Teng, Q. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States); Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T. [Mid-Continent Ecology Division, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804 (United States); Collette, T.W. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)

    2007-11-30

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D {sup 1}H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D {sup 1}H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of {sup 1}H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 {mu}g/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish.

  18. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    International Nuclear Information System (INIS)

    Ekman, D.R.; Teng, Q.; Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T.; Collette, T.W.

    2007-01-01

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D 1 H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D 1 H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of 1 H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 μg/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish

  19. The Oxidation of Rhenium(III) by Dioxygen in the Presence of Tri ...

    African Journals Online (AJOL)

    NICO

    Both compounds were characterized by 1H NMR and infrared spectroscopy, and ... Microanalyses were obtained on a Carlo Erba EA 1108 elemental .... Spectral Characterization ... of this signal so far downfield indicates the existence of the.

  20. /sup 1/H-NMR chemical shift imaging suitable for low field systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Etsuji; Onodera, Takashi; Shiono, Hidemi; Kohno, Hideki

    1986-12-01

    An echo-time encoding proton NMR chemical shift imaging proposed by Dixon is extended to be applicable to low filed systems. The method utilizes the small phase angle between magnetic vectors of water and lipid protons to decrease the signal decays with spin-spin relaxation. The inevitable phase error caused by the static field inhomogeneity is corrected by using phase images of phantom measured under the same conditions as the actual measurements. The experiments were carried out using CuSO/sub 4/ doped water and vegetable oil at 0.5 T. Two chemical shift images could be clearly resolved with only one scan when the field inhomogeneity was larger than the chemical shift difference.

  1. Chemical shift-dependent apparent scalar couplings: An alternative concept of chemical shift monitoring in multi-dimensional NMR experiments

    International Nuclear Information System (INIS)

    Kwiatkowski, Witek; Riek, Roland

    2003-01-01

    The paper presents an alternative technique for chemical shift monitoring in a multi-dimensional NMR experiment. The monitored chemical shift is coded in the line-shape of a cross-peak through an apparent residual scalar coupling active during an established evolution period or acquisition. The size of the apparent scalar coupling is manipulated with an off-resonance radio-frequency pulse in order to correlate the size of the coupling with the position of the additional chemical shift. The strength of this concept is that chemical shift information is added without an additional evolution period and accompanying polarization transfer periods. This concept was incorporated into the three-dimensional triple-resonance experiment HNCA, adding the information of 1 H α chemical shifts. The experiment is called HNCA coded HA, since the chemical shift of 1 H α is coded in the line-shape of the cross-peak along the 13 C α dimension

  2. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    NARCIS (Netherlands)

    Van Der Schot, Gijs; Bonvin, Alexandre M J J

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on

  3. Molecular Structure of Phenytoin: NMR, UV-Vis and Quantum Chemical Calculations

    Directory of Open Access Journals (Sweden)

    Raluca Luchian

    2015-12-01

    Full Text Available Due to the presence of the carbonyl and imide groups in the structure of 5,5-diphenylhydantoin (DPH, the possibility for this compound to be involved in hydrogen bonding intermolecular interactions is obvious. Even though such interactions are presumably responsible for the mechanism of action of this drug, however, to the best of our knowledge, the self-hydrogen bonding interactions between the DPH monomers have not been addressed till now. Furthermore, studies reporting on the spectroscopic characteristics of this molecule are scarcely reported in the literature. Here we report on the possible dimers of DPH, investigated by quantum chemical calculations at B3LYP/6-31+G(2d,2p level of theory. Twelve unique DPH dimers were structurally optimized in gas-phase, as well as in ethanol and DMSO and then were used to compute the population-averaged UV-Vis and NMR spectra using Boltzmann statistics. UV-Vis and NMR techniques were employed to assess experimentally the spectroscopical response of this compound. DFT calculations are also used to investigate the structural transformations between the solid and liquid phase, as well as for describing the electronic transitions and for the assignment of NMR spectra of DPH.

  4. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups

    Science.gov (United States)

    Cody, George D.; Alexander, Conel M. O.'D.

    2005-02-01

    Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group's IOM. The fraction of aromatic carbon increases as CR2 meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp 3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.

  6. Theoretical Study of the NMR Chemical Shift of Xe in Supercritical Condition

    DEFF Research Database (Denmark)

    Lacerda Junior, Evanildo Gomes; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin

    2018-01-01

    In this work we investigate the level of theory necessary for reproducing the non-linear variation of the 129Xe nuclear magnetic resonance (NMR) chemical shift with the density of Xe in supercritical conditions. In detail we study how the 129Xe chemical shift depends under these conditions...... on electron correlation, relativistic and many-body effects. The latter are included using a sequential-QM/MM methodology, in which a classical MD simulation is performed first and the chemical shift is then obtained as an average of quantum calculations of 250 MD snapshots conformations carried out for Xen...... this approach we obtain very good agreement with the experimental data, showing that the chemical shift of 129Xe in supercritical conditions is very well described by cluster calculations at the HF level, with small contributions from relativistic and electron correlation effects....

  7. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  8. Application of 13C NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions

    Directory of Open Access Journals (Sweden)

    Takuya Hishinuma

    2015-04-01

    Full Text Available Solid-state 13C nuclear magnetic resonance (NMR spectroscopy was applied to coarse woody debris (CWD in different stages of decomposition and collected from forest floor of a subtropical, a cool temperate, and a subalpine forest in Japan. The purpose was to test its applicability to characterize organic chemical composition of CWD of broad-leaved and coniferous trees from different climatic conditions. O-alkyl-C, mainly representing carbohydrates, was the predominant component of CWD at the three sites, accounting for 43.5-58.1% of the NMR spectra. Generally, the relative area under the signals for aromatic-C and phenolic-C, mainly representing lignin, increased, whereas the relative area for O-alkyl-C decreased, as the decay class advanced. The relative area under NMR chemical shift regions was significantly correlated with the chemical properties examined with proximate analyses. That is, O-alkyl-C and di-O-alkyl-C NMR signal areas were positively correlated with the volumetric density of CWD and the content of total carbohydrates. Methoxyl-C, aromatic-C, phenolic-C, carboxyl-C, and carbonyl-C were positively correlated with the contents of acid-unhydrolyzable residues (lignin, tannins, and cutin and nitrogen. Lignin-C calculated from NMR signals increased, and polysaccharide-C decreased, with the decay class of CWD at the three study sites. A review of previous studies on 13C NMR spectroscopy for decomposing CWD suggested further needs of its application to broad-leaved trees from tropical and subtropical regions.

  9. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    International Nuclear Information System (INIS)

    Cromsigt, Jenny A.M.T.C.; Hilbers, Cees W.; Wijmenga, Sybren S.

    2001-01-01

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1 H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1 H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  10. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  11. NMR determination of chemically related metals in solution as a new method of inorganic analysis

    International Nuclear Information System (INIS)

    Fedorov, L.A.

    1989-01-01

    An NMR spectroscopic method for the determination of chemically related metals in solution is suggested. The metals are determined in complexes with specially selected polydentate ligands. Structural requirements to ligands, analytical properties and general limits of the application of the method are discussed. (orig.)

  12. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-01-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), 1 H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1 H– 1 H homonuclear dipolar couplings and narrow 1 H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1 H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1 H– 1 H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  13. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  14. Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds

    International Nuclear Information System (INIS)

    Kirk, K.; Kuchel, P.W.

    1988-01-01

    The marked difference between the intra- and extracellular 31 P NMR chemical shifts of various phosphoryl compounds when added to a red cell suspension may be largely understood in terms of the effects of hemoglobin on the 31 P NMR chemical shifts. The presence of [oxy- or (carbonmonoxy)-] hemoglobin inside the red cell causes the bulk magnetic susceptibility of the cell cytoplasm to be significantly less than that of the external solution. This difference is sufficient to account for the difference in the intra- and extracellular chemical shifts of the two phosphate esters trimethyl phosphate and triethyl phosphate. However, in the case of the compounds dimethyl methylphosphonate, diethyl methylphosphonate, and trimethylphosphine oxide as well as the hypophosphite, phenylphosphinate, and diphenylphosphinate ions, hemoglobin exerts an additional, much larger, effect, causing the 31 P NMR resonances to shift to lower frequency in a manner that cannot be accounted for in terms of magnetic susceptibility. Lysozyme is a protein structurally unrelated to hemoglobin and was shown to cause similar shifts to lower frequency of the resonances of these six compounds; this suggests that the mechanism may involve a property of proteins in general and not a specific property of hemoglobin. The effect of different solvents on the chemical shifts of the eight phosphoryl compounds provided an insight into the possible physical basis of the effect. It is proposed that, in addition to magnetic susceptibility effects, hemoglobin exerts its influence on phosphoryl chemical shifts by disrupting the hydrogen bonding of the phosphoryl group to solvent water

  15. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  16. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  17. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  18. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    Science.gov (United States)

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  19. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Delaglio, Frank [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Cornilescu, Gabriel [National Magnetic Resonance Facility (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-08-15

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between {sup 13}C, {sup 15}N and {sup 1}H chemical shifts and backbone torsion angles {phi} and {psi} (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted {phi} and {psi} angles, equals {+-}13{sup o}. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  20. Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1ρ NMR Spectroscopy

    Science.gov (United States)

    Zhao, Bo; Hansen, Alexandar L.; Zhang, Qi

    2016-01-01

    Quantitative characterization of dynamic exchange between various conformational states provides essential insights into the molecular basis of many regulatory RNA functions. Here, we present an application of nucleic-acid-optimized carbon chemical exchange saturation transfer (CEST) and low spin-lock field R1ρ relaxation dispersion (RD) NMR experiments in characterizing slow chemical exchange in nucleic acids that is otherwise difficult if not impossible to be quantified by the ZZ-exchange NMR experiment. We demonstrated the application on a 47-nucleotide fluoride riboswitch in the ligand-free state, for which CEST and R1ρ RD profiles of base and sugar carbons revealed slow exchange dynamics involving a sparsely populated (p ~ 10%) and shortly lived (τ ~ 10 ms) NMR “invisible” state. The utility of CEST and low spin-lock field R1ρ RD experiments in studying slow exchange was further validated in characterizing an exchange as slow as ~60 s−1. PMID:24299272

  1. Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin-lock field R(1ρ) NMR spectroscopy.

    Science.gov (United States)

    Zhao, Bo; Hansen, Alexandar L; Zhang, Qi

    2014-01-08

    Quantitative characterization of dynamic exchange between various conformational states provides essential insights into the molecular basis of many regulatory RNA functions. Here, we present an application of nucleic-acid-optimized carbon chemical exchange saturation transfer (CEST) and low spin-lock field R(1ρ) relaxation dispersion (RD) NMR experiments in characterizing slow chemical exchange in nucleic acids that is otherwise difficult if not impossible to be quantified by the ZZ-exchange NMR experiment. We demonstrated the application on a 47-nucleotide fluoride riboswitch in the ligand-free state, for which CEST and R(1ρ) RD profiles of base and sugar carbons revealed slow exchange dynamics involving a sparsely populated (p ~ 10%) and shortly lived (τ ~ 10 ms) NMR "invisible" state. The utility of CEST and low spin-lock field R(1ρ) RD experiments in studying slow exchange was further validated in characterizing an exchange as slow as ~60 s(-1).

  2. On the interaction of caffeine with nucleic acids. 3

    International Nuclear Information System (INIS)

    Fritzsche, H.; Petri, I.; Schuetz, H.; Weller, K.; Sedmera, P.; Lang, H.

    1980-01-01

    The authors have performed three experiments: 1) The self-association of both caffeine (Cf) and 5'-adenosine monophosphate (AMP) in aqueous solution has been re-investigated by 1 H NMR. 2) The interaction of Cf and AMP has been studied by 1 H NMR. 3) The interaction of Cf and poly(riboadenylate), (rA)sub(n), is indicated by a downfield shift of the H-8 line but an upfield shift of the H-2 line in the 1 H NMR spectra of (rA)sub(n). (Auth.)

  3. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  4. Prediction of peak overlap in NMR spectra

    International Nuclear Information System (INIS)

    Hefke, Frederik; Schmucki, Roland; Güntert, Peter

    2013-01-01

    Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.

  5. Measuring 13Cβ chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Lundstroem, Patrik; Lin Hong; Kay, Lewis E.

    2009-01-01

    A labeling scheme is introduced that facilitates the measurement of accurate 13 C β chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13 C enrichment (30-40%) at C β side-chain carbon positions for 15 of the amino acids with little 13 C label at positions one bond removed (∼5%). A pair of samples are produced using [1- 13 C]-glucose/NaH 12 CO 3 or [2- 13 C]-glucose as carbon sources with isolated and enriched (>30%) 13 C β positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13 C β chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples

  6. NMR Characterization of Flavanone Naringenin 7-O-Glycoside Diastereomer

    Directory of Open Access Journals (Sweden)

    SUN Li-juan

    2017-12-01

    Full Text Available To discriminate R and S flavanone glycoside using NMR, the mixture of R and S naringenin 7-O-glycoside was first isolated from Gleditsia sinensis. 1H and 13C NMR data of the mixture were recorded with 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC in DMSO-d6 solution. The two diastereomers were then separated with chiral chromatographic isolation, with their absolute configurations determined by circular dichroism. To avoid the disturbance of protons from glucose residues to dihydroflavonoid, 1H NMR spectra were acquired for pure R and S naringenin 7-O-glycoside and their mixture in CD3CN. The two diastereomers showed the largest proton chemical shift differences at the end group of glucose residue (H-1" with a chemical shift difference of 9.4 Hz. The OH-5 proton showed a chemical shift difference of 5.8 Hz. The chemical shift of the three protons on ring C were all influenced by configuration.

  7. 1H nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart

    OpenAIRE

    Jelicks, L.A.; Wittenberg, B.A.

    1995-01-01

    The proximal histidine N delta H proton of deoxymyoglobin experiences a large hyperfine shift resulting in its 1H nuclear magnetic resonance (NMR) signal appearing at approximately 76 ppm (at 35 degrees C), downfield of the diamagnetic spectral region. 1H NMR of this proton is used to monitor sarcoplasmic oxygen pressure in isolated perfused rat heart. This method monitors intracellular oxygenation in the whole heart and does not reflect oxygenation in a limited region. The deoxymyoglobin res...

  8. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes

    Science.gov (United States)

    Guzzo, Rodrigo N.; Rezende, Michelle Jakeline Cunha; Kartnaller, Vinicius; Carneiro, José Walkimar de M.; Stoyanov, Stanislav R.; Costa, Leonardo Moreira da

    2018-04-01

    The density functional theory is employed to determine the efficiency of 11 exchange-correlation (XC) functionals to compute the 1H and 13C NMR chemical shifts of p-tert-butylcalix[4]arene (ptcx4, R1 = C(CH3)3) and congeners using the 6-31G(d,p) basis set. The statistical analysis shows that B3LYP, B3PW91 and PBE1PBE are the best XC functionals for the calculation of 1H chemical shifts. Moreover, the best results for the 13C chemical shifts are obtained using the LC-WPBE, M06-2X and wB97X-D functionals. The performance of these XC functionals is tested for three other calix[4]arenes: p-sulfonic acid calix[4]arene (sfxcx4 - R1 = SO3H), p-nitro-calix[4]arene (ncx4, R1 = NO2) and calix[4]arene (cx4 - R1 = H). For 1H chemical shifts B3LYP, B3PW91 and PBE1PBE yield similar results, although B3PW91 shows more consistency in the calculated error for the different structures. For 13C NMR chemical shifts, the XC functional that stood out as best is LC-WPBE. Indeed, the three functionals selected for each of 1H and 13C show good accuracy and can be used in future studies involving the prediction of 1H and 13C chemical shifts for this type of compounds.

  9. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.

    Science.gov (United States)

    Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele

    2012-03-07

    Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein. © 2012 American Chemical Society

  10. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    Energy Technology Data Exchange (ETDEWEB)

    Babailov, S. P., E-mail: babajlov@niic.nsc.ru [A. V. Nikolaevs Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Purtov, P. A. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Insitutskaya 3, 630090 Novosibirsk (Russian Federation); Fomin, E. S. [Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Av. Lavrentyev 10, 630090 Novosibirsk (Russian Federation)

    2016-08-07

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  11. 1H NMR study of the solvent THF concerning their structural and dynamical properties in chemically Li-intercalated SWNT

    KAUST Repository

    Schmid, Marc R.

    2011-09-01

    Structural and dynamical properties of the THF solvent in single-walled carbon nanotubes intercalated with lithium are investigated by NMR. 1H NMR experiments reveal the existence of two types of inequivalent THF solvent molecules with different chemical environments and dynamical behavior. At low temperatures THF molecules perpendicularly arranged in between adjacent SWNT presumably exhibit a restricted rotation around their dipolar axis. At higher temperatures THF molecules are isotropically rotating and diffusing along the interstitial channels of the SWNT bundles. © 2011 Elsevier B.V. All rights reserved.

  12. 1H NMR study of the solvent THF concerning their structural and dynamical properties in chemically Li-intercalated SWNT

    KAUST Repository

    Schmid, Marc R.; Goze-Bac, Christophe; Bouhrara, Mohamed; Saih, Youssef; Mehring, Michael; Abou-Hamad, Edy

    2011-01-01

    Structural and dynamical properties of the THF solvent in single-walled carbon nanotubes intercalated with lithium are investigated by NMR. 1H NMR experiments reveal the existence of two types of inequivalent THF solvent molecules with different chemical environments and dynamical behavior. At low temperatures THF molecules perpendicularly arranged in between adjacent SWNT presumably exhibit a restricted rotation around their dipolar axis. At higher temperatures THF molecules are isotropically rotating and diffusing along the interstitial channels of the SWNT bundles. © 2011 Elsevier B.V. All rights reserved.

  13. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  14. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    Science.gov (United States)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  15. 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software

    Science.gov (United States)

    Azizi, S. N.; Rostami, A. A.; Godarzian, A.

    2005-05-01

    Hartree-Fock self-consistent-field (HF-SCF) theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts for ABOUT 90 units of 19 compounds of various silicate species of precursors for zeolites. Calculations have been performed at geometries optimized at the AM1 semi-empirical method. The GIAO-HF-SCF calculations were carried out with using three different basis sets: 6-31G*, 6-31+G** and 6-311+G(2d,p). To demonstrate the quality of the calculations the calculated chemical shifts, δ, were compared with the corresponding experimental values for the compounds in study. The results, especially with 6-31+g** are in excellent agreement with experimental values. The calculated chemical shifts, in practical point of view, appear to be accurate enough to aid in experimental peak assignments. The difference between the experimental and calculated 29Si chemical shift values not only depends on the Qn units but also it seems that basis set effects and the level of theory is more important. For the series of molecules studied here, the standard deviations and mean absolute errors for 29Si chemical shifts relative to TMS determined using Hartree--Fock 6-31+G** basis is nearly in all cases smaller than the errors for shifts determined using HF/6-311+G(2d,p).

  16. HPLC-NMR revisited: Using time-slice HPLC-SPE-NMR with database assisted dereplication

    DEFF Research Database (Denmark)

    Johansen, Kenneth; Wubshet, Sileshi Gizachew; Nyberg, Nils

    2013-01-01

    Time based trapping of chromatographically separated compounds on to solid-phase extraction cartridges (SPE) and subsequent elution to NMR-tubes was done to emulate the function of HPLC–NMR for dereplication purposes. Sufficient mass sensitivity was obtained by the use of a state-of-the-art HPLC......–SPE–NMR-system with a cryogenically cooled probe head, designed for 1.7 mm NMR-tubes. The resulting 1H NMR spectra (600 MHz) were evaluated against a database of previously acquired and prepared spectra. The in-house developed matching algorithm, based on partitioning of the spectra and allowing for changes in the chemical shifts......, is described and the code included as Supplementary Information. Two mixtures of natural products was used to test the approach; one extract of Carthamus oxyacantha (wild safflower) containing an array of spiro compounds and one extract of the endophytic fungus Penicillum namyslowski containing griseofulvin...

  17. Handbook of proton-NMR spectra and data index

    CERN Document Server

    Asahi Research Center Co, Ltd

    2013-01-01

    Handbook of Proton-NMR Spectra and Data: Index to Volumes 1-10 compiles four types of indexes used in charting the proton-NMR spectral database -Chemical Name Index, Molecular Formula Index, Substructure Index, and Chemical Shift Index. The Chemical Name Index compiles all chemical names in alphabetical order, followed by a spectrum number. When the desired organic compound cannot be found in the Chemical Name Index or its nomenclature is unclear, it becomes necessary to look for a compound by means of its molecular formula, hence the Molecular Formula Index. A unique notation system for repre

  18. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  19. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  20. nmr spectroscopic study and dft calculations of giao nmr shieldings

    African Journals Online (AJOL)

    Preferred Customer

    3Department of Physics, Arts and Science Faculty, Dumlupinar University, Kütahya, ... 1H, 13C NMR chemical shifts and 1JCH coupling constants of .... then estimated using the corresponding TMS shieldings calculated in advance at the same.

  1. NbF5 and TaF5: Assignment of 19F NMR resonances and chemical bond analysis from GIPAW calculations

    International Nuclear Information System (INIS)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-01-01

    The 19 F isotropic chemical shifts (δ iso ) of two isomorphic compounds, NbF 5 and TaF 5 , which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19 F MAS NMR spectra. In parallel, the corresponding 19 F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M 4 F 20 ] units of NbF 5 and TaF 5 being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the 19 F NMR lines of NbF 5 and TaF 5 is obtained, ensured by the linearity between experimental 19 F δ iso values and calculated 19 F isotropic chemical shielding σ iso values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF 5 . The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the 19 F NMR lines of NbF 5 , distorted multiplets, arising from 1 J-coupling and residual dipolar coupling between the 19 F and 93 Nb nuclei, were simulated yielding to values of 93 Nb– 19 F 1 J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the 19 F NMR lines of NbF 5 and TaF 5 allow establishing relationships between the 19 F δ iso values, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the

  2. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  3. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)

    Wintec

    heterocyclic compounds. 26 here, we present a simple, mild and efficient protocol for synthesis of 2,4,5- triaryl-1H-imidazoles using CAN catalyst. 2. Experimental. 1. H NMR spectra were recorded on a 400 MHz Var- ian-Gemini spectrometer and are reported as parts per million (ppm) downfield from a tetramethylsi- ...

  4. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  5. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D., E-mail: jdfv2009@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Grupo de Ressonância Magnética Nuclear e Química Medicinal

    2017-07-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  6. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    International Nuclear Information System (INIS)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D.

    2017-01-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  7. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  8. Characterization of natural bentonite by NMR

    International Nuclear Information System (INIS)

    Leite, Sidnei Q.M.; Dieguez, Lidia C.; Menezes, Sonia M.C.; San Gil, Rosane A.S.

    1993-01-01

    Solid state NMR as well as several other instrumental chemical analysis techniques were used in order to characterize two natural occurring bentonite. The methodology is described. The NMR spectra, together with the other used techniques suggest that the observed differences are due to iron inclusions in tetrahedral and octahedral sites

  9. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.

    Science.gov (United States)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele

    2014-09-23

    Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.

  10. Chemical exchange in novel spirobicyclic zwitterionic Janovsky complexes using dynamic 1H NMR spectroscopy.

    Science.gov (United States)

    Culf, A S; Cuperlović-Culf, M; Ouellette, R J

    2009-02-01

    Highly coloured Janovsky complexes have been known for over 120 years, being used in many colourimetric analytical procedures. In this present study, two novel and stable nitrocyclohexadienyl spirobicyclic, zwitterionic Janovsky anionic hydantoin sigma-complexes, rac-1,3-diisopropyl-6-nitro-2,4-dioxo-1,3-diazaspiro[4.5]deca-6,9-dien-8-ylideneazinate, ammonium internal salt (1) and 1,3-diisopropyl-2,4-dioxo-1,3-diazaspiro[4.5]deca-6,9-dien-8-ylideneazinate, ammonium internal salt (2) have been prepared and characterised by NMR, electrospray ionization mass spectrometry (ESI-MS) and UV/visible methods. For the p-mononitro-substituted complex (2), we discovered chemical exchange behaviour using 1D saturation transfer and 2D exchange spectroscopy (EXSY) (1)H NMR techniques. The coalescence temperature was determined to be 62 degrees C in d(3)-acetonitrile. Analysis of these data provided a Gibbs free energy of activation, DeltaG double dagger, of + 67 kJ mole(-1), a rate constant, k, coalescence of 220 Hz and an equilibrium constant, K(eqm), of 0.98 as estimates of the exchange process in this solvent. Of the two mechanisms proposed for this fluxional behaviour, ring opening to a substituted benzene or proton exchange, a further theoretical modelling study of 1D (1)H NMR spectra was able to confirm that simple proton exchange between the two nitrogen sites of the hydantoin ring provided an accurate simulation of the observed experimental evidence. Interestingly, the o,p-dinitro-substituted complex (1) did not show any chemical exchange behaviour up to 150 degrees C in d(3)-acetonitrile (to 75 degrees C) and d(6)-dimethyl sulfoxide (DMSO). Molecular modelling at the MM2 level suggests that steric collisions of an N-acyl isopropyl substituent of the hydantoin ring with the ortho-nitro group of the spirofused cyclohexadienyl ring prevents the proposed proton exchange mechanism occurring in this case. 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

  11. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    Science.gov (United States)

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  12. SPE-NMR metabolite sub-profiling of urine

    NARCIS (Netherlands)

    Jacobs, D.M.; Spiesser, L.; Garnier, M.; Roo, de N.; Dorsten, van F.; Hollebrands, B.; Velzen, van E.; Draijer, R.; Duynhoven, van J.P.M.

    2012-01-01

    NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has

  13. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin

    Science.gov (United States)

    De Souza, Leonardo A.; Tavares, Wagner M. G.; Lopes, Ana Paula M.; Soeiro, Malucia M.; De Almeida, Wagner B.

    2017-05-01

    In this work, we showed that comparison between experimental and theoretical 1H NMR chemical shift patterns, calculated using Density Functional Theory (DFT), can be used for the prediction of molecular structure of flavonoids in solution, what is experimentally accessible for gas phase (electron diffraction methods) and solid samples (X-ray diffraction). The best match between B3LYP/6-31G(d,p)-PCM 1H NMR calculations for B ring rotated structures and experimental spectra can provide information on the conformation adopted by polyphenols in solution (usually DMSO-d6, acetone-d6 as solvents), which may differ from solid state and gas phase observed structures, and also DFT optimized geometry in the vacuum.

  14. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  15. KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Iwahara, Junji; Koshiba, Seizo; Tomizawa, Tadashi; Tochio, Naoya; Guentert, Peter; Kigawa, Takanori; Yokoyama, Shigeyuki

    2007-01-01

    The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure

  16. NMR imaging: A 'chemical' microscope for coal analysis

    International Nuclear Information System (INIS)

    French, D.C.; Dieckman, S.L.; Gopalsami, N.; Botto, R.E.

    1991-01-01

    This paper presents a new three-dimensional (3-D) nuclear magnetic resonance (NMR) imaging technique for spatially mapping proton distributions in whole coals and solvent-swollen coal samples. The technique is based on a 3-D back-projection protocol for data acquisition, and a reconstruction technique based on 3-D Radon transform inversion. In principle, the 3-D methodology provides higher spatial resolution of solid materials than is possible with conventional slice-selection protocols. The applicability of 3-D NMR imaging has been demonstrated by mapping the maceral phases in Utah Blind Canyon (APCS number-sign 6) coal and the distribution of mobile phases in Utah coal swollen with deuterated and protic pyridine. 7 refs., 5 figs

  17. Portable, Low-cost NMR with Laser-Lathe Lithography Produced

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Demas, V; Malba, V; Bernhardt, A; Evans, L; Harvey, C; Chinn, S; Maxwell, R; Reimer, J; Pines, A

    2006-12-21

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5 mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or 'ex-situ' shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on a laser-fabricated microcoil and homebuilt probe design. For testing this probe, we used a hand-held 2 kg Halbach magnet that can fit into the palm of a hand, and an RF probe with laser-fabricated microcoils. The focus of the paper is on the evaluation of the microcoils, RF probe, and first generation gradient coils. The setup of this system, initial results, sensitivity measurements, and future plans are discussed. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  18. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  19. Chemical vs. electrochemical extraction of lithium from the Li-excess Li(1.10)Mn(1.90)O4 spinel followed by NMR and DRX techniques.

    Science.gov (United States)

    Martinez, S; Sobrados, I; Tonti, D; Amarilla, J M; Sanz, J

    2014-02-21

    Lithium extraction from the Li-excess Li1.10Mn1.90O4 spinel has been performed by chemical and electrochemical methods in aqueous and in organic media, respectively. De-lithiated samples have been investigated by XRD, SEM, TG, (7)Li and (1)H MAS-NMR techniques. The comparative study has allowed demonstrating that the intermediate de-intercalated samples prepared during the chemical extraction by acid titration are similar to those prepared by the electrochemical way in a non-aqueous electrolyte. LiMn2O4 based spinel with a tailored de-lithiation degree can be prepared as a single phase by controlling the pH used in chemical extraction. (7)Li MAS-NMR spectroscopy has been used to follow the influence of the manganese oxidation state on tetra and octahedral Li-signals detected in Li-extracted samples. The oxidation of Mn(III) ions goes parallel to the partial dissolution of the spinel, following Hunter's mechanism. Based on this mechanism, a generalized chemical reaction has been proposed to explain the formation of intermediate Li(+) de-intercalated samples during acid treatment in aqueous media. By the (1)H MAS NMR study, no evidence of Li-H topotactic exchange in the bulk of the acid treated material was found.

  20. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Uppsala University, Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology (Sweden); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Faculty of Science – Chemistry, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-08-15

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  1. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    International Nuclear Information System (INIS)

    Schot, Gijs van der; Bonvin, Alexandre M. J. J.

    2015-01-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution

  2. NMR - from basic physics to images of the human body

    International Nuclear Information System (INIS)

    Richards, Rex.

    1985-01-01

    Nuclear magnetic resonance (NMR) is a remarkable phenomenon which involves the exchange of very weak radio frequency radiation between atomic nuclei and a sensitive detecting apparatus. It was originally regarded as a rather esoteric effect of great theoretical interest, but has since proved to have an amazing range of applications over many scientific disciplines, including nuclear physics, solid state physics, all branches of chemistry, biochemistry, physiology and most recently in medical diagnosis. In this Discourse the principles of NMR and trace briefly the history of its applications are examined and illustrated. Headings are: early history; nuclear resonance; relaxation time; the chemical shift; spin-spin coupling (NMR spectra); chemical shifts in biological tissue; NMR imaging; conclusions. (author)

  3. 71Ga Chemical Shielding and Quadrupole Coupling Tensors of the Garnet Y(3)Ga(5)O(12) from Single-Crystal (71)Ga NMR

    DEFF Research Database (Denmark)

    Vosegaard, Thomas; Massiot, Dominique; Gautier, Nathalie

    1997-01-01

    A single-crystal (71)Ga NMR study of the garnet Y(3)Ga(5)O(12) (YGG) has resulted in the determination of the first chemical shielding tensors reported for the (71)Ga quadrupole. The single-crystal spectra are analyzed in terms of the combined effect of quadrupole coupling and chemical shielding ...

  4. 13C NMR Chemical Shifts of the Triclinic and Monoclinic Crystal forms of Valinomycin

    International Nuclear Information System (INIS)

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M.; Grant, David M.

    2004-01-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state 13 C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, δ iso , for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, δ 22 . Additionally it was found that the smallest shift component, δ 33 , for the L-lactic acid (L-Lac) and D-α-hydroxyisovaleric acid (D-Hyi) C α -O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the δ 33 component that governs the behavior of δ iso in these alpha carbons

  5. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone.

    Science.gov (United States)

    Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S

    2014-09-15

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Solid-state NMR chemical-shift perturbations indicate domain reorientation of the DnaG primase in the primosome of Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Gardiennet, Carole [Université de Lorraine, CNRS, CRM2, UMR 7036 (France); Wiegand, Thomas [ETH Zurich, Physical Chemistry (Switzerland); Bazin, Alexandre [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Cadalbert, Riccardo [ETH Zurich, Physical Chemistry (Switzerland); Kunert, Britta; Lacabanne, Denis [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Gutsche, Irina [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), CNRS, IBS, CEA, IBS (France); Terradot, Laurent, E-mail: l.terradot@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France)

    2016-03-15

    We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained.

  7. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex.

    Science.gov (United States)

    Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David

    2017-11-30

    An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.

  8. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  9. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction

    International Nuclear Information System (INIS)

    Lehtivarjo, Juuso; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino; Peräkylä, Mikael

    2012-01-01

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1 H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6–17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for 1 Hα, 1 HN, 13 Cα, 13 Cβ, 13 CO and backbone 15 N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspothttp://www.uef.fi/4dspot.

  10. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction

    Energy Technology Data Exchange (ETDEWEB)

    Lehtivarjo, Juuso, E-mail: juuso.lehtivarjo@uef.fi; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino [University of Eastern Finland, School of Pharmacy (Finland); Peraekylae, Mikael [University of Eastern Finland, Institute of Biomedicine (Finland)

    2012-03-15

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein {sup 1}H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6-17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for {sup 1}H{alpha}, {sup 1}HN, {sup 13}C{alpha}, {sup 13}C{beta}, {sup 13}CO and backbone {sup 15}N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspothttp://www.uef.fi/4dspot.

  11. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  12. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  13. Solid state NMR of spin-1/2 nuclei

    International Nuclear Information System (INIS)

    Wind, R.A.

    1991-01-01

    The detection of nuclear magnetic resonance by Bloch et al. and Purcell and co-workers in 1946 has led to the development of one of the most powerful spectroscopic techniques known today. The reason is that, besides the applied external magnetic field, a nuclear spin also experiences extra local magnetic fields, which are due to surrounding electron clouds (the chemical shift) and other spins. These local fields differ for nuclei located at chemically different positions in a molecule. The result is that an NMR spectrum often consists of several lines, which can be considered to be a fingerprint of the material under investigation an can assist the clarifying its molecular structure. NMR has been especially successful in liquids and liquid like materials, where fast molecular tumblings average out the anisotropies in the local fields, resulting in well-resolved NMR spectra. This paper reports that initially the development of solid-state NMR was less dramatic. Originally, for reasons of sensitivity, attention was focused mainly on 1 H NMR. The result is that the NMR spectrum usually consists of single, broad, featureless line, which, except for special cases such as more or less isolated spin pairs or methyl groups, does not provide much information

  14. Ring current shifts in {sup 19}F-NMR of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongsheng, E-mail: liudsh@shanghaitech.edu.cn; Wüthrich, Kurt, E-mail: kwuthrich@shanghaitech.edu.cn [ShanghaiTech University, iHuman Institute (China)

    2016-05-15

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of {sup 19}F-NMR probes include high sensitivity of the {sup 19}F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where {sup 19}F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of {sup 19}F-NMR probes used in GPCRs. Analysis of previously reported {sup 19}F-NMR data on the β{sub 2}-adrenergic receptor and mammalian rhodopsin showed that all {sup 19}F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on {sup 19}F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related {sup 19}F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future {sup 19}F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the {sup 19}F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with {sup 19}F-NMR markers can be substantiated by a more extensive data base resulting from future studies.

  15. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    Science.gov (United States)

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  16. NMR methods for the investigation of structure and transport

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Edme H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Mechanische Verfahrenstechnik und Mechanik

    2012-07-01

    Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)

  17. NMR methods for the investigation of structure and transport

    International Nuclear Information System (INIS)

    Hardy, Edme H.

    2012-01-01

    Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)

  18. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Yujiao Hua

    2016-11-01

    Full Text Available Pseudostellariae Radix (PR is an important traditional Chinese medicine (TCM, which is consumed commonly for its positive health effects. However, the chemical differences of PR from different cultivated fields and germplasms are still unknown. In order to comprehensively compare the chemical compositions of PR from different cultivated fields, in this study, 1H-NMR-based metabolomics coupled with high performance liquid chromatography (HPLC were used to investigate the different metabolites in PR from five germplasms (jr, zs1, zs2, sb, and xc cultivated in traditional fields (Jurong, Jiangsu, JSJR and cultivated fields (Zherong, Fujian, FJZR. A total of 34 metabolites were identified based on 1H-NMR data, and fourteen of them were found to be different in PR from JSJR and FJZR. The relative contents of alanine, lactate, lysine, taurine, sucrose, tyrosine, linolenic acid, γ-aminobutyrate, and hyperoside in PR from JSJR were higher than that in PR from FJZR, while PR from FJZR contained higher levels of glutamine, raffinose, xylose, unsaturated fatty acid, and formic acid. The contents of Heterophyllin A and Heterophyllin B were higher in PR from FJZR. This study will provide the basic information for exploring the influence law of ecological environment and germplasm genetic variation on metabolite biosynthesis of PR and its quality formation mechanism.

  19. Other compounds isolated from Simira glaziovii and the 1H and 13C NMR chemical shift assignments of new 1-epi-castanopsol

    International Nuclear Information System (INIS)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino; Braz-Filho, Raimundo; Carvalho, Mario G. de

    2012-01-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D 1 H, 13 C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of 1 H and 13 C NMR chemical shift assignments. (author)

  20. Criteria to average out the chemical shift anisotropy in solid-state NMR when irradiated with BABA I, BABA II, and C7 radiofrequency pulse sequences.

    Science.gov (United States)

    Stephane Mananga, Eugene

    2013-01-01

    Floquet-Magnus expansion is used to study the effect of chemical shift anisotropy in solid-state NMR of rotating solids. The chemical shift interaction is irradiated with two types of radiofrequency pulse sequences: BABA and C7. The criteria for the chemical shift anisotropy to be averaged out in each rotor period are obtained. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Benchmarking of density functionals for a soft but accurate prediction and assignment of (1) H and (13)C NMR chemical shifts in organic and biological molecules.

    Science.gov (United States)

    Benassi, Enrico

    2017-01-15

    A number of programs and tools that simulate 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts using empirical approaches are available. These tools are user-friendly, but they provide a very rough (and sometimes misleading) estimation of the NMR properties, especially for complex systems. Rigorous and reliable ways to predict and interpret NMR properties of simple and complex systems are available in many popular computational program packages. Nevertheless, experimentalists keep relying on these "unreliable" tools in their daily work because, to have a sufficiently high accuracy, these rigorous quantum mechanical methods need high levels of theory. An alternative, efficient, semi-empirical approach has been proposed by Bally, Rablen, Tantillo, and coworkers. This idea consists of creating linear calibrations models, on the basis of the application of different combinations of functionals and basis sets. Following this approach, the predictive capability of a wider range of popular functionals was systematically investigated and tested. The NMR chemical shifts were computed in solvated phase at density functional theory level, using 30 different functionals coupled with three different triple-ζ basis sets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Time domain NMR evaluation of poly(vinyl alcohol) xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elton Jorge da Rocha; Cavalcante, Maxwell de Paula; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia. Instituto de Macromoleculas Professora Eloisa Mano

    2016-05-15

    Poly(vinyl alcohol) (PVA)-based chemically cross-linked xerogels, both neat and loaded with nanoparticulate hydrophilic silica (SiO{sub 2}), were obtained and characterized mainly through time domain NMR experiments (TD-NMR). Fourier-transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD) analyses were employed as secondary methods. TD-NMR, through the interpretation of the spin-lattice relaxation constant values and related information, showed both cross-linking and nanoparticle influences on PVA matrix. SiO{sub 2} does not interact chemically with the PVA chains, but has effect on its molecular mobility, as investigated via TD-NMR. Apparent energy of activation, spin-lattice time constant and size of spin domains in the sample have almost linear dependence with the degree of cross-linking of the PVA and are affected by the addition of SiO{sub 2}. These three parameters were derived from a single set of TD-NMR experiments, which demonstrates the versatility of the technique for characterization of inorganic-organic hybrid xerogels, an important class of materials. (author)

  3. Recommendations of the wwPDB NMR Validation Task Force

    Science.gov (United States)

    Montelione, Gaetano T.; Nilges, Michael; Bax, Ad; Güntert, Peter; Herrmann, Torsten; Richardson, Jane S.; Schwieters, Charles; Vranken, Wim F.; Vuister, Geerten W.; Wishart, David S.; Berman, Helen M.; Kleywegt, Gerard J.; Markley, John L.

    2013-01-01

    As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment. PMID:24010715

  4. Use of NMR as an online sensor in industrial processes

    International Nuclear Information System (INIS)

    Andrade, Fabiana Diuk de

    2012-01-01

    Nuclear magnetic resonance (NMR) is one of the most versatile analytical techniques for chemical, biochemical and medical applications. Despite this great success, NMR is seldom used as a tool in industrial applications. The first application of NMR in flowing samples was published in 1951. However, only in the last ten years Flow NMR has gained momentum and new and potential applications have been proposed. In this review we present the historical evolution of flow or online NMR spectroscopy and imaging, and current developments for use in the automation of industrial processes. (author)

  5. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  6. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective (1)H-(31)P NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Hakala, Ullastiina; Vanninen, Paula

    2010-06-15

    Decontamination solutions, which are usually composed of strong alkaline chemicals, are used for efficient detoxification of chemical warfare agents (CWAs). The analysis of CWA degradation products directly in decontamination solutions is challenging due to the nature of the matrix. Furthermore, occasionally an unforeseen degradation pathway can result in degradation products which could be eluded to in standard analyses. Here, we present the results of the application of proton band-selective (1)H-(31)P NMR spectroscopy, i.e., band-selective 1D (1)H-(31)P heteronuclear single quantum coherence (HSQC) and band-selective 2D (1)H-(31)P HSQC-total correlation spectroscopy (TOCSY), for ester side chain characterization of organophosphorus nerve agent degradation products in decontamination solutions. The viability of the approach is demonstrated with a test mixture of typical degradation products of nerve agents sarin, soman, and VX. The proton band-selective (1)H-(31)P NMR spectroscopy is also applied in characterization of unusual degradation products of VX in GDS 2000 solution.

  7. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  8. Portable, low-cost NMR with laser-lathe lithography produced microcoils.

    Science.gov (United States)

    Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey

    2007-11-01

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  9. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Harano, Yoko; Tochio, Naoya; Nakatani, Eiichi; Kigawa, Takanori; Yokoyama, Shigeyuki; Mading, Steve; Ulrich, Eldon L.; Markley, John L.; Akutsu, Hideo; Fujiwara, Toshimichi

    2012-01-01

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1 H, 13 C and 15 N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001–2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  10. Proton NMR studies of functionalized nanoparticles in aqueous environments

    Science.gov (United States)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  11. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    quantum chemical methods have been developed, the calculation of NMR parameters with quantitative accuracy is far from trivial. In this thesis I address some of the issues that makes accurate calculation of NMR parameters so challenging, with the main focus on SSCCs. High accuracy quantum chemical......, but no programs were available to perform such calculations. As part of this thesis the CFOUR program has therefore been extended to allow the calculation of SSCCs using the CC3 method. CC3 calculations of SSCCs have then been performed for several molecules, including some difficult cases. These results show...... vibrations must be included. The calculation of vibrational corrections to NMR parameters has been reviewed as part of this thesis. A study of the basis set convergence of vibrational corrections to nuclear shielding constants has also been performed. The basis set error in vibrational correction...

  12. Metabolic engineering applications of in vivo 31P and 13C NMR studies of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo 31 P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the 31 P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, β-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the 31 P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP 1 ) is established. Transient measurements provided by 31 P NMR are applied to reg1 mutant and standard strains. 31 P and 13 C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered

  13. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    International Nuclear Information System (INIS)

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear

  14. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Mamata, E-mail: Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Body, Monique, E-mail: monique.body@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Sadoc, Aymeric, E-mail: Aymeric.Sadoc@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Boucher, Florent, E-mail: Florent.Boucher@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  15. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.

    Science.gov (United States)

    Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian

    2017-07-21

    The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solid-state NMR studies of form I of atorvastatin calcium.

    Science.gov (United States)

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  17. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    Science.gov (United States)

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  18. An introduction to biological NMR spectroscopy

    International Nuclear Information System (INIS)

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). (authors)

  19. Computational Protocols for Prediction of Solute NMR Relative Chemical Shifts. A Case Study of L-Tryptophan in Aqueous Solution

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Olsen, Jógvan Magnus H.; Aidas, Kestutis

    2011-01-01

    to the results stemming from the conformations extracted from the MM conformational search in terms of replicating an experimental reference as well as in achieving the correct sequence of the NMR relative chemical shifts of L-tryptophan in aqueous solution. We find this to be due to missing conformations......In this study, we have applied two different spanning protocols for obtaining the molecular conformations of L-tryptophan in aqueous solution, namely a molecular dynamics simulation and a molecular mechanics conformational search with subsequent geometry re-optimization of the stable conformers...... using a quantum mechanically based method. These spanning protocols represent standard ways of obtaining a set of conformations on which NMR calculations may be performed. The results stemming from the solute–solvent configurations extracted from the MD simulation at 300 K are found to be inferior...

  20. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    Science.gov (United States)

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  1. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2010-01-01

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13 C β chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13 C β atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ 15 N, δ 13 C', δ 13 C α , δ 13 C β , δ 1 H α and δ 1 H N , respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  2. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba

    OpenAIRE

    Napolitano, José G.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2012-01-01

    The complete and unambiguous 1H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive 1H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d6 were obtained through the examination of 1D 1H NMR and 2D 1H,1H-COSY data, in combination with 1H iterative Full Spin Analysis (HiFSA). The computational analysis of discrete spin systems allowed a ...

  3. The use of IRMS, (1)H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils.

    Science.gov (United States)

    Camin, Federica; Pavone, Anita; Bontempo, Luana; Wehrens, Ron; Paolini, Mauro; Faberi, Angelo; Marianella, Rosa Maria; Capitani, Donatella; Vista, Silvia; Mannina, Luisa

    2016-04-01

    Isotope Ratio Mass Spectrometry (IRMS), (1)H Nuclear Magnetic Resonance ((1)H NMR), conventional chemical analysis and chemometric elaboration were used to assess quality and to define and confirm the geographical origin of 177 Italian PDO (Protected Denomination of Origin) olive oils and 86 samples imported from Tunisia. Italian olive oils were richer in squalene and unsaturated fatty acids, whereas Tunisian olive oils showed higher δ(18)O, δ(2)H, linoleic acid, saturated fatty acids β-sitosterol, sn-1 and 3 diglyceride values. Furthermore, all the Tunisian samples imported were of poor quality, with a K232 and/or acidity values above the limits established for extra virgin olive oils. By combining isotopic composition with (1)H NMR data using a multivariate statistical approach, a statistical model able to discriminate olive oil from Italy and those imported from Tunisia was obtained, with an optimal differentiation ability arriving at around 98%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Influence of stacking interactions on NMR chemical shielding tensors in benzene and formamide homodimers as studied by HF, DFT and MP2 calculations

    Czech Academy of Sciences Publication Activity Database

    Czernek, Jiří

    2003-01-01

    Roč. 107, č. 19 (2003), s. 3952-3959 ISSN 1089-5639 R&D Projects: GA AV ČR KJB4050311 Institutional research plan: CEZ:AV0Z4050913 Keywords : NMR * chemical shielding tensor * ab initio Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.792, year: 2003

  5. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Novotný, J.; Straka, Michal; Repisky, M.; Ruud, K.; Komorovsky, S.; Marek, R.

    2015-01-01

    Roč. 17, č. 38 (2015), s. 24944-24955 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : NMR chemical shifts * transition metal complexes * relativistic effects * method calibration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04214c

  6. Ab initio/GIAO-CCSD(T) study of structures, energies, and 13C NMR chemical shifts of C4H7(+) and C5H9(+) ions: relative stability and dynamic aspects of the cyclopropylcarbinyl vs bicyclobutonium ions.

    Science.gov (United States)

    Olah, George A; Surya Prakash, G K; Rasul, Golam

    2008-07-16

    The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).

  7. Quartz Crystal Temperature Sensor for MAS NMR

    Science.gov (United States)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  8. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin-Spin Coupling Constants: An Experimental and Quantum Chemical Investigation

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vacek, Jaroslav; Hobza, Pavel; Žídek, L.; Sklenář, V.; Cremer, D.

    2002-01-01

    Roč. 106, - (2002), s. 10242-10250 ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA * help of NMR spin-spin coupling constants * quantum chemical investigation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  9. New strategy for stable-isotope-aided, multidimensional NMR spectroscopy of DNA oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Okira; Tate, Shin-Ichi; Kainosho, Masatsune [Tokyo Metropolitan Univ., Tokyo (Japan)

    1994-12-01

    Nuclear Magnetic Resonance (NMR) is the most efficient method for determining the solution structures of biomolecules. By applying multidimensional heteronuclear NMR techniques to {sup 13}C/{sup 15}N-labeled proteins, we can determine the solution structures of proteins with molecular mass of 20 to 30kDa at an accuracy similar to that of x-ray crystallography. Improvements in NMR instrumentation and techniques as well as the development of protein engineering methods for labeling proteins have rapidly advanced multidimensional heteronuclear NMR of proteins. In contrast, multidimensional heteronuclear NMR studies of nucleic acids is less advanced because there were no efficient methods for preparing large amounts of labeled DNA/RNA oligomers. In this report, we focused on the chemical synthesis of DNA oligomers labeled at specific residue(s). RNA oligomers with specific labels, which are difficult to synthesize by the enzyme method, can be synthesized by the chemical method. The specific labels are useful for conformational analysis of larger molecules such as protein-nucleic acid complexes.

  10. Physical characteristics of chemically modified starch from potatoes, evaluated by X-ray diffraction, SEM and NMR

    International Nuclear Information System (INIS)

    Sivolil; Perez, E.

    1995-01-01

    The aim of this study was to compare the physical characteristics of chemically modified starch by cross-linking and methylation in order to observe the changes occurred in the molecule which could give it a positive and specific application. The physical characteristics were evaluated by morphometric analysis using analytical methods as scanning electron microscopy, x-ray diffraction and nuclear magnetic resonance in solid state. The results point for all the evaluated characteristics that the cross-linked starch from potato maintains a granular size and shape similar to native starch, through some granules were affected since they presented cracks and outlet of internal material; the introduction of phosphate groups in the molecule is evident in the NMR spectra: the methylated starch from potato changed in a drastic way the structure of granules since the size increased from 9 to 53 μm of the native starch to 44 to 181 μm for the methylated, the X-ray spectra shows a formation of crystals, banishing the characteristic standard type B, likewise with NMR a modification of starch was observed due to the presence of methyl groups. (Author)

  11. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  12. Functional group analysis by H NMR/chemical derivatization for the characterization of organic aerosol from the SMOCC field campaign

    Directory of Open Access Journals (Sweden)

    E. Tagliavini

    2006-01-01

    Full Text Available Water soluble organic compounds (WSOC in aerosol samples collected in the Amazon Basin in a period encompassing the middle/late dry season and the beginning of the wet season, were investigated by H NMR spectroscopy. HiVol filter samples (PM2.5 and PM>2.5 and size-segregated samples from multistage impactor were subjected to H NMR characterization. The H NMR methodology, recently developed for the analysis of organic aerosol samples, has been improved by exploiting chemical methylation of carboxylic groups with diazomethane, which allows the direct determination of the carboxylic acid content of WSOC. The content of carboxylic carbons for the different periods and sizes ranged from 12% to 20% of total measured carbon depending on the season and aerosol size, with higher contents for the fine particles in the transition and wet periods with respect to the dry period. A comprehensive picture is presented of WSOC functional groups in aerosol samples representative of the biomass burning period, as well as of transition and semi-clean atmospheric conditions. A difference in composition between fine (PM2.5 and coarse (PM>2.5 size fractions emerged from the NMR data, the former showing higher alkylic content, the latter being largely dominated by R-O-H (or R-O-R' functional groups. Very small particles (<0.14 μm, however, present higher alkyl-chain content and less oxygenated carbons than larger fine particles (0.42–1.2 μm. More limited variations were found between the average compositions in the different periods of the campaign.

  13. Carbon-13 NMR of flavinoids

    International Nuclear Information System (INIS)

    Agrawal, P.K.

    1989-01-01

    The present book has been written with the objective of introducing the organic chemists with the conceptual and experimental basis required for interpretation of 13 C NMR spectra of a flavonoid and to a discussion of general usefulness of the technique in solving flavonoid structural problem. After a brief general introduction to the essential aspects of flavonoids and 13 C NMR spectroscopy, considerable emphasis has been placed in chapter 2 on the various experimental methods and the interpretation of spectral details which enable individual resonance lines to be associated with the appropriate carbons in a molecule. The whole bulk of the literature, published on 13 C NMR of flavonoids in the major journals upto 1986 alongwith some recent references of 1987 has been classified in several categories such as: flavonoids, isflavonoids, other flavonoids, flavonoid glycosides, chalconoids and flavanoids. Each category constitutes a chapter. Finally the last chapter is devoted largely to a discussion for the differentiation of various categories and subcategories of flavonoids and for the establishment of aromatic substitution pattern in these compounds. It should be emphasized that the book is a data book and only concerned with the actual analysis of 13 C NMR spectra, thus a reasonable familiarity with basic instrumentation of 13 C NMR and general pattern of nuclear chemical shifts has been assumed. (author). refs.; figs.; tabs

  14. NMR as a probe metabolic disorders in disease and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yushmanov, Victor E [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Chemical Physics

    1994-12-31

    The effects of malignant tumors, chemical and physical factors (toxic agents, ionizing radiation) as well as of their treatment on tissue metabolism were studied by NMR imaging. The importance of NMR is highlighted since it enables to a better understanding of molecular mechanisms of diseases and therapeutic interventions, in addition to the analysis of metabolic disorders in human beings. Combined with the studies of experimental animal pathologies, may constitute a base for new types of NMR-diagnosis in vivo 10 refs.

  15. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2010-09-15

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and {sup 13}C{sup {beta}} chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and {sup 13}C{sup {beta}} atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for {delta}{sup 15}N, {delta}{sup 13}C', {delta}{sup 13}C{sup {alpha}}, {delta}{sup 13}C{sup {beta}}, {delta}{sup 1}H{sup {alpha}} and {delta}{sup 1}H{sup N}, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  16. NMR studies on the chemical alteration of soil organic matter precursors during controlled charring

    Science.gov (United States)

    Knicker, Heike

    2010-05-01

    Beside the production of volatiles, vegetation fire transforms various amounts of labile organic components into recalcitrant dark colored and highly aromatic structures. They are incorporated into soils and are assumed to represent an important sink within the global carbon cycle. In order to elucidate the real importance of PyOM as a C-sink, a good understanding of its chemistry is crucial. Although several 'Black Carbon' (BC) models are reported, a commonly accepted view of the chemistry involved in its formation is still missing. Its biogeochemical recalcitrance is commonly associated with a highly condensed aromatic structure. However, recent studies indicated that this view may be oversimplified for PyOM derived from vegetation fire. In order to bring some more light on the structural properties of PyOM produced during vegetation fire, charred plant residues and model chars derived from typical plant macromolecules (casein, cellulose, lignin and condensed tannins) were subjected to controlled charring under oxic conditions (350°C and 450°C) and then characterized by nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Subsequently, the chemical features of the PyOM were related to its chemical recalcitrance as determined by chemical oxidation with acid potassium dichromate. Charring cellulose (350°C, 8 min) yielded in a low C-recovery (11%). Treating casein in the same way resulted in a survival of 62% of its C and 46% of its N. Comparable high C-recoveries are reported for lignin. After charring Lolium perenne, 34% of its N and C were recovered. NMR-spectroscopic studies revealed that for this sample most of the charred N and C occurred in pyrrole-type structures. Our studies further indicate that the aromatic skeleton of char accumulating after a vegetation fire must contain remains of the lignin backbone and considerable contributions of furans and anhydrosugars from thermally altered cellulose. Enhancing the temperature during the

  17. Chemical structure changes in coals after low-temperature oxidation and demineralization by acid treatment as revealed by high resolution solid state 13C NMR

    International Nuclear Information System (INIS)

    Tekely, P.; Nicole, D.; Delpuech, J.-J.; Totino, E.; Muller, J.F.

    1987-01-01

    13 C CP/MAS NMR has been used for characterization of chemical structure changes in coals after low-temperature oxidation and prolonged demineralization by acid treatment. In both cases the changes take place mainly in the aliphatic part of coal molecules. 21 refs.; 3 figs.; 2 tabs

  18. De novo protein structure generation from incomplete chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vernon, Robert; Baker, David [University of Washington, Department of Biochemistry and Howard Hughes Medical Institute (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-02-15

    NMR chemical shifts provide important local structural information for proteins. Consistent structure generation from NMR chemical shift data has recently become feasible for proteins with sizes of up to 130 residues, and such structures are of a quality comparable to those obtained with the standard NMR protocol. This study investigates the influence of the completeness of chemical shift assignments on structures generated from chemical shifts. The Chemical-Shift-Rosetta (CS-Rosetta) protocol was used for de novo protein structure generation with various degrees of completeness of the chemical shift assignment, simulated by omission of entries in the experimental chemical shift data previously used for the initial demonstration of the CS-Rosetta approach. In addition, a new CS-Rosetta protocol is described that improves robustness of the method for proteins with missing or erroneous NMR chemical shift input data. This strategy, which uses traditional Rosetta for pre-filtering of the fragment selection process, is demonstrated for two paramagnetic proteins and also for two proteins with solid-state NMR chemical shift assignments.

  19. Calculation of 125Te NMR Chemical Shifts at the Full Four-Component Relativistic Level with Taking into Account Solvent and Vibrational Corrections: A Gateway to Better Agreement with Experiment.

    Science.gov (United States)

    Rusakova, Irina L; Rusakov, Yuriy Yu; Krivdin, Leonid B

    2017-06-29

    Four-component relativistic calculations of 125 Te NMR chemical shifts were performed in the series of 13 organotellurium compounds, potential precursors of the biologically active species, at the density functional theory level under the nonrelativistic and four-component fully relativistic conditions using locally dense basis set scheme derived from relativistic Dyall's basis sets. The relativistic effects in tellurium chemical shifts were found to be of as much as 20-25% of the total calculated values. The vibrational and solvent corrections to 125 Te NMR chemical shifts are about, accordingly, 6 and 8% of their total values. The PBE0 exchange-correlation functional turned out to give the best agreement of calculated tellurium shifts with their experimental values giving the mean absolute percentage error of 4% in the range of ∼1000 ppm, provided all corrections are taken into account.

  20. Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis

    Directory of Open Access Journals (Sweden)

    Tales Tiecher

    2014-10-01

    Full Text Available Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure. All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.

  1. pH control and rapid mixing in spinning NMR samples

    Science.gov (United States)

    Yesinowski, James P.; Sunberg, Richard J.; Benedict, James J.

    An apparatus is described which permits the acquisition of NMR spectra from spinning 20-mm sample tubes while: (1) constantly monitoring the pH; (2) adding reagents to maintain constant pH (pH-statting); (3) efficiently mixing the added reagent. The apparatus was built to study the spontaneous precipitation of calcium phosphates from supersaturated solutions using 31P NMR. Other applications include the rapid determination of NMR titration curves, and the minimization of temperature gradients in large sample tubes. The apparatus was used to measure the 31P chemical shift titration of dilute phosphoric acid, which yielded accurate shifts for the three species of protonated orthophosphate ion. The bulk magnetic susceptibility of 85% H 3PO 4 relative to a dilute aqueous sample was also measured, and is shown to contribute significantly to chemical shift measurements.

  2. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    Science.gov (United States)

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  3. Straightforward and complete deposition of NMR data to the PDBe

    International Nuclear Information System (INIS)

    Penkett, Christopher J.; Ginkel, Glen van; Velankar, Sameer; Swaminathan, Jawahar; Ulrich, Eldon L.; Mading, Steve; Stevens, Tim J.; Fogh, Rasmus H.; Gutmanas, Aleksandras; Kleywegt, Gerard J.; Henrick, Kim; Vranken, Wim F.

    2010-01-01

    We present a suite of software for the complete and easy deposition of NMR data to the PDB and BMRB. This suite uses the CCPN framework and introduces a freely downloadable, graphical desktop application called CcpNmr Entry Completion Interface (ECI) for the secure editing of experimental information and associated datasets through the lifetime of an NMR project. CCPN projects can be created within the CcpNmr Analysis software or by importing existing NMR data files using the CcpNmr FormatConverter. After further data entry and checking with the ECI, the project can then be rapidly deposited to the PDBe using AutoDep, or exported as a complete deposition NMR-STAR file. In full CCPN projects created with ECI, it is straightforward to select chemical shift lists, restraint data sets, structural ensembles and all relevant associated experimental collection details, which all are or will become mandatory when depositing to the PDB. Instructions and download information for the ECI are available from the PDBe web site at http://www.ebi.ac.uk/pdbe/nmr/deposition/eci.htmlhttp://www.ebi.ac.uk/pdbe/nmr/deposition/eci.html.

  4. Recent advances in solid state NMR and its application to ceramics

    International Nuclear Information System (INIS)

    Maekawa, Hideki

    2006-01-01

    The basic principles of solid state NMR are explained. Four application examples contained amorphous glass, determination of defects of oxide crystal, nano particle and ionic materials. The structure of inorganic glass is measured by 29 Si, 11 B, 31 P and 23 Na NMR and Magic Angle Spinning NMR (MAS-NMR), chemical species near hydrogen by Cross-Polarization Magic Angle Spinning (CP/MAS) method, and hydrogen by Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) and MAS-NMR. Hydrous and anhydrous silicate glass with condensed 17 O was measured by 17 O Multi Quantum Magic Angle Spinning (MQ/MAS). 27 Al in slags was analyzed by 27 Al 5Q-MAS. 89 Y NMR spectrum of YSZ (Yttria Stabilization Zirconia, Y 2 O 3 -ZrO 2 ) was explained. The ion transfer phenomena in the electrolyte are observed directly by the solid state NMR. (S.Y.)

  5. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  6. Stereochemistry of Complex Marine Natural Products by Quantum Mechanical Calculations of NMR Chemical Shifts: Solvent and Conformational Effects on Okadaic Acid

    Directory of Open Access Journals (Sweden)

    Humberto J. Domínguez

    2014-01-01

    Full Text Available Marine organisms are an increasingly important source of novel metabolites, some of which have already inspired or become new drugs. In addition, many of these molecules show a high degree of novelty from a structural and/or pharmacological point of view. Structure determination is generally achieved by the use of a variety of spectroscopic methods, among which NMR (nuclear magnetic resonance plays a major role and determination of the stereochemical relationships within every new molecule is generally the most challenging part in structural determination. In this communication, we have chosen okadaic acid as a model compound to perform a computational chemistry study to predict 1H and 13C NMR chemical shifts. The effect of two different solvents and conformation on the ability of DFT (density functional theory calculations to predict the correct stereoisomer has been studied.

  7. Host-guest chemistry of dendrimer-drug complexes. 4. An in-depth look into the binding/encapsulation of guanosine monophosphate by dendrimers.

    Science.gov (United States)

    Hu, Jingjing; Fang, Min; Cheng, Yiyun; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2010-06-03

    In the present study, we investigated the host-guest chemistry of dendrimer/guanosine monophosphate (GMP) and present an in-depth look into the binding/encapsulation of GMP by dendrimers using NMR studies. (1)H NMR spectra showed a significant downfield shift of methylene protons in the outmost layer of the G5 dendrimer, indicating the formation of ion pairs between cationic amine groups of dendrimer and anionic phosphate groups of GMP. Chemical shift titration results showed that the binding constant between G5 dendrimer and GMP is 17,400 M(-1) and each G5 dendrimer has 107 binding sites. The binding of GMP to dendrimers prevents its aggregation in aqueous solutions and thereby enhances its stability. Nuclear Overhauser effect measurements indicated that a GMP binding and encapsulation balance occurs on the surface and in the interior of dendrimer. The binding/encapsulation transitions can be easily tailored by altering the surface and interior charge densities of the dendrimer. All these findings provide a new insight into the host-guest chemistry of dendrimer/guest complexes and may play important roles in the study of dendrimer/DNA aggregates by a "bottom-up" strategy.

  8. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.; Abdul Jameel, Abdul Gani; Hourani, Nadim; Emwas, Abdul-Hamid M.; Sarathy, Mani; Roberts, William L.

    2015-01-01

    infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC

  9. A complete set of NMR chemical shifts and spin-spin coupling constants for L-Alanyl-L-Alanine zwitterion and analysis of its conformational behavior

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Buděšínský, Miloš; Špirko, Vladimír; Kapitán, Josef; Šebestík, Jaroslav; Sychrovský, Vladimír

    2005-01-01

    Roč. 127, - (2005), 17079-17089 ISSN 0002-7863 R&D Projects: GA AV ČR(CZ) IAA4055104; GA ČR(CZ) GA203/05/0388 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * chemical shifts * coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.419, year: 2005

  10. International NMR-based Environmental Metabolomics Intercomparison Exercise

    Science.gov (United States)

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  11. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2017-02-15

    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H{sup δ21} and H{sup ε21}, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  12. 1H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata)

    DEFF Research Database (Denmark)

    Alves Filho, Elenilson G.; Silva, Lorena M. A.; Teofilo, Elizita M.

    2017-01-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In a...

  13. Characterization of functional polymers by NMR

    International Nuclear Information System (INIS)

    Neto, Oscar H.S. A.S.; San Gil, Rosane A.S.; Nakayama, T.; Costa Neto, Claudio

    1993-01-01

    Several synthetic polymers are used in the chemical analysis of complexes mixtures aiming to extract certain specific functional groups for further identification. This work describes the utilization of NMR in the characterization of one of the above mentioned compounds which will be used as reagent for the synthesis of another compound of the same type, which will be further used in the chemical analysis of alcohols and phenols. The methodology is described. The results are described and discussed

  14. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  15. Remeasuring HEWL pKa values by NMR spectroscopy 

    DEFF Research Database (Denmark)

    Webb, Helen; Tynan-Connolly, Barbara Mary; Lee, Gregory M

    2011-01-01

    Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured by track......Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured...... by tracking the NMR chemical shifts of several reporter nuclei versus sample pH. However, careful analysis of these curves is needed to extract residue-specific pK(a) values since pH-dependent chemical shift changes can arise from many sources, including through-bond inductive effects, through-space electric...... protonated carbons and protons in this protein. We extracted pK(a) values from the resulting titration curves using standard fitting methods, and compared these values to each other, and with those measured previously by ¹H NMR (Bartik et al., Biophys J 1994;66:1180–1184). This analysis gives insights...

  16. FT-IR, NMR SPECTROSCOPIC and QUANTUM MECHANICAL ...

    African Journals Online (AJOL)

    frequencies, potential energy distribution (PED) data, 1H and 13C NMR chemical shifts of Fc- .... Due to electronegative oxygen atom, C11 appears at the highest frequency field region. The most intense singlet appearing at 69.73 ppm arises.

  17. Molecular Dynamics and Morphology of High Performance Elastomers and Fibers by Solid State NMR

    Science.gov (United States)

    2016-06-30

    nuclear magnetic resonance (ssNMR) spectroscopy to investigate the chemical structure and physical state of the residual phosphorous in PBO fiber...ssNMR) spectroscopy to investigate the chemical structure and physical state of the residual phosphorous in PBO fiber, which has been long suspected to...Jason Cain, Jian H. Yu, David Veysset, Keith A. Nelson . Probing the Influence of Molecular Dynamics of Matrix Elastomers on Ballistic Impact Back-face

  18. Protolytic properties of polyamine wasp toxin analogues studied by 13C NMR spectroscopy

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Piazzi, Lorna; Olsen, Christian A

    2006-01-01

    Acid-base properties of the natural polyamine wasp toxin PhTX-433 (1) and seven synthetic analogues [PhTX-343 (2), PhTX-334 (3), PhTX-443 (4), PhTX-434 (5), PhTX-344 (6), PhTX-444 (7), and PhTX-333 (8)], each having four protolytic sites, were characterized by 13C NMR spectroscopy. Nonlinear......, multiparameter, simultaneous fit of all chemical shift data obtained from the NMR titration curves yielded macroscopic pKa values as well as intrinsic chemical shift data of all differently protonated macrospecies. Analyses of the chemical shift data demonstrated strong interactions between all four sites...

  19. 13C and 29Si NMR as a probe to investigate polysiloxanes used in dental applications

    International Nuclear Information System (INIS)

    Silva, Naira Machado da; Tavares, Maria Ines B.

    2001-01-01

    The properties of dental mould polymeric materials are strongly influenced by the chemical structure of both the polymer and the catalyst used in the crosslink reaction between them. In order to characterize and suggest some modifications on the materials interfacial interactions, mixtures of Polymer-catalyst were prepared. The polymer and the catalyst chemical structures were obtained by 13 C, 1 H and 129 Si NMR analysis in solution state. From the solution NMR results it was obtained the structure of the polymer and the catalyst and also the kind of the crosslink reaction taken. The CPMAS 1 '3C NMR analysis in the solid state were used to identify chemical structure of the polymeric dental moulded sample. (author)

  20. FTIR, FT-Raman, FT-NMR, UV-visible and quantum chemical investigations of 2-amino-4-methylbenzothiazole.

    Science.gov (United States)

    Arjunan, V; Sakiladevi, S; Rani, T; Mythili, C V; Mohan, S

    2012-03-01

    The FT-IR (4000-400 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectral measurements and complete assignments of the observed spectra of 2-amino-4-methylbenzothiazole (2A4MBT) have been proposed. Ab initio and DFT calculations have been performed and the structural parameters of the compound were determined from the optimised geometry with 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO, LUMO and band gap energies were measured by time-dependent DFT (TD-DFT) approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman activities chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. The influences of methyl and amino groups on the skeletal modes and on the proton chemical shifts have been investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Hyperpolarized Xenon Nuclear Magnetic Resonance (NMR of Building Stone Materials

    Directory of Open Access Journals (Sweden)

    Michele Mauri

    2012-09-01

    Full Text Available We have investigated several building stone materials, including minerals and rocks, using continuous flow hyperpolarized xenon (CF-HP NMR spectroscopy to probe the surface composition and porosity. Chemical shift and line width values are consistent with petrographic information. Rare upfield shifts were measured and attributed to the presence of transition metal cations on the surface. The evolution of freshly cleaved rocks exposed to the atmosphere was also characterized. The CF-HP 129Xe NMR technique is non-destructive and it could complement currently used techniques, like porosimetry and microscopy, providing additional information on the chemical nature of the rock surface and its evolution.

  2. Vivaldi: Visualization and validation of biomacromolecular NMR structures from the PDB

    Science.gov (United States)

    Hendrickx, Pieter M S; Gutmanas, Aleksandras; Kleywegt, Gerard J

    2013-01-01

    We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi), a web-based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model-validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non-expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. © Proteins 2013. © 2012 Wiley Periodicals, Inc. PMID:23180575

  3. NMR studies of Na+-anion association effects in polymer electrolytes

    International Nuclear Information System (INIS)

    Greenbaum, S.G.; Pak, Y.S.; Wintergill, M.C.; Fontanella, J.J.

    1988-01-01

    23 Na nuclear magnetic resonance (NMR) measurements on poly (propylene oxide) (PPO) and siloxane based polymer electrolytes containing various sodium salts at a single nominal concentration are reported. In addition, differential scanning calorimetry (DSC) and electrical conductivity studies were carried out on the PPO materials. The NMR-determined mobile Na + concentrations and DSC results provide evidence for ionic aggregation effects which, for some samples, result in salt precipitation at elevated temperatures. 23 Na chemical shifts observed in solid state NMR due to mobile Na + -anion interactions influence ionic transport as well as the number of available carriers. (author). 19 refs.; 7 figs

  4. High-Frequency C-13 and Si-29 NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of TII and Pb-II: Decisive Role of Relativistic Effects

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 4 (2016), s. 1770-1781 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : high-frequency NMR chemical shifts * HALA effect * relativistic DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  5. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  6. 1H NMR visibility of mammalian glycogen in solution

    International Nuclear Information System (INIS)

    Zang, L.H.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    High-resolution 1 H NMR spectra of rabbit liver glycogen in 2 H 2 O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of α-linked diglucose molecules. The NMR relaxation times T 1 and T 2 of glycogen in 2 H 2 O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton is in excellent agreement with that calculated from T 2 . The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions

  7. Improving the efficiency of quantitative (1)H NMR: an innovative external standard-internal reference approach.

    Science.gov (United States)

    Huang, Yande; Su, Bao-Ning; Ye, Qingmei; Palaniswamy, Venkatapuram A; Bolgar, Mark S; Raglione, Thomas V

    2014-01-01

    The classical internal standard quantitative NMR (qNMR) method determines the purity of an analyte by the determination of a solution containing the analyte and a standard. Therefore, the standard must meet the requirements of chemical compatibility and lack of resonance interference with the analyte as well as a known purity. The identification of such a standard can be time consuming and must be repeated for each analyte. In contrast, the external standard qNMR method utilizes a standard with a known purity to calibrate the NMR instrument. The external standard and the analyte are measured separately, thereby eliminating the matter of chemical compatibility and resonance interference between the standard and the analyte. However, the instrumental factors, including the quality of NMR tubes, must be kept the same. Any deviations will compromise the accuracy of the results. An innovative qNMR method reported herein utilizes an internal reference substance along with an external standard to assume the role of the standard used in the traditional internal standard qNMR method. In this new method, the internal reference substance must only be chemically compatible and be free of resonance-interference with the analyte or external standard whereas the external standard must only be of a known purity. The exact purity or concentration of the internal reference substance is not required as long as the same quantity is added to the external standard and the analyte. The new method reduces the burden of searching for an appropriate standard for each analyte significantly. Therefore the efficiency of the qNMR purity assay increases while the precision of the internal standard method is retained. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Positron annihilation and 129Xe NMR studies of free volume in polymers

    International Nuclear Information System (INIS)

    Nagasaka, Bunsow; Eguchi, Taro; Nakayama, Hirokazu; Nakamura, Nobuo; Ito, Yasuo

    2000-01-01

    The existence and the average size of free volume in bisphenol-A polycarbonate (PC), low-density polyethylene (LDPE), poly (2,6-dimethyl-phenylene oxide)(PPO), and polytetrafluoroethylene (PTFE) were studied by positron annihilation and 129 Xe NMR measurements. The 129 Xe NMR chemical shifts for xenon adsorbed in the polymers indicated that the average pore size of the free volume increased in the following order: PC, LDPE, PPO, and PTFE. This order of the pore size of the free volume agrees well with that estimated from the longest lifetime (τ 3 ) of ortho-positronium formed in the polymers. The unique correlation that δ -1 ∝ r is established between the 129 Xe NMR chemical shift (δ) and the pore size (r), which is deduced from the positron annihilation measurements.

  9. In situ NMR studies of reactions on catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    Zeolites are useful in the synthesis of fine chemicals. The systematic understanding of organic chemistry of zeolite catalysis may contribute to: the elucidation of reaction mechanisms of existing catalytic processes; the discovery of new catalytic reactions; the application of zeolite catalysis to the synthesis of fine chemicals. This work presents species of zeolites identified by in situ NMR; reactions of organic chemicals on zeolites and proposes mechanisms as well as reactivity trends 3 refs., 7 tabs.

  10. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  11. Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.; Wheeler, Lance M.; Anderson, Nicholas C.

    2017-01-01

    The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1 H– 29 Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1 H– 29 Si HETCOR and dipolar 2D 1 H– 1 H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Instead the 2D NMR spectra illustrate that there is large distribution of 1 H and 29 Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1 H– 29 Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29 Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3 ), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1 H and 29 Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.

  12. Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement

    International Nuclear Information System (INIS)

    Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Pines, A.; Lawrence Berkeley National Lab., CA

    1999-01-01

    Xenon is chemically inert, yet exhibits NMR parameters that are highly sensitive to its chemical environment. Considerable work has therefore capitalized on the utility of 129 Xe (I = 1/2) as a magnetic resonance probe of molecules, materials, and biological systems. In solution, spin-polarization transfer between laser-polarized xenon and the hydrogen nuclei of nearby molecules leads to signal enhancements in the resolved 1 H NMR spectrum, offering new opportunities for probing the chemical environment of xenon atoms. Following binding of laser-polarized xenon to molecules of cryptophane-A, selective enhancements of the 1 H NMR signals were observed. A theoretical framework for the interpretation of such experimental results is provided, and the spin polarization-induced nuclear Overhauser effects are shown to yield information about the molecular environment of xenon. The observed selective 1 H enhancements allowed xenon-proton internuclear distances to be estimated. These distances reveal structural characteristics of the complex, including the preferred molecular conformations adopted by cryptophane-A upon binding of xenon

  13. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  14. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  15. A metal-ion NMR investigation of the antibiotic facilitated transport of monovalent cations through the walls of phospholipid vesicles. II. Sulfur-33 NMR

    International Nuclear Information System (INIS)

    Buster, D.C.

    1988-01-01

    A technique has been developed to investigate the antibiotic facilitated transmembrane transport of monovalent cations using 23 Na and 7 Li Nuclear Magnetic Resonance spectroscopy. The initial portion of this thesis outlines the production and characterization of a model lipid system amenable to the NMR detection of cation transport. Large unilamellar vesicles (LUV) have been prepared from a 4:1 mixture of phosphatidylcholine and phosphatidylglycerol. The presence of the anionic chemical shift reagent dysprosium (III) tripolyphosphate, either inside or outside of the vesicles, allows for the spectroscopic separation of the NMR resonances arising from the inter- and extravesicular cation pools. The cation transporting properties of the channel-forming pentadecapeptide, gramicidin D, have been studied using the NMR technique

  16. 13C-NMR of diterpenes with pimarane skeleton

    International Nuclear Information System (INIS)

    Garcez, W.S.; Pereira, A.L.; Silva Queiroz, P.P. da; Silva, R.S. da; Valente, L.M.M.; Peixoto, E.M.; Cunha Pinto, A. da

    1981-01-01

    The effect of substituent groups on the chemical shift of carbons using nuclear magnetic resonance spectra of carbon 13 ( 13 C-NMR) is discussed. Diterpenes having pimarane skeleton, isolated from plants of Velloziaceae family are analysed. (ARHC) [pt

  17. Towards 31Mg-β-NMR resonance linewidths adequate for applications in magnesium chemistry

    DEFF Research Database (Denmark)

    Stachura, M.; McFadden, R. M. L.; Chatzichristos, A.

    2017-01-01

    The span of most chemical shifts recorded in conventional 25Mg-NMR spectroscopy is ~ 100 ppm. Accordingly, linewidths of ~ 10 ppm or better are desirable to achieve adequate resolution for applications in chemistry. Here we present first high-field 31Mg- β-NMR measurements of 31Mg+ ions implanted...

  18. Temperature effects on chemical structure and motion in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, G.E.

    1996-09-30

    The objective of this project was to apply recently developed, state-of-the-art nuclear magnetic resonance (NMR) techniques to examine in situ changes in the chemical structure and molecular/macromolecular motion in coal as the temperature is increased above room temperature. Although alterations in the chemical structure of coal have been studied previously by {sup 13}C NMR, using quenched samples, the goal of this project was to examine these chemical structural changes, and changes in molecular/macromolecular mobility that may precede or accompany the chemical changes, at elevated temperatures, using modern {sup 13}C and {sup 1}H NMR techniques, especially {sup 1}H dipolar-dephasing techniques and related experiments pioneered in the laboratory for examining pyridine-saturated coals. This project consisted of the following four primary segments and related efforts on matters relevant to the first four tasks. (1) {sup 1}H NMR characterization of coal structure and mobility as a function of temperature variation over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (2) {sup 1}H NMR characterization of coal structure, mobility and conversion as a function of temperature variation over a temperature range (240--500 C) for which chemical transformations of coal are known to occur. (3) {sup 13}C NMR investigation of coal structure/mobility as a function of temperature over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (4) {sup 13}C NMR investigation of coal structure, dynamics and conversion as a function of temperature variation over a range (240--500 C) for which chemical transformations of coal are known to occur. (5) Related matters relevant to the first four tasks: (a) {sup 1}H CRAMPS NMR characterization of oil shales and their kerogen concentrates; and (b) improved quantitation in {sup 13}C MAS characterization of coals.

  19. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    Science.gov (United States)

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  20. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    Science.gov (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 129 Xe-NMR of carbon black filled elastomers

    International Nuclear Information System (INIS)

    Sperling-Ischinsky, K.; Veeman, W.S.

    1999-01-01

    It is shown that 129 Xe-NMR is a powerful tool to investigate carbon black and carbon black filled elastomers. For the carbon black material itself the 129 Xe chemical shift of xenon adsorbed at the surface of carbon black aggregates yields information about the relative average pore size of the carbon black aggregates. The experimental 129 Xe-NMR results of carbon black filled ethylene-propylene-diene (EPDM) can be explained when it is assumed that the xenon atoms in the bound EPDM fraction exchange rapidly on the NMR time scale between a state where they are adsorbed on the carbon black surface and a state in which they are absorbed in the EPDM layer. This would imply that the carbon black aggregates are not completely covered with EPDM chains. (author)

  2. Contact replacement for NMR resonance assignment.

    Science.gov (United States)

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  3. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    Science.gov (United States)

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  5. High resolution NMR in zeolites

    International Nuclear Information System (INIS)

    Diaz, Anix

    1991-01-01

    In this work 29 Si and 27 Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author)

  6. Chemical Shift Imaging (CSI) by precise object displacement

    OpenAIRE

    Leclerc, Sebastien; Trausch, Gregory; Cordier, Benoit; Grandclaude, Denis; Retournard, Alain; Fraissard, Jacques; Canet, Daniel

    2006-01-01

    International audience; A mechanical device (NMR lift) has been built for displacing vertically an object (typically a NMR sample tube) inside the NMR probe with an accuracy of 1 Μm. A series of single pulse experiments are performed for incremented vertical positions of the sample. With a sufficiently spatially selective rf field, one obtains chemical shift information along the displacement direction (one dimensional Chemical Shift Imaging – CSI). Knowing the vertical radio-frequency (rf) f...

  7. Ab Initio Calculations of 31P NMR Chemical Shielding Anisotropy Tensors in Phosphates: Variations Due to Ring Formation

    Directory of Open Access Journals (Sweden)

    Todd M. Alam

    2002-08-01

    Full Text Available Abstract: Ring formation in phosphate systems is expected to influence both the magnitude and orientation of the phosphorus (31P nuclear magnetic resonance (NMR chemical shielding anisotropy (CSA tensor. Ab initio calculations of the 31P CSA tensor in both cyclic and acyclic phosphate clusters were performed as a function of the number of phosphate tetrahedral in the system. The calculation of the 31P CSA tensors employed the GAUSSIAN 98 implementation of the gauge-including atomic orbital (GIAO method at the Hartree-Fock (HF level. It is shown that both the 31P CSA tensor anisotropy, and the isotropic chemical shielding can be used for the identification of cyclic phosphates. The differences between the 31P CSA tensor in acyclic and cyclic phosphate systems become less pronounced with increasing number of phosphate groups within the ring. The orientation of the principal components for the 31P CSA tensor shows some variation due to cyclization, most notably with the smaller, highly strained ring systems.

  8. Applications of NMR in biological metabolic research

    International Nuclear Information System (INIS)

    Nie Jiarui; Li Xiuqin; He Chunjian

    1989-01-01

    The nuclear magnetic resonance has become a powerful means of studying biological metabolism in non-invasive and non-destructive way. Being used to study the metabolic processes of living system in normal physiological conditions as well as in molecular level, the method is better than other conventional approaches. Using important parameters such as NMR-chemical shifts, longitudinal relaxation time and transverse relaxation time, it is possible to probe the metabolic processes as well as conformation, concentration, transportation and distribution of reacting and resulting substances. The NMR spectroscopy of 1 H, 31 P and 13 C nuclei has already been widely used in metabolic researches

  9. Single-Crystalline cooperite (PtS): Crystal-Chemical characterization, ESR spectroscopy, and {sup 195}Pt NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rozhdestvina, V. I., E-mail: veronika@ascnet.ru; Ivanov, A. V.; Zaremba, M. A. [Far East Division, Russian Academy of Sciences, Institute of Geology and Nature Management (Russian Federation); Antsutkin, O. N.; Forsling, W. [Lulea University of Technology (Sweden)

    2008-05-15

    Single-crystalline cooperite (PtS) with a nearly stoichiometric composition was characterized in detail by X-ray diffraction, electron-probe X-ray microanalysis, and high-resolution scanning electron microscopy. For the first time it was demonstrated that {sup 195}Pt static and MAS NMR spectroscopy can be used for studying natural platinum minerals. The {sup 195}Pt chemical-shift tensor of cooperite was found to be consistent with the axial symmetry and is characterized by the following principal values: {delta}{sub xx} = -5920 ppm, {delta}{sub yy} = -3734 ppm, {delta}{sub zz} = +4023 ppm, and {delta}{sub iso} = -1850 ppm. According to the ESR data, the samples of cooperite contain copper(II), which is adsorbed on the surface during the layer-by-layer crystal growth and is not involved in the crystal lattice.

  10. Variable-temperature NMR and conformational analysis of Oenothein B

    International Nuclear Information System (INIS)

    Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de

    2014-01-01

    Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)

  11. Variable-temperature NMR and conformational analysis of Oenothein B

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de, [Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Instituto de Quimica

    2014-02-15

    Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)

  12. Multinuclear MAS NMR studies on coked zeolites H-ZSM-5

    International Nuclear Information System (INIS)

    Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1991-01-01

    During the cracking process carbonaceous materials are deposited on the outer or inner surface of the catalyst. These deposits are in many cases the main cause of catalyst deactivation. Magic angle spinning (MAS) NMR investigations and catalytic n-hexane cracking were carried out on H-ZSM-5 zeolites after a mild hydrothermal de-alumination. By 13 C CP MAS NMR it could be shown that the enhanced catalytic activity does not enhance the coke formation and that the chemical nature of these deposits is essentially aromatic. From 1 H MAS NMR studies performed on shallow-bed activated sealed samples and 27 Al and 29 Si MAS NMR on rehydrated samples it follows that for high coke concentrations the catalyst deactivation is caused mainly by blocking of Broensted acid sites. (author). 27 refs.; 3 figs.; 2 tabs

  13. Understanding Chemistry and Unique NMR Characters of Novel Amide and Ester Leflunomide Analogues

    Directory of Open Access Journals (Sweden)

    Morkos A. Henen

    2017-12-01

    Full Text Available A series of diverse substituted 5-methyl-isoxazole-4-carboxylic acid amides, imide and esters in which the benzene ring is mono or disubstituted was prepared. Spectroscopic and conformational examination was investigated and a new insight involving steric interference and interesting downfield deviation due to additional diamagnetic anisotropic effect of the amidic carbonyl group and the methine protons in 2,6-diisopropyl-aryl derivative (2 as conformationaly restricted analogues Leflunomide was discussed. Individual substituent electronic effects through π resonance of p-substituents and most stable conformation of compound (2 are discussed.

  14. Recent Advances in Multinuclear NMR Spectroscopy for Chiral Recognition of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Márcio S. Silva

    2017-02-01

    Full Text Available Nuclear magnetic resonance (NMR is a powerful tool for the elucidation of chemical structure and chiral recognition. In the last decade, the number of probes, media, and experiments to analyze chiral environments has rapidly increased. The evaluation of chiral molecules and systems has become a routine task in almost all NMR laboratories, allowing for the determination of molecular connectivities and the construction of spatial relationships. Among the features that improve the chiral recognition abilities by NMR is the application of different nuclei. The simplicity of the multinuclear NMR spectra relative to 1H, the minimal influence of the experimental conditions, and the larger shift dispersion make these nuclei especially suitable for NMR analysis. Herein, the recent advances in multinuclear (19F, 31P, 13C, and 77Se NMR spectroscopy for chiral recognition of organic compounds are presented. The review describes new chiral derivatizing agents and chiral solvating agents used for stereodiscrimination and the assignment of the absolute configuration of small organic compounds.

  15. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lawrence R. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Walker, S. Michael [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Ward, Joy K. [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Nicora, Carrie D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Bingol, Kerem [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2016-09-16

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolite both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.

  16. NMR spectroscopy of selenium and tellurium organic compounds

    International Nuclear Information System (INIS)

    Kalabin, G.A.; Projdakov, A.G.; Radchenko, S.I.

    1980-01-01

    13 C NMR spectra of the substituted methylthio (seleno, telluro) acetylenes, CH 3 EC 1 identity sign C 2 R, E=S, Se, Te are measured. High sensitivity of the chemical shifts of ternary bond carbons to specific effects of heteroatoms is established. The substituent nature produces considerable effect on the sensitivity of C 1 -carbon atom to these effects. Chemical shifts of the substituent carbons do not depend on heteroatoms nature

  17. 12. Nuclear magnetic resonance users meeting; 3. Iberoamerican NMR meeting. Extended abstracts book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The NMR Users Meeting is held every year in Brazil and its twelfth edition took place from May 4 - 8, 2009 together with the third Iberoamerican NMR Meeting. The extended abstracts book comprise: five plenary lectures, six major conferences, three mini-conferences and summaries of results from one hundred and two research works. Among these research results which have been discussed, ninety three were presented as congress panels/posters and nine as oral communications. The major topics of the scientific and technological research works are thus distributed: 65% in chemical sciences (mainly structural elucidation and stereochemistry of organic compounds and dynamical studies of chemical reactions), 16% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 11% in materials science (including petroleum and alternative fuels), and 8% regarding theoretical aspects related to nuclear magnetic resonance or improvements in NMR instrumental techniques.

  18. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Richard [Huazhong University of Science and Technology, School of Software Engineering (China); Wang, Yan [Huazhong University of Science and Technology, School of Life Science and Technology (China); Xue, Zhidong, E-mail: zdxue@hust.edu.cn [Huazhong University of Science and Technology, School of Software Engineering (China); Zhang, Yang, E-mail: zhng@umich.edu [University of Michigan, Department of Computational Medicine and Bioinformatics (United States)

    2015-08-15

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  19. Ischemic stroke progress evaluation by 31P NMR-based metabonomic of human serum

    International Nuclear Information System (INIS)

    Grandizoli, Caroline W.P.S.; Barison, Andersson; Lange, Marcos C.; Novak, Felipe T. M.; Campos, Francinete R.

    2014-01-01

    In this work, chemometric analyses over 31 P{ 1H } NMR (nuclear magnetic resonance) spectra of human blood serum permitted to discriminated ischemic stroke patients from health individuals due to changes in the chemical composition of phosphorus-containing compounds. These results indicate that 31 P NMR-based metabonomic allowed insights over the mechanism triggered by ischemic stroke. (author)

  20. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    Science.gov (United States)

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  1. On Neglecting Chemical Exchange When Correcting in Vivo 31P MRS Data for Partial Saturation: Commentary on: ``Pitfalls in the Measurement of Metabolite Concentrations Using the One-Pulse Experiment in in Vivo NMR''

    Science.gov (United States)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-04-01

    This article replies to Spencer et al. (J. Magn. Reson.149, 251-257, 2001) concerning the degree to which chemical exchange affects partial saturation corrections using saturation factors. Considering the important case of in vivo31P NMR, we employ differential analysis to demonstrate a broad range of experimental conditions over which chemical exchange minimally affects saturation factors, and near-optimum signal-to-noise ratio is preserved. The analysis contradicts Spencer et al.'s broad claim that chemical exchange results in a strong dependence of saturation factors upon M0's and T1 and exchange parameters. For Spencer et al.'s example of a dynamic 31P NMR experiment in which phosphocreatine varies 20-fold, we show that our strategy of measuring saturation factors at the start and end of the study reduces errors in saturation corrections to 2% for the high-energy phosphates.

  2. NMR, MP2 and DFT Study of Thiophenoxyketenimines (o-ThioSchiff bases)

    DEFF Research Database (Denmark)

    Saeed, Bahjat Ali; Elias, Rita Sabah; Kamounah, Fadhil S.

    2018-01-01

    Five new thiophenoxyketinimines have been synthesized. 1 H and 13 C NMR spectra as well as deuterium isotope effects on 13 C chemical shifts are determined, and spectra are assigned. DFT and MP2 calculations of both structures, chemical shifts, and isotope effects on chemical shifts are done...... that calculations at the MP2 level are best to obtain correct "C═S" chemical shifts....

  3. De novo protein structure determination using sparse NMR data

    International Nuclear Information System (INIS)

    Bowers, Peter M.; Strauss, Charlie E.M.; Baker, David

    2000-01-01

    We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and satisfaction of NOE constraints. Models generated using this procedure with ∼1 NOE constraint per residue are in some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds promise for increasing the speed with which protein solution structures can be determined

  4. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    Science.gov (United States)

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  5. Seed prepare for oil content determination by NMR method in six cotton varieties

    International Nuclear Information System (INIS)

    Gondim-Tomaz, Rose Marry Araujo; Erismann, Norma de Magalhaes; Sabino, Nelson Paulieri; Kondo, Julio Isao; Cia, Edivaldo; Azzini, Anisio; Soave, Daise

    1998-01-01

    Three comparative methods (chemical seed-delinting with sulphuric acid solution, flaming and seed with linter) to prepare cotton seeds for oil determination by the Nuclear Magnetic Resonance (NMR) technique were considered. The chemical treatment with sulphuric acid was the best as long the linter interference was eliminated. The seed oil contents were determined by the NMR method in six cotton varieties from the national variety test. The IAPAR (Instituto Agronomico do Parana) 71 PR3 and IAC (Instituto Agronomico de Campinas) 20 varieties presented the highest oil content followed by the CNPA 7H, CS 50, IAC 22 and CNPA Precoce 2. (author)

  6. High resolution NMR in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Anix [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela). Dept. de Analisis y Evalucion

    1992-12-31

    In this work {sup 29} Si and {sup 27} Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author) 7 refs., 7 figs., 2 tabs.

  7. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR Methodology

    Directory of Open Access Journals (Sweden)

    Run-Cang Sun

    2013-01-01

    Full Text Available The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA, nitrobenzene oxidation (NBO, and derivatization followed by reductive cleavage (DFRC. Recent advances in nuclear magnetic resonance (NMR technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ, as well as their applications are reviewed.

  8. Optimization and automation of quantitative NMR data extraction.

    Science.gov (United States)

    Bernstein, Michael A; Sýkora, Stan; Peng, Chen; Barba, Agustín; Cobas, Carlos

    2013-06-18

    NMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods. The algorithm is based on the complete deconvolution of the spectrum which makes it tolerant of cases where signals are very close to one another and includes robust methods for the automatic classification of NMR resonances and molecule-to-spectrum multiplets assignments. With the functionality in place and optimized, it is then a relatively simple matter to apply the same workflow to data in a fully automatic way. The procedure is desirable for both its inherent performance and applicability to NMR data acquired for very large sample sets.

  9. Quantitative Analysis of Chemically Modified Starches by 1H-NMR Spectroscopy

    NARCIS (Netherlands)

    Graaf, R.A. de; Lammers, G.; Janssen, L.P.B.M.; Beenackers, A.A.C.M.

    1995-01-01

    A quantitative 1H-NMR method for the determination of the Molar Substitution (MS) of acetylated and hydroxypropylated starches was developed and tested for MS ranging from 0.09 to 0.5. Results were checked using the Johnson method and a titration method for hydroxypropylated and acetylated starch,

  10. Quantitative analysis of chemically modified starches by H-1-NMR spectroscopy

    NARCIS (Netherlands)

    de Graaf, R.A.; Lammers, G; Janssen, L.P.B.M.; Beenackers, A.A C M

    1995-01-01

    A quantitative H-1-NMR method for the determination of the Molar Substitution (MS) of acetylated and hydroxypropylated starches was developed and tested for MS ranging from 0.09 to 0.5. Results were checked using the Johnson method and a titration method for hydroxypropylated and acetylated starch,

  11. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    Science.gov (United States)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  12. Fourier transform zero field NMR and NQR

    International Nuclear Information System (INIS)

    Zax, D.B.

    1985-01-01

    In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI

  13. Sulfated oligosaccharide structures, as determined by NMR techniques

    International Nuclear Information System (INIS)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Cerezo, A.S.

    1997-01-01

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a λ-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author)

  14. 35Cl/37Cl isotope effects in 103Rh NMR of [RhCln(H2O)6−n]3−n complex anions in hydrochloric acid solution as a unique ‘NMR finger-print’ for unambiguous speciation

    International Nuclear Information System (INIS)

    Geswindt, Theodor E.; Gerber, Wilhelmus J.; Brand, D. Jacobus; Koch, Klaus R.

    2012-01-01

    Graphical abstract: 35 Cl/ 37 Cl isotope effects in 103 Rh NMR as a unique ‘NMR-fingerprints’ leading to the unambiguous assignment of [RhCl n (H 2 O) 6−n ] 3−n (n = 3–6) complexes without reliance on accurate δ( 103 Rh) chemical shifts. Highlights: ► Direct 103 Rh NMR (19.11 MHz) spectroscopic method of speciation of [RhCl n (H 2 O) 6−n ] 3−n in HCl. ► 35 Cl/ 37 Cl isotope effects in 103 Rh NMR of [RhCl n (H 2 O) 6−n ] 3−n anions isotopologue and isotopomer induced 103 Rh NMR ‘finger-print’ for unambiguous identification. ► 103 Rh NMR identification of stereoisomers without a need for accurate chemical shifts. - Abstract: A detailed analysis of the 35 Cl/ 37 Cl isotope effects observed in the 19.11 MHz 103 Rh NMR resonances of [RhCl n (H 2 O) 6−n ] 3−n complexes (n = 3–6) in acidic solution at 292.1 K, shows that the ‘fine structure’ of each 103 Rh resonance can be understood in terms of the unique isotopologue and in certain instances the isotopomer distribution in each complex. These 35 Cl/ 37 Cl isotope effects in the 103 Rh NMR resonance of the [Rh 35/37 Cl 6 ] 3− species manifest only as a result of the statistically expected 35 Cl/ 37 Cl isotopologues, whereas for the aquated species such as for example [Rh 35/37 Cl 5 (H 2 O)] 2− , cis-[Rh 35/37 Cl 4 (H 2 O) 2 ] − as well as the mer-[Rh 35/37 Cl 3 (H 2 O) 3 ] complexes, additional fine-structure due to the various possible isotopomers within each class of isotopologues, is visible. Of interest is the possibility of the direct identification of stereoisomers cis-[RhCl 4 (H 2 O) 2 ] − , trans-[RhCl 4 (H 2 O) 2 ] − , fac-[RhCl 3 (H 2 O) 3 ] and mer-[RhCl 3 (H 2 O) 3 ] based on the 103 Rh NMR line shape, other than on the basis of their very similar δ( 103 Rh) chemical shift. The 103 Rh NMR resonance structure thus serves as a novel and unique ‘NMR-fingerprint’ leading to the unambiguous assignment of [RhCl n (H 2 O) 6−n ] 3−n complexes (n = 3–6

  15. Benchtop-NMR and MRI--a new analytical tool in drug delivery research.

    Science.gov (United States)

    Metz, Hendrik; Mäder, Karsten

    2008-12-08

    During the last years, NMR spectroscopy and NMR imaging (magnetic resonance imaging, MRI) have been increasingly used to monitor drug delivery systems in vitro and in vivo. However, high installation and running costs of the commonly used superconducting magnet technology limits the application range and prevents the further spread of this non-invasive technology. Benchtop-NMR (BT-NMR) relaxometry uses permanent magnets and is much less cost intensive. BT-NMR relaxometry is commonly used in the food and chemical industry, but so far scarcely used in the pharmaceutical field. The paper shows on several examples that the application field of BT-NMR relaxometry can be extended into the field of drug delivery, including the characterisation of emulsions and lipid ingredients (e.g. the amount and physicochemical state of the lipid) and the monitoring of adsorption characteristics (e.g. oil binding of porous ingredients). The most exciting possibilities of BT-NMR technology are linked with the new development of BT-instruments with imaging capability. BT-MRI examples on the monitoring of hydration and swelling of HPMC-based monolayer and double-layer tablets are shown. BT-MRI opens new MRI opportunities for the non-invasive monitoring of drug delivery processes.

  16. Analysis of organophosphorus pesticides using FT-NMR

    International Nuclear Information System (INIS)

    Miyata, Yoshihiko; Takahashi, Yoshikazu; Ando, Hiroaki

    1988-01-01

    A rapid and highly selective method of the identification of 23 kinds of organophosphorus pesticides was develop by using 31 P FT-NMR with 1 H complete decoupling method. Chemical shifts referenced by 85 % H 3 PO 4 were within -4 to 100 ppm, and there was no overlapping among the organophosphorus pesticides used in this experiment. (author)

  17. Quantitative produced water analysis using mobile 1H NMR

    International Nuclear Information System (INIS)

    Wagner, Lisabeth; Fridjonsson, Einar O; May, Eric F; Stanwix, Paul L; Graham, Brendan F; Carroll, Matthew R J; Johns, Michael L; Kalli, Chris

    2016-01-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1 H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1 H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1 H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1–30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography. (paper)

  18. Characterization of natural bentonite by NMR; Caracterizacao de bentonitas naturais por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Sidnei Q.M.; Dieguez, Lidia C [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1994-12-31

    Solid state NMR as well as several other instrumental chemical analysis techniques were used in order to characterize two natural occurring bentonite. The methodology is described. The NMR spectra, together with the other used techniques suggest that the observed differences are due to iron inclusions in tetrahedral and octahedral sites 5 refs., 3 figs., 5 tabs.

  19. Cool-Climate Red Wines—Chemical Composition and Comparison of Two Protocols for 1H–NMR Analysis

    Directory of Open Access Journals (Sweden)

    Violetta Aru

    2018-01-01

    Full Text Available This study investigates the metabolome of 26 experimental cool-climate wines made from 22 grape varieties using two different protocols for wine analysis by proton nuclear magnetic resonance (1H–NMR spectroscopy. The wine samples were analyzed as-is (wet and as dried samples. The NMR datasets were preprocessed by alignment and mean centering. No normalization or scaling was performed. The “wet” method preserved the inherent properties of the samples and provided a fast and effective overview of the molecular composition of the wines. The “dried” method yielded a slightly better sensitivity towards a broader range of the compounds present in wines. A total of 27 metabolites including amino acids, organic acids, sugars, and alkaloids were identified in the 1H–NMR spectra of the wine samples. Principal component analysis was performed on both NMR datasets evidencing well-defined molecular fingerprints for ‘Baco Noir’, ‘Bolero’, ‘Cabernet Cantor’, ‘Cabernet Cortis’, ‘Don Muscat’, ‘Eszter’, ‘Golubok’, ‘New York Muscat’, ‘Regent’, ‘Rondo’, ‘Triomphe d’Alsace’, ‘Précose Noir’, and ‘Vinoslivy’ wines. Amongst the identified metabolites, lactic acid, succinic acid, acetic acid, gallic acid, glycerol, and methanol were found to drive sample groupings. The 1H–NMR data was compared to the absolute concentration values obtained from a reference Fourier transform infrared method, evidencing a high correlation.

  20. Computer software for linear and nonlinear regression in organic NMR

    International Nuclear Information System (INIS)

    Canto, Eduardo Leite do; Rittner, Roberto

    1991-01-01

    Calculation involving two variable linear regressions, require specific procedures generally not familiar to chemist. For attending the necessity of fast and efficient handling of NMR data, a self explained and Pc portable software has been developed, which allows user to produce and use diskette recorded tables, containing chemical shift or any other substituent physical-chemical measurements and constants (σ T , σ o R , E s , ...)

  1. Structure determination of helical filaments by solid-state NMR spectroscopy

    Science.gov (United States)

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  2. Ischemic stroke progress evaluation by {sup 31}P NMR-based metabonomic of human serum

    Energy Technology Data Exchange (ETDEWEB)

    Grandizoli, Caroline W.P.S.; Barison, Andersson, E-mail: andernmr@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Quimica. Centro de RMN; Lange, Marcos C.; Novak, Felipe T. M. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Hospital de Clínicas. Divisao de Neurologia; Campos, Francinete R. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departmento de Farmacia

    2014-07-01

    In this work, chemometric analyses over {sup 31}P{"1"H} NMR (nuclear magnetic resonance) spectra of human blood serum permitted to discriminated ischemic stroke patients from health individuals due to changes in the chemical composition of phosphorus-containing compounds. These results indicate that {sup 31}P NMR-based metabonomic allowed insights over the mechanism triggered by ischemic stroke. (author)

  3. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    Science.gov (United States)

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    H NMR, 13C NMR, FAB mass and chemical analysis. All final compounds were screened for their antimicrobial activity against some selected bacteria and fungi and antituberculosis study against M. tuberculosis, gave acceptable activity.

  5. Determination of the intracellular pH of intact erythrocytes by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Isab, A.A.

    1982-01-01

    A method is described for determining the intracellular pH of intact erythrocytes by 1 H NMR. The determination is based on the pH dependence of the chemical shifts of resonances for carbon-bounded protons of an indicator molecule (imidazole) in intact cells. The imidazole is introduced into the erythrocytes by incubation in an isotonic saline solution of the indicator. The pH dependence of the chemical shifts of the imidazole resonances is calibrated from 1 H NMR spectra of the imidazole-containing red cell lysates whose pH is varied by the addition of acid or base and measured directly with a pH electrode. To reduce in intensity or eliminate the much more intense envelope of resonances from the hemoglobin, the 1 H NMR measurements are made by either the spin-echo Fourier transform technique or by the transfer-or-saturation by cross-relaxation method

  6. Synthesis of poly(D,L-lactide-co-glycolide) copolymers and its chemical characterization by NMR and FTIR

    International Nuclear Information System (INIS)

    Erbetta, Cynthia D.C.; Viegas, Carla C.B.; Freitas, Roberto F.S.; Sousa, Ricardo G.

    2011-01-01

    Poly(D,L-lactide-co-glycolide) copolymer is of great interest for medical applications. This interest is justified by the fact that it is bioreabsorbable, biocompatible and non-toxic, while its degradation kinetics can be modified by the copolymerization ratio of the monomers. In this study, copolymers were synthesized at 175 deg C by opening the rings of the cyclic dimers of the D,L-lactide and glycolide monomers in the presence of stannous octoate initiator and lauryl alcohol co-initiator. The efficient application of a vacuum to the reaction medium, coupled with adequate stirring, is fundamental for the success of the synthesis. The following analysis techniques were used to characterize the synthesized copolymers: Nuclear Magnetic Resonance Spectroscopy (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). The chemical composition and the ratio of the monomers in the synthesized copolymer were determined. (author)

  7. Multinuclear NMR of CaSiO(3) glass: simulation from first-principles.

    Science.gov (United States)

    Pedone, Alfonso; Charpentier, Thibault; Menziani, Maria Cristina

    2010-06-21

    An integrated computational method which couples classical molecular dynamics simulations with density functional theory calculations is used to simulate the solid-state NMR spectra of amorphous CaSiO(3). Two CaSiO(3) glass models are obtained by shell-model molecular dynamics simulations, successively relaxed at the GGA-PBE level of theory. The calculation of the NMR parameters (chemical shielding and quadrupolar parameters), which are then used to simulate solid-state 1D and 2D-NMR spectra of silicon-29, oxygen-17 and calcium-43, is achieved by the gauge including projector augmented-wave (GIPAW) and the projector augmented-wave (PAW) methods. It is shown that the limitations due to the finite size of the MD models can be overcome using a Kernel Estimation Density (KDE) approach to simulate the spectra since it better accounts for the disorder effects on the NMR parameter distribution. KDE allows reconstructing a smoothed NMR parameter distribution from the MD/GIPAW data. Simulated NMR spectra calculated with the present approach are found to be in excellent agreement with the experimental data. This further validates the CaSiO(3) structural model obtained by MD simulations allowing the inference of relationships between structural data and NMR response. The methods used to simulate 1D and 2D-NMR spectra from MD GIPAW data have been integrated in a package (called fpNMR) freely available on request.

  8. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  9. Solution NMR study of the yeast cytochrome c peroxidase: cytochrome c interaction

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Alexander N., E-mail: ovolkov@vub.ac.be; Nuland, Nico A. J. van [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2013-07-15

    Here we present a solution NMR study of the complex between yeast cytochrome c (Cc) and cytochrome c peroxidase (CcP), a paradigm for understanding the biological electron transfer. Performed for the first time, the CcP-observed heteronuclear NMR experiments were used to probe the Cc binding in solution. Combining the Cc- and CcP-detected experiments, the binding interface on both proteins was mapped out, confirming that the X-ray structure of the complex is maintained in solution. Using NMR titrations and chemical shift perturbation analysis, we show that the interaction is independent of the CcP spin-state and is only weakly affected by the Cc redox state. Based on these findings, we argue that the complex of the ferrous Cc and the cyanide-bound CcP is a good mimic of the catalytically-active Cc-CcP compound I species. Finally, no chemical shift perturbations due to the Cc binding at the low-affinity CcP site were observed at low ionic strength. We discuss possible reasons for the absence of the effects and outline future research directions.

  10. 8. Nuclear magnetic resonance users meeting; 1. Luso-Brazilian NMR meeting. Abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The NMR Users Meeting is held every year in Brazil and its eighth edition took place from May 7 - 11, 2001 together with the first Luso-Brazilian Meeting on Nuclear Magnetic Resonance. The extended abstracts book comprise: ten major conferences, four plenary lectures delivered by enterprise representatives (three from USA and one from Germany), six talks about the state-of-the-art of NMR methods (especially bi and tri-dimensional new techniques) and summaries of results from one hundred and twenty four research works. Among these research results which have been discussed, one hundred and sixteen were presented as congress panels/posters and eight as oral communications. The major topics of the scientific and technological research works are thus distributed: 63% in chemical sciences (mainly structural elucidation and stereochemistry of organic compounds and dynamical studies of chemical reactions), 19% in materials science (including petroleum), 8% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 8% about theoretical aspects related to nuclear magnetic resonance and 2% regarding improvements in NMR instrumental techniques

  11. Characterization of nylon 6/poly(propylene oxide) polymeric mixture by combined NMR techniques

    International Nuclear Information System (INIS)

    Costa, Dilma Alves; Oliveira, Clara Marize F.; Tavares, Maria Ines B.

    1995-01-01

    Polymeric mixtures aim to improve physical or chemical properties of materials. This mixtures can be compatible or not. The compatibility between polymers determine changes of properties. This work has presented a detailed study where nylon 6 and poly(propylene oxide) mixture was analysed by 13 C NMR in the solid state, and NMR spectra were shown and explained. The molecular mobility as well as the compatibility have been observed and discussed

  12. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.

    Science.gov (United States)

    Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo

    2012-11-25

    The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.

  13. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    Science.gov (United States)

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  14. Automated NMR relaxation dispersion data analysis using NESSY

    Directory of Open Access Journals (Sweden)

    Gooley Paul R

    2011-10-01

    Full Text Available Abstract Background Proteins are dynamic molecules with motions ranging from picoseconds to longer than seconds. Many protein functions, however, appear to occur on the micro to millisecond timescale and therefore there has been intense research of the importance of these motions in catalysis and molecular interactions. Nuclear Magnetic Resonance (NMR relaxation dispersion experiments are used to measure motion of discrete nuclei within the micro to millisecond timescale. Information about conformational/chemical exchange, populations of exchanging states and chemical shift differences are extracted from these experiments. To ensure these parameters are correctly extracted, accurate and careful analysis of these experiments is necessary. Results The software introduced in this article is designed for the automatic analysis of relaxation dispersion data and the extraction of the parameters mentioned above. It is written in Python for multi platform use and highest performance. Experimental data can be fitted to different models using the Levenberg-Marquardt minimization algorithm and different statistical tests can be used to select the best model. To demonstrate the functionality of this program, synthetic data as well as NMR data were analyzed. Analysis of these data including the generation of plots and color coded structures can be performed with minimal user intervention and using standard procedures that are included in the program. Conclusions NESSY is easy to use open source software to analyze NMR relaxation data. The robustness and standard procedures are demonstrated in this article.

  15. NMR methods for the investigation of structure and transport

    CERN Document Server

    Hardy, Edme H

    2011-01-01

    Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating

  16. The application of NMR-based milk metabolite analysis in milk authenticity identification.

    Science.gov (United States)

    Li, Qiangqiang; Yu, Zunbo; Zhu, Dan; Meng, Xianghe; Pang, Xiumei; Liu, Yue; Frew, Russell; Chen, He; Chen, Gang

    2017-07-01

    Milk is an important food component in the human diet and is a target for fraud, including many unsafe practices. For example, the unscrupulous adulteration of soymilk into bovine and goat milk or of bovine milk into goat milk in order to gain profit without declaration is a health risk, as the adulterant source and sanitary history are unknown. A robust and fit-for-purpose technique is required to enforce market surveillance and hence protect consumer health. Nuclear magnetic resonance (NMR) is a powerful technique for characterization of food products based on measuring the profile of metabolites. In this study, 1D NMR in conjunction with multivariate chemometrics as well as 2D NMR was applied to differentiate milk types and to identify milk adulteration. Ten metabolites were found which differed among milk types, hence providing characteristic markers for identifying the milk. These metabolites were used to establish mathematical models for milk type differentiation. The limit of quantification (LOQ) of adulteration was 2% (v/v) for soymilk in bovine milk, 2% (v/v) for soymilk in goat milk and 5% (v/v) for bovine milk in goat milk, with relative standard deviation (RSD) less than 10%, which can meet the needs of daily inspection. The NMR method described here is effective for milk authenticity identification, and the study demonstrates that the NMR-based milk metabolite analysis approach provides a means of detecting adulteration at expected levels and can be used for dairy quality monitoring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Chemical behavior of methylpyranomalvidin-3-O-glucoside in aqueous solution studied by NMR and UV-visible spectroscopy.

    Science.gov (United States)

    Oliveira, Joana; Petrov, Vesselin; Parola, A Jorge; Pina, Fernando; Azevedo, Joana; Teixeira, Natércia; Brás, Natércia F; Fernandes, Pedro A; Mateus, Nuno; Ramos, Maria João; de Freitas, Victor

    2011-02-17

    In the present work, the proton-transfer reactions of the methylpyranomalvidin-3-O-glucoside pigment in water with different pH values was studied by NMR and UV-visible spectroscopies. The results showed four equilibrium forms: the methylpyranomalvidin-3-O-glucoside cation, the neutral quinoidal base, the respective anionic quinoidal base, and a dianionic base unprotonated at the methyl group. According to the NMR data, it seems that for methylpyranomalvidin-3-O-glucoside besides the acid-base equilibrium between the pyranoflavylium cation and the neutral quinoidal base, a new species is formed at pD 4.88-6.10. This is corroborated by the appearance of a new set of signals in the NMR spectrum that may be assigned to the formation of hemiketal/cis-chalcone species to a small extent. The two ionization constants (pK(a1) and pK(a2)) obtained by both methods (NMR and UV-visible) for methylpyranomalvidin-3-O-glucoside are in agreement (pK(a1) = 5.17 ± 0.03; pK(a2) = 8.85 ± 0.08; and pK(a1) = 4.57 ± 0.07; pK(a2) = 8.23 ± 0.04 obtained by NMR and UV-visible spectroscopies, respectively). Moreover, the fully dianionic unprotonated form (at the methyl group) of the methylpyranomalvidin-3-O-glucoside is converted slowly into a new structure that displays a yellow color at basic pH. On the basis of the results obtained through LC-MS and NMR, the proposed structure was found to correspond to the flavonol syringetin-3-glucoside.

  18. Using an Interactive Web-Based Learning NMR Spectroscopy as a Means to Improve Problem Solving Skills for Undergraduates

    International Nuclear Information System (INIS)

    Supasorn, Saksri; Vibuljun, Sunantha; Panijpan, Bhinyo; Rajviroongit, Shuleewan

    2005-10-01

    An Interactive Web-Based Learning NMR Spectroscopy course is developed to improve and facilitate student ' s learning as well as achievement of learning objectives in the concepts of multiplicity, chemical shift, and problem solving. This web-based learning course is emphasized on NMR problem solving, therefore, the concepts of multiplicity and chemical shift, basic concepts for practice problem solving, are also emphasized. Most of animations and pictures in this web-based learning are new created and simplified to explain processes and principles in NMR spectroscopy. With meaningful animations and pictures, simplified English language used, step-by-step problem solving, and interactive test, it can be self-learning web site and best on the student ' s convenience

  19. Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D

    Directory of Open Access Journals (Sweden)

    Jean Claude W. Ouédraogo

    2010-01-01

    Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.

  20. Reaction monitoring using hyperpolarized NMR with scaling of heteronuclear couplings by optimal tracking

    Science.gov (United States)

    Zhang, Guannan; Schilling, Franz; Glaser, Steffen J.; Hilty, Christian

    2016-11-01

    Off-resonance decoupling using the method of Scaling of Heteronuclear Couplings by Optimal Tracking (SHOT) enables determination of heteronuclear correlations of chemical shifts in single scan NMR spectra. Through modulation of J-coupling evolution by shaped radio frequency pulses, off resonance decoupling using SHOT pulses causes a user-defined dependence of the observed J-splitting, such as the splitting of 13C peaks, on the chemical shift offset of coupled nuclei, such as 1H. Because a decoupling experiment requires only a single scan, this method is suitable for characterizing on-going chemical reactions using hyperpolarization by dissolution dynamic nuclear polarization (D-DNP). We demonstrate the calculation of [13C, 1H] chemical shift correlations of the carbanionic active sites from hyperpolarized styrene polymerized using sodium naphthalene as an initiator. While off resonance decoupling by SHOT pulses does not enhance the resolution in the same way as a 2D NMR spectrum would, the ability to obtain the correlations in single scans makes this method ideal for determination of chemical shifts in on-going reactions on the second time scale. In addition, we present a novel SHOT pulse that allows to scale J-splittings 50% larger than the respective J-coupling constant. This feature can be used to enhance the resolution of the indirectly detected chemical shift and reduce peak overlap, as demonstrated in a model reaction between p-anisaldehyde and isobutylamine. For both pulses, the accuracy is evaluated under changing signal-to-noise ratios (SNR) of the peaks from reactants and reaction products, with an overall standard deviation of chemical shift differences compared to reference spectra of 0.02 ppm when measured on a 400 MHz NMR spectrometer. Notably, the appearance of decoupling side-bands, which scale with peak intensity, appears to be of secondary importance.

  1. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism

    International Nuclear Information System (INIS)

    Meyer, R.A.; Kushmerick, M.J.; Brown, T.R.

    1982-01-01

    This review presents the principles and limitations of phosphorus nuclear magnetic resonance ( 31 P-NMR) spectroscopy as applied to the study of striated muscle metabolism. Application of the techniques discussed include noninvasive measurement of high-energy phosphate, intracellular pH, intracellular free Mg 2+ , and metabolite compartmentation. In perfused cat biceps (fast-twitch) muscles, but not in soleus (slow-twitch), NMR spectra indicate a substantially lower (1 mM) free inorganic phosphate level than when measured chemically (6 mM). In addition, saturation and inversion spin-transfer methods that enable direct measurement of the unidirectional fluxes through creatine kinase are described. In perfused cat biceps muscle, results suggest that this enzyme and its substrates are in simple chemical equilibrium

  2. 14N NMR of amminecobalt(III) compounds

    DEFF Research Database (Denmark)

    Kofod, Pauli

    2003-01-01

    Directly detected ammine 14N NMR chemical shifts of 20 amminecobalt(III) compounds are reported. The coordination shifts, δCS = δcoord − δfree, are in all cases negative and range from −4.4 ppm for the trans ammine ligand in [Co(NH3)5(CH3)]2+ to −73.6 ppm for the trans ammine ligand in [Co(NH3)5(F...

  3. 31P-NMR differentiation between intracellular phosphate pools in Cosmarium (chlorophyta)

    International Nuclear Information System (INIS)

    Elgavish, A.; Elgavish, G.A.

    1980-01-01

    31 P nuclear magnetic resonance (NMR) spectroscopy of intact Cosmarium sp. cells is presented as a suitable tool for the differentiation of intracellular accumulation pools of polyphosphates. The cold trichloroacetic acid (TCA) insoluble fraction is shown to contain most of the total cellular phosphate in the phosphate rich Cosmarium cells. Moreover, evidence from a 31 P-NMR study and electron microscopic observations of cold TCA treated Cosmarium cells indicate that this fraction consists mostly of polyphosphates which seem to retain the native morphological structure observed in the untreated cells. The determination of orthophosphate in the hot water extract of Cosmarium cells did not measure the polyphosphate pools. Determination of total phosphorus content in the hot water extract rendered a value three times higher than the frequently used orthophosphate determination procedure. However, as revealed by the 31 P-NMR spectra and the chemical analyses of the extract and of the treated cells, even total phosphorus in the extract measured only 30% of the total cellular phosphorus. 31 P-NMR enabled the unequivocal chemical identification of the major phosphate compounds in the hot water extract (Surplus P) as orthophosphate and polyphosphates of about 10 phosphate units chainlength. More than 70% of the accumulation pool of polyphosphates was still in the cells after extraction. However, the electron microscopy study revealed that the native granular structure of polyphosphates had been destroyed by the hot water extraction procedure

  4. Process of Fragment-Based Lead Discovery—A Perspective from NMR

    Directory of Open Access Journals (Sweden)

    Rongsheng Ma

    2016-07-01

    Full Text Available Fragment-based lead discovery (FBLD has proven fruitful during the past two decades for a variety of targets, even challenging protein–protein interaction (PPI systems. Nuclear magnetic resonance (NMR spectroscopy plays a vital role, from initial fragment-based screening to lead generation, because of its power to probe the intrinsically weak interactions between targets and low-molecular-weight fragments. Here, we review the NMR FBLD process from initial library construction to lead generation. We describe technical aspects regarding fragment library design, ligand- and protein-observed screening, and protein–ligand structure model generation. For weak binders, the initial hit-to-lead evolution can be guided by structural information retrieved from NMR spectroscopy, including chemical shift perturbation, transferred pseudocontact shifts, and paramagnetic relaxation enhancement. This perspective examines structure-guided optimization from weak fragment screening hits to potent leads for challenging PPI targets.

  5. Sequestration of a fluorinated analog of 2,4-dichlorophenol and metabolic products by L. minor as evidenced by 19F NMR

    International Nuclear Information System (INIS)

    Tront, Jacqueline M.; Saunders, F. Michael

    2007-01-01

    Fate of halogenated phenols in plants was investigated using nuclear magnetic resonance (NMR) to identify and quantify contaminants and their metabolites. Metabolites of 4-chloro-2-fluorophenol (4-Cl-2-FP), as well as the parent compound, were detected in acetonitrile extracts using 19 F NMR after various exposure periods. Several fluorinated metabolites with chemical shifts ∼3.5 ppm from the parent compound were present in plant extracts. Metabolites isolated in extracts were tentatively identified as fluorinated-chlorophenol conjugates through examination of signal-splitting patterns and relative chemical shifts. Signal intensity was used to quantify contaminant and metabolite accumulation within plant tissues. The quantity of 4-Cl-2-F metabolites increased with time and mass balance closures of 90-110% were achieved. In addition, solid phase 19 F NMR was used to identify 4-Cl-2-FP which was chemically bound to plant material. This work used 19 F NMR for developing a time series description of contaminant accumulation and transformation in aquatic plant systems. - The aquatic plant L. minor accumulates, sequesters and binds 4-chloro-2-fluorophenol and its metabolites, as was demonstrated using 19 F-NMR

  6. Probing Spin Crossover in a Solution by Paramagnetic NMR Spectroscopy.

    Science.gov (United States)

    Pavlov, Alexander A; Denisov, Gleb L; Kiskin, Mikhail A; Nelyubina, Yulia V; Novikov, Valentin V

    2017-12-18

    Spin transitions in spin-crossover compounds are now routinely studied in the solid state by magnetometry; however, only a few methods exist for studies in solution. The currently used Evans method, which relies on NMR spectroscopy to measure the magnetic susceptibility, requires the availability of a very pure sample of the paramagnetic compound and its exact concentration. To overcome these limitations, we propose an alternative NMR-based technique for evaluating spin-state populations by only using the chemical shifts of a spin-crossover compound; those can be routinely obtained for a solution that contains unknown impurities and paramagnetic admixtures or is contaminated otherwise.

  7. Use of NMR as an online sensor in industrial processes; Uso da RMN como um sensor online em processos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Fabiana Diuk de [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica; Colnago, Luiz Alberto, E-mail: colnago@cnpdia.embrapa.br [Embrapa Instrumentacao, Sao Carlos, SP (Brazil)

    2012-07-01

    Nuclear magnetic resonance (NMR) is one of the most versatile analytical techniques for chemical, biochemical and medical applications. Despite this great success, NMR is seldom used as a tool in industrial applications. The first application of NMR in flowing samples was published in 1951. However, only in the last ten years Flow NMR has gained momentum and new and potential applications have been proposed. In this review we present the historical evolution of flow or online NMR spectroscopy and imaging, and current developments for use in the automation of industrial processes. (author)

  8. Chemical tagging of chlorinated phenols for their facile detection and analysis by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valdez, Carlos A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Leif, Roald N. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2015-03-22

    A derivatization method that employs diethyl (bromodifluoromethyl) phosphonate (DBDFP) to efficiently tag the endocrine disruptor pentachlorophenol (PCP) and other chlorinated phenols (CPs) along with their reliable detection and analysis by NMR is presented. The method accomplishes the efficient alkylation of the hydroxyl group in CPs with the difluoromethyl (CF2H) moiety in extremely rapid fashion (5 min), at room temperature and in an environmentally benign manner. The approach proved successful in difluoromethylating a panel of 18 chlorinated phenols, yielding derivatives that displayed unique 1H, 19F NMR spectra allowing for the clear discrimination between isomerically related CPs. Due to its biphasic nature, the derivatization can be applied to both aqueous and organic mixtures where the analysis of CPs is required. Furthermore, the methodology demonstrates that PCP along with other CPs can be selectively derivatized in the presence of other various aliphatic alcohols, underscoring the superiority of the approach over other general derivatization methods that indiscriminately modify all analytes in a given sample. The present work demonstrates the first application of NMR on the qualitative analysis of these highly toxic and environmentally persistent species.

  9. Development of a superconducting bulk magnet for NMR and MRI.

    Science.gov (United States)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)(3) voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. High pressure {sup 31}P NMR spectroscopy on guanine nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Spoerner, Michael; Karl, Matthias; Lopes, Pedro; Hoering, Marcus; Loeffel, Karoline; Nuehs, Andrea; Adelsberger, Joseph; Kremer, Werner; Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@ur.de [University of Regensburg, Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry (Germany)

    2017-01-15

    The {sup 31}P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the {sup 31}P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH{sub 2}p and GTPγS was measured in the absence and presence of Mg{sup 2+}-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B{sub 1} was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg{sup 2+}·GMP and Mg{sup 2+}·GppNHp the second order pressure coefficients are positive. To describe the data of Mg{sup 2+}·GppCH{sub 2}p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg{sup 2+} ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure {sup 31}P NMR data on free Mg{sup 2+}-GDP and Mg{sup 2+}-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.

  11. Low field pulsed NMR- a mass screening tool in agricultural research

    International Nuclear Information System (INIS)

    Tiwari, P.N.

    1994-01-01

    One of the main requirements in agricultural research is to analyse large number of samples for their one or more chemical constituents and physical properties. In plant breeding programmes and germplasm evaluation, it is necessary that the analysis is fast as many samples are to be analysed. Pulsed nuclear magnetic resonance (NMR) is a potential tool for developing rapid and nondestructive method of analysis. Various applications of low resolution pulsed NMR in agricultural research, which are generally used as screening method are briefly described. 25 refs., 2 figs., 2 tabs

  12. 15N NMR studies of layered nitride superconductor LixZrNCl

    International Nuclear Information System (INIS)

    Tou, H.; Oshiro, S.; Kotegawa, H.; Taguchi, Y.; Kishiume, Y.; Kasahara, Y.; Iwasa, Y.

    2010-01-01

    NMR measurements were carried out on pristine ZrNCl and Li x ZrNCl. From the 15 N-Knight shift study, the isotropic Knight shift, the traceless chemical (orbital) shift tensor and the traceless Knight shift tensor were determined as K iso = -71 ppm, (σ 1 , σ 2 , σ 3 ) = (-55, -55, 110) ppm and (K 1 , K 2 , K 3 ) = (48, 48, -96) ppm, respectively. In the superconducting state, the fractional change of the 15 N NMR shift for H-parallel ab was observed, evidencing that the pairing symmetry is a spin-singlet state.

  13. The second round of Critical Assessment of Automated Structure Determination of Proteins by NMR: CASD-NMR-2013

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, Antonio [University of Florence, Department of Chemistry and Magnetic Resonance Center (Italy); Vranken, Wim [Vrije Universiteit Brussel, Structural Biology Brussels (Belgium); Fogh, Rasmus H.; Ragan, Timothy J. [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom); Tejero, Roberto [Universidad de Valencia, Departamento de Química Física (Spain); Pederson, Kari; Lee, Hsiau-Wei; Prestegard, James H. [University of Georgia, Complex Carbohydrate Research Center and Northeast Structural Genomics Consortium (United States); Yee, Adelinda; Wu, Bin; Lemak, Alexander; Houliston, Scott; Arrowsmith, Cheryl H. [University of Toronto, Department of Medical Biophysics, Cancer Genomics and Proteomics, Ontario Cancer Institute, Northeast Structural Genomics Consortium (Canada); Kennedy, Michael [Miami University, Department of Chemistry and Biochemistry, Northeast Structural Genomics Consortium (United States); Acton, Thomas B.; Xiao, Rong; Liu, Gaohua; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.edu [The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Northeast Structural Genomics Consortium, Rutgers (United States); Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom)

    2015-08-15

    The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100 % of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90 % of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged.

  14. The second round of Critical Assessment of Automated Structure Determination of Proteins by NMR: CASD-NMR-2013

    International Nuclear Information System (INIS)

    Rosato, Antonio; Vranken, Wim; Fogh, Rasmus H.; Ragan, Timothy J.; Tejero, Roberto; Pederson, Kari; Lee, Hsiau-Wei; Prestegard, James H.; Yee, Adelinda; Wu, Bin; Lemak, Alexander; Houliston, Scott; Arrowsmith, Cheryl H.; Kennedy, Michael; Acton, Thomas B.; Xiao, Rong; Liu, Gaohua; Montelione, Gaetano T.; Vuister, Geerten W.

    2015-01-01

    The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100 % of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90 % of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged

  15. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  16. NMR-CT scanner

    International Nuclear Information System (INIS)

    Kose, Katsumi; Sato, Kozo; Sugimoto, Hiroshi; Sato, Masataka.

    1983-01-01

    A brief explanation is made on the imaging methods for a practical diagnostic NMR-CT scanner : A whole-body NMR-CT scanner utilizing a resistive magnet has been developed by Toshiba in cooperation with the Institute for Solid State Physics, the University of Tokyo. Typical NMR-CT images of volunteers and patients obtained in the clinical experiments using this device are presented. Detailed specifications are also shown about the practical NMR-CTs which are to be put on the market after obtaining the government approval. (author)

  17. Pulse NMR-spectroscopy of structural changes of chemically modified polypropylene

    International Nuclear Information System (INIS)

    Gafarov, A.M.; Galibeev, S.S.; Kochnev, A.M.; Sukhanov, P.P.; Arkhireev, V.P.

    2004-01-01

    The structure of polypropylene compositions is studied by the method of pulse NMR-spectroscopy. The polypropylene compositions are derived by means of the modification by multicomponent systems. The analysis of relaxation times in a wide temperature range is carried out. Character of changes going on at a level of supermolecular structures is described. It is shown that the amplifications that manifest themselves under the polypropylene modification by the mixtures based on 2,4-tolyilendiisocyanate and e-caprolactam, are related to the change in the intermolecular interaction and formation of a more ordered polymer structure. (authors)

  18. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.

    Science.gov (United States)

    Cmoch, Piotr; Głaszczka, Rafał; Jaźwiński, Jarosław; Kamieński, Bohdan; Senkara, Elżbieta

    2014-03-01

    Complexation of tetrakis(μ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Two-dimensional NMR investigations of the dynamic conformations of phospholipids and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Univ. of California, Berkeley, CA (United States). Applied Science and Technology

    1996-05-01

    Two-dimensional 13C, 1H, and 31P nuclear magnetic resonance (NMR) techniques are developed and used to study molecular structure and dynamics in liquid-crystalline systems, primarily phospholipids and nematic liquid crystals. NMR spectroscopy characterizes molecular conformation in terms of orientations and distances of molecular segments. In anisotropically mobile systems, this is achieved by measuring motionally-averaged nuclear dipolar couplings and chemical shift anisotropies. The short-range couplings yield useful bond order parameters, while the long-range interactions constrain the overall conformation. In this work, techniques for probing proton dipolar local fields are further developed to obtain highlyresolved dipolar couplings between protons and rare spins. By exploiting variable-angle sample spinning techniques, orientation-sensitive NMR spectra are resolved according to sitespecific isotropic chemical shifts. Moreover, the signs and magnitudes of various short-range dipolar couplings are obtained. They are used in novel theoretical analyses that provide information about segmental orientations and their distributions. Such information is obtained in a model-independent fashion or with physically reasonable assumptions. The structural investigation of phospholipids is focused on the dynam

  20. Quantum-Chemical Approach to NMR Chemical Shifts in Paramagnetic Solids Applied to LiFePO4 and LiCoPO4.

    Science.gov (United States)

    Mondal, Arobendo; Kaupp, Martin

    2018-04-05

    A novel protocol to compute and analyze NMR chemical shifts for extended paramagnetic solids, accounting comprehensively for Fermi-contact (FC), pseudocontact (PC), and orbital shifts, is reported and applied to the important lithium ion battery cathode materials LiFePO 4 and LiCoPO 4 . Using an EPR-parameter-based ansatz, the approach combines periodic (hybrid) DFT computation of hyperfine and orbital-shielding tensors with an incremental cluster model for g- and zero-field-splitting (ZFS) D-tensors. The cluster model allows the use of advanced multireference wave function methods (such as CASSCF or NEVPT2). Application of this protocol shows that the 7 Li shifts in the high-voltage cathode material LiCoPO 4 are dominated by spin-orbit-induced PC contributions, in contrast with previous assumptions, fundamentally changing interpretations of the shifts in terms of covalency. PC contributions are smaller for the 7 Li shifts of the related LiFePO 4 , where FC and orbital shifts dominate. The 31 P shifts of both materials finally are almost pure FC shifts. Nevertheless, large ZFS contributions can give rise to non-Curie temperature dependences for both 7 Li and 31 P shifts.

  1. Use of NMR in profiling of cocaine seizures

    DEFF Research Database (Denmark)

    Pagano, Bruno; Lauri, Ilaria; De Tito, Stefano

    2013-01-01

    Cocaine is the most widely used illicit drug, and its origin is always the focus of intense investigation aimed at identifying the trafficking routes. Since NMR represents a unique methodology for performing chemical identification and quantification, here it is proposed a strategy based on (1)H...... adding significant information in the process toward identification of the trafficking routes for this drug....

  2. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    Science.gov (United States)

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  3. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Science.gov (United States)

    Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong

    2017-08-01

    In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  4. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Directory of Open Access Journals (Sweden)

    Zu-Rong Ni

    2017-08-01

    Full Text Available In situ electrochemical nuclear magnetic resonance (EC-NMR has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  5. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  6. Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR

    DEFF Research Database (Denmark)

    Hatzack, F.; Hübel, F.; Zhang, W.

    2001-01-01

    Inositolphosphates from barley low-phytate grain mutants and their parent variety were analysed by metal-dye detection HPLC and NMR. Compound assignment was carried out by comparison of retention times using a chemical hydrolysate of phytate [Ins(1,2,3,4,5,6)P(6)] as a reference; Co-inciding rete......Inositolphosphates from barley low-phytate grain mutants and their parent variety were analysed by metal-dye detection HPLC and NMR. Compound assignment was carried out by comparison of retention times using a chemical hydrolysate of phytate [Ins(1,2,3,4,5,6)P(6)] as a reference; Co...

  7. A novel alkaloid isolated from Crotalaria paulina and identified by NMR and DFT calculations

    Science.gov (United States)

    Oliveira, Ramon Prata; Demuner, Antonio Jacinto; Alvarenga, Elson Santiago; Barbosa, Luiz Claudio Almeida; de Melo Silva, Thiago

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are secondary metabolites found in Crotalaria genus and are known to have several biological activities. A novel macrocycle bislactone alkaloid, coined ethylcrotaline, was isolated and purified from the aerial parts of Crotalaria paulina. The novel macrocycle was identified with the aid of high resolution mass spectrometry and advanced nuclear magnetic resonance techniques. The relative stereochemistry of the alkaloid was defined by comparing the calculated quantum mechanical hydrogen and carbon chemical shifts of eight candidate structures with the experimental NMR data. The best fit between the eight candidate structures and the experimental NMR chemical shifts was defined by the DP4 statistical analyses and the Mean Absolute Error (MAE) calculations.

  8. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  9. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  10. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    Science.gov (United States)

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  11. Mixture analysis by long-range J-resolved 2D NMR

    International Nuclear Information System (INIS)

    Ha, S.T.K.; Lee, R.W.K.; Wilkins, C.L.

    1987-01-01

    In most spectroscopic qualitative analyses chromatographic separations are done before identification. Unfortunately, this general approach has suffered from a number of shortcomings. Off-line chromatographic separation followed by spectroscopic analysis is time consuming and inefficient and on-line analysis suffers from mismatch of the material flow requirements between chromatographic columns and spectroscopic instruments. An alternative mixture identification procedure solely based upon use of edited 13 C NMR spectra and a 13 C NMR chemical shift data base is reported. This approach has been demonstrated in the analyses of several mixtures, including a mixture of amino acids and some isomers. In all cases, identifications of components of these mixtures are successful

  12. NMR and Solvent Effect Study on the Thymine-Adenine-Thymine ...

    African Journals Online (AJOL)

    ... discussed about the plotted graphs of relative energies versus dielectric constants of our considered solvents. Thus, we can drastically conclude that the dielectric permittivity of the solvent is a key factor that determines the chemical behavior of DNA in solution. Keywords: TAT sequence; solvent effect; NMR parameters; ...

  13. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  14. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism.

    Science.gov (United States)

    Wang, Hao; Forse, Alexander C; Griffin, John M; Trease, Nicole M; Trognko, Lorie; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2013-12-18

    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode-electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations.

  15. HiFSA fingerprinting applied to isomers with near-identical NMR spectra: the silybin/isosilybin case.

    Science.gov (United States)

    Napolitano, José G; Lankin, David C; Graf, Tyler N; Friesen, J Brent; Chen, Shao-Nong; McAlpine, James B; Oberlies, Nicholas H; Pauli, Guido F

    2013-04-05

    This study demonstrates how regio- and diastereo-isomers with near-identical NMR spectra can be distinguished and unambiguously assigned using quantum mechanical driven (1)H iterative Full Spin Analysis (HiFSA). The method is illustrated with four natural products, the flavonolignans silybin A, silybin B, isosilybin A, and isosilybin B, which exhibit extremely similar coupling patterns and chemical shift differences well below the commonly reported level of accuracy of 0.01 ppm. The HiFSA approach generated highly reproducible (1)H NMR fingerprints that enable distinction of all four isomers at (1)H frequencies from 300 to 900 MHz. Furthermore, it is demonstrated that the underlying numeric (1)H NMR profiles, combined with iterative computational analysis, allow parallel quantification of all four isomers, even in difficult to characterize reference materials and mixtures. The results shed new light on the historical challenges to the qualitative and quantitative analysis of these therapeutically relevant flavonolignans and open new opportunities to explore hidden diversity in the chemical space of organic molecules.

  16. [Chemical constituents of Aconitum tanguticum].

    Science.gov (United States)

    Luo, Ming; Lin, Limei; Li, Chun; Wang, Zhimin; Guo, Wubao

    2012-05-01

    To study the chemical constituents isolated from the whole plant of Aconitum tanguticum. Chemical constituents were isolated and purified from the title plant by using a combination of various chromatographic techniques including column chromatography over silica gel, Sephadex LH-20, ODS and preparative HPLC. Their structures were elucidated by spectroscopic techniques including 1H-NMR, 13C-NMR, 2D-NMR, and ESI-MS. Seven compounds were isolated from this plant and their structures were identified as kaempferol-3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside]-7-O-alpha-L-rhamnopyrano-side (1), kaempferol-3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside]-7-O-alpha-L-rhamnopyranoside (2), kaempferol 7-O-alpha-L-rhamnopyranoside (3), gentiopieroside (4), vomifoliol-9-O-beta-D-glucopyranoside (5), dihydrovomifoliol-9-O-beta-D-glucopyranoside (6) and 3,4-dihydroxyphenyl alcohol-beta-D-glucopyranoside (7). All the compounds were isolated from this plant for the first time.

  17. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  18. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  19. Peakr: simulating solid-state NMR spectra of proteins

    International Nuclear Information System (INIS)

    Schneider, Robert; Odronitz, Florian; Hammesfahr, Bjorn; Hellkamp, Marcel; Kollmar, Martin

    2013-01-01

    When analyzing solid-state nuclear magnetic resonance (NMR) spectra of proteins, assignment of resonances to nuclei and derivation of restraints for 3D structure calculations are challenging and time-consuming processes. Simulated spectra that have been calculated based on, for example, chemical shift predictions and structural models can be of considerable help. Existing solutions are typically limited in the type of experiment they can consider and difficult to adapt to different settings. Here, we present Peakr, a software to simulate solid-state NMR spectra of proteins. It can generate simulated spectra based on numerous common types of internuclear correlations relevant for assignment and structure elucidation, can compare simulated and experimental spectra and produces lists and visualizations useful for analyzing measured spectra. Compared with other solutions, it is fast, versatile and user friendly. (authors)

  20. Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)

    Science.gov (United States)

    Minch, Michael J.

    1998-02-01

    There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.

  1. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    International Nuclear Information System (INIS)

    Cort, John R.; Cho, Herman M.

    2009-01-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Solid-state 29Si NMR and FTIR analyses of lignin-silica coprecipitates

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Cabrera, Andrés; Larsen, Flemming Hofmann

    2016-01-01

    When agricultural residues are processed to ethanol, lignin and silica are some of the main byproducts. Separation of these two products is difficult and the chemical interactions between lignin and silica are not well described. In the present study, the effect of lignin-silica complexing has been...... investigated by characterizing lignin and silica coprecipitates by FTIR and solid state NMR. Silica particles were coprecipitated with three different lignins, three lignin model compounds, and two silanes representing silica-in-lignin model compounds. Comparison of 29Si SP/MAS NMR spectra revealed differences...

  3. Effects of lipids on enzymatic hydrolysis and physical properties of starch.

    Science.gov (United States)

    Ai, Yongfeng; Hasjim, Jovin; Jane, Jay-lin

    2013-01-30

    This study aimed to understand effects of lipids, including corn oil (CO), soy lecithin (SL), palmitic acid (PA), stearic acid (SA), oleic acid (OA), and linoleic acid (LA), on the enzymatic hydrolysis and physical properties of normal corn (NCS), tapioca (TPS), waxy corn (WCS), and high-amylose corn (HA7) starch, and to elucidate mechanisms of interactions between the starches and lipids. After cooking with the lipids (10%, w/w, dsb), NCS, TPS, and HA7 showed significant decreases in enzymatic hydrolysis, and their DSC thermograms displayed amylose-lipid-complex dissociation peaks except with the CO. (13)C NMR spectra of amylodextrin with CO showed downfield changes in the chemical shifts of carbons 1 and 4 of the anhydroglucose unit, indicating helical complex formation. Generally, free fatty acids (FFAs) reduced, but SL increased the peak viscosities of starches. FFAs and SL decreased, but CO increased the gel strength of NCS. These lipids displayed little impacts on the enzymatic hydrolysis and physical properties of WCS because it lacked amylose. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A new system using NMR technology for measurement of body composition in experimental animals

    International Nuclear Information System (INIS)

    Suzuki, Jun; Nishikibe, Masaru

    2004-01-01

    Measurement of body composition (fat mass) is an important item in pathophysiological and pharmacological studies using small animals (mice) in the fields of obesity and diabetes. The existing methods are, however, difficult, time consuming, and require a shielding facility. Now a novel system using nuclear magnetic resonance (NMR) technique was developed for measurement of body composition in small animals (mice) that provides noninvasive and rapid measurement without anesthetics; we introduced and evaluated this system and tried another application of this system. First, we validated this system using canola oil, soft tissues (adipose and skeletal muscle), and various kinds of rodent chows. Accuracy, precision, and reproducibility of this system were demonstrated to be equal to those in standard chemical methods. A strong positive correlation (y=x) between the results of NMR and chemical methods was found. Secondly, we evaluated accuracy and assay range of the NMR method using live mice that were fasted overnight or fed high fat diet (HFD). In fasted mice, a small but quantitative decrease of fat mass (5.1% from 9.1%) was detected. Total decrease of fat and lean mass (5.0 g) in fasted mice was equivalent to the decrease of body weight (5.0 g). In mice fed the HFD, increase of fat mass with relative decrease of lean mass were qualitatively detected in a time-dependent manner. We would like to emphasize that operation of the system was actually easy and measurements were accomplished in a short time (1 minute). Thirdly, we tried to use the NMR system for determination of hepatic fat contents using mice fasted or treated with a peroxisome proliferator-activated receptor (PPAR)γ agonist; our results showed a quantitative increase in fat by fasting or in decrease in fat by the drug treatment. The changes of fat contents determined by the NMR method were well correlated with the changes in triglyceride and total cholesterol values obtained by the biochemical assays

  5. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set

    NARCIS (Netherlands)

    Paschoal, D.; Fonseca Guerra, C.; de Oliveira, M.A.L.; Ramalho, T.C.; Dos Santos, H.F.

    2016-01-01

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the

  6. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    Science.gov (United States)

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  7. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Emel Maden; Güntert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2015-09-15

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.

  8. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  9. NMR spectrometers as "magnetic tongues": prediction of sensory descriptors in canned tomatoes

    DEFF Research Database (Denmark)

    Malmendal, Anders; Amoresano, Claudia; Trotta, Roberta

    2011-01-01

    The perception of odor and flavor of food is a complicated physiological and psychological process that cannot be explained by simple models. Quantitative descriptive analysis is a technique used to describe sensory features. Nevertheless, the availability of a number of instrumental techniques has...... opened up the possibility to calibrate the sensory perception. In this frame, we have tested the potentiality of nuclear magnetic resonance spectroscopy as a predictive tool to measure sensory descriptors. In particular, we have used an NMR metabolomic approach that allowed us to differentiate...... the analyzed samples based on their chemical composition. We were able to correlate the NMR metabolomic fingerprints recorded for canned tomato samples to the sensory descriptors bitterness, sweetness, sourness, saltiness, tomato and metal taste, redness, and density, suggesting that NMR might be a very useful...

  10. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  11. Exploring high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for metabonomic analysis of apples.

    Science.gov (United States)

    Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter

    2012-01-01

    Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

  12. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  13. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    Science.gov (United States)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  14. NMR imaging and pharmaceutical sciences

    International Nuclear Information System (INIS)

    Beall, P.T.; Good, W.R.

    1986-01-01

    Described is the technique of NMR-imaging in diagnostic medicine. Proton and phosphorus NMR in diagnosis of abnormal tissue pathology. Discussed is the value of NMR to the pharmaceutical sciences. NMR may play an important role in monitoring the response of tissues to drugs, determining the localization of drugs, performing real time pharmacokinetics and testing the use of NMR contrast pharmaceuticals

  15. Chemical profile of beans cultivars (Phaseolus vulgaris) by 1H NMR - high resolution magic angle spinning (HR-MAS);Perfil quimico de cultivares de feijao (Phaseolus vulgaris) pela tecnica de high resolution magic angle spinning (HR-MAS)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Luciano Morais; Choze, Rafael; Cavalcante, Pedro Paulo Araujo; Santos, Suzana da Costa; Ferri, Pedro Henrique, E-mail: luciano@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Quimica

    2010-07-01

    The application of one-dimensional proton high-resolution magic angle spinning ({sup 1}H HR-MAS) NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris) developed and in development by EMBRAPA - Arroz e Feijao were analyzed by {sup 1}H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques. (author)

  16. Comparison of experimental and DFT-calculated NMR chemical shifts of 2-amino and 2-hydroxyl substituted phenyl benzimidazoles, benzoxazoles and benzothiazoles in four solvents using the IEF-PCM solvation model.

    Science.gov (United States)

    Pierens, Gregory K; Venkatachalam, T K; Reutens, David C

    2016-04-01

    A comparative study of experimental and calculated NMR chemical shifts of six compounds comprising 2-amino and 2-hydroxy phenyl benzoxazoles/benzothiazoles/benzimidazoles in four solvents is reported. The benzimidazoles showed interesting spectral characteristics, which are discussed. The proton and carbon chemical shifts were similar for all solvents. The largest chemical shift deviations were observed in benzene. The chemical shifts were calculated with density functional theory using a suite of four functionals and basis set combinations. The calculated chemical shifts revealed a good match to the experimentally observed values in most of the solvents. The mean absolute error was used as the primary metric. The use of an additional metric is suggested, which is based on the order of chemical shifts. The DP4 probability measures were also used to compare the experimental and calculated chemical shifts for each compound in the four solvents. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. NMR of insensitive nuclei enhanced by dynamic nuclear polarization.

    Science.gov (United States)

    Miéville, Pascal; Jannin, Sami; Helm, Lothar; Bodenhausen, Geoffrey

    2011-01-01

    Despite the powerful spectroscopic information it provides, Nuclear Magnetic Resonance (NMR) spectroscopy suffers from a lack of sensitivity, especially when dealing with nuclei other than protons. Even though NMR can be applied in a straightforward manner when dealing with abundant protons of organic molecules, it is very challenging to address biomolecules in low concentration and/or many other nuclei of the periodic table that do not provide as intense signals as protons. Dynamic Nuclear Polarization (DNP) is an important technique that provides a way to dramatically increase signal intensities in NMR. It consists in transferring the very high electron spin polarization of paramagnetic centers (usually at low temperature) to the surrounding nuclear spins with appropriate microwave irradiation. DNP can lead to an enhancement of the nuclear spin polarization by up to four orders of magnitude. We present in this article some basic concepts of DNP, describe the DNP apparatus at EPFL, and illustrate the interest of the technique for chemical applications by reporting recent measurements of the kinetics of complexation of 89Y by the DOTAM ligand.

  18. Quali- and quantitative analysis of commercial coffee by NMR

    International Nuclear Information System (INIS)

    Tavares, Leila Aley; Ferreira, Antonio Gilberto

    2006-01-01

    Coffee is one of the beverages most widely consumed in the world and the 'cafezinho' is normally prepared from a blend of roasted powder of two species, Coffea arabica and Coffea canephora. Each one exhibits differences in their taste and in the chemical composition, especially in the caffeine percentage. There are several procedures proposed in the literature for caffeine determination in different samples like soft drinks, coffee, medicines, etc but most of them need a sample workup which involves at least one step of purification. This work describes the quantitative analysis of caffeine using 1 H NMR and the identification of the major components in commercial coffee samples using 1D and 2D NMR techniques without any sample pre-treatment. (author)

  19. NMR comparison of prokaryotic and eukaryotic cytochromes c

    International Nuclear Information System (INIS)

    Chau, Meihing; Cai, Meng Li; Timkovich, R.

    1990-01-01

    1 H NMR spectroscopy has been used to examine ferrocytochrome c-551 from Pseudomonas aeruginosa (ATCC 19429) over the pH range 3.5-10.6 and the temperature range 4-60 degree C. Resonance assignments are proposed for main-chain and side-chain protons. Comparison of results for cytochrome c-551 to recently assigned spectra for horse cytochrome c and mutants of yeast iso-1 cytochrome reveals some unique resonances with unusual chemical shifts in all cytochromes that may serve as markers for the heme region. Results for cytochrome c-551 indicate that in the smaller prokaryotic cytochrome, all benzoid side chains are rapidly flipping on the NMR time scale. In contrast, in eukaryotic cytochromes there are some rings flipping slowly on the NMR time scale. The ferrocytochrome c-551 undergoes a transition linked to pH with a pK around 7. The pH behavior of assigned resonances provides evidence that the site of protonation is the inner or buried 17-propionic acid heme substituent (IUPAC-IUB porphyrin nomenclature). Conformational heterogeneity has been observed for segments near the inner heme propionate substituent

  20. Complete 1H and 13C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    International Nuclear Information System (INIS)

    Johann, Susana; Smania Junior, Artur; Branco, Alexsandro

    2007-01-01

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ( 1 H NMR, { 1 H} -13 C NMR, and APT -13 C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete 1 H and 13 C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  1. Effects of mutation on the downfield proton nuclear magnetic resonance spectrum of the 5S RNA of Escherichia coli

    International Nuclear Information System (INIS)

    Gewirth, D.T.; Moore, P.B.

    1987-01-01

    The imino proton spectra of several mutants of the 5S RNA of Escherichia coli are compared with that of the wild type. Three of the variants discussed are point mutations, and the fourth is a deletion mutant lacking bases 11-69 of the parent sequence, all obtained by site-directed mutagenesis techniques. The spectroscopic effects of mutation are limited in all cases, and the differences between normal and mutant spectra can be used to make or confirm the assignments of resonances. Several new assignments in the 5S spectrum are reported. Spectroscopic differences due to sequence differences permit the products of single genes within the 5S gene family to be distinguished and their fates followed by NMR

  2. Development of real-time measurement of methanol-concentration in polymer electrolyte membrane using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Ito, Kohei; Haishi, Tomoyuki

    2007-01-01

    A real-time sensor to measure methanol concentration in polymer electrolyte membrane (PEM) was developed for reducing methanol cross-over in Direct Methanol Fuel Cell (DMFC). The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 1.3 mm outside diameter. NMR signal from PEM being exposed to CH3OH solvent was measured using NMR sensor. Time-dependence changes of methanol concentration in PEM were obtained from analyzing spectrum of NMR signal. (author)

  3. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    Science.gov (United States)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  4. Computational characterization of 13C NMR lineshapes of carbon dioxide in structure 1 clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dornan, P.; Woo, T.K. [Ottawa Univ., ON (Canada). Dept. of Chemistry

    2008-07-01

    Nonspherical large cages in structure one clathrates impose non-uniform motion of nonspherical guest molecules and anisotropic lineshapes in nuclear magnetic resonance (NMR) spectra of the guest. This paper presented a general method for calculating the chemical shift lineshape anisotropy of guest molecules in clathrate hydrate compounds from molecular dynamics simulations for the case of weak host, guest dipolar coupling. In order to calculate the cage chemical shielding tensors and the NMR lineshape produced by each guest molecule, the study involved the use of orientational distributions from molecular dynamics simulation along with time and powder angle averaging. The total predicted lineshape anisotropy was calculated from the superposition of the lineshapes of all guests. The approach was applied to calculate the temperature dependent 13C NMR lineshape anisotropy of carbon dioxide in structure 1 clathrates. The paper presented the computational methodology and results and discussion. It was concluded that the resulting lineshapes were in good agreement with the experimental 13C NMR spectrum at each temperature. The method provided a uniform procedure to calculate the lineshapes at different temperatures and no prior assumptions about the nature of the motion of the guest in cages was required. 37 refs., 2 tabs., 3 figs.

  5. Creatinine and creatininium cation in water solution. Tautomerism and quantitative interpretation of the solution acidity effect on 1H, 13C and 1:4N NMR chemical shifts

    International Nuclear Information System (INIS)

    Kotsyubynskyy, D.; Molchanov, S.; Gryff-Keller, A.

    2004-01-01

    1 H, 13 C and 1 :4N NMR chemical shifts for creatinine in water solution of various acidity have been measured. Analysis of these data enabled determination of the acidity constant of creatininium cation and the chemical shifts of the neutral and protonated forms of creatinine. Molecular energies and carbon and nitrogen magnetic shielding constants for various tautomeric structures of the investigated species have been calculated using the quantum chemistry method GIAO DFT B3LYP/6-311++G(2d,p). Compilation of the available experimental and theoretical results has provided additional information on the problem of tautomerism of this important biological molecule. (author)

  6. Synthesis, spectral and structural studies of water soluble arene ruthenium (II) complexes containing 2,2′-dipyridyl-N-alkylimine ligand

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Kaminsky, W.

    of the complexes. A similar downfield of chemical shifts was also observed for the alkyl protons attached to the nitrogen. For instant, the methyl proton of dpNmei was observed as a singlet at around δ 4.05 in the complexes [1]PF 6 , [3]PF 6 and [5]PF 6 as 9...

  7. 29Si MAS NMR for the zeolite Y - gallium oxide system

    International Nuclear Information System (INIS)

    Sulikowski, B.; Derewinski, M.; Olejniczak, Z.; Segnowski, S.

    1994-01-01

    Wide-pore zeolites modified by gallium oxide has been prepared for catalytic use. Its physico-chemical and catalytic properties have been studied. The structure changes of the catalyst have been investigated by means of MAS NMR spectroscopy. Spectra of 29 Si has been described and discussed

  8. Non-invasive NMR stratigraphy of a multi-layered artefact: an ancient detached mural painting.

    Science.gov (United States)

    Di Tullio, Valeria; Capitani, Donatella; Presciutti, Federica; Gentile, Gennaro; Brunetti, Brunetto Giovanni; Proietti, Noemi

    2013-10-01

    NMR stratigraphy was used to investigate in situ, non-destructively and non-invasively, the stratigraphy of hydrogen-rich layers of an ancient Nubian detached mural painting. Because of the detachment procedure, a complex multi-layered artefact was obtained, where, besides layers of the original mural painting, also the materials used during the procedure all became constitutive parts of the artefact. NMR measurements in situ enabled monitoring of the state of conservation of the artefact and planning of minimum representative sampling to validate results obtained in situ by solid-state NMR analysis of the samples. This analysis enabled chemical characterization of all organic materials. Use of reference compounds and prepared specimens assisted data interpretation.

  9. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Möller, H. M.; Exner, T. E.

    2013-01-01

    Roč. 9, č. 8 (2013), s. 3806-3815 ISSN 1549-9618 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * NMR spectroscopy * DFT calculations * hydration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  10. Evaluation of thermoplastic starch/MMT nanocomposites by nuclear magnetic resonance (NMR)

    International Nuclear Information System (INIS)

    Schlemmer, D.; Rodrigues, Tiago C.A.F.; Resck, I.S.; Sales, M.J.A.

    2010-01-01

    Starch has been studied for replace petrochemical plastics for short shelf life. However, the starch films have limitations: sensitivity to moisture and poor mechanical strength. This can be improved by incorporating loads such as montmorillonite, forming nanocomposites. Nanocomposites were prepared with 1, 3, 5 and 10% of montmorillonite, using vegetable oils of Brazilian Cerrado as plasticizers. The NMR spectra of oils are similar, but the intensities of the signals varying with the proportion of fatty acids. The molar mass of the oils was also calculated by NMR. The spectrum of CP/MAS 13 C NMR for starch presented a duplet in 97 and 98 ppm, on the amorphous domains of C-1, indicating a crystal type A. The spectra of the nanocomposites are similar to those of starch and oils. No new peaks appear, suggesting that there are no strong chemical bonds between components. (author)

  11. Theory of NMR probe design

    International Nuclear Information System (INIS)

    Schnall, M.D.

    1988-01-01

    The NMR probe is the intrinsic part of the NMR system which allows transmission of a stimulus to a sample and the reception of a resulting signal from a sample. NMR probes are used in both imaging and spectroscopy. Optimal probe design is important to the production of adequate signal/moise. It is important for anyone using NMR techniques to understand how NMR probes work and how to optimize probe design

  12. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena......An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  13. Two-site jumps in dimethyl sulfone studied by one- and two-dimensional 17O NMR spectroscopy

    Science.gov (United States)

    Beerwerth, J.; Storek, M.; Greim, D.; Lueg, J.; Siegel, R.; Cetinkaya, B.; Hiller, W.; Zimmermann, H.; Senker, J.; Böhmer, R.

    2018-03-01

    Polycrystalline dimethyl sulfone is studied using central-transition oxygen-17 exchange NMR. The quadrupolar and chemical shift tensors are determined by combining quantum chemical calculations with line shape analyses of rigid-lattice spectra measured for stationary and rotating samples at several external magnetic fields. Quantum chemical computations predict that the largest principal axes of the chemical shift anisotropy and electrical field gradient tensors enclose an angle of about 73°. This prediction is successfully tested by comparison with absorption spectra recorded at three different external magnetic fields. The experimental one-dimensional motionally narrowed spectra and the two-dimensional exchange spectrum are compatible with model calculations involving jumps of the molecules about their two-fold symmetry axis. This motion is additionally investigated by means of two-time stimulated-echo spectroscopy which allows for a determination of motional correlation functions over a wider temperature range than previously reported using carbon and deuteron NMR. On the basis of suitable second-order quadrupolar frequency distributions, sin-sin stimulated-echo amplitudes are calculated for a two-site model in the limit of vanishing evolution time and compared with experimental findings. The present study thus establishes oxygen-17 NMR as a powerful method that will be particularly useful for the study of solids and liquids devoid of nuclei governed by first-order anisotropies.

  14. Metabolomic NMR fingerprinting: an exploratory and predictive tool

    OpenAIRE

    Lauri, Ilaria

    2014-01-01

    Metabolomics is the comprehensive assessment of low molecular weight organic metabolites within biological system. The identification and characterization of several chemical species, or metabolic fingerprinting, is an emergent approach in metabolomics field that provides a valuable “snapshot” of metabolic profiles. This approach is finding an increasing number of applications in many areas including cancer research, drug discovery and food science. The combined use of NMR spectroscopy, data ...

  15. Non-targeted detection of chemical contamination in carbonated soft drinks using NMR spectroscopy, variable selection and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, Adrian J. [Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom)], E-mail: adrian.charlton@csl.gov.uk; Robb, Paul; Donarski, James A.; Godward, John [Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom)

    2008-06-23

    An efficient method for detecting malicious and accidental contamination of foods has been developed using a combined {sup 1}H nuclear magnetic resonance (NMR) and chemometrics approach. The method has been demonstrated using a commercially available carbonated soft drink, as being capable of identifying atypical products and to identify contaminant resonances. Soft-independent modelling of class analogy (SIMCA) was used to compare {sup 1}H NMR profiles of genuine products (obtained from the manufacturer) against retail products spiked in the laboratory with impurities. The benefits of using feature selection for extracting contaminant NMR frequencies were also assessed. Using example impurities (paraquat, p-cresol and glyphosate) NMR spectra were analysed using multivariate methods resulting in detection limits of approximately 0.075, 0.2, and 0.06 mM for p-cresol, paraquat and glyphosate, respectively. These detection limits are shown to be approximately 100-fold lower than the minimum lethal dose for paraquat. The methodology presented here is used to assess the composition of complex matrices for the presence of contaminating molecules without a priori knowledge of the nature of potential contaminants. The ability to detect if a sample does not fit into the expected profile without recourse to multiple targeted analyses is a valuable tool for incident detection and forensic applications.

  16. Non-targeted detection of chemical contamination in carbonated soft drinks using NMR spectroscopy, variable selection and chemometrics

    International Nuclear Information System (INIS)

    Charlton, Adrian J.; Robb, Paul; Donarski, James A.; Godward, John

    2008-01-01

    An efficient method for detecting malicious and accidental contamination of foods has been developed using a combined 1 H nuclear magnetic resonance (NMR) and chemometrics approach. The method has been demonstrated using a commercially available carbonated soft drink, as being capable of identifying atypical products and to identify contaminant resonances. Soft-independent modelling of class analogy (SIMCA) was used to compare 1 H NMR profiles of genuine products (obtained from the manufacturer) against retail products spiked in the laboratory with impurities. The benefits of using feature selection for extracting contaminant NMR frequencies were also assessed. Using example impurities (paraquat, p-cresol and glyphosate) NMR spectra were analysed using multivariate methods resulting in detection limits of approximately 0.075, 0.2, and 0.06 mM for p-cresol, paraquat and glyphosate, respectively. These detection limits are shown to be approximately 100-fold lower than the minimum lethal dose for paraquat. The methodology presented here is used to assess the composition of complex matrices for the presence of contaminating molecules without a priori knowledge of the nature of potential contaminants. The ability to detect if a sample does not fit into the expected profile without recourse to multiple targeted analyses is a valuable tool for incident detection and forensic applications

  17. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses

    International Nuclear Information System (INIS)

    Lerman, S.

    1987-01-01

    In vitro [UV absorption, fluorescence, phosphorescence, and nuclear magnetic resonance (NMR)] spectroscopic studies on the normal human lens demonstrate age-related changes which can be correlated with biochemical and photobiologic mechanisms occurring during our lifetime. Chronic cumulative UV exposure results in an age-related increase of photochemically induced chromophores and in color of the lens nucleus. This enables the lens to filter the incident UV radiation, thereby protecting the underlying aging retina from UV photodamage. We have measured the age-related increase in lens fluorescence in vivo on more than 300 normal subjects (1st to 9th decade) by UV slitlamp densitography. These data show a good correlation with the in vitro lens fluorescence studies reported previously and demonstrate that molecular photodamage can be monitored in the lens. In vitro NMR (human and animal lenses) and in vivo experiments currently in progress are rapidly elucidating the physicochemical basis for transparency and the development of light scattering areas. Surface scanning NMR can monitor organophosphate metabolism in the ocular lens in vivo as well as in vitro. These studies demonstrate the feasibility of using biophysical methods (optical spectroscopy and NMR analyses) to delineate age-related parameters in the lens, in vivo as well as in vitro. 46 references

  18. Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy

    International Nuclear Information System (INIS)

    Hallberg, Fredrik; Vernersson, Thomas; Pettersson, Erik Thyboll; Dvinskikh, Sergey V.; Lindbergh, Goeran; Furo, Istvan

    2010-01-01

    Electrophoretic NMR (eNMR) and pulsed-field-gradient NMR (PFG-NMR) methods were used to study transport processes in situ and in a chemically resolved manner in the electrolyte of an experimental direct methanol fuel cell (DMFC) setup, constituted of several layers of Nafion 117. The measurements were conducted at room temperature for membranes fully swollen by methanol-water mixtures over a wide concentration interval. The experimental setup and the experimental protocol for the eNMR experiments are discussed in detail. The magnitude of the water and methanol self-diffusion coefficients show a good agreement with previously published data while the ratio of the two self-diffusion coefficients may indicate an imperfect mixing of the two solvent molecules. On the molecular level, the drag of water and methanol molecules by protons is roughly of the same magnitude, with the drag of methanol molecules increasing with increasing methanol content. The electro-osmotic drag defined on mass-flow basis increased for methanol from a low level with increasing methanol concentration while that of water remained roughly constant.

  19. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    Science.gov (United States)

    Krishnamoorthi, R; Nemmers, S; Tobias, B

    1992-06-15

    15N NMR assignments were made to the backbone amide nitrogen atoms at natural isotopic abundance of intact and reactive-site (Arg5-Ile6) hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III and CMTI-III*, respectively) by means of 2D proton-detected heteronuclear single bond chemical shift correlation (HSBC) spectroscopy, utilizing the previously made sequence-specific 1H NMR assignments (Krishnamoorthi et al. (1992) Biochemistry 31, 898-904). Comparison of the 15N chemical shifts of the two forms of the inhibitor molecule revealed significant changes not only for residues located near the reactive-site region, but also for those distantly located. Residues Cys3, Arg5, Leu7, Met8, Cys10, Cys16, Glu19, His25, Tyr27, Cys28 and Gly29 showed significant chemical shift changes ranging from 0.3 to 6.1 ppm, thus indicating structural perturbations that were transmitted throughout the molecule. These findings confirm the earlier conclusions based on 1H NMR investigations.

  20. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  1. Hydrogen and deuterium NMR of solids by magic-angle spinning

    International Nuclear Information System (INIS)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1 H with 2 H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  2. Chemical modifications of liquid natural rubber

    Science.gov (United States)

    Azhar, Nur Hanis Adila; Rasid, Hamizah Md; Yusoff, Siti Fairus M.

    2016-11-01

    Liquid natural rubber (LNR) was synthesized via photosentisized degradation of natural rubber (NR). LNR was modified into epoxidized liquid natural rubber (LENR) and hydroxylated liquid natural rubber (LNR-OH) using Na2WO4/CH3COOH/H2O2 catalytic system. Chemical structures of LNR and modified LNRs were characterized using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopies. Integration of 1H NMR was used to calculate the epoxy content (%) of LENR. 1H NMR detected the formation of LNR-OH after prolonged heating and increased of catalyst in oxidation reaction.

  3. Rapid and reliable protein structure determination via chemical shift threading.

    Science.gov (United States)

    Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S

    2018-01-01

    Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .

  4. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    Science.gov (United States)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  5. APPLICATION OF A C-13 NMR TOPOLOGICAL MODEL TO THE STRUCTURE ELUCIDATION OF ORGANIC COMPOUNDS

    Institute of Scientific and Technical Information of China (English)

    袁身刚; 彭琛; 郑崇直

    1992-01-01

    This paper presents an approach which can elucidate automatically the structures of simple organic compounds from their C-13 NMR spectral data by using a computer. Based on a substructure/C-13 NMR chemical shift topological correlation model, the approach deduces the candidate substructures and the constraints for the substructure assembling from the molecular formula and C-13 NMR spectral data. Then, candidate structures are generated under these constraints by assembling the candidate substructures in a partial superposition manner. Candidate substructures or structures are evaluated once they are generated in order to eliminate those conflicting with the original data as early as possible. The evaluation of a (sub)structure is mainly carried out by simulating its C-13 NMR (sub) spectrum, which is again based on the model, and comparing the simulated spectrum with the original data.

  6. Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift† †Electronic supplementary information (ESI) available: Experimental and computational details, NMR spectra, results of NMR calculations and NCS analysis, graphical representation of shielding tensors, molecular orbital diagrams of selected compounds, optimized structures for all calculated species. See DOI: 10.1039/c7sc05039a

    Science.gov (United States)

    Gordon, Christopher P.; Yamamoto, Keishi; Searles, Keith; Shirase, Satoru

    2018-01-01

    Metal alkylidenes, which are key organometallic intermediates in reactions such as olefination or alkene and alkane metathesis, are typically generated from metal dialkyl compounds [M](CH2R)2 that show distinctively deshielded chemical shifts for their α-carbons. Experimental solid-state NMR measurements combined with DFT/ZORA calculations and a chemical shift tensor analysis reveal that this remarkable deshielding originates from an empty metal d-orbital oriented in the M–Cα–Cα′ plane, interacting with the Cα p-orbital lying in the same plane. This π-type interaction inscribes some alkylidene character into Cα that favors alkylidene generation via α-H abstraction. The extent of the deshielding and the anisotropy of the alkyl chemical shift tensors distinguishes [M](CH2R)2 compounds that form alkylidenes from those that do not, relating the reactivity to molecular orbitals of the respective molecules. The α-carbon chemical shifts and tensor orientations thus predict the reactivity of metal alkyl compounds towards alkylidene generation. PMID:29675237

  7. Observation of methanol behavior in fuel cells in situ by NMR spectroscopy.

    Science.gov (United States)

    Han, Oc Hee; Han, Kee Sung; Shin, Chang Woo; Lee, Juhee; Kim, Seong-Soo; Um, Myung Sup; Joh, Han-Ik; Kim, Soo-Kil; Ha, Heung Yong

    2012-04-16

    The chemical conversion of methanol in direct methanol fuel cells was followed in situ by NMR spectroscopy. Comparing data of the methanol oxidation on Pt and PtRu anode catalysts allowed the role of Ru in both Faradaic and non-Faradaic reactions to be investigated. The spatial distributions of chemicals could also be determined. (Picture: T1-T4=inlet and outlet tubes.). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Protein structure estimation from NMR data by matrix completion.

    Science.gov (United States)

    Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing

    2017-09-01

    Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.

  9. Validation of archived chemical shifts through atomic coordinates

    Science.gov (United States)

    Rieping, Wolfgang; Vranken, Wim F

    2010-01-01

    The public archives containing protein information in the form of NMR chemical shift data at the BioMagResBank (BMRB) and of 3D structure coordinates at the Protein Data Bank are continuously expanding. The quality of the data contained in these archives, however, varies. The main issue for chemical shift values is that they are determined relative to a reference frequency. When this reference frequency is set incorrectly, all related chemical shift values are systematically offset. Such wrongly referenced chemical shift values, as well as other problems such as chemical shift values that are assigned to the wrong atom, are not easily distinguished from correct values and effectively reduce the usefulness of the archive. We describe a new method to correct and validate protein chemical shift values in relation to their 3D structure coordinates. This method classifies atoms using two parameters: the per-atom solvent accessible surface area (as calculated from the coordinates) and the secondary structure of the parent amino acid. Through the use of Gaussian statistics based on a large database of 3220 BMRB entries, we obtain per-entry chemical shift corrections as well as Z scores for the individual chemical shift values. In addition, information on the error of the correction value itself is available, and the method can retain only dependable correction values. We provide an online resource with chemical shift, atom exposure, and secondary structure information for all relevant BMRB entries (http://www.ebi.ac.uk/pdbe/nmr/vasco) and hope this data will aid the development of new chemical shift-based methods in NMR. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20602353

  10. Unambiguous Metabolite Identification in High-Throughput Metabolomics by Hybrid 1H-NMR/ESI-MS1 Approach

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-18

    The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observed ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.

  11. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    Science.gov (United States)

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.

  12. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Phosphorus NMR of isolated perfused morris hepatomas

    International Nuclear Information System (INIS)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.; Sauer, L.A.

    1986-01-01

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. 31 P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia, ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin

  14. Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.

    Science.gov (United States)

    Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues

    2014-03-18

    Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside.

  15. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Quantitative nuclear magnetic resonance (qNMR is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR and only a few fluorine qNMR (19F qNMR were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  16. (1 H, 13 C and 31 P) NMR of phosphonic acid derivatives

    International Nuclear Information System (INIS)

    Campos, Valdevino; Costa, Valentim E. Uberti

    1991-01-01

    In the last years the development of phosphates analogues in the medical and agricultural pesticides has being very expressive. 1 H, 13 C and mainly 31 P NMR are used for stereochemical and conformational analysis, and reactivity studies on the compounds resulting from those chemical processes

  17. Development and Investigation of NMR tools for chiral compound identification

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electronic, Optical and Nano Materials; Lansdon, Rick [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2014-09-01

    The goal behind the assigned summer project was to investigate the ability of nuclear magnetic resonance spectroscopy (NMR) to identify enantiomers of select chiral organo-fluorophosphates (OFPs) compounds which are analogs of chemical warfare agents (CWAs, e.g. Sarin). This involved investigations utilizing chiral solvating agents (CSAs) and characterizing the binding phenomena with cyclodextrins. The resolution of OFPs enantiomers using NMR would be useful for research into toxicodynamics and toxicokinetics in biological systems due to the widely differing properties of the CWA enantiomers [1]. The optimization of decontamination abilities in the case of a CWA events, with this method’s potential rapidity and robustness, as well as the development of models correlating chiral compounds with CSAs for optimal resolution are all rational benefits of this research.

  18. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  19. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    Science.gov (United States)

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  20. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates

    DEFF Research Database (Denmark)

    Elliot, Samuel Gilbert; Tolborg, Søren; Sádaba, Irantzu

    2017-01-01

    -containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters with additional olefin and alcohol functionalities. We employ an NMR approach to identify, quantify and optimize the formation these building blocks in the chemocatalytic transformation of abundant carbohydrates by Sn...

  1. Natural abundant solid state NMR studies in designed tripeptides for differentiation of multiple conformers.

    Science.gov (United States)

    Jayanthi, S; Chatterjee, Bhaswati; Raghothama, S

    2009-10-01

    Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro-(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro-(L)Pro-(L)Phe-OMe (2), and Piv-(D)Pro-(L)Pro-(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The (13)C spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C(beta) and C(gamma) carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all trans form across the di-Proline segment. The results are in agreement with the X-ray analysis. Solid state (15)N resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. (1)H chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between (1)H--(13)C. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

  2. Solution structures of α-conotoxin G1 determined by two-dimensional NMR spectroscopy

    International Nuclear Information System (INIS)

    Pardi, A.; Galdes, A.; Florance, J.; Maniconte, D.

    1989-01-01

    Two-dimensional NMR data have been used to generate solution structures of α-conotoxin G1, a potent peptide antagonist of the acetylcholine receptor. Structural information was obtained in the form of proton-proton internuclear distance constraints, and initial structures were produced with a distance geometry algorithm. Energetically more favorable structures were generated by using the distance geometry structures as input for a constrained energy minimization program. The results of both of these calculations indicate that the overall backbone conformation of the molecule is well-defined by the NMR data whereas the side-chain conformations are generally less well-defined. The main structural features derived from the NMR data were the presence of tight turns centered on residues Pro 5 and Arg 9 . The solution structures are compared with previous proposed models of conotoxin G1, and the NMR data are interpreted in conjunction with chemical modification studies and structural properties of other antagonists of the acetylcholine receptor to gain insight into structure-activity relationships in these peptide toxins

  3. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    International Nuclear Information System (INIS)

    Skinner, Simon P.; Fogh, Rasmus H.; Boucher, Wayne; Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W.

    2016-01-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  4. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P.; Fogh, Rasmus H. [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom); Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom)

    2016-10-15

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  5. Organic matter characterization during the anaerobic digestion of different biomasses by means of CPMAS 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Adani, Fabrizio; Gigliotti, Giovanni; Volpe, Daniela; Fabbri, Claudio; Provenzano, Maria Rosaria

    2013-01-01

    The aim of this work was to characterize ingestates and their corresponding digestates obtained in two full-scale biogas production plants processing a) mixtures of organic wastes in co-digestion, and b) pig slurry in order to assess the organic matter transformation during anaerobic digestion by means of chemical analysis and 13 CPMAS-NMR spectroscopy. Results proved that digestates obtained by different organic substrates exhibited significant chemical differences related to the different initial composition of substrates. We proposed the use of the aliphaticity index in order to highlight the different chemical nature of ingestates and their corresponding digestates. In order to verify whether the AD process leads to stabilized final products regardless the initial composition of biomass in view of a possible agronomical use of digestate, a comparison of CPMAS 13 C NMR data of a number of ingestates and digestates available in literature was carried out. Results indicated that most of the aromatic structures present in the substrate tend to degrade during the process and that anaerobic digestion proceeds through preferential degradation of carbohydrates such as cellulose and hemicellulose and, as a consequence, concentration of more chemically recalcitrant aliphatic molecules occurs. -- Highlights: ► We studied anaerobic digestion by means of chemical analysis and 13 CPMAS-NMR spectroscopy. ► Significant chemical differences in digestates were highlighted. ► We proposed the use of the aliphaticity index in order to differentiate digestates. ► Most of the aromatic structures tend to degrade. ► Carbohydrates are degraded and recalcitrant aliphatic molecules concentrate

  6. Study of lignin standard-substances type biphenyl by {sup 13} C NMR; Estudo de substancias-modelo de lignina do tipo bifenila, por RMN de {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Marcia Alves; Drumond, Mariza Guimaraes; Veloso, Dorila Pilo [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica

    1995-12-31

    Lignins structural study by NMR has utilized standard-substances spectral comparative analysis. This work has present relaxation time studies for lignin standard-substance, and {sup 13} C NMR chemical shift values were also shown and compared for several compounds. NMR spectra were commented besides experimental data analysis 2 figs., 4 tabs.

  7. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  8. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    Markin, Craig J.; Spyracopoulos, Leo

    2012-01-01

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K D ) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K D value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1 H– 15 N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k off ). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k off ∼ 3,000 s −1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k off from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k off values over a wide range, from 100 to 15,000 s −1 . The validity of line shape analysis for k off values approaching intermediate exchange (∼100 s −1 ), may be facilitated by more accurate K D measurements from NMR

  9. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    Science.gov (United States)

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  10. NMR study of lignins model-trimers of the type 5-5'/β-0-4'

    International Nuclear Information System (INIS)

    Pilo-Veloso, Dorila; Stefani, Guglielmo M.; Drumond, Mariza Guimaraes; Alves, Vera Lucia

    1997-01-01

    Lignins are very abundant macromolecules in vegetables. In addition to be an important sub product in pulp and paper industry, these compounds are also a source of chemical raw materials. One of the most important methodologies for the chemical structural study of these compounds is solid state nuclear magnetic resonance. This work presents the NMR study of three unedited lignins compounds derived from Eucalyptus grandis

  11. High-resolution, high-sensitivity NMR of nano-litre anisotropic samples by coil spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D [CEA Saclay, DSM, DRECAM, SCM, Lab Struct and Dynam Resonance Magnet, CNRS URA 331, F-91191 Gif Sur Yvette, (France); Le Goff, G; Jacquinot, J F [CEA Saclay, DSM, DRECAM, SPEC: Serv Phys Etat Condense, CNRS URA 2464, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    accordingly expect that it will facilitate the development of novel solid-state NMR methodologies and find wide use in high-throughput chemical and biomedical analysis. (authors)

  12. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Investigation of Sc(3) state in nonaqueous solutions by the 45Sc NMR method of high permission

    International Nuclear Information System (INIS)

    Buslaev, Yu.A.; Kirakosyan, G.A.; Tarasov, V.P.

    1980-01-01

    The ScCl 3 + CH 3 CN and ScCl 3 + KNCS + CH 3 CN solutions have been studied by a high-resolution NMR 45 Sc method. It has been estimated that in acetonitrile solutions, with competing ligands of Cl - and NCS - being available, hexacoordination Sc(3) complexes of various compositions are formed, and solvent molecules also take part in formation of the coordination sphere of scandium. Chemical shifts in NMR 45 Sc signals depend linearly on the number of chlor- or NCS - ions bound to scandium(3). This made it possible to determine the value of chemical shifts in signals of all 28 potential complexes formed in a system with three competing ligands

  14. Detailed 1H and 13C NMR spectral data assignment for two dihydrobenzofuran neolignans

    International Nuclear Information System (INIS)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M.

    2016-01-01

    In this work we present a complete proton ( 1 H) and carbon 13 ( 13 C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled 13 C ( 13 C{ 1 H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the 1 H and 13 C chemical shifts and showed good agreement with the trans configuration of the substituents at C 7 and C 8 . (author)

  15. NMR investigation and theoretical calculations of the solvent effect on the conformation of valsartan

    Science.gov (United States)

    Chashmniam, Saeed; Tafazzoli, Mohsen

    2017-11-01

    Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.

  16. Complete 1H NMR assignments of pyrrolizidine alkaloids and a new eudesmanoid from Senecio polypodioides.

    Science.gov (United States)

    Villanueva-Cañongo, Claudia; Pérez-Hernández, Nury; Hernández-Carlos, Beatriz; Cedillo-Portugal, Ernestina; Joseph-Nathan, Pedro; Burgueño-Tapia, Eleuterio

    2014-05-01

    Chemical investigation of the aerial parts of Senecio polypodioides lead to the isolation of the new eudesmanoid 1β-angeloyloxyeudesm-7-ene-4β,9α-diol (1) and the known dirhamnosyl flavonoid lespidin (3), while from roots, the known 7β-angeloyloxy-1-methylene-8α-pyrrolizidine (5) and sarracine N-oxide (6), as well as the new neosarracine N-oxide (8), were obtained. The structure of 1 and 8 was elucidated by spectral means. Complete assignments of the (1)H NMR data for 5, 6, sarracine (7), and 8 were made using one-dimensional and two-dimensional NMR experiments and by application of the iterative full spin analysis of the PERCH NMR software. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Application of NMR Spectroscopy in the Analysis of Petroleum Derivatives and Products

    Directory of Open Access Journals (Sweden)

    Parlov Vuković, J.

    2012-11-01

    Full Text Available Complex chemical composition and physical properties of oil and fuel make their complete cha racterization very difficult. Components present in oil and oil products differ in structure, size, po larity and functionality. The presence and structure of specific hydrocarbons in final products depend on the processing procedure and type of the fuel. In order to predict or improve fuel pro perties it is necessary to determine its composition. Thus, new and more sophisticated analytical methods and procedures are constantly being developed. NMR spectroscopy plays a significant role in analysis and identification of complex hydrocarbon mixtures of petroleum and petroleum products. In this review, we describe the application of NMR spectroscopy for analyzing gasoline and diesel fuels. Hence, by using NMR spectroscopy it is possible to determine gasoline composition and presence of benzene and oxygenates, as well as some important physical characteristics of gasoli ne such as the research octane number. An application of different NMR techniques made it pos sible to characterize diesel fuels and middle oil distillates from various refineries. Data so obtained can be used in combination with statistical methods to predict fuel properties and to monitor pro- duction processes in the petroleum industry. NMR spectroscopy has proven useful in analysis of FAME which has recently been used as an ecologically acceptable alternative fuel. Furthermore, techniques such as CP/MAS for characterization of solid state oil-geochemical samples are inclu- ded. Also, possibilities of using NMR spectroscopy in the analysis of polymeric additives are di- scussed.

  18. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  19. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  20. Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion

    International Nuclear Information System (INIS)

    Habenstein, Birgit; Wasmer, Christian; Bousset, Luc; Sourigues, Yannick; Schütz, Anne; Loquet, Antoine; Meier, Beat H.; Melki, Ronald; Böckmann, Anja

    2011-01-01

    We present the de novo resonance assignments for the crystalline 33 kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly 13 C, 15 N labeled protein sample, sequential chemical-shift information for 74% of the N, Cα, Cβ triples, and for 80% of further side-chain resonances for these spin systems. We describe the procedures and protocols devised, and discuss possibilities and limitations of the assignment of this largest protein assigned today by solid-state NMR, and for which no solution-state NMR shifts were available. A comparison of the NMR chemical shifts with crystallographic data reveals that regions with high crystallographic B-factors are particularly difficult to assign. While the secondary structure elements derived from the chemical shift data correspond mainly to those present in the X-ray crystal structure, we detect an additional helical element and structural variability in the protein crystal, most probably originating from the different molecules in the asymmetric unit, with the observation of doubled resonances in several parts, including entire stretches, of the protein. Our results provide the point of departure towards an atomic-resolution structural analysis of the C-terminal Ure2p domain in the context of the full-length prion fibrils.

  1. Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion

    Energy Technology Data Exchange (ETDEWEB)

    Habenstein, Birgit [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Wasmer, Christian [Harvard Medical School (United States); Bousset, Luc; Sourigues, Yannick [UPR 3082 CNRS, Laboratoire d' Enzymologie et Biochimie Structurales (France); Schuetz, Anne [ETH Zurich, Physical Chemistry (Switzerland); Loquet, Antoine [Max Planck Institute for Biophysical Chemistry (Germany); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Melki, Ronald, E-mail: melki@lebs.cnrs-gif.fr [UPR 3082 CNRS, Laboratoire d' Enzymologie et Biochimie Structurales (France); Boeckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France)

    2011-11-15

    We present the de novo resonance assignments for the crystalline 33 kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly {sup 13}C, {sup 15}N labeled protein sample, sequential chemical-shift information for 74% of the N, C{alpha}, C{beta} triples, and for 80% of further side-chain resonances for these spin systems. We describe the procedures and protocols devised, and discuss possibilities and limitations of the assignment of this largest protein assigned today by solid-state NMR, and for which no solution-state NMR shifts were available. A comparison of the NMR chemical shifts with crystallographic data reveals that regions with high crystallographic B-factors are particularly difficult to assign. While the secondary structure elements derived from the chemical shift data correspond mainly to those present in the X-ray crystal structure, we detect an additional helical element and structural variability in the protein crystal, most probably originating from the different molecules in the asymmetric unit, with the observation of doubled resonances in several parts, including entire stretches, of the protein. Our results provide the point of departure towards an atomic-resolution structural analysis of the C-terminal Ure2p domain in the context of the full-length prion fibrils.

  2. Automation of peak-tracking analysis of stepwise perturbed NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Banelli, Tommaso; Vuano, Marco [Università di Udine, Dipartimento di Area Medica (Italy); Fogolari, Federico [INBB (Italy); Fusiello, Andrea [Università di Udine, Dipartimento Politecnico di Ingegneria e Architettura (Italy); Esposito, Gennaro [INBB (Italy); Corazza, Alessandra, E-mail: alessandra.corazza@uniud.it [Università di Udine, Dipartimento di Area Medica (Italy)

    2017-02-15

    We describe a new algorithmic approach able to automatically pick and track the NMR resonances of a large number of 2D NMR spectra acquired during a stepwise variation of a physical parameter. The method has been named Trace in Track (TinT), referring to the idea that a gaussian decomposition traces peaks within the tracks recognised through 3D mathematical morphology. It is capable of determining the evolution of the chemical shifts, intensity and linewidths of each tracked peak.The performances obtained in term of track reconstruction and correct assignment on realistic synthetic spectra were high above 90% when a noise level similar to that of experimental data were considered. TinT was applied successfully to several protein systems during a temperature ramp in isotope exchange experiments. A comparison with a state-of-the-art algorithm showed promising results for great numbers of spectra and low signal to noise ratios, when the graduality of the perturbation is appropriate. TinT can be applied to different kinds of high throughput chemical shift mapping experiments, with quasi-continuous variations, in which a quantitative automated recognition is crucial.

  3. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  4. NMR assignments of juvenile hormone binding protein in complex with JH III.

    Science.gov (United States)

    Suzuki, Rintaro; Tase, Akira; Fujimoto, Zui; Shiotsuki, Takahiro; Yamazaki, Toshimasa

    2009-06-01

    A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.

  5. Illumination of Nanoliter-NMR Spectroscopy Chips for Real-Time Photochemical Reaction Monitoring

    NARCIS (Netherlands)

    Gomez, M.V.; Juan, Alberto; Jiménez-Márquez, Francisco; La Hoz, De Antonio; Velders, Aldrik H.

    2018-01-01

    We report the use of a small-volume nuclear-magnetic-resonance (NMR)-spectroscopy device with integrated fiber-optics for the real-time detection of UV-vis-light-assisted chemical reactions. An optical fiber is used to guide the light from LEDs or a laser diode positioned safely outside the magnet

  6. 13C solid state NMR investigation of natural resins components

    International Nuclear Information System (INIS)

    Tavares, Maria I.B.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Nogueira, Jose S.

    2001-01-01

    The objective of this work is to establish and analytical methodology as a routine using solid state nuclear magnetic resonance (NMR) techniques to investigate the mainly chemical components presented in natural resins in bulk. And also to evaluate the molecular behaviour of these resins. The routine solid state techniques allow us to assign the main compounds presented in the resins. Therefore, applying specialised techniques, like variable contact time, delayed contact time, dephasing time and proton spin lattice relaxation time in the rotating frame (T 1 H ρ), more information about chemical structure and molecular dynamic is available

  7. Inadequate-1D and dynamic NMR of mesoion 3-phenyl-1-thio-2,3,4-triazole-5-methylides; INADEQUATE-1D i dynamiczny NMR mezojonowych 3-fenylo-1-tio-2,3,4-triazolo-5-metylidow

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, W.; Stefaniak, L. [Inst. Chemii Organicznej, Polska Akademia Nauk, Warsaw (Poland)

    1994-12-31

    The chemical shifts and coupling constants have been measured in series of mesoionic triazoles by means of inadequate atoms and dynamic NMR techniques. The electronic structure and other parameters of C5-C6 chemical bond in different derivatives of mesoionic 3-phenyl-1-thio-2,3,4-triazole-5 methyls have been determined. 14 refs, 3 figs, 2 tabs.

  8. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  9. 1H NMR investigation of self-association of vanillin in aqueous solution

    International Nuclear Information System (INIS)

    Bogdan, Mircea; Floare, Calin G; PIrnau, Adrian

    2009-01-01

    A self-association of vanillin have been studied by 1 H NMR spectroscopy using the analysis of proton chemical shifts changes in aqueous solution as a function of concentration. The experimental results have been analysed using indefinite non-cooperative and cooperative models of molecular self-association, enabling the determination of equilibrium constants, parameters of cooperativity and the limiting values of vanillin proton chemical shifts in the complex. It was found that the dimer formation creates energetically favourable conditions for subsequent molecular association.

  10. Recommendations and Standardization of Biomarker Quantification Using NMR-based Metabolomics with Particular Focus on Urinary Analysis

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2016-01-08

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to non-destructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Indeed, precise metabolite quantification is a necessary prerequisite to move any chemical biomarker or biomarker panel from the lab into the clinic. Among the many biofluids (urine, serum, plasma, cerebrospinal fluid and saliva) commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, easily obtained, needs little sample preparation and does not require any invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, thereby providing a rich source of potentially useful disease biomarkers. However, the incredible variation in urine chemical concentrations due to effects such as gender, age, diet, life style, health conditions, and physical activity make the analysis of urine and the identification of useful urinary biomarkers by NMR quite challenging. In this review, we discuss a number of the most significant issues regarding NMR-based urinary metabolomics with a specific emphasis on metabolite quantification for disease biomarker applications. We also propose a number of data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, as well as recommendations regarding sample preparation and biomarker assessment.

  11. Recommendations and Standardization of Biomarker Quantification Using NMR-based Metabolomics with Particular Focus on Urinary Analysis

    KAUST Repository

    Emwas, Abdul-Hamid M.; Roy, Raja; McKay, Ryan T.; Ryan, Danielle; Brennan, Lorraine; Tenori, Leonardo; Luchinat, Claudio; Gao, Xin; Zeri, Ana Carolina; Gowda, G. A. Nagana; Raftery, Daniel; Steinbeck, Christoph; Salek, Reza M; Wishart, David S.

    2016-01-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to non-destructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Indeed, precise metabolite quantification is a necessary prerequisite to move any chemical biomarker or biomarker panel from the lab into the clinic. Among the many biofluids (urine, serum, plasma, cerebrospinal fluid and saliva) commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, easily obtained, needs little sample preparation and does not require any invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, thereby providing a rich source of potentially useful disease biomarkers. However, the incredible variation in urine chemical concentrations due to effects such as gender, age, diet, life style, health conditions, and physical activity make the analysis of urine and the identification of useful urinary biomarkers by NMR quite challenging. In this review, we discuss a number of the most significant issues regarding NMR-based urinary metabolomics with a specific emphasis on metabolite quantification for disease biomarker applications. We also propose a number of data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, as well as recommendations regarding sample preparation and biomarker assessment.

  12. Symmetry Breaking in NMR Spectroscopy: The Elucidation of Hidden Molecular Rearrangement Processes

    Directory of Open Access Journals (Sweden)

    Michael J. McGlinchey

    2014-08-01

    Full Text Available Variable-temperature NMR spectroscopy is probably the most convenient and sensitive technique to monitor changes in molecular structure in solution. Rearrangements that are rapid on the NMR time-scale exhibit simplified spectra, whereby non-equivalent nuclear environments yield time-averaged resonances. At lower temperatures, when the rate of exchange is sufficiently reduced, these degeneracies are split and the underlying “static” molecular symmetry, as seen by X-ray crystallography, becomes apparent. Frequently, however, such rearrangement processes are hidden, even when they become slow on the NMR time-scale, because the molecular point group remains unchanged. Judicious symmetry breaking, such as by substitution of a molecular fragment by a similar, but not identical moiety, or by the incorporation of potentially diastereotopic (chemically non-equivalent nuclei, allows the elucidation of the kinetics and energetics of such processes. Examples are chosen that include a wide range of rotations, migrations and other rearrangements in organic, inorganic and organometallic chemistry.

  13. Heteronuclear three-dimensional NMR spectroscopy. Natural abundance 13C chemical shift editing of 1H-1H COSY spectra

    International Nuclear Information System (INIS)

    Fesik, S.W.; Gampe, R.T. Jr.; Zuiderweg, E.R.P.

    1989-01-01

    It has been demonstrated that heteronuclear 3D NMR spectroscopy can be effectively applied to small molecules with 13 C at natural abundance. A 78mM solution of the aminoglycoside, kanamycin A was used for this experiment. The heteronuclear 3D NMR spectroscopy is shown to be a useful method for resolving spectral overlap in all frequency domains. 10 refs., 2 figs

  14. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  15. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    Science.gov (United States)

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  16. Nuclear magnetic resonance in chemical department of the Exact Science Institute of the Minas Gerais Federal University

    International Nuclear Information System (INIS)

    Veloso, D.P.

    1989-01-01

    The specifications for acquisition of pulsed NMR spectrometer by chemical department of Minas Gerais Federal University are described. The researches carried out using the NMR spectrometer are presented as well as installation and operation of NMR equipments. (M.C.K.)

  17. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    Science.gov (United States)

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  18. chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR

    International Nuclear Information System (INIS)

    Yao Xiaolan; Yamaguchi, Satoru; Hong Mei

    2002-01-01

    The Cα chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the Cα chemical shift tensors of two peptides with α-helical torsion angles: the Ala residue in G*AL (φ=-65.7 deg., ψ=-40 deg.), and the Val residue in GG*V (φ=-81.5 deg., ψ=-50.7 deg.). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from Cα-Hα and Cα-N dipolar modulated powder patterns. The helical Ala Cα chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its σ 11 axis is 116 deg. ± 5 deg. from the Cα-Hα bond while the σ 22 axis is 40 deg. ± 5 deg. from the Cα-N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for β-sheet Val found recently (Yao and Hong, 2002). The Val σ 33 axis is tilted by 115 deg. ± 5 deg. from the Cα-Hα bond and 98 deg. ± 5 deg. from the Cα-N bond. These represent the first completely experimentally determined Cα chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the Cα chemical shift tensor onto the Cα-Hα bond is much smaller in α-helices than in β-sheets

  19. NMR strategies to support medicinal chemistry workflows for primary structure determination.

    Science.gov (United States)

    Oguadinma, Paul; Bilodeau, Francois; LaPlante, Steven R

    2017-01-15

    Central to drug discovery is the correct characterization of the primary structures of compounds. In general, medicinal chemists make great synthetic and characterization efforts to deliver the intended compounds. However, there are occasions which incorrect compounds are presented, such as those reported for Bosutinib and TIC10. This may be due to a variety of reasons such as uncontrolled reaction schemes, reliance on limited characterization techniques (LC-MS and/or 1D 1H NMR spectra), or even the lack of availability or knowledge of characterization strategies. Here, we present practical NMR approaches that support medicinal chemist workflows for addressing compound characterization issues and allow for reliable primary structure determinations. These strategies serve to differentiate between regioisomers and geometric isomers, distinguish between N- versus O-alkyl analogues, and identify rotamers and atropisomers. Overall, awareness and application of these available NMR methods (e.g. HMBC/HSQC, ROESY and VT experiments, to name only a few) should help practicing chemists to reveal chemical phenomena and avoid mis-assignment of the primary structures of compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Malkina, Olga L; Malkin, Vladimir G

    2013-12-27

    A four-component relativistic method for the calculation of NMR shielding constants of paramagnetic doublet systems has been developed and implemented in the ReSpect program package. The method uses a Kramer unrestricted noncollinear formulation of density functional theory (DFT), providing the best DFT framework for property calculations of open-shell species. The evaluation of paramagnetic nuclear magnetic resonance (pNMR) tensors reduces to the calculation of electronic g tensors, hyperfine coupling tensors, and NMR shielding tensors. For all properties, modern four-component formulations were adopted. The use of both restricted kinetically and magnetically balanced basis sets along with gauge-including atomic orbitals ensures rapid basis-set convergence. These approaches are exact in the framework of the Dirac-Coulomb Hamiltonian, thus providing useful reference data for more approximate methods. Benchmark calculations on Ru(III) complexes demonstrate good performance of the method in reproducing experimental data and also its applicability to chemically relevant medium-sized systems. Decomposition of the temperature-dependent part of the pNMR tensor into the traditional contact and pseudocontact terms is proposed.

  1. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.

    Science.gov (United States)

    Sanz-Hernández, Máximo; De Simone, Alfonso

    2017-11-01

    The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences. Our sequence-based approach, protein sequences and chemical shift correlations (PROSECCO), achieves the accuracy of the most advanced structure-based methods in the characterization of chemical shifts of folded proteins and improves the state of the art in the study of disordered proteins. Our analyses revealed fundamental insights on the structural information carried by NMR chemical shifts of structured and unstructured protein states.

  2. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  3. X-ray structure determination, Hirshfeld surface analysis, spectroscopic (FT-IR, NMR, UV-Vis, fluorescence), non-linear optical properties, Fukui function and chemical activity of 4‧-(2,4-dimethoxyphenyl)-2,2‧:6‧,2″-terpyridine

    Science.gov (United States)

    Demircioğlu, Zeynep; Yeşil, Ahmet Emin; Altun, Mehmet; Bal-Demirci, Tülay; Özdemir, Namık

    2018-06-01

    The compound 4‧-(2,4-dimethoxyphenyl)-2,2‧:6‧,2″-terpyridine (Mtpyr) was synthesized and investigated using X-ray single crystal structure determination, combined with Hirshfeld topology analysis of the molecular packing. In addition, Mtpyr was characterized by experimental and theoretical FT-IR, UV-Vis, 1H NMR, 13C NMR and fluorescence emission spectra. The optimized molecular geometry (bond length, bond angle, torsion angle), the complete vibrational frequency and all other theoretical computations were calculated by using density functional theory (DFT) B3LYP method with the help of 6-311++G(d,p) basis set. From the recorded UV-Vis spectrum, the electronic properties such as excitation energies, wavelength and oscillator strength are evaluated by TD-DFT in chloroform solution. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge-independent atomic orbital (GIAO) method and compared with experimental results. The calculated HOMO-LUMO band gap energies confirmed that charge transfer and chemical stability within the molecule. The hyperconjugative interaction energy E(2) and electron densities of donor (i) and acceptor (j) bonds were calculated using natural bond orbital (NBO) analysis. Besides Mulliken and natural population charges (NPA), non-linear optic properties (NLO), Fukui Function analysis, molecular electrostatic potential (MEP) were also computed which helps to identifying the electrophilic/nucleophilic nature.

  4. Chemical Constituents of Hoya wayetii Kloppenb

    International Nuclear Information System (INIS)

    Ebajo, Virgilio D. Jr.; Aurigue, Fernando B.; Brkljaca, Robert; Urban, Sylvia; Ragasa, Consolacion Y.

    2015-01-01

    Chemical investigation of the dichloromethane extracts of Hoya wayetii Kloppenb. afforded β-amyrin cinnamate (1) and taraxerol (2) from the stems; and 2, triglycerides (3), chlorophyll a (4), and a mixture of β-sitosterol (5a) and stigmasterol (5b) from the leaves. The structures of 1 and 2 were elucidated by extensive 1D and 2D NMR spectroscopy, while those of 3-5b were identified by comparison of their NMR data with those reported in the literature. (author)

  5. Mechanisms of Action of (Methacrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC Liposomes Determined Using NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2012-01-01

    Full Text Available We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H50 or in vivo mouse intraperitoneal (ip LD50 using reported data for α,β-unsaturated carbonyl compounds such as (methacrylate monomers and their 13C-NMR β-carbon chemical shift (δ. The log 1/H50 value for methacrylates was linearly correlated with the δCβ value. That for (methacrylates was linearly correlated with log P, an index of lipophilicity. The ipLD50 for (methacrylates was linearly correlated with δCβ but not with log P. For (methacrylates, the δCβ value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω, whereas log P was linearly correlated with heat of formation (HF. Also, the interaction between (methacrylates and DPPC liposomes in cell membrane molecular models was investigated using 1H-NMR spectroscopy and differential scanning calorimetry (DSC. The log 1/H50 value was related to the difference in chemical shift (ΔδHa (Ha: H (trans attached to the β-carbon between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (methacrylates.

  6. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Science.gov (United States)

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help

  7. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  8. Comparison of the computational NMR chemical shifts of choline with the experimental data

    International Nuclear Information System (INIS)

    Alcorn, C; Cuperlovic-Culf, M; Ghandi, K

    2012-01-01

    One of the main biological markers of the presence of cancer in living patients is an over-expression of total choline (tCho), which is the sum of free choline and its derivatives. 1 H Magnetic Resonance Spectroscopy, or H-MRS, enables the quantification of tCho via its proton spectra, and thus has the potential to be a diagnostic tool for the presence of cancer and an accurate early indicator of the response of cancer to treatment. However, it remains difficult to quantify individual choline derivatives, since they share a large structural similarity ((CH 3 ) 3 -N + -CH 2 -CH 2 -O-), of which the strongest signal detectable by MRS is that of the choline h ead group : the three methyl groups bonded to the nitrogen. This work used ACENet, a high performance computing system, to attempt to model the NMR parameters of choline derivatives, with the focus of this report being free choline. Optimized structures were determined using Density Functional Theory and the B3LYP electron correlation functional. The Polarizable Continuum Model was used to evaluate solvent effects. The Gauge-Invariant Atomic Orbital method was found to be the superior method for calculating the NMR parameters of cholines.

  9. Solid NMR study of lithium ions accommodated in various transition metal oxides

    International Nuclear Information System (INIS)

    Kanzaki, Yasushi; Suzuki, Noriko

    2008-01-01

    Solid NMR was used to elucidate the lithium accommodation/extraction reaction in various transition metal oxides. The first study was the lithium ion exchange reaction of titanium antimonic acid (TiSbA). The effect of hydration on the selectivity of lithium ion in the solid phase was examined using 7 Li NMR. The second study was the irreversible ion exchange behavior of HNbO 3 . The selectivity for the lithium ion and the irreversible behavior were examined using 1 H and 7 Li NMR. The third study was the isotope separation between 6 Li and 7 Li in various inorganic ion exchangers. The high isotope separation coefficient was ascribed to the degree of dehydration during the ion exchange reaction. The degree of dehydration was examined by 1 H and 7 Li NMR studies. The last study was determining the mechanism of the lithium accommodation/extraction reaction of λ-MnO 2 in an aqueous solution. The different paths between the accommodation and extraction and the formation of MnO 4- during the accommodation were determined by chemical analysis. The Knight shift in the 7 Li MAS-NMR spectra of Li 0.5 MnO 2 suggested the localization of the electron density on the lithium nuclei. An XPS study also suggested the presence of an electron density on the lithium nuclei. A pH-independent redox couple was assumed to account for the accommodation/extraction reaction of lithium ions, such as Li(I)/Li(0). (author)

  10. Which kind of aromatic structures are produced during biomass charring? New insights provided by modern solid-state NMR spectroscopy

    Science.gov (United States)

    Knicker, Heike; Paneque-Carmona, Marina; Velasco-Molina, Marta; de la Rosa, José Maria; León-Ovelar, Laura Regina; Fernandez-Boy, Elena

    2017-04-01

    Intense research on biochar and charcoal of the last years has revealed that depending on the production conditions, the chemical and physical characteristics of their aromatic network can greatly vary. Since such variations are determining the behavior and stability of charred material in soils, a better understanding of the structural changes occurring during their heating and the impact of those changes on their function is needed. One method to characterize pyrogenic organic matter (PyOM) represents solid-state 13C NMR spectroscopy applying the cross polarization (CP) magic angle spinning technique (MAS). A drawback of this technique is that the quantification of NMR spectra of samples with highly condensed and proton-depleted structures is assumed to be bias. Typical samples with such attributes are charcoals produced at temperatures above 700°C under pyrolytic conditions. Commonly their high condensation degree leads to graphenic structures that are not only reducing the CP efficiency but create also a conductive lattice which acts as a shield and prevents the entering of the excitation pulse into the sample during the NMR experiments. Since the latter can damage the NMR probe and in the most cases the obtained NMR spectra show only one broad signal assignable to aromatic C, this technique is rarely applied for characterizing high temperature chars or soot. As a consequence, a more detailed knowledge of the nature of the aromatic ring systems is still missing. The latter is also true for the aromatic domains of PyOM produced at lower temperatures, since older NMR instruments operating at low magnetic fields deliver solid-state 13C NMR spectra with low resolution which turns a more detailed analysis of the aromatic chemical shift region into a challenging task. In order to overcome this disadvantages, modern NMR spectroscopy offers not only instruments with greatly improved resolution but also special pulse sequences for NMR experiments which allow a more

  11. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    Science.gov (United States)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  12. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  13. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-12-15

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K{sub D}) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K{sub D} value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of {sup 1}H-{sup 15}N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k{sub off}). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k{sub off} {approx} 3,000 s{sup -1} in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k{sub off} from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k{sub off} values over a wide range, from 100 to 15,000 s{sup -1}. The validity of line shape analysis for k{sub off} values approaching intermediate exchange ({approx}100 s{sup -1}), may be facilitated by

  14. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  15. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  16. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  17. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  18. Organometallic derivatives of furan. LII. Synthesis of carbofunctional furylsilanes and their 1H, 13C, and 29Si NMR spectroscopic and quantum-chemical investigation

    International Nuclear Information System (INIS)

    Lukevits, E.; Erchak, N.P.; Castro, I.; Popelis, Yu.Yu.; Kozyrev, A.K.; Anoshkin, V.I.; Kovalev, I.F.

    1986-01-01

    Under the standard conditions for the synthesis of furan compounds it is possible to obtain the carbofunctional derivatives of silylated furfural with retention of the trimethylsilyl group in the ring. By NMR and CNDO/2 LCAO MO methods and also as a result of the investigation of the chemical characteristics of silylated furfural and its carbofunctional derivatives it was established that the introduction of a trimethylsilyl group at position 5 of the furan ring does not change the reactivity of the carbofunctional substituents at position 2. The electronic effects of the substituents are hardly transmitted through the furan ring at all. The effect of substituents in the carbofunctional furylsilanes on the electronic structure of the ring is additive

  19. NMR studies of echinomycin bisintercalation complexes with d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution: sequence-dependent formation of Hoogsteen A1 x T4 and Watson-Crick T1 x A4 base pairs flanking the bisintercalation site

    International Nuclear Information System (INIS)

    Gao, X.; Patel, D.J.

    1988-01-01

    The authors report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-Tr) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets records in H 2 O and D 2 O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A large set of intermolecular contacts established from nuclear Overhauser effects (NOEs) between antibiotic and nucleic acid protons in the echinomycin-tetranucleotide complexes in solution are consistent with corresponding contacts reported for echinomycin-oligonucleotide complexes in the crystalline state. The authors demonstrate that the G x G base pairs adopt Watson-Crick pairing in both d(ACGT) and d(TCGA) complexes in solution. By contrast, the A1 x T4 base pairs adopt Hoogsteen pairing for the echinomycin-d(A1-C2-G3-Tr) complex while the T1 x A4 base pairs adopt Watson-Crick pairing for the echinomycin-d(T1-C2-G3-A4) complex in aqueous solution. These results emphasize the role of sequence in discriminating between Watson-Crick and Hoogsteen pairs at base pairs flanking the echinomycin bisintercalation site in solution

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Mangala Sunder Krishnan. Articles written in Journal of Chemical Sciences. Volume 119 Issue 5 September 2007 pp 417-422. Effective Floquet Hamiltonian for spin = 1 in magic angle spinning NMR using contact transformation · Manoj Kumar Pandey Mangala Sunder ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Shivanand M Pudakalakatti. Articles written in Journal of Chemical Sciences. Volume 127 Issue 6 June 2015 pp 1091-1097 Regular Articles. Simultaneous acquisition of three NMR spectra in a single experiment for rapid resonance assignments in metabolomics · Shivanand ...

  2. SPECTROSCOPIC STUDY OF EFFECTS OF TETRAALKYLAMMONIUM CATIONS ON F--SENSING PROPERTIES OF CALIX[4]PYRROLE BORADIAZAINDACENE DYE

    Directory of Open Access Journals (Sweden)

    Yongjun Lv

    Full Text Available A novel meso-tetracyclohexylcalix[4]pyrrole-based boradiazaindacene dye 3 was synthesized and characterized. F--binding properties of the dye in the presence of tetrabutylammonium (TBA+, tetraethylammonium (TEA+, and tetramethylammonium (TMA+ counter ions were investigated by UV-Vis, fluorescence, and NMR spectroscopies. Dye 3 displayed various degrees of absorption red shift, fluorescence quenching, and downfield shifts of NH signals for the three fluoride salts. The association constants of these salts mainly depend on cation size effects and ion-pairing effects and were in the order KTMA+ > KTEA+ > KTBA+. Thus, we speculate that both F- and tetraalkylammonium cations are concomitantly located above and below a bowl-shaped calix[4]pyrrole cup in an ion-paired complex, respectively.

  3. Complete {sup 1}H and {sup 13}C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Susana; Smania Junior, Artur [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Microbiologia e Parasitologia. Lab. de Antibioticos; Pizzolatti, Moacir G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica; Schripsema, Jan; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Branco, Alexsandro [Universidade Estadual de Feira de Santana, BA (Brazil). Dept. de Saude. Lab. de Fitoquimica]. E-mail: branco@uefs.br

    2007-06-15

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ({sup 1}H NMR, {l_brace}{sup 1}H{r_brace} {sup -13}C NMR, and APT{sup -13}C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete {sup 1}H and {sup 13}C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  4. NMR spectroscopic characterization of β-cyclodextrin inclusion complex with vanillin

    International Nuclear Information System (INIS)

    Pirnau, Adrian; Bogdan, Mircea; Floare, Calin G

    2009-01-01

    The inclusion of vanillin by β-cyclodextrin was investigated by 1 H NMR. The continuous variation technique was used to evidence the formation of soluble 1:1 complex in aqueous solution. The association constant of vanillin with β-cyclodextrin has been obtained at 298 K by fitting the experimental chemical shifts differences, Δδ obs δ free - δ obs of the observed guest and host protons, with a non-linear regression method. Besides the effective association constant, the fitting procedure allows a precise determination of all chemical shift parameters characterizing the pure complex. They can by used for an analysis of the geometry of the molecular complex in solution.

  5. {sup 1}H NMR investigation of self-association of vanillin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, Mircea; Floare, Calin G; PIrnau, Adrian, E-mail: mircea.bogdan@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    A self-association of vanillin have been studied by {sup 1}H NMR spectroscopy using the analysis of proton chemical shifts changes in aqueous solution as a function of concentration. The experimental results have been analysed using indefinite non-cooperative and cooperative models of molecular self-association, enabling the determination of equilibrium constants, parameters of cooperativity and the limiting values of vanillin proton chemical shifts in the complex. It was found that the dimer formation creates energetically favourable conditions for subsequent molecular association.

  6. Discrimination of sugarcane according to cultivar by 1H NMR and chemometric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Alves Filho, Elenilson G.; Silva, Lorena M.A.; Choze, Rafael; Liao, Luciano M. [Laboratorio de Ressonancia Magnetica Nuclear, Instituto de Quimica, Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Honda, Neli K.; Alcantara, Glaucia B. [Departamento de Quimica, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil)

    2012-07-01

    Several technologies for the development of new sugarcane cultivars have mainly focused on the increase in productivity and greater disease resistance. Sugarcane cultivars are usually identified by the organography of the leaves and stems, the analysis of peroxidase and esterase isoenzyme activities and the total soluble protein as well as soluble solid content. Nuclear magnetic resonance (NMR) associated with chemometric analysis has proven to be a valuable tool for cultivar assessment. Thus, this article describes the potential of chemometric analysis applied to 1H high resolution magic angle spinning (HRMAS) and NMR in solution for the investigation of sugarcane cultivars. For this purpose, leaves from eight different cultivars of sugarcane were investigated by {sup 1}H NMR spectroscopy in combination with chemometric analysis. The approach shows to be a useful tool for the distinction and classification of different sugarcane cultivars as well as to access the differences on its chemical composition. (author)

  7. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  8. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  9. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. DFT study of zigzag (n, 0) single-walled carbon nanotubes: C-13 NMR chemical shifts

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, Jakub

    2016-01-01

    Roč. 67, Jun (2016), s. 14-19 ISSN 1093-3263 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : zigzag SWCNT * cyclacenes * theoretical modeling * DFT * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.754, year: 2016

  11. Characterization of E and Z isomers in macrocyclic lactones and acyclic pheromones by NMR spectra

    International Nuclear Information System (INIS)

    Mahajan, J.R.; Resck, I.S.; Braz Filho, R.; Carvalho, M.G. de

    1995-01-01

    A large proportion of pheromones, isolated from a variety of insects, constitutes a big list of diversely functionalized acyclic compounds, which have been synthesized by several routes. Catalytic or chemical methods were examined for the Z to E isomerization and their efficiency checked by 1 H and 13 C NMR spectra. Nuclear magnetic resonance has been used to identify and characterize molecular structure of the compounds, besides chemical shifts was analysed

  12. Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study.

    Science.gov (United States)

    Karjalainen, Jouni; Vaara, Juha; Straka, Michal; Lantto, Perttu

    2015-03-21

    Applications of liquid crystals (LCs), such as smart windows and the ubiquitous display devices, are based on controlling the orientational and translational order in a small volume of LC medium. Hence, understanding the effects of confinement to the liquid crystal phase behaviour is essential. The NMR shielding of (129)Xe atoms dissolved in LCs constitutes a very sensitive probe to the details of LC environment. Linking the experimental results to microscopic phenomena calls for molecular simulations. In this work, the NMR shielding of atomic (129)Xe dissolved in a uniaxial thermotropic LC confined to nanosized cylindrical cavities is computed from coarse-grained (CG) isobaric Monte Carlo (MC) simulations with a quantum-chemically (QC) pre-parameterised pairwise-additive model for the Xe nuclear shielding tensor. We report the results for the (129)Xe nuclear shielding and its connection to the structure and order of the LC appropriate to two different cavity sizes, as well as a comparison to the results of bulk (non-confined) simulations. We find that the confinement changes the LC phase structure dramatically and gives rise to the coexistence of varying degrees of LC order, which is reflected in the Xe shielding. Furthermore, we qualitatively reproduce the behaviour of the mean (129)Xe chemical shift with respect to temperature for atomic Xe dissolved in LC confined to controlled-pore glass materials. In the small-radius cavity the nematic - paranematic phase transition is revealed only by the anisotropic component of the (129)Xe nuclear shielding. In the larger cavity, the nematic - paranematic - isotropic transition is clearly seen in the Xe shielding. The simulated (129)Xe NMR shielding is insensitive to the smectic-A - nematic transition, since in the smectic-A phase, the Xe atoms largely occupy the imperfect layer structure near the cavity walls. The direct contribution of the cavity wall to (129)Xe nuclear shielding is dependent on the cavity size but

  13. Difference in the structures of alanine tri- and tetra-peptides with antiparallel β-sheet assessed by X-ray diffraction, solid-state NMR and chemical shift calculations by GIPAW.

    Science.gov (United States)

    Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori

    2014-01-01

    Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.

  14. Homochiral Acyl Isocyanates as Diagnostic NMR Probes for the Enantiomeric Purity of Chiral Alcohols

    Directory of Open Access Journals (Sweden)

    Gregory H. P. Roos

    2000-12-01

    Full Text Available The first reported acyl and sulfonylisocyanates were developed and tested in reactions with chiral alcohols to afford diastereomeric carbamates. NMR analysis of these investigates the chemical shift discrimination that would allow these activated isocyanates to be used as diagnostic probes of enantiomeric purity.

  15. Sequential nearest-neighbor effects on computed {sup 13}C{sup {alpha}} chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Jorge A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Serrano, Pedro; Wuethrich, Kurt [The Scripps Research Institute, Department of Molecular Biology (United States); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-09-15

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of {sup 13}C{sup {alpha}} chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue {alpha}/{beta} protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed {sup 13}C{sup {alpha}} chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical {sup 13}C{sup {alpha}} chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed {sup 13}C{sup {alpha}} chemical shifts, {Delta}{sub ca,i}, for the individual residues along the sequence. This indicates that the {Delta}{sub ca,i} -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.

  16. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  17. NMR and MRI of continuously dissolved hyperpolarized {sup 129}Xe by means of hollow fibers

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Nadia; Kueppers, Markus; Bluemich, Bernhard [ITMC of RWTH Aachen University (Germany); Hamilton, Kathrin; Schmitz-Rode, Thomas; Steinseifer, Ulrich [HIA of RWTH Aachen University (Germany); Appelt, Stephan [Research Center Juelich (Germany)

    2011-07-01

    Various methods of hyperpolarizing (HP) spin systems have been developed during the last years to increase the intrinsically low sensitivity of NMR by several orders of magnitude. Among them is the hyperpolarization of {sup 129}Xe via Spin Exchange Optical Pumping (SEOP). NMR of HP {sup 129}Xe is of great interest because of its good solubility and its very sensitive chemical shift. The main obstacle for many applications is the efficient and continuous dissolution into carrier agents without formation of foams or bubbles. It has been overcome by the so-called ''xenonizer'' setups. They mainly consist of commercially available hollow fiber membranes typically used in clinical oxygenators. A purpose-built xenonizer setup has been developed and analyzed in detail by NMR spectroscopy and MRI for varying fiber materials as well as for different fluids, including bio-relevant fluids such as blood, plasma, and erythrocytes. As a result, the xenonizer technology could be further understood and improved, and new applications of HP {sup 129}Xe for medical NMR were explored.

  18. Microstructure study of ethylene, propylene and 1-decene terpolymers by 13C-NMR

    International Nuclear Information System (INIS)

    Ferreira, Marcio; Escher, Fernanda Nunes; Galland, Griselda Barrera

    2001-01-01

    Terpolymers of ethylene-propylene-1-decene with different composition of monomers were obtained using the metallocenes catalyst rac-EtInd 2 ZrCl 2 . The complete 13 C-NMR characterization of these terpolymers was done qualitatively and quantitatively. Chemical shifts, carbon assignments and corresponding integrals for each triad sequence are presented. (author)

  19. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction

    International Nuclear Information System (INIS)

    Wen, Jia-Long; Sun, Shao-Long; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2014-01-01

    Highlights: • The terrified bamboo has a high energy yield of 85.7% and a HHV of 20.13 MJ/kg. • The structural changes of hemicelluloses, cellulose, and lignin were investigated. • First study on the structural transformations of lignin during torrefaction. • The mechanism of structural changes of lignin has been proposed. - Abstract: Torrefaction is an efficient method to recover energy from biomass. Herein, the characteristics (mass yield, energy yield, physical, and chemical characteristics) of torrefied bamboo at diverse temperatures (200–300 °C) were firstly evaluated by elemental analysis, XRD, and CP–MAS 13 C NMR methodologies. Under an optimal condition the terrified bamboo has a relative high energy yield of 85.7% and a HHV of 20.13 MJ/kg. The chemical and structural transformations of lignin induced by thermal treatment were thoroughly investigated by FT-IR and solution-state NMR techniques (quantitative 13 C NMR, 2D-HSQC, and 31 P-NMR methodologies). The results highlighted the chemical reactions of the native bamboo lignins towards severe torrefaction treatments occurred, such as depolymerization, demethoxylation, bond cleavage, and condensation reactions. NMR results indicated that aryl-ether bonds (β-O-4) and p-coumaric ester in lignin were cleaved during the torrefaction process at mild conditions. The severe treatments of bamboo (275 °C and 300 °C) induced a dramatic enrichment in lignin content together with the almost complete disappearance of β-O-4, β-β, and β-5 linkages. Further analysis of the molecular weight of milled wood lignin (MWL) indicated that the average molecular weights of “torrefied MWL” were lower than those of control MWL. It is believed that understanding of the reactivity and chemical transformations of lignin during torrefaction will contribute to the integrated torrefaction mechanism

  20. NMR imaging of cerebral infarction

    International Nuclear Information System (INIS)

    Takusagawa, Yoshihiko; Yamaoka, Naoki; Doi, Kazuaki; Okada, Keisei

    1987-01-01

    One hundred and five patients with cerebral infarction were studied by nuclear magnetic resonance (NMR) CT (resistive type of magnet with strength of 0.1 tesla) and X-ray CT. Pulse sequences used saturation recovery (Tr = 600 mSec), Inversion recovery (Tr = 500 mSec, Td = 300 mSec) and spin echo (Tr = 1500 mSec, Te = 40, 80, 120, 160 mSec). Fifteen cases were examined by NMR-CT within 24 hours from onset. Proton NMR imaging could not detect cerebral ischemia as early as 2 hours after onset, but except could detect the lesions in Se image the area of cerebral infarct 3 hours after onset. After 5 hours from onset image changes in SE were evident and corresponded to the area of cerebral infarct, but image changes in IR could not fully delineate the infarcted area. NMR images of 41 year-old woman with cerebral embolism by MCA trunck occlusion associated with mitral stenosis were presented, and NMR-CT was examined 10 hours, 9th and 43th days after episode of MCA occlusion. Sixty patents (64 times) with lacunar infarction were studied by NMR-CT and X-ray CT. The inversion recovery images were used mainly for detection of lesions and comparison with X-ray CT. In 160 lesions which were detected by NMR-CT or X-ray CT, could 156 lesions be detected by NMR-CT and 78 lesions by X-ray CT. Inversion recovery images were more useful for detection of lacunes than X-ray CT. Calculated T1 and T2 values prolonged with time course from onset. (author)

  1. Statistical removal of background signals from high-throughput 1H NMR line-broadening ligand-affinity screens

    International Nuclear Information System (INIS)

    Worley, Bradley; Sisco, Nicholas J.; Powers, Robert

    2015-01-01

    NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of protein–ligand interaction at their binding interfaces. While simple one-dimensional 1 H NMR experiments are capable of indicating binding through a change in ligand line shape, they are plagued by broad, ill-defined background signals from protein 1 H resonances. We present an uncomplicated method for subtraction of protein background in high-throughput ligand-based affinity screens, and show that its performance is maximized when phase-scatter correction is applied prior to subtraction

  2. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    Science.gov (United States)

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  3. Automated Pre-processing for NMR Assignments with Reduced Tedium

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-11

    An important rate-limiting step in the reasonance asignment process is accurate identification of resonance peaks in MNR spectra. NMR spectra are noisy. Hence, automatic peak-picking programs must navigate between the Scylla of reliable but incomplete picking, and the Charybdis of noisy but complete picking. Each of these extremes complicates the assignment process: incomplete peak-picking results in the loss of essential connectivities, while noisy picking conceals the true connectivities under a combinatiorial explosion of false positives. Intermediate processing can simplify the assignment process by preferentially removing false peaks from noisy peak lists. This is accomplished by requiring consensus between multiple NMR experiments, exploiting a priori information about NMR spectra, and drawing on empirical statistical distributions of chemical shift extracted from the BioMagResBank. Experienced NMR practitioners currently apply many of these techniques "by hand", which is tedious, and may appear arbitrary to the novice. To increase efficiency, we have created a systematic and automated approach to this process, known as APART. Automated pre-processing has three main advantages: reduced tedium, standardization, and pedagogy. In the hands of experienced spectroscopists, the main advantage is reduced tedium (a rapid increase in the ratio of true peaks to false peaks with minimal effort). When a project is passed from hand to hand, the main advantage is standardization. APART automatically documents the peak filtering process by archiving its original recommendations, the accompanying justifications, and whether a user accepted or overrode a given filtering recommendation. In the hands of a novice, this tool can reduce the stumbling block of learning to differentiate between real peaks and noise, by providing real-time examples of how such decisions are made.

  4. NMR detection of short-lived β-emitter {sup 12}N implanted in water

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, T., E-mail: sugihara@vg.phys.sci.osaka-u.ac.jp; Mihara, M.; Shimaya, J.; Matsuta, K.; Fukuda, M.; Ohno, J.; Tanaka, M.; Yamaoka, S.; Watanabe, K.; Iwakiri, S.; Yanagihara, R.; Tanaka, Y.; Du, H.; Onishi, K.; Kambayashi, S.; Minamisono, T. [Osaka University, Department of Physics (Japan); Nishimura, D. [Tokyo University of Science, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Ozawa, A. [University of Tsukuba, Department of Physics (Japan); Ishibashi, Y. [RIKEN Nishina Center for Accelerator-Based Science (Japan); and others

    2017-11-15

    The beta-detected nuclear magnetic resonance (β-NMR) in liquid H{sub 2}O has been observed for the first time using a short-lived β-ray emitter {sup 12}N (I{sup π} = 1{sup +},T{sub 1/2}=11 ms). A nuclear spin polarized {sup 12}N beam with an energy of about 20 MeV/nucleon was implanted into an enclosed water sample. About 50 % of implanted {sup 12}N ions maintained nuclear polarization and exhibited a β-NMR spectrum. The chemical shift of {sup 12}N in H{sub 2}O relative to {sup 12}N in Pt was deduced to be −(3.6±0.5) × 10{sup 2} ppm.

  5. Comparison of Fruits of Forsythia suspensa at Two Different Maturation Stages by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Jinping Jia

    2015-05-01

    Full Text Available Forsythiae Fructus (FF, the dried fruit of Forsythia suspensa, has been widely used as a heat-clearing and detoxifying herbal medicine in China. Green FF (GF and ripe FF (RF are fruits of Forsythia suspensa at different maturity stages collected about a month apart. FF undergoes a complex series of physical and biochemical changes during fruit ripening. However, the clinical uses of GF and RF have not been distinguished to date. In order to comprehensively compare the chemical compositions of GF and RF, NMR-based metabolomics coupled with HPLC and UV spectrophotometry methods were adopted in this study. Furthermore, the in vitro antioxidant and antibacterial activities of 50% methanol extracts of GF and RF were also evaluated. A total of 27 metabolites were identified based on NMR data, and eight of them were found to be different between the GF and RF groups. The GF group contained higher levels of forsythoside A, forsythoside C, cornoside, rutin, phillyrin and gallic acid and lower levels of rengyol and β-glucose compared with the RF group. The antioxidant activity of GF was higher than that of RF, but no significant difference was observed between the antibacterial activities of GF and RF. Given our results showing their distinct chemical compositions, we propose that NMR-based metabolic profiling can be used to discriminate between GF and RF. Differences in the chemical and biological activities of GF and RF, as well as their clinical efficacies in traditional Chinese medicine should be systematically investigated in future studies.

  6. Towards {sup 31}Mg-β-NMR resonance linewidths adequate for applications in magnesium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Stachura, M., E-mail: mstachura@triumf.ca [TRIUMF (Canada); McFadden, R. M. L. [University of British Columbia, Chemistry Department (Canada); Chatzichristos, A.; Dehn, M. H. [University of British Columbia, Department of Physics and Astronomy (Canada); Gottberg, A. [TRIUMF (Canada); Hemmingsen, L. [Københavns Universitet Universitetsparken 5, Kemisk Institut (Denmark); Jancso, A. [University of Szeged, Department of Inorganic and Analytical Chemistry (Hungary); Karner, V. L. [University of British Columbia, Chemistry Department (Canada); Kiefl, R. F. [University of British Columbia, Department of Physics and Astronomy (Canada); Larsen, F. H. [Københavns Universitet Rolighedsvej 26, Institut for Fødevarevidenskab (Denmark); Lassen, J.; Levy, C. D. P.; Li, R. [TRIUMF (Canada); MacFarlane, W. A. [University of British Columbia, Chemistry Department (Canada); Morris, G. D. [TRIUMF (Canada); Pallada, S. [CERN (Switzerland); Pearson, M. R. [TRIUMF (Canada); Szunyogh, D.; Thulstrup, P. W. [Københavns Universitet Universitetsparken 5, Kemisk Institut (Denmark); Voss, A. [University of Jyväskylä, Department of Physics (Finland)

    2017-11-15

    The span of most chemical shifts recorded in conventional {sup 25}Mg-NMR spectroscopy is ~ 100 ppm. Accordingly, linewidths of ~ 10 ppm or better are desirable to achieve adequate resolution for applications in chemistry. Here we present first high-field {sup 31}Mg- β-NMR measurements of {sup 31}Mg{sup +} ions implanted into a MgO single crystal carried out at the ISAC facility at TRIUMF. The resonances recorded at 2.5 T and 3.5 T show strong linewidth dependency on the applied RF power, ranging from ~ 419 ppm for the highest RF power down to ~ 48 ppm for the lowest one.

  7. Conformational analysis of 9,10-dihydroanthracenes. Molecular mechanics calculations and /sup 13/C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Rabideau, P.W.; Mooney, J.L.; Lipkowitz, K.B.

    1986-12-24

    The conformational analyses of 9, 10-dihydroanthracene and several of its methylated and ethylated derivatives are studied by empirical force field calculations (MM2 and MMPI). The computational results are considered in light of previous and current carbon NMR data. Model compounds are examined which involve fixed, planar, and boat-shaped conformations about the central ring, and these /sup 13/C NMR data are then compared with flexible systems. It is concluded that carbon chemical shifts and carbon-hydrogen coupling constants are consistent with the results of molecular mechanics calculations which indicate a greater tendency for planarity around the central ring than previously considered.

  8. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  9. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  10. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  11. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    Science.gov (United States)

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Methodology for the identification of tri-terpenes mixtures components by {sup 13} C NMR; Metodologia para identificao dos componentes de misturas de triterpenos por RMN de {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Roberto S.G.

    1990-12-31

    This work describes a methodology for the identification of tri terpenes complex mixtures by {sup 13} C NMR. The use of {sup 13} C NMR techniques, such as obtention of noise decoupled spectra, DEPT 135 and DEPT 90 sequences, allowed the identification of components of triterpene mixtures with identical functionality through comparison of observed {sup 13} C NMR chemical shifts with {sup 13} C NMR chemical shifts reported in the literature. The method proved to be specially helpful in the identification of triterpenes by analysis of chemical shifts assignable to doubly bonded carbons, since the particular position of such double bonds is characteristic of some triterpene skeletons. Application of this methodology indicated the presence of bauerenol, {alpha}-amyrin and {beta}-amyrin in Acmanthera latifolis Griseb. (Malpighiaceae); of germanicone, lupenone, {alpha}-amyrenone and {beta}-amyrenone in Alibertia macrophylla A. Rich. (Rubiaceae); of {alpha}-amyrin acetate, lupeol acetate and {beta}-amyrin acetate in Vernonia polyanthes Schreb. (Asteraceae); {alpha}-amyrenone, {beta}-amyrenone, boehmerone, friedelin, lupenone, {alpha}-amyrin, {beta}-amyrin and glutinol in Scoparia dulcis L. (Scrophulariaceae). (author). 37 refs., 93 figs.

  13. Methodology for the identification of tri-terpenes mixtures components by {sup 13} C NMR; Metodologia para identificao dos componentes de misturas de triterpenos por RMN de {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Roberto S.G.

    1991-12-31

    This work describes a methodology for the identification of tri terpenes complex mixtures by {sup 13} C NMR. The use of {sup 13} C NMR techniques, such as obtention of noise decoupled spectra, DEPT 135 and DEPT 90 sequences, allowed the identification of components of triterpene mixtures with identical functionality through comparison of observed {sup 13} C NMR chemical shifts with {sup 13} C NMR chemical shifts reported in the literature. The method proved to be specially helpful in the identification of triterpenes by analysis of chemical shifts assignable to doubly bonded carbons, since the particular position of such double bonds is characteristic of some triterpene skeletons. Application of this methodology indicated the presence of bauerenol, {alpha}-amyrin and {beta}-amyrin in Acmanthera latifolis Griseb. (Malpighiaceae); of germanicone, lupenone, {alpha}-amyrenone and {beta}-amyrenone in Alibertia macrophylla A. Rich. (Rubiaceae); of {alpha}-amyrin acetate, lupeol acetate and {beta}-amyrin acetate in Vernonia polyanthes Schreb. (Asteraceae); {alpha}-amyrenone, {beta}-amyrenone, boehmerone, friedelin, lupenone, {alpha}-amyrin, {beta}-amyrin and glutinol in Scoparia dulcis L. (Scrophulariaceae). (author). 37 refs., 93 figs.

  14. Ab initio/GIAO-CCSD(T) (13)C NMR study of the rearrangement and dynamic aspects of rapidly equilibrating tertiary carbocations, C6H13(+) and C7H15(+).

    Science.gov (United States)

    Olah, George A; Prakash, G K Surya; Rasul, Golam

    2016-01-05

    The rearrangement pathways of the equilibrating tertiary carbocations, 2,3-dimethyl-2-butyl cation (C6H13(+), 1), 2,3,3-trimethyl-2-butyl cation (C7H15(+), 5) and 2,3-dimethyl-2-pentyl cation (C7H15(+), 8 and 9) were investigated using the ab initio/GIAO-CCSD(T) (13)C NMR method. Comparing the calculated and experimental (13)C NMR chemical shifts of a series of carbocations indicates that excellent prediction of δ(13)C could be achieved through scaling. In the case of symmetrical equilibrating cations (1 and 5) the Wagner-Meerwein 1,2-hydride and 1,2-methide shifts, respectively, produce the same structure. This indicates that the overall (13)C NMR chemical shifts are conserved and independent of temperature. However, in the case of unsymmetrical equilibrating cations (8 and 9) the Wagner-Meerwein shift produces different tertiary structures, which have slightly different thermodynamic stabilities and, thus, different spectra. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level structure 8 is only 90 calories/mol more stable than structure 9. Based on computed (13)C NMR chemical shift calculations, mole fractions of these isomers were determined by assuming the observed chemical shifts are due to the weighted average of the chemical shifts of the static ions. © 2015 Wiley Periodicals, Inc.

  15. Fluorine dynamics in BaF2 superionic conductors investigated by NMR

    International Nuclear Information System (INIS)

    Gumann, Patryk

    2008-01-01

    In this work the dynamics of fluorine in solid-state electrolytes having BaF 2 -structure was investigated using three different NMR-methods: field cycling relaxometry, lineshape analysis, and static field gradient NMR. For this purpose a pure BaF 2 crystal, as well as crystals doped with trivalent impurities (LaF 3 ), were studied as a function of temperature. Using MAS NMR it was possible to identify two lines in Ba 0.9 La 0.1 F 2.1 having different chemical shift, and to refer them to the modified crystal structure. On this basis a model for the fluorine lineshape has been developed, taking into account three motional processes characterized by their correlation times. It includes jump diffusion of the fluorine ions among equivalent sites within two crystallographically distinct sublattices, and inter-lattice exchange processes. By measuring frequency and temperature-dependent spin lattice relaxation times, it was possible to gain information about fluorine dynamics on microscopic length scales. An attempt was also made to analyze the data for pure BaF 2 and low admixture concentration samples with a non-exponential correlation function. (orig.)

  16. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  17. Measurements of relative chemical shift tensor orientations in solid-state NMR: new slow magic angle spinning dipolar recoupling experiments.

    Science.gov (United States)

    Jurd, Andrew P S; Titman, Jeremy J

    2009-08-28

    Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.

  18. Solid-state (49/47)Ti NMR of titanium-based MCM-41 hybrid materials.

    Science.gov (United States)

    Ballesteros, Ruth; Fajardo, Mariano; Sierra, Isabel; Force, Carmen; del Hierro, Isabel

    2009-11-03

    Titanium solid-state NMR spectroscopy data for a series of organic-inorganic titanium MCM-41 based materials have been collected. These materials have been synthesized by first modifying the mesoporous silica MCM-41 in one step with a mixture of silanes: a triazine propyl triethoxysilane acting as functional linker and methyltrimethoxysilane or hexamethyldisilizane as capped agents to mask the remaining silanol groups. Second, the appropiate titanium precursor Ti(OPr(i))(4), [{Ti(OPr(i))(3)(OMent)}(2)] (OMent = 1R,2S,5R-(-)-menthoxo), Ti(OPr(i))(4), or [Ti(eta(5)-C(5)HMe(4))Cl(3)], has been immobilized by reaction with the modified MCM-41. Finally, after Ti(OPr(i))(4) immobilization onto the organomodified support the reaction with the chiral (+)-diethyl-l-tartrate was accomplished. The materials without functional linker have been also prepared by reaction in one step of the capped agent and the titanium precursor with the mesoporous silica. Relevant correlations of titanium NMR resonance chemical shifts and line widths can be inferred depending on different factors. The immobilization procedure used to prepare titanium-based MCM-41 hybrid materials and the choice of the silylating reagents employed to mask the silanol groups present on the silica surfaces produce significant differences in the Ti NMR spectra. Furthermore, depending on the electronic and sterical influence of the substituents directly attached to the titanium center, chemical shifts and line widths are modified providing novel information about titanium structure.

  19. Untangle soil-water-mucilage interactions: 1H NMR Relaxometry is lifting the veil

    Science.gov (United States)

    Brax, Mathilde; Buchmann, Christian; Schaumann, Gabriele Ellen

    2017-04-01

    Mucilage is mainly produced at the root tips and has a high water holding capacity derived from highly hydrophilic gel-forming substances. The objective of the MUCILAGE project is to understand the mechanistic role of mucilage for the regulation of water supply for plants. Our subproject investigates the chemical and physical properties of mucilage as pure gel and mixed with soil. 1H-NMR Relaxometry and PFG NMR represent non-intrusive powerful methods for soil scientific research by allowing quantification of the water distribution as well as monitoring of the water mobility in soil pores and gel phases.Relaxation of gel water differs from the one of pure water due to additional interactions with the gel matrix. Mucilage in soil leads to a hierarchical pore structure, consisting of the polymeric biohydrogel network surrounded by the surface of soil particles. The two types of relaxation rates 1/T1 and 1/T2 measured with 1H-NMR relaxometry refer to different relaxation mechanisms of water, while PFG-NMR measures the water self-diffusion coefficient. The objective of our study is to distinguish in situ water in gel from pore water in a simplified soil system, and to determine how the "gel effect" affects both relaxation rates and the water self-diffusion coefficient in porous systems. We demonstrate how the mucilage concentration and the soil solution alter the properties of water in the respective gel phases and pore systems in model soils. To distinguish gel-inherent processes from classical processes, we investigated the variations of the water mobility in pure chia mucilage under different conditions by using 1H-NMR relaxometry and PFG NMR. Using model soils, the signals coming from pore water and gel water were differentiated. We combined the equations describing 1H-NMR relaxation in porous systems and our experimental results, to explain how the presence of gel in soil affects 1H-NMR relaxation. Out of this knowledge we propose a method, which determines in

  20. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.

    Science.gov (United States)

    Leiss, Kirsten A; Choi, Young H; Abdel-Farid, Ibrahim B; Verpoorte, Robert; Klinkhamer, Peter G L

    2009-02-01

    Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F (2) hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F (2) hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant-insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants.

  1. PINE-SPARKY.2 for automated NMR-based protein structure research.

    Science.gov (United States)

    Lee, Woonghee; Markley, John L

    2018-05-01

    Nuclear magnetic resonance (NMR) spectroscopy, along with X-ray crystallography and cryoelectron microscopy, is one of the three major tools that enable the determination of atomic-level structural models of biological macromolecules. Of these, NMR has the unique ability to follow important processes in solution, including conformational changes, internal dynamics and protein-ligand interactions. As a means for facilitating the handling and analysis of spectra involved in these types of NMR studies, we have developed PINE-SPARKY.2, a software package that integrates and automates discrete tasks that previously required interaction with separate software packages. The graphical user interface of PINE-SPARKY.2 simplifies chemical shift assignment and verification, automated detection of secondary structural elements, predictions of flexibility and hydrophobic cores, and calculation of three-dimensional structural models. PINE-SPARKY.2 is available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). For a detailed description of the program, see http://www.nmrfam.wisc.edu/pine-sparky2.htm. whlee@nmrfam.wisc.edu or markley@nmrfam.wisc.edu. Supplementary data are available at Bioinformatics online.

  2. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  3. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  4. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping; Pilla, Kala Bharath; Li, Qingfeng; Zhang, Zhengfeng; Su, Xuncheng; Huber, Thomas; Yang, Jun

    2013-01-01

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  5. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics.

    Science.gov (United States)

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  6. Characterization of functional polymers by NMR; Caracterizacao de polimeros funcionalizados por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Oscar H.S. A.S.; San Gil, Rosane A.S.; Nakayama, T; Costa Neto, Claudio [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1994-12-31

    Several synthetic polymers are used in the chemical analysis of complexes mixtures aiming to extract certain specific functional groups for further identification. This work describes the utilization of NMR in the characterization of one of the above mentioned compounds which will be used as reagent for the synthesis of another compound of the same type, which will be further used in the chemical analysis of alcohols and phenols. The methodology is described. The results are described and discussed 4 refs., 2 figs.

  7. NMR spectroscopic characterization of {beta}-cyclodextrin inclusion complex with vanillin

    Energy Technology Data Exchange (ETDEWEB)

    Pirnau, Adrian; Bogdan, Mircea; Floare, Calin G, E-mail: adrian.pirnau@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The inclusion of vanillin by {beta}-cyclodextrin was investigated by {sup 1}H NMR. The continuous variation technique was used to evidence the formation of soluble 1:1 complex in aqueous solution. The association constant of vanillin with {beta}-cyclodextrin has been obtained at 298 K by fitting the experimental chemical shifts differences, {Delta}{delta}{sub obs} {delta}{sub free} - {delta}{sub obs} of the observed guest and host protons, with a non-linear regression method. Besides the effective association constant, the fitting procedure allows a precise determination of all chemical shift parameters characterizing the pure complex. They can by used for an analysis of the geometry of the molecular complex in solution.

  8. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  9. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. 2,6-Lutidine-isatinecate, a semi-synthetic pyrrolizidine alkaloid: X-ray and n.m.r. studies

    International Nuclear Information System (INIS)

    Drewes, S.E.; Field, J.S.; Pitchford, A.T.; Van Rooyen, P.H.; Dillen, J.L.M.

    1985-01-01

    A semi-synthetic pyrrolizidine alkaloid has been prepared from a necic acid and a pyridine base moiety. N.m.r. and X-ray analyses of this compound were carried out in order to establish the relationship between the structure and chemical shift

  11. Empirical correlation between protein backbone {sup 15}N and {sup 13}C secondary chemical shifts and its application to nitrogen chemical shift re-referencing

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liya [Cold Spring Harbor Laboratory (United States); Markley, John L. [University of Wisconsin, Biochemistry Department (United States)], E-mail: markley@nmrfam.wisc.edu

    2009-06-15

    The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting {sup 13}C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to {sup 15}N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary {sup 15}N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i - 1. Thus once alpha and beta {sup 13}C chemical shifts are available (their difference is referencing error-free), the {sup 15}N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have {delta}{sup 15}N values mis-referenced by over 0.7 ppm and over 25% of them have {delta}{sup 1}H{sup N} values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone {sup 15}N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself.

  12. Chemically Methylated and Reduced Pectins: Preparation and Characterisation by 1H-NMR Spectroscopy, Enzymatic Degradation and Gelling Properties

    DEFF Research Database (Denmark)

    Rosenbohm, Christoph; Lundt, Inge; Christensen, T.M.I.E.

    2003-01-01

    with lower DM. A simple method for determination of DM by 1H-NMR spectroscopy is presented. New modified pectins have been prepared by treatment of pectins having different DM’s with NaBH4 to reduce selectively the methyl esters to primary alcohols in the presence of free acids. The degree of reduction (DR......) and the DM of the remaining carboxylic acids could likewise be determined by 1H-NMR spectroscopy. The new reduced pectins can be tolerated by the pectin degrading enzymes polygalacturonase PGI and PGII as well as by pectin lyase, all from Aspergillus niger, but the enzymes exhibit lower specific activities...

  13. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs

  14. Detailed {sup 1}H and {sup 13}C NMR spectral data assignment for two dihydrobenzofuran neolignans

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M., E-mail: millercrotti@ffclrp.usp.br [Universidade de São Paulo (USP), Ribeirão Preto, SP (Brazil). Faculdade de Filosofia, Ciências e Letras. Departamento de Química

    2016-07-01

    In this work we present a complete proton ({sup 1}H) and carbon 13 ({sup 13}C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled {sup 13}C ({sup 13}C{"1H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the {sup 1}H and {sup 13}C chemical shifts and showed good agreement with the trans configuration of the substituents at C{sub 7} and C{sub 8}. (author)

  15. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  16. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  17. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    Science.gov (United States)

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  18. Spectroscopic data of Labdane Diterpenes: a theoretical analysis via NMR and DFT

    International Nuclear Information System (INIS)

    Souza, Fabrine S. de; Silva, Silvana de O.; Alves, Cláudio N.; Guilhon, Giselle M.S.P.

    2015-01-01

    Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δ H and δ C ) of the minimum energy structures (local minimum) were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR) showed satisfactory statistical results with a correlation coefficient (R 2 ) and predictive ability (Q 2 ) of over 98%. The predicted NMR data were used to confirm the δ H values that have not been published. (author)

  19. /sup 13/C NMR spectra and electron conduction in 4-substituted diphenylamines

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, V.D.; Kogan, R.M.; Tverdokhlebova, N.E.; Shcherbakov, V.V.; Kushnarev, D.F.; Kalabin, G.A.

    1986-07-10

    The /sup 13/C NMR spectra were recorded for a series of 4-X-diphenylamines, and correlations equations relating the /sup 13/C NMR chemical shifts of the C/sup 1/ and C/sup 4/ positions to the electronic characteristics of the substituent X were obtained. It was established that the conduction of the substituted ring in the 4-X-diphenylamines is practically the same as in 4-X-biphenyls. Joint analysis of the spectral characteristics of the diphenylamines, biphenyls, N-substituted anilines, and carbazoles made it possible to conclude that the increased transmission characteristics of the diphenylamines are determined by the conformational mobility of the two benzene rings and by the unidirectional effect of changes in the introduction and resonance factors with variation in the substituent X.

  20. Chemical profiling and antioxidant activity of Bolivian propolis.

    Science.gov (United States)

    Nina, Nélida; Quispe, Cristina; Jiménez-Aspee, Felipe; Theoduloz, Cristina; Giménez, Alberto; Schmeda-Hirschmann, Guillermo

    2016-04-01

    Propolis is a relevant research subject worldwide. However, there is no information so far on Bolivian propolis. Ten propolis samples were collected from regions with high biodiversity in the main honey production places in Bolivia and were analyzed for their total phenolics (TP), flavonoids (TF) and antioxidant activity. The chemical profiles of the samples were assessed by TLC, HPLC-DAD, HPLC-DAD-MS/MS(n) and NMR analysis. TP, TF, TLC and NMR analysis showed significant chemical differences between the samples. Isolation of the main constituents by chromatography and identification by HPLC-DAD-MS/MS(n) achieved more than 35 constituents. According to their profiles, the Bolivian propolis can be classified into phenolic-rich and triterpene-rich samples. Propolis from the valleys (Cochabamba, Chuquisaca and Tarija) contained mainly prenylated phenylpropanoids, while samples from La Paz and Santa Cruz contained cycloartane and pentacyclic triterpenes. Phenolic-rich samples presented moderate to strong antioxidant activity while the triterpene-rich propolis were weakly active. High chemical diversity and differential antioxidant effects were found in Bolivian propolis. Our results provide additional evidence on the chemical composition and bioactivity of South American propolis. © 2015 Society of Chemical Industry.