WorldWideScience

Sample records for nm 2nd harmonic

  1. Diode-pumped CW Nd:SGG laser at 1070 nm

    International Nuclear Information System (INIS)

    Liang, W; Sun, G C; Yu, X; Li, B Z; Jin, G Y

    2011-01-01

    We report for the first time (to our knowledge) a diode-pumped Nd:SGG laser emitting at 1070 nm. A power of 1.23 W at 1070 nm has been achieved in continuous-wave (CW) operation with a fiber-coupled laser diode emitting 18.2 W at 806 nm. Intracavity second-harmonic generation (SHG) in CW mode has also been demonstrated with a power of 328 mW at 535 nm by using a LiB 3 O 5 (LBO) nonlinear crystal. The green beam quality factor M 2 was less than 1.22. The green power stability was less 2.5% in 4 hour

  2. Diode-pumped thin-disk Nd:GdVO4 laser at 893 nm

    International Nuclear Information System (INIS)

    Li, Y L; Fu, X H; Wang, A G

    2011-01-01

    We report for the first time a Nd:GdVO 4 laser operating in a continuous wave (CW) on the quasi-three-level laser at 893 nm, based on the 4 F 3/2 – 4 I 9/2 transition, generally used for a 912 nm emission. The use of a pump module with 16 passes through the crystal allowed the realization of a Nd:GdVO 4 thin-disk laser with 157 mW of CW output power at 893 nm. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 23 mW at 447 nm by using a BiB 3 O 6 (BiBO) nonlinear crystal

  3. Development of blue lasers, from second harmonic generation using a Nd:YAG laser emitting at 946 nm

    International Nuclear Information System (INIS)

    Nogueira, Gustavo Bernardes

    2010-01-01

    Blue lasers have attracted much attention for applications such as blue-ray, displays and as pumped source for the Ti:sapphire laser. A Nd:YAG crystal with diffusion bonded end-caps was used together with a pump wavelength of 802,3 nm, detuned from the absorption peak at 808 nm in order to minimize the thermal lens effect by providing for a better temperature distribution inside the crystal. Using different input mirror radii, the best relation between pump waist and laser was achieved in a linear cavity and resulted in 6.75W cw (continuous wave) laser power at 946 nm and slope efficiency of 48%. In a second step, a second harmonic generation crystal for blue emission at 473 nm was inserted into different types of resonators, and the blue output power at 473 nm was measured as a function of absorbed pump power. (author)

  4. Diode-pumped cw Nd:YAG three-level laser at 869 nm.

    Science.gov (United States)

    Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang

    2010-11-01

    We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.

  5. 3rd harmonic electron cyclotron resonant heating absorption enhancement by 2nd harmonic heating at the same frequency in a tokamak

    International Nuclear Information System (INIS)

    Gnesin, S; Coda, S; Goodman, T P; Decker, J; Peysson, Y; Mazon, D

    2012-01-01

    The fundamental mechanisms responsible for the interplay and synergy between the absorption dynamics of extraordinary-mode electron cyclotron waves at two different harmonic resonances (the 2nd and 3rd) are investigated in the TCV tokamak. An enhanced 3rd harmonic absorption in the presence of suprathermal electrons generated by 2nd harmonic heating is predicted by Fokker–Planck simulations, subject to complex alignment requirements in both physical space and momentum space. The experimental signature for the 2nd/3rd harmonic synergy is sought through the suprathermal bremsstrahlung emission in the hard x-ray range of photon energy. Using a synthetic diagnostic, the emission variation due to synergy is calculated as a function of the injected power and of the radial transport of suprathermal electrons. It is concluded that in the present experimental setup a synergy signature has not been unambiguously detected. The detectability of the synergy is then discussed with respect to variations and uncertainties in the plasma density and effective charge in view of future optimized experiments. (paper)

  6. The generation of a continuous-wave Nd:YVO4/LBO laser at 543 nm by direct in-band diode pumping at 888 nm

    International Nuclear Information System (INIS)

    Fu, S C; Wang, X; Chu, H

    2013-01-01

    We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO 4 laser under 888 nm diode pumping into the emitting level 4 F 3/2 . An LiB 3 O 5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period. (paper)

  7. Influence of the 1st, 2nd and 3rd harmonic magnetic field in mini-cyclotron

    International Nuclear Information System (INIS)

    Lu xiangshun; Chen Maobai; Li Deming; Xu Senlin

    1996-01-01

    The influence of the 1st, 2nd and 3rd harmonic magnetic field on particle's movement in the mini-cyclotron has been studied. The permitted upper limits for each harmonic part are calculated. These data provide a theoretical reference for magnetic trimming

  8. Passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm

    Science.gov (United States)

    Waritanant, Tanant; Major, Arkady

    2018-02-01

    A passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm was demonstrated with an intracavity birefringent filter as the wavelength selecting element. The average output powers achieved were 2.17 W and 2.18 W with optical-to-optical efficiency of 19.6% and 19.7%, respectively. The slope efficiencies were more than 31% at both output wavelengths. The pulse durations at the highest average output power were 10.3 ps and 8.4 ps, respectively. We believe that this is the first report of mode locking of a Nd:YVO4 laser operating at 1073 nm or 1085 nm lines.

  9. Continuous-wave ceramic Nd:YAG laser at 1123 nm

    International Nuclear Information System (INIS)

    Zhang, S S; Wang, Q P; Zhang, X Y; Cong, Z H; Fan, S Z; Liu, Z J; Sun, W J

    2009-01-01

    Ceramic Nd:YAG (cNd:YAG) materials are employed to generate 1123-nm laser. A fiber-coupled continuous-wave (CW) 808-nm diode laser is used as the pumping source. With an incident diode power of 26.1 W, a CW output power of up to 10.8 W is obtained with a 10-mm-long ceramic Nd:YAG rod (1.0 at.%-Nd-doped). The conversion efficiency from diode power to 1123-nm laser power is 41.4%. The laser performance of another 10-mm-long cNd:YAG rod with a Nd-doping concentration of 0.6 at.% is studied as a comparison

  10. Efficient continuous-wave 1112 nm Nd:YAG laser operation under direct diode pumping at 885 nm

    International Nuclear Information System (INIS)

    Gao, J; Dai, X J; Zhang, L; Wu, X D

    2013-01-01

    We report compact diode-end-pumped continuous-wave laser operation at 1112 nm under 885 nm diode-direct pumping for the first time. On the basis of the R 2 →Y 6 transition in a conventional Nd:YAG (yttrium aluminum garnet) single crystal, the maximum output power of 12.5 W is achieved, with an optical to optical efficiency of 46.6% and a slope efficiency of 52.9%. To the best of our knowledge, this represents the highest output at 1112 nm generated by a diode-end-pumped Nd:YAG laser. Furthermore, it is the highest optical to optical efficiency ever reported for 1112 nm Nd:YAG lasers. The short term power stability is ∼0.32% at 12.0 W output. (letter)

  11. Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.

    Science.gov (United States)

    Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei

    2012-04-01

    We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.

  12. All-solid-state ultraviolet 330 nm laser from frequency-doubling of Nd:YLF red laser in CsB3O5

    International Nuclear Information System (INIS)

    Chen, Ming; Wang, Zhi-chao; Wang, Bao-shan; Yang, Feng; Zhang, Guo-chun; Zhang, Shen-jin; Zhang, Feng-feng; Zhang, Xiao-wen; Zong, Nan; Wang, Zhi-min; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Wu, Yi-cheng; Xu, Zu-yan

    2016-01-01

    We demonstrate an ultraviolet (UV) 330 nm laser from second-harmonic generation (SHG) of an all-solid-state Nd:YLF red laser in a CsB 3 O 5 (CBO) crystal for the first time, to our best knowledge. Under an input power of 4.8 W at 660 nm, a maximum average output power of 330 nm laser was obtained to be 1.28 W, corresponding to a frequency conversion efficiency of about 26.7%.

  13. High-energy harmonic mode-locked 2 μm dissipative soliton fiber lasers

    International Nuclear Information System (INIS)

    Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    High-pulse-energy harmonic mode-locking in 2 μm Tm-doped fiber lasers (TDFLs) is realized, for the first time, by using a short piece of anomalous dispersion gain fiber and the dissipative soliton mode-locking mechanism. Appropriately designing the cavity dispersion map and adjusting the cavity gain, stable harmonic mode-locking of the dissipative soliton TDFL from the 2nd to the 4th order is achieved, with the pulsing repetition rates and pulse energy being 43.4, 65.1, 86.8 MHz, and 6.27, 4.32 and 3.29 nJ, respectively. The harmonic laser pulse has a pulse width of ∼30 ps and a center wavelength of ∼1929 nm with a spectral bandwidth of ∼3.26 nm, giving a highly chirped laser pulse. Two types of soliton molecules are also observed in this laser system. (letter)

  14. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    International Nuclear Information System (INIS)

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Yao, Jianquan; Zheng, Yi; Wang, Tongtong

    2015-01-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO 4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz. (paper)

  15. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  16. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm

    Science.gov (United States)

    Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2016-12-01

    We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.

  17. Quasi-three level Nd:YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping

    Science.gov (United States)

    Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca

    2018-02-01

    Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.

  18. Angular non-critical phase-matching second-harmonic-generation characteristics of RECOB (RE = Tm, Y, Gd, Sm, Nd and La) crystals.

    Science.gov (United States)

    Liu, Yanqing; Wang, Zhengping; Yu, Fapeng; Qi, Hongwei; Yang, Xiuqin; Yu, Xiaoqiang; Zhao, Xian; Xu, Xinguang

    2017-05-15

    For the first time, the angular non-critical phase-matching (A-NCPM) second-harmonic-generation (SHG) characteristics of a family of monoclinic oxoborate crystals, RECa 4 O(BO 3 ) 3 (RECOB, RE = Tm, Y, Gd, Sm, Nd and La), were comprehensively investigated. For all of the realizable A-NCPM SHG styles, the feature parameters including PM wavelength, angular, wavelength and temperature acceptance bandwidths, have been derived from the theory and verified by the experiments. We discovered that the closer the ion radius between RE 3+ and Ca 2+ , the smaller the birefringence, and the better the A-NCPM SHG properties. As a result, for the Type-I SHG on Y-axis which has the largest effective nonlinear optical coefficient (d eff ) among the three realizable A-NCPM styles, NdCOB crystal presents the longest PM wavelength (927 nm), the largest angular acceptance bandwidth (Δθ⋅l 1/2 = 84.3 mrad·cm 1/2 , Δϕ⋅l 1/2 = 58.8 mrad·cm 1/2 ), and the broadest wavelength acceptance bandwidth (8.7 nm). This discovery will contribute to the design of new NCPM materials, at the same time the parameter formula will be helpful for the theoretical prediction of NCPM performance.

  19. Harmonic Inverse FEL Interaction at 800nm

    CERN Document Server

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  20. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    Science.gov (United States)

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  1. Diode-pumped CW frequency-doubled Nd:CNGG-BiBO blue laser at 468 nm

    International Nuclear Information System (INIS)

    Lü, Y F; Xia, J; Lin, J Q; Gao, X; Dong, Y; Xu, L J; Sun, G C; Zhao, Z M; Tan, Y; Chen, J F; Liu, Z X; Li, C L; Cai, H X; Liu, Z T; Ma, Z Y; Ning, G B

    2011-01-01

    Efficient and compact blue laser output at 468 nm is generated by intracavity frequency doubling of a continuous-wave (CW) diode-pumped Nd:CNGG laser at 935 nm. With 17.8 W of diode pump power and the frequency-doubling crystal BiB 3 O 6 (BiBO), a maximum output power of 490 mW in the blue spectral range at 468 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 2.8%; the output power stability over 4 h is better than 2.6%. To the best of our knowledge, this is first work on intracavity frequency doubling of a diode pumped Nd:CNGG laser at 935 nm

  2. Diode-pumped quasi-three-level Nd:GdV O4–Nd:YAG sum-frequency laser at 464 nm

    International Nuclear Information System (INIS)

    Lu, Jie

    2014-01-01

    We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O 4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O 4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB 3 O 5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm. (letter)

  3. High-brightness high-order harmonic generation at 13 nm with a long gas jet

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

    2002-01-01

    The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

  4. ECH power deposition at 3rd harmonic in high elongation TCV discharges sustained by 2nd harmonic current profile broadening

    International Nuclear Information System (INIS)

    Pochelon, A. . E-mail : Antoine.Pochelon@epfl.ch; Arnoux, G.; Camenen, Y.

    2003-01-01

    This paper summarises the present effort aimed at developing high elongation heated discharges and testing their confinement properties at normalised currents for which the highest ideal MHD β-limits are predicted. 2nd harmonic (X2) far off-axis ECH/CD is used to stabilise the plasma vertically at high elongation by broadening the current profile in stationary conditions (during the current flat top and over several current diffusion times). Current broadening is maximal for a power deposition in a narrow region (∼a/5), for a finite toroidal injection angle and for high plasma density using upper lateral launchers to minimise refraction. In these discharges which are twice X2 overdense in the centre, 3rd harmonic (X3) is injected from a top launcher to deposit power in the centre and increase the central pressure, simultaneously with far off-axis X2. Using modulated X3, full absorption is measured by the diamagnetic probe. Absorption higher than calculated by thermal ray tracing is occasionally found, indicating absorption on the electron bulk as well as in the suprathermal electron population sometimes with a hollow deposition profile. The high sensitivity of the power coupling to the beam angle stresses the need for developing a mirror feedback scheme to increase the coupling efficiency in transient heating scenarios. (author)

  5. Utilization of Nd-YAG (1064 nm) laser for female hair removal

    International Nuclear Information System (INIS)

    Ahmed, Ahlam Hassan

    2013-05-01

    The Cutera. Inc, cool Glide system laser is along pulsed Nd-YAG 1064 nm, of energy density 25 to 30 J/cm 2 and pulse duration 25 ms in all individual sessions.This study was held in Medical Arms Service Hospital. The period of study taken was three month. The study sample consisted of five patients base line photographs were taken before treatments and also after treatments. Photos show the satisfactory results of the laser treatment. In this study the hair removal treat went was conducted for female middle age group of 25-40 years. The Nd-YAG (1064 nm) laser was found to more effective in treatment of the hair removal, and complications can be minimized by using anesthesia and anti bio tics. The Nd-YAG laser therapy should be considered as a good and dependable alternative to other treatment radiation techniques. And effectiveness of treatment can be increased by using optimum power and duration.(Author)

  6. Phase-space resolved measurement of 2nd harmonic ion cyclotron heating using FIDA tomography at the ASDEX Upgrade tokamak

    DEFF Research Database (Denmark)

    Weiland, M.; Bilato, R.; Geiger, B.

    2017-01-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade allow to reconstruct the fast-ion phase space at several radial positions with decent energy and pitch resolution. These new diagnostic capabilities are applied to study the physics of 2nd harmonic ion cyclotron heating, w....... Furthermore, comparisons to other fast-ion diagnostics (neutron yield and neutral particle analyzers) are discussed....

  7. Progress on the Design of a Perpendicularly Biased 2nd Harmonic Cavity for the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, R. L. [Fermilab; Dey, J. E. [Fermilab; Duel, K. L. [Fermilab; Kuharik, J. C. [Fermilab; Pellico, W. A. [Fermilab; Reid, J. S. [Fermilab; Romanov, G. [Fermilab; Slabough, M. [Fermilab; Sun, D. [Fermilab; Tan, C. Y. [Fermilab; Terechkine, I. [Fermilab

    2016-10-01

    perpendicularly biased 2nd harmonic cavity is being designed and built for the Fermilab Booster. Its purpose is to flatten the bucket at injection and thus change the longitudinal beam distribution to decrease space charge effects. It can also help at extraction. The cavity frequency range is 76 – 106 MHz. The power amplifier will be built using the Y567B tetrode, which is also used for the fundamental mode cavities in the Fermilab Booster. We discuss recent progress on the cavity, the biasing solenoid design and plans for testing the tuner's garnet material

  8. High-power diode-pumped Nd:Lu2O3 crystal continuous-wave thin-disk laser at 1359 nm

    International Nuclear Information System (INIS)

    Li, J H; Liu, X H; Wu, J B; Zhang, X; Li, Y L

    2012-01-01

    We present for the first time, to the best of our knowledge, a 1359 nm continuous-wave (CW) Nd:Lu 2 O 3 laser based on the 4 F 5/2 – 4 F 13/2 transition. The use of a pump module with 16 passes through the crystal allowed the realization of a Nd:Lu 2 O 3 thin-disk laser with 3.52 W of CW output power. The slope efficiency with respect to the incident pump power was 21.4%, and the fluctuation of the output power was better than 3.55% in the given 2 hour. The beam quality factor M 2 is 1.14 and 1.18 for tangential direction and sagittal direction, respectively

  9. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    Science.gov (United States)

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.

  10. High-average-power UV generation at 266 and 355 nm in β-BaB/sub 2/O/sub 4/

    International Nuclear Information System (INIS)

    Liu, K.C.; Rhoades, M.

    1987-01-01

    UV light has been generated previously by harmonic conversion from Nd:YAG lasers using the nonlinear crystals KD*P and ADP. Most of the previous studies have employed lasers with high peak power due to the low-harmonic-conversion efficiency of these crystals and also low average power due to the phase mismatch caused by temperature detuning resulting from UV absorption. A new nonlinear crystal β-BaB/sub 2/O/sub 4/ has recently been reported which provides for the possibility of overcoming the aforementioned problems. The authors utilized β-BaB/sub 2/O/sub 4/ to frequency triple and frequency quadruple a high-repetition-rate cw-pumped Nd:YAG laser and achieved up to 1-W average power with Gaussian spatial distribution at 266 and 355 nm. β-BaB/sub 2/O/sub 4/ has demonstrated its advantages for high-average-power UV generation. Its major drawback is a low-angular-acceptance bandwidth which requires a high-quality fundamental pump beam

  11. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    Science.gov (United States)

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd

  12. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    Science.gov (United States)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  13. Continuous-wave and passively Q-switched Nd:YVO4 laser at 1085 nm

    Science.gov (United States)

    Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Zhang, Jiyan

    2017-11-01

    An admirable and efficient Nd:YVO4 laser at 1085 nm is demonstrated with a compact 35 mm plano-plano cavity. A chosen narrow bandpass filter with high-transmittance (HT) coating at 1064 nm (T=96%) and optimized part-reflection (PR) coating at 1085 nm (T=15%) is used as the output coupler. In the continuous-wave (CW) regime, the maximum output power reaches 3110 mW at the pump power of 11.41 W. Based on a Cr:YAG crystal with initial-transmittance of 91%, the first passively Q-switched Nd:YVO4 laser at 1085 nm is achieved. When the pump power is changed from the threshold of 4.50 to 6.08 W, the dual-wavelength lines at 1064 and 1085 nm are generated simultaneously. However, at the pump power of above 6.08 W, the single-wavelength line at 1085 nm is achieved. The largest output power, the highest peak power, and the narrowest pulse width are 1615 mW, 878 W and 26.2 ns, respectively.

  14. 926 nm laser operation in Nd:GdNbO4 crystal based on 4F3/2 → 4I9/2 transition

    Science.gov (United States)

    Yan, Renpeng; Li, Xudong; Yao, Wenming; Shen, Yingjie; Zhou, Zhongxiang; Peng, Fang; Zhang, Qingli; Dou, Renqing; Gao, Jing

    2018-05-01

    926 nm laser operation in a Nd:GdNbO4 crystal based on quasi-three-level 4F3/2 → 4I9/2 transition is reported, for the first time to our best knowledge. An average output power of 393 mW at 926 nm under 879 nm LD pumping is obtained with a slope efficiency of 33.3% and an optical-to-optical efficiency of 26.0%. The slope efficiency with respect to absorbed pump power is estimated to be 47.7%. Comparison between output characters of 926 nm laser under direct and indirect pumping is conducted. The average output power at 926 nm under 808 nm LD pumping reaches 305 mW with an optical-to-optical efficiency of 16.1%.

  15. Spectroscopic properties and laser performance at 1,066 nm of a new laser crystal Nd:GdTaO4

    Science.gov (United States)

    Peng, Fang; Yang, Huajun; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2015-03-01

    A new laser medium Nd3+:GdTaO4 single crystal with high optical quality was grown successfully by the Czochralski method, and its high-efficiency laser operation at 1,066 nm was demonstrated for the first time. The absorption cross section of the crystal at 808 nm is 5.098 × 10-20 cm2, and the full width at half maximum of this absorption band is about 6 nm. Spectral properties are investigated by Judd-Ofelt theory. The stimulated emission cross section at 1,066 nm is 3.9 × 10-19 cm2, and the fluorescence lifetime of 4F3/2 level is 178.4 μs. A diode end-pumped Nd:GdTaO4 laser at 1,066 nm with the maximum output power of 2.5 W is achieved in the continuous-wave mode. The optical-to-optical conversion efficiency and slope efficiency are 34.6 and 36 %, respectively. In addition, the fluorescence branching ratio of 4F3/2 → 4I9/2 transition reaches 44.4 %, indicating that Nd:GdTaO4 may be an efficient laser medium at 920 nm. All the results demonstrate that Nd:GdTaO4 crystal is a good candidate for laser diode-pumped laser material.

  16. Novel treatment of Hori's nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser.

    Science.gov (United States)

    Tian, Brian Wei Cheng Anthony

    2015-01-01

    To demonstrate a combination laser therapy to treat Hori's nevus. A prospective study. A Singapore-based clinic. Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm(2), spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm(2), frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients' subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus.

  17. Emission spectrum and relaxation kinetics of SO2 induced by 266 nm laser.

    Science.gov (United States)

    Zhang, Guiyin; Zhang, Lianshui; Jin, Yidong

    2010-09-15

    Laser induced fluorescence (LIF) emission spectrum of SO(2) in the range of 270.0-470.0 nm has been obtained with the quadruple harmonic output (266 nm) of a pulsed Nd:YAG laser as excitation source. The spectrum is composed of a continuous envelope in the short wavelength side, while it shows the character of banded structure superimposed on a continuous one in the long wavelength region. Fluorescence emission from the hybrid states of A(1)A(2)+B(1)B(1) and X(1)A(1)+B(1)B(1) forms the continuous envelope and phosphorescence emission from the triplet state a(3)B(1) forms the banded progression. It is also found that direct emission from laser excited states is very weak. The primary portion of the emission is from the energy levels populated by collision relaxation or collision induced intersystem crossing process. The harmonic frequencies and inharmonic coefficients of the symmetric stretching vibration and the bending vibration of X(1)A(1) state are derived from the ascription of the phosphorescence progression. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Compact, efficient diode-end-pumped Nd:GdVO4 slab continuous-wave 912-nm laser

    International Nuclear Information System (INIS)

    Liu Huan; Gong Ma-Li

    2012-01-01

    A fiber-coupled laser-diode (LD) end-pumped Nd:GdVO 4 slab continuous-wave (CW) 912-nm laser and an LD bar end-pumped Nd:GdVO 4 slab CW 912-nm laser are both demonstrated in this paper. Using the fiber-coupled LD of end-pumped type, a highest CW 912-nm laser output power of 10.17 W is obtained with a high optical-to-optical conversion efficiency of 24.6% and a slope efficiency of 34.5%. The measured M 2 factors of beam quality in x and y directions are 5.3 and 5.1, respectively. Besides, an LD bar of end-pumped type is used to realize CW 912-nm laser output, which has the advantages of compactness and low cost. When the pump power is 38.8 W, the output power is 8.87 W and the measured M 2 factors of beam quality in x and y directions are 16 and 1.31, respectively. In order to improve the beam quality of the 912-nm laser at x direction, a new quasi-concentric laser resonator will be designed, and an LD bar end-pumped Nd:GdVO 4 slab high-power CW 912-nm TEM 00 laser will be realized in the future. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Enhancement of harmonic generation using a two section undulator

    International Nuclear Information System (INIS)

    Prazeres, R.; Glotin, F.; Jaroszynski, D.A.; Ortega, J.M.; Rippon, C.

    1999-01-01

    Enhancement of the 2nd and 3rd harmonic of the wavelength of a Free-Electron Laser (FEL) has been measured when a single electron beam is crossing a two-section undulator. To produce the harmonic radiation enhancement, the undulator is arranged so that the resonance wavelength of the 2nd undulator (downstream) matches a harmonic of the 1st undulator (upstream). Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction efficiency, through a hole in one of the cavity mirrors. We present measurements that show that the optical power at the 2nd and 3rd harmonic can be enhanced, by about one order of magnitude, in two configurations: when the resonance wavelength of the 2nd undulator matches the harmonic of 1st one (harmonic configuration), or when the gap of the 2nd undulator is slightly larger than first one (step-tapered configuration). We examine the dependence of the harmonic power on the gap of the 2nd undulator. This fundamental/harmonic mode of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture

  20. High-efficency stable 213-nm generation for LASIK application

    Science.gov (United States)

    Wang, Zhenglin; Alameh, Kamal; Zheng, Rong

    2005-01-01

    213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.

  1. Single frequency Nd:YLF and Nd:YVO4 laser in the red emission

    International Nuclear Information System (INIS)

    Camargo, Fabiola de Almeida

    2010-01-01

    All solid-state continuous-wave (cw) narrow emission linewidth and tunable red lasers are convenient alternative sources to bulky and expensive dye-lasers for high precision laser spectroscopy. Single-frequency operation of diode-pumped Nd:YLiF 4 and Nd:YVO 4 cw ring lasers were investigated in the 1.32 - 1.34μm range, together with their intracavity second-harmonic generation (SHG) to the red spectral range (0.65 - 0.67μm) using either BiB 3 O 6 (BiBO) or periodically-poled KTiOPO 4 (ppKTP) crystals. We report on such a single-end diode-pumped Nd:YVO 4 unidirectional red ring laser containing a type-I cut BiBO nonlinear crystal, yielding a record of 680 mW of single-longitudinal mode (SLM) red output power at 671.1nm without any intra-cavity etalon. For smooth SLM wavelength tuning over the full gain bandwidth (∼4 nm), a partially-coated (R = 40%) 100μm-thin etalon was found necessary, reducing the maximum SLM power (at 671.15 nm) to 380 mW. At 1342.5nm and with a T = 2% transmission output coupler, the laser provided an optimal 1.5W of single-frequency power. We demonstrate also optimal intracavity SHG of a Nd:YLF ring laser in the π- polarization (λ = 1321.5nm) using a ppKTP. The laser yielded 1.4 W of single frequency red power at 660.5 nm, as much as the maximum fundamental power that can be extracted from the resonator using an optimal output coupler. With a partially coated (R = 25%) thin etalon, the laser was tunable over Δλ∼ 1.6nm. (author)

  2. Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser

    International Nuclear Information System (INIS)

    Liu, H; Gong, M; Wushouer, X; Gao, S

    2010-01-01

    A corner-pumped type is a new pumping type in the diode-pumped solid-state lasers, which has the advantages of high pump efficiency and favorable pump uniformity. A corner-pumped Nd:YAG/YAG composite slab continuous-wave 1319 nm/1338 nm dual-wavelength laser is first demonstrated in this paper. When the cavity length is 25 mm, the maximal output power is up to 7.62 W with a slope efficiency of 16.6% and an optical-to-optical conversion efficiency of 17%. The corresponding spectral line widths of 1319 nm laser and 1338 nm laser are 0.11 and 0.1 nm, respectively. The short-term instability of the output power is better than 1% when the pumping power is 39.5 W. The experimental results show that a corner-pumped type is a kind of feasible schedules in the design of diode-pumped solid-state 1.3 μm lasers with low or medium output powers

  3. An efficient continuous-wave 591 nm light source based on sum-frequency mixing of a diode pumped Nd:GdVO4–Nd:CNGG laser

    International Nuclear Information System (INIS)

    Zhao, Y D; Liu, J H

    2013-01-01

    We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO 4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm. (paper)

  4. Effects of various parameters of the 1064 nm Nd:YAG laser for the treatment of enlarged facial pores.

    Science.gov (United States)

    Roh, Mi Ryung; Chung, Hye Jin; Chung, Kee Yang

    2009-01-01

    A variety of treatment modalities have been used to reduce the size of enlarged facial pores without obvious success. To assess and compare the effects of various parameters of a 1064 nm Nd:YAG laser in the treatment of enlarged facial pores. This was a prospective intra-individual left-right comparative study. A total of 40 individuals with enlarged facial pores were recruited for this study. Ten individuals were respectively treated on one half of the face with a quasi long-pulsed 1064 nm Nd:YAG laser (method 1), a Q-switched 1064 nm Nd:YAG laser (method 2), both quasi long-pulsed and Q-switched 1064 nm Nd:YAG lasers without carbon-suspended lotion (method 3), and both quasi long-pulsed and Q-switched 1064 nm Nd:YAG lasers with carbon-suspended lotion (method 4). The other half of the face was left untreated as a control. Five laser sessions were performed with a 3-week interval. The pore sizes were measured using an image analysis program and the sebum level was measured with a Sebumeter before and after the treatments. The pore size and sebum level decreased in all four methods on the treated side compared to the control (p pore size and sebum level.

  5. Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Pingyang Wang

    Full Text Available Molting is an important physiological process in the larval stage of Bombyx mori and is controlled by various hormones and peptides. The silkworm mutant that exhibits the phenotype of non-molting in the 2nd instar (nm2 is incapable of molting in the 2nd instar and dies after seven or more days. The ecdysone titer in the nm2 mutant is lower than that in the wildtype, and the mutant can be rescued by feeding with 20E and cholesterol. The results of positional cloning indicated that structural alteration of BmCPG10 is responsible for the phenotype of the nm2 mutant. To explore the possible relationship between BmCPG10 and the ecdysone titer as well as the genes affected by BmCPG10, digital gene expression (DGE profile analysis was conducted in the nm2 mutant, with the wildtype strain C603 serving as the control. The results revealed 1727 differentially expressed genes, among which 651 genes were upregulated and 1076 were downregulated in nm2. BLASTGO analysis showed that these differentially expressed genes were involved in various biological processes, cellular components and molecular functions. KEGG analysis indicated an enrichment of these differentially expressed genes in 240 pathways, including metabolic pathways, pancreatic secretion, protein digestion and absorption, fat digestion and absorption and glycerolipid metabolism. To verify the accuracy of the DGE results, quantitative reverse transcription PCR (qRT-PCR was performed, focusing on key genes in several related pathways, and the results were highly consistent with the DGE results. Our findings indicated significant differences in cuticular protein genes, ecdysone biosynthesis genes and ecdysone-related nuclear receptors genes, but no significant difference in juvenile hormone and chitin biosynthesis genes was detected. Our research findings lay the foundation for further research on the formation mechanism of the nm2 mutant.

  6. A possible upgrade of FLASH for harmonic lasing down to 1.3 nm

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-10-01

    We propose the 3rd harmonic lasing in a new FLASH undulator as a way to produce intense, narrow-band, and stable SASE radiation down to 1.3 nm with the present accelerator energy of 1.25 GeV. To provide optimal conditions for harmonic lasing, we suggest to suppress the fundamental with the help of a special set of phase shifters. We rely on the standard technology of gap-tunable planar hybrid undulators, and choose the period of 2.3 cm and the minimum gap of 0.9 cm; total length of the undulator system is 34.5 m. With the help of numerical simulations we demonstrate that the 3rd harmonic lasing at 1.3 nm provides peak power at a gigawatt level and the narrow intrinsic bandwidth, 0.1% (FWHM). Pulse duration can be controlled in the range of a few tens of femtoseconds, and the peak brilliance reaches the value of 10 31 photons/(s mrad 2 mm 2 0.1% BW). With the given undulator design, a standard option of lasing at the fundamental wavelength to saturation is possible through the entire water window and at longer wavelengths. In this paper we briefly consider additional options such as polarization control, bandwidth reduction, self-seeding, X-ray pulse compression, and two-color operation. We also discuss possible technical issues and backup solutions.

  7. A possible upgrade of FLASH for harmonic lasing down to 1.3 nm

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-10-15

    We propose the 3rd harmonic lasing in a new FLASH undulator as a way to produce intense, narrow-band, and stable SASE radiation down to 1.3 nm with the present accelerator energy of 1.25 GeV. To provide optimal conditions for harmonic lasing, we suggest to suppress the fundamental with the help of a special set of phase shifters. We rely on the standard technology of gap-tunable planar hybrid undulators, and choose the period of 2.3 cm and the minimum gap of 0.9 cm; total length of the undulator system is 34.5 m. With the help of numerical simulations we demonstrate that the 3rd harmonic lasing at 1.3 nm provides peak power at a gigawatt level and the narrow intrinsic bandwidth, 0.1% (FWHM). Pulse duration can be controlled in the range of a few tens of femtoseconds, and the peak brilliance reaches the value of 10{sup 31} photons/(s mrad{sup 2} mm{sup 2} 0.1% BW). With the given undulator design, a standard option of lasing at the fundamental wavelength to saturation is possible through the entire water window and at longer wavelengths. In this paper we briefly consider additional options such as polarization control, bandwidth reduction, self-seeding, X-ray pulse compression, and two-color operation. We also discuss possible technical issues and backup solutions.

  8. Novel treatment of Hori′s nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser

    Directory of Open Access Journals (Sweden)

    Brian Wei Cheng Anthony Tian

    2015-01-01

    Full Text Available Objective: To demonstrate a combination laser therapy to treat Hori′s nevus. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five female patients, aged 30-46 years, with bilateral malar Hori′s nevus. Measurements: Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. Materials and Methods: The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm 2, spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori′s nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS Nd:YAG at a fluence of 2.0 J/cm 2 , frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori′s nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. Results: All five patients had above 80% improvement in their pigmentation and two (skin type III achieved complete 100% clearance. Based on the patients′ subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. Conclusion: The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori′s nevus.

  9. High average power Q-switched 1314 nm two-crystal Nd:YLF laser

    CSIR Research Space (South Africa)

    Botha, RC

    2015-02-01

    Full Text Available . 40, No. 4 / OPTICS LETTERS High average power Q-switched 1314 nm two-crystal Nd:YLF laser R. C. Botha,1,2,* W. Koen,3 M. J. D. Esser,3,4 C. Bollig,3,5 W. L. Combrinck,1,6 H. M. von Bergmann,2 and H. J. Strauss3 1HartRAO, P.O. Box 443...

  10. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.

    Science.gov (United States)

    Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi

    2017-01-01

    We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).

  11. A high power picosecond Nd:YVO4 master oscillator power amplifier system pumped by 880 nm diodes

    International Nuclear Information System (INIS)

    Yan, S; Yan, X; Yu, H; Zhang, L; Guo, L; Sun, W; Hou, W; Lin, X

    2013-01-01

    We present a high power 880 nm diode-pumped passively mode-locked Nd:YVO 4 oscillator, followed by an 880 nm diode-pumped Nd:YVO 4 amplifier. In the oscillator, a maximum power of 8.7 W was obtained with a repetition rate of 63 MHz and pulse duration of 32 ps, corresponding to an optical efficiency of 36%. The beam quality factors M 2 were measured to be M x 2 =1.2 and M y 2 =1.1 9, respectively. The amplifier generated up to 19.1 W output power with the pulse width and repetition rate remaining unaltered after amplification. (paper)

  12. Ellipticity dependence of high harmonics generated using 400 nm driving lasers

    Science.gov (United States)

    Cheng, Yan; Khan, Sabih; Zhao, Kun; Zhao, Baozhen; Chini, Michael; Chang, Zenghu

    2011-05-01

    High order harmonics generated from 400 nm driving pulses hold promise of scaling photon flux of single attosecond pulses by one to two orders of magnitude. We report ellipticity dependence and phase matching of high order harmonics generated from such pulses in Neon gas target and compared them with similar measurements using 800 nm driving pulses. Based on measured ellipticity dependence, we predict that double optical gating (DOG) and generalized double optical gating (GDOG) can be employed to extract intense single attosecond pulses from pulse train, while polarization gating (PG) may not work for this purpose. This material is supported by the U.S. Army Research Office under grant number W911NF-07-1-0475, and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  13. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.

    Science.gov (United States)

    Tanghetti Md, Emil; Jennings, John

    2018-01-01

    This study was performed to better understand the cutaneous effects of using a fractional picosecond laser at 755 nm with a diffractive lens array and a picosecond Nd:YAG laser at 532 mn and 1064 nm with a holographic optic. We characterized the injuries created by these devices on skin clinically and histologically over 24 hours. With this information we modeled the effects of these devices on a cutaneous target. Eight patients, representing Fitzpatrick skin types I-VI, were treated on their backs with a picosecond Alexandrite laser with a diffractive lens array, as well as a picosecond Nd:YAG laser at 532 nm and 1064 nm with a holographic optic. Photographs were taken 15 minutes and 24 hours after treatments. Punch biopsies were obtained at 24 hours and examined histologically. Treatment with the picosecond Nd:YAG laser at both 532 nm and 1064 nm with the holographic optic revealed erythema and small scatted areas of petechial hemorrhage areas immediately and in many cases at 24 hours after treatment. The 755 nm picosecond Alexandrite laser with diffractive lens array produced erythema immediately after treatment, which largely dissipated 24 hours later. Histologies revealed intra-epidermal vacuoles with all three wavelengths. Fractional picosecond Nd:YAG laser at 532 nm and 1064 nm with the holographic optic showed focal areas of dermal and intra-epidermal hemorrhage with areas of vascular damage in some patients. This study demonstrates that both fractional picosecond devices produce vacuoles in the skin, which are most likely due to areas of laser induced optical breakdown (LIOB). In the patients (skin type II-IV) we observed scatter areas of hemorrhage in the skin, due to vascular damage with the 532 nm and 1064 nm, but not with 755 nm wavelengths. Lasers Surg. Med. 50:37-44, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Study of VUV emission and γ-ray responses of Nd:BaF2 scintillaotor

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Yokota, Yuui; Ishidu, Sumito; Fukuda, Kentaro; Yoshikawa, Akira; Pejchal, Jan; Nikl, Martin; Babin, Vladimir; Sekiya, Hiroyuki; Kamada, Kei

    2010-01-01

    Nd 3+ 1%, 5% and 10% doped BaF 2 single crystals were grown by the micro-pulling down method. Photoluminescence properties, including excitation and emission spectra and luminescence decay were measured under synchrotron radiation excitation at the Superlumi station in HASYLAB at DESY (Hamburg, Germany). The Nd 3+ related 5d-4f emission lines peaking around 180 nm, 230 nm, and 260 nm, identified as the 5d- 4 I j , 5d- 4 F j , and 5d- 2 G j transitions, were observed under 140-168 nm excitation. In photoluminescence decay under the 160 nm excitation, the dominant component decay time is about 12, 2.5 and 1.2 ns for Nd 3+ 1%, 5% and 10% concentration, respectively. The decay time shortening is explained by the concentration quenching effect. Transmittance of Nd1% sample is about 80% for wavelengths above 185 nm. Finally, gamma-ray responses, non-proportionality and energy resolution of Nd1% sample were compared with the undoped BaF 2 scintillator. The light yield of the Nd1%:BaF 2 is about 93% of that of undoped BaF 2 .

  15. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    Science.gov (United States)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  16. Fabrication and spectral properties of Nd, La: CaF2 transparent ceramics

    Science.gov (United States)

    Xie, Xiaoyu; Mei, Bingchu; Song, Jinghong; Li, Weiwei; Su, Liangbi

    2018-02-01

    1 at.% Nd: CaF2 nanoparticles doped with different concentrations of La3+ ions (from 0 to 5 at.%) were synthesized by co-precipitation method. Phase identification, morphology of the nanoparticles were investigated by XRD and SEM measurements. The Nd, La: CaF2 ceramics were fabricated by hot-pressed method in the vacuum environment. The transmittance of all the ceramics reached 88% at the wavelength of 1400 nm. The luminescence intensities and decay lifetimes enhanced significantly with the increasing of La3+ concentration. The Nd, La: CaF2 ceramics have broad and flat emission band at 1050 nm with the largest FWHM of 28.16 nm. In addition, the spectrum results indicated that the fluorescence lifetime of Nd, La: CaF2 ceramics was longer than that of the Nd, Y: CaF2 ceramics with the same doping concentration.

  17. Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems

    International Nuclear Information System (INIS)

    Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

    1991-01-01

    To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-μm output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 x 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs

  18. Enhanced broadband upconversion emission and 23 dB optical gain at 780 nm in Tm3+/Nd3+ codoped optical fiber

    International Nuclear Information System (INIS)

    Fan, Weiwei; Chen, Shuyue; Htein, Lin; Han, Won-Taek

    2015-01-01

    Maximum gain of 23 dB at 780 nm and a broadband optical gain with full width at half maximum (FWHM) of 88 nm (761–849 nm) were obtained from the Tm 3+ /Nd 3+ codoped fiber upon pumping at 1550 nm. The enhancement of the upconversion emission stretching from 730 to 970 nm was observed in the Tm 3+ /Nd 3+ codoped fiber due to the energy transfer from Tm 3+ to Nd 3+ ions. - Highlights: • We fabricated the Tm 3+ /Nd 3+ codoped silica based fiber. • The broadband upconversion emission was observed with 1550 nm pumping. • Maximum gain of 23 dB was observed at 780 nm from the Tm 3+ /Nd 3+ codoped fiber. • The gain bandwidth of the upconversion emission was largely increased due to energy transfer process

  19. High average power 1314 nm Nd:YLF laser, passively Q-switched with V:YAG

    CSIR Research Space (South Africa)

    Botha, RC

    2013-03-01

    Full Text Available A 1314 nm Nd:YLF laser was designed and operated both CW and passively Q-switched. Maximum CW output of 10.4 W resulted from 45.2 Wof incident pump power. Passive Q-switching was obtained by inserting a V:YAG saturable absorber in the cavity...

  20. Split-face comparison of long-pulse-duration neodymium-doped yttrium aluminum garnet (Nd:YAG) 1,064-nm laser alone and combination long-pulse and Q-switched Nd:YAG 1,064-nm laser with carbon photoenhancer lotion for the treatment of enlarged pores in Asian women.

    Science.gov (United States)

    Wattanakrai, Penpun; Rojhirunsakool, Salinee; Pootongkam, Suwimon

    2010-11-01

    Long-pulse and Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) 1,064-nm laser used for facial rejuvenation can improve pore size. Topical carbon has been used to enhance efficacy. To compare the efficacy and safety of a 1,064-nm long-pulse Nd:YAG laser alone with that of a combination Q-switched Nd:YAG laser with topical carbon lotion followed by long-pulse Nd:YAG to improve enlarged pores. Twenty Thai women randomly received five treatments with a long-pulse Nd:YAG laser on one facial half (LP side) and long-pulse Nd:YAG after carbon-assisted Q-switched Nd:YAG laser on the contralateral side (carbon QS+LP side) at 2-week intervals. Participants were evaluated using digital photography, complexion analysis, and a chromometer. There was significant decrease in pore counts of 35.5% and 33% from baseline on the carbon QS+LP and LP sides, respectively. Physician-evaluated pore size improvement was 67% on the carbon QS+LP sides and 60% on the LP sides. Chromometer measurement showed an increase in skin lightness index. There was no significant difference between the two treatments, although there were more adverse effects on the carbon QS+LP side. Long-pulse Nd:YAG 1,064-nm laser improves the appearance of facial pores and skin color. Adding carbon-assisted Q-switched Nd:YAG did not enhance the results but produced more side effects. © 2010 by the American Society for Dermatologic Surgery, Inc.

  1. 885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system

    Science.gov (United States)

    Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto

    2010-04-01

    The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.

  2. UV Thermoluminescence and Phosphorescence Properties of Mg2+ and Nd3+ Doped Nanostructured Al2O3

    International Nuclear Information System (INIS)

    Bitencourt, J F S; Goncalves, K A; Tatumi, S H; Marcos, P J B

    2010-01-01

    Mg 2+ and Nd 3+ doped aluminium oxide samples were produced by polymer calcination method. Mg 2+ doped samples did not exhibited significant fluorescence emission, using IR (LED, emission centered at 862nm) or green (Xe-lamp plus optical filter, emission centered at 520 nm) sources. Nonetheless, high thermostimulated luminescence was detected, with high emission peak at 190 0 C. A nanoscopic layer (about 50 nm width) of magnesium spinel was observed by Transmission Electronic Microscopy (TEM) for 2.61mol% doped sample; this layer can be the responsible for TL enhancement. Nd 3+ doped sample exhibited low phosphorescence emission in the UV (Schott U-340) using IR source. TL peaks were detected at 185 and 265 0 C; the intermediary peak showed the highest emission. Occurrence of NdAl and NdAl 2 structures were detected in 5 mol% doped sample and NdAl 2 and NdAl 4 structures in 10 mol% doped sample.

  3. Laser-Assisted Liposuction Using the Novel 1,444-nm Nd:YAG Laser for the Treatment of Gynecomastia: A Pilot Study.

    Science.gov (United States)

    Yoo, Kwang Ho; Bae, Jung Min; Won, Chae Young; Chung, Yu Seok; Goo, Boncheol; Rho, Yong Kwan; Kim, Gyong Moon; Lee, Jongwon; Ahn, Byeong Heon; Kim, Beom Joon

    2015-01-01

    Laser-assisted liposuction (LAL) is currently widely used to reduce localized fat. A novel Nd:YAG laser that uses a wavelength of 1,444 nm, which is better absorbed by fat, has recently been introduced. In this study, we investigated the efficacy of 1,444-nm Nd:YAG LAL for the treatment of gynecomastia. Thirteen Korean male patients (20-28 years, mean age 23 years) diagnosed with gynecomastia were enrolled in this study. All patients were treated by LAL with 1,444-nm Nd:YAG laser (100 µs pulse width, 40 Hz frequency, 300 mJ pulse energy and 12 W power with continuous emission) after tumescent anesthetic infiltration and were then evaluated. Outcome was assessed using the following 4 methods: (1) clinical assessment with photographs obtained before and 12 weeks after LAL treatment, (2) comparison of pre- and postoperative patient chest circumferences, (3) computed tomography (CT) scans to evaluate changes in breast thickness and (4) a patient satisfaction survey at the end of the study. After 12 weeks, most patients (84.5%) showed an improvement greater than 50%. Mean chest circumference was significantly reduced from 109.6 ± 8.2 to 101.2 ± 4.4 cm 12 weeks after LAL (p Gynecomastia can be safely treated with 1,444-nm Nd:YAG LAL to reduce fatty tissue and total breast volume. © 2015 S. Karger AG, Basel.

  4. Diode-pumped continuous-wave blue laser operation of Nd:GGG at 467.0, 467.7, and 468.5 nm

    International Nuclear Information System (INIS)

    Xu, B; Camy, P; Doualan, J L; Braud, A; Moncorgé, R; Cai, Z P; Brenier, A

    2012-01-01

    Intra-cavity frequency doubling of continuous-wave (CW) laser emission on the quasi-three level ( 4 F 3/2 → 4 I 9/2 ) laser transition of Nd 3+ in Nd:GGG is reported by using a three-mirror folded resonator. The thermal lens experienced by the optically-pumped Nd:GGG laser crystal is measured as a function of the absorbed pump power and compared to that found, in the same conditions, in the case of Nd:YAG. Results are interpreted by using a simple model accounting for the absorbed pump power and the thermo-mechanical properties of each laser crystal. Diode-pumped blue laser operation is achieved, for the first time, at 467.0 and 468.5 nm with output powers of 230 and 450 mW, respectively. Simultaneous laser operation resulting both from frequency-doubling and frequency summing at the three 467.1, 467.7, and 468.1 nm laser wavelengths is also obtained with a total output power of 60 mW

  5. A diode-end-pumped Nd:GYSGG continuous wave laser at 1104 nm

    International Nuclear Information System (INIS)

    Shen, B J; Kang, H X; Zhang, C G; Chen, P; Gao, R L; Liang, J; Gao, H J; Zhang, Q L; Sun, D L; Yin, S T; Luo, J Q

    2013-01-01

    The continuous wave (CW) laser performance of Nd:GYSGG at 1104 nm is investigated for the first time, to our knowledge. A CW laser output power of 4.7 W is obtained when the pump power of the 808 nm fiber coupled laser diode is 19.1 W, corresponding to a conversion efficiency of 24.6% and slope efficiency of 37%. (paper)

  6. Effects of Q-switched and long-pulsed 1064 nm Nd:YAG laser on enlarged facial pores.

    Science.gov (United States)

    Lee, Chang Nam; Kim, You Jeong; Lee, Hyun Seung; Kim, Hei Sung

    2009-12-01

    'Enlarged facial pore' is a subjective term, which is not clearly defined but often complained by many. A diverse range of treatments are used though evidence of efficacy remains largely anecdotal. We report a series of nine patients who underwent a split face trial with Q-switched 1064 nm Nd:YAG and long-pulsed 1064 nm Nd:YAG laser to treat enlarged facial pores.

  7. Single, composite, and ceramic Nd:YAG 946-nm lasers

    Science.gov (United States)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  8. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  9. Spectroscopic properties of Er/Nd co-doped yttrium lanthanum oxide transparent ceramics pumped at 980 nm

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yingjie; Yang, Qiuhong, E-mail: yangqiuhong@shu.edu.cn; Gui, Yan; Yuan, Ye; Lu, Qing

    2016-05-15

    (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} (x = 0, 0.001, 0.002, 0.005, 0.01) transparent ceramics were prepared by conventional ceramic processing. The Nd{sup 3+} content dependencies of mid-infrared, near infrared and up-conversion emission of Er{sup 3+} pumped at 980 nm were fully presented. Mechanism of energy transfer between Er{sup 3+} and Nd{sup 3+} was also demonstrated. The results showed that co-doping 0.1 at% Nd{sup 3+} into 1 at% Er{sup 3+} doped yttrium lanthanum oxide transparent ceramic enhanced the 2.7 μm emission significantly and meanwhile suppressed the 1.5 μm emission effectively which indicated an improvement in population inversion between Er:{sup 4}I{sub 11/2} and Er:{sup 4}I{sub 13/2}. Moreover, green up-conversion emission of Er{sup 3+} ion also showed a great improvement by co-doping 0.1 at% Nd{sup 3+}. Those great results were attributed to energy recycle from Er:{sup 4}I{sub 13/2} to Er:{sup 4}I{sub 11/2}. The energy recycle was mainly built by the two energy transfer between Er{sup 3+} and Nd{sup 3+} (one is from Er to Nd, another is in opposite way). So, Er/Nd co-doped yttrium lanthanum oxide transparent ceramic with Nd in low concentration can be considered as a promising laser material for ∼3 μm and up-conversion laser application. - Highlights: • (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} transparent ceramics were prepared. • The emission of 2.7 μm of Er{sup 3+} ion was significantly enhanced as x was 0.001. • The emission of 1.5 μm of Er{sup 3+} ion was suppressed greatly by co-doping Nd{sup 3+} ion. • Mechanism of Er–Nd energy transfer was discussed by the energy sketch.

  10. Ionization rates and harmonic generation for H interacting with laser pulses of λ = 1064 nm and peak intensities in the range 2 x 1013-2 x 1014 W cm-2

    International Nuclear Information System (INIS)

    Dionissopoulou, S.; Mercouris, Th.; Nicolaides, C.A.

    1996-01-01

    We applied the state-specific expansion approach (SSEA) to the solution of the time-dependent Schroedinger equation describing the interaction of H with laser pulses of λ = 1064 nm and peak intensities I 0 = 2 x 10 13 , 6 x 10 13 , 1 x 10 14 and 2 x 10 14 W cm -2 , and computed ionization rates and high-order harmonic spectra. For the first three cases, our results are compared with those of Krause and co-workers (Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. A45 3998) who employed the grid method. Whereas for I 0 = 1 x 10 14 W cm -2 convergence difficulties were reported for the grid method, no such difficulties were found for the SSEA. Given this fact, we tackled the problem of computing the harmonic spectrum for I 0 = 2 x 10 14 W cm -2 . This spectrum shows a cut-off at the 65th harmonic (3.17 U p + I p ) and an extended plateau containing low-intensity harmonics up to the 181st. The ionization rate is 1.7 x 10 13 s -1 while at the end of the pulse 19.5% of the system is in the 1s ground state and 2.6% in the bound states up to n = 20, l 19. (author)

  11. 532 nm continuous wave mode-locked Nd:GdVO4 laser with SESAM

    International Nuclear Information System (INIS)

    Li, L; Liu, J; Liu, M; Liu, S; Chen, F; Wang, W; Wang, Y

    2009-01-01

    We obtain continuous wave mode-locked Nd:GdVO 4 -KTP laser with a SESAM. This is the first report of CW mode-locked Nd:GdVO 4 -KTP laser with a SESAM to our knowledge. 396 mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM

  12. An expanded study of long-pulsed 1064 nm Nd:YAG laser treatment of basal cell carcinoma.

    Science.gov (United States)

    Ortiz, Arisa E; Anderson, R Rox; DiGiorgio, Catherine; Jiang, Shang I Brian; Shafiq, Faiza; Avram, Mathew M

    2018-02-13

    Basal cell carcinoma (BCC) is an indolent form of skin cancer that is rarely life threatening, but can cause significant cosmetic and functional morbidity. Surgical treatments often result in disfiguring scars, while topical therapies frequently result in recurrence. The need for a more effective nonsurgical alternative has led to the investigation of laser treatment of BCC. We have previously conducted a pilot study which showed 100% histologic clearance at high fluences. Treatments were well tolerated with no significant adverse events. The objective of this larger study was to confirm preliminary results that the 1064 nm Nd:YAG laser is a safe and effective method for treating non-facial BCC. This is an IRB-approved, prospective, multi-center study evaluating the safety and efficacy of the 1064 nm Nd:YAG laser for the treatment of BCC on the trunk and extremities. Thirty-three subjects seeking treatment for biopsy-proven BCC that did not meet the criteria for Mohs surgery were recruited. Subjects on current anticoagulation therapy, or with a history of immunosuppression were excluded. Subjects received one treatment with the 1064 nm Nd:YAG laser as follows: 5-6 mm spot, fluence of 125-140 J/cm 2 and a pulse duration of 7-10 ms. Standard excision with 5 mm clinical margins was performed at 30 days after laser treatment to evaluate clinical and histologic clearance of BCC. Standardized photographs and adverse assessments were taken at the baseline visit, immediately after laser treatment and on the day of excision. Thirty-one subjects completed the study. BCC tumors had a 90% (28 of 31 BCC tumors) histologic clearance rate after one treatment with the long-pulsed 1064 nm Nd:YAG laser. Treatments were generally well tolerated without any anesthesia. Immediate side effects included edema and erythema. At 1-month follow-up, some patients had residual crusting. No significant adverse events occurred. The 1064 nm long-pulsed Nd:YAG laser is an

  13. High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode

    Science.gov (United States)

    Ma, Qinglei; Mo, Haiding; Zhao, Jay

    2018-04-01

    A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.

  14. Design of a solar-pumped frequency-doubled 532 nm Nd:YVO4 laser

    Science.gov (United States)

    Kittiboonanan, P.; Putchana, W.; Deeudomand, M.; Ratanavis, A.

    2017-09-01

    During the last year we have made progresson a development of a frequency-doubled 532 nm Nd:YVO4 laser pumped by solar light. The research aimed to demonstrate solar pumped lasers consisting of the optically contracted Nd:YVO4 crystal and KTP crystal with a system of laser mirrors deposited onto crystal sides. The Cassegrain reflector is used as the configuration. This solar pumped laser system is appealing for a variety applications including laser communication, imaging and defense applications.

  15. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals—A Literature Overview

    Science.gov (United States)

    Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment. PMID:27462611

  16. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals-A Literature Overview.

    Science.gov (United States)

    Saydjari, Yves; Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment.

  17. Combination of CO2 and Q-switched Nd:YAG lasers is more effective than Q-switched Nd:YAG laser alone for eyebrow tattoo removal.

    Science.gov (United States)

    Radmanesh, Mohammad; Rafiei, Zohreh

    2015-04-01

    The eyebrow tattoo removal using Q-switched lasers is usually prolonged. Other modalities may be required to enhance the efficacy and shorten the treatment course. To compare the efficacy of Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser alone versus combination of Q-switched Nd:YAG and Ultrapulse CO2 lasers for eyebrow tattoo removal after a single session. After local anesthesia, the right eyebrow of 20 patients was treated with Ultrapulse CO2 laser with the parameters of 4 J/cm(2) and 3.2 J/cm(2) for the first and the second passes. Both eyebrows were then treated with 1064-nm and 532-nm Q-switched Nd:YAG laser. The spot size and pulse duration were 3 mm and 5 nanoseconds for both wavelengths, and the fluence was 7 J/cm(2) for 1064 nm and 3 J/cm (2) for 532 nm. The side treated with combination of Q-switched Nd:YAG and CO2 lasers improved 75-100% in 6 of 20 patients versus only 1 of 20 in the side treated with Q-switched Nd:YAG alone. Similarly, the right side in 13 of 20 patients showed more than 50% improvement with combination therapy versus the left side (the monotherapy side), where only 6 of 20 cases showed more than 50% improvement. The Mann-Whitney test was 2.85 for the right side and 1.95 for the left side (P value = 0.007). Using Ultra pulse CO2 laser enhances the efficacy of Q-switched Nd:YAG laser in eyebrow tattoo removal.

  18. Undulator physics and coherent harmonic generation at the MAX-lab electron storage ring

    International Nuclear Information System (INIS)

    Werin, Sverker.

    1991-01-01

    This work presents the undulator and harmonic generation project at the electron storage ring MAX-lab at University of Lund. The theory of undulator radiation, laser coherent harmonic generation, optical klystron amplifiers and FELs is treated in one uniform way, with complete solutions of the necessary equations. The permanent magnet undulator is described in some detail, along with the installation of the undulator in the storage ring. Details regarding the emitted radiation, the electron beam path in the undulator and other results are analysed. Finally harmonic generation using a Nd:YAG laser and the creation of coherent photons at the third harmonic (355 nm) is described. (author)

  19. Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm

    Science.gov (United States)

    Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian

    2018-05-01

    We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.

  20. Low-Cost Real-Time Gas Monitoring Using a Laser Plasma Induced by a Third Harmonic Q-Switched Nd-YAG Laser

    Directory of Open Access Journals (Sweden)

    Syahrun Nur Abdulmadjid

    2005-11-01

    Full Text Available A gas plasma induced by a third harmonic Nd-YAG laser with relatively low pulsed energy (about 10 mJ has favorable characteristics for gas analysis due to its low background characteristics, nevertheless a high power fundamental Nd-YAG laser (100-200 mJ is widely used for laser gas breakdown spectroscopy. The air plasma can be used as a low-cost real-time gas monitoring system such that it can be used to detect the local absolute humidity, while a helium plasma can be used for gas analysis with a high level of sensitivity. A new technique using a helium plasma to improve laser ablation emission spectroscopy is proposed. Namely, the third harmonic Nd-YAG laser is focused at a point located some distance from the target in the 1-atm helium surrounding gas. By using this method, the ablated vapor from the target is excited through helium atoms in a metastable state in the helium plasma.

  1. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.

    Science.gov (United States)

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen

    2007-01-20

    A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.

  2. Efficient second harmonics generation of a laser-diode-pumped Nd:YAG laser and its applications. Laser diode reiki Nd:YAG laser no kokoritsu daini kochoha hassei to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, S.; Oka, M. (Sony Corp., Tokyo (Japan))

    1991-08-10

    Stabilization of the second harmonics in a laser-diode-pumped Nd:YAG laser and its application are described. The laser is a quantum noise limiting laser, in which a mode competing noise is generated from an interaction between the laser medium Nd:YAG and the type II nonlinear optical crystal KTiOPO{sub 4} when generating a second harmonics in the resonator. However, the quantum noise limiting second harmonics was obtained by means of inserting (1/4) wave length plate in the resonator to release the bond between two intersecting inherent polarization modes. This stabilized green laser is of a single lateral mode is nearly free of aberration. Therefore, an optical disc prototype having three times as much of the currently used density was made using an objective lens having high number of openings to collect lights, which was verified capable of regeneration at a high signal to noise ratio. In addition, higher output is possible by means of parallelizing the excitation, and high output is realized from edge excitation at a fiber bundle. 18 refs., 3 figs.

  3. Growth of superconducting MgB2 films by pulsed-laser deposition using a Nd-YAG laser

    International Nuclear Information System (INIS)

    Badica, P; Togano, K; Awaji, S; Watanabe, K

    2006-01-01

    Thin films of MgB 2 on r-cut Al 2 O 3 substrates have been grown by pulsed-laser deposition (PLD) using a Nd-YAG laser (fourth harmonic-266 nm) instead of the popular KrF excimer laser. The growth window to obtain superconducting films is laser energy 350-450 mJ and vacuum pressure with Ar-buffer gas of 1-8/10 Pa (initial background vacuum 0.5-1 x 10 -3 Pa). Films were deposited at room temperature and post-annealed in situ and ex situ at temperatures of 500-780 0 C and up to 1 h. Films are randomly oriented with maximum critical temperature (offset of resistive transition) of 27 K. SEM/TEM/EDS investigations show that they are mainly composed of small sphere-like particles (≤20 nm), and contain oxygen and some carbon, uniformly distributed in the flat matrix, but the amount of Mg and/or oxygen is higher in the aggregates-droplets (100-1000 nm) observed on the surface of the film's matrix. Some aspects of the processing control and dependences on film characteristics are discussed. The technique is promising for future development of coated conductors

  4. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.

    Science.gov (United States)

    Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-20

    We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2beam profile and a beam propagation factor of M2lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.

  5. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  6. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  7. Microstructure and Magnetic Properties of NdFeB Films through Nd Surface Diffusion Process

    Directory of Open Access Journals (Sweden)

    Wenfeng Liu

    2017-01-01

    Full Text Available Ta/Nd/NdFeB/Nd/Ta films were deposited by magnetron sputtering on Si (100 substrates and subsequently annealed for 30 min at 923 K in vacuum. It was found that the microstructure and magnetic properties of Ta/Nd/NdFeB/Nd/Ta films strongly depend on the NdFeB layer thickness. With NdFeB layer thickness increasing, both the grain size and the strain firstly reduce and then increase. When NdFeB layer thickness is 750 nm, the strain reaches the minimum value. Meanwhile, both the in-plane and perpendicular coercivities firstly drastically increase and then slowly decrease with NdFeB layer thickness increasing. The highest in-plane and perpendicular coercivities can be obtained at NdFeB layer thickness of 750 nm, which are 21.2 kOe and 19.5 kOe, respectively. In addition, the high remanence ratio (remanent magnetization/saturation magnetization of 0.87 can also be achieved in Ta/Nd/NdFeB (750 nm/Nd/Ta film.

  8. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  9. CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers

    International Nuclear Information System (INIS)

    Lü, Y F; Lu, J; Xu, L J; Sun, G C; Zhao, Z M; Gao, X; Lin, J Q

    2010-01-01

    We present a laser architecture to obtain continuous-wave (CW) light sources at the 589 nm sodium D2 line. A 808 nm diode-pumped a Nd:YLiF 4 (Nd:YLF) crystal emitting at 1053 nm. A part of the pump power was then absorbed by the Nd:YLF crystal. The remaining was used to pump a Nd:YAG crystal emitting at 1338 nm. Intracavity sum-frequency mixing at 1053 and 1338 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 235 mW at 589 nm with a pump laser diode emitting 17.8 W at 808 nm

  10. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    International Nuclear Information System (INIS)

    Liu Wen-Feng; Zhang Min-Gang; Zhang Ke-Wei; Zhang Hai-Jie; Chai Yue-Sheng; Xu Xiao-Hong

    2016-01-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. (paper)

  11. Propagation of Nd magnetic phases in Nd/Sm(001) superlattices

    International Nuclear Information System (INIS)

    Soriano, S; Dufour, C; Dumesnil, K; Stunault, A

    2006-01-01

    The propagation of Nd long range magnetic order in the hexagonal and cubic sublattices has been investigated in double hexagonal compact Nd/Sm(001) superlattices by resonant x-ray magnetic scattering at the Nd L 2 absorption edge. For a superlattice with 3.7 nm thick Sm layers, the magnetic structure of the hexagonal sublattice propagates coherently through several bilayers, whereas the order in the cubic sublattice remains confined to single Nd blocks. For a superlattice with 1.4 nm thick Sm layers, the magnetic structures of both sublattices appear to propagate coherently through the superlattice. This is the first observation (i) of the long range coherent propagation of Nd order on the cubic sites between Nd blocks and (ii) of a different thickness dependence of the propagation of the Nd magnetic phases associated with the hexagonal and cubic sublattices. The propagation of the Nd magnetic order through Sm is interpreted in terms of generalized susceptibility of the Nd conduction electrons

  12. Improvement of optical damage in specialty fiber at 266 nm wavelength

    Science.gov (United States)

    Tobisch, T.; Ohlmeyer, H.; Zimmermann, H.; Prein, S.; Kirchhof, J.; Unger, S.; Belz, M.; Klein, K.-F.

    2014-02-01

    Improved multimode UV-fibers with core diameters ranging from 70 to 600 μm diameter have been manufactured based on novel preform modifications and fiber processing techniques. Only E'-centers at 214 nm and NBOHC at 260 nm are generated in these fibers. A new generation of inexpensive laser-systems have entered the market and generated a multitude of new and attractive applications in the bio-life science, chemical and material processing field. However, for example pulsed 355 nm Nd:YAG lasers generate significant UV-damages in commercially available fibers. For lower wavelengths, no results on suitable multi-mode or low-mode fibers with high UV resistance at 266 nm wavelength (pulsed 4th harmonic Nd:YAG laser) have been published. In this report, double-clad fibers with 70 μm or 100 μm core diameter and a large claddingto- core ratio will be recommended. Laser-induced UV-damages will be compared between these new fiber type and traditional UV fibers with similar core sizes. Finally, experimental results will be cross compared against broadband cw deuterium lamp damage standards.

  13. Full absorption of 3rd harmonic ECH in TCV target plasmas produced by 2nd harmonic ECH and ECCD

    International Nuclear Information System (INIS)

    Alberti, S.; Goodman, T.; Henderson, M.A.

    2001-01-01

    An experimental study of the extraordinary mode (X-mode) absorption at the third cyclotron harmonic frequency (118GHz) has been performed on the TCV Tokamak in plasmas preheated by X-mode at the second harmonic (82.7GHz). Various preheating configurations have been experimentally investigated, ranging from counter-ECCD, ECH to CO-ECCD at various power levels. Full absorption of the 470kW of injected X3 power was measured with as little as 350kW of X2-CO-ECCD preheating. The measured absorption exceeds that predicted by the linear ray tracing code TORAY by more than a factor of 2 for the CO-ECCD case. Experimental evidence indicates that a large fraction of the X3 power is absorbed by electrons in an energetic tail created by the X2-ECCD preheating. (author)

  14. MFM study of NdFeB and NdFeB/Fe/NdFeB thin films

    International Nuclear Information System (INIS)

    Gouteff, P.C.; Folks, L.; Street, R.

    1998-01-01

    Domain structures of NdFeB thin films, ranging in thickness between 1500 and 29 nm, have been studied qualitatively by magnetic force microscopy (MFM). Samples were prepared using a range of sputtering conditions resulting in differences in properties such as texture, coercivity and magnetic saturation. MFM images of all the films showed extensive interaction domain structures, similar to those observed in nanocrystalline bulk NdFeB. An exchange-coupled NdFeB/Fe/NdFeB trilayer with layer thicknesses 18 nm/15 nm/18 nm, respectively, was also examined using MFM. (orig.)

  15. On the 2nd order autocorrelation of an XUV attosecond pulse train

    International Nuclear Information System (INIS)

    Tzallas, P.; Benis, E.; Nikolopoulos, L.A.A.; Tsakiris, G.D.; Witte, K.; Charalambidis, P

    2005-01-01

    Full text: We present the first direct measurement of sub-fs light bunching that has been achieved, extending well established fs optical metrology to XUV as pulses. A mean train pulse duration of 780 as has been extracted through a 2 nd order autocorrelation approach, utilizing a nonlinear effect that is induced solely by the XUV radiation to be characterized. The approach is based on (i) a bisected spherical mirror XUV wavefront divider used as an autocorrelator and (ii) the two photon ionization of atomic He by a superposition of the 7 th to the 15 th harmonic of a Ti:sapph laser. The measured temporal mean width is more than twice its Fourier transform limited (FTL) value, in contrast to the as train pulse durations measured through other approaches, which where found much closer to the FTL values. We have investigated, and discuss here the origin of this discrepancy. An assessment of the validity of the 2 nd order AC approach for the broad band XUV radiation of as pulses is implemented through ab initio calculations (solution of the 3D TDSE of He in the presence of the superposition of the harmonic superposition) modeling the spectral and temporal response of the two-XUV-photon He ionization detector employed. It is found that both the spectral and temporal response are not affecting the measured duration. The mean width of the as train bursts is estimated from the spectral phases of the individual harmonics as they result from the rescattering model, taking into account the spatially modulated temporal width of the radiation due to the spatiotemporal intensity distribution of the driving field during the harmonic generation process. The measured value is found in reasonable agreement with the estimated duration. The method used for the 2 nd order AC in itself initiates further XUV-pump-XUV-probe studies of sub-fs-scale dynamics and at the same time becomes highly pertinent in connection with nonlinear experiments using XUV free - electron laser sources. Refs

  16. Diode-pumped passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide nanosheets saturable absorber at 1066 nm

    Science.gov (United States)

    Li, M. X.; Jin, G. Y.; Li, Y.

    2018-05-01

    In this paper, we investigated the passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide (WS2) saturable absorber (SA). The preparation method of WS2 SA was to attach the WS2-alcohol dispersion onto the quartz substrates. The diode-pumped passively Q-switched Nd:GdTaO4 laser operated at a central wavelength of 1066 nm. The stable pulse output could be obtained at the single pulse width of 560 ns. In a word, WS2 seems to be a suitable saturable absorber for solid state lasers.

  17. 16.7 W 885 nm diode-side-pumped actively Q -switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm

    International Nuclear Information System (INIS)

    Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Sun, Bing; Shi, Rui; Wu, Liang; Yao, Jianquan; Yu, Xuanyi; Wang, Rui

    2017-01-01

    We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO 4 crystal in a Z -shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z -shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ∼190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ∼0.08 nm, respectively. (paper)

  18. Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.

    Science.gov (United States)

    Castaing, Marc; Balembois, François; Georges, Patrick

    2008-09-01

    We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.

  19. 1064-nm Nd:YAG and 980-nm Diode Laser EDTA Agitation on the Retention of an Epoxy-Based Sealer to Root Dentin.

    Science.gov (United States)

    Macedo, Helena Suleiman de; Messias, Danielle Cristine Furtado; Rached-Júnior, Fuad Jacob; Oliveira, Ligia Teixeira de; Silva-Sousa, Yara Teresinha Correa; Raucci-Neto, Walter

    2016-01-01

    Root canal irrigants are used to minimize the negative effects of smear layer on endodontic sealer retention. The aim of this study was to evaluate the efficacy of agitation of 17% ethylenediaminetetraacetic acid (EDTA) with ultrasonic, 1064-nm Nd:YAG and 980-nm diode laser on the retention of an epoxy-based sealer to the root canal walls. Forty single-rooted bovine teeth were instrumented with ProTaper rotary system and divided into four groups according to the final irrigation protocol (n = 10): (1) 17% EDTA (control); (2) 17% EDTA with 50-s ultrasonic agitation; (3) 17% EDTA with 50-s diode laser (2-W) agitation; and (4) 17% EDTA with 50-s Nd:YAG (1.5-W) laser agitation. After endodontic filling with gutta-percha F5 master cone and Sealer 26, the roots were sectioned at the cervical, middle, and apical root thirds to obtain 1.5-mm slices. Push-out tests were performed using a universal testing machine at a 1 mm/min crosshead speed. Data were analyzed using two-way ANOVA and Tukey's tests (α=0.05). Apical root thirds had significant higher retention values than cervical and middle thirds (p diode laser presented the highest retention values and was significantly different from EDTA with ultrasonic agitation and EDTA only (p diode laser EDTA agitation enhanced the retention of the epoxy-based sealer to the root canal walls compared with that due to EDTA only or EDTA with ultrasonic agitation.

  20. Combination of Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, non-ablative 1450-nm diode laser, and ablative 10 600-nm carbon dioxide fractional laser for enlarged pores.

    Science.gov (United States)

    Cho, Sung Bin; Noh, Seongmin; Lee, Sang Ju; Kang, Jin Moon; Kim, Young Koo; Lee, Ju Hee

    2010-07-01

    Currently, there is no gold standard for the treatment of enlarged facial pores. In this report, we describe a patient with enlarged nasal pores which were treated with a combination of a non-ablative 1450-nm diode laser, a Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, and an ablative 10 600-nm carbon dioxide fractional laser system. Four months after the final treatment, the condition of the patient's pores had markedly improved, and the patient was satisfied with the results.

  1. High Power 1443.5 nm Laser with Nd:YAG Single Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Han Rao

    2017-07-01

    Full Text Available A high-power eye-safe 1443.5 nm laser was demonstrated with an Nd:YAG single crystal fiber (SCF as the gain medium. For continuous wave (CW operation, a maximum output power of 13.3 W was obtained under an absorbed pump power of 95.0 W, corresponding to an optical-to-optical conversion efficiency of 14.0%. For acousto-optically (AO Q-switched regime, an output power of 1.95 W was obtained at a pulse repetition frequency (PRF of 10 kHz. The pulse duration was 69.5 ns. The pulse energy and peak power were calculated to be 195 µJ and 2.81 kW, respectively.

  2. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped CaNb2O6 crystal

    International Nuclear Information System (INIS)

    Cheng, Y; Xu, X D; Xiao, X D; Li, D Z; Zhao, C C; Zhou, S M; Xin, Z; Yang, X B; Xu, J

    2009-01-01

    Laser crystal Nd:CaNb 2 O 6 with excellent quality has been grown by Czochralski technique. The effective segregation coefficient of Nd 3+ was studied by X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Nd:CaNb 2 O 6 were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10 -20 cm 2 with a broad FWHM of 7 nm at 808 nm for E ∥ a light polarization. The emission cross section at 1062 nm is 9.87×10 -20 cm 2 . We report what we believe to be the first demonstration of the continuous-wave Nd:CaNb 2 O 6 laser operation under diode pumping. Output power of 1.86 W at 1062 nm was obtained with a slope efficiency of 19% in the CW regime

  3. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped CaNb2O6 crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Xin, Z.; Yang, X. B.; Xiao, X. D.; Li, D. Z.; Zhao, C. C.; Xu, J.; Zhou, S. M.

    2009-10-01

    Laser crystal Nd:CaNb2O6 with excellent quality has been grown by Czochralski technique. The effective segregation coefficient of Nd3+ was studied by X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Nd:CaNb2O6 were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10-20 cm2 with a broad FWHM of 7 nm at 808 nm for E ∥ a light polarization. The emission cross section at 1062 nm is 9.87×10-20 cm2. We report what we believe to be the first demonstration of the continuous-wave Nd:CaNb2O6 laser operation under diode pumping. Output power of 1.86 W at 1062 nm was obtained with a slope efficiency of 19% in the CW regime.

  4. Four-harmonic database of laser-damage testing

    International Nuclear Information System (INIS)

    Rainer, F.; Atherton, L.J.; Campbell, J.H.; DeMarco, F.P.; Kozlowski, M.R.; Morgan, A.J.; Staggs, M.C.

    1991-01-01

    In the past two years we have made a sixfold expansion of our laser-damage database. Our primary emphasis has been with the fundamental 1064-nm irradiation generated by Nd:YAG. Because of the increasing need for high-threshold optics designed to operate in the UV, we include data covering the harmonics at 532, 355 and 266 nm. This is further supplemented with results of excimer-laser damage testing at 351 and 248 nm. The presented summaries cover over either years of complete data plus selected results spanning over a fourteen-year history of damage testing at LLNL using thirteen different laser systems. Besides the range of wavelengths, our parameter space covers pulse durations from < 1 ns to 84 ns, repetition rates from single shots to 6000 Hz, and irradiation modes from single shots to a variety of multiple-shot laser-conditioning techniques

  5. Single-treatment skin tightening by radiofrequency and long-pulsed, 1064-nm Nd: YAG laser compared.

    Science.gov (United States)

    Key, Douglas J

    2007-02-01

    To compare single-treatment facial skin tightening achieved with the current radiofrequency (RF) protocol with single-treatment tightening achieved with the long-pulsed, 1064-nm Nd:YAG laser. A total of 12 patients were treated with RF energy on one side of the face and laser energy on the other. Results were evaluated on a numerical scale (0-12 with 12 = greatest enhancement) from pre- and posttreatment photographs by a blinded panel. Upper face improvement (posttreatment score minus pretreatment score) was essentially the same on both sides (30.2 and 31.3% improvement for laser and RF, respectively, P=0.89). Lower face improvement was greater in the laser-treated side (35.7 and 23.8% improvement for laser and RF, respectively), but the difference was not significant (P=0.074). Overall face improvement was significantly greater on the laser-treated side (47.5 and 29.8% improvement for laser and RF, respectively, P=0.028). A single high-fluence treatment with the long-pulse 1064-nm Nd:YAG laser may improve skin laxity more than a single treatment with the RF device. Further controlled split-face or very large non-self controlled studies are needed to conclusively determine the relative efficacies of the two technologies. (c) 2007 Wiley-Liss, Inc.

  6. Diode-pumped passively mode-locked composite crystal Nd:Lu0.15Y0.85VO4 laser at 1342.2nm

    International Nuclear Information System (INIS)

    Qiao, Wenchao; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian; Li, Tao; Zhao, Jia; Zhao, Bin

    2015-01-01

    A diode-pumped mode-locked Nd:Lu 0.15 Y 0.85 VO 4 laser running at 1342.2nm is firstly demonstrated with a semiconductor saturable absorber mirror (SESAM). Stable mode-locking pulses with the pulse-duration of 15.2 ps and the repetition rate of 32.8 MHz have been achieved. With a pumping power of 7.1 W, an output power of 786 mW was obtained, corresponding to an optical conversion efficiency of 11%. A maximum mode-locked pulse energy was estimated to be 23.96 nJ with a peak power of 1.58 kW. (paper)

  7. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    Science.gov (United States)

    Liu, Wen-Feng; Zhang, Min-Gang; Zhang, Ke-Wei; Zhang, Hai-Jie; Xu, Xiao-Hong; Chai, Yue-Sheng

    2016-11-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. Program supported by the National Natural Science Foundation of China (Grant No. 51305290), the Higher Education Technical Innovation Project of Shanxi Province, China (Grant No. 2013133), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals of Shanxi Province, China (Grant No. 2015003), and the Program for the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  8. High-frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser.

    Science.gov (United States)

    Bousquet-Rouaud, Regine; Bazan, Marie; Chaintreuil, Jean; Echague, Agustina Vila

    2009-03-01

    To investigate non-invasive laser treatment for cellulite using the 1064 nm Nd:YAG laser and to correlate clinical results with high-frequency skin ultrasound images. Twelve individuals of normal weight were treated on either the left or right posterior side of the thigh with the following parameters: fluence 30 J/cm, 18 mm spot size and dynamic cooling device pulse duration of 30 ms. Three treatments were performed at intervals of 3-4 weeks, and followed-up 1 and 3 months after the last session. Photographs and ultrasound imaging were assessed before each session. The 1064 nm Nd:YAG laser resulted in a tightening of the skin and an improvement in cellulite. No side effects were reported. High-resolution ultrasound imaging showed a significant improvement in dermis density and a reduction of dermis thickness. The method is described in detail in Appendix 1. Infra-red lasers may constitute a safe and effective treatment for cellulite and high-frequency ultrasound imaging provides a quantitative and objective measurement of the treatment efficacy.

  9. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    Science.gov (United States)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  10. Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.

    Science.gov (United States)

    Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R

    2014-10-10

    Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062  nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067  nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067  nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.

  11. Nd3+-doped TeO2-Bi2O3-ZnO transparent glass ceramics for laser application at 1.06 μm

    Science.gov (United States)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian

    2017-04-01

    The high crystallinity transparent glass ceramics based on Nd3+-doped 70TeO2-15Bi2O3-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd2O3 content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd2O3 enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi2Te4O11 in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd2O3 content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd2O3 content due to the obvious energy migration among Nd3+. According to the extreme strong emission band around 1062 nm and the optimum Nd2O3 content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications.

  12. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  13. A promising split-lesion technique for rapid tattoo removal using a novel sequential approach of a single sitting of pulsed CO(2) followed by Q-switched Nd: YAG laser (1064 nm).

    Science.gov (United States)

    Sardana, Kabir; Garg, Vijay K; Bansal, Shivani; Goel, Khushbu

    2013-12-01

    Laser tattoo removal conventionally uses Q-switched (QS) lasers, but they require multiple sittings, and the end results depend largely on the type of tattoo treated. In pigmented skin, due to the competing epidermal pigment results, laser results in tattoo are slow and inadequate. To evaluate the efficacy of a combined use of ultrapulse CO2 and QS Nd:YAG (1064 nm) laser in the treatment of tattoos in Indian skin. A split-lesion trial was carried out in five patients, with the left side of tattoos receiving the QS Nd:YAG (1064 nm) and the right side, a sequential combination of Up CO2 and QS Nd: YAG at 6 weeks interval with a maximum of six sittings. Outcome assessment was carried out by a blinded assessor using standardized photography. An assessment of physician improvement score, side-effects score, and patient satisfaction score was taken during and at the end of the study. There was a statistically significant improvement on the combination side(physician improvement score -3.7 vs. 1.87: P = 0.0019) which occurred earlier with fewer sittings (1.7 vs. 6). There was no statistically significant difference in the side effects. A combination of an Up CO2 laser with QS Nd: YAG laser is a promising tool for rapid and effective removal of blue-black/blue amateur tattoo in pigmented skin. © 2013 Wiley Periodicals, Inc.

  14. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; G. J. Linford is now with Max-Planck-Institut fur Quantenoptik, D-8046 Garching, Federal Republic of Germany)

    1982-01-01

    Large aperture harmonic conversion experiments to 2ω (532 nm), 3ω (355 nm), and 4ω (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2ω and 3ω inertial confinement fusion target performances are provided

  15. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; Martin, W.E.; Snyder, K.; Boyd, R.D.; Smith, W.L.; Vercimak, C.L.; Eimerle, D.; Hunt, J.T.

    1982-10-15

    Large aperture harmonic conversion experiments to 2..omega.. (532 nm), 3..omega.. (355 nm), and 4..omega.. (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2..omega.. and 3..omega.. inertial confinement fusion target performances are provided.

  16. Synthesis and Characterization of Nd(3+)-Doped CaF2 Nanoparticles.

    Science.gov (United States)

    Yuan, Dan; Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-12-01

    The Ca(1-x)F(2+x):Nd(x) nanoparticles were synthesized by chemical direct precipitation method. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Image analyzer, absorption spectrum and transmittance were taken to characterization the phases, morphologies, sizes, size distribution and optical properties of the samples. The results indicate that the Ca(1-x)F(2+x):Nd(x) samples can be rationally modified in size and morphology by altering the Nd3+ ions doping concentration. With increasing concentration of Nd3+ ions, the particle size decreased from 24 to 14 nm, the intensity of the diffraction peaks decreased, the Ca(1-x)F(2+x):Nd(x) particles aggregated ion of the formed clusters which should have an effect on both speed and orientation of the particles growth. The transmittance of ceramics with a thickness of 2 mm showed that the transmittance can reach 90% when the doping concentration was 5%, which should be profitable for LD pumping.

  17. Efficient room temperature cw Yb:glass laser pumped by a 946nm Nd:YAG laser

    OpenAIRE

    Koch, R.; Clarkson, W.A.; Hanna, D.C.; Jiang, S.; Myers, M.J.; Rhonehouse, D.; Hamlin, S.J.; Griebner, U.; Schönnagel, H.

    1997-01-01

    By pumping with a cw diode-pumped Nd:YAG laser operating at 946nm laser operation of a new Yb-doped phosphate glass with 440mW cw output power and a slope efficiency of 48% with respect to the absorbed pump power was achieved at room temperature

  18. Diode-pumped continuous-wave and passively Q-switched 1066 nm Nd:GYNbO4 laser

    Science.gov (United States)

    Ma, Yufei; Peng, Zhenfang; He, Ying; Li, Xudong; Yan, Renpeng; Yu, Xin; Zhang, Qingli; Ding, Shoujun; Sun, Dunlu

    2017-08-01

    A diode-pumped passively Q-switched 1066 nm laser with a novel Nd:Gd0.69Y0.3NbO4 mixed crystal was demonstrated for the first time to the best of our knowledge. In the continuous-wave (CW) operation, optimization selection of output couplers was carried out, and a maximum output power of 2.13 W was obtained when the plane mirror with transmission of 25% was chosen and the absorbed pump power was 10.5 W. The Cr4+:YAG passively Q-switched Nd:Gd0.69Y0.3NbO4 laser performance was investigated. At an absorbed pump power of 10.5 W, using Cr4+:YAG with initial transmission of 80%, the obtained minimum pulse width was 7.2 ns with the pulse repetition rate of 19 kHz. The single pulse energy and peak power were estimated to be 26.7 µJ and 3.7 kW, respectively.

  19. Second harmonics HOE recording in Bayfol HX

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther; Wewer, Brita

    2015-05-01

    Volume Holographic Optical Elements (vHOEs) provide superior optical properties over DOEs (surface gratings) due to high diffraction efficiencies in the -1st order and their excellent Bragg selectivity. Bayer MaterialScience is offering a variety of customized instant-developing photopolymer films to meet requirements for a specific optics design of a phase hologram. For instance, the photopolymer film thickness is an ideal means to adjust the angular and the spectral selectivity while the index modulation can be adopted with the film thickness to achieve a specific required dynamic range. This is especially helpful for transmission type holograms and in multiplex recordings. The selection of different substrates is helpful to achieve the overall optical properties for a targeted application that we support in B2B-focused developments. To provide further guidance on how to record volume holograms in Bayfol HX, we describe in this paper a new route towards the recording of substrate guided vHOEs by using optimized photopolymer films. Furthermore, we discuss special writing conditions that are suitable to create higher 2nd harmonic intensities and their useful applications. Due to total internal reflection (TIR) at the photopolymer-air interface in substrate guided vHOEs, hologram recording with those large diffraction angles cannot usually be done with two free-space beams. Edge-lit recording setups are used to circumvent this limitation. However, such setups require bulky recording blocks or liquid bathes and are complex and hard to align. A different approach that we present in this paper is to exploit 2nd harmonic grating generation in a freespace recording scheme. Those 2nd harmonic components allow the replay of diffraction angles that are normally only accessible with edge-lit writing configurations. Therefore, this approach significantly simplifies master recordings for vHOEs with edge-lit functionalities, which later can be used in contact copy schemes for

  20. NIR optimized dual mode photoluminescence in Nd doped Y{sub 2}O{sub 3} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sukul, Prasenjit Prasad; Mahata, Manoj Kumar; Kumar, Kaushal, E-mail: kumar.bhu@gmail.com

    2017-05-15

    Authors here report the dual mode photo luminescence emission in neodymium doped yttrium oxide ceramic phosphor upon 808 nm diode laser excitation. Single cubic phase Nd{sup 3+} doped Y{sub 2}O{sub 3} phosphor was synthesized using urea assisted combustion route. Nd{sup 3+} doped Y{sub 2}O{sub 3} ceramic phosphor has given photoluminescence in a wide wavelength range covering near infrared window (850–1100 nm) to the visible region i.e. green (525 nm) and red (680 nm) upon 808 nm diode laser excitation. The two most intense bands on 808 nm excitation were observed at 750 nm and 1064 nm due to the upconversion and downconversion emission processes. The sample was also tested for emission using 980 nm and intense green emission due to the trace presence of Er{sup 3+} in the raw materials was seen in the sample. The excitation power dependent upconversion measurements have shown that transitions {sup 4}F{sub 9/2}→{sup 4}I{sub 9/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 9/2} are thermally coupled and can be used to estimate the sample temperature using Boltzmann relation.

  1. A study of low threshold and high gain Nd3+ ions doped SiO2-B2O3-Na2CO3-NaF-CaF2 glasses for NIR laser applications

    Science.gov (United States)

    Megala, Rajesh; Gowthami, T.; John Sushma, N.; Kamala, S.; Deva Prasad Raju, B.

    2018-05-01

    Fluoroborosilicate glasses of composition 35SiO2-25B2O3-10Na2CO3-15NaF-15CaF2-xNd2O3 (where x = 0.1, 0.5. 1.0, 2.0 mol%) were prepared by melt quenching technique and various physical properties have been calculated. From the absorption spectra J-O Intensity parameters Ωλ (λ = 2, 4, 6) and radiative properties are evaluated by using J-O theory. The high values of Ω2 = 4.213 × 10-20 cm2, Ω4 = 5.345 × 10-20 cm2, Ω6 = 5.526 × 10-20 cm2 suggest that among the prepared glasses 0.5 mol% Nd glass is more asymmetric, more covalent and rigid in nature. The emission spectra were recorded with 808 nm laser as excitation source. The strong NIR emissions were observed at 876 nm, 1056 nm, 1328 nm corresponding to the transitions 4F3/2 → 4I9/2, 4F3/2 → 4I11/2, 4F3/2 → 4I13/2 respectively. Stimulated emission cross -section (σemi) and Gain bandwidth (σemi × Δλeff) were calculated. For 0.5 mol% Nd these values are found to be 3.30 × 10-20 cm2, 11 × 10-26 cm2. From the decay curve analysis the lifetime values for 4F3/2 level have been determined and these values are decreased with increase in Nd3+ ions concentration. These results may suggest that the prepared SBNCNd05 (Nd = 0.5 mol%) glass could be useful for 1056 nm laser applications.

  2. Treatment of tattoos with a 755-nm Q-switched alexandrite laser and novel 1064 nm and 532 nm Nd:YAG laser handpieces pumped by the alexandrite treatment beam.

    Science.gov (United States)

    Bernstein, Eric F; Bhawalkar, Jay; Clifford, Joan; Hsia, James

    2010-11-01

    Multi-colored and even black tattoos often require more than one wavelength to remove the target pigment. The authors report here a novel alexandrite laser with two Nd:YAG laser handpieces pumped by the alexandrite treatment beam enabling the delivery of three wavelengths from a single device. To describe and evaluate the effectiveness of a novel Q-switched laser-pumped laser for treating tattoos. Twenty tattoos in 14 subjects were treated at four-week intervals using a combination of available wavelengths (532, 755 and 1064 nm) as determined by the treating physician. Digital cross-polarized photographs were taken before treatment and two months following the fourth and final treatment. Photographs were evaluated by three physician observers blinded as to the treatment condition and rated for clearance by the following scale: 1 = > 95 percent, 2 = 76-95 percent, 3 = 51-75 percent, 4 = 26-50 percent and 5 = 0-25 percent clearance. The average clearance score was 3.1, in the 51-75 percent range, two months following four treatments. No scarring, hyper- or hypopigmentation was noted on post-treatment photographs or by the treating physician. The alexandrite and alexandrite-pumped 532 nm and 1064 nm Q-switched lasers are effective for removing decorative tattoos, and represents the first commercial laser with laser-pumped, laser handpieces.

  3. Structural and magnetic properties of NdFeB and NdFeB/Fe films with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Urse, M; Grigoras, M; Lupu, N; Chiriac, H, E-mail: urse@phys-iasi.ro [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)

    2011-07-06

    The influence of the Mo addition on the microstructure and magnetic properties of Nd-Fe-B and Nd-Fe-B/Fe films was studied. The coercivity is a key parameter in the control of technical performances of Nd-Fe-B films. A small amount of about 1 at.% Mo can enhance the coercivity of Nd-Fe-B film by controlling the growth of soft and hard magnetic grains. A coercivity of 22.1 kOe, a remanence ratio, M{sub r}/M{sub s}, of 0.83 and a maximum energy product of 8 MGOe were obtained for Ta/[NdFeBMo(1at.%)(540nm)/Ta films annealed at 650{sup 0}C for 20 minutes due to Mo precipitates formed at the Nd{sub 2}Fe{sub 14}B phase boundaries which prevent the nucleation and expansion of the magnetic domains. Simultaneous use of Mo as addition and the stratification of Nd-Fe-B-Mo films using Fe as spacer layer are important tools for the improvement of the hard magnetic properties of Nd-Fe-B films. The Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta multilayer film annealed at 620{sup 0}C exhibits an increase in the coercivity from 12.1 kOe to 22.8 kOe, in the remanence ratio from 0.77 to 0.80, and in the maximum energy product from 4.5 to 7.1 MGOe in comparison with Ta/Nd-Fe-B/Ta film. As compared to Ta/Nd-Fe-B/Ta film, the Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta film presents a decrease in the crystallization temperature of about 30{sup 0}C.

  4. Corroded microstructure of HDDR-NdFeB magnetic powders

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Itakura, M.; Tomokiyo, Y.; Kuwano, N.; Machida, K.

    2004-01-01

    The microstructure of corroded HDDR-NdFeB magnetic powders in bonded magnet has been investigated by transmission electron microscopy. Following an exposure time of 300 h at 398 K in air, the HDDR-NdFeB magnetic powders are found covered with an altered layer about 300 nm thick on the surface. The layer is composed of α-Fe grains 5-10 nm in diameter and h-Nd 2 O 3 grains smaller than 5 nm. Under the altered layer, corrosion has proceeded along the Nd 2 (Fe,Co) 14 B grain boundaries to leave a wetting layer composed of a dense mixture of α-Fe and h-Nd 2 O 3 phase. The appearance of α-Fe grains in both of the altered layer wetting layer leads to the high magnetic flux loss of the corroded HDDR-NdFeB bonded magnet

  5. Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7

    Directory of Open Access Journals (Sweden)

    Jianlan Cui

    2015-01-01

    Full Text Available To better understand and ascertain the mechanisms of flotation reagent interaction with rare earth (RE minerals, it is necessary to determine the physical and chemical properties of the constituent components. Seven rare earth oxides (CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7 that cover the rare earth elements (REEs from light to heavy REEs have been investigated using Raman spectroscopy. Multiple laser sources (wavelengths of 325 nm, 442 nm, 514 nm, and 632.8 nm for the Raman shift ranges from 100 cm−1 to 5000 cm−1 of these excitations were used for each individual rare earth oxide. Raman shifts and fluorescence emission have been identified. Theoretical energy levels for Er, Nd, and Yb were used for the interpretation of fluorescence emission. The experimental results showed good agreement with the theoretical calculation for Er2O3 and Nd2O3. Additional fluorescence emission was observed with Yb2O3 that did not fit the reported energy level diagram. Tb4O7 was observed undergoing laser induced changes during examination.

  6. Energy transfer dynamics of Er3+/Nd3+ embedded SiO2-Al2O3-Na2CO3-SrF2-CaF2 glasses for optical communications

    Science.gov (United States)

    Gelija, Devarajulu; Kadathala, Linganna; Borelli, Deva Prasad Raju

    2018-04-01

    The fluorescence and upconversion studies of Er3+ doped and Er3+/Nd3+ co-doped silicate based oxyfluoride glasses have been systematically analyzed. The broad band NIR emissions (830-1700 nm), includes optical bands like O, E, S, C and L were observed in the Er3+-Nd3+ co-doped glasses. The NIR emission intensity peaks centered at 876, 1057, 1329 and 1534 nm were observed for the Er3+-Nd3+ co-doped glasses. In the co-doped samples the strongest emission intensity at 1534 nm increased up to 0.5 mol % and then decreased to 3.0 mol % of Nd3+ ions under the excitation of 980 nm. The upconversion studies of the co-doped samples were recorded under the excitation of 980 and 808 nm and found the upconversion emission peaks centered at 524, 530, 547, 590 and 656 nm. The energy transfer processes between the relevant excitation levels of Er3+ and Nd3+ ions and energy transfer efficiency were discussed. The obtained results indicate that Nd3+ can be an efficient sensitizer for Er3+ to enhance upconversion emission at green laser transition for sensors and NIR emission at 1534 nm for optical communication applications.

  7. Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers.

    Science.gov (United States)

    He, Kunna; Wei, Zhiyi; Li, Dehua; Zhang, Zhiguo; Zhang, Huaijin; Wang, Jiyang; Gao, Chunqing

    2009-10-12

    We have demonstrated what is to our knowledge the first quasi-three-level CW Nd:CLNGG laser with simple linear resonator. When the pump power was 18.2 W, a maximum output power of 1.63 W was obtained at the dual-wavelength of 935 nm and 928 nm. The optical-to-optical conversion efficiency was 9.0% and the slope efficiency was 11.5%. Lasing characteristics of a quasi-three-level CW Nd:CNGG laser were also investigated. A maximum output power of 1.87 W was obtained at the single-wavelength of 935 nm with 15.2 W pump power, corresponding to an optical-to-optical conversion efficiency of 12.3% and a slope efficiency of 15.6%.

  8. Long-pulsed Nd: YAG laser and intense pulse light-755 nm for idiopathic facial hirsutism: A comparative study

    Directory of Open Access Journals (Sweden)

    Arpit Shrimal

    2017-01-01

    Full Text Available Background: Hirsutism means excessive terminal hair growth in a female in male pattern distribution. Perception of hirsutism is subjective. Permanent laser hair reduction is a slow process taking many sessions and tracking of improvement parameters is tedious. Hence, a lot of confusion still exists regarding the type of laser most beneficial for treatment. Aim: The aim of this study was to compare the effectiveness and safety profile of long-pulsed Nd: YAG laser (1064 nm and intense pulse light (IPL-755 nm in management of idiopathic facial hirsutism. Settings and Design: Open-labelled, randomly allocated experimental study. Subjects and Methods: The study included 33 cases of idiopathic facial hirsutism. Patients were randomly divided into Group A, treated with long-pulsed Nd: YAG laser and Group B, treated with IPL-755 for a total of six sessions at 1 month interval. Statistical Analysis: Chi-square test was used in Medcalc® version 9.0 and the test of significance was taken to be P75% reduction in hair after six sessions in Group A was seen in fourteen (93.33% out of fifteen patients, whereas in Group B, it was seen only in three (16.66% out of eighteen patients. In Group A, erythema was seen in 26.67%, perifollicular edema and hyperpigmentation in 13.33% each. In Group B, erythema was seen in 50% patients, perifollicular edema in 16.67% and hyperpigmentation in 38.89% patients. Conclusions: Long-pulsed Nd: YAG Laser (1064 nm is better than IPL-755 nm in terms of safety and effectiveness in the management of idiopathic facial hirsutism.

  9. Cascaded a-cut Nd:YVO4 self-Raman with second-Stokes laser at 1313 nm

    Science.gov (United States)

    Xie, Zhi; Duan, Yanmin; Guo, Junhong; Huang, Xiaohong; Yan, Lifen; Zhu, Haiyong

    2017-11-01

    A diode-end-pumped, acousto-optic Q-switched second-Stokes self-Raman laser at 1313 nm was demonstrated in a common a-cut Nd:YVO4 crystal, with the primary Raman shift of 890 cm-1. At the incident pump power of 17.1 W, the maximum average output power up to 2.51 W and pulse width of 5 ns for second-Stokes were obtained with the pulse repetition frequency of 50 kHz. The slope efficiency and conversion efficiency with respect to the incident pump power are about 23.7% and 14.7%. The efficient output should be attributed to suitable transmittance of the output coupler used.

  10. Optical spectroscopy of Nd3+/Mg2+ co-doped LiTaO3 laser crystal

    International Nuclear Information System (INIS)

    Zhang, P X; Hang, Y; Gong, J; Zhao, C C; Yin, J G; Zhang, L H; Zhu, Y Y

    2013-01-01

    A Nd 3+ and Mg 2+ co-doped LiTaO 3 single crystal has been grown successfully by the Czochralski method. The polarized absorption spectra of the crystal were measured and investigated. The peak absorption cross-sections at 806 and 810 nm were 4.17 × 10 −20 cm 2 and 4.47 × 10 −20 cm 2 with a full width at half maximum of 29 and 17 nm for σ- and π-polarization, respectively. Based on the Judd–Ofelt theory, the spectral parameters of Nd 3+ in the as-grown crystal were investigated in detail. Moreover, the emission probabilities, branching ratio and radiative lifetime for the transitions from 4 F 3/2 were calculated. The radiative lifetime of 4 F 3/2 was calculated to be 159 μs and the luminescent quantum efficiency of the 4 F 3/2 manifold was about 81.13%. The results were also compared with other Nd 3+ doped crystals. (paper)

  11. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    International Nuclear Information System (INIS)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M.

    2017-01-01

    Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear

  12. 2nd ILK symposium 2003: harmonisation of nuclear safety approaches

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The 2 nd International ILK Symposium held on October 28 and 29, 2003, in Munich aimed to identify the basic principles, methodologies and policies that can improve the transparency and effectiveness of safety practices within the frame work of harmonized approaches. Over the course of three sessions, each covering a series of presentations and a concluding round table discussion, the topics 'Current status of harmonisation and needs for further developments', 'Basic approaches to a well-balanced safety and risk management' and 'Strategic solutions and policies' were explored in detail. (orig.)

  13. Evaluation of Nd-Loaded SnO2:F Films Coated via Spray Pyrolysis

    Science.gov (United States)

    Turgut, G.

    2018-07-01

    Thin layers of single (F)- and double (F/Nd)-incorporated tin oxide have been coated on glass substrate via spray pyrolysis. The structural, morphological, electrical, and optical features of F-incorporated samples were evaluated depending on the Nd loading. X-ray diffraction analysis revealed that samples had tetragonal tin oxide structure with (211) and (200) preferential directions. The crystallite size and strain values varied from 37.98 nm and 1.21 × 10-3 to 52.12 nm and 1.88 × 10-3. Scanning electron microscopy analysis showed that the samples consisted of pyramidal, polyhedral, and needle-shaped granules. The lowest sheet resistance value of 1.22 Ω was found for 1.8 at.% Nd + 25 at.% F-coloaded SnO2. However, the widest optical bandgap of 4.01 eV was observed for the single 25 at.% F-loaded sample. The Urbach tail and figure of merit also changed in the ranges of 664 meV to 1296 meV and 6.4 × 10-2 Ω-1 to 2.3 × 10-3 Ω-1, respectively. The results presented herein indicate that the character of F-doped tin oxide films can be controlled by Nd loading and that these films could be useful for technological applications.

  14. Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser

    Science.gov (United States)

    Chen, Y. J.; Gong, X. H.; Lin, Y. F.; Huang, J. H.; Luo, Z. D.; Huang, Y. D.

    2013-08-01

    Polarized spectroscopic properties related to 1.07 μm laser operation of a 1.8 at.% Nd3+:LaBO2MoO4 crystal grown by the Czochralski method were investigated at room temperature. Using a 2.2-mm-thick, Z-cut Nd3+:LaBO2MoO4 crystal as gain medium, orthogonally polarized dual-wavelength laser at 1,068 and 1,074 nm was first realized in a plano-concave resonator end-pumped by a quasi-continuous-wave 795 nm diode laser. A total output peak power of 1.2 W with slope efficiency of 26 % around 1.07 μm was obtained. The influences of resonator length and pump power on output laser wavelength were also investigated.

  15. Sharpening of the 6.8 nm peak in an Nd:YAG laser produced Gd plasma by using a pre-formed plasma

    Directory of Open Access Journals (Sweden)

    Yong Tian

    2016-03-01

    Full Text Available For effective use of a laser-produced-plasma (LPP light source, an LPP is desired to emit a narrow spectral peak because the reflection spectrum of multilayer mirrors for guiding emission from the source is very narrow. While a Gd plasma has been studied extensively as an extreme ultraviolet (EUV light source at around 6.8 nm, where La/B4C multilayer is reported to have a high reflectivity with a bandwidth of about 0.6 %, all previous works using an Nd:YAG laser reported very broad spectra. This paper reports the first narrowing of the 6.8 nm peak in the case of using an Nd:YAG laser to generate a Gd plasma by using a pre-pulse. The best peak narrowing is observed when a pre-formed plasma is heated by a 1064 nm main laser pulse with a duration of 10 ns at the irradiation density of 4x 1011 W/cm2 at a delay time of 50 ns after the pre-pulse irradiation. The observed spectral width of about 0.3 nm is about one fifth of the value for no pre-formed plasma. The peak wavelength of the 6.8 nm band shifted to a longer wavelength side and the peak was broadened both for lower and higher laser irradiation density. It is discussed that this robustness of the peak position of the 6.8 nm Gd peak against temperature change is suitable to achieve a narrow bandwidth from an LPP generated on solid. The observed spectra are compared with those previously reported in various conditions.

  16. Nd{sup 3+}-doped TeO{sub 2}-Bi{sub 2}O{sub 3}-ZnO transparent glass ceramics for laser application at 1.06 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian [Central South of University, School of Materials Science and Engineering, Changsha (China)

    2017-04-15

    The high crystallinity transparent glass ceramics based on Nd{sup 3+}-doped 70TeO{sub 2}-15Bi{sub 2}O{sub 3}-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd{sub 2}O{sub 3} content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd{sub 2}O{sub 3} enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi{sub 2}Te{sub 4}O{sub 11} in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd{sub 2}O{sub 3} content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd{sub 2}O{sub 3} content due to the obvious energy migration among Nd{sup 3+}. According to the extreme strong emission band around 1062 nm and the optimum Nd{sub 2}O{sub 3} content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications. (orig.)

  17. Nd3-xBixFe4GaO12 (x = 2, 2.5 films on glass substrates prepared by MOD method

    Directory of Open Access Journals (Sweden)

    Yoshida T.

    2014-07-01

    Full Text Available We studied Nd3-XBiXFe4GaO12 films to obtain perpendicular magnetic anisotropy as well as large Faraday effect. NdBi2Fe4GaO12 (Bi2:NIGG and Nd0.5Bi2.5Fe4GaO12 (Bi2.5:NIGG films were obtained on Nd2BiFe4GaO12 (Bi1:NIGG layer prepared on glass substrates by metal-organic decomposition (MOD method. Bi2:NIGG and Bi2.5:NIGG films showed large Faraday rotation angles of 7.5 and 10.5 degree/µm, at a wavelength of 520 nm, respectively. Those films have perpendicular magnetic anisotropy with a coercivity of 350 Oe and a saturation magnetic field of 730 Oe.

  18. Micromachining of glass by the third harmonic of nanosecond Nd:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Ramil, A. [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, E-15403 Ferrol (A Coruna) (Spain)], E-mail: aramil@cdf.udc.es; Lamas, J.; Alvarez, J.C.; Lopez, A.J.; Saavedra, E.; Yanez, A. [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, E-15403 Ferrol (A Coruna) (Spain)

    2009-03-01

    The ablation processing of glass was performed by using the third harmonic of nanosecond Nd:YVO{sub 4} laser. The objective of this work was the formation of deep holes with a high aspect ratio in soda lime glass; with this purpose different ways to raster the glass surface with the focused laser beam, i.e., single line, parallel lines and orthogonally crossing lines, have been tried and the effect of different parameters as the number of lines and number of scans in the depth and inclination of the sidewalls of the hole has been analyzed. Moreover, to reduce the time consumption in the laser processing of glass plates the relationship between penetration depths and overlapping factor has been studied and an optimum value of scan speed has been obtained for a particular case.

  19. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    Science.gov (United States)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  20. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK et al.

    2006-02-27

    Full Text Available Single-walled carbon nanotubes were synthesised by the laser vaporisation of graphite composite targets in a tube furnace. Two pulsed Nd:YAG lasers operating at fundamental (1 064 nm) and 2nd harmonic (532 nm) were combined, focused and evaporated...

  1. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-01

    Full Text Available Single walled carbon nanotubes were synthesized by the laser vaporization of graphite composite targets in a tube furnace. Two pulsed Nd:Yag lasers operating at fundamental (1064 nm) and 2 nd harmonic (532 nm) were combined, focused and evaporated...

  2. Lanthanite-(Nd), Nd2(CO3)3·8H2O

    Science.gov (United States)

    Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.

    2013-01-01

    Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa­hydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol­ecules. PMID:23476479

  3. New stable phase in binary Fe-Nd

    International Nuclear Information System (INIS)

    Schneider, G.; Landgraf, F.J.G.; Villas-Boas, V.; Bezerra, G.H.; Missell, F.P.; Ray, A.E.

    1992-01-01

    An investigation of binary Fe-Nd alloys revealed the existence of an oxygen-free, stable Fe-rich phase A 2 , formed peritecticly in the range 750-800 deg C. EPMA shows this phase to contain 22.8 atomic percent Nd. This ferromagnetic phase has T c = 230 de C, but is magnetically soft. The X-ray diffraction pattern can be indexed using a hexagonal cell with a = 2.021 nm. and c = 1.235 nm. (author)

  4. Generation of five phase-locked harmonics by implementing a divide-by-three optical frequency divider.

    Science.gov (United States)

    Suhaimi, Nurul Sheeda; Ohae, Chiaki; Gavara, Trivikramarao; Nakagawa, Ken'ichi; Hong, Feng-Lei; Katsuragawa, Masayuki

    2015-12-15

    We report the generation of five phase-locked harmonics, f₁:2403  nm, f₂:1201  nm, f₃:801  nm, f₄:600  nm, and f₅:480  nm with an exact frequency ratio of 1:2:3:4:5 by implementing a divide-by-three optical frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.

  5. Preparation and properties of [(NdFeB)x/(Nb)z]n multi-layer films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Chin, T.-S.; Yao, Y.-D.; Melsheimer, A.; Fisher, S.; Drogen, T.; Kelsch, M.; Kronmueller, H.

    2003-01-01

    Multi-layer [(NdFeB) x /(Nb) z ] n films with 200 nm≥x≥10 nm, 10 nm≥z≥0, 40≥n≥2, prepared by ion beam sputtering and subsequent annealing, show significantly enhanced coercivity due to the reduced grain size that enhances the anisotropy of individual grains. After annealing at 630 deg. C, some Nd 2 Fe 14 B grains were enriched with Nb and isolated as the thickness of the Nb spacer layer increases. For multi-layer (NdFeB x /Nb z ) n films with 100 nm ≥x≥25 nm, 5 nm≥z≥2 nm, their coercivity and remanence ratio are better than that of a single NdFeB film. Up to 17.8 kOe room temperature coercivity has been obtained for a sample with x=25 nm, z=5 nm and n=16

  6. 7.5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser.

    Science.gov (United States)

    Leconte, Baptiste; Gilles, Hervé; Robin, Thierry; Cadier, Benoit; Laroche, Mathieu

    2018-04-16

    We present the first frequency-doubled neodymium-doped fiber laser generating multi-watt CW power near 450 nm. A bow-tie resonator incorporating a LBO nonlinear crystal is integrated within a Nd-doped fiber laser emitting near 900 nm. This scheme achieves an IR to blue conversion efficiency close to 55% without any active control of the internal resonant cavity. As a result, up to 7.5 W of linearly-polarized blue power is generated, with beam quality factors M x 2 ~1.0 and M y 2 ~1.5. A simple numerical model has been developed to optimize and analyse the IR to blue conversion efficiency in the resonant cavity. Performance limitations and prospects for further improvements are discussed.

  7. Benefits from the BESSY FEL Higher Harmonic Radiation

    CERN Document Server

    Goldammer, K

    2005-01-01

    In the FEL process, bunching and coherent radiation is produced at the fundamental frequency as well as its higher harmonics. BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will be seeded by three lasers spanning the spectral range of 230nm to 460nm. Two to four HGHG stages downconvert the seed wavelength to the desired radiation range of 1.24nm to 51nm using higher harmonic bunching. As a surplus, higher harmonic radiation is intrinsically produced in each FEL stage. Radiation on a higher harmonic of the FEL frequency is of high interest because it yields the possibility to reduce the number of FEL stages. This paper details extensive studies of the higher harmonic content of the BESSY FEL radiation. Important aspects of FEL interaction on higher harmonics as resulting from theory and from numerical simulations are discussed. For the case of the BESSY FEL, methods for improving the harmonic content are present...

  8. Increased first and second pulse harmonics in Tai Chi Chuan practitioners.

    Science.gov (United States)

    Lu, Wan-An; Chen, Yung-Sheng; Kuo, Cheng-Deng

    2016-02-29

    Tai Chi Chuan (TCC) is known to be a good calisthenics for people. This study examined the relationship between pulse harmonics and autonomic nervous modulation in TCC practitioners. Power spectral measures of right pulse wave and heart rate variability (HRV) measures were compared between TCC practitioners and control subjects. Correlation analyses between pulse harmonics and HRV measures were performed using linear regression analysis. At baseline, the total power of pulse (TPp), powers of all individual pulse harmonics, normalized power of the 1(st) harmonics (nPh1) of TCC practitioners were greater, while the normalized power of the 4(th) pulse harmonics (nPh4) of TCC practitioners was smaller, than those of the controls. Similarly, the baseline standard deviation (SD(RR)), coefficient of variation (CV(RR)), and normalized high-frequency power (nHFP) of RR intervals were smaller, while the normalized very low-frequency power (nVLFP) and low-/high- frequency power ratio (LHR) were larger in the TCC practitioners. The TCC age correlated significantly and negatively with nPh1, and nearly significantly and negatively with nPh2 in the TCC practitioners. Thirty min after TCC exercise, the percentage changes in mRRI, SDRR, TP, VLFP were decreased, while the percentage changes in HR, ULFP, nLFP, and Ph2 were increased, relative to the controls. Correlation analysis shows that the %Ph2 correlates significantly and negatively with %mRRI and significantly and positively with %HR. The TCC practitioners had increased baseline total power of pulse and the 1(st) and 2(nd) pulse harmonics, and decreased power of the 4(th) pulse harmonics, along with decreased vagal modulation and increased sympathetic modulation. After TCC exercise, the power of the 2(nd) harmonics of TCC practitioners was increased which might be related to the increase in HR due to decreased vascular resistance after TCC exercise.

  9. Diode-laser-pumped high efficiency continuous-wave operation at 912 nm laser in Nd:GdVO4 crystal

    International Nuclear Information System (INIS)

    Yu, X; Chen, F; Gao, J; Li, X D; Yan, R P; Zhang, K; Yu, J H; Zhang, Z H

    2009-01-01

    High efficiency operation on continuous-wave (cw) 912 nm laser at room temperature in Nd:GdVO 4 crystal pumped by 808 nm diode-laser is reported in this letter. The maximum output power of 8.0 W was obtained at the incident un-polarized pump power of 47.0 W, giving the corresponding optical-to-optical conversion efficiency of 17.0% and the average slope efficiency of 22.9%. Further tests show that the lasing threshold is reduced and the efficiency is increased evidently when using the π-polarized 808 nm pump source. 4.8 W 912 nm laser was achieved at the polarized pump power of 21.8 W, optical-to-optical conversion efficiency is increased to 22.0% and average slope efficiency is up to 33.6%

  10. Intelligent harmonic load model based on neural networks

    Science.gov (United States)

    Ji, Pyeong-Shik; Lee, Dae-Jong; Lee, Jong-Pil; Park, Jae-Won; Lim, Jae-Yoon

    2007-12-01

    In this study, we developed a RBFNs(Radial Basis Function Networks) based load modeling method with harmonic components. The developed method implemented by using harmonic information as well as fundamental frequency and voltage which are essential input factors in conventional method. Thus, the proposed method makes it possible to effectively estimate load characteristics in power lines with harmonics. The RBFNs have certain advantage such as simple structure and rapid computation ability compared with multilayer perceptron which is extensively applied for load modeling. To show the effectiveness, the proposed method has been intensively tested with various dataset acquired under the different frequency and voltage and compared it with conventional methods such as polynominal 2nd equation method, MLP and RBF without considering harmonic components.

  11. LD-pumped Nd:YVO sub 4 frequency-doubled by CPM LBO laser at 671 nm

    CERN Document Server

    Zheng Quan; Qian Long Sheng; Zhao Ling

    2001-01-01

    A design of LD-pumped high efficient Nd:YVO sub 4 /LBO red laser is reported. Using critical phase-matching LBO for the first time, 671 nm red laser is obtained by 1.342 mu m intracavity frequency doubling. With 800 mW incident pump laser, 52 mW and 97 mW TEM00 mode red laser output are obtained by II-typed and I-typed LBO. The optical-to-optical conversions are up to 6.5% and 12.1% respectively

  12. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    Science.gov (United States)

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  13. Co-doping effect of CaS and Nd2S3 nanocrystallites on luminescence properties of sol-gel SiO2 xerogel

    International Nuclear Information System (INIS)

    Yang, P.; Lue, M.K.; Song, C.F.; Xu, D.; Yuan, D.L.; Gu, F.

    2005-01-01

    The synthesis and photoluminescence characteristics of a porous phosphor silica xerogel containing CaS and Nd 2 S 3 nanoparticles entrapped in a sol-gel silica network are discussed. X-ray diffraction (XRD), transmission electron micrograph (TEM), UV-Vis absorption spectroscopy and photoluminescence spectroscopy have been performed. The observed luminescence is assigned to CaS and Nd 2 S 3 nanoparticles embedded in the sol-gel silica xerogel. Transmission electron micrographs of doped samples revealed the presence of CaS and Nd 2 S 3 nanoparticles with average diameters of 10-20 nm. Two emission bands have been observed from co-doped sample

  14. Thermal and polarized spectroscopic characteristics of Nd3+:LiLa(WO4)2 crystal

    International Nuclear Information System (INIS)

    Huang Xinyang; Fang Qin; Yu Quanmiao; Lue Xingdong; Zhang Lizhen; Lin Zhoubin; Wang Guofu

    2009-01-01

    The thermal and polarized spectroscopic characteristics of Nd 3+ :LiLa(WO 4 ) 2 crystals have been investigated. The hardness of Nd 3+ :LiLa(WO 4 ) 2 crystal is 389.7 VDH. The specific heat at 330 K is 0.47 J g -1 K -1 . The thermal expansion coefficients for c- and a-axes are 7.70 x 10 -6 and 14.63 x 10 -5 deg. C -1 , respectively. The spectral parameters have been determined by Judd-Ofelt theory and Fuechtbauer-Ladenburg formula. The intensity parameters Ω t obtained are Ω 2 = 12.914 x 10 -20 cm 2 , Ω 4 = 3.79 x 10 -20 cm 2 , Ω 6 = 3.72 x 10 -20 cm 2 . The radiative and fluorescence lifetimes are 145 and 165 μs, respectively. The quantum efficiency is 91.9%. The absorption band at 805 nm has an FWHM of around 20 nm for both π- and σ-polarizations. The absorption cross-sections at 805 nm are 2.91 and 2.83 x 10 -20 cm 2 for π- and σ-polarizations, respectively. The stimulated emission cross-sections are 8.899 and 7.787 x 10 -20 cm 2 for π- and σ-polarizations, respectively

  15. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  16. Diode-side-pumped continuous wave Nd³⁺ : YVO₄ self-Raman laser at 1176 nm.

    Science.gov (United States)

    Kores, Cristine Calil; Jakutis-Neto, Jonas; Geskus, Dimitri; Pask, Helen M; Wetter, Niklaus U

    2015-08-01

    Here we report, to the best of our knowledge, the first diode-side-pumped continuous wave (cw) Nd3+:YVO4 self-Raman laser operating at 1176 nm. The compact cavity design is based on the total internal reflection of the laser beam at the pumped side of the Nd3+:YVO4 crystal. Configurations with a single bounce and a double bounce of the laser beam at the pumped faced have been characterized, providing a quasi-cw peak output power of more than 8 W (multimode) with an optical conversion efficiency of 11.5% and 3.7 W (TEM00) having an optical conversion efficiency of 5.4%, respectively. Cw output power of 1.8 W has been demonstrated.

  17. The study of 670.7 nm red light generated by intracavity frequency doubling of a Q-switched Nd : YAlO3 laser

    International Nuclear Information System (INIS)

    Zhu Haiyong; Zhang Ge; Huang Chenghui; Wei Yong; Huang Lingxiong; Huang Yidong

    2009-01-01

    High-power 670.7 nm red light was obtained by intracavity frequency doubling of a Q-switched Nd : YAlO 3 (Nd : YAP) laser with a critical phase matching (θ = 85.9 0 , φ = 0 0 ) cut LBO. Experimental configurations using V-cavity and Z-cavity have been adopted for comparison. The highest output power of 19.7 W was achieved in the Z-cavity with optical-optical efficiency of 4%. Compared with the laser using an Nd : YAG crystal, the adoption of Nd : YAP simplified the laser system in the absence of a solid etalon and the Brewster plate. The output power stability of the red laser was investigated and the fluctuation was lower than 3% at the output power of 18 W an hour.

  18. Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    International Nuclear Information System (INIS)

    Wang, Yuxin; Wen, Wenhui; Wang, Kai; Wang, Ke; Zhai, Peng; Qiu, Ping

    2016-01-01

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D 2 O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D 2 O immersion enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D 2 O a promising immersion medium for deep-tissue imaging

  19. Magnetic and microstructural properties of thin NdFeB based films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bommer, Lars; Goll, Dagmar [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany)

    2010-07-01

    The magnetic and microstructural properties of NdFeB and NdFeB/Fe thin films and nanostructures are presented. Samples with Cr buffer and protection layer (minimum thickness: d=50 nm) have been produced by ion beam sputtering at elevated temperatures (T{sub s}=700 C) using Al{sub 2}O{sub 3} and MgO(001) single crystal substrates. Films deposited on Al{sub 2}O{sub 3} substrates show c-axis growth in out-of-plane direction down to thicknesses of the NdFeB film of d=10 nm with coercivities up to {mu}{sub 0}H{sub c}=1 T. The texture of films deposited on MgO(001) substrates is less pronounced and films below d=20 nm show no hard magnetic behavior. For comparison, films were deposited at room temperature on Al{sub 2}O{sub 3} and MgO(001) followed by post-annealing in Ar atmosphere (T{sub pa}=525-650 C) leading to coercivities as high as {mu}{sub 0}H{sub c}=1.2 T but with isotropic behavior. By TEM images the grain structure of the NdFeB samples is studied. Bilayers of NdFeB (d=50 nm) and Fe (d=0-20 nm) show fully exchange coupled behavior. From the temperature dependence of the coercivity the microstructural parameters of all samples have been determined. Furthermore NdFeB periodical patterns were produced by means of electron beam lithography with dot sizes of 1000 nm and 500 nm, respectively.

  20. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped Lu2SiO5 crystal

    International Nuclear Information System (INIS)

    Li, D Z; Xu, X D; Zhou, D H; Xia, C T; Wu, F; Xu, J; Cong, Z H; Zhang, J; Tang, D Y

    2011-01-01

    High quality Nd 3+ -doped Lu 2 SiO 5 (Nd:LSO) crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:LSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω 2,4,6 were obtained to be 2.59, 4.90, and 5.96×10 -20 cm 2 , respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak emission cross section is 5.8 and 6.6×10 -20 cm 2 at 1075 and 1079 nm, respectively, with full width at half maximum (FWHM) of 2.8 and 5.1 nm in turn. Pumped by a laser diode, a maximum 2.54 W continuous-wave laser output has been obtained with a slope efficiency of 32%. All the results show that this crystal is a promising laser material

  1. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped Lu2SiO5 crystal

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Zhou, D. H.; Xia, C. T.; Wu, F.; Xu, J.; Cong, Z. H.; Zhang, J.; Tang, D. Y.

    2011-01-01

    High quality Nd3+-doped Lu2SiO5 (Nd:LSO) crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:LSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω2,4,6 were obtained to be 2.59, 4.90, and 5.96×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak emission cross section is 5.8 and 6.6×10-20 cm2 at 1075 and 1079 nm, respectively, with full width at half maximum (FWHM) of 2.8 and 5.1 nm in turn. Pumped by a laser diode, a maximum 2.54 W continuous-wave laser output has been obtained with a slope efficiency of 32%. All the results show that this crystal is a promising laser material.

  2. A new ~1 μm laser crystal Nd:Gd2SrAl2O7: growth, thermal, spectral and lasing properties

    Science.gov (United States)

    Yuan, Feifei; Liao, Wenbin; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Wang, Yeqing; Lin, Zhoubin; Wang, Guofu; Zhang, Ge

    2018-03-01

    Nd:Gd2SrAl2O7 crystals were grown by the Czochralski technique; thermal, spectral and laser properties were investigated in detail. The average thermal expansion coefficients along a- and c-axis are 12.6  ×  10-6 K-1 and 14.9  ×  10-6 K-1, respectively. At room temperature, the thermal conductivities are 4.98 and 5.24 W (m-1 * K-1) along the a- and c-axis, respectively. The absorption cross sections at ~808 nm are 13.7  ×  10-20 cm2 with a FWHM of 3.3 nm for π-polarization and 11.84  ×  10-20 cm2 with a FWHM of 3.4 nm for σ-polarization. The emission cross sections at ~1080 nm are 15  ×  10-20 cm2 and 12.7  ×  10-20 cm2 with a FWHM of about 5.1 nm and 12.5 nm for π- and σ-polarization, respectively. The fluorescence lifetime for the 4F3/2  →  4I11/2 transition was fitted to be 118 µs. Pumped by a fiber-coupled 808 nm laser diode, the maximum 1.55 W continuous-wave laser output at ~1.08 µm was achieved with a slope efficiency of 30.5%. All the results show that Nd:Gd2SrAl2O7 crystal is a promising laser material.

  3. Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis

    Science.gov (United States)

    Saghafi, S.; Penjweini, R.; Becker, K.; Kratky, K. W.; Dodt, H.-U.

    2010-09-01

    When moulds are illuminated by visible electromagnetic-EM radiations, several effects on nucleus materials and nucleotides can be detected. These effects have a significant influence on mould generation or destruction. This paper presents the effects and implications of a red diode laser beam (660 nm), a second-harmonics of a Nd:YAG laser emitting green beam (532 nm), or the combination of both, on the eradication of Pistachio mould fungus. Incident doses (ID) of both beams are kept identical throughout the experiment. The absorption spectrums of irradiated mouldy samples and the bright-greenish-yellow-fluorescence (BGYF) of fungus occurring in mould texture due to electronic excitation are investigated. We found that a combination of a green and a red laser beam with an ID of 0.5 J/cm2 provides the optimal effects on Pistachio mould fungus eradication.

  4. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    International Nuclear Information System (INIS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun

    2015-01-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF 2 disordered crystal was demonstrated. The Y 3+ -codoping in Nd : CaF 2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF 2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier. (letter)

  5. Efficient quasi-three-level Nd:YAG laser at 946 nm pumped by a tunable external cavity tapered diode laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    2010-01-01

    Using a tunable external cavity tapered diode laser (ECDL) pumped quasi-three-level Nd:YAG laser, a fivefold reduction in threshold and twofold increase in slope efficiency is demonstrated when compared to a traditional broad area diode laser pump source. A TEM00 power of 800 mW with 65% slope...... efficiency is obtained, the highest reported TEM00 power from any 946 nm Nd:YAG laser pumped by a single emitter diode laser pump source. A quantum efficiency of 0.85 has been estimated from experimental data using a simple quasi-three-level model. The reported value is in good agreement with published...

  6. Glass marking with diode-pumped Nd:YLF laser; Handotai reiki Nd:YLF laser ni yoru glass marking

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Hayashi, K. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1996-08-20

    The compact marking system based on a beam scanning system in which the fourth harmonic (FHG: 262 nm in wavelength) of a diode-pumped Nd:YLF (Nd:LiYf4) laser is used for the source of ultraviolet light is described. The result of application to the glass marking that caused a problem due to the generation of cracks is also explained. The machining characteristics significantly vary depending on the type of glass. During actual marking, sample processing must be beforehand carried out to optimize the processing conditions after confirming that there is no problem in practical use. For marking on the glass used for liquid-crystal board, it is valid to improve the density of a dot and increase the number of shots per dot for obtaining high visibility. However, cracks may occur in the clearance of each dot because of the thermal effect. Therefore, the processing conditions must be optimized according to the glass type and crack generation state. The generation of cracks can be suppressed by setting the processing conditions to the optimum level. As a result, satisfactory marking is obtained. 8 refs., 6 figs.

  7. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3

    NARCIS (Netherlands)

    Terlinden, N.M.; Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    Al2O3 synthesized by plasma-assisted atomic layer deposition yields excellent surface passivation of crystalline silicon (c-Si) for films down to ~ 5 nm in thickness. Optical second-harmonic generation was employed to distinguish between the influence of field-effect passivation and chemical

  8. Discrete multi-wavelength tuning of a continuous wave diode-pumped Nd:GdVO4 laser

    Science.gov (United States)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-05-01

    Discrete multi-wavelength operation of a diode-pumped Nd:GdVO4 laser at four different wavelengths was demonstrated using a single birefringent filter plate. The laser achieved maximum output powers of 5.92 W, 5.66 W, 5.56 W and 3.98 W at 1063.2nm, 1070.8 nm, 1082.5 nm and 1086.2nm wavelengths, respectively. To the best of our knowledge, apart from achieving the maximum output powers at ~1071 nm and ~1086 nm and best efficiencies at ~1071 nm, ~1083 nm and ~1086 nm wavelengths for a Nd:GdVO4 laser, this is also the largest number of wavelengths from the 4F3/2  →  4I11/2 transition that was ever obtained in a controlled manner from a single laser setup based on any of the Nd-doped laser crystals.

  9. Harmonic Dark Pulse Emission in Erbium-Doped Fiber Laser

    International Nuclear Information System (INIS)

    Zian, Cheak Tiu; Arman, Zarei; Sin, Jin Tan; Harith, Ahmad; Sulaiman, Wadi Harun

    2015-01-01

    A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5"t"h order harmonic by increasing the pump power with an appropriate polarization controller orientation. The fundamental repetition rate of 20 kHz is obtained at the pump power of 29 mW. The highest pulse energy of 42.6 nJ is obtained at the fundamental repetition rate. The operating frequency of the dark pulse trains shifts to 2"n"d, 3"r"d, 4"t"h and 5"t"h harmonic as the pump powers are increased to 34 mW, 50 mW, 59 mW and 137 mW, respectively. (paper)

  10. Harmonic Content of the BESSY FEL Radiation

    CERN Document Server

    Meseck, Atoosa

    2005-01-01

    BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will consist of three undulator lines. The associated tunable lasers will cover the spectral range of 230nm to 460nm. Two to four HGHG stages reduce the seed wavelength to the desired radiation range of 1.24nm < λ < 51nm. The harmonic content of the high-intensity radiator output can be used to reduce the number of necessary HGHG stages. Moreover the higher harmonic content of the final output extends the offered spectral range and thus is of high interest for the user community. In this paper, the higher harmonic content of the final output as well as of the output of several radiators are investigated. The main parameters such as output power, pulse duration and bandwidth as well as their suitability for seeding are discussed.

  11. Potential role of S100A8 in skin rejuvenation with the 1064-nm Q-switched Nd:YAG laser.

    Science.gov (United States)

    Qin, Yan; Qin, Xiaofeng; Xu, Peng; Zhi, Yuanting; Xia, Weili; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2018-04-01

    The 1064-nm Q-switched Nd:YAG laser is demonstrated to be effective for non-ablative skin rejuvenation, but the molecular mechanism by which dermis responses to laser-induced damage and initiates skin remodeling is still unclear. HaCaT cells and 3T3 skin fibroblasts were irradiated with the 1064-nm Q-switched Nd:YAG laser at the different doses. Then, cells were collected and lysed for PCR and Western blot analysis. Cell viability was detected by Cell Counting Kit-8 (CCK-8) before and after laser irradiation. The expressions of S100A8, advanced glycosylation end product-specific receptor (RAGE) and inflammatory cytokines in two cell lines were markedly upregulated after laser treatments. The PCR, Western blot, and ELISA analysis showed the significant increase of type I and III procollagen in the 3T3 cells treated with the 1064-nm laser. Interestingly, si S100A8 effectively inhibited the expression of cytokines and collagen, while S100A8 treatments significantly increased them. P-p38 and p-p65 levels were also elevated after the 1064-nm laser irradiation, which is positively related with S100A8. Cell viability and reactive oxygen species (ROS) levels were not changed, while the content of superoxidase dismutase (SOD) in two cells was increased after laser irradiation. Our results demonstrated that the overexpression of S100A8 induced by the 1064-nm laser irradiation triggered inflammatory reactions in skin cells. The inflammatory microenvironment and improvement of skin antioxidant capacity contribute to new collagen synthesis in the skin cells. Thus, S100A8 was required for laser-induced new collagen synthesis in skin cells. p38/MAPK and NF-κB signal pathways were involved in S100A8-mediated inflammatory reactions in response to laser irradiation.

  12. Split lesion randomized comparative study between long pulsed Nd:YAG laser 532 and 1,064 nm in treatment of facial port-wine stain.

    Science.gov (United States)

    Al-Dhalimi, Muhsin A; Al-Janabi, Murtadha H

    2016-11-01

    Lasers have been the treatment of choice for Port-wine stain (PWS). However, only one type of laser is not a panacea for all PWS malformations. This is may be due to the great heterogeneity of phenotypic presentation of this congenital anomaly as color, depth, and the site of the lesion. For the treatment of PWS, flash lamp-pumped pulsed dye laser, carbon dioxide, argon, krypton, copper bromide, frequency-doubled neodymium:yttrium-aluminum-garnet (Nd:YAG), and also intense pulsed light sources can be used. To assess and compare the effectiveness of wavelength 532 and 1,064 nanometers (nm) long pulse Nd:YAG laser in the treatment of facial port-wine stain. This was a comparative therapeutic study for the treatment of facial port-wine stain. We divided the lesion into two halves, medial and lateral, and then each half was treated by 532 or 1,064 nm Nd:YAG. The sessions were done every 4 weeks for six sessions and follow-up after 3 months, then assess the response before and after the sessions and at the end follow-up period objectively (degree of improvement, Photo comparison) and subjectively (Patient satisfaction). Fourteen out of nineteen patients completed all sessions of the treatment, and the other five patients were defaulted from the study due to different causes, including marriage, poor compliance for treatment, and for unknown causes. They were 13 (92.85%) females and 1 (7.15%) male. The mean age of patients was 22.07 ± 9.003 years (range 8-44 years). Three patients (21.4%) were Fitzpatrick's skin type III and four patients (78.6%) were typed IV. There was no hypertrophy in any of the lesions. All facial PWSs lie along the distribution of the trigeminal nerve. Four patients (28.6%) have V1 (ophthalmic), 12 patients (85.7%) have V2 (maxillary), and 9 (64.3%) have V3 (mandibular). The color of PWSs was pink-red in eight patients (57.1%), dark-red in four patients (28.6%), and purple-dark two patients (14.3%). The improvement score for the halves of

  13. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...

  14. The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses

    Science.gov (United States)

    Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.

    2016-08-01

    The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.

  15. Spacer layer effect and microstructure on multi-layer [NdFeB/Nb]n films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Yao, Y.-D.; Chin, T.-S.; Kronmueller, H.

    2002-01-01

    Spacer layer effect on multi-layer [NdFeB/Nb] n films has been investigated from the variation of magnetic properties and microstructure of the films. From a HRTEM cross-section view observation, the average grain size of [NdFeB/Nb] n multi-layers was controlled by both annealing temperature and thickness of NdFeB layer. Selected area diffraction pattern indicated that the structure of Nb spacer layer was amorphous. The grain size and coercivity of [NdFeB x /Nb] n films change from 50 nm and 16.7 kOe to 167 nm and 9 kOe for films with x=40 nm, n=10 and x=200 nm, n=2, respectively

  16. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.

    Science.gov (United States)

    Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J

    2014-04-01

    We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.

  17. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  18. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics.

    Science.gov (United States)

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-11-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I 2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N 2 molecules.

  19. Continuous-wave and acousto-optically Q-switched 1066 nm laser performance of a novel Nd:GdTaO4 crystal

    Science.gov (United States)

    Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun

    2018-05-01

    A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.

  20. Fluorescence properties of novel near-infrared phosphor CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.X., E-mail: tmjx@jnu.edu.c [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhang, F.J.; Peng, W.F.; Wan, W.J.; Xiao, Q.L.; Chen, Q.Q.; Cao, L.W. [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wang, Z.L. [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031 (China)

    2010-10-15

    Research highlights: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized. The phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement benefited from the efficient energy transfer from a co-doped Ce{sup 3+}. The energy transfer mechanism was also briefly based on detailed investigation on spectrum and fluorescence lifetime. - Abstract: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized by co-precipitation method followed by firing at 1300 {sup o}C in reduced atmosphere. When irradiated with blue light, the phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement by co-doping of Ce{sup 3+}. Detailed investigation on spectrum and fluorescence lifetimes indicated the NIR luminescence enhancement is obtained from an energy transfer process. The process initiates with efficient absorption of blue light by Ce{sup 3+} ions via an allowed 4f-5d transition, follow by efficient energy transfer from Ce{sup 3+} to Nd{sup 3+}, and emitting strong Nd{sup 3+} characteristic fluorescence.

  1. Up-conversion luminescence of Er3+/Yb3+/Nd3+-codoped tellurite glasses

    International Nuclear Information System (INIS)

    Lu Longjun; Nie Qiuhua; Xu Tiefeng; Dai Shixun; Shen Xiang; Zhang Xianghua

    2007-01-01

    Up-conversion luminescence and energy transfer (ET) processes in Nd 3+ -Yb 3+ -Er 3+ triply doped TeO 2 -ZnO-Na 2 O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er 3+ : 4 S 3/2 →4 I 15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er 3+ singly doped and Er 3+ -Yb 3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb 2 O 3 -concentration and Nd 2 O 3 -concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd 3+ , Yb 3+ and Er 3+ . And a possible up-conversion mechanism based on sequential ET from Nd 3+ to Er 3+ through Yb 3+ is proposed for green and red up-conversion emission processes

  2. Comparison of Q-switched Nd:YAG laser alone versus its combination with ultrapulse CO2 laser for the treatment of black tattoo.

    Science.gov (United States)

    Vanarase, Mithila; Gautam, Ram Krishan; Arora, Pooja; Bajaj, Sonali; Meena, Neha; Khurana, Ananta

    2017-10-01

    Q-switched lasers are conventionally used for the treatment of black tattoo. However, they require multiple sittings, and the response may be slow due to competing epidermal pigment in dark skin. To compare the efficacy of Q-switched Nd:YAG laser alone with its combination with ultrapulse CO 2 for the removal of black tattoo. Sixty patients with black tattoo were randomized into two groups viz., group A and group B. Group A was treated with QS Nd:YAG laser (1064 nm) alone, and group B received combination of ablative ultrapulse CO 2 followed by fixed-dose QS Nd:YAG laser (1064 nm), at 6-week interval for a maximum of 6 sittings. After each sitting, 3 independent physicians noted percentage of improvement that was evaluated using visual analogue scale (VAS) and grading system for tattoo ink lightening (TIL). Combination laser (group B) showed statistically significant improvement in mean VAS score in the last 2 noted visits as compared to 1st session (p tattoos, combination of ultrapulse CO 2 laser and QS Nd:YAG laser is superior to QS Nd:YAG laser alone.

  3. Orientation and magnetic properties of the thick multilayered [NdFeBxTby]n films

    International Nuclear Information System (INIS)

    Liu, Weifang; Suzuki, Shunji; Machida, Kenichi

    2007-01-01

    Multilayered [NdFeB x /Tb y ] n films were prepared by a three-demensional sputtering system. From the thickness of NdFeB layer dependence on the orientation and magnetic properties of multilayered [NdFeB (xμm)/Tb (50nm)] n films with 7.2μm as a total thickness of NdFeB layers, it was found that the orientation of NdFeB grains was maintained. However, the coercivity was enhanced with decreasing the thickness of each NdFeB thin layer. The (BH) max value of 240kJ/m 3 was obtained on the layered [NdFeB (1.2μm)/Tb (50 nm)] 6 film as an optimal value. For the multilayered [NdFeB (1.2μm)/Tb (50 nm)] n films with various multiple layer sets (n), the coercivity value increased with the film thickness without any deterioration of the c-axis texture and consequently, multilayered NdFeB/Tb film magnets with total thickness values around 70μm showed the superior magnetic properties (H cj approx. = 1360kA/m, I r approx.= 1.05T, and (BH) max approx.= 202kJ/m 3 ). (author)

  4. Structural, Morphological and Optical Characterization of Eu3+ and Nd3+ Co-Doped Tio2 Nano Particles by Sol Gel Method

    Directory of Open Access Journals (Sweden)

    P. Sanjay

    2017-06-01

    Full Text Available Semiconductor nano crystals have been widely studied for their fundamental properties. The Eu3+ and Nd3+ doped titanium dioxide nano powder was successfully synthesized by sol-gel method. The morphological and structural properties of as-prepared samples were characterized by X-ray diffraction (XRD, High Resolution Transmission Electron Microscope (HRTEM. The Powder X- ray diffraction is carried out in order to examine the phase formation and substitution of Eu3+ and Nd3+ doped in TiO2 matrix. The UV-Vis spectral analysis was carried out between 200 nm and 1200 nm. The band gap of the Eu3+ and Nd3+ doped Tio2 nanoparticles was calculated. The functional groups of the synthesized compound have been identified by FTIR spectral analysis. The strong PL intensity confirms a blue shift.

  5. Microstructure and Magnetic Properties of NdFeB Films through Nd Surface Diffusion Process

    OpenAIRE

    Liu, Wenfeng; Zhang, Mingang; Zhang, Kewei; Chai, Yuesheng

    2017-01-01

    Ta/Nd/NdFeB/Nd/Ta films were deposited by magnetron sputtering on Si (100) substrates and subsequently annealed for 30 min at 923 K in vacuum. It was found that the microstructure and magnetic properties of Ta/Nd/NdFeB/Nd/Ta films strongly depend on the NdFeB layer thickness. With NdFeB layer thickness increasing, both the grain size and the strain firstly reduce and then increase. When NdFeB layer thickness is 750 nm, the strain reaches the minimum value. Meanwhile, both the in-plane and per...

  6. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Pozo, S. [Dpto. Ingeniería de los Recursos Naturales y Medio Ambiente, ETSI Minas, University of Vigo, 36310 (Spain); Barreiro, P. [Dpto. Física Aplicada, E.T.S.I. Industriales, University of Vigo, 36310 (Spain); Rivas, T. [Dpto. Ingeniería de los Recursos Naturales y Medio Ambiente, ETSI Minas, University of Vigo, 36310 (Spain); González, P. [Dpto. Física Aplicada, E.T.S.I. Industriales, University of Vigo, 36310 (Spain); Fiorucci, M.P. [Centro de Investigacións Tecnolóxicas (CIT), University of A Coruña, 15403, Ferrol (Spain)

    2014-05-01

    Sulphated black crust is a common form of deterioration affecting stone used in monuments, usually occurs in contaminated atmospheres or urban environments. Its origin and cleaning have been studied extensively, for decades, in the case of carbonate rocks. Recent studies show that this form of alteration also affects granites. Scientific research on laser removal effectiveness of gypsum-rich black crust on granites needs to be scientifically addressed considering the inexistent references. This paper assesses the removal by laser of sulphate-rich black crusts on granite using the different harmonics of a Nd:YAG nanosecond pulsed laser (266 nm, 355 nm, 532 nm and 1064 nm). Effectiveness was evaluated using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM–EDS), X-Ray Diffraction (XRD) and Attenuated Total Reflection-Fourier Infrared Transform Spectroscopy (ATR-FTIR). We also evaluated the effect of the radiation on granite-forming minerals and on the colour of the stone using Scanning Electron Microscopy and spectrophotometry colour measurements respectively. SEM–EDS, XRD and ATR-FTIR analyses show that the higher the wavelength, the more efficient the cleaning, so samples cleaned using 1064 nm pulsed laser recovered its original colour. Nevertheless, the Nd:YAG laser did not completely eliminate the crust, and gypsum crystals remaining on the rock surface are observed, even at the most effective wavelength.

  7. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser

    International Nuclear Information System (INIS)

    Pozo, S.; Barreiro, P.; Rivas, T.; González, P.; Fiorucci, M.P.

    2014-01-01

    Sulphated black crust is a common form of deterioration affecting stone used in monuments, usually occurs in contaminated atmospheres or urban environments. Its origin and cleaning have been studied extensively, for decades, in the case of carbonate rocks. Recent studies show that this form of alteration also affects granites. Scientific research on laser removal effectiveness of gypsum-rich black crust on granites needs to be scientifically addressed considering the inexistent references. This paper assesses the removal by laser of sulphate-rich black crusts on granite using the different harmonics of a Nd:YAG nanosecond pulsed laser (266 nm, 355 nm, 532 nm and 1064 nm). Effectiveness was evaluated using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM–EDS), X-Ray Diffraction (XRD) and Attenuated Total Reflection-Fourier Infrared Transform Spectroscopy (ATR-FTIR). We also evaluated the effect of the radiation on granite-forming minerals and on the colour of the stone using Scanning Electron Microscopy and spectrophotometry colour measurements respectively. SEM–EDS, XRD and ATR-FTIR analyses show that the higher the wavelength, the more efficient the cleaning, so samples cleaned using 1064 nm pulsed laser recovered its original colour. Nevertheless, the Nd:YAG laser did not completely eliminate the crust, and gypsum crystals remaining on the rock surface are observed, even at the most effective wavelength.

  8. Second- and third-harmonic generation as a local probe for nanocrystal-doped polymer materials with a suppressed optical breakdown threshold

    Science.gov (United States)

    Konorov, S. O.; Fedotov, A. B.; Ivanov, A. A.; Alfimov, M. V.; Zabotnov, S. V.; Naumov, A. N.; Sidorov-Biryukov, D. A.; Podshivalov, A. A.; Petrov, A. N.; Fornarini, L.; Carpanese, M.; Ferrante, G.; Fantoni, R.; Zheltikov, A. M.

    2003-09-01

    Second- and third-harmonic generation processes are shown to allow the detection of absorptive agglomerates of nanocrystals in transparent materials and the visualization of optical breakdown in nanocomposite materials. Correlations between laser-induced breakdown and the behavior of the second- and third-harmonic signals produced in SiC/PMMA nanocomposite films are studied. The potential of second- and third-harmonic generation for the on-line visualization of laser breakdown in nanocomposite polymer materials is revealed, with the ablative material removal being monitored by the decay of the second- and third-harmonic signals. The second and third harmonics generated around the optical breakdown threshold by 75-fs pulses of 1.25-μm Cr:forsterite laser radiation are respectively more than two and four orders of magnitude more intense than the second and third harmonics produced under identical conditions by 40-ps pulses of a Nd:YAG laser. The breakdown threshold for PMMA films doped with 10-20-nm SiC nanocrystals forming absorptive agglomerates are demonstrated to be more than an order of magnitude lower than the breakdown threshold for crystalline SiC and about an order of magnitude lower than that for nondoped PMMA films.

  9. Laser at 532 nm by intracavity frequency-doubling in BBO

    Science.gov (United States)

    Yuan, Xiandan; Wang, Jinsong; Chen, Yongqi; Wu, Yulong; Qi, Yunfei; Sun, Meijiao; Wang, Qi

    2017-06-01

    A simple and compact linear resonator green laser at 532 nm is generated by intracavity frequency-doubling of a diode-side-pumped acousto-optically (AO) Q-switched Nd:YAG laser at 1064 nm. Two acousto-optic Q-switches were placed orthogonally with each other to improve the hold-off capacity. As high as 214 W of continuous-wave (CW) and 154 W of quasi-continuous-wave (QCW) output power at 1064 nm were obtained when the pumping power was 1598 W. The type I phase-matched BBO crystal was used as the nonlinear medium in the second harmonic generation. A green laser with an average output power of 37 W was obtained at a repetition rate of 20 kHz and a pulse width of 54 ns, which corresponds to pulse energy of 1.85 mJ per pulse and a peak power 34.26 kW, respectively. Project supported by the Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing, the National High Technology Research and Development Program of China (No. 2014AA032607), and the National Natural Science Foundation of China (Nos. 61404135, 61405186, 61308032, 61308033).

  10. Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1 nm and a InGaN laser diode at 444 nm.

    Science.gov (United States)

    Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F

    2013-03-11

    We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time.

  11. Synthesis and optical properties of polycrystalline Li{sub 2}Al{sub 2}B{sub 2}O{sub 7} (LABO)

    Energy Technology Data Exchange (ETDEWEB)

    Dagdale, S. R., E-mail: shiva.dagdale68@gmail.com; Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602 (India)

    2016-05-06

    A polycrystalline lithium aluminum borate (Li{sub 2}Al{sub 2}B{sub 2}O{sub 7}, LABO) has been synthesized by using simple solid-state technique. The obtained LABO polycrystalline was characterized by powder X-ray diffraction; Fourier transform infrared (FT-IR) spectroscopy and second harmonic generation (SHG) efficiency measurement. The functional groups were identified using the FT-IR spectroscopic data. The SHG efficiency of the polycrystalline material was obtained by the classic Kurtz powder technique using a fundamental wavelength 1064 nm of Nd:YAG laser and it is found to be 1.4 times that of potassium dihydrogen phosphate (KDP).

  12. Crystal growth, spectroscopic and CW laser properties of Nd0.03Lu2.871Gd0.099Al5O12 crystal

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Cheng, S. S.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.

    2011-11-01

    Nd0.03Lu2.871Gd0.099Al5O12 (Nd:LuGdAG) crystal was grown by the Czochralski method. The absorption, fluorescence spectra and fluorescence lifetime of Nd:LuGdAG crystal at room temperature were investigated for the first time. We reported the continuous-wave (CW) Nd:LuGdAG laser operation under diode pumping. Output power of 1.43 W at 1064 nm was achieved with a slope efficiency of 34.1%. All the results show that Nd:LuGdAG crystal is a promising laser material.

  13. Detection and Analytical Capabilities for Trace Level of Carbon in High-Purity Metals by Laser-Induced Breakdown Spectroscopy with a Frequency Quintupled 213 nm Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Masaki Ohata

    2017-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS with a frequency quintupled 213 nm Nd:YAG laser was examined to the analysis of trace level of carbon (C in high-purity metals and its detection and analytical capabilities were evaluated. Though C signal in a wavelength of 247.9 nm, which showed the highest sensitivity of C, could be obtained from Cd, Ti, and Zn ca. 7000 mg kg−1 C in Fe could not be detected due to the interferences from a lot of Fe spectra. Alternative C signal in a wavelength of 193.1 nm could not be also detected from Fe due to the insufficient laser output energy of the frequency quintupled 213 nm Nd:YAG laser. The depth analysis of C by LIBS was also demonstrated and the C in Cd and Zn was found to be contaminated in only surface area whereas the C in Ti was distributed in bulk. From these results, the frequency quintupled 213 nm Nd:YAG laser, which was adopted widely as a commercial laser ablation (LA system coupled with inductively coupled plasma mass spectrometry (ICPMS for trace element analysis in solid materials, could be used for C analysis to achieve simultaneous measurements for both C and trace elements in metals by LIBS and LA-ICPMS, respectively.

  14. Comparison of a long-pulse Nd:YAG laser and a combined 585/1,064-nm laser for the treatment of acne scars: a randomized split-face clinical study.

    Science.gov (United States)

    Min, Seong U K; Choi, Yu Sung; Lee, Dong Hun; Yoon, Mi Young; Suh, Dae Hun

    2009-11-01

    Nonablative laser is gaining popularity because of the low risk of complications, especially in patients with darker skin. To compare the efficacy and safety of a long-pulse neodymium-doped yttrium aluminium garnet (Nd:YAG) laser and a combined 585/1,064-nm laser for the treatment of acne scars. Nineteen patients with mild to moderate atrophic acne scars received four long-pulse Nd:YAG laser or combined 585/1,064-nm laser treatment sessions at fortnightly intervals. Treatments were administered randomly in a split-face manner. Acne scars showed mild to moderate improvement, with significant Echelle d'évaluation clinique des cicatrices d'acné (ECCA) score reductions, after both treatments. Although intermodality differences were not significant, combined 585/1,064-nm laser was more effective for deep boxcar scars. In patients with combined 585/1,064-nm laser-treated sides that improved more than long-pulse Nd:YAG laser-treated sides, ECCA scores were significantly lower for combined 585/1,064-nm laser treatment. Histologic evaluations revealed significantly greater collagen deposition, although there was no significant difference between the two modalities. Patient satisfaction scores concurred with physicians' evaluations. Both lasers ameliorated acne scarring with minimal downtime. In light of this finding, optimal outcomes might be achieved when laser treatment types are chosen after considering individual scar type and response.

  15. Dual mode emission and harmonic generation in ZnO-CaO-Al{sub 2}O{sub 3}: Er{sup 3+} nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Verma, R.K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Nano-technology Application Centre, University of Allahabad, Allahabad (India); Rai, S.B., E-mail: sbrai49@yahoo.co.i [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2011-05-15

    Er{sup 3+} doped ZnO-CaO-Al{sub 2}O{sub 3} nano-composite phosphor has been synthesized through combustion method and its emission and harmonic generation properties have been studied. The X-ray diffraction and thermal analysis techniques have been used to prove the dual phase (ZnO and CaO-Al{sub 2}O{sub 3}) nature of the phosphor. The phosphor has shown up-conversion emission on near-infra-red (976 nm) excitation and down-conversion emission on 355 nm excitation in presence of Er{sup 3+} and thus behaves as a dual mode phosphor. On excitation with 976 nm diode laser, material shows color tunability (calcination of composite material at different temperatures). Formation of ZnO nanocrystals on heat treatment of as-synthesized sample has shown its characteristic emission at 388 nm and also the energy transfer from ZnO to Er{sup 3+} ions. The low temperature emission measurements have been carried out and the results have been discussed. Phosphor has shown strong second harmonic generation (SHG) at 532 nm on 1064 nm and at 266 nm on 532 nm excitation. - Research highlights: {yields} We have synthesized Er{sup 3+} doped composite material by combustion method. The two phases of composites are ZnO and CaO-Al{sub 2}O{sub 3}. {yields} The phosphor has shown up-conversion emission on near-infra-red (976 nm) excitation and down-conversion emission on 355 nm excitation in presence of Er{sup 3+} and thus behaves as a dual mode phosphor. This material also shows colour tenability on excitation of 976 nm diode laser at different temperature calcinations (i.e., As-synthesized to calcinated at 1473 K). {yields} Low temperature effects on Er{sup 3+} as well as ZnO emission have been carried out. We observed that at low temperature the efficiency of Er{sup 3+} increases while in the case of ZnO its intensity increases and also 12 nm shifting observed. {yields} Composite material has shown strong second harmonic generation (SHG) at 532 nm on 1064 nm and at 266 nm on 532 nm

  16. Random lasing in Nd{sup 3+} doped potassium gadolinium tungstate crystal powder

    Energy Technology Data Exchange (ETDEWEB)

    Moura, André L., E-mail: andre.moura@fis.ufal.br [Grupo de Física da Matéria Condensada, Núcleo de Ciências Exatas – NCEx, Campus Arapiraca, Universidade Federal de Alagoas, 57309-005, Arapiraca, AL (Brazil); Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Fewo, Serge I. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Laboratory of Mechanics, Department of Physics, University of Yaoundé I, Yaoundé (Cameroon); Carvalho, Mariana T.; Gomes, Anderson S. L.; Araújo, Cid B. de [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Kuzmin, Andrey N.; Prasad, Paras N. [Institute for Lasers, Photonics and Biophotonics, The State University of New York, Buffalo, New York 14260-3000 (United States)

    2015-02-28

    Random laser (RL) emission in Nd{sup 3+} doped potassium gadolinium tungstate—KGd(WO{sub 4}){sub 2}:Nd{sup 3+}—crystal powder is demonstrated. The powder was excited at 813 nm in resonance with the Nd{sup 3+} transition {sup 4}I{sub 9/2}→{sup 4}F{sub 5/2}. RL emission at 1067 nm due to the {sup 4}F{sub 3/2}→{sup 4}I{sub 11/2} transition was observed and characterized. An intensity threshold dependent on the laser spot area and bandwidth narrowing from ≈2.20 nm to ≈0.40 nm were observed and measured. For a beam spot area of 0.4 mm{sup 2}, a RL threshold of 6.5 mJ/mm{sup 2} (90 MW/cm{sup 2}) was determined. For excitation intensity smaller than the RL threshold, only spontaneous emission from level {sup 4}F{sub 3/2} with decay time in the tens microsecond range was observed, but for excitation above the RL threshold, significant shortening of excited level lifetime, characteristic of a stimulated process was found. The overall characteristics measured show that KGd(WO{sub 4}){sub 2}:Nd{sup 3+} is an efficient material for operation of solid state RLs in the near-infrared.

  17. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hedwig, Rinda [Department of Computer Engineering, Faculty of Computer Studies, Bina Nusantara University, 9 K.H. Syahdan, Jakarta Barat 11480 (Indonesia); Budi, Wahyu Setia [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Tembalang Campus, Semarang, Central Java (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh, Nanggroe Aceh Darussalam (Indonesia); Pardede, Marincan [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Suliyanti, Maria Margaretha [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Davy Putra [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Koo Hendrik [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia)]. E-mail: kurnia18@cbn.net.id; Kagawa, Kiichiro [Department of Physics, Faculty of Education and Regional Studies, 9-1 bunkyo 3-chome, Fukui 910-8507 (Japan); Tjia, May On [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia)

    2006-12-15

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  18. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    International Nuclear Information System (INIS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-01-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process

  19. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  20. Fluctuation kinetics of fluorescence hopping quenching in the Nd3+:Y2O3 spherical nanoparticles

    International Nuclear Information System (INIS)

    Orlovskii, Yu.V.; Popov, A.V.; Platonov, V.V.; Fedorenko, S.G.; Sildos, I.; Osipov, V.V.

    2013-01-01

    We study the peculiarities of energy transfer kinetics from the 4 F 3/2 laser level in the Nd 3+ doped Y 2 O 3 spherical nanoparticles of monoclinic phase synthesized by laser ablation of solid targets with subsequent recondensation in flow of air at atmospheric pressure comparing to the similar bulk crystal. We show that the fluorescence quenching in the nanoparticles is determined by two processes depending on Nd 3+ concentration and the degree of dehydration. At concentrations less than 1% the fluorescence quenching is mainly determined by direct (static) quenching by vibrations of OH − molecular groups associated with oxygen vacancies. At concentrations greater than 1 at % quenching is due to energy migration over neodymium ions, followed by the Nd 3+ –OH − quenching. In the latter case, the first time in a solid-state impurity laser medium we observe non-stationary kinetics on the entire length of a time-dependent luminescence quenching, starting from static decay and ending with fluctuation kinetics of fluorescence hopping quenching. -- Highlights: ► We prepare monoclinic Nd 3+ :Y 2 O 3 spherical NPs of mean D=12 nm by laser ablation of solid targets. ► We detect the fluorescence quenching of Nd 3+ the 4 F 3/2 level by vibrations of OH – molecular groups. ► We find that at 0.1% of Nd 3+ the process of static quenching by vibrations of OH – dominates. ► We find that Nd 3+ –Nd 3+ energy migration accelerates the Nd 3+ –OH − quenching at 1% of Nd 3+ . ► We detect non-stationary quenching kinetics ending with fluctuation stage of hopping quenching

  1. Systematic investigation of resonance-induced single-harmonic enhancement in the extreme-ultraviolet range

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Bom, L. B. Elouga; Kieffer, J.-C.; Ozaki, T.

    2007-01-01

    We demonstrate the intensity enhancement of single harmonics in high-order harmonic generation from laser plasma. We identified several targets (In, Sn, Sb, Cr, and Mn) that demonstrate resonance-induced enhancement of single harmonic, that are spectrally close to ionic transitions with strong oscillator strengths. We optimized and obtained enhancements of the 13th, 17th, 21st, 29th, and 33rd harmonics from the above targets, by varying the chirp of the 800 nm wavelength femtosecond laser. We also observe harmonic enhancement by using frequency-doubled pump laser (400 nm wavelength). For Mn plasma pumped by the 400 nm wavelength laser, the maximum order of the enhanced harmonic observed was the 17th order (λ=23.5 nm), which corresponds to the highest photon energy (52.9 eV) reported for an enhanced single harmonic

  2. Growth and annealing effect of SrTiO{sub 3} thin films grown by pulsed laser deposition using fourth harmonic Nd:YAG pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Koji; Fujiwara, Takumi; Yokota, Akinobu; Nakamura, Motonori; Yoshimoto, Ken' ichi [National Institute of Technology, Asahikawa College, 2-2-1-6 Shunkodai, Asahikawa 071-8142 (Japan)

    2017-06-15

    SrTiO{sub 3} homoepitaxial films were grown by pulsed laser deposition (PLD) using a fourth harmonic Nd:YAG pulsed laser. The substrate temperature was kept constant at 600, 700, or 800 C. The laser energy was set at 9-25 mJ on the polycrystal SrTiO{sub 3} target. Post-procedure annealing was performed in the air for 24 h. The X-ray diffraction measurement results showed that the lattice constant of the film was only 0.010 Aa larger than that of the substrate and was not dependent on the annealing temperature. We demonstrated the possibility of growing near-stoichiometric SrTiO{sub 3} film by PLD using an Nd:YAG laser. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Cationic surfactant assisted sonochemical synthesis of Nd3+ doped Zn2SiO4 nanostructures for solid state lighting applications

    Science.gov (United States)

    Basavaraj, R. B.; Malleshappa, J.; Darshan, G. P.; Prasad, B. Daruka; Nagabhushana, H.

    2018-04-01

    For the first time cationic surfactant assisted ultrasound synthesis route has been used for the preparation of pure and Nd3+ (0.5-9 mol %) doped Zn2SiO4 nanophosphors. The shape, size and morphology of the products were tuned by controlling the various experimental parameters. The final product was well characterized by sophisticated techniques viz. powder X-ray diffraction (PXRD), Ultraviolet visible spectroscopy (UV-Vis) and photoluminescence (PL). The powder X-ray diffraction patterns confirmed that the synthesized samples exhibit hexagonal phase without any impurity. The DRS spectra showed major peaks at 275, 360, 529, 586, 680, 742 and 806 nm due to the transitions of the 4f electrons of Nd3+ from the ground-state 4I9/2 to 2F5/2, 4D3/2 + 4D5/2 + 2I11/2, 2K13/2 + 4G7/2 + 4G9/2, 4G5/2 + 2G7/2, 4F7/2 + 4S3/2, 4F5/2 + 2H9/2 and 4F3/2 respectively. The band energy gap (Eg) of the samples were estimated and found to be in the range 5.32 - 5.52 eV. Under 421 nm excitation, PL spectra exhibit strong near ultraviolet emission peaks at˜444 nm, 459 nm and 520 nm were attributed to 2P3/2 → 4I13/2, 2P3/2 → 4I15/2, 1I6 → 3H4, 2P1/2 → 4I9/2 and 4G7/2 → 4I9/2 transitions respectively. The photometric studies indicate that the synthesized Zn2SiO4: Nd3+ nanophosphors can be tuned from blue to pale green by varying the dopant concentration. The current synthesis route is rapid, environmentally benign, cost-effective and useful for industrial applications such as solid state lighting and display devices.

  4. Second Harmonic Generation, Electrooptical Pockels Effect, and Static First-Order Hyperpolarizabilities of 2,2′-Bithiophene Conformers: An HF, MP2, and DFT Theoretical Investigation

    Directory of Open Access Journals (Sweden)

    Andrea Alparone

    2013-01-01

    Full Text Available The static and dynamic electronic (hyperpolarizabilities of the equilibrium conformations of 2,2′-bithiophene (anti-gauche and syn-gauche were computed in the gas phase. The calculations were carried out using Hartree-Fock (HF, Møller-Plesset second-order perturbation theory (MP2, and density functional theory methods. The properties were evaluated for the second harmonic generation (SHG, and electrooptical Pockels effect (EOPE nonlinear optical processes at the typical λ=1064 nm of the Nd:YAG laser. The anti-gauche form characterized by the S–C2–C2′–S dihedral angle of 137° (MP2/6-311G** is the global minimum on the potential energy surface, whereas the syn-gauche rotamer (S–C2–C2′–S = 48°, MP2/6-311G** lies ca. 0.5 kcal/mol above the anti-gauche form. The structural properties of the gauche structures are rather similar to each other. The MP2 electron correlation effects are dramatic for the first-order hyperpolarizabilities of the 2,2′-bithiophenes, decreasing the HF values by ca. a factor of three. When passing from the anti-gauche to the syn-gauche conformer, the static and frequency-dependent first-order hyperpolarizabilities increase by ca. a factor of two. Differently, the electronic polarizabilities and second-order hyperpolarizabilities of these rotamers are rather close to each other. The syn-gauche structure could be discriminated from the anti-gauche one through its much more intense SHG and EOPE signals.

  5. Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm

    Science.gov (United States)

    Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang

    2017-12-01

    We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.

  6. Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses

    Science.gov (United States)

    Sobczyk, Marcin

    2013-04-01

    Telluride glasses of the composition xNd2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2, where (0≤x≤7) were prepared by the melt quench technique. Some physical and optical properties of the glasses were evaluated. The thermal behavior i.e. glass transition and crystallization temperatures were studied by using TGA-DTA technique. Optical properties of Nd3+-doped telluride glasses were investigated between 298 and 700 K. Basing on the obtained values of J-O parameter values (×10-20 cm2: Ω2=4.49±0.84, Ω4=5.03±0.61, Ω6=4.31±0.73), the radiative transition probabilities (AT), radiative lifetimes (τR), fluorescence branching ratios (β) and emission cross-sections (σem) were calculated for the 4F3/2→4IJ/2 (where J=9, 11 and 13) transitions of Nd3+ ions. The τR value of the 4F3/2 level amount to 164 μs and is slightly higher than the measured decay time of 162 μs. With the increasing of Nd2O3 concentration from 0.5 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 162 to 5.6 μs. The estimated quantum efficiency amount to 100%, based on a comparison of τR and the experimental decay time of a slightly doped Nd3+ telluride glass. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The 4F3/2→4I9/2 and 4F5/2→4I9/2 transitions were analyzed with respect to the fluorescence intensity ratio (FIR) and were found to be temperature dependent. Infrared-to-visible up-conversion emissions with a maximum at 603.0 and 635.3 nm were observed at high temperatures using the 804 nm excitation and are due to the 4G5/2→4I9/2 and 4G5/2→4I11/2 transitions of Nd3+ ions, respectively. The near quadratic dependence of fluorescence on excitation laser power confirms that two photons contribute to up-conversion of the orange emissions. The temperature-stimulated up-conversion excitation processes have been analyzed in detail. The optical results indicate that the investigated glasses are potentially applicable as a 1063 nm

  7. High-efficient Nd:YAG microchip laser for optical surface scanning

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  8. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  9. Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Matsui, Taiki; Uchimura, Tomohiro; Imasaka, Totaro

    2011-01-01

    A sample mixture of polychlorinated biphenyls (PCBs) was measured by gas chromatography/multiphoton ionization/time-of-flight mass spectrometry (GC/MPI/TOF-MS) using four types of laser sources. When a fourth harmonic emission (266 nm) of a picosecond Nd:YAG laser (1064 nm) was utilized, highly chlorinated PCBs larger than hepta-CBs were not observed. A fifth harmonic emission (213 nm) of the picosecond Nd:YAG laser allowed the measurement of PCBs from di-CBs to octa-CBs, and the limit of detection (LOD) was several pg for each component of PCBs. The LOD for the total amount of PCBs, which was calculated using the protocol provided by the Ministry of the Environment, Japan, was 1000 pg. The signal intensity of the congeners with chlorine atoms at the ortho positions (non-coplanar PCBs) was enhanced by using the fifth harmonic emission. When the fourth harmonic emission remaining after fifth harmonic generation was simultaneously used, the LOD for total PCBs was improved to 667 pg. The PCB sample was also measured using a third harmonic emission (267 nm) of a femtosecond Ti:sapphire laser (800 nm), providing an LOD of 677 pg. Thus, the two-color beam (266/213 nm) of a picosecond Nd:YAG laser had a comparable, or even slightly superior, performance to the more expensive femtosecond Ti:sapphire laser.

  10. Judd-Ofelt analysis and photoluminescence properties of RE3+ (RE = Er & Nd): Cadmium lithium boro tellurite glasses

    Science.gov (United States)

    Raju, K. Vemasevana; Raju, C. Nageswara; Sailaja, S.; Reddy, B. Sudhakar

    2013-01-01

    Rare earth (Er3+ and Nd3+) ions doped cadmium lithium boro tellurite (CLiBT) glasses were prepared by melt quenching method. The vis-NIR absorption spectra of these glasses have been analyzed systematically. Judd-Ofelt intensity parameters Ωλ (λ = 2, 4, 6) have been evaluated and used to compute the radiative properties of emission transitions of Er3+ and Nd3+: CLiBT glasses. From the NIR emission spectra of Er3+: CLiBT glasses a broad emission band centered at 1538 nm (4I13/2 → 4I15/2) is observed and from Nd3+: CLiBT glasses, three NIR emission bands at 898 nm (4F3/2 → 4I9/2), 1070 nm (4F3/2 → 4I11/2) and 1338 nm (4F3/2 → 4I13/2) are observed with an excitation wavelength λexci = 514.5 nm (Ar+ Laser). The FWHM and stimulated emission cross-section values are calculated for Er3+ and Nd3+: CLiBT glasses. FWHM × σeP values are also calculated for Er3+: CLiBT glasses.

  11. Exogenous attention enhances 2nd-order contrast sensitivity

    Science.gov (United States)

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2011-01-01

    Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  12. Studies of harmonic generation in free electron lasers

    International Nuclear Information System (INIS)

    Goldammer, K.

    2007-01-01

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  13. Studies of harmonic generation in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, K.

    2007-11-12

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  14. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    Science.gov (United States)

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  15. Energy transfer efficiency from Cr(3+) to Nd(3+) in solar-pumped laser using transparent Nd/Cr:Y(3)Al(5)O(12) ceramics.

    Science.gov (United States)

    Hasegawa, Kazuo; Ichikawa, Tadashi; Mizuno, Shintaro; Takeda, Yasuhiko; Ito, Hiroshi; Ikesue, Akio; Motohiro, Tomoyoshi; Yamaga, Mitsuo

    2015-06-01

    We report energy transfer efficiency from Cr3+ to Nd3+ in Nd (1.0 at.%)/Cr (0.4 at.%) co-doped Y3Al5O12 (YAG) transparent ceramics in the laser oscillation states. The laser oscillation has performed using two pumping lasers operating at 808 nm and 561 nm; the former pumps Nd3+ directly to create the 1064 nm laser oscillation, whereas the latter assists the performance via Cr3+ absorption and sequential energy transfer to Nd3+. From the laser output power properties and laser mode analysis, the energy transfer efficiency was determined to be around 65%, which is close to that obtained from the spontaneous Nd3+ emission.

  16. Porous Na2O-B2O3-Nd2O3 material

    Energy Technology Data Exchange (ETDEWEB)

    De Villiers, D R; Res, M A; Richter, P W

    1986-12-01

    Substitution of SiO2 by Nd2O3 in the sodium borosilicate system produced glasses containing up to 50 mass% Nd2O3. Sodium borate was leached out of some of the materials to produce either a porous Nd2O3-rich glass or a porous glass-ceramic containing NdBO3, depending on the starting material. Surface areas of up to 190 mS g- were measured. Powder X-ray diffraction (XRD) revealed the NdBO3 to be the high-temperature form with low symmetry.

  17. Understanding fifth-harmonic generation in CLBO

    Science.gov (United States)

    Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.

    2018-02-01

    We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.

  18. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  19. Laser stimulated third harmonic generation studies in ZnO-Ta2O5-B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases

    Science.gov (United States)

    Siva Sesha Reddy, A.; Jedryka, J.; Ozga, K.; Ravi Kumar, V.; Purnachand, N.; Kityk, I. V.; Veeraiah, N.

    2018-02-01

    In this study zinc borate glasses doped with different concentrations Ta2O5 were synthesized and were crystallized by heat treatment for prolonged times. The samples were characterized by XRD, SEM, IR and Raman spectroscopy techniques. The SEM images of the crystallized samples have indicated that the samples contain randomly distributed crystal grains with size ∼1 μm entrenched in the residual amorphous phase. XRD studies have exhibited diffraction peaks identified as being due to the reflections from (1 1 1) planes of monoclinic Zn3Ta2O8 crystal phase that contains intertwined tetrahedral zinc and octahedral tantalate structural units. The concentration of such crystal phases in the bulk samples is observed to increase with increase of Ta2O5 up to 3.0 mol%. The IR and Raman spectroscopy studies have confirmed the presence of ZnO4 and TaO6 structural units in the glass network in addition to the conventional borate structural units. For measuring third harmonic generation (THG) in the samples, the samples were irradiated with 532 nm laser beam and the intensity of THG of probing beam (Nd:YAG λ = 1064 nm 20 ns pulsed laser (ω)) is measured as a function of fundamental beam power varying up to 200 J/m2. The intensity of THG is found to be increasing with increase of fundamental beam power and found to be the maximal for the glass crystallized with 3.0 mol% of Ta2O5. The intensity of THG of the ceramicized samples is found to be nearly 5 times higher with respect to that of pre-crystallized samples. The generation of 3ω is attributed to the perturbation/interaction between Zn3Ta2O8 anisotropic crystal grains and the incident probing beam.

  20. Nd:YAG laser double wavelength ablation of pollution encrustation on marble and bonding glues on duplicated painting canvas

    Science.gov (United States)

    Batishche, Sergei; Englezis, Apostolis; Gorovets, Tatiana; Kouzmouk, Andrei; Pilipenka, Uladzimir; Pouli, Paraskevi; Tatur, Hennady; Totou, Garyfallia; Ukhau, Viktar

    2005-07-01

    In the present study, a newly developed one-beam IR-UV laser cleaning system is presented. This system may be used for different applications in diverse fields, such as outdoors stonework conservation and canvas paintings restoration. The simultaneous use of the fundamental radiation of a Q-switched Nd:YAG laser at 1064 nm and its third harmonic at 355 nm was found appropriate to clean pollution crusts, while ensuring that no discoloration ("yellowing") would occur. The optimum ratio of UV to IR wavelengths in the final cleaning beam was investigated. In parallel, the same system was tested in diverse applications, such as the removal of bonding glues from duplicated canvases. The optimum laser parameters were investigated both on technical samples as well as on original paintings.

  1. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials.

    Science.gov (United States)

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng

    2017-04-06

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.

  2. C-type Nd2Se3

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, neodymium sesquiselenide, is isotypic with the other known rare-earth metal(III selenides M2Se3 (M = La–Pr and Sm–Lu with the cubic C-type structure. It adopts a cation-defective Th3P4-type arrangement with close to 8/9 of the unique neodymium-cation site occupied, leading to the composition Nd2.667Se4 (Z = 4 or Nd2Se3 (Z = 5.333, respectively. The Nd3+ cations are thus surrounded by eight selenide anions, forming trigonal [NdSe8]13− dodecahedra, whereas the Se2− anions exhibit a sixfold coordination, but due to the under-occupation of neodymium, each one is statistically surrounded by only 5.333 cations. The crystal studied was a merohedral twin with a 0.31 (6:0.69 (6 domain ratio.

  3. Host sensitized near-infrared emission in Nd3+ doped different alkaline-sodium-phosphate phosphors

    Science.gov (United States)

    Balakrishna, A.; Swart, H. C.; Kroon, R. E.; Ntwaeaborwa, O. M.

    2018-04-01

    Near-infrared (NIR) emitting phosphors of different alkaline based sodium-phosphate (MNa[PO4], where M = Mg, Ca, Sr and Ba were prepared by a conventional solution combustion method with fixed doping concentration of Nd3+ (1.0 mol%). The phosphors were characterized by powder X-ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis spectroscopy and fluorescent spectrophotometry. The optical properties including reflectance, excitation and emission were investigated. The excitation spectra of the phosphors were characterized by a broadband extending from 450 to 900 nm. Upon excitation with a wavelength of 580 nm, the phosphor emits intensely infrared region at 872 nm, 1060 nm and 1325 nm which correspond to the 4F3/2 → 4I9/2, 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions and were found to vary for the different hosts. The strongest emission wavelength reaches 1060 nm. The most intense emission of Nd3+ was observed from Ca2+ incorporated host. The down conversion emissions of the material fall in the NIR region suggesting that the prepared phosphors have potential application in the development of photonic devices emitting in the NIR.

  4. Growth, spectral properties, and laser demonstration of Nd:GYSO crystal

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Cong, Z. H.; Zhang, J.; Tang, D. Y.; Zhou, D. H.; Xia, C. T.; Wu, F.; Xu, J.

    2011-07-01

    An Nd:GYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room-temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:GYSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω 2,4,6 were obtained to be 4.06, 4.65, and 3.63×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak-emission cross section is 3.8×10-20 cm2 at 1074 nm with a FWHM of 8.8 nm. Pumped by a laser diode, a maximum 1.54 W continuous-wave (CW) laser output has been obtained with a slope efficiency of 27.4%. All the results show that Nd:GYSO crystal is a promising laser material.

  5. Absorption spectra of CsNd(MoO4)2 and CsGd(MoO4)2-Nd3+ crystals in strong magnetic fields

    International Nuclear Information System (INIS)

    Gorban', I.S.; Kozeeva, L.P.; Slobodyanyuk, A.V.; Shevchenko, V.A.

    1987-01-01

    The comparison of the electronic structure of Nd 3+ in CsNd(MoO 4 ) 2 and CsGd(MoO 4 ) 2 - Nd 3+ crystals is made. It is established that in these crystals the activator centers, mainly, of the certain type with the symmetry of the local environment C 2 are formed. The absorption spectra of self-activated CsNd(MoO 4 ) 2 crystal differ from spectra of CsGd(MoO 4 ) 2 - Nd 3+ by the presence of the vibrating structure. The Stark splittings of energy levels of Nd 3+ in the investigated crystalline matrices are more sensitive to the environment effect than the Zeeman ones. The ground state of Nd 3+ ion in CsNd(MoO 4 ) 2 and CsGd(MoO 4 ) 2 molybdates is characterized by the similar values of g-factors

  6. Mass spectrometric study of Nd2S3 vaporization

    International Nuclear Information System (INIS)

    Fenochka, B.V.

    1987-01-01

    The authors conduct a mass-spectrometric study of neodymium(III) sulfide vaporization. The chemical composition of the samples was stoichiometric and the samples were vaporized from tantalum effusion cells. When the vapor over Nd 2 S 3 is ionized by electrons the mass spectra shows monovalent cations of Nd, S, NdS, and NdO. The enthalpy of vaporization if Nd atoms from Nd 2 S 3 at average experimental temperatures and the standard enthalpy of reaction is shown. Also presented is the enthalpy of vaporization of NdS molecules from Nd 2 S 3 at average experimental temperatures and the standard enthalpy of reaction

  7. Eco-friendly synthesis of colloidal silver nanospheres, nanorings and nanonetworks

    NARCIS (Netherlands)

    Singh, A.K.; Rai, A.K.; Bicanic, D.D.

    2009-01-01

    Colloidal silver nanospheres, nanorings, and nanonetworks were synthesized by the nanosecond pulsed laser ablation of a silver metal plate in a pure distilled water (at room temperature) using the fundamental (1064 nm), second harmonic (532 nm), and third harmonic (355 nm) wavelengths of the Nd:YAG

  8. Observation of Pseudopartial Grain Boundary Wetting in the NdFeB-Based Alloy

    Science.gov (United States)

    Straumal, B. B.; Mazilkin, A. A.; Protasova, S. G.; Schütz, G.; Straumal, A. B.; Baretzky, B.

    2016-08-01

    The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain the 2-4-nm-thin uniform Nd-rich layer.

  9. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Ronán [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Bagga, Komal; Groarke, Robert [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Stalcup, Apryll [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Vázquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Brabazon, Dermot [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-11-30

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  10. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    International Nuclear Information System (INIS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-01-01

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  11. High-order harmonic generation in a laser plasma: a review of recent achievements

    International Nuclear Information System (INIS)

    Ganeev, R A

    2007-01-01

    A review of studies of high-order harmonic generation in plasma plumes is presented. The generation of high-order harmonics (up to the 101st order, λ = 7.9 nm) of Ti:sapphire laser radiation during the propagation of short laser pulses through a low-excited, low-ionized plasma produced on the surfaces of different targets is analysed. The observation of considerable resonance-induced enhancement of a single harmonic (λ = 61.2 nm) at the plateau region with 10 -4 conversion efficiency in the case of an In plume can offer some expectations that analogous processes can be realized in other plasma samples in the shorter wavelength range. Recent achievements of single-harmonic enhancement at mid- and end-plateau regions are discussed. Various methods for the optimization of harmonic generation are analysed, such as the application of the second harmonic of driving radiation and the application of prepulses of different durations. The enhancement of harmonic generation efficiency during the propagation of femtosecond pulses through a nanoparticle-containing plasma is discussed. (topical review)

  12. Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing

    International Nuclear Information System (INIS)

    Yan, X P; Liu, Q; Gong, M; Wang, D S; Fu, X

    2009-01-01

    A 8.2 W UV laser was reported with the compact extra-cavity sum-frequency mixing. The IR fundamental frequency source was a high power and high beam quality Q-switched Nd:YVO 4 oscillator. 38 W fundamental frequency laser at 1064 nm was obtained at the pulse repetition rate of 450 kHz with the beam quality factors of M 2 x = 1.27, M 2 y = 1.21. The type I and type II phase-matched LBO crystals were used as the extra-cavity frequency doubling and mixing crystals respectively. At 38 kHz, 8.2 W UV laser at 355 nm was achieved with the pulse duration of 8 ns corresponding to the pulse peak power as high as 27 kW, and the optical-optical conversion efficiency from IR to UV was 25.6%. The output characteristics of the IR and the harmonic generations varying with the pulse repetition rate were also investigated detailedly

  13. Development of Cr,Nd:GSGG laser as a pumping source of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Tamura, Koji; Arisawa, Takashi

    1999-08-01

    Since efficiency of Cr,Nd doped gadolinium scandium gallium garnet (GSGG) laser is in principle higher than that of Nd:YAG laser, it can be a highly efficient pumping source for Ti:sapphire laser. We have made GSGG laser, and measured its oscillation properties. It was two times more efficient than Nd:YAG laser at free running mode operation. At Q-switched mode operation, fundamental output of 50 mJ and second harmonics output of 8 mJ were obtained. The developed laser had appropriate spatial profile, temporal duration, long time stability for solid laser pumping. Ti:sapphire laser oscillation was achieved by the second harmonics of GSGG laser. (author)

  14. The effect of phase constitution on the magnetic structure of nanophase NdFeB alloys observed by magnetic force microscopy

    Science.gov (United States)

    Al-Khafaji, M. A.; Rainforth, W. M.; Gibbs, M. R. J.; Davies, H. A.; Bishop, J. E. L.

    1998-09-01

    Magnetic force microscopy (MFM) has been employed to image the magnetic structure in nanocrystalline melt spun ribbon samples of NdFeB alloys of three markedly different and contrasting compositions: Low-Nd (Nd 9.5Fe 84.5B 6) containing Nd 2Fe 14B and α-Fe phases, stoichiometric (Nd 11.8Fe 82.3B 5.9), and high-Nd (Nd 18Fe 76B 6) containing Nd 2Fe 14B and Nd-rich phases. It was found that the magnetic domain length scale is significantly larger than the mean Nd 2Fe 14B grain size (˜35 nm) in each case, although small changes in force gradient occurred down to ˜20 nm. However, both the domain length scale and the tip-sample interaction `strength' were found to decrease with increasing Nd-content. An interpretation of these results in terms of the microstructure is given.

  15. Nanosecond-pulsed Q-switched Nd:YAG laser at 1064 nm with a gold nanotriangle saturable absorber

    Science.gov (United States)

    Chen, Xiaohan; Li, Ping; Dun, Yangyang; Song, Teng; Ma, Baomin

    2018-06-01

    Gold nanotriangles (GNTs) were successfully employed as a saturable absorber (SA) to achieve passively Q-switched lasers for the first time. The performance of the Q-switched Nd:YAG laser at 1064 nm has been systematically investigated. The corresponding shortest pulsewidth, the threshold pump power and the maximum Q-switched average output power were 275.5 ns, 1.37 W, and 171 mW, respectively. To our knowledge, this is the shortest pulsewidth and the lowest threshold in a passively Q-switched laser at approximately 1.1 µm based on a gold nanoparticle SA (GNPs-SA). Our experimental results proved that the GNTs-SA can be used as a promising saturable absorber for nanosecond-pulsed lasers.

  16. Optically induced second-harmonic generation in CdI sub 2 -Cu layered nanocrystals

    CERN Document Server

    Voolless, F; Hydaradjan, W

    2003-01-01

    A large enhancement (up to 0.40 pm V sup - sup 1) of the second-order optical susceptibility was observed in CdI sub 2 -Cu single-layered nanocrystals for the Nd:YAG fundamental laser beam lambda = 1.06 mu m. The Cu impurity content and nanolayer thickness of the cleaved layers (about several nanometres) play a crucial role in the observed effect. The temperature dependence of the optical second-harmonic generation (SHG) together with its correlation with Raman spectra of low-frequency modes indicate a key role for the UV-induced anharmonic electron-phonon interactions in the observed effect. The maximal output UV-induced SHG was achieved for a Cu content of about 0.5% and at liquid helium temperatures.

  17. Phorbol 12-myristate 13-acetate enhances nm23 gene expression in murine melanocytes but not in syngeneic B16-BL6 melanoma variants.

    Science.gov (United States)

    Huijzer, J C; McFarland, M; Niles, R M; Meadows, G G

    1996-03-01

    The nm23 gene has been described as a potential metastasis suppressor gene in certain rodent and human tumors. We previously demonstrated that tyrosine and phenylalanine restriction suppresses metastatic heterogeneity of B16-BL6 murine melanoma and selects for tumor variants with decreased metastatic potential. In this study, we investigated nm23 expression in the highly metastatic B16-BL6 (ND) melanoma, its nutritionally derived poorly metastatic (LT) variant, and the syngeneic non-tumorigenic Mel-ab melanocytes. No differences in nm23 expression were observed between ND and LT cells, and nm23 expression varied between different isolates. Previously, we showed that metastatic potential of 1-ND cells decreases and is not altered in 1-LT cells after prolonged in vitro cell passage; however, nm23 expression is equivalently increased by 2-fold. In 2-ND and 2-LT cells, expression of nm23 is not different at higher in vitro cell passage. Expression of nm23 decreased about 2-fold when phorbol 12-myristate 13-acetate (PMA) was removed from Mel-ab cells, which induces these cells to become quiescent. Although membrane-associated protein kinase C (PKC) activity decreased after prolonged PMA treatment in all cells, neither nm23 expression nor proliferation of ND and LT cells was affected by PMA. These data indicate that nm23 expression is related to proliferative activity rather than to the suppression of metastatic potential.

  18. One- and two-photon spectra of Nd3+ clusters in CaF2 and SrF2 crystals

    International Nuclear Information System (INIS)

    Basiev, Tasoltan T; Voronov, Valerii V; Glotova, M Yu; Papashvili, A G; Karasik, Aleksandr Ya

    2003-01-01

    The polarised two-photon (IR) and one-photon (visible) luminescence excitation spectra of Nd 3+ nanoclusters in CaF 2 and SrF 2 crystals are measured at 10 K using a F - 2 :LiF colour centre laser tunable in spectral ranges 1090 - 1230 nm and 545 - 615 nm with an emission linewidth of ∼0.02 - 0.03 cm -1 , an average output power of ∼55 mW, and a pulse repetition rate of 10 Hz. The two-photon excitation spectra at the 4 I 9/2 → 4 G 5/2 transition reveal the structure, which is absent upon one-photon excitation, which can be explained by different selection rules for some Stark - Stark transitions upon one- and two-photon absorption. (special issue devoted to the memory of academician a m prokhorov)

  19. Project 2nd Periodic Report - Section 2

    DEFF Research Database (Denmark)

    Healy, Mark; Knowles, Emma; Johnstone, Cameron

    The work described in this publication has received support from the European Community - Research Infrastructure Action under the FP7 “Capacities” Specific Programme through grant agreement number 262552, MaRINET. Project Periodic Report. 2nd Period: October 2012 – March 2014 inclusive.......The work described in this publication has received support from the European Community - Research Infrastructure Action under the FP7 “Capacities” Specific Programme through grant agreement number 262552, MaRINET. Project Periodic Report. 2nd Period: October 2012 – March 2014 inclusive....

  20. Scintillation properties of YAlO3 doped with Lu and Nd perovskite single crystals

    Science.gov (United States)

    Akatsuka, Masaki; Usui, Yuki; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    YAlO3 (YAP) single crystals doped with Lu and Nd were grown by the Floating Zone (FZ) method to evaluate their scintillation properties particularly emissions in the near-infrared (NIR) range. The Nd concentration was fixed to 0 or 1 mol% while the Lu concentration was varied from 0 to 30%. When X-ray was irradiated, the scintillation of Nd-doped samples was observed predominantly at 1064 nm due to 4F3/2 → 4I11/2 transition of Nd3+. In contrast, a weak emission around 700 nm appeared in the samples doped with only Lu, and the emission origin was attributed to defect centers. In the Nd3+-doped samples, the decay time was 94-157 μs due to the 4f-4f transitions of Nd3+ whereas the Lu-doped samples showed signal with the decay time of 1.45-1.54 ms. The emission origin of the latter signal was attributed to the perovskite lattice defect.

  1. Influence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings

    Directory of Open Access Journals (Sweden)

    Damian Wojcieszak

    2014-01-01

    Full Text Available Structural, optical, and photocatalytic properties of TiO2 and TiO2:Nd nanopowders and thin films composed of those materials have been compared. Titania nanoparticles with 1, 3, and 6 at. % of Nd-dopant were synthesized by sol-gel method. Additionally, thin films with the same material composition were prepared with the aid of spin-coating method. The analysis of structural investigations revealed that all as-prepared nanopowders were nanocrystalline and had TiO2-anatase structure. The average size of crystallites was ca. 4-5 nm and the correlation between the amount of neodymium and the size of TiO2 crystallites was observed. It was shown that the dopant content influenced the agglomeration of the nanoparticles. The results of photocatalytic decomposition of MO showed that doping with Nd (especially in the amount of 3 at. % increased self-cleaning activity of the prepared titania nanopowder. Similar effect was received in case of the thin films, but the decomposition rate was lower due to their smaller active surface area. However, the as-prepared TiO2:Nd photocatalyst in the form of thin films or nanopowders seems to be a very attractive material for various applications.

  2. Measurement of the figure of merit of indigenously developed Nd ...

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... a linearly polarized light at Na D line (λd = 587.6 nm) of the laser glass was performed ... nF and nC are the refractive indices measured at λF = 486.1 nm and λC = 656.3 nm respectively. Using this, the n2 is given by Boling's formula as n2 = K(nd − 1) (n2 ... fluences (E) of the pump laser is given by [6].

  3. Simultaneous Q-switching and mode-locking in an intracavity frequency doubled diode-pumped Nd:YVO4 / KTP green laser with Cr4+:YAG

    International Nuclear Information System (INIS)

    Mukhopadhyay, P. K.; Ranganathan, K.; George, J.; Nathan, T. P. S.; Alsous, M. B.

    2007-01-01

    We report intracavity second harmonic (at 532 nm) generation in passively Q-switched mode-locked Nd: YVO4 laser. The width of a typical Q-switched envelope of the mode locked pulses for the green laser was around 65 ± 5 ns and the repetition rate for the mode locked pulses was 400 MHz. The intracavity frequency doubling significantly improves the depth of modulation of the mode locked pulses. The peak power of a single mode locked green pulse near the center of the Q-switched envelope was estimated to be more than 2kw and the average green power was 6 times higher than the CW green power at an incident diode pump power of 6W. (author)

  4. Antiferromagnetic Nd ordering in NdPd{sub 2}Ga{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Doenni, A.; Fischer, P.; Fauth, F.; Zolliker, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bauer, E. [Technische Univ., Vienna (Austria)

    1997-09-01

    The ternary intermetallic compound NdPd{sub 2}Ga{sub 3} was investigated by powder neutron diffraction: the crystal structure agrees well with the ordered hexagonal PrNi{sub 2}Al{sub 3}-type structure. The antiferromagnetic ordering below T{sub N} 6.5 K corresponds to a propagation vector k = [1/2,0,0]. The ordered magnetic Nd moments of (1.99 {+-} 0.04) {mu}{sub B} at saturation lie in the basal plane due to the crystal-electric field anisotropy and are oriented perpendicular to the propagation vector. (author) 1 fig., 1 tab., 2 refs.

  5. Coherent harmonics of a Free Electron Laser obtained by the injection of harmonics produced in gas on the SCSS prototype accelerator

    International Nuclear Information System (INIS)

    Lambert, G.

    2008-02-01

    Today, single-pass Free Electron Lasers (FELs) allow the structure of matter to be studied in the femtosecond domain. Yet, even if the produced radiation, the so-called Self Amplified Spontaneous Emission (SASE) is highly bright, the longitudinal coherence is partial; the spectral and temporal profiles are composed of a series of peaks, called 'spikes', and present important statistical fluctuations. We demonstrate here the strong and coherent amplification of the 5. harmonic of a Ti: Sa laser (800 nm, 10 Hz, 100 fs) generated in a gas cell, i.e. 160 nm, and seeded in a FEL. This spectacular phenomenon is associated to the generation of intense and coherent Non Linear Harmonics (NLH) at 54 nm and 32 nm. The experiment has been carried out on the SCSS (SPring-8 Compact SASE Source, Japan) Prototype Accelerator. This facility is mainly based on a thermionic cathode electron gun, a LINAC and an in-vacuum undulator (2 sections of 4.5 m length), in which the external harmonic source is overlapped transversally, spectrally and temporally with the electron beam (150 MeV, 10 Hz, 1 ps). With only one undulator section, the 160 nm seeded emission achieves three orders of magnitude higher intensity than the un-seeded one, and presents a quasi perfect Gaussian shape in the spectral distribution. Moreover, the FEL saturation length is twice smaller. In view of the low seed level required, such amplification associated to NLH schemes would allow the generation of fully coherent soft X-ray radiations down to the 'water window'. (author)

  6. Spectroscopic and radiative properties study of Nd3+ doped cadmium-phosphate glasses

    International Nuclear Information System (INIS)

    Mahmoud, K.H.

    2010-01-01

    A spectroscopic investigation is performed on Nd 3+ doped cadmium-phosphate glasses. The Judd-Ofelt analysis is applied to the glass system in order to evaluate their potential as both glass laser and amplifier materials. The phenomenological Judd-Ofelt parameters Ω (2) , Ω (4) , and Ω (6) are determined, their values are 4.80x10 -20 , 6.18x10 -20 , and 7.14x10 -20 cm -2 , respectively. The quality factor for glass system is 0.86. Predicted radiative decay rates and branching ratios of transitions from Nd 3+4 F 3/2 state to the 4 I J manifolds are determined and analyzed. The calculated lifetime of the 4 F 3/2 metastable state of Nd 3+ is 31 μs. The results showed that 4 F 3/2 to 4 I 11/2 transition, with fluorescence at 1056 nm, has the most potential for laser application. Photoluminescence up-conversion under excitation at 488 nm laser light exhibits three emission bands of Nd 3+ ions at 541 (green), 601 (orange), and 677 nm (red). These emission bands are assigned to 4 G 7/2 → 4 I 9/2 , 4 G 7/2 → 4 I 11/2 , and 4 G 7/2 → 4 I 13/2 transitions, respectively. Analysis of luminescence spectra enhances the use of glass system in optical displays, lasers, and optical memory devices.

  7. Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic

    Directory of Open Access Journals (Sweden)

    T. Pedersen

    2011-01-01

    Full Text Available Artificial ionospheric plasmas descending from the background F-region have been observed on multiple occasions at the High Frequency Active Auroral Research Program (HAARP facility since it reached full 3.6 MW power. Proximity of the transmitter frequency to the 2nd harmonic of the electron gyrofrequency (2fce has been noted as a requirement for their occurrence, and their disappearance after only a few minutes has been attributed to the increasing frequency mismatch at lower altitudes. We report new experiments employing frequency sweeps to match 2fce in the artificial plasmas as they descend. In addition to revealing the dependence on the 2fce resonance, this technique reliably produces descending plasmas in multiple transmitter beam positions and appears to increase their stability and lifetime. High-speed ionosonde measurements are used to monitor the altitude and density of the artificial plasmas during both the formation and decay stages.

  8. Electronic structure of layered titanate Nd 2Ti 2O 7

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.

    2008-10-01

    The electronic structure of the binary titanate Nd 2Ti 2O 7 has been studied by X-ray photoelectron spectroscopy (XPS). Spectral features of the valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Nd 2Ti 2O 7 are determined as αTi = 873.5 and αO = 1042.2 eV. Chemical bonding effects have been discussed with the binding energies differences ΔTi = (BE O 1s - BE Ti 2p 3/2) = 71.5 eV and ΔNd = (BE Nd 3d 5/2 - BE O 1s) = 452.5 eV as key parameters in comparison with those in other titanium- and neodymium-bearing oxides.

  9. Enlarged pores treated with a combination of Q-switched and micropulsed 1064 nm Nd:YAG laser with and without topical carbon suspension: A simultaneous split-face trial.

    Science.gov (United States)

    Chung, Hj; Goo, Bc; Lee, Hj; Roh, Mr; Chung, Ky

    2011-01-01

    Enlarged facial pores remain one of the major cosmetic concerns among Asian females. This study attempted to assess and compare the efficacy of a combination of the Q-switched and quasi long-pulsed (micropulsed) Nd:YAG laser to reduce the size of the enlarged pores with and without an exogenous photoenhancer. In twenty five female subjects mean age 34.04 yr and skin type II-IV, a carbon lotion as a photoenhancer was applied on one side of the face (Method 1) and the other side was used as the control (Method 2). The entire face was then treated with a single pass of the 1064 nm Nd:YAG laser in the micropulsed mode, pulse fluence and width of 2.3 J/cm(2) and 300 µsec, respectively. Multiple passes were then delivered in the Q-switched mode (2.5 J/cm(2) and 5 nsec). Three weeks after the final treatment, 75% of the subjects showed improvement with method 1 whereas 67% showed improvement with method 2. No adverse side effects were reported with either method. Although histological confirmation was not performed, we were able to prove both subjectively and objectively that the use of the combination of the micropulsed and Q-switched modes of the Nd:YAG laser was useful in reducing pore size, and that the photoenhancer improved the efficacy.

  10. Short-pulse neodymium:yttrium-aluminium garnet (Nd:YAG 1064nm) laser irradiation photobiomodulates mitochondria activity and cellular multiplication of Paramecium primaurelia (Protozoa).

    Science.gov (United States)

    Amaroli, Andrea; Benedicenti, Alberico; Ravera, Silvia; Parker, Steven; Selting, Wayne; Panfoli, Isabella; Benedicenti, Stefano

    2017-10-01

    Few studies exist to explore the potential photobiomodulation (PBM) effect of neodymium:yttrium-aluminium garnet (Nd:YAG) laser irradiation using a flat-top handpiece delivery system. In this study, we explored the photobiomodulation effect of that laser, on Paramecium primaurelia. The parameters for the different study groups were: 0.50W, 10Hz, 100msp, 30J/cm 2 ; 0.75W, 10Hz, 100msp, 45J/cm 2 ; 1.00W, 10Hz, 100msp, 60J/cm 2 ; 1.25W, 10Hz, 100msp, 75J/cm 2 and 1.50W, 10Hz, 100msp, 90J/cm 2 . Our results suggest that only the parameter 0.5W, 10Hz, 100msp, 30J/cm 2 positively photobiomodulates the Paramecium cells inducing an increment in oxygen consumption, endogenous ATP synthesis and fission rate rhythm. Applying the laser energy with parameters of 1.25W, 10Hz, 100msp, 75J/cm 2 and 1.50W, 10Hz, 100msp, 90J/cm 2 , induce adverse effect on the Paramecium cells, which protect themselves through the increase in Heat Shock Protein-70 (HSP70). The data presented in our work support our assumption that, when using appropriate parameters of irradiation, the 1064nm Nd:YAG laser with flat-top handpiece could be a valuable aid for effective clinical application of PBM. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Mixed alkali neodymium orthoborates: K_9Li_3Nd_3(BO_3)_7 and A_2LiNd(BO_3)_2 (A = Rb, Cs)

    International Nuclear Information System (INIS)

    Chen, Pengyun; Xia, Mingjun; Li, Rukang

    2016-01-01

    Crystals of mixed alkali neodymium orthoborates, K_9Li_3Nd_3(BO_3)_7 and A_2LiNd(BO_3)_2 (A = Rb, Cs) were obtained by spontaneous crystallization. K_9Li_3Nd_3(BO_3)_7 crystallizes in space group P2/c with cell parameters of a = 11.4524(7) Aa, b = 10.1266(6) Aa, c = 12.3116 (10) Aa, β = 122.0090(10) . In the structure, NdO_8 polyhedra share corners and connect with planer BO_3 groups to form infinite [Nd_3B_3O_2_1]_n chains. These chains are linked by additional BO_3 groups to produce a double layer of [Nd_6B_6O_3_8]_n blocks in the ac plane with K and Li ions filled into the cavities. A_2LiNd(BO_3)_2 (A = Rb, Cs) crystallizes in space group Pbcm, with cell parameters of a = 7.113(2) Aa, b = 9.691(3) Aa and c = 10.135(3) Aa for Rb_2LiNd(BO_3)_2, and a = 7.2113(3) Aa, b = 9.9621(4) Aa, and c = 10.3347(4) Aa for Cs_2LiNd(BO_3)_2. In the structure, NdO_8 polyhedra are corner-sharing with each other and further interlinked by BO_3 groups to comprise the infinite [Nd_4B_4O_2_4] sheets in the bc plane, with Rb/Cs and Li ions occupying the interlayered space. The compounds show effective near-IR emission and their associated lifetimes are obtained by fluorescence spectra. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  13. Growth, spectral properties, and laser demonstration of Nd:(Lu0.5Gd0.5)2SiO5 crystal

    International Nuclear Information System (INIS)

    Li, D Z; Xu, X D; Wu, F; Xia, C T; Zhang, J; Ma, J; Cong, Z H; Tang, D Y; Zhu, H M; Chen, X Y; Xu, J

    2011-01-01

    A Nd:(Lu 0.5 Gd 0.5 ) 2 SiO 5 (Nd:LGSO) crystal has been grown by the Czochralski method. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intensity parameters Ω 2,4,6 were obtained to be 5.37, 1.63, and 5.57×10 -20 cm 2 , respectively. The absorption and emission cross sections and branching ratios were calculated. The Nd:LGSO crystal reveals a broadband emission feature (FWHM = 9.8 nm), which shows potential as gain medium for ultrashort pulse lasers. The radiative and fluorescence lifetimes are 299 and 230 μs, respectively, resulting in a quantum efficiency of 77%. Pumped by a laser diode, the maximum continuous wave (CW) output power of 444 mW and a slope efficiency of 17.7% have been obtained

  14. Growth, spectral properties, and laser demonstration of Nd:(Lu0.5Gd0.5)2SiO5 crystal

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Zhang, J.; Cong, Z. H.; Tang, D. Y.; Ma, J.; Zhu, H. M.; Chen, X. Y.; Wu, F.; Xia, C. T.; Xu, J.

    2011-09-01

    A Nd:(Lu0.5Gd0.5)2SiO5 (Nd:LGSO) crystal has been grown by the Czochralski method. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intensity parameters Ω2,4,6 were obtained to be 5.37, 1.63, and 5.57×10-20 cm2, respectively. The absorption and emission cross sections and branching ratios were calculated. The Nd:LGSO crystal reveals a broadband emission feature (FWHM = 9.8 nm), which shows potential as gain medium for ultrashort pulse lasers. The radiative and fluorescence lifetimes are 299 and 230 μs, respectively, resulting in a quantum efficiency of 77%. Pumped by a laser diode, the maximum continuous wave (CW) output power of 444 mW and a slope efficiency of 17.7% have been obtained.

  15. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    Science.gov (United States)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  16. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhai, Pei; Xia, Jing; Li, Shutao; Fu, Xihong

    2013-01-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO 3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system. (paper)

  17. Comparative study of Nd(3+) emission from 4f2 5d and 4f3 configurations induced by multiphotonic process in YLF, GLF and LLF crystals

    International Nuclear Information System (INIS)

    Librantz, Andre Felipe Henriques

    2000-01-01

    Nd 3+ ultraviolet fluorescence induced by multiphotonic laser excitations was studied in Nd-doped YLiF 4 (YLF) and LuLiF 4 (LLF) crystals by using the time resolved spectroscopy technique. The UV luminescences are due to transitions between the 4f 2 5d and the 4f 3 electronic configurations of Nd 3+ ions. The 4f 2 5d configuration can be reached by direct pumping the UV transition or by multiphotonic excitation, both processes give raise to the UV emission band with a structure due to the strong phonon coupling, expected for a 5d orbital involvement in the transition. The multiphotonic excitation process is due to three photons (532 nm) sequential absorptions of 532 nm-photons by metastable levels of the 4f 3 configuration splitted by crystalline local field. The sequential excitation of Nd by the pumping laser is attributed to the 4 I 9/2 +532nm → 4 G 7/2 ground state absorption followed by the 4 G 7/2 +532 nm2 F 5/2 and 2 F 5/2 +532 nm → 4f 2 5d excited state absorptions. The UV emissions due to 4f 2 5d configuration are parity allowed, having lifetime of 35 ns in contrast to UV emissions from 4f 3 configuration which are induced by two absorption steps and are parity forbidden showing longer lifetime of 8μs and narrow tines. The polarization effects of the UV emissions were studied and their behavior are dependent on the excited state configuration involving or not the 5d orbital. The allowed UV emissions positions were affected by the host variation more than the ones originating from the 4f 3 configuration as expected. The electronic energy of the 4f 2 5d configuration shifts to lower energy when increasing the crystal field. (author)

  18. Ferroelectric Nd3+:SrxBa1-x(NbO3)2-a new nonlinear laser crystal: cw 1-μm stimulated emission (4F3/2→4I11/2) and diffuse self-frequency doubling

    International Nuclear Information System (INIS)

    Kaminskii, Alexandr A; Garsia, Sole J; Jaque, D; Capmany, J; Bagayev, S N

    1998-01-01

    Stimulated emission as a result of the inter-Stark transition in the 1-μm 4 F 3/2 → 4 I 11/2 channel of Nd 3+ ions was excited for the first time in an acentric disordered Sr x Ba 1-x (NbO 3 ) 2 (x∼0.6) crystal. The low-threshold lasing of this crystal at the 1.0626 μm wavelength was accompanied by diffuse intracavity generation of the second harmonic. (letters to the editor)

  19. of Nd3+ions in YLiF4 and LuLiF4 crystals

    Directory of Open Access Journals (Sweden)

    André Felipe Henriques Librantz

    2006-01-01

    Full Text Available Nd3+ ultraviolet (UV fluorescence induced by multiphotonic laser excitations was studied in doped Nd:YLiF4 (YLF and Nd:LuLiF4 (LLF crystals by using the time resolved spectroscopy technique. The UV luminescences are due to transitions between the 4f25d and the 4f3 electronic configurations of Nd3+ ions. The 4f25d configuration can be reached by direct pumping or by multiphotonic excitation, both processes give rise to the UV band emission with structure due to the strong phonon coupling expected for 5d orbital involvement in the transition. The multiphotonic excitation process is due to three photons (532 nanometers [nm] sequential absorptions by metastable levels of the 4f3 configuration split by crystalline local field. The sequential excitation of Nd by the laser excitation is attributed to the 4I9/2 + 532 nm t 4G7/2 ground state absorption followed by the 4G7/2 + 532 nm t 2F5/2 and 2F5/2 + 532 nm t 4f25d excited state absorptions. The UV emissions due to 4f25d configuration are parity allowed, having lifetime of 35 nanoseconds (ns in contrast to UV emissions from 4f3 configuration which are induced by two absorption steps and are parity forbidden showing longer lifetime of 8 microseconds (ms and narrow lines. The polarization effects of the UV emissions were studied and their behaviors are dependent on the excited state configuration involving or not involving the 5d orbital. The allowed UV emission positions were affected by the host variation more than the ones originated from the 4f3 configuration as expected. The electronic energy of the 4f25d configuration shifts to lower energy for increasing the crystal field.

  20. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    International Nuclear Information System (INIS)

    Xu, X D; Meng, J Q; Cheng, Y; Li, D Z; Cheng, S S; Wu, F; Zhao, Z W; Wang, X D; Xu, J

    2009-01-01

    Nd:LuAG (Nd:Lu 3 Al 5 O 12 ) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm 3 . The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%

  1. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Meng, J. Q.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Xu, J.

    2009-09-01

    Nd:LuAG (Nd:Lu3Al5O12) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm3. The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%.

  2. The expression characteristics of mt-ND2 gene in chicken.

    Science.gov (United States)

    Zhang, Wenwen; Hou, Lingling; Wang, Ting; Lu, Weiwei; Tao, Yafei; Chen, Wen; Du, Xiaohui; Huang, Yanqun

    2016-09-01

    Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p chicken age (p chicken age (p chicken age.

  3. Influence of microstructural change of the interface between Nd2Fe14B and Nd-O phases on coercivity of Nd-Fe-B films by oxidation and subsequent low-temperature annealing

    International Nuclear Information System (INIS)

    Matsuura, Masashi; Tezuka, Nobuki; Sugimoto, Satoshi; Goto, Ryota

    2011-01-01

    This study provides the influence of microstructural change of the interface between Nd 2 Fe 14 B and Nd-O phases on coercivity of Nd-Fe-B thin films during annealing at low temperature (∼350 deg. C). All films were prepared by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under Ar gas atmosphere (O 2 content; ∼2 Vol.ppm). Then, the films were annealed at 250-350 deg. C under UHV condition. After oxidation, the coercivity of Nd-Fe-B film decreased to around 40% of the coercivity of as-deposited Nd-Fe-B film. The Nd-rich phase changed from α-Nd to amorphous Nd(-O), and the interface of Nd 2 Fe 14 B/Nd(-O) became rough. In the Nd-Fe-B films oxidized and subsequent annealed at 350 deg. C, the coercivity decreased to around 20%. In the films, poly crystalline hcp Nd 2 O 3 phase crystallized in Nd-rich phase, and there were some steps at the surface of Nd 2 Fe 14 B phase contacting with hcp Nd 2 O 3 phase. Regardless of crystal orientation of Nd 2 Fe 14 B, the microstructural changes of the interface described above were observed.

  4. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Tromsø, Norway (69.6°N, 19.2°E).

    Science.gov (United States)

    Kawahara, T D; Nozawa, S; Saito, N; Kawabata, T; Tsuda, T T; Wada, S

    2017-06-12

    An Nd:YAG laser-based sodium temperature/wind lidar was developed for the measurement of the northern polar mesosphere and lower thermosphere at Tromsø (69.6N, 19.2E), Norway. Coherent light at 589 nm is produced by sum frequency generation of 1064 nm and 1319 nm from two diode laser end-pumped pulsed Nd:YAG lasers. The output power is as high as 4W, with 4 mJ/pulse at 1000 Hz repetition rate. Five tilting Cassegrain telescopes enable us to make five-direction (zenith, north, south, east, west) observation for temperature and wind simultaneously. This highly stable laser system is first of its kind to operate virtually maintenance-free during the observation season (from late September to March) since 2010.

  5. Luminescence properties of Nd{sup 3+}-doped Y{sub 2}Te{sub 4}O{sub 11} microcrystalline powder

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk, Marcin, E-mail: marcin.sobczyk@chem.uni.wroc.pl; Szymański, Damian

    2017-03-15

    In this paper, some spectroscopic properties of Y{sub 2}Te{sub 4}O{sub 11} microcrystalline powders, doped with Nd{sup 3+} ions are presented. The samples were successfully synthesized by the solid state reaction method. Absorption (300 K) and fluorescence (at 77 and 300 K) spectra as well as the fluorescence decay curves (300 K) of the {sup 4}F{sub 3/2} state are presented and analyzed. The phenomenological Ω{sub λ} (λ=2, 4, 6) Judd-Ofelt parameters were evaluated in order to determine radiative probabilities (A), branching ratios (β), the radiative lifetime (τ{sub R}) of the {sup 4}F{sub 3/2} level and the stimulated emission cross-section (σ{sub em}) for the {sup 4}F{sub 3/2} → {sup 4}I{sub J/2} (J=9 and 11) transitions of the Nd{sup 3+} ion. The fluorescence decay curves were single exponential for 0.01–5.0 at% of Nd{sup 3+} and became evidently non-exponential for higher Nd{sup 3+} ion concentration. With increasing activator concentration from 0.01 to 10.0 at%, the experimental lifetime of the emitting level decreases from 95 to 33 μs. The non-exponential fluorescence decay curve has been fitted by the Yokota-Tanimoto model, indicating that the energy migration process via a diffusion limited relaxation, plays a important role in the depopulation of the {sup 4}F{sub 3/2} level of Nd{sup 3+} ions doped in the Y{sub 2}Te{sub 4}O{sub 11} microcrystalline powder. The calculated absorption value (1.135×10{sup –19} cm{sup 2} at 807.5 nm) of the {sup 4}I{sub 9/2} → {sup 4}F{sub 5/2} transition as well as the value of the stimulated emission cross-section (1.196×10{sup –19} cm{sup 2} at 1063.5 nm) for that of {sup 4}F{sub 3/2} → {sup 4}I{sub 11/2} were compared with the corresponding values of other laser hosts. For the first time a very high σ{sub em} value of the {sup 4}F{sub 3/2} → {sup 4}I{sub 11/2} transition for TeO{sub 2}-based compounds, has been observed. From the presented spectroscopic properties follows that the Nd{sup 3+}:Y{sub 2

  6. Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys

    International Nuclear Information System (INIS)

    Kumar, G.

    2005-01-01

    The aim of the present work is to characterize a metastable hard magnetic phase referred to as ''A1'' in Nd-Fe alloys, which forms as a part of the fine eutectic depending on the composition and cooling rate. In order to define the range of composition for the formation of A1, Nd 100-x Fe x (x=20,25,40) alloys are cooled at about 150 K/s. The effect of cooling rate on the formation of hard magnetic A1 is studied by investigating the Nd 80 Fe 20 alloys cooled at different rates. The Nd-richer regions are identified as dhcp Nd and fcc Nd-Fe solid solution. However, the Fe-richer regions also referred to as A1, are diffuse and give an average composition of Nd 56 Fe 44 . HRTEM images of the Fe-richer regions reveal the presence of 5-10 nm crystallites embedded in an amorphous phase. The demagnetization curves the hard magnetic Nd80Fe20 measured at temperatures above 30 K are typical of a hard magnetic material. The measurements of initial magnetization, field dependence of coercivity, and temperature dependence of coercivity suggest the Stoner-Wohlfarth type magnetization reversal process for the hard magnetic A1. The values of anisotropy constant are estimated by fitting the magnetization data to the law-of-approach to saturation. The temperature dependence of anisotropy constant and the coercivity indicate that the origin of coercivity is magnetic anisotropy

  7. Investigating student understanding of simple harmonic motion

    Science.gov (United States)

    Somroob, S.; Wattanakasiwich, P.

    2017-09-01

    This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.

  8. Removal of Verrucaria nigrescens from Carrara marble artefacts using Nd:YAG lasers: comparison among different pulse durations and wavelengths

    Science.gov (United States)

    Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S.

    2015-03-01

    The periodical removal of biodeteriogens is a fundamental need for the preservation of outdoor stone cultural heritage, which is stimulating significant efforts toward the development of low-impact conservation strategies. In the present work, the potential of laser removal of Verrucaria nigrescens Pers. from Carrara marble and the evaluation of the associated biocide effect on the organism residues embedded in the surface texture and through the outer porosities of the stone substrate were investigated. The fundamental wavelength of Nd:YAG laser (1,064 nm), commonly used in stone cleaning, and its second harmonic (532 nm) were comparatively tested. The phenomenology of laser treatments carried out in different irradiation conditions was characterized using optical, epifluorescence, and electron microscopes along with chlorophyll fluorescence with pulsed amplitude-modulated imaging. The results achieved show that 532 nm can provide significant advantages with respect to 1,064 nm. The potential of the latter against the biodeteriogens appears rather limited because of the low optical absorption, whereas the former can allow effective and practicable laser treatments, which disclose a significant application perspective.

  9. Compact lasing system at 13.5-nm to ground state of LiIII at 2Hz

    Science.gov (United States)

    Goltsov, A. Y.; Korobkin, D.; Nam, C. H.; Suckewer, Szymon

    1997-11-01

    The recent results of the demonstration of the lasing action at 13.5 nm in transition to ground state of LiIII at 2 Hz repetition rate using two lasers is being presented in this paper. A gain length of GL approximately equals 5.5 was measured in the 5 mm long, 0.3 mm diameter, LiF microcapillary using a 50 mJ, 250 fsec UV laser beam. The initial plasma was created in the microcapillary by a low power, relatively long pulse Nd/YAG laser. In order to shed light on observed unusually high efficiency of the ionization of the atoms in microcapillaries, the subpicosecond UV laser beam transmissions through the plasma in microcapillaries were measured. Strong dependence of the beam transmission on the delay time between inial plasma formation with the Nd/YAG laser and the sub-picosecond UV laser was recorded. The final part of the paper discusses some necessary conditions for an extension of the present results towards the shorter wavelength lasers with an emphasis on the presently conducted experiments at Princeton University for the generation gain at 4.8 nm in BV.

  10. Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics

    Science.gov (United States)

    Ma, Benyuan; Zhang, Wei; Shen, Bizhou; Wang, Yuezhong; Song, Haizhi; Li, Feng; Xie, Xiumin; Zhang, Zhibin; Yang, Yongqiang; Guan, Zhouguo

    2018-05-01

    Using the co-precipitated Nd:YAG and YAG powders as raw materials, the Nd:YAG/YAG composite ceramics (Ф 50 mm × 5 mm) were prepared by vacuum sintering (1790 °C 50 h), followed by hot isostatic pressing (HIP) post treatment (1700 °C 2 h, 200 MPa Ar atmosphere) and air annealing (1250 °C 100 h). The optical properties of Nd:YAG/YAG samples were improved markedly by HIP post-treatment, mainly due to the elimination of residual pores in the samples. The composite sample showed a perfect bonding interface from Nd:YAG to YAG regions without obvious grain size difference, pores or other defects. This structure should be responsible for the thermal conductivity larger than that of non-composite sample. The composite sample revealed good optical properties with transmittance up to 83.9% at 1064 nm and 80.8% at 400 nm, and a maximum laser output power of 1.38 KW with the slope efficiency of 36.7% was obtained.

  11. The History of the 2nd Ranger Company

    National Research Council Canada - National Science Library

    Bond, Victor

    2003-01-01

    The purpose of this research project is to uncover the history of the 2nd Ranger Company and to determine the impact segregation had on the selection, training, and combat operations of the 2nd Ranger Company...

  12. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show ∼80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd 3+ 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under γ-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 μs due to Nd 3+ 4f-4f transitions.

  13. Spectrochemical analysis of powder using 355 nm Nd-YAG laser-induced low-pressure plasma.

    Science.gov (United States)

    Lie, Zener S; Pardede, M; Hedwig, R; Suliyanti, M M; Kurniawan, Koo Hendrik; Munadi; Lee, Yong-Inn; Kagawa, Kiichiro; Hattori, Isamu; Tjia, May On

    2008-04-01

    The applicability of spectrochemical analysis of minute amounts of powder samples was investigated using an ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A large variety of chemical powder samples of different composition were employed in the experiment. These included a mixture of copper(II) sulfate pentahydrate, zinc sulfide, and chromium(III) sulfate n-hydrate powders, baby powder, cosmetic powders, gold films, zinc supplement tablet, and muds and soils from different areas. The powder samples were prepared by pulverizing the original samples to an average size of around 30 microm in order to trap them in the tiny micro holes created on the surface of the quartz subtarget. It was demonstrated that in all cases studied, good quality spectra were obtained with low background, free from undesirable contamination by the subtarget elements and featuring ppm sensitivity. A further measurement revealed a linear calibration curve with zero intercept. These results clearly show the potential application of this technique for practical qualitative and quantitative spectrochemical analysis of powder samples in various fields of study and investigation.

  14. Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser

    Science.gov (United States)

    Singh, Sanasam Sunderlal; Baruah, Prahlad Kr; Khare, Alika; Joshi, Shrikrishna N.

    2018-02-01

    Laser micromachining of metals for fabrication of micro-channels generate ridge formation along the edges accompanied by ripples along the channel bed. The ridge formation is due to the formation of interference pattern formed by back reflections from the beam splitter and other optical components involved before focusing on the work piece. This problem can be curtailed by using a suitable aperture or Iris diaphragm so as to cut the unwanted portion of the laser beam before illuminating the sample. This paper reports an experimental investigation on minimizing this problem by conditioning the laser beam using an Iris diaphragm and using optimum process parameters. In this work, systematic experiments have been carried out using the second harmonic of a Q-switched Nd:YAG laser to fabricate micro-channels. Initial experiments revealed that formation of ridges along the sides of micro-channel can easily be minimized with the help of Iris diaphragm. Further it is noted that a clean micro-channel of depth 43.39 μm, width up to 64.49 μm and of good surface quality with average surface roughness (Ra) value of 370 nm can be machined on stainless steel (SS) 316L by employing optimum process condition: laser beam energy of 30 mJ/pulse, 11 number of laser scans and scan speed of 169.54 μm/s with an opening of 4 mm diameter of Iris diaphragm in the path of the laser beam.

  15. Electronic structure of layered titanate Nd2Ti2O7

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Gavrilova, T.A.; Grivel, Jean-Claude

    2008-01-01

    The electronic structure of the binary titanate Nd2Ti2O7 has been studied by X-ray photoelectron spectroscopy (XPS). Spectral features of the valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Nd2Ti2O7 are determined as alpha...

  16. A structure and second-harmonic generation of crystals Li B3O5

    International Nuclear Information System (INIS)

    Burak, Ya.V.

    1997-01-01

    Projections of atoms of nonlinear optical crystals Li B 3 O 5 onto planes perpendicular to directions of the phase matching of type-1 and type-2 for second-harmonic generation (SHG) in a YAG:Nd laser are constructed. Analyses of the interdependence of orientations of (B 3 O 7 ) 5 -complexes and of the effectiveness of SHG are conducted

  17. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    Science.gov (United States)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  18. High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz

    International Nuclear Information System (INIS)

    Liu, Q; Yan, X P; Fu, X; Gong, M; Wang, D S

    2009-01-01

    14.8 W UV laser at 266 nm was reported with the extra cavity frequency quartered configuration. The fundamental frequency IR source is a high-power high-beam-quality acoustic-optic Q-switched Nd:YVO 4 master-oscillator-power-amplifier laser. The type-I phase-matched LBO and type-I phase-matched BBO crystals were used as the extra-cavity frequency doubled and quartered crystal respectively. 14.8 W UV laser of 266 nm was obtained at the pulse repetition rate of 100 kHz with the conversion efficiency of 18.3% from green to UV, and the pulse duration of the UV laser was 10 ns corresponding to the pulse peak power of 14.8 kW. At 150 kHz, 11.5 W power output was obtained. The highest peak power of 21 kW was also achieved at 80 kHz with the average output power of 14.5 W

  19. Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases

    CERN Document Server

    Lambert, Guillaume; Couprie, Marie Emmanuelle; Garzella, David; Doria, Andrea; Giannessi, Luca; Hara, Toru; Kitamura, Hideo; Shintake, Tsumoru

    2004-01-01

    Free electron Lasers employing High Gain Harmonic generation (HGHG) schemes are very promising coherent ligth sources for the soft X-ray regime. They offer both transverse and longitudinal coherence, while Self Amplified Spontaneous Emission schemes have a longitudinal coherence limited. We propose here to seed HGHG with high harmonics produced by a Ti:Sa femtosecond laser focused on a gas jet, tuneable in the 100-10 nm spectral region. Specifities concerning the implementation of this particular laser source as a seed for HGHG are investigated. Semi analytical , numerical 1D and 3D calculations are given, for the cases of the SCSS, SPARC and ARC-EN-CIEL projects.

  20. Combined pulsed dye laser and fiberoptic Nd-YAG laser for the treatment of hypertrophic port wine stain.

    Science.gov (United States)

    Radmanesh, Mohammed; Radmanesh, Ramin

    2017-10-01

    The hypertrophic Port Wine Stain (PWS) is only partially and superficially treated with the Pulsed dye laser (PDL) because of its limited depth of penetration. We used combined PDL and fiberoptic 1444-nm Nd-YAG laser to treat a case with hypertrophic PWS. After tumescent anesthesia, few holes were made by a 16-gauge needle on different sides of the lesion. The fiberoptic tip of 1444-nm Nd-YAG laser was inserted within the holes and was pushed forward while triggering. In a fan pattern and by a back and forth movement, the subcutaneous and deep dermal areas were coagulated. The skin and outer mucosal surfaces were then treated by PDL. The fiberoptic system used was Accusculpt 1444-nm Nd-YAG laser (Lutronic lasers, South Korea), and the PDL used was 585 nm Nlite system (Chromogenex UK). The parameters used for PDL were fluence = 9 Joules/cm 2 and the spot size was 5 mm. The parameters used for fiberoptic 1444-nm Nd-YAG laser were: Pulse rate = 30 Hz, pulse energy = 300 mJ, power = 6 W, and the total energy = 4000 J for the whole face and mucosa. Little sign of regression and moderate purpura were detected immediately after combined fiberoptic Nd-YAG and PDL therapy. The lesion gradually regressed within 4 months with satisfactory color and volume change. Combined fiberoptic Nd-YAG laser and PDL can be used for the treatment of deeper and superficial layers of hypertrophic PWS.

  1. Effect of mixing RE elements (Nd, Sm, Gd, Eu, Y, Yb) on the RE2BaCuO5/Nd4-2xBa2+2xCu2-xO10-2x phases in RE cuprate high-Tc superconductors

    International Nuclear Information System (INIS)

    Langhorn, J.B.; Black, M.A.; McGinn, P.J.

    1999-01-01

    The phases RE 2 BaCuO 5 /RE 4 Ba 2 Cu 2 O 10 phases (where RE is a mixture of Nd, Sm, Gd, Eu, Y and Yb) have been synthesized in an oxygen atmosphere and subsequently characterized. The mixing of RE elements which inherently form the RE 2 BaCuO 5 phase through the peritectic decomposition of REBa 2 Cu 3 O 7-x (RE123) (i.e. Sm, Gd, Eu, Y, Yb), was observed to give homogeneous mixing of the elements in the 211 phase. In contrast it was found that on mixing Nd with other RE elements a mixture of the Nd 4-2x Ba 2+2x Cu 2-x O 10-2x (Nd422) and RE 2 BaCuO 5 (RE211) phases resulted. It was also observed that on mixing Nd with other REs a finite amount of the RE is substituted into the Nd422 phase and Nd into the RE211. (author)

  2. Luminescence properties of Yb:Nd:Tm:KY3F10 nanophosphor and thermal treatment effects

    International Nuclear Information System (INIS)

    Gomes, Laércio; Linhares, Horácio Marconi da Silva M.D.; Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego; Ranieri, Izilda Marcia

    2015-01-01

    In this work, we present the spectroscopic properties of KY 3 F 10 (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates 1 G 4 (Tm 3+ ) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd 3+ to Tm 3+ ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the 1 G 4 level luminescence kinetic of Tm 3+ in Yb/Nd/Tm system revealed that the luminescence efficiency ( 1 G 4 ) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up 1 ) and (Nd×Yb×Tm) (Up 2 ) upconversion processes to the 1 G 4 luminescence are 33% (Up 1 ) and 67% for Up 2 . Up 2 process represented by Nd 3+ ( 4 F 3/2 )→Yb 3+ ( 2 F 7/2 ) followed by Yb 3+ ( 2 F 5/2 )→Tm ( 3 H 4 )→Tm 3+ ( 1 G 4 ) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF 4 and KY 3 F 10 bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the 1 G 4 luminescence efficiency strongly increases from 0.38% (T=25 °C) to 12% (T=400 °C). Results shown that the Nd 3+ ions distribution has a concentration

  3. Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm. (On-Line Harmonics Estimation Application

    Directory of Open Access Journals (Sweden)

    Eyad K Almaita

    2017-03-01

    Keywords: Energy efficiency, Power quality, Radial basis function, neural networks, adaptive, harmonic. Article History: Received Dec 15, 2016; Received in revised form Feb 2nd 2017; Accepted 13rd 2017; Available online How to Cite This Article: Almaita, E.K and Shawawreh J.Al (2017 Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm (On-Line Harmonics Estimation Application.  International Journal of Renewable Energy Develeopment, 6(1, 9-17. http://dx.doi.org/10.14710/ijred.6.1.9-17

  4. Composition dependence of crystallization temperature and magnetic property of NdFeB thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khoa, T.V. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Ha, N.D. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Hong, S.M. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Jin, H.M. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Kim, G.W. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Hien, T.D. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Tai, L.T. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Duong, N.P. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Lee, K.E. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Kim, C.G. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Kim, C.O. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of)]. E-mail: magkim@cnu.ac.kr

    2006-09-15

    Si(100)/Mo(30nm)/Nd{sub x}Fe{sub 92-x}B{sub 8}(800nm)/Mo(30nm) (x=14, 20, 30) films are prepared by RF magnetron sputtering at room temperature. As-deposited films are amorphous materials. The crystallization temperature of the Nd{sub 2}Fe{sub 14}B phase decreases from 575deg. C to 500deg. C with increase of x from 14 to 20-30. The optimum annealing temperature with 30min annealing time is 650 deg. C, 625 deg. C and 600 deg. C for x=14, 20 and 30, respectively, and the x=20 film has the largest energy product of 100118MG.

  5. Performance results for Beamlet: A large aperture multipass Nd glass laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Barker, C.E.; VanWonterghem, B.M.; Speck, D.R.; Behrendt, W.C.; Murray, J.R.; Caird, J.A.; Decker, D.E.; Smith, I.C.

    1995-01-01

    The Beamlet laser is a large aperture, flashlamp pumped Nd: glass laser that is a scientific prototype of an advanced Inertial Fusion laser. Beamlet has achieved third harmonic, conversion efficiency of near 80% with its nominal 35cm x 35cm square beam at mean 3ω fluences in excess of 8 J/cm 2 (3-ns). Beamlet uses an adaptive optics system to correct for aberrations and achieve less than 2 x diffraction limited far field spot size

  6. Laser Shock Processing of 6061-T6 Al alloy with 1064 nm and 532 nm wavelengths

    International Nuclear Information System (INIS)

    Gomez-Rosas, G.; Rubio-Gonzalez, C.; Ocana, J.L.; Molpeceres, C.; Porro, J.A.; Morales, M.; Casillas, F.J.

    2010-01-01

    Laser Shock Processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results in the LSP concept for metal surface treatments in underwater laser irradiation at 532 nm and 1064 nm. The purpose of the work is to compare the effect of both wavelengths on the same material. A convergent lens is used to deliver 1.2 J/pulse (1064 nm) and 0.9 J/pulse (532 nm) in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG laser with spots of a 1.5 mm in diameter moving forward along the work piece. A LSP configuration with experimental results using a pulse density of 2500 pulses/cm 2 and 5000 pulses/cm 2 in 6061-T6 aluminum samples are presented. High level compressive residual stresses are produced using both wavelengths. It has been shown that surface residual stress level is comparable to that achieved by conventional shot peening, but with greater depths. This method can be applied to surface treatment of final metal products.

  7. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.

    Science.gov (United States)

    Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou

    2010-06-07

    We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.

  8. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yagi, Hideki; Yanagitani, Takagimi [Konoshima Chemical Co., Ltd., 80 Kouda, Takuma, Mitoyo-gun, Kagawa 769-1103 (Japan)

    2011-03-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show {approx}80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd{sup 3+} 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under {gamma}-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 {mu}s due to Nd{sup 3+} 4f-4f transitions.

  9. Hard magnetic properties of rapidly annealed NdFeB thin films on Nb and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; Evans, J.; O'Shea, M.J.; Du Jianhua

    2001-01-01

    NdFeB thin films of the form A (20 nm)/NdFeB(d nm)/A(20 nm), where d ranges from 54 to 540 nm and the buffer layer A is Nb or V were prepared on a Si(1 0 0) substrate by magnetron sputtering. The hard Nd 2 Fe 14 B phase is formed by a 30 s rapid anneal or a 20 min anneal. Average crystallite size ranged from 20 to 35 nm with the rapidly annealed samples having the smaller crystallite size. These samples also exhibited a larger coercivity and energy product than those treated by a 20 min vacuum anneal. A maximum coercivity of 26.3 kOe at room temperature was obtained for a Nb/NdFeB (180 nm)/Nb film after a rapid anneal at 725 deg. C. Initial magnetization curves indicate magnetization rotation rather than nucleation of reverse domains is important in the magnetization process. A Brown's equation analysis of the coercivity as a function of temperature allowed us to compare the rapidly annealed and 20 min annealed samples. This analysis suggests that rapid annealing gives higher quality crystalline grains than the 20 min annealed sample leading to the observed large coercivity in the rapidly annealed samples

  10. Permanent magnetic properties of NdFe12Nx sputtered films epitaxially grown on V buffer layer

    Science.gov (United States)

    Sato, T.; Ohsuna, T.; Yano, M.; Kato, A.; Kaneko, Y.

    2017-08-01

    To clarify the magnetic properties of the NdFe12Nx compound, which shows promise as a high-performance permanent magnet material, NdFe12Nx epitaxial films fabricated by using a V underlayer on MgO (100) single-crystalline substrates were investigated. Nd-Fe films deposited on a V underlayer consist of NdFe12 grains, which have a c-axis orientation perpendicular to the film plane, as well as α-Fe and Nd2Fe17 phases. In the Nd-Fe-N film obtained by subsequent nitridation of the Nd-Fe film, NdFe12Nx grains grew as the dominant phase, and the volume fractions of α-Fe phases dropped below 5%. A Nd-Fe-N film with a thickness of 50 nm exhibits a saturation magnetization (Ms) of 1.7 T, an anisotropy field (HA) of ˜60 kOe, a magnetocrystalline anisotropy energy (K1) of ˜4.1 MJ/m3, and a coercivity (Hc) of 1.7 kOe. The Hc of a Nd-Fe-N film with a thickness of 25 nm is 4.3 kOe. These results indicate that NdFe12Nx compounds have a superior Ms compared to Nd-Fe-B magnets, while the enhancement in Hc is indispensable.

  11. Application of mid-infrared pulses for quasi-phase-matching of high-order harmonics in silver plasma.

    Science.gov (United States)

    Ganeev, Rashid A; Husakou, Anton; Suzuki, Masayuki; Kuroda, Hiroto

    2016-02-22

    We demonstrate the quasi-phase-matching of a group of harmonics generated in Ag multi-jet plasma using tunable pulses in the region of 1160 - 1540 nm and their second harmonic emission. The numerical treatment of this effect includes microscopic description of the harmonic generation, propagation of the pump pulse, and the propagation of the generated harmonics. We obtained more than 30-fold growth of harmonics at the conditions of quasi-phase-matching in the region of 35 nm using eight-jet plasma compared with the case of imperforated plasma.

  12. Effect of hydrogenation disproportionation conditions on magnetic anisotropy in Nd-Fe-B powder prepared by dynamic hydrogenation disproportionation desorption recombination

    Directory of Open Access Journals (Sweden)

    Masao Yamazaki

    2017-05-01

    Full Text Available Various anisotropic Nd-Fe-B magnetic powders were prepared by the dynamic hydrogenation disproportionation desorption recombination (d-HDDR treatment with different hydrogenation disproportionation (HD times (tHD. The resulting magnetic properties and microstructural changes were investigated. The magnetic anisotropy was decreased with increasing tHD. In the d-HDDR powders with higher magnetic anisotropy, fine (200–600 nm and coarse (600–1200 nm Nd2Fe14B grains were observed. The coarse Nd2Fe14B grains showed highly crystallographic alignment of the c-axis than fine Nd2Fe14B grains. In the highly anisotropic Nd2Fe14B d-HDDR powder, a large area fraction of lamellar-like structures consisting of NdH2 and α-Fe were observed after HD treatment. Furthermore, the mean diameter of the lamellar-like regions, where lamellar-like structures orientate to the same direction in the HD-treated alloys was close to that of coarse Nd2Fe14B grains after d-HDDR treatment. Thus, the lamellar-like regions were converted into the crystallographically aligned coarse Nd2Fe14B grains during desorption recombination treatment, and magnetic anisotropy is closely related to the volume fraction of lamellar-like regions observed after HD treatment.

  13. Optical characterization of infrared emitting Nd3+ doped hydroxyapatite nanoparticles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Gayathri, K.; Kumar, G.A.; Manrique, Solange Ivette Rivera; Santhosh, C.; Sardar, Dhiraj K.

    2017-01-01

    Trivalent Nd doped hydroxyapatite (HAp) nanoparticles were prepared by a hydrothermal method using calcium nitrate and diammonium phosphate as precursors. Well crystallized nanoparticles of size less than 200 nm with hexagonal plate and rod morphologies were obtained at a reaction temperature of 180 °C. Under 808 nm excitation the nanoparticles exhibit strong near infrared emission at 1064 nm. All the emission spectral properties such as emission intensity and fluorescence decay time are found to decrease with Nd 3+ concentration. In Hap 0.5% Nd shows the highest decay time of 159 μs and highest emission at 1064 nm emission.

  14. Structure and magnetic properties of NdFeB thin films with Cr, Mo, Nb, Ta, Ti, and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; O'Shea, M.J.

    2000-01-01

    Layers of NdFeB of the form A(20 nm)/NdFeB(d nm)/A(20 nm) where A represents Cr, Mo, Nb, Ta, Ti, V were prepared on a silicon substrate by magnetron sputtering. The purpose is to determine how (i) the chosen buffer layer and (ii) NdFeB layer thickness d (especially d 2 Fe 14 B with no preferred crystalline orientation. Our highest coercivities occur for buffer layer elements from row five of the periodic table, 20 kOe (1600 kA/m) in a Nb buffered sample with d of 180 nm and 17 kOe (1350 kA/m) in a Mo buffered sample with d of 180 nm. Buffer layers from row four (Ti, V, and Cr) and row six (Ta) all give lower coercivities. Our largest energy product, 10.3 MG-Oe (82 kJ/m 3 ), is obtained for the Mo buffered sample. Average Nd 2 Fe 14 B crystallite size for this sample is 27 nm. Only the Cr and Ti buffered films show a large coercivity (≥2 kOe) for d of 54 nm with the Cr films showing the highest coercivity, 2.7 kOe (215 kA/m). In films subjected to a rapid thermal anneal (anneal time 30 s) we find that both the coercivity and energy product are larger than in samples subjected to a 20 min anneal. In our Nb buffered systems we obtain coercivities as high as 26.3 kOe (2090 kA/m) after a rapid thermal anneal

  15. Densification of ∼5 nm-thick SiO_2 layers by nitric acid oxidation

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Joo, Soyeong; Park, Tae Joo; Kim, Woo-Byoung

    2017-01-01

    Highlights: • Leakage current density of the commercial PECVD grown ∼5 nm SiO_2 layer has been decreased about three orders of magnitude by densification. • The densification of SiO_2 layer is achieved by high oxidation ability of O·. • Densities of suboxide, fixed charge (N_f) and defect state (N_d) in SiO_2/Si interface are decreased by NAOS and PMA. • Tunneling barrier height (Φ_t) is increased because of the increase of atomic density in SiO_2 layer. - Abstract: Low-temperature nitric acid (HNO_3) oxidation of Si (NAOS) has been used to improve the interface and electrical properties of ∼5 nm-thick SiO_2/Si layers produced by plasma-enhanced chemical vapor deposition (PECVD). Investigations of the physical properties and electrical characteristics of these thin films revealed that although their thickness is not changed by NAOS, the leakage current density at a gate bias voltage of −1 V decreases by about two orders of magnitude from 1.868 × 10"−"5 A/cm"2. This leakage current density was further reduced by post-metallization annealing (PMA) at 250 °C for 10 min in a 5 vol.% hydrogen atmosphere, eventually reaching a level (5.2 × 10"−"8 A/cm"2) approximately three orders of magnitude less than the as-grown SiO_2 layer. This improvement is attributed to a decrease in the concentration of suboxide species (Si"1"+, Si"2"+ and Si"3"+) in the SiO_2/Si interface, as well as a decrease in the equilibrium density of defect sites (N_d) and fixed charge density (N_f). The barrier height (Φ_t) generated by a Poole-Frenkel mechanism also increased from 0.205 to 0.371 eV after NAOS and PMA. The decrease in leakage current density is therefore attributed to a densification of the SiO_2 layer in combination with the removal of OH species and increase in interfacial properties at the SiO_2/Si interface.

  16. Integrated GaN photonic circuits on silicon (100) for second harmonic generation

    OpenAIRE

    Xiong, Chi; Pernice, Wolfram; Ryu, Kevin K.; Schuck, Carsten; Fong, King Y.; Palacios, Tomas; Tang, Hong X.

    2014-01-01

    We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The \\{chi}(2) nonlinear susceptibility is measured to be as high as 16 plus minus 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and ...

  17. Synthesis and characterization of Nd3+: Yb3+ co-doped near infrared sensitive fluorapatite nanoparticles as a bioimaging probe

    Science.gov (United States)

    Karthi, S.; Kumar, G. A.; Sardar, D. K.; Santhosh, C.; Girija, E. K.

    2018-03-01

    Trivalent Nd and Yb co-doped rod shaped hexagonal phase fluorapatite (FAP) nanoparticles of length and width about 32 and 13 nm, respectively were prepared by hydrothermal method and investigated the ability for 980 nm emission via Nd3+ → Yb3+ energy transfer with the objective of utilizing them in biomedical imaging. Nd3+ → Yb3+ energy transfer in FAP was studied as a function of both Nd3+ and Yb3+ concentrations and found that when Yb3+ concentration was 10 mol% the FAP phase has partially turned in to YbPO4 phase. The Yb3+ emission intensity at 980 nm significantly increased up to 5 mol% Yb3+ doping and then reduced drastically for further increase in its concentration. Nd3+ →Yb3+ energy transfer rates were evaluated from the decay curves and found that a transfer rate of 71% for 2 mol% Nd3+ co-doped with 5 mol% Yb3+. The cytocompatibility test with fibroblast like cells using MTT assay revealed that the nanoparticles are compatible with the cells.

  18. Comparison of Ba2YCu3O7-δ films on NdGaO3 and LaAlO3

    International Nuclear Information System (INIS)

    Phillips, J.M.; Siegal, M.P.; Perry, C.L.; Marshall, J.H.

    1991-01-01

    This paper studies the properties of 100 nm films of Ba 2 YCu 3 O 7-δ (BYCO) grown on LaAlO 3 (100) and NdGaO 3 (100) by co- evaporation of Cy, Y, and BaF 2 followed by a two-stage anneal ex situ. The authors find that the structural properties of the films on both substrates are optimized when the maximum temperature of the anneal is 900 degrees C, while the superconducting properties are slightly better if the maximum temperature does not exceed 875 degrees C. Films on LaAlO 3 can tolerate a longer time at the maximum annealing temperature than can films on NdGaP 3 . The authors postulate that this is due to a reaction between Ga in the NdGaO 3 and at least one of the constituents of the BYCO film (probably Y)

  19. Effect of Thermal Annealing and Second Harmonic Generation on Bulk Damage Performance of Rapid-Growth KDP Type I Doublers at 1064 nm

    International Nuclear Information System (INIS)

    Runkel, M; Maricle, S; Torres, R; Auerbach, J; Floyd, R; Hawley-Fedder, R; Burnham, A K

    2000-01-01

    This paper discusses the results of thermal annealing and in-situ second harmonic generation (SHG) damage tests performed on six rapid growth KDP type 1 doubler crystals at 1064 nm (1 ω) on the Zeus automated damage test facility. Unconditioned (S/1) and conditioned (R/1) damage probability tests were performed before and after thermal annealing, then with and without SHG on six doubler crystals from the NIF-size, rapid growth KDP boule F6. The tests revealed that unannealed, last-grown material from the boule in either prismatic or pyramidal sectors exhibited the highest damage curves. After thermal annealing at 160 C for seven days, the prismatic sector samples increased in performance ranging from 1.6 to 2.4X, while material from the pyramidal sector increased only modestly, ranging from 1.0 to 1.4X. Second harmonic generation decreased the damage fluence by an average of 20 percent for the S/1 tests and 40 percent for R/1 tests. Conversion efficiencies under test conditions were measured to be 20 to 30 percent and compared quite well to predicted behavior, as modeled by LLNL frequency conversion computer codes. The damage probabilities at the 1 ω NIF redline fluence (scaled to 10 ns via t 0.5 ) for S/1 tests for the unannealed samples ranged from 20 percent in one sample to 90-100 percent for the other 5 samples. Thermal annealing reduced the damage probabilities to less than 35 percent for 3 of the poor-performing crystals, while two pyramidal samples remained in the 80 to 90 percent range. Second harmonic generation in the annealed crystal increased the S/1 damage probabilities on all the crystals and ranged from 40 to 100 percent. In contrast, R/1 testing of an unannealed crystal resulted in a damage probability at the NIF redline fluence of 16%. Annealing increased the damage performance to the extent that all test sites survived NIF redline fluences without damage. Second harmonic generation in the R/1 test yielded a damage probability of less than 2

  20. Analysis of higher order harmonics with holographic reflection gratings

    Science.gov (United States)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  1. Generation of µW level plateau harmonics at high repetition rate.

    Science.gov (United States)

    Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A

    2011-09-26

    The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America

  2. Subsolidus phase relations of Bi2O3-Nd2O3-CuO

    International Nuclear Information System (INIS)

    Sun Yezhou

    1997-01-01

    The subsolidus phase relations of the Bi 2 O 3 -Nd 2 O 3 -CuO ternary system and its binary systems along with crystallographic parameters of the compounds were investigated by X-ray powder diffraction and differential thermal analysis. The room temperature section of the phase diagram of the Bi 2 O 3 -Nd 2 O 3 -CuO system can be divided into two diphase regions and six triphase regions. No ternary compound was found. There exist two solid solutions (α, β) and a compound Bi 0.55 Nd 0.45 O 1.5 in the (Bi 2 O 2 ) 1-x (Nd 2 O 3 ) x system. Both solid solution α (0.05≤x≤0.30) and β (0.53≤x≤0.73) belong to the rhombohedral system (R3m). The lattice parameters represented by a hexagonal cell are a=3.9832(4), c=27.536(5) A for Bi 0.8 Nd 0.2 O 1.5 (α phase) and a=3.8826(3), c=9.727(1) A for Bi 0.4 Nd 0.8 O 1.5 (β phase). The Bi 0.55 Nd 0.45 O 1.5 compound crystallizes in a face-centered cubic (f.c.c.) lattice with a=5.5480(2) A. (orig.)

  3. Influence of water content on the ablation of skin with a 532 nm nanosecond Nd:YAG laser

    Science.gov (United States)

    Kim, Soogeun; Eom, Tae Joong; Jeong, Sungho

    2015-01-01

    This work reports that the ablation volume and rate of porcine skin changed significantly with the change of skin water content. Under the same laser irradiation conditions (532 nm Nd:YAG laser, pulse width=11.5 ns, pulse energy=1.54 J, beam radius=0.54 mm), the ablation volume dropped by a factor of 4 as the skin water content decreased from 40 wt. % (native) to 19 wt. % with a change in the ablation rate below and above around 25 wt. %. Based on the ablation characteristics observed by in situ shadowgraph images and the calculated tissue temperatures, it is considered that an explosive rupture by rapid volumetric vaporization of water is responsible for the ablation of the high water content of skin, whereas thermal disintegration of directly irradiated surface layer is responsible for the low water content of skin.

  4. Design of 340 GHz 2× and 4× Sub-Harmonic Mixers Using Schottky Barrier Diodes in Silicon-Based Technology

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-05-01

    Full Text Available This paper presents the design of terahertz 2× and 4× sub-harmonic down-mixers using Schottky Barrier Diodes fabricated in standard 0.13 μm SiGe BiCMOS technology. The 340 GHz sub-harmonic mixers (SHMs are designed based on anti-parallel-diode-pairs (APDPs. With the 2nd and 4th harmonic, local oscillator (LO frequencies of 170 GHz and 85 GHz are used to pump the two 340 GHz SHMs. With LO power of 7 dBm, the 2× SHM exhibits a conversion loss of 34.5–37 dB in the lower band (320–340 GHz and 35.5–41 dB in the upper band (340–360 GHz; with LO power of 9 dBm, the 4× SHM exhibits a conversion loss of 39–43 dB in the lower band (320–340 GHz and 40–48 dB in the upper band (340–360 GHz. The measured input 1-dB conversion gain compression point for the 2× and 4× SHMs are −8 dBm and −10 dBm at 325 GHz, respectively. The simulated LO-IF (intermediate frequency isolation of the 2× SHM is 21.5 dB, and the measured LO-IF isolation of the 4× SHM is 32 dB. The chip areas of the 2× and 4× SHMs are 330 μm × 580 μm and 550 μm × 610 μm, respectively, including the testing pads.

  5. FERMI @ Elettra A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    CERN Document Server

    Bocchetta, C J; Craievich, P; D'Auria, G; Danailov, M B; De Ninno, G; Di Mitri, S; Diviacco, B; Ferianis, M; Gomezel, A; Iazzourene, F; Karantzoulis, E; Penco, G; Trovò, M

    2005-01-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing sys...

  6. Bulk growth of undoped and Nd3+ doped zinc thiourea chloride (ZTC) monocrystal: Exploring the remarkably enhanced structural, optical, electrical and mechanical performance of Nd3+ doped ZTC crystal for NLO device applications

    Science.gov (United States)

    Anis, Mohd; Muley, Gajanan. G.

    2017-05-01

    In current scenario good quality crystals are demanded for NLO device application hence present communication is aimed to grow bulk crystal and investigate the doping effect of rare earth element Nd3+ on structural, linear-nonlinear optical, luminescence, mechanical and dielectric properties of zinc thiourea chloride (ZTC) crystal. The ZTC crystal of dimension 21×10×8 mm3 and the Nd3+ doped ZTC crystal of dimension 27×17×5 mm3 have been grown from aqueous solution by slow evaporation technique. The elemental analysis of Nd3+ doped ZTC single crystal has been performed by means of energy dispersive spectroscopic technique. The powder X-ray diffraction technique has been employed to confirm the crystalline phase and identify the effect of Nd3+ doping on structural dimensions of ZTC crystal. The grown crystals have been characterized by UV-Vis-NIR study in the range of 190-1100 nm to ascertain the enhancement in optical transparency of ZTC crystal facilitated by dopant Nd3+. The recorded transmittance data has been utilized to investigate the vital optical constants of grown crystals. The second order nonlinear optical behavior of grown crystals has been evaluated by means of Kurtz-Perry test and the second harmonic generation efficiency of Nd3+ doped ZTC crystal is found to be 1.24 times higher than ZTC crystal. The luminescence analysis has been performed to examine the electronic purity and the color centered photoluminescence emission nature of pure and Nd3+ doped ZTC crystals. The influence of Nd3+ ion on mechanical behavior of ZTC crystal has been investigated by means of microhardness studies. The nature of dielectric constant and dielectric loss of pure and Nd3+ doped ZTC crystal has been examined in the range of 40-100 °C under dielectric study. The Z-scan technique has been employed using the He-Ne laser to investigate the third order nonlinear optical (TONLO) nature of Nd3+ doped ZTC single crystal. The magnitude of TONLO susceptibility, absorption

  7. Integration of optically active Neodymium ions in Niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems

    Science.gov (United States)

    Nayfeh, O. M.; Chao, D.; Djapic, N.; Sims, P.; Liu, B.; Sharma, S.; Lerum, L.; Fahem, M.; Dinh, V.; Zlatanovic, S.; Lynn, B.; Torres, C.; Higa, B.; Moore, J.; Upchurch, A.; Cothern, J.; Tukeman, M.; Barua, R.; Davidson, B.; Ramirez, A. D.; Rees, C. D.; Anant, V.; Kanter, G. S.

    2017-08-01

    Optically active rare-earth Neodymium (Nd) ions are integrated in Niobium (Nb) thin films forming a new quantum memory device (Nd:Nb) targeting long-lived coherence times and multi-functionality enabled by both spin and photon storage properties. Nb is implanted with Nd spanning 10-60 keV energy and 1013-1014 cm-2 dose producing a 1- 3% Nd:Nb concentration as confirmed by energy-dispersive X-ray spectroscopy. Scanning confocal photoluminescence (PL) at 785 nm excitation are made and sharp emission peaks from the 4F3/2 -red shift and increased broadening to a 4.8 nm linewidth. Nd:Nb is photoconductive and responds strongly to applied fields. Furthermore, optically detected magnetic resonance (ODMR) measurements are presented spanning near-infrared telecom band. The modulation of the emission intensity with magnetic field and microwave power by integration of these magnetic Kramer type Nd ions is quantified along with spin echoes under pulsed microwave π-π/2 excitation. A hybrid system architecture is proposed using spin and photon quantum information storage with the nuclear and electron states of the Nd3+ and neighboring Nb atoms that can couple qubit states to hyperfine 7/2 spin states of Nd:Nb and onto NIR optical levels excitable with entangled single photons, thus enabling implementation of computing and networking/internet protocols in a single platform.

  8. Studi On Oxidation State Of U In Ba2NdUO6

    International Nuclear Information System (INIS)

    Firman Windarto, Hendri

    1996-01-01

    Ba 2 NdUO 6 is not of the important compounds that is formed from a solidification process for high level liquid waste using super high temperature method Ba 2 NdUO 6 has ordered perovskite structure. The objective of this study is to investigate oxidation state of U in Ba 2 NdUO 6 . The properties of Ba 2 NdUO 6 were observed by using Faraday-type torsion magnetometer and X-ray Photoelectron Spectrometer (XPS). The magnetic susceptibility measured in the temperature range of 4K to room temperature showed that the Ba 2 NdUO 6 is paramagnetism that obeys the Curie-Weiss law. The effective moment of Ba 2 NdUO 6 is 3.04 μB. The results of xPs spectrum showed that the peaks of U4f for Ba 2 NdUO 6 appeared exactly between binding energy of UO 2 and UO 3 . It can be concluded that Ba 2 NdUO 6 has binding energy peaks corresponding to pentavalent uranium

  9. Pulsed 1064 nm Nd-YAG Laser Deposition of Titanium on Silicon in a Nitrogen Environment

    Directory of Open Access Journals (Sweden)

    Wilson Garcia

    1999-12-01

    Full Text Available Pulsed laser deposition (PLD technique was demonstrated for the deposition of titanium nitride (TiN thin films on Si (100 substrates. A 1064 nm pulsed Nd-YAG laser is focused on a titanium (99.5% target in a nitrogen environment to generate the atomic flux needed for the film deposition. Spectroscopic analysis of the plasma emission indicates the presence of atomic titanium and nitrogen, which are the precursors of TiN. Images of the films grown at different laser pulse energies show an increase in the number and size of deposited droplets and clusters with increasing laser pulse energy. A decrease in cluster and droplet size is also observed, with an increase in substrate temperature. EDS data show an increase in the titanium peak relative to the silicon as the ambient nitrogen pressure is decreased. An increase in deposition time was found to result in large clusters and irregularly shaped structures on the substrate. Post-deposition annealing of the samples enhanced the crystallinity of the film.

  10. Optical characterization of infrared emitting Nd{sup 3+} doped hydroxyapatite nanoparticles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, K. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Kumar, G.A., E-mail: ajith@gakumar.net [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Department of Atomic and Molecular Spectroscopy, Manipal University, Manipal 576104 (India); Northwest Vista College, 3535 N Ellison Dr, San Antonio, TX 78251 (United States); Manrique, Solange Ivette Rivera [Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, C.P. 07738, Ciudad de México 2009-2010 (Mexico); Santhosh, C. [Department of Atomic and Molecular Spectroscopy, Manipal University, Manipal 576104 (India); Sardar, Dhiraj K. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States)

    2017-05-15

    Trivalent Nd doped hydroxyapatite (HAp) nanoparticles were prepared by a hydrothermal method using calcium nitrate and diammonium phosphate as precursors. Well crystallized nanoparticles of size less than 200 nm with hexagonal plate and rod morphologies were obtained at a reaction temperature of 180 °C. Under 808 nm excitation the nanoparticles exhibit strong near infrared emission at 1064 nm. All the emission spectral properties such as emission intensity and fluorescence decay time are found to decrease with Nd{sup 3+} concentration. In Hap 0.5% Nd shows the highest decay time of 159 μs and highest emission at 1064 nm emission.

  11. Successful Treatment of Tattoo-Induced Pseudolymphoma with Sequential Ablative Fractional Resurfacing Followed by Q-Switched Nd: YAG 532 nm Laser

    Science.gov (United States)

    Lucinda, Tan Siyun; Hazel, Oon Hwee Boon; Joyce, Lee Siong Siong; Hon, Chua Sze

    2013-01-01

    Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR) followed by Q-Switched (QS) Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott's Methenamine Silver (GMS) stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present. PMID:24470721

  12. Spatial properties of odd and even low order harmonics generated in gas.

    Science.gov (United States)

    Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph

    2015-01-14

    High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.

  13. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    Science.gov (United States)

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  14. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... In this article, we report a method to achieve a precisely tunable highly stable probe beam generation for performing pump–probe experiment around a given wavelength by tilting a sum frequency generation (SFG) crystal angle. The width of the generated third-harmonic beam is of the order of 2 nm ...

  15. Treatment of pigmented keratosis pilaris in Asian patients with a novel Q-switched Nd:YAG laser.

    Science.gov (United States)

    Kim, Sangeun

    2011-06-01

    Treatment for most cases of keratosis pilaris requires simple reassurance and general skin care recommendations. Many Asian patients find lesions due to pigmented keratosis pilaris to be cosmetically unappealing. Treatment of post-inflammatory hyperpigmentation using a 1064-nm Q-switched Nd:YAG laser with low fluence is reported. To investigate the efficacy of a novel Q-switched Nd:YAG laser for the treatment of pigmented keratosis pilaris in Asian patients. Ten patients with pigmented keratosis pilaris underwent five weekly treatments using a Q-switched Nd:YAG laser (RevLite(®); HOYA ConBio(®), Freemont, CA, USA) at 1064 nm with a 6-mm spot size and a fluence of 5.9 J/cm(2). Photographic documentation was obtained at baseline and 2 months after the final treatment. Clinical improvement was achieved in all 10 patients with minimal adverse effects. For the treatment of keratosis pilaris, the use of a Q-switched Nd:YAG laser can be helpful for improving cosmetic appearance as it can improve pigmentation.

  16. Optical analysis of RE(3+) (RE = Pr(3) (+) , Er(3) (+) and Nd(3) (+) ):cadmium lead boro tellurite glasses.

    Science.gov (United States)

    Giridhar, P; Bhushana Reddy, M; Neelima, G; Ramanaiah, R; Nagamuni Reddy, K; Sahadeva Reddy, V; Sudhakar Reddy, B

    2016-09-01

    This article reports on the optical characterization of Pr(3) (+) -, Er(3) (+) - and Nd(3) (+) -doped cadmium lead boro tellurite (CLBT) glasses prepared using the melt quenching method. The visible-near infrared (Vis-NIR) absorption spectra of these glasses were analyzed systematically. On measuring the NIR emission spectra of Er(3) (+) :CLBT glasses, a broad emission band centered at 1536 nm ((4) I13 /2  → (4) I15 /2 ) was observed, as were three NIR emission bands at 900 nm ((4) F3 /2  → (4) I9 /2 ), 1069 nm ((4) F3 /2  → (4) I11 /2 ) and 1338 nm ((4) F3 /2  → (4) I13 /2 ) from Nd(3) (+) :CLBT glasses and an NIR emission band at 1334 nm ((1) G4  → (3) H5 ) from Pr(3) (+) :CLBT glasses at an excitation wavelength (λex ) of 514.5 nm (Ar(+) laser). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Critical parameters in the sputter-deposition of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hakuraku, Y.; Yokoyama, N.; Doi, T.; Inoue, T. [Faculty of Engineering, Kagoshima University, Koorimoto, Kagoshima 890, (Japan); Mori, Z.; Koba, S. [Yatsushiro National College of Technology, Yatsushiro 866 (Japan)

    1999-08-01

    A superconducting thin film of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (NBCO) was prepared on an MgO(100) substrate by dc magnetron sputtering. Superconducting properties as well as features such as resistivity at room temperature and surface morphology were improved by optimizing the composition of sputtering target and critical parameters such as substrate temperature and oxidation gas pressure. A highly c-axis oriented thin film with T{sub c} (zero resistance temperature) = 95.2 K was obtained reproducibly with NdBa{sub 2}Cu{sub 3.2}O{sub 7-{delta}} off-stoichiometric target sputtering. T{sub c} = 95.2 K was 8 K higher than that deposited by stoichiometric target sputtering. Critical current density was 1x10{sup 6} A cm{sup -2} at 77 K, and surface roughness was 35 nm. (author)

  18. Processing and optical properties of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides

    Science.gov (United States)

    Xiang, Qing; Zhou, Yan; Ooi, Boon Siew; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin

    2000-05-01

    We report here the processing and optical characterization of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides deposited on SOS substrates by the sol-gel route combined with spin-coating and rapid thermal annealing. The recipes used for preparing the solutions by sol-gel route are in mole ratio of 93SiO2:20AlO1.5: x ErO1.5. In order to verify the residual OH content in the films, FTIR spectra were measured and the morphology of the material by the XRD analysis. Five 2-layer films annealed at a maximum temperature of 500 degrees C, 700 degrees C, 900 degrees, 1000 degrees C, 1100 degrees C respectively were fabricated on silicon. The FTIR and XRD curves show that annealing at 1050 degrees C for 15s effectively removes the OH in the materia and keeps the material amorphous. The propagation loss of the planar waveguides was measured by using the method based on scattering in measurements and the result was obtained to be 1.54dB/cm. The fluorescence spectra were measured with 514nm wavelength of Ar+ laser by directly shining the pump beam on the film instead of prism coupling. The results show that the 1 mole Nd3+ content recipe has the strongest emission efficiency among the four samples investigated.

  19. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy)

    Science.gov (United States)

    Lee, Y. I.; Huang, G. Y.; Shih, C. W.; Chang, W. C.; Chang, H. W.; You, J. S.

    2017-10-01

    Magnetic properties of the anisotropic NdFeB magnets prepared by hot pressing followed by die-upsetting NdFeB MQU-F powders doped with low-melting RCu alloy powders were explored, where RCu stands for Nd70Cu30, Dy70Cu30 and (Nd0.5Dy0.5)70Cu30, respectively. In addition, the post-annealing at 600 °C was employed to modify the microstructures and the magnetic properties of the hot deformed magnets. It is found that doping RCu alloy powders is effective in enhancing the coercivity of the hot deformed NdFeB magnets from 15.1 kOe to 16.3-19.5 kOe. For Nd70Cu30-doped magnets, the increment of coercivity is only 1.2 kOe. Meanwhile, Dy70Cu30-doped and (Nd0.5Dy0.5)70Cu30-doped magnets show an almost identical enhancement of coercivity of about 4.4 kOe. Importantly, the latter magnet shows a beneficial effect of reducing the usage of Dy from 1.6 wt% to 0.8 wt%. TEM analysis shows that nonmagnetic Nd, Dy and Cu appear at grain boundary and isolate the magnetic grains, leading to an enhancement of coercivity. Doping lower melting point Dy-lean (Nd0.5Dy0.5)70Cu30 powders into commercial MQU-F powders for making high coercivity hot deformed NdFeB magnets might be a potential and economic way for mass production.

  20. Experimental investigation of the generation of harmonic photons from the interaction of free electrons with intense laser radiation

    International Nuclear Information System (INIS)

    Englert, T.J.

    1983-01-01

    An experimental investigation of the generation of second harmonic photons through the interaction of free electrons with an intense laser beam has been performed. Second harmonic photons with a wavelength of 530nm generated from the interaction of free electrons with 1060nm photons from a neodymium-glass laser are implied by observing Doppler shifted photons with wavelengths of 490nm and 507nm. The observed photon wavelengths results from a Doppler shift of the laser photon wavelengths as viewed in the rest frame of the electrons combined with a Doppler shift of the second harmonic photons emitted from 1600eV and 500eV electrons. Comparison of experimental results with those predicted by cross sections, derived using classical and quantum electrodynamics, shows reasonable agreement with both theories. Although second harmonic photons are created, the dynamics of second harmonic photon generation (accelerated electron motion due to the electromagnetic field or actual two-photon interaction with the electron) cannot be resolved without further experiment

  1. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dapeng; Poudyal, Narayan; Rong, Chuanbing [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Zhang Ying [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Kramer, M.J. [Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Liu, J. Ping, E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-09-15

    Nanoscale hybrid magnets containing SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B hard magnetic phases have been produced via a novel 'in-one-pot' processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybrid magnets have greatly improved thermal stability compared to the Nd{sub 2}Fe{sub 14}B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo{sub 5} counterpart. - Highlights: Black-Right-Pointing-Pointer We realize interphase exchange coupling in nanoscale SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B magnets. Black-Right-Pointing-Pointer We observe homogenously distributed two-phase grains with size smaller than 20 nm. Black-Right-Pointing-Pointer We observe a common Curie temperature in the hybrid magnet. Black-Right-Pointing-Pointer High-temperature magnetic properties of the hybrid magnets greatly improved. Black-Right-Pointing-Pointer Plastic deformation of composite materials leads to self-nanoscaling of grains.

  2. Synthesis and Optical Characterization of Nd3+ doped TeO2-PbO-Li2O

    Directory of Open Access Journals (Sweden)

    M. Rahim Sahar

    2012-02-01

    Full Text Available Glass based on Nd3+-doped TeO2-PbO-Li2O has successfully been made by melt quenching technique and their thermal parameters have been determined using Differential Thermal Analyzer (DTA. The glass is then nucleated and/or growth by controlled heat treatment at slightly below the crystallization temperature. The X-ray diffraction (XRD technique is used to estimate the nano-crystallite size. Meanwhile, the optical characterization has been determined using the Photoluminescence Spectroscopy. It is found out that the crystallite size is about 20 nm and very much depending on the heat-treatment time. Meanwhile, the intensity of the luminescence spectra is very much depending on the concentration of the dopant.   Keyword: tellurium glasses, melt quenching technique, optical characterization

  3. Novel Treatment Approach for Deep Palmoplantar Warts Using Long-Pulsed 1064-nm Nd:YAG Laser and a Moisturizing Cream Without Prior Paring of the Wart Surface.

    Science.gov (United States)

    Alshami, Mohammad Ali; Mohana, Mona Jameel

    2016-10-01

    The present study aimed to assess the safety and efficacy of palmoplantar wart removal using long-pulsed 1064-nm Nd:YAG laser after application of a moisturizing cream. Previously described laser treatments for wart removal are associated with negative side effects and need to pare the warts before laser treatment. Two hundred forty patients (142 males, 98 females) were treated for 1-40 palmoplantar warts by long-pulsed 1064-nm Nd:YAG laser (spot size 4-6 mm, pulse duration 20 msec, fluence 200 J/cm 2 ) after covering the wart surface with a thin film of a moisturizing cream. The endpoint was lesion graying or whitening with or without development of a hemorrhagic bulla beneath the treated wart. Color photographs were taken before and immediately after each laser session and at 1, 4, and 16 weeks after the last session. The overall clearance rate was 97%, with 90% of treated patients cured after one session, 4% after two, and 3% after three. Clearance rate after three laser sessions decreased linearly with the number of warts from 100% to 95%. Less accessible wart location in interdigital spaces also decreased the cure rate after three sessions from 100% to 95%. Additionally, warts became more difficult to eradicate as they aged. Remission lasted up to 6 years, and complications were mild and infrequent (17.5%). This novel method is effective in removing palmoplantar warts. It is easier, time-saving, and safer than other methods described in previous studies conducted with ablative or nonablative lasers.

  4. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    Science.gov (United States)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  5. Crystal growth, spectroscopic characterization, and continuous wave laser operation of Nd3+-doped LiLuF4 crystal

    Science.gov (United States)

    Zhao, C. C.; Hang, Y.; Zhang, L. H.; He, X. M.; Yin, J. G.; Li, R.; Yu, T.; Chen, W. B.

    2011-04-01

    Nd3+-doped LiLuF4 single crystal with high optical quality was grown by Czochralski technique. The segregation coefficient of Nd3+ in LiLuF4 crystal was determined by the inductively coupled plasma atomic emission spectrometry method. Polarized absorption and fluorescence spectra were investigated. The peak absorption cross section at 792 nm and peak emission cross section at 1053 nm are 6.94×10-20 and 7.60×10-20 cm2, respectively. With a laser-diode as the pump source, a maximum 6.22 W continuous-wave laser output at 1053 nm has been obtained with a slope efficiency of 37.2% with respect to the pump power.

  6. Krypton irradiation damage in Nd-doped zirconolite and perovskite

    International Nuclear Information System (INIS)

    Davoisne, C.; Stennett, M.C.; Hyatt, N.C.; Peng, N.; Jeynes, C.; Lee, W.E.

    2011-01-01

    Understanding the effect of radiation damage and noble gas accommodation in potential ceramic hosts for plutonium disposition is necessary to evaluate their long-term behaviour during geological disposal. Polycrystalline samples of Nd-doped zirconolite and Nd-doped perovskite were irradiated ex situ with 2 MeV Kr + at a dose of 5 x 10 15 ions cm -2 to simulate recoil of Pu nuclei during alpha decay. The feasibility of thin section preparation of both pristine and irradiated samples by Focused Ion Beam sectioning was demonstrated. After irradiation, the Nd-doped zirconolite revealed a well defined amorphous region separated from the pristine material by a thin (40-60 nm) damaged interface. The zirconolite lattice was lost in the damaged interface, but the fluorite sublattice was retained. The Nd-doped perovskite contained a defined irradiated layer composed of an amorphous region surrounded by damaged but still crystalline layers. The structural evolution of the damaged regions is consistent with a change from orthorhombic to cubic symmetry. In addition in Nd-doped perovskite, the amorphisation dose depended on crystallographic orientation and possibly sample configuration (thin section or bulk). Electron Energy Loss Spectroscopy revealed Ti remained in the 4+ oxidation state but there was a change in Ti coordination in both Nd-doped perovskite and Nd-doped zirconolite associated with the crystalline to amorphous transition.

  7. Successful treatment of tattoo-induced pseudolymphoma with sequential ablative fractional resurfacing followed by Q-switched Nd: Yag 532 nm laser

    Directory of Open Access Journals (Sweden)

    Tan Siyun Lucinda

    2013-01-01

    Full Text Available Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR followed by Q-Switched (QS Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott′s Methenamine Silver (GMS stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present.

  8. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... 413–417. Tunable third-harmonic probe for non-degenerate ultrafast ... A beam splitter was used to split the beam into two with the power ratio of ... Now polarization of the 800-nm beam is made to be parallel with the 400-nm.

  9. Harmonic and static susceptibilities of YBa2Cu3O7

    International Nuclear Information System (INIS)

    Ishida, T.; Goldfarb, R.B.; Okayasu, S.; Kazumata, Y.; Franz, J.; Arndt, T.; Schauer, W.

    1993-01-01

    Intergranular properties of the sintered superconductor YBa 2 Cu 3 O 7 have been studied in terms of complex harmonic magnetic susceptibility χ n χ n ' - iχ n '' (n integer) as well as DC susceptibility χ dc . As functions of temperature T, χ 1 ' and χ 1 '' depend on both the AC magnetic-field amplitude H ac and the magnitude of a superimposed DC field H dc . Only odd-harmonic susceptibilities are observed below the critical temperature, T c , for zero H dc while both odd and even harmonics are observed for nonzero H dc . With T constant, odd-harmonic susceptibilities are even functions of H dc , whereas even-harmonic susceptibilities are odd functions of H dc . Experimental intergranular characteristics of χ n ' and χ n '' are in good agreement with theoretical predictions from a simplified Kim model of magnetization. In contrast, even-harmonic susceptibilities measured for a GdBa 2 Cu 3 O 7 thin film and an YBa 2 Cu 3 O 7 single crystal are not prominent due to missing weak links, whereas odd-harmonic susceptibilities are remarkable. A survey of several models for the harmonic response of superconductors is presented. The DC susceptibility curve for the zero-field-cooled YBa 2 Cu 3 O 7 sample, χ ZFC (T), has a two-step structure arising from intra- and inter-granular components, similar to χ 1 '. DC susceptibility measured upon warming, χ FCW (T), shows a negative peak near T c for the sample cooled rapidly in small DC fields. DC susceptibility measured upon cooling, χ FCC (T), does not show a peak. A negative peak is not seen in measurements on a powdered sample. The negative peak can be explained by intergranular flux depinning upon warming. (orig.)

  10. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    Science.gov (United States)

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  11. Two-color phase control of high-order harmonic generation in intense laser fields

    International Nuclear Information System (INIS)

    Telnov, D.A.; Wang, J.; Chu, S.

    1995-01-01

    We present a time-independent generalized Floquet approach for nonperturbative treatment of high-order harmonic generation (HG) in intense onea (i) determination of the complex quasienergy eigenvalue and eigenfunction by means of the non-Hermitian Floquet formalism, wherein the Floquet Hamiltonian is discretized by the complex-scaling generalized pseudospectral technique [Wang, Chu, and Laughlin, Phys. Rev. A 50, 3208 (1994)], and (ii) calculation of the HG rates based on the approach that implies the classical treatment of the electromagnetic field and quantal treatment of the atom. The method is applied to the nonperturbative study of HG by the hydrogen atom in strong laser fields with the fundamental frequencies 532 and 775 nm and their third harmonics. The results show a strong dependence on the relative phase δ between the fundamental frequency field and its harmonic. For the intensities used in calculations (1x10 13 and 5x10 13 W/cm 2 for the fundamental frequency 532 nm and 1x10 13 and 3x10 13 W/cm 2 for the fundamental frequency 775 nm, the harmonic intensity being 10 and 100 times weaker), the total photon emission rate has its maximum at δ=0 and minimum at δ=π. However, this tendency, while valid for the first several HG peaks, is reversed for the higher HG peaks. The HG spectrum for δ=π is broader and the peak heights decrease more slowly compared to the case of δ=0. These results have their analog in the multiphoton above-threshold detachment study performed recently for H - ions [Telnov, Wang, and Chu, Phys. Rev. A 51, 4797 (1995)

  12. Nd loaded liquid scintillator to search for 150Nd neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Barabanov, I; Bezrukov, L; Yanovich, E; Cattadori, C; Danilov, N; Di Vacri, A; Ianni, A; Nisi, S; Ortica, F; Romani, A; Salvo, C; Smirnov, O

    2008-01-01

    The 150 Nd is considered one of the most attractive candidate for searching neutrinoless double beta (0νββ-) decay, thanks to its high Q-value (3.367 MeV), that makes the external background issue less significative respect to other isotopes, and favorable computed matrix elements. The isotopic abundance of this isotope in natural neodimium is only 5.6% and up to now, it has been investigated only in low mass experiments. The next step is to increase the sensitivity of the experiments using larger mass of neodymium (10 ton-1 kton). This could be possible with a Nd loaded liquid scintillator (LS). At the Gran Sasso National Laboratory (LNGS), a joint INFN (Istituto Nazionale di Fisica Nucleare) and INR (Institute for Nuclear Research of Moscow) working group has been carrying out since 2001 an R and D activity aiming to develop organic liquid scintillators (LS) doped with metals. The achieved know-how and the satisfactory results obtained both with In and Gd allowed to face the development and production of Nd doped LS. The development of metal doped LS is challenging because the metal has to be embedded in a proper organic system that makes it soluble in an organic solvent minimizing the impact of the metal-organic compound on the optical and scintillation properties of the LS. A further challenge in the case of Nd is the presence of absorption bands of this element in the optical region with a transparent region around 400 nm, which is about at the maximum of the scintillator emission spectrum. A 2.5 1 Nd loaded LS has been produced diluting an originally developed Nd-Carboxylic (Nd-CBX) salt in pseudocumene (PC), the solvent of the Borexino liquid scintillator. The measured light yield, at [Nd] = 6.5 g/1 and [PPO] = 1.5 g/1, is ∼ 75% of pure PC at the same fluor concentration (∼ 10000 ph/MeV). The Nd doped LS has been tested in a 2 1 quartz cell (wrapped by VM2000 reflector film) having dimensions 5x5x100 cm 3 . The light propagates in the cell by total

  13. Low temperature magnetic properties of NdCu2

    International Nuclear Information System (INIS)

    Hillberg, M.; Wagener, W.; Melo, M.A.C. de; Klauss, H.H.; Litterst, F.J.; Loewenhaupt, W.

    1997-01-01

    μSR experiments on NdCu 2 give evidence for short range order below 25 K above T N =6.5 K. No signal was detected between 16 K and 1.2 K where neutron scattering reveals an incommensurate spin structure. Below 1.2 K the μSR signal is recovered and shows a rotation with 22 MHz. This is interpreted with a squaring up of Nd spins accompanied by a decrease of magnon excitations which is reflected in a decrease of damping of the muon signal

  14. Luminescence properties of Yb:Nd:Tm:KY{sub 3}F{sub 10} nanophosphor and thermal treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Laércio, E-mail: lgomes@ipen.br [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Linhares, Horácio Marconi da Silva M.D. [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego [Departamento de Ciências dos Materiais, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Ranieri, Izilda Marcia [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil)

    2015-01-15

    In this work, we present the spectroscopic properties of KY{sub 3}F{sub 10} (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates {sup 1}G{sub 4} (Tm{sup 3+}) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd{sup 3+} to Tm{sup 3+} ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the {sup 1}G{sub 4} level luminescence kinetic of Tm{sup 3+} in Yb/Nd/Tm system revealed that the luminescence efficiency ({sup 1}G{sub 4}) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up{sub 1}) and (Nd×Yb×Tm) (Up{sub 2}) upconversion processes to the {sup 1}G{sub 4} luminescence are 33% (Up{sub 1}) and 67% for Up{sub 2}. Up{sub 2} process represented by Nd{sup 3+} ({sup 4}F{sub 3/2})→Yb{sup 3+} ({sup 2}F{sub 7/2}) followed by Yb{sup 3+} ({sup 2}F{sub 5/2})→Tm ({sup 3}H{sub 4})→Tm{sup 3+} ({sup 1}G{sub 4}) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF{sub 4} and KY{sub 3}F{sub 10} bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the

  15. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kaishang, E-mail: zhoukaishang@sinap.ac.cn; Feng, Chao, E-mail: fengchao@sinap.ac.cn; Wang, Dong, E-mail: wangdong@sinap.ac.cn

    2016-10-21

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the “water window” and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  16. Combined 595-nm and 1,064-nm laser irradiation of recalcitrant and hypertrophic port-wine stains in children and adults.

    Science.gov (United States)

    Alster, Tina S; Tanzi, Elizabeth L

    2009-06-01

    Although pulsed dye laser (PDL) treatment of port-wine stain (PWS) has long been proven safe and effective, incomplete clearance of these vascular malformations can be problematic. In addition, advanced PWS with deeper coloration and tissue hypertrophy can be particularly difficult to treat because of the superficial dermal penetration of 585- to 595-nm light. The purpose of this study was to evaluate the safety and efficacy of a novel device that delivers sequential pulses of 595- and 1,064-nm wavelengths in the treatment of recalcitrant and hypertrophic PWS. Twenty-five children and adults (skin phototypes I-III) with recalcitrant or hypertrophic PWS showing incomplete clearance after 10 prior PDL treatments were included in the study. Successive treatments using a 595-nm PDL and a 1,064-nm neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser were delivered at 6- to 8-week intervals. Two masked assessors determined clinical improvement of treatment areas using independent evaluation of comparative photographs at baseline and 3 months after treatment using a standard quartile grading scale. The use of dual 595-/1,064-nm wavelengths provided continued improvement of PWS that were previously recalcitrant to ongoing PDL therapy. Side effects were limited to transient erythema, edema, and mild purpura. Rare vesicle formation was observed, with no subsequent scarring or undesirable pigmentary changes. The novel dual 595-nm PDL and 1,064-nm Nd:YAG laser is an effective treatment for PWS that are recalcitrant to PDL therapy alone.

  17. 2nd UNet conference

    CERN Document Server

    Menasche, Daniel; Sabir, Essaïd; Pellegrini, Francesco; Benjillali, Mustapha

    2017-01-01

    This volume offers the proceedings of the 2nd UNet conference, held in Casablanca May 30 - June 1, 2016. It presents new trends and findings in hot topics related to ubiquitous computing/networking, covered in three tracks and three special sessions: Main Track 1: Context-Awareness and Autonomy Paradigms Track Main Track 2: Mobile Edge Networking and Virtualization Track Main Track 3: Enablers, Challenges and Applications Special Session 1: Smart Cities and Urban Informatics for Sustainable Development Special Session 2: Unmanned Aerial Vehicles From Theory to Applications Special Session 3: From Data to Knowledge: Big Data applications and solutions.

  18. Laser diode pumped ND: Glass slab laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, M.; Kanabe, T.; Matsui, H.

    2001-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a laser-diode-pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd:glass slab is pumped from both sides by 803-nm AlGaAs laser-diode(LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 218 (max.) kW peak power with 2.6kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. (author)

  19. Evidence of the 2s2p(1P) doubly excited state in the harmonic generation spectrum of helium

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J. M.; Starace, Anthony F.

    2011-01-01

    By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p( 1 P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p( 1 P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.

  20. 5.4W cladding-pumped Nd:YAG silica fiber laser

    OpenAIRE

    Yoo, S.; Webb, A.S.; Standish, R.J.; May-Smith, T.C.; Sahu, J.K.

    2012-01-01

    We report on the spectroscopy and laser characteristics of Nd-doped fiber, fabricated by rod-in-tube from Nd:YAG as a core material with silica cladding. A cladding-pumped CW laser operation at 1058nm with 52% slope-efficiency is demonstrated.

  1. Relationship between harmonic analysis on SU(2) and on SL(2,C)/SU(2)

    International Nuclear Information System (INIS)

    Healy, D.M. Jr.

    1986-01-01

    A topic of interest in harmonic analysis is the comparison of Fourier transforms on compact and noncompact spaces. The Poisson summation formula provides a classical example of this idea by providing an explicit relationship between harmonic analysis on the real line R and on the circle S 1 . This dissertation provides a new geometric proof of this formula, and then generalizes this approach to obtain a relationship between Fourier transforms on Upsilon, the space of positive matrices in SL(2,C), and Fourier transforms on SU(2)

  2. First operation of a harmonic lasing self-seeded free electron laser

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Faatz, B.; Kuhlmann, M.; Roensch-Schulenburg, J.; Schreiber, S.; Tischer, M.; Yurkov, M.V.

    2016-12-01

    Harmonic lasing is a perspective mode of operation of X-ray FEL user facilities that allows to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is so called Harmonic Lasing Self-Seeded Free Electron Laser (HLSS FEL) that allows to improve spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with Self-Amplified Spontaneous emission (SASE) FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at short wavelengths paves the way for a variety of applications of this new operation mode in X-ray FELs.

  3. Development of LD pumped 10 J x 10 Hz Nd: Glass slab laser system

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Kanabe, Tadashi; Matsui, Hideki

    2000-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a diode-pumped zig-zag Nd: glass slab laser amplifier system which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd: glass slab is pumped from both sides by 803-nm AlGaAs laser-diode (LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 200 kW peak power with 2.5 kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern. (author)

  4. Luminescence characteristics of Mg2SiO4:Nd

    International Nuclear Information System (INIS)

    Indira, P.; Subrahmanyam, R.V.; Murthy, K.V.R.

    2011-01-01

    Thermoluminescence (TL) properties of Magnesium Ortho silicate (2:1) Mg 2 SiO 4 doped with various concentrations of rare earth (Nd) have been studied. The phosphor material were prepared using standard solid state reaction technique and heated specimens at 1100 ± 20 deg C for two hours. 4% Ammonium chloride was used as flux. The received material was grinded in an agate mortar and pestle. The TL exhibited by the Mg 2 SiO 4 with varying concentration of Nd is interesting in nature. It is interesting to note but as the concentration of Nd increases the peak around 125 deg C TL peak intensity increases. But the hump around 200 deg C resolved as TL peak at 253 deg C with high intensity. (author)

  5. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  6. Crystal structure of Nd4Cu2O7

    International Nuclear Information System (INIS)

    Pederzolli, D.R.; Attfield, J.P.

    1998-01-01

    The structure of Nd 4 Cu 2 O 7 (A2/m, a = 8.449 A, b = 3.759 A, c = 12.601 A, β = 109.57 ), prepared by topotactic reduction of the high-T c superconductor parent phase Nd 2 CuO 4 , has been determined from time-of-flight neutron powder diffraction data revealing a new oxygen vacancy-ordered arrangement containing cooperatively distorted Cu 2 O 3 planes in which 2- and 4- coordinate Cu - sites are present. (orig.)

  7. Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal

    International Nuclear Information System (INIS)

    Wang, A G; Li, Y L; Fu, X H

    2011-01-01

    We present for the first time, to the best of our knowledge, a Yb:YAG laser operating in a continuous wave (CW) on the quasi-three-level laser at 1024 nm, based on the 2 F 5/22 F 7/2 transition, generally used for a 1030 nm emission. The use of a pump module with 16 passes through the crystal allowed the realization of a Yb:YAG thin-disk laser with 370 mW of CW output power at 1024 nm. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 45 mW at 512 nm by using a LiB 3 O 5 (LBO) nonlinear crystal

  8. A large enhancement of photoinduced second harmonic generation in CdI2--Cu layered nanocrystals.

    Science.gov (United States)

    Miah, M Idrish

    2009-02-12

    Photoinduced second harmonic generation (PISHG) in undoped as well as in various Cu-doped (0.05-1.2% Cu) CdI2 nanocrystals was measured at liquid nitrogen temperature (LNT). It was found that the PISHG increases with increasing Cu doping up to approximately 0.6% and then decreases almost to that for the undoped CdI2 for doping higher than approximately 1%. The values of the second-order susceptibility ranged from 0.50 to 0.67 pm V(-1) for the Cu-doped nanocrystals with a thickness of 0.5 nm. The Cu-doping dependence shown in a parabolic fashion suggests a crucial role of the Cu agglomerates in the observed effects. The PISHG in crystals with various nanosizes was also measured at LNT. The size dependence demonstrated the quantum-confined effect with a maximum PISHG for 0.5 nm and with a clear increase in the PISHG with decreasing thickness of the nanocrystal. The Raman scattering spectra at different pumping powers were taken for thin nanocrystals, and the phonon modes originating from interlayer phonons were observed in the spectra. The results were discussed within a model of photoinduced electron-phonon anharmonicity.

  9. Design of 12-phase, 2-stage Harmonic Rejection Mixer for TV Tuners

    Directory of Open Access Journals (Sweden)

    D. Lee

    2016-06-01

    Full Text Available A two-stage 12-phase harmonic rejection mixer (HRM for TV tuners is proposed in order to reject the local oscillator (LO harmonics up to the ninth order. The proposed weighing scheme for 12-phase, 2-stage harmonic mixing can reduce the harmonic rejection (HR sensitivity to the amplitude error caused by irrational numbers such as . To verify this HR, the 2-stage HR circuit is designed with baseband gm weighting in order to save power and improve the HR ratios without calibration. The proposed HRM achieves the third to ninth worst HR ratios, more than 55 dB, according to Monte Carlo simulations. It consumes 6.5 mA under a 2.5 V supply voltage.

  10. Design of a high-power, high-gain, 2nd harmonic, 22.848 GHz gyroklystron

    Energy Technology Data Exchange (ETDEWEB)

    Veale, M. [University of California, Berkeley, CA, 24720 (United States); Purohit, P. [Qualcomm Technologies, Inc. USA (United States); Lawson, W. [University of Maryland, College Park, MD 20742 (United States)

    2013-08-15

    In this paper we consider the design of a four-cavity, high-gain K-band gyroklystron experiment for high gradient structure testing. The frequency doubling gyroklystron utilizes a beam voltage of 500 kV and a beam current of 200 A from a magnetron injection gun (MIG) originally designed for a lower-frequency device. The microwave circuit features input and gain cavities in the circular TE{sub 011} mode and penultimate and output cavities that operate at the second harmonic in the TE{sub 021} mode. We investigate the MIG performance and study the behavior of the circuit for different values of perpendicular to parallel velocity ratio (α= V{sub ⊥}/ V{sub z}). This microwave tube is expected to be able to produce at least 20 MW of power in 1μs pulses at a repetition rate of at least 120 Hz. A maximum efficiency of 26% and a large signal gain of 58 dB under zero-drive stable conditions were simulated for a velocity ratio equal to 1.35.

  11. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    Science.gov (United States)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  12. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Y.; Kitagawa, J., E-mail: j-kitagawa@fit.ac.jp [Department of Electrical Engineering, Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan); Ono, T.; Tsubota, M. [Physonit Inc., 6-10 Minami-Horikawa, Kaita Aki, Hiroshima 736-0044 (Japan)

    2015-11-15

    The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn{sub 2}O{sub 3}-type Nd{sub 2}O{sub 3}. The estimated recovery-ratio of Nd reaches to 97%.

  13. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Y. Kataoka

    2015-11-01

    Full Text Available The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn2O3-type Nd2O3. The estimated recovery-ratio of Nd reaches to 97%.

  14. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  15. Contribution of the pre-ionized H2 and the ionized H2+ subsystems to the HHG Spectra of H2 in intense laser fields

    Science.gov (United States)

    Iravani, Hossein; Sabzyan, Hassan; Vafaee, Mohsen; Buzari, Behnaz

    2018-04-01

    Contributions of the pre-ionized H2 (PI-H2) and ionized {{{H}}}2+ subsystems of the two-electron H2 system to its high-order harmonic generation in eight-cycle sin2-like ultrafast intense laser pulses are calculated and analyzed based on the solution of the time-dependent Schrödinger equation for the one-dimensional two-electronic H2 system with fixed nuclei. The laser pulses have λ = 390 and 532 nm wavelengths and I = 1 × 1014, 5 × 1014, 1 × 1015 and 5 × 1015 W cm‑2 intensities. It is found that at the two lower intensities, the PI-H2 subsystem dominantly produces the HHG spectra. However, at the two higher intensities, both PI-H2 and ionized {{{H}}}2+ subsystems contribute comparably to the HHG spectra. In the {{{H}}}2+ subsystem, the symmetry of the populations of {{{H}}}2+(I) and {{{H}}}2+(II) regions (left and right regions of {{{H}}}2+ subsystem) is broken by increasing the laser intensity. Complex patterns and even harmonics also appear at these two higher intensities. For instance, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, the even harmonics are appeared near cutoff region. Interestingly, at 5 × 1015 W cm‑2 intensity and λ = 390 nm wavelength, the even harmonics replaced by the odd harmonics with red shift. At λ = 390 and 532 nm wavelengths and I = 1 × 1015 intensity, the two-electron cutoffs corresponding to nonsequential double-recombination with maximum return kinetic energy of 4.70Up are detected. The HHG spectra of the whole H2 system obtained with and without nuclear dynamics treated classically are approximately similar. However, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, if we take into account nuclear dynamics, the even harmonics which are appeared near cutoff region, replaced by the odd harmonics with blue shift.

  16. Intrinsic evolution of novel (Nd, MM)2Fe14B-system magnetic flakes

    Science.gov (United States)

    Yu, Xiaoqiang; Zhu, Minggang; Liu, Weiqiang; Li, Yanfeng; Zhang, Jiuxing; Yue, Ming; Li, Wei

    2018-01-01

    The Nd-substituted (Nd x MM1- x )-Fe-B strip-casting flakes were prepared by induction melting in the vacuum furnace and then subsequently by strip-casting technology. The microstructure and magnetic properties of (Nd x MM1- x )-Fe-B alloys are related to the Nd substitution. 2:14:1 main phases and minor impure phases coexist in the MM-Fe-B flake. For example, La2O3 and CeFe2 impure phases are obviously detected in the x = 0 specimen. As an increase of the Ce concentration is inversely accompanied with the decrease of the Nd content ( x) in (Nd x MM1- x )2Fe14B main phases (0 ≤ x ≤ 1), XRD analysis shows that the overall diffraction peaks of the main phases shift to right domestically because of smaller radius Ce4+. The melting point, spin reorientation phase transition temperature, Curie temperature, magneto-crystalline anisotropy field (at 300 K), and the magnetization ( M 9T) for MM-Fe-B/(Nd0.4MM0.6)-Fe-B/(Nd0.7MM0.3)-Fe-B/Nd-Fe-B strip-casting alloys are 1376.15/1414.15/1439.15/1458.15 K, 74/113/124/135 K, 493.2/538.4/559.7/582.3 K, 48/55.2/64.4/70.1 kOe and 136.5/143.7/151.5/153.7 emu/g, respectively. Due to the varied composition of hard magnetic main phases, M 9T increases gradually with the increase of Nd content ( x). SEM observation and EDX results demonstrate that more Nd and Pr elements aggregate into the 2:14:1 ferromagnetic phase, while less La and Ce elements are prone to the RE-rich region compared with the nominal ratio. As a result, the growth of M 9T becomes extraordinary under maximum external field 9 T, indicating that the (Nd0.7MM0.3)-Fe-B flake may display relatively good magnetic properties and those with higher Nd content have evident effect on magnetization, compositions, and microstructures of hard magnetic main phases. Therefore, practical application of (Nd x MM1- x )-Fe-B-sintered magnets will be very prospective.

  17. Abstracts: 2nd interventional MRI symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-09-01

    Main topics of the 2nd interventional MRI symposium were: MR compatibility and pulse sequences; MR thermometry, biopsy, musculoskeletal system; laser-induced interstitial thermotherapy, radiofrequency ablations; intraoperative MR; vascular applications, breast, endoscopy; focused ultrasound, cryotherapy, perspectives; poster session with 34 posters described. (AJ)

  18. Abstracts: 2nd interventional MRI symposium

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Main topics of the 2nd interventional MRI symposium were: MR compatibility and pulse sequences; MR thermometry, biopsy, musculoskeletal system; laser-induced interstitial thermotherapy, radiofrequency ablations; intraoperative MR; vascular applications, breast, endoscopy; focused ultrasound, cryotherapy, perspectives; poster session with 34 posters described. (AJ)

  19. High Precision 142Nd/144Nd and 143Nd/144Nd Isotope Ratio Measurements in Rock Samples

    Science.gov (United States)

    Ali, A.; Srinivasan, G.

    2009-05-01

    The long-lived 147Sm-143Nd system with a half-life (T1/2) of 106 Gyr is generally used for geochronology. The short-lived 146Sm-142Nd system (T1/2= 103 Myr) is used as a geological tracer to track early (˜500 Ma) silicate differentiation [1] events in different planetary bodies. The isotope composition measurements by thermal ionization mass spectrometry (TIMS) require purification of Nd using chemical separation methods. This is important as an impure sample will give both a very poor ion yield and cause beam instability in the mass spectrometer, potentially resulting in a poor analysis [2]. The separation of Nd for 143Nd isotope measurement is, fairly straightforward because there is no isobaric interference of any other REE. While 142Nd isotope analysis needs chemically separated Nd fraction to be ˜100% Ce-free as latter is composed of a substantial amount of 142Ce isotope. A 4-steps technique, modified from Caro et al., [3], for the separation of Nd is established at the Cosmochemistry Laboratory of University of Toronto, Canada and applied to the measurement of Nd isotope ratios in geological reference sample BCR-2 (USGS, Columbia River basalt) using TIMS. Results of the isotopic ratios obtained for BCR-2 are in good agreement with published values [e.g., 4]. Analytical work on the samples discovered as the oldest rocks on Earth [5] from Nuvvuagittuq greenstone belt in Québec, Canada and various meteorites is in progress. An account of the procedures involved is briefly described here. All working solutions and acids were prepared using >18.2 MΩ.cm-1 H2O from a Milli-Q water system. Experiments were performed under Class 100 clean work bench with acid-cleaned apparatus and plastic-ware. The whole rock powders were weighed (20-30 mg) and dissolved in a mixture of HF and HNO3 using PFA vials and heated at 110°C. Further decomposition was done in Teflon bomb in the oven at 205°C. Later on contents of the Teflon bomb were transferred to vials and fluorides

  20. Temporal feature of X-ray laser plasma observed from 3ω0/2, 2ω0 harmonic emission

    International Nuclear Information System (INIS)

    Li Wenhong; Mei Qiyong; Zhao Xuewei; Chen Yuting; Chunyu Shutai

    1995-01-01

    Temporal feature of X-ray laser plasma density was observed from 3ω 0 /2, 2ω 0 harmonic emission in the experiments. The temporal feature of 3ω 0 /2 harmonic emission of the germanium film is much different from that of the slab germanium target. The production of x-ray laser is closely related to 3ω 0 /2 harmonic emission in the slab germanium targets

  1. Electronic polarizability, optical basicity and interaction parameter for Nd{sub 2}O{sub 3} doped lithium-zinc-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Algradee, M.A.; Sultan, M.; Samir, O.M.; Alwany, A.E.B. [Ibb University, Department of Physics, Faculty of Science, Ibb (Yemen)

    2017-08-15

    The Nd{sup 3+}-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd{sub 2}O{sub 3} content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system. (orig.)

  2. High-harmonic homodyne detection of the ultrafast dissociation of Br2 molecules.

    Science.gov (United States)

    Wörner, H J; Bertrand, J B; Corkum, P B; Villeneuve, D M

    2010-09-03

    We report the time-resolved observation of the photodissociation of Br2 using high-harmonic generation (HHG) as a probe. The simultaneous measurement of the high-harmonic and ion yields shows that high harmonics generated by the electronically excited state interfere with harmonics generated by the ground state. The resulting homodyne effect provides a high sensitivity to the excited state dynamics. We present a simple theoretical model that accounts for the main observations. Our experiment paves the way towards the dynamic imaging of molecules using HHG.

  3. Synthesis and characterization of Na(Gd0.5Lu0.5)F4: Nd3+,a core-shell free multifunctional contrast agent.

    Science.gov (United States)

    Mimun, L Christopher; Ajithkumar, G; Rightsell, Chris; Langloss, Brian W; Therien, Michael J; Sardar, Dhiraj K

    2017-02-25

    Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm 2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 shows the characteristic emission bands of Gd 3+ and Nd 3+ with the strongest emission peak at 1064 nm due to Nd 3+ . Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.

  4. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Dun-Lu; ZHANG Qing-Li; XIAO Jing-Zhong; LUO Jian-Qiao; JIANG Hai-He; YIN Shao-Tang

    2008-01-01

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+ : Y3Al5O12 (Nd:YAG) and Yb3+ :Y3Al5O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is eontributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb: YA G crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.

  5. Intense multimicrojoule high-order harmonics generated from neutral atoms of In2O3 nanoparticles

    International Nuclear Information System (INIS)

    Elouga Bom, L. B.; Abdul-Hadi, J.; Vidal, F.; Ozaki, T.; Ganeev, R. A.

    2009-01-01

    We studied high-order harmonic generation from plasma that contains an abundance of indium oxide nanoparticles. We found that harmonics from nanoparticle-containing plasma are considerably more intense than from plasma produced on the In 2 O 3 bulk target, with high-order harmonic energy ranging from 6 μJ (for the ninth harmonic) to 1 μJ (for the 17th harmonic) in the former case. The harmonic cutoff from nanoparticles was at the 21st order, which is lower than that observed using indium oxide solid target. By comparing the harmonic spectra obtained from solid and nanoparticle indium oxide targets, we concluded that intense harmonics in the latter case are dominantly generated from neutral atoms of the In 2 O 3 nanoparticles

  6. The role of dysprosium on the structural and magnetic properties of (Nd_1_−_xDy_x)_2Fe_1_4B nanoparticles

    International Nuclear Information System (INIS)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-01-01

    In current work, Nd2Fe14B nanoparticles was synthesized by sol-gel method. Dysprosium powders were added into Nd2Fe14B nanoparticles by mechanical alloying process in order to enhancement of coercivity. The phase analysis, structure, and magnetic properties of annealed (Nd_1_−_xDy_x)_2Fe_1_4B nanoparticles with different Dy-content (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were investigated by employing X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, field emission scanning electron microscope, transmission electron microscope and vibrating sample magnetometer techniques. The results showed that with an increase in Dy amounts, the coercivity of particles increased from 2.9 kOe to 13.4 kOe and then decreased to 5.6 kOe. By adding an optimum amount of Dy (x=0.4), the coercivity was significantly increased from 2.9 kOe to 13.4 kOe. The average particle size of annealed (Nd_1_−_xDy_x)_2Fe_1_4B nanoparticles was below 10 nm. Magnetization reversal studies indicate that the coercivity of milled and annealed (Nd_1_−_xDy_x)_2Fe_1_4B nanoparticles is controlled by the nucleation of reversed magnetic domains. The experimental results in the angular dependence of coercivity for (Nd_1_−_xDy_x)_2Fe_1_4B permanent magnets showed that the normalized coercivity of the permanent magnets H_c(θ)/H_c(0) increases from 1 to about 1.2–1.5 with increasing θ from 0 to about π/3, for x=0.4–0.6. - Highlights: • Dy was added to Nd_2Fe_1_4B nanoparticles to improve the coercivity. • A maximum squareness ratio of 0.99 was obtained. • The average particle size decreased with an increase in Dy-content.

  7. Microwave second-harmonic response of ceramic MgB2 samples

    International Nuclear Information System (INIS)

    Agliolo Gallitto, A.; Bonsignore, G.; Li Vigni, M.

    2005-01-01

    Nonlinear microwave response of different ceramic MgB 2 samples has been investigated by the technique of second-harmonic emission. The second-harmonic signal has been investigated as a function of temperature, DC magnetic field and input microwave power. The attention has mainly been devoted to the response at low magnetic fields, where nonlinear processes arising from motion of Abrikosov fluxons are ineffective. The results show that different mechanisms are responsible for the nonlinear response in the different ranges of temperature. At low temperatures, the nonlinear response is due to processes involving weak links. At temperatures close to T c , a further contribution to the harmonic emission is present; it can be ascribed to modulation of the order parameter by the microwave field and gives rise to a peak in the temperature dependence of the harmonic signal

  8. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    Science.gov (United States)

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  9. Measurement and Evaluation of the Activation Resonance Integral of 146Nd, 148Nd and 150Nd

    International Nuclear Information System (INIS)

    Ricabarra, M. D.; Turjanski, R.; Ricabarra, G. H.

    2012-01-01

    Values of the ratio of the reduced activation resonance integral to the thermal cross section, I'/σ 0 of 146 Nd, 148 Nd and 150 Nd were determined relative to gold by measuring cadmium ratios. A lithium-drifted germanium gamma ray spectrometer was used to resolve the activities of the irradiated samples. The results are for 146 Nd I'/σ 0 = 1.42±0.1 0 and with an assumed σ 0 = 1.4 barn, I' = 1 .99±0.20; for 148 Nd I'/ σ 0 = 4.22±0.1 4 and with an assumed σ 0 = 2.5 barn, I' = 10.5±0. 9 barn, and for 150 Nd I'/σ 0 = 13.7±0. 8 and with an assumed σ 0 = 1.2 barn, I' = 16.4±2.8. The resolved and unresolved epithermal integrals of 146 Nd, 148 Nd and 150 Nd were calculated. Values of the spectral correction factor were also calculated, so the resonance integral could be obtained from the epithermal integral data measured in our reactor spectrum in this experiment. Epithermal integral and spectral correction factors are listed in the text. The most important result of this investigation is that the 148 Nd activation reduced resonance integral is about half of the previously recommended value and consequently the radiative width for 148 Nd is also about half of the previously accepted value. (author)

  10. File list: His.Lar.10.AllAg.2nd_instar [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.10.AllAg.2nd_instar dm3 Histone Larvae 2nd instar SRX013087,SRX013015,SRX01...3112,SRX013042,SRX013043,SRX013096 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.10.AllAg.2nd_instar.bed ...

  11. File list: His.Lar.05.AllAg.2nd_instar [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.05.AllAg.2nd_instar dm3 Histone Larvae 2nd instar SRX013087,SRX013096,SRX01...3043,SRX013015,SRX013112,SRX013042 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.05.AllAg.2nd_instar.bed ...

  12. File list: His.Lar.50.AllAg.2nd_instar [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.50.AllAg.2nd_instar dm3 Histone Larvae 2nd instar SRX013015,SRX013042,SRX01...3112,SRX013043,SRX013087,SRX013096 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.50.AllAg.2nd_instar.bed ...

  13. File list: His.Lar.20.AllAg.2nd_instar [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.20.AllAg.2nd_instar dm3 Histone Larvae 2nd instar SRX013015,SRX013042,SRX01...3112,SRX013043,SRX013096,SRX013087 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.20.AllAg.2nd_instar.bed ...

  14. Generation of more than 300 mW diffraction-limited light at 405 nm by second-harmonic generation of a tapered diode laser with external cavity feedback

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Holm, J.; Sumpf, B.

    2007-01-01

    We have constructed a blue laser source consisting of a single-frequency tapered diode laser with external cavity feedback that is frequency doubled by a quasi-phase matched KTP (PPKTP) in a bowtie ring cavity and extract more than 360 mW of power at 405 nm. The conversion efficiency from...... fundamental laser power to second harmonic power is 35 %, while it is 64 % from coupled fundamental power to extracted blue light. Thermal effects and gray tracking set an upper limit on the amount of generated blue light....

  15. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng; Poudyal, Narayan; Rong, Chuanbing; Zhang, Ying; Kramer, Matthew J.; Liu, J. Ping

    2012-05-11

    Nanoscalehybridmagnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel “in-one-pot” processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybridmagnets have greatly improved thermal stability compared to the Nd2Fe14B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo5 counterpart.

  16. Near-field second-harmonic generation from gold nanoellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Celebrano, M; Zavelani-Rossi, M; Polli, D; Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P; Finazzi, M; Duo, L [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M; Allegrini, M [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J; Adam, P M; Royer, P [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)

    2008-07-01

    Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Coherent control of third-harmonic-generation by a waveform-controlled two-colour laser field

    International Nuclear Information System (INIS)

    Chen, W-J; Chen, W-F; Pan, C-L; Lin, R-Y; Lee, C-K

    2013-01-01

    We investigate generation of the third harmonic (TH; λ = 355 nm) signal by two-colour excitation (λ = 1064 nm and its second harmonic, λ = 532 nm) in argon gas, with emphasis on the influence of relative phases and intensities of the two-colour pump on the third-order nonlinear frequency conversion process. Perturbative nonlinear optics predicts that the TH signal will oscillate periodically with the relative phases of the two-colour driving laser fields due to the interference of TH signals from a direct third-harmonic-generation (THG) channel and a four-wave mixing (FWM) channel. For the first time, we show unequivocal experimental evidence of this effect. A modulation level as high as 0.35 is achieved by waveform control of the two-colour laser field. The modulation also offers a promising way to retrieve the relative phase value of the two-colour laser field. (letter)

  18. Hypopigmentation Induced by Frequent Low-Fluence, Large-Spot-Size QS Nd:YAG Laser Treatments.

    Science.gov (United States)

    Wong, Yisheng; Lee, Siong See Joyce; Goh, Chee Leok

    2015-12-01

    The Q-switched 1064-nm neodymium-doped yttrium aluminum garnet (QS 1064-nm Nd:YAG) laser is increasingly used for nonablative skin rejuvenation or "laser toning" for melasma. Multiple and frequent low-fluence, large-spot-size treatments are used to achieve laser toning, and these treatments are associated with the development of macular hypopigmentation as a complication. We present a case series of three patients who developed guttate hypomelanotic macules on the face after receiving laser toning treatment with QS 1064-nm Nd:YAG.

  19. Regridded Harmonized World Soil Database v1.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set describes select global soil parameters from the Harmonized World Soil Database (HWSD) v1.2, including additional calculated parameters such as area...

  20. Quasi-continuously pumped operation of 2.4% doped crystalline Nd:YAG in a bounce geometry

    Science.gov (United States)

    Kubeček, Václav; Jelínek, Michal; Čech, Miroslav; Hiršl, Petr

    2009-02-01

    We report on efficient operation of highly doped 2.4 at. % crystalline Czochralski grown Nd:YAG at 1.06μm, 1.3μm and 1.4μm in a diode pumped bounce amplifier configuration under quasi-continuous pumping. At wavelength of 1064nm the linearly polarized pulses with energy of 16.8 mJ in free running regime with repetition rate of 10 Hz (optical to optical efficiency of 44.6 % and slope efficiency of 50%) and 1 mJ in passively Q-switched regime with pulse duration of 6.4 ns were generated.The passively Q switched operation at 1.3μm was also demonstrated.

  1. High order harmonic generation from plasma mirrors

    International Nuclear Information System (INIS)

    George, H.

    2010-01-01

    When an intense laser beam is focused on a solid target, the target's surface is rapidly ionized and forms dense plasma that reflects the incident field. For laser intensities above few 10 to the power of 15 Wcm -2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as 10 -18 s), can be generated upon this reflection. In this thesis, we developed numerical tools to reveal original aspects of harmonic generation mechanisms in three different interaction regime: the coherent wake emission, the relativistic emission and the resonant absorption. In particular, we established the role of these mechanisms when the target is a very thin foil (thickness of the order of 100 nm). Then we study experimentally the spectral, spatial and coherence properties of the emitted light. We illustrate how to exploit these measurements to get information on the plasma mirror dynamics on the femtosecond and atto-second time scales. Last, we propose a technique for the single-shot complete characterization of the temporal structure of the harmonic light emission from the laser-plasma mirror interaction. (author)

  2. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  3. The Harmonically Coupled 2-Beam FEL

    CERN Document Server

    McNeil, Brian W J

    2004-01-01

    A 1-D model of a 2-beam Free Electron Laser amplifier is presented. The two co-propagating electron beams have different energies, chosen so that the fundamental resonant FEL interaction of the higher energy beam is at an harmonic of the lower energy beam. In this way, a coupling between the FEL interactions of the two beams occurs via the harmonic components of the electron bunching and radiation emission of the lower energy interaction. Such resonantly coupled FEL interactions may offer potential benefits over existing single beam FEL schemes. A simple example is presented where the lower energy FEL interaction only is seeded with radiation at its fundamental resonant wavelength. It is predicted that the coherence properties of this seed field are transfered via the resonantly coupled FEL interaction to the un-seeded higher energy FEL interaction, thereby improving its coherence properties over that of a SASE interaction alone. This method may offer an alternative seeding scheme for FELs operating in the XU...

  4. Observation of mesoscopic structure in NdBa sub 2 Cu sub 3 O sub 7 sub - subdelta by small-angle neutron scattering

    CERN Document Server

    Miyata, S; Suzuki, J I; Kuroda, K; Koshizuka, N

    2003-01-01

    In order to clarify the origin of the high critical current density (J sub c) of NdBa sub 2 Cu sub 3 O sub 7 sub - subdelta (Nd123), we investigated the inhomogeneities in this material by small-angle neutron scattering (SANS) experiments. As a result of numerical calculations, it was found that the anisotropic scattering patterns and radial intensity profiles can be explained by the existence of elliptic cylindrical objects of which the cylindrical axis is parallel to the crystallographic c-axis. Long and short elliptic axis lengths and the height of the elliptic cylinders in the high-J sub c sample are about 400, 200 and 100 nm, and those of the low-J sub c sample are about 200, 100 and 50 nm. Since these two samples have been heat-treated in different manners, it is suggested that sizes of the elliptic cylinders are affected by the heat treatments and this change in scale, as a result, increases or decreases the J sub c characteristics of the samples. (author)

  5. Structural and luminescence properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+} phosphor thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wako, A.H., E-mail: wakoah@ufs.ac.za [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B. [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA-9300 (South Africa)

    2016-01-01

    Thin films of Eu{sup 2+} doped and Dy{sup 3+},Nd{sup 3+} co-doped Strontium Aluminate (SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+}) phosphors were grown on Si(100) substrates by a pulsed laser deposition (PLD) technique using a 266 nm Nd:YAG pulsed laser under varying substrate temperature and the working atmosphere during the film deposition process. The effect of substrate temperatures and argon partial pressure on the structure and luminescence properties of the as-deposited SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+} phosphor thin films were analysed. XRD patterns showed that with increasing substrate temperature and argon partial pressure the peaks in the direction (220) shifted to the lower 2-theta angles. Photoluminescence (PL) data collected in air at room temperature revealed a slight shift in the peak wavelength of the PL spectra observed from the thin films when compared to the PL spectra of the phosphor in powder form, which is probably due to a change in the crystal field. The PL intensity of the samples was highest for 100 °C substrate temperature and 20 mTorr argon partial pressure. Due to this, the effect of argon partial pressure was studied at a constant substrate temperature of 100 °C while the effect of Substrate temperatures recorded at 20 mTorr argon pressure respectively.

  6. File list: ALL.Lar.05.AllAg.2nd_instar [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.05.AllAg.2nd_instar dm3 All antigens Larvae 2nd instar SRX013087,SRX013096,...SRX013043,SRX013015,SRX013112,SRX013042,SRX013113,SRX013016,SRX013114 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.05.AllAg.2nd_instar.bed ...

  7. File list: ALL.Lar.50.AllAg.2nd_instar [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.50.AllAg.2nd_instar dm3 All antigens Larvae 2nd instar SRX013015,SRX013042,...SRX013112,SRX013016,SRX013114,SRX013043,SRX013087,SRX013096,SRX013113 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.50.AllAg.2nd_instar.bed ...

  8. File list: ALL.Lar.20.AllAg.2nd_instar [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.20.AllAg.2nd_instar dm3 All antigens Larvae 2nd instar SRX013015,SRX013042,...SRX013112,SRX013043,SRX013016,SRX013114,SRX013096,SRX013087,SRX013113 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.20.AllAg.2nd_instar.bed ...

  9. Second harmonic generation of frequency-locked pulsed dye laser for selective photoionization of T1-203 isotope

    International Nuclear Information System (INIS)

    Lim, Gwon; Jeong, Do Young; Ko, Kwang Hoon; Kim, Jae Woo; Kim, Taek Soo; Rho, Sipyo; Kim, Cheol Jung

    2003-01-01

    We have constructed the frequency-locked pulsed dye laser system. It is composed with a GIM-type oscillator and 3 stage longitudinally pumped amplifiers. The pump laser is the second harmonic of pulse Nd:YAG laser at the repetition rate of 6 kHz. Frequency-locking of dye laser oscillator is actively controlled by the feedback loop between a photoionization signal of T1-203 isotope and a wavelength tuning control. The tuning mirror rotates the order of micro degree per a step of step motor. Feedback system for frequency locking is operated with a PC-based control interface, including the data analysis of photoionization signals and the wavelength control using step pumping method for a medical application. Therefor, the dye laser has to be locked at 583.66 nm for SHG or BBO crystal. With the frequency-locking system, the photoionization experiment has been done for more than 10 hours.

  10. Magnetic and Structural Properties of the Mechanically Alloyed Nd2(Fe100-xNbx)14B System

    International Nuclear Information System (INIS)

    Lozano, D. Oyola; Zamora, L. E.; Perez Alcazar, G. A.; Rojas, Y. A.; Bustos, H.; Greneche, J. M.

    2005-01-01

    In this work we report the magnetic and structural properties obtained by Moessbauer spectrometry, Vibrating Sample Magnetometer and X-ray diffraction of milled powders with initial composition Nd 2 (Fe 100-x Nb x ) 14 B with x = 0 and x = 4. The mixtures were ball milled for different times up to 240 h. Structural and microstructural parameters were derived from high statistics X-ray patterns and discussed as a function of milling time. The Moessbauer spectra of the samples were fitted by means of a sextet and an hyperfine field distribution, associated to a pure iron phase (α-Fe) and a disordered iron-based phase, respectively. The α-Fe grain size decreases from 50 nm for 6 h up to 5 nm for 240 h milling time. The Vibrating Sample Magnetometer results allow to conclude that these samples behave as soft ferromagnets.

  11. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    International Nuclear Information System (INIS)

    Eich, S.; Stange, A.; Carr, A.V.; Urbancic, J.; Popmintchev, T.; Wiesenmayer, M.; Jansen, K.; Ruffing, A.; Jakobs, S.; Rohwer, T.; Hellmann, S.; Chen, C.; Matyba, P.; Kipp, L.; Rossnagel, K.; Bauer, M.; Murnane, M.M.; Kapteyn, H.C.; Mathias, S.; Aeschlimann, M.

    2014-01-01

    Highlights: • We present a scheme to generate high intensity XUV pulses from HHG with variable time-bandwidth product. • Shorter-wavelength driven high-harmonic XUV trARPES provides higher photon flux and increased energy resolution. • High-quality high-harmonic XUV trARPES data with sub 150 meV energy and sub 30 fs time resolution is presented. - Abstract: Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to <150 meV while preserving excellent time resolution of about 30 fs

  12. Structure of comorbid psychopathological disorders in patients with type 2nd diabetes mellitus

    Directory of Open Access Journals (Sweden)

    V. V. Chugunov

    2017-04-01

    Full Text Available Aim: to identify and explore the structure of comorbid psychopathological disorders in patients with type 2nd diabetes mellitus (DM. Materials and methods: 543 patients with type 2nd DM were included into the study. The average age of patients was (56.2 ± 0.65 years. The patients were divided into three groups according to the severity of DM. The first clinical group (CG-1 included 57 patients with type 2nd DM of mild severity, who was treated in outpatient department; the average age in the group was (51.8 ± 1.28 years. The second clinical group (CG-2 made up of 312 patients with type 2nd DM, moderate severity, they were in inpatient department; the median age of the group was (55.1 ± 1.12 years. The third clinical group (CG-3 included 174 patients with type 2nd DM, severe degrees of severity, they undergone inpatient treatment too; average age in the group was (61.8 ± 0.85 years. Research methods: clinical-anamnesis, clinical- psychopathological, statistical. Research results. The study established the incidence of non-psychotic mental disorders of varying severity in patients with type 2nd DM at the level of 94.11 %, among them, for 91.16 % – of psychogenic origin. Proportional correlation between the severity of type 2nd DM and the absence of comorbid psychopathological manifestations was detected (rs = -0.3416, p < 0.01. It is revealed that the dominant psychopathological syndromes among all patients with type 2nd DM were psychoorganic (62.43 %, dyssomnia (60.86 %, asthenic (55.58 % and anxiety (43.05 % syndromes. Structure of the dominant psychopathological syndromes was established depending on severity of type 2nd DM: in CG-1 dominated dyssomnia (36.84 %, anxiety (31.58 %, psychoorganic (21.05 % syndromes; in CG-2 – psychoorganic (65.38 %, asthenic (40.38 %, dyssomnia (38.46 %, anxiety (37, and 82 % syndromes; in CG-3 – dyssomnia (97.70 %, asthenic (89.08 %, organic mental (70.69 %, anxious 48.28 % syndromes. Significant

  13. Harmonic supergraphs

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    This paper completes a descrption of the quantization procedure in the harmonic superspace approach. The Feynman rules for N=2 matter and Yang-Mills theories are derived and the various examples of harmonic supergraph calculations are given. Calculations appear to be not more difficult than those in the N=1 case. The integration over harmonic variables does not lead to any troubles, a non-locality in these disappears on-shell. The important property is that the quantum corrections are always writen as integrals over the full harmonic superspace even though the initial action is an integral over the analytic subspace. As a by-product our results imply a very simple proof of finiteness of a wide class of the N=4, d=2 non-linear Σ-models. The most general self-couplings of hypermultiplets including those with broken SU(2) are considered.The duality relations among the N=2 linear multiplet and both kinds of hypermultiplet are established

  14. The effect of excitation intensity variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast z-scan spectroscopy

    Science.gov (United States)

    Moreira, L.; Falci, R. F.; Darabian, H.; Anjos, V.; Bell, M. J. V.; Kassab, L. R. P.; Bordon, C. D. S.; Doualan, J. L.; Camy, P.; Moncorgé, R.

    2018-05-01

    The research on Nd3+ doped new solid-state laser hosts with specific thermo-mechanical and optical properties is very active. Nd3+ doped tellurite glasses are suitable for these applications. They have high linear and nonlinear refraction index, wide transmittance range. The TeO2-ZnO (TZO) glass considered in the present work combines all those features and the nonlinear optical properties can be used for the development of Kerr-lens mode-locked sub picosecond lasers. Recently the laser performance of Nd3+ doped TZO glass and was reported and laser slope efficiency of 21% was observed. We investigate how the intensity variation and the silver nanoparticles codoping affects the nonlinear optical properties of Nd3+ doped TZO glasses. Intensity dependent nonlinear refraction indices coefficients at 750, 800 and 850 nm were observed. The nonlinear optical features were obtained through ultrafast single beam z-scan technique with excitations at 750, 800 and 850 nm and are up to two orders of magnitude higher than those reported in the literature.

  15. Spectroscopic and laser investigations of Nd3+ and Yb3+ in rare-earth oxyborates

    International Nuclear Information System (INIS)

    Lupei, A.; Lupei, V.; Gheorghe, L.; Aka, G.; Vivien, D.; Antic- Fidancev, E.

    2002-01-01

    minority sites in these crystals as due to non-stoichiometric or inversion charge defects of the type RE 3+ -> 2+ or RE 3+ in Ca 2+ sites were proposed and their effects in emission investigated. Extended energy level schemes for Yb 3+ and Nd 3+ prevailing (in RE 3+ sites) and minority centers in GdCOB and YCOB were determined. A theoretical parametric crystal field calculation was performed for Nd 3+ by varying free ion and crystal field parameters. A characteristic of the crystal field parameters is the large value of the second order parameters that leads to a strong splitting of metastable 4 F 3/2 Nd 3+ level (∼190 cm -1 ) that leads to a parasitic effect for Nd 3+ in GdCOB, i. e. the shift of the laser emission from 1.06 mm to 1.09 mm at high pumping. The spectroscopic bases for the improvement of the laser emission parameters in fundamental and self-doubling regime of Nd 3+ : GdCOB and the reduction of heat generation were investigated. The analysis of spectral data shows that the laser emission parameters of Nd 3+ in GdCOB at 1.06 mm can be improved by direct pumping in the emitting level in the band 4 I 9/2 (Z 2 )→ 4 F 3/2 (R 1 ) at 887 nm, instead of using the usual diode pumping in the line 4 I 9/2 (Z 1 )→ 4 F 5/2 (S 1 ) at 811 nm. Experimental investigations confirmed this idea and for fundamental emission at 1.06 mm the slope efficiency increased from ∼ 0.46 to ∼ 0.61 while the threshold decreased from ∼ 115 mW to ∼ 75 mW. The parasitic change of emission wavelength at high powers did not show. These improvements are amplified in self-doubling emission. The emission characteristics under direct pump 887 nm as compared to the conventional pump 811 nm are evidently improved. Thus at 600 mW absorbed power the emitted power in green was 2.16 larger than with conventional pumping. (authors)

  16. Background harmonic superfields in N=2 supergravity

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1998-01-01

    A modification of the harmonic superfield formalism in D=4, N=2 supergravity using a subsidiary condition of covariance under the background supersymmetry with a central charge (B-covariance) is considered. Conservation of analyticity together with the B-covariance leads to the appearance of linear gravitational superfields. Analytic prepotentials arise in a decomposition of the background linear superfields in terms of spinor coordinates and transform in a nonstandard way under the background supersymmetry. The linear gravitational superfields can be written via spinor derivatives of nonanalytic spinor prepotentials. The perturbative expansion of supergravity action in terms of the B-covariant superfields and the corresponding version of the differential-geometric formalism are considered. We discuss the dual harmonic representation of the linearized extended supergravity, which corresponds to the dynamical condition of Grassmann analyticity

  17. Thermoluminescent characteristics of ZrO2:Nd films

    International Nuclear Information System (INIS)

    Vera B, G.; Rivera M, T.; Azorin N, J.; Falcony G, C.; Garcia H, M.; Martinez S, E.

    2002-01-01

    In this work it is exposed the obtained results after analysing the photo luminescent and thermoluminescent characteristics of activated zirconium oxide with neodymium (ZrO 2 :Nd) and its possible application in the UV radiation dosimetry. The realized experiments had as objective to study the characteristics such as the optimum thermal erased treatment, the influence of light on the response, the response depending on the wavelength, the fadeout of the information, the temperature effect, the response depending on the time and the recurring of the response. The results show that the ZrO 2 :Nd is a promising material to be used as Tl dosemeter for the UV radiation. (Author)

  18. 1.083 μm laser operation in Nd,Mg:LiTaO3 crystal

    Science.gov (United States)

    Hu, P. C.; Hang, Y.; Li, R.; Gong, J.; Yin, J. G.; Zhao, C. C.; He, X. M.; Yu, T.; Zhang, L. H.; Chen, W. B.; Zhu, Y. Y.

    2011-10-01

    Nd,Mg:LiTaO3 single crystal with high optical quality was grown by Czochralski technique. Absorption and fluorescence spectra were investigated. The peak absorption cross section at 806.5 nm and peak emission cross section at 1091 nm are 6.81×10-20 and 3.28×10-20 cm2, respectively. The fluorescence lifetime was measured to be 129 μs. With a laser-diode as the pump source, a maximum 375 mW continuous-wave laser output at 1083 nm has been obtained with a slope efficiency of 7.2% with respect to the pump power.

  19. 1.083 μm laser operation in Nd,Mg:LiTaO3 crystal

    International Nuclear Information System (INIS)

    Hu, P C; Hang, Y; Li, R; Gong, J; Yin, J G; Zhao, C C; He, X M; Yu, T; Zhang, L H; Chen, W B; Zhu, Y Y

    2011-01-01

    Nd,Mg:LiTaO 3 single crystal with high optical quality was grown by Czochralski technique. Absorption and fluorescence spectra were investigated. The peak absorption cross section at 806.5 nm and peak emission cross section at 1091 nm are 6.81×10 -20 and 3.28×10 -20 cm 2 , respectively. The fluorescence lifetime was measured to be 129 μs. With a laser-diode as the pump source, a maximum 375 mW continuous-wave laser output at 1083 nm has been obtained with a slope efficiency of 7.2% with respect to the pump power

  20. NIR emitting K2SrCl4:Eu2+, Nd3+ phosphor as a spectral converter for CIGS solar cell

    Science.gov (United States)

    Tawalare, P. K.; Bhatkar, V. B.; Omanwar, S. K.; Moharil, S. V.

    2018-05-01

    Intense near-infrared emitting phosphor K2SrCl4:Eu2+,Nd3+ with various concentrations of Nd3+ were synthesized. These are characterized with X-ray diffraction, reflectance, photoluminescence emission and photoluminescence excitation spectroscopy, PL lifetime measurements. The emission can be excited by a broad band in near ultra violet region as a consequence of Eu2+→Nd3+ energy transfer. The efficiency of Eu2+→Nd3+ energy transfer is as high as 95%. Fluorescence decay curves for Eu2+ doped samples are almost exponential and described by τ = 500 ns. Eu2+ lifetimes are shortened after Nd3+ doping. Near infrared Emission intensity is limited by Nd3+→Nd3+ energy transfer and the consequent concentration quenching. Nd3+ emission matches well with the spectral response of CIGS and CIS solar cells. Absorption of near ultra violet radiations followed by conversion to near infrared indicates the potential application in solar photovoltaics.

  1. Thermal, defects, mechanical and spectral properties of Nd-doped GdNbO{sub 4} laser crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Wang, Xiaofei; Sun, Guihua; Li, Xiuli; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-05-15

    A Nd-doped GdNbO{sub 4} crystal was grown successfully by Czochralski method. Its monoclinic structure was determined by X-ray diffraction; the unit-cell parameters are a = 5.38 Aa, b = 11.09 Aa, c = 5.11 Aa, and β = 94.56 . The morphological defects of Nd:GdNbO{sub 4} crystal were investigated using the chemical etching with the phosphoric acid etchant. For a new crystal, the physical properties are of great importance. The hardness and density of Nd:GdNbO{sub 4} were investigated first. Thermal properties of Nd:GdNbO{sub 4}, including thermal expansion coefficient and specific heat, were measured along a-, b-, and c-crystalline axes. Thermal properties indicate that the Nd:GdNbO{sub 4} pumped along c-axis can reduce the thermal lensing effect effectively. The specific heat is 0.53 J g{sup -1} K{sup -1} at 300 K, indicating a relatively high damage threshold of Nd:GdNbO{sub 4}. The transmission and emission spectrum of Nd:GdNbO{sub 4} were measured, and the absorption peaks were assigned. The strongest emission peak of Nd:GdNbO{sub 4} is located at 1065.3 nm in the spectral range of 850-1420 nm excited by 808 nm laser. The refractive index of Nd:GdNbO{sub 4} was calculated with the transmission spectrum and fitted with Sellmeier equation. All these obtained results is of great significance for the further research of Nd:GdNbO{sub 4}. (orig.)

  2. Synthesis, structure and properties of layered iron-oxychalcogenides Nd2Fe2Se2−xSxO3

    International Nuclear Information System (INIS)

    Liu, Y.; Zhang, S.B.; Tan, S.G.; Yuan, B.; Kan, X.C.; Zu, L.; Sun, Y.P.

    2015-01-01

    A new series of sulfur-substituted iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 (0≤x≤0.4) was synthesized by solid state reaction method, and investigated by structure, transport, magnetic and specific heat measurements. The compounds crystallize in the layered tetragonal structure with I4/mmm space group, and show semiconducting behavior. The large discrepancy between the activation energies for conductivity, E ρ (152–202 meV), and thermopower, E S (15.6–39.8 meV), indicates the polaronic transport mechanism of the carrier. The parent compound Nd 2 Fe 2 Se 2 O 3 exhibits a frustrated antiferromagnetic (AFM) ground state, and the S-substitution induces an enhanced ferromagnetic (FM) component and possible increased degree of frustration. - Graphical abstract: The crystal structure of Nd 2 Nd 2 Fe 2 Se 2−x S x O 3 is built up by stacking fluorite-like Nd 2 O 2 layers and anti-CuO 2 -type Fe 2 O(Se/S) 2 layers with Fe 2+ cations coordinated by two in-plane O 2- and four Se 2- above and below the square Fe 2 O plane. - Highlights: • We have synthesized a new series of layered iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 . • They crystallize in layered tetragonal structure and show semiconducting behavior. • The transport analysis indicates the polaronic transport mechanism of the carrier. • The parent compound shows a frustrated antiferromagnetic (AFM) ground state. • The S-substitution induces an enhanced ferromagnetic (FM) component

  3. Near-infrared photoluminescence in La0.98AlO3: 0.02Ln3+(Ln = Nd/Yb) for sensitization of c-Si solar cells

    Science.gov (United States)

    Sawala, N. S.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The host matrix LaAlO3 was synthesized by conventional solid state reaction method in which the Nd3+ ions and Yb3+ ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd3+ ion doped LaAlO3 converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb3+ ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La0.98AlO3: 0.02Ln3+(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.

  4. Texturing for bulk α-Fe/Nd2Fe14B nanocomposites with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Lou, L.; Hou, F.C.; Wang, Y.N.; Cheng, Y.; Li, H.L.; Li, W.; Guo, D.F.; Li, X.H.; Zhang, X.Y.

    2014-01-01

    In the present study, the texturing of bulk α-Fe/Nd 2 Fe 14 B nanocomposites produced from Nd-lean amorphous Nd x Fe 92.5−x Cu 1.5 B 6 (x=9 to 11.5 at%) via a hot deformation under a uniaxial stress of ∼350 MPa at 973 K has been studied. An enhanced (00l) texture of the hard phase is observed with increasing Nd content, which results in an increase in the magnetic anisotropy of the nanocomposite magnets. As a result, both the coercivity and the remanence of the magnets increase simultaneously with increasing Nd content from x=9–11.5 at%, yielding a significant enhancement of the maximum energy product from (BH) max =13.2 to 17.5 MGOe in the direction parallel to stress axis. - Highlights: • Textured bulk α-Fe/Nd 2 Fe 14 B nanocomposites have been produced from Nd-lean alloys. • Nd content has an effect on the texturing of α-Fe/Nd 2 Fe 14 B nanocomposite magnets. • An enhanced (00l) texture of hard phase is observed with increasing Nd content. • Both the coercivity and remanence increase simultaneously with Nd content

  5. Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

    Science.gov (United States)

    Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2014-11-01

    We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

  6. High-Intensity High-order Harmonics Generated from Low-Density Plasma

    International Nuclear Information System (INIS)

    Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.

    2009-01-01

    We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.

  7. Second Harmonic Generation of Violet Light in Femtosecond-Laser-Inscribed BiB3O6 Cladding Waveguides

    Directory of Open Access Journals (Sweden)

    Jia Yuechen

    2013-11-01

    Full Text Available We report on the second harmonic generation of violet light of a nonlinear cladding waveguide in BiB3O6 crystal produced by femtosecond laser inscription. Under continuous-wave pump laser at 800 nm, the guided second harmonic wave at 400 nm with a conversion efficiency of ~0.32% has been realized through the Type I birefringence phase matching configuration.

  8. Nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP thin films

    Science.gov (United States)

    Talwatkar, S. S.; Sunatkari, A. L.; Tamgadge, Y. S.; Muley, G. G.

    2018-04-01

    The nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP nanocomposite were studied using a continuous wave (CW) He-Ne laser (λ = 632.8 nm)by z-scan technique. The nonlinear refractive index (n2), absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) of PVP thin films embedded with Nd3+-Li+ co-doped ZnS NPs was found in the order of 10-7 cm2/W, 10-6 cm/W and 10-7 esu respectively. The nonlinearity found increasing with Nd3+-Li+ co-dopant concentration. Based on the results, it is proposed that this material is a new class of luminescent material suitable in optoelectronics devices application, especially in light-emitting devices, electroluminescent devices, display devices, etc.

  9. Diode pumped actively Q-switched Nd:YVO4 self-Raman laser

    International Nuclear Information System (INIS)

    Su Fufang; Zhang Xingyu; Wang Qingpu; Ding Shuanghong; Jia Peng; Li Shutao; Fan Shuzhen; Zhang Chen; Liu Bo

    2006-01-01

    By using Nd:YVO 4 as the gain medium and the Raman medium simultaneously, the actively Q-switched operation of the self-Raman Nd:YVO 4 laser at 1176 nm was realized. The output characteristics including the average power, pulse energy and pulse width versus the incident pump power and pulse repetition rate were investigated. At a pulse repetition rate of 20 kHz an average power up to 0.57 W was obtained with the incident pump power of 10.2 W, corresponding to a conversion efficiency of 5.6% with respect to the diode laser input power. Meanwhile, an analysis of the self-Raman Nd:YVO 4 laser was carried out by using the rate equations. The obtained theoretical results were in agreement with the experimental results on the whole

  10. Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry.

    Science.gov (United States)

    Marciniak, Lukasz; Pilch, Aleksandra; Arabasz, Sebastian; Jin, Dayong; Bednarkiewicz, Artur

    2017-06-22

    The current frontier in nanomaterials engineering is to intentionally design and fabricate heterogeneous nanoparticles with desirable morphology and composition, and to integrate multiple functionalities through highly controlled epitaxial growth. Here we show that heterogeneous doping of Nd 3+ ions following a core-shell design already allows three optical functions, namely efficient (η > 72%) light-to-heat conversion, bright NIR emission, and sensitive (S R > 0.1% K -1 ) localized temperature quantification, to be built within a single ca. 25 nm nanoparticle. Importantly, all these optical functions operate within the transparent biological window of the NIR spectral region (λ exc ∼ 800 nm, λ emi ∼ 860 nm), in which light scattering and absorption by tissues and water are minimal. We find NaNdF 4 as a core is efficient in absorbing and converting 808 nm light to heat, while NaYF 4 :1%Nd 3+ as a shell is a temperature sensor based on the ratio-metric luminescence reading but an intermediate inert spacer shell, e.g. NaYF 4 , is necessary to insulate the heat convertor and thermometer by preventing the possible Nd-Nd energy relaxation. Moreover, we notice that while temperature sensitivity and luminescence intensity are optically stable, increased excitation intensity to generate heat above room temperature may saturate the sensing capacity of temperature feedback. We therefore propose a dual beam photoexcitation scheme as a solution for possible light-induced hyperthermia treatment.

  11. Crystal-field and Nd-Mn exchange interaction in Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Beznosov, A; Fertman, E; Desnenko, V; Loginov, A [B Verkin Institute for Low Temperature Physics and Engineering, NASU, 47 Lenin Ave., 61103 Kharkov (Ukraine); Feher, A; Kajnakova, M, E-mail: fertman@ilt.kharkov.u [Centre of Low Temperature Physics of the Faculty of Science of P.J. Safarik University and IEP SAS, Park Angelinum 9, SK-04154 Kotice (Slovakia)

    2010-01-01

    A study of the low field magnetization and specific heat in magnetic fields up to 9 T of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} perovskite in the 2-30 K temperature range has been done. All the specific heat data show broadened Schottky-like anomaly below 20 K. We suppose that such a behavior originates from the Nd magnetic ordering caused by the splitting of the Nd{sup 3+} ions ground-state doublet (GSD) in the effective molecular field H{sub ex} of Mn spin system supplemented by an applied external magnetic field. The zero field GSD splitting is an evidence of a strong exchange coupling between Nd and Mn magnetic subsystems. The Nd-ions magnetic ordering introduces an additional contribution to the ferromagnetic moment producing anomalies of the field-cooled and zero-field-cooled magnetizations of the system below 28 K. The broadened Schottky-like anomalies found are fitted for every field by a set of three Schottky functions. Applied magnetic field extends the anomaly region and shifts it to the higher temperatures. Splitting of the higher crystal field Kramers doublets gives an additional contribution to the heat capacity under magnetic fields. The GSD g-factors g{sub ||} and g{sub p}erpendicular was estimated as 3.4 and 2.2, respectively, and H{sub ex} as 9 T.

  12. 2×1 Microstrip Patch Array Antenna with Harmonic Suppression Capability for Rectenna

    Directory of Open Access Journals (Sweden)

    Nur Aisyah Amir

    2017-12-01

    Full Text Available This paper is an extension of work originally presented in 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE. A 2×1 microstrip patch array antenna integrated with photonic bandgap (PBG and stubs is designed and analyzed. The performance of the PBG and stubs structure are explained and analyzed in terms of the elimination of the resonance at the harmonic frequencies of the antenna. The proposed antenna is designed on FR-4 substrate with thickness of 1.6 mm and operated at 2.45 GHz frequency suitable for rectenna design application. From the simulated result, the first harmonic frequency (5.4 GHz, the second harmonic frequency (6.6 GHz and the third harmonic frequency (7.8 GHz are successfully suppressed. For instance, the radiation to the forward of the stubs-PBG antenna is suppressed at more than 15 dB at the second and third harmonic frequencies.

  13. Commensurability oscillations in NdBa2Cu3Oy single crystals

    Indian Academy of Sciences (India)

    gated by angular dependent magnetization in very pure twinned and twin-free NdBa2 Cu3 Oy single ... The layered structure and the c-axis coherence length, ξc ≈ 4 ˚A, smaller than the lattice ... The high quality of both crystals is demonstrated by ... Commensurability oscillations in NdBa2Cu3Oy single crystals. 2. 3. 4. 5. 6.

  14. ICESat-2 laser Nd:YVO4 amplifier

    Science.gov (United States)

    Sawruk, Nicholas W.; Burns, Patrick M.; Edwards, Ryan E.; Litvinovitch, Viatcheslav; Martin, Nigel; Witt, Greg; Fakhoury, Elias; Iskander, John; Pronko, Mark S.; Troupaki, Elisavet; Bay, Michael M.; He, Charles C.; Wang, Liqin L.; Cavanaugh, John F.; Farrokh, Babak; Salem, Jonathan A.; Baker, Eric

    2018-02-01

    We report on the cause and corrective actions of three amplifier crystal fractures in the space-qualified laser systems used in NASA Goddard Space Flight Center's (GSFC) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The ICESat-2 lasers each contain three end-pumped Nd:YVOO4 amplifier stages. The crystals are clamped between two gold plated copper heat spreaders with an indium foil thermal interface material, and the crystal fractures occurred after multiple years of storage and over a year of operational run-time. The primary contributors are high compressive loading of the NdYVO4 crystals at the beginning of life, a time dependent crystal stress caused by an intermetallic reaction of the gold plating and indium, and slow crack growth resulting in a reduction in crystal strength over time. An updated crystal mounting scheme was designed, analyzed, fabricated and tested. Thee fracture slab failure analysis, finite-element modeling and corrective actions are presented.

  15. Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing

    International Nuclear Information System (INIS)

    Torchia, G.A.; Mendez, C.; Roso, L.; Tocho, J.O.

    2008-01-01

    In this work, we present an optical characterization of channel waveguides fabricated by means of femtosecond laser writing on Nd:YAG substrates. These guiding structures show a refractive index increment of about 1x10 -3 which allows TE propagation. By pumping with a CW solid-state laser at 532 nm reaching the 2 G 9/2 and 4 G 7/2 manifolds of Nd 3+ ions, we have explored the emission band corresponding to 4 F 3/2 → 4 I 9/2 optical transitions (peaked at 890 nm). From data, we have found that emission showed similar characteristics for waveguide and bulk. On the other hand, the lifetime corresponding to the 4 F 3/2 metaestable level was determined to be 240 μs for bulk and waveguide. Summarizing, we have made suitable channel waveguides in Nd:YAG crystals, by fs interaction, with similar spectroscopic properties to those of the bulk, a fact that boosters the photonics application of these devices. For the first time to our knowledge, a direct index increment waveguide made by interaction with ultra-short intense pulses in YAG crystals has been performed. This fabrication procedure can be an efficient tool to make several optical circuits in active materials by means of the one-step, fast and low-cost processing

  16. Orbits 2nd order singularity-free solutions

    CERN Document Server

    Xu, Guochang

    2014-01-01

    In its 2nd edition, this book covers the theory of satellite orbits, derives the complete solutions of orbital disturbances, describes the algorithms of orbits determination and the applications of the theory to the phenomenon of physical satellite formation.

  17. Treating onychomycoses of the toenail: clinical efficacy of the sub-millisecond 1,064 nm Nd: YAG laser using a 5 mm spot diameter.

    Science.gov (United States)

    Kimura, Utako; Takeuchi, Kaori; Kinoshita, Ayako; Takamori, Kenji; Hiruma, Masataro; Suga, Yasushi

    2012-04-01

    Onychomycosis is a relatively common fungal infection. Current treatments have limited applicability and low cure rates. Recently introduced laser therapy has shown to be a safe and effective treatment for onychomycosis. In this study, we evaluate a submillisecond Nd:YAG 1,064 nm laser for treating onychomycoses of the tonail. Thirteen subjects (9 female, 4 male) with 37 affected toenails received 1 to 3 treatments 4 and/or 8 weeks apart with a sub-millisecond 1,064 nm Nd:YAG laser. Diagnosis of onychomycosis was confirmed with microscopy. Average follow-up time was 16 weeks post-final treatment. Photos were taken and degree of turbidity was determined using a turbidity scale (ranging from "0 = clear nail" to "10 = completely turbid nail") at each visit. Improvement in turbidity was determined by comparison of turbidity scores at baseline and 16-week follow-up on average. Efficacy was assessed by an overall improvement scale (0 to 4), which combined improvement in turbidity scores and microscopic examination. Overall improvement was classified as "4 = complete clearance" if the turbidity score indicated "0 = clear nail" accompanied by a negative microscopic result. No microscopic examination was performed unless the turbidity score showed "0 = clear nail." Treatments were well tolerated by all subjects and there were no adverse events. Of the 37 toenails treated, 30 (81%) had "moderate" to "complete" clearance average of 16 weeks post-final treatment. Nineteen toenails (51%) were completely clear and all tested negative for fungal infection on direct microscopic analysis. Seven (19%) toenails had significant clearance and four (11%) had moderate clearance. The preliminary results of this study show this treatment modality is safe and effective for the treatment of onychomycosis in the short term. Additional studies are needed to more fully assess the clinical and mycological benefits as well as optimize the treatment protocol and parameters.

  18. Optimum design of Nd-doped fiber optical amplifiers

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Bjarklev, Anders Overgaard; Lumholt, Ole

    1992-01-01

    The waveguide parameters for a Nd-doped fluoride (Nd:ZBLANP) fiber amplifier have been optimized for small-signal and booster operation using an accurate numerical model. The optimum cutoff wavelength is shown to be 800 nm and the numerical aperture should be made as large as possible. Around 80%......% booster quantum conversion efficiency can be reached for an input power of 10 dBm and a pump power of 100 mW by the use of one filter...

  19. Utility of Higher Harmonics in Electrospray Ionization Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometry.

    Science.gov (United States)

    Dziekonski, Eric T; Johnson, Joshua T; McLuckey, Scott A

    2017-04-18

    Mass resolution (M/ΔM fwhm) is observed to linearly increase with harmonic order in a Fourier transform electrostatic linear ion trap (ELIT) mass spectrometer. This behavior was predicted by Grosshans and Marshall for frequency-multiple detection in a Fourier transform ion cyclotron resonance mass spectrometer only for situations when the prominent mechanism for signal decay is ion ejection from the trap. As the analyzer pressure in our ELIT chamber is relatively high, such that collisional scattering and collision-induced dissociation are expected to underlie much of the ion loss, we sought to explore the relationship between harmonic order and mass resolution. Mass resolutions of 36 900 (fundamental), 75 850 (2nd harmonic), and 108 200 (3rd harmonic) were obtained for GdO + (avg. m/z 173.919) with a transient length of 300 ms. To demonstrate that the mass resolution was truly increasing with harmonic order, the unresolved isotopes at the fundamental distribution of cytochrome c +8 (m/z ∼ 1549) were nearly baseline, resolved at the third harmonic (mass resolution ≈ 23 000) with a transient length of only 200 ms. This experiment demonstrates that, when the ion density is sufficiently low, ions with frequency differences of less than 4 Hz remain uncoalesced. Higher harmonics can be used to increase the effective mass resolution for a fixed transient length and thereby may enable the resolution of closely spaced masses, determination of a protein ion's charge state, and study of the onset of peak coalescence when the resolution at the fundamental frequency is insufficient.

  20. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.

    Science.gov (United States)

    Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T

    2013-08-15

    We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.

  1. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  2. Experimental Investigation and Thermodynamic Modeling of the B2O3-FeO-Fe2O3-Nd2O3 System for Recycling of NdFeB Magnet Scrap

    Science.gov (United States)

    Jakobsson, Lars Klemet; Tranell, Gabriella; Jung, In-Ho

    2017-02-01

    NdFeB magnet scrap is an alternative source of neodymium that could have a significantly lower impact on the environment than current mining and extraction processes. Neodymium can be readily oxidized in the presence of oxygen, which makes it easy to recover neodymium in oxide form. Thermochemical data and phase diagrams for neodymium oxide containing systems is, however, very limited. Thermodynamic modeling of the B2O3-FeO-Fe2O3-Nd2O3 system was hence performed to obtain accurate phase diagrams and thermochemical properties of the system. Key phase diagram experiments were also carried out for the FeO-Nd2O3 system in saturation with iron to improve the accuracy of the present modeling. The modified quasichemical model was used to describe the Gibbs energy of the liquid oxide phase. The Gibbs energy functions of the liquid phase and the solids were optimized to reproduce all available and reliable phase diagram data, and thermochemical properties of the system. Finally the optimized database was applied to calculate conditions for selective oxidation of neodymium from NdFeB magnet waste.

  3. XMCD study of the Ruddlesden-Popper phase La1.2Nd0.2Sr1.6Mn2O7

    International Nuclear Information System (INIS)

    Weigand, F.; Goering, E.; Geissler, J.; Justen, M.; Ruck, K.; Schuetz, G.; Doerr, K.

    2001-01-01

    X-ray Magnetic Circular Dichroism (XMCD) measurements of the Ruddlesden-Popper Phase La 1.2 Nd 0.2 Sr 1.6 Mn 2 O 7 are reported. The Mn K, La and Nd L 2 , 3 edges have been measured on a powder sample at two different magnetic fields at low temperature. The analysis of the spectra at B = 1T indicates a large orbital moment of the Nd 5d-states and a significant spin-polarization of the La 5d-band. Furthermore at the Mn Κ-edge a XMCD-signal is observed, showing a polarization of the Mn 4p-band. At lower field (0.2T) all XMCD-signals are about two times smaller corresponding to the lower total magnetization. The signal at the Nd L 2 edge vanishes completely at 0.2T. (au)

  4. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  5. Chronology of the 1st–2nd Century Graves from the Tarasovo Burial Ground

    Directory of Open Access Journals (Sweden)

    Goldina Rimma D.

    2016-03-01

    Full Text Available The article focuses on the chronology of graves dating back to the early (1st – 2nd centuries AD – Nyrgynda stage of the 1st – 5th century Tarasovo burial ground, a classical monument attributed to the Cheganda culture of the Pyany Bor cultural-historical community. Cultural stratigraphy is applied as a research method. Artifacts from the early stage were correlated for 37 male and 102 female complexes, separately. The analysis of grave goods from male burials showed the following three chronological groups, that can be distinguished at the Nyrgynda stage: 1st century (group 1, 2nd century (group 2 and 1st – 2nd centuries AD (group 3. The goods from female graves are more representative and various, so three more groups with shorter chronological lives can be singled out: the fi rst half of the 2nd century (group 2а, the second half of the 2nd century (group 2б and the 1st – fi rst half of the 2nd century (group 4. Certainly, the suggested chronology leaves room for any eventual corrections subject to new findings.

  6. Particularly compliance violations in patients with diabetes mellitus of 2nd type

    Directory of Open Access Journals (Sweden)

    V. V. Chugunov

    2017-04-01

    Full Text Available Aim: to investigate and establish the specific complains violations in patients with diabetes mellitus (DM of 2nd type. Materials and methods: 543 patients with DM of 2nd type were examined; the disease duration ranged from 2 to 27 years, average – (14.58 ± 1.82 years. Research methods: clinical-anamnestic, clinical-psychopathological, psycho diagnostic, statistical. Research results. We found that compliance to therapy in patients with DM of 2nd type was broken in 90.49 % of cases. We highlighted three options for compliance violations to DM therapy of 2nd type: dismedication (to 68.14 %, disdiet (88.40 % and disexercise (90.49 %. The sub-variants of dismedication compliance violations to DM therapy of 2nd type was hyper-curation type (8.29 %, which was developed according to surplus of appointments execution and hypo-curation type (59.85 %, which was developed according to deficiency of appointments execution. Among them it was possible to distinguish a third – mixed version (7.37 %, which brings together episodes of the surplus and the deficit of medical drugs usage. The sub-options of disdiet option of compliance violations was hyper-curation type (1.66 %, which manifested itself in pathologically excessive rejection of food and hypo-curation type (86.74 %, which manifested itself in a disregard for the restrictions in the diet. Disexercise variant of compliance violations was possible to divide into hyper-curation type (4,24 %, manifested in excessive physical activity and, in its turn, had three subtypes – inceptional (1.66 %, sub-hyper-curation (1.10 % and procurationis (1.47 %, and hypo-curation type of compliance violations (87.48 %, which manifested itself in a disregard of physical exertion. Dominance of disdiet and disexercise compliance violations among patients with DM of 2nd type (χ2 = 117.258, p < 0.01, dismedication option among patients of all hyper-curation types of compliance violations with DM of 2nd type (χ2 = 26

  7. Temporally coherent x-ray laser with the high order harmonic light

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Kawazome, Hayato; Nagashima, Keisuke

    2005-01-01

    We obtained the neon-like manganese x-ray laser with the injection of the high order harmonic light as the seed x-ray at the wavelength of 26.9 nm for the purpose of generation of the temporally coherent x-ray laser. The x-ray amplifier, which has quite narrow spectral width, selected and amplified the temporally coherent mode of the harmonic light. The temporal coherence of the mode selected harmonic light was nearly transform limited pulse, and the obtained x-ray laser with the seed x-ray expected to be nearly temporally coherent x-ray. (author)

  8. Diode-Pumped Quasi-Three-Level Passively Q-Switched Nd:GGG Laser with a Codoped Nd,Cr:YAG Saturable Absorber

    International Nuclear Information System (INIS)

    Kun-Na, He; Chun-Qing, Gao; Zhi-Yi, Wei; Qi-Nan, Li; Zhi-Guo, Zhang; Hai-He, Jiang; Shao-Tang, Yin; Qing-Li, Zhang

    2009-01-01

    We demonstrate the first quasi-three-level passively Q-switched Nd:GGG laser at 937 nm using a Nd,Cr:YAG crystal as the saturable absorber. The dependences of the average output power, the repetition rate and the pulse width on the incident pump power are obtained. A maximum average output power of 1.18 W with repetition rate of 35 kHz and pulse width of 45 ns is achieved at an incident pump power of 18.3 W. The corresponding optical-to-optical and slope efficiencies are 6% and 10%, respectively

  9. The space of harmonic maps of S2 into S4

    International Nuclear Information System (INIS)

    Loo, B.

    1989-05-01

    Every branched superminimal surface of area 4πd in S 4 is shown to arise from a pair of meromorphic functions (f 1 ,f 2 ) of bidegree (d,d) such that f 1 and f 2 have the same ramification divisor. Conditions under which branched superminimal surfaces can be generated from such pairs of functions are derived. For each d ≥ 1 the space of harmonic maps (i.e branched superminimal immersions) of S 2 into S 4 of harmonic degree d is shown to be a connected space of complex dimension 2d+4. (author). 18 refs

  10. Renormalizable N=2 supersymmetric and gauge invariant interactions from the N=2 harmonic superspace with central charges

    International Nuclear Information System (INIS)

    Saidi, E.H.

    1986-04-01

    The N=2 harmonic-superspace in the presence of central charges is developed. Renormalizable interactions unusual in N=2 supersymmetric theories, are derived in a consistent way. Symmetries generated by the central charges are discussed. A certain equivalence between N=2 harmonic superspace with and without central charges is established. A non-abelian generalization of the model is given. (author)

  11. Highly efficient deep ultraviolet generation by sum-frequency mixing ...

    Indian Academy of Sciences (India)

    Generation of deep ultraviolet radiation at 210 nm by Type-I third harmonic generation is achieved in a pair of BBO crystals with conversion efficiency as high as 36%. The fundamental source is the dye laser radiation pumped by the second harmonic of a Q-switched Nd : YAG laser. A walk-off compensated configuration ...

  12. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    Science.gov (United States)

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  13. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Thermoluminescence of sol–gel derived Y{sub 2}O{sub 3}:Nd{sup 3+} nanophosphor exposed to 100 MeV Si{sup 8+} ions and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Shivaramu, N.J. [Department of Physics, Jnanabharathi Campus, Bangalore University, Bangalore 560 056 (India); Lakshminarasappa, B.N., E-mail: bnlnarassappa@rediffmail.com [Department of Physics, Jnanabharathi Campus, Bangalore University, Bangalore 560 056 (India); Nagabhushana, K.R., E-mail: bhushankr@gmail.com [Department of Physics (S and H), PES Institute of Technology, 100 Feet Ring Road, BSK III stage, Bangalore 560085 (India); Singh, Fouran [Inter University Accelerator Centre, P.O. Box No. 10502, New Delhi 110 067 (India)

    2015-07-15

    Highlights: • Nanocrystalline Nd{sup 3+} doped Y{sub 2}O{sub 3} was synthesized by sol–gel technique. • Pellets of Y{sub 2}O{sub 3}:Nd{sup 3+} were irradiated with 100 MeV swift Si{sup 8+} ions and γ-rays. • The relative TL efficiency of Y{sub 2}O{sub 3}:Nd{sup 3+} of 100 MeV Si ion to γ-rays of {sup 60}Co and is found to be 0.059. • Gamma irradiated Y{sub 2}O{sub 3}:Nd{sup 3+} was observed, it is suitable for space dosimetry application. - Abstract: Nanocrystalline Nd{sup 3+} doped Y{sub 2}O{sub 3} was synthesized by sol–gel technique. Crystallite size calculated by Scherrer relation was found to be in the range 28–30 nm. Fourier transform infrared spectroscopy (FTIR) revealed Y−O, −OH stretching and C−O bending bonds. Pellets of Y{sub 2}O{sub 3}:Nd{sup 3+} were irradiated with 100 MeV swift Si{sup 8+} ions and γ-rays for the fluence/dose in the range 3 × 10{sup 11}–3 × 10{sup 13} ions cm{sup −2} and 1.0{sup -}14 kGy respectively. A prominent thermoluminescence (TL) glow with peak at 527 K and a weak one with peak at 600 K were observed in Si{sup 8+} ion irradiated samples while, a prominent TL glow with peak at 393 K besides a shoulder at 434 K and a weak one with peak at 581 K were observed in γ-irradiated phosphors. The relative TL efficiency of Y{sub 2}O{sub 3}:Nd{sup 3+} of 100 MeV Si ion beam to γ-rays of {sup 60}Co and is found to be 0.059. The TL kinetic parameters were calculated using Chen’s peak shape method and the results obtained are discussed. Y{sub 2}O{sub 3}:Nd{sup 3+} was observed for its use in space dosimetry application.

  15. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    Science.gov (United States)

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  16. Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm

    International Nuclear Information System (INIS)

    Wan Chan Tseung, H; Tolich, N

    2011-01-01

    We report on ellipsometric measurements of the refractive indices of linear alkylbenzene-2,5-diphenyloxazole (LAB-PPO), Nd-doped LAB-PPO and EJ-301 scintillators to the nearest ± 0.005, in the wavelength range 210-1000 nm.

  17. The Nd-Mn exchange interaction, low temperature specific heat and magnetism of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Beznosov, Anatoly [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Fertman, Elena, E-mail: fertman@ilt.kharkov.ua [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Desnenko, Vladimir [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Kajnakova, Marcela; Feher, Alexander [Centre of Low Temperature Physics of the Faculty of Science UPJS and IEP SAS, Park Angelinum 9, 04154 Kosice (Slovakia)

    2011-10-15

    The low temperature specific heat and magnetic characteristics of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} perovskite are studied in a wide range of magnetic fields (up to 9 T). Temperature dependent specific heat data show a broadened Schottky-like anomaly below 20 K caused by splitting of the Nd{sup 3+} ions ground-state doublet in the effective molecular field H{sub ex}, determined by exchange interaction between Nd and Mn spin systems supplemented by an applied external magnetic field. Existence of the splitting at zero magnetic field and expressed field dependence is the evidence of a strong exchange coupling between Nd and Mn magnetic subsystems. The Nd-ions magnetic ordering leads to an additional contribution to the magnetic moment of the system below 30 K, producing anomalies of the magnetic loss and field-cooled and zero-field-cooled magnetizations. The observed broadened Schottky-like anomalies are fitted for each applied magnetic field by the sum of three Schottky functions. Applied magnetic field extends the anomaly region and shifts it to higher temperatures. Splitting of the higher crystal field Kramers doublets gives an additional contribution to the heat capacity in magnetic fields. The ground state doublet g-factors g{sub ||} and g{sub perpendicular} were estimated to be 3.4 and 2.2, respectively, and H{sub ex} was estimated to be 9 T. The Nd{sup 3+} ions magnetic moment estimated from the magnetization data agrees with the value obtained from the specific heat data. - Highlights: > Low temperature specific heat of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} has been measured in magnetic fields up to 9 T. > Schottky-like anomalies are fitted for each magnetic field by a sum of three Schottky functions. > An effective magnetic field of the Mn spin system on Nd ion has been estimated as H{sub ex}=9 T. > Nd{sup 3+} ground-state g-factors have been estimated as g{sub ||}=3.4 and g{sub perpendicular} =2.2. > Magnetic ordering of the Nd subsystem has been revealed below

  18. The role of dysprosium on the structural and magnetic properties of (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Hamed; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Mozaffarinia, Reza; Tavoosi, Majid

    2017-02-15

    In current work, Nd2Fe14B nanoparticles was synthesized by sol-gel method. Dysprosium powders were added into Nd2Fe14B nanoparticles by mechanical alloying process in order to enhancement of coercivity. The phase analysis, structure, and magnetic properties of annealed (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B nanoparticles with different Dy-content (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were investigated by employing X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, field emission scanning electron microscope, transmission electron microscope and vibrating sample magnetometer techniques. The results showed that with an increase in Dy amounts, the coercivity of particles increased from 2.9 kOe to 13.4 kOe and then decreased to 5.6 kOe. By adding an optimum amount of Dy (x=0.4), the coercivity was significantly increased from 2.9 kOe to 13.4 kOe. The average particle size of annealed (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B nanoparticles was below 10 nm. Magnetization reversal studies indicate that the coercivity of milled and annealed (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B nanoparticles is controlled by the nucleation of reversed magnetic domains. The experimental results in the angular dependence of coercivity for (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B permanent magnets showed that the normalized coercivity of the permanent magnets H{sub c}(θ)/H{sub c}(0) increases from 1 to about 1.2–1.5 with increasing θ from 0 to about π/3, for x=0.4–0.6. - Highlights: • Dy was added to Nd{sub 2}Fe{sub 14}B nanoparticles to improve the coercivity. • A maximum squareness ratio of 0.99 was obtained. • The average particle size decreased with an increase in Dy-content.

  19. Unconstrained N=2 matter, Yang-Mills and supergravity theories in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Kalitzin, S.; Sokatchev, E.

    1984-04-01

    A new approach to N=2 supersymmetry based on the concept of harmonic superspace is proposed and is used to give an unconstrained superfield geometric description of N=2 super Yang-Mills and supergravity theories as well as of matter N=2 hypermultiplets. The harmonic N=2 superspace has as independent coordinates, in addition to the usual ones, the isospinor harmonics Usub(i)sup(+-) on the sphere SU(2)/U(1). The role of Usub(i)sup(+-) is to relate the SU(2) group realized on the component fields to a U(1) group acting on the relevant superfields. Their introduction makes it possible to SU(2)-covariantize the notion of Grassmann analyticity. Crucial for our construction is the existence of an analytic subspace of the general harmonic N=2 superspace. The hypermultiplet superfields and the true prepotentials (pre-prepotentials) of N=2 super Yang-Mills and supergravity are unconstrained superfunctions over this analytic subspace. The pre-prepotentials have a clear geometric interpretation as gauge connections with respect to the internal SU(2)/U(1)-directions. A radically new feature arises: the number of gauge and auxiliary degrees of freedom becomes infinite while the number of physical degrees of freedom remains finite. Other new results are the massive N=2 Yang-Mills theory and various off-shell self-interactions of hypermultiplets. The propagators for matter and Yang-Mills superfields are given. (author)

  20. Neutron investigation of Ru-doped Nd1/2Ca1/2MnO3. Comparison with Cr-doped Nd1/2Ca1/2MnO3

    International Nuclear Information System (INIS)

    Moritomo, Yutaka; Nonobe, Toshihiko; Machida, Akihiko; Ohoyama, Kenji

    2002-01-01

    Lattice and magnetic properties are investigated for 3% Ru- and Cr-doped Nd 1/2 Ca 1/2 MnO 3 . The parent Nd 1/2 Ca 1/2 MnO 3 is a charge-ordered insulator (T CO =250K). With decreasing temperature below ≅210K, these compounds are separated into two perovskite phases, that is, the long-c and short-c phases. The long-c region shows a ferromagnetic transition at T C ≅210K for the Ru-doped compound and ≅130K for the Cr-doped compound, while the short-c region shows antiferromagnetic transition at T N ≅150K for Ru and ≅110K for Cr. We discuss the origin of the enhanced T C for the Ru-doped compound in terms of the effective one-electron bandwidth W of the e g -band. (author)

  1. Evolution of magnetic and microstructural properties of thick sputtered NdFeB films with processing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Walther, A. [Institut Neel, CNRS-UJF, 25 rue de Martyrs, 38042 Grenoble (France); CEA Leti - MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Khlopkov, K. [IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Gutfleisch, O. [IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Givord, D. [Institut Neel, CNRS-UJF, 25 rue de Martyrs, 38042 Grenoble (France); Dempsey, N.M. [Institut Neel, CNRS-UJF, 25 rue de Martyrs, 38042 Grenoble (France)]. E-mail: nora.dempsey@grenoble.cnrs.fr

    2007-09-15

    Ta (100 nm)/NdFeB (5 {mu}m)/Ta (100 nm) films have been deposited onto Si substrates using triode sputtering (deposition rate {approx}18 {mu}m/h). A 2-step procedure was used: deposition at temperatures up to 400 deg. C followed by ex-situ annealing at higher temperatures. Post-deposition annealing temperatures above 650 deg. C are needed to develop high values of coercivity. The duration of the annealing time is more critical in anisotropic samples deposited onto heated substrates than in isotropic samples deposited at lower temperatures. For a given set of annealing conditions (750 deg. C/10'), high heating rates ({>=}2000 deg. C/h) favour high coercivity in both isotropic and anisotropic films. The shape and size of Nd{sub 2}Fe{sub 14}B grains depend strongly on the heating rate.

  2. Nd(NH2SO3)(SO4) . 1.5 H2O: a non-centrosymmetric amidosulfate-sulfate of neodymium

    International Nuclear Information System (INIS)

    Wickleder, M.S.

    2005-01-01

    The thermal decomposition of Nd(NH 2 SO 3 ) 3 . 2 H 2 O in a closed tube leads to violet single crystals of Nd(NH 2 SO 3 )(SO 4 ) . 1.5 H 2 O. The compound crystallizes with the space group P1 (Z = 2, a = 689.2, b = 691.4, c = 962.0 pm, α = 109.64, β = 97.00, γ = 109.62 ). The triclinic unit cell can be transformed into the respective bodycentered setting I1 (Z = 2, a = 977.9, b = 795.6, c = 1113.0 pm, α = 90.69, β = 115.06, γ = 88.98 ) leading to a nearly monoclinic unit cell for the compound. In the crystal structure of Nd(NH 2 SO 3 )(SO 4 ) . 1.5 H 2 O two Nd 3+ ions are present. Nd(1) 3+ is coordinated by four NH 2 SO 3 - and two SO 4 2- ions, and one H 2 O molecule. Owing to the chelating attack of the sulfate groups, the CN is nine. Nd(2) 3+ is surrounded by four monodentate SO 4 2- and two NH 2 SO 3 - groups. Two H 2 O ligands fill up the coordination sphere and lead to a CN of eight. The linkage of the polyhedra leads to a three-dimensional network. (orig.)

  3. MFM of nanocrystalline NdFeB: a study of the effect of processing route on the micromagnetic structure

    Science.gov (United States)

    Al-Khafaji, M. A.; Marashi, S. P. H.; Rainforth, W. M.; Gibbs, M. R. J.; Davies, H. A.; Bishop, J. E. L.; Heydon, G.

    1998-12-01

    The magnetic domain structure of near stoichiometric (Nd 11.8Fe 82.3B 5.9) nanocrystalline alloy ribbon has been examined using magnetic force microscopy (MFM) as a function of processing conditions. Amorphous structured ribbons of Nd 2Fe 14B with an average thickness of 25 μm were produced by chill block melt-spinning. Subsequently, samples were heat treated at 600°C for 4 min to produce a nanocrystalline structure consisting of Nd 2Fe 14B grains of average size ˜35 nm. These were compared to ribbons of the same composition, but melt spun directly to the nanocrystalline state, also with an average grain size of ˜35 nm. MFM imaging was undertaken using CoCr, NiFe and Fe/SiO 2 coated pyramidal Si tips. The as-cast amorphous ribbons exhibited weak magnetic contrast with a correlation length of 130±20 nm, but with a small elongation in one direction, as shown by Fourier transforms of the MFM images. Nanocrystalline samples produced by devitrification exhibited longer correlation lengths of 1000±50 nm and with a stronger angular component to the Fourier transform. The application of a 5 T field to the nanophase sample in a direction normal to the sample plane resulted in a reduction of the correlation length to 600±50 nm and a reduction in the directionality of the magnetic contrast. However, the application of a 5 T field in the plane of the ribbon resulted in an elongation of the contrast in a direction parallel to the applied field, irrespective of the in-plane field direction. In contrast, ribbon melt spun directly to a nanocrystalline structure exhibited a uniform Fourier transform both in the as-cast and remanent states. The length scale of dominant magnetic structure was 350±30 nm for the as-cast and 620±30 nm for the remanent state. Within the dominant magnetic structure, a finer structure was apparent, of a scale comparable to the grain size.

  4. Nd2Fe14C-based magnet with better permanent magnetic properties prepared by a simple mechanochemical method

    Science.gov (United States)

    Geng, Hongmin; Ji, Yuan; Zhang, Jingjing; Gao, Yuchao; Yan, Yu; Wang, Wenquan; Su, Feng; Du, Xiaobo

    2017-11-01

    Nd2Fe14C-based magnet is prepared by a mechanochemical method, namely high-energy ball-milling Nd2Fe11Bx (x = 0-0.15) alloy in heptane (C7H16), followed by annealing to 850 °C in vacuum. Under the action of high-energy ball-milling, Nd2Fe11Bx react with heptane to form NdH2+δ, Fe-(CB), C, etc. H2 is released and Nd2Fe17, Nd2Fe17Cx (x = 0-3), Nd2Fe14C, Nd carbides and α-Fe are formed in the subsequent annealing. C amount depends on ball-milling time t. Long time ball milling or high C content suppresses the formation of 2:17 phase and favors the formation of 2:14:1 phase in the final products. Excessive ball-milling results in the quick increase of α-Fe. The maximum of magnetically hard Nd2Fe14C is obtained at t = 4 h. For Nd2Fe11 samples, there exists considerable quantity of Nd carbides and α-Fe phase appears earlier and increases rapidly with extending the ball-milling time t. The addition of B element shortens the ball-milling time of the formation of maximum Nd2Fe14C and prominently suppresses the formation of Nd carbide and α-Fe. The optimum magnetic properties, coercivity iHc of 1193.7 kA/m, remanence Mr of 580.9 kA/m, maximum magnetic energy product (BH)max of 91.7 kJ/m3 is approaching to its theoretic value of 99.2 kJ/m3 for isotropic Nd2Fe14C magnet, are obtained in Nd2Fe11B0.06 alloy ball milled for 3.5 h.

  5. Kinetics of selected elementary reactions of NH(a{sup 1}{delta}) or ND(a{sup {delta}}), NH(X{sup 3}{sigma}{sup -}) or ND(X{sup 3}{sigma}{sup -}) and NH{sub 2}(X), NHD(X), NH{sub 2}(X) radicals; Untersuchung der Kinetik ausgewaehlter Elementarreaktionen von NH(a{sup 1}{delta})- bzw. ND(a{sup 1}{delta})-, NH(X{sup 3}{sigma}{sup -})- bzw. ND(X{sup 3}{sigma}{sup -})- und NH{sub 2}(X)-, NHD(X)-, ND{sub 2}(X)-Radikalen

    Energy Technology Data Exchange (ETDEWEB)

    Adam, L.

    2002-02-01

    The elementary reactions of the NH and ND radicals in the ground state and the first excited state with H({sup 2}S) atoms and with molecules containing hydrogen and fluorine element bonds were investigated in the gaseous phase at a pressure of p = 7-80 bar. The elementary reactions of the NH{sub 2}, NHD and ND{sub 2} radicals in the ground state with hydrogen halides in the gaseous phase were investigated as well. [German] Die Elementarreaktionen des NH- bzw. ND-Radikals im Elektronengrundzustand und im ersten elektronisch angeregten Zustand mit H({sup 2}S)-Atomen und mit Molekuelen, die Wasserstoff- und Fluor-Elementbindungen besitzen, wurden in der Gasphase bei einem Druck von p = 7 - 80 mbar untersucht. Weiterhin wurden die Elementarreaktionen der NH{sub 2}-, NHD- bzw. ND{sub 2}-Radikale im Elektronengrundzustand mit Halogenwasserstoffen in der Gasphase untersucht. (orig.)

  6. Laser-assisted decontamination—A wavelength dependent study

    Science.gov (United States)

    Nilaya, J. Padma; Raote, Pallavi; Kumar, Aniruddha; Biswas, Dhruba J.

    2008-09-01

    We present here the experimental results on cleaning of radioactive dielectric particulates, loosely deposited on stainless steel, by coherent light of 1064 nm wavelength and its three harmonics occurring at 532 nm, 355 nm and 266 nm, derived from an Nd-YAG laser. For the initial few exposures, the decontamination factor has been found to be highest when exposed to 1064 nm radiation. With increasing number of exposures, however, the radiation with reducing wavelength assumes a more important role as a cleaning agent. The observation of almost no cleaning with 1064 nm and much reduced cleaning with its harmonics when the contamination is deposited on a transparent substrate confirms the dominant role played by metal substrate towards expelling the loose particulates from its surface.

  7. Review of ultraviolet damage threshold measurements at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, W.H.; Milam, D.

    1984-01-01

    The results of damage threshold measurements made at LLNL using ultraviolet wavelength laser pulses are reviewed. Measurements were made with pulses from a krypton fluoride laser with wavelength of 248 nm and pulse duration of 20 ns and with Nd-glass laser pulses converted to the third harmonic wavelength of 355 nm with duration of 0.6 ns. Measurements are presented for transparent window materials, crystals and harmonic generation, single layer dielectric films of oxide and fluoride materials and multilayer high reflectivity and antireflective coatings.

  8. Review of ultraviolet damage threshold measurements at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.; Milam, D.

    1984-01-01

    The results of damage threshold measurements made at LLNL using ultraviolet wavelength laser pulses are reviewed. Measurements were made with pulses from a krypton fluoride laser with wavelength of 248 nm and pulse duration of 20 ns and with Nd-glass laser pulses converted to the third harmonic wavelength of 355 nm with duration of 0.6 ns. Measurements are presented for transparent window materials, crystals and harmonic generation, single layer dielectric films of oxide and fluoride materials and multilayer high reflectivity and antireflective coatings

  9. The N=2 supersymmetric Ward-identities on harmonic superspace

    International Nuclear Information System (INIS)

    Lhallabi, T.

    1986-09-01

    The quantization of N=2 supersymmetric Yang-Mills theory coupled to matter hypermultiplet has been done in the harmonic superspace, by requiring BRS and anti-BRS invariance. Also the corresponding Ward-identities have been derived. (author)

  10. Persistent deNOx Ability of CaAl2O4:(Eu, Nd/TiO2-xNy Luminescent Photocatalyst

    Directory of Open Access Journals (Sweden)

    Li Huihui

    2011-01-01

    Full Text Available Abstract CaAl2O4:(Eu, Nd/TiO2-xNy composite luminescent photocatalyst was successfully synthesized by a simple planetary ball milling process. Improvement of photocatalytic deNOx ability of TiO2-xNy, together with the persistent photocatalytic activity for the decomposition of NO after turning off the light were realized, by coupling TiO2-xNy with long afterglow phosphor, CaAl2O4:(Eu, Nd. The novel persistent photocatalytic behavior was related to the overlap between the absorption wavelength of TiO2-xNy and the emission wavelength of the CaAl2O4:(Eu, Nd. It was found that CaAl2O4:(Eu, Nd/TiO2-xNy composites provided the luminescence to persist photocatalytic reaction for more than 3 h after turning off the light. Graphical Abstract CaAl2O4:(Eu, Nd/TiO2-xNy composite luminescent photocatalyst with persistent deNOx activity after turning off the light was successfully synthesized by a simple planetary ball milling process. The novel persistent photocatalytic behavior was related to the overlap between the absorption wavelength of TiO2-xNy and the emission wavelength of the CaAl2O4:(Eu, Nd. Additional file 1 Click here for file

  11. Nd3+-doped lanthanum lead boro-tellurite glass for lasing and amplification applications

    Science.gov (United States)

    Madhu, A.; Eraiah, B.; Manasa, P.; Srinatha, N.

    2018-01-01

    Nd3+-doped lanthanum lead boro-tellurite glass samples were prepared by conventional melt quenching method and their structural, thermal, fluorescence, and decay times of the glasses were investigated. Prepared glass samples exhibits amorphous nature and shows good thermal stability in the temperature range of 100-800 °C. Judd-Ofelt (JO) analysis was carried out and the intensity parameters (Ωλ = 2, 4, 6) also spontaneous radiative probability and stimulated-.emission cross-sections were estimated. The magnitude of Ωλ confirms the covalency nature. The near infrared emission spectra were measured by 808 nm excitation in which the emission intensity is found to be high at 1060 nm for the 4F3/2 → 4F11/2 transition. The stimulated cross section, effective band width and branching ratios are found to be 8.910 × 10-20 cm2, 21.57 nm and 53.72 % respectively, for 4F3/2 → 4F11/2 transition. The derived gain bandwidth, figure of merit, threshold and saturation intensity found to be comparable to some of the glass systems. Furthermore, the time decay rate found to decrease from 100 μs to 27 μs when the concentration increased from 0.1 to 3.0 mol% of Nd3+ ions and also all follow the single exponential behaviour which is attributed to the self quenching effect due to the cross-relaxation channels.

  12. A series of noncentrosymmetric antimony sulfides Ln{sub 8}Sb{sub 2}S{sub 15} (Ln = La, Pr, Nd) - syntheses, crystal and electronic structures, and NLO properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hua-Jun [Laboratory of Applied Research on the Characteristic Resources in the North of Guizhou Province, School of Chemistry and Chemical Engineering, Zunyi Normal College, Guizhou (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou (China); Zhou, Liu-Jiang [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou (China)

    2015-02-15

    A series of noncentrosymmetric sulfides Ln{sub 8}Sb{sub 2}S{sub 15} (Ln = La, Pr, Nd) were prepared from stoichiometric mixtures of the elements at 1223 K in an evacuated silica tube. The compounds Ln{sub 8}Sb{sub 2}S{sub 15} with Ln = La and Nd are isostructural to Pr{sub 8}Sb{sub 2}S{sub 15} and crystallize in the tetragonal noncentrosymmetric space group I4{sub 1}cd. Their structure contains discrete [SbS{sub 3}]{sup 3-} trigonal pyramids separated by Ln{sup 3+} cations and S{sup 2-} anions. La{sub 8}Sb{sub 2}S{sub 15} shows second harmonic generation with intensities 1.2 times that of the commercially used IR NLO (nonlinear optics) material AgGaS{sub 2} (at 2.05 μm laser). It exhibits excellent thermal stability up to 663 C. Studies with UV/Vis-NIR diffuse reflectance spectroscopy show that La{sub 8}Sb{sub 2}S{sub 15} has an optical gap of around 2.3 eV, and a DFT study indicates a direct band gap with an electronic transfer excitation of S 3p electrons to a La 5d orbital. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Microstructure and composition in rapidly quenched NdFeB-based hard magnet alloys

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Krishnan, K.M.; Lewis, L.H.; Zhu, Y.; Welch, D.O.

    1996-01-01

    A detailed study of the microstructure and composition in hot-pressed (MQ-2) and die-upset (MQ-3) magnet alloys based on the Nd 2 Fe 14 B composition, utilizing high resolution and analytical transmission electron microscopy, is reported. The initial magnetic properties of the two samples show different behaviors, which are attributed to the difference in the anisotropy of the grain structure and the grain boundaries. The hot-pressed sample shows faceted grains of the 2-14-1 phase, while die-upset sample shows plate-like grains, together with larger equiaxed grains that contain a speckling of precipitates in the grain interior. The grain structure and composition remain rather similar in the two samples. The grain boundary phase averages ∼1 endash approx-gt 10 nm in width. The thicker grain boundaries are Nd-rich, while the thinner grain boundaries in the hot-pressed sample exhibit an Fe-rich composition near that of the NdFe 3 phase. Nd-rich phases are found at the grain boundary junctions of both samples, with the Nd:Fe ratio near 7:3 in the die-upset sample, and up to 3:2 in the hot-pressed sample. The significance of the microstructure and the grain boundary phases on the magnetic behavior in the two samples is discussed. copyright 1996 American Institute of Physics

  14. Polarization control of high order harmonics in the EUV photon energy range.

    Science.gov (United States)

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  15. Interference Effects in the Optical Second Harmonic Generation from Ultrathin Alkali Films

    DEFF Research Database (Denmark)

    Balzer, F.; Rubahn, Horst-Günter

    2000-01-01

    Interference effects are shown to strongly modulate the transmission second harmonic signal (fundamental wavelength 1067 nm) from rough alkali island films grown on insulating substrates if one varies the angle of incidence. Depending on growth conditions and substrate thickness, the measured...... second harmonic dependencies can be interpreted in terms of interference between frontside and rearside adsorbed islands or by taking into account the morphology of the adsorbed alkali islands. By the use of different polarization combinations of both pump and reflected second harmonic wave we obtain...... accurate values of the ratios of the relevant nonlinear optical coefficients....

  16. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    Science.gov (United States)

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.

  17. High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields

    Science.gov (United States)

    Yavuz, I.; Tikman, Y.; Altun, Z.

    2015-08-01

    Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.

  18. 2nd Tourism Postdisciplinarity Conference

    DEFF Research Database (Denmark)

    Following the noted success of the 1st international conference on postdisciplinary approaches to tourism studies (held in Neuchatel, Switzerland, 19-22 June, 2013), we are happy to welcome you to the 2nd Tourism Postdisciplinarity Conference. Postdisciplinarity surpasses the boundaries...... of study less embedded in that system of thought. Postdisciplinarity is an epistemological endeavour that speaks of knowledge production and the ways in which the world of physical and social phenomena can be known. It is also an ontological discourse as it concerns what we call ‘tourism...

  19. The 2nd reactor core of the NS Otto Hahn

    International Nuclear Information System (INIS)

    Manthey, H.J.; Kracht, H.

    1979-01-01

    Details of the design of the 2nd reactor core are given, followed by a brief report summarising the operating experience gained with this 2nd core, as well as by an evaluation of measured data and statements concerning the usefulness of the knowledge gained for the development of future reactor cores. Quite a number of these data have been used to improve the concept and thus the specifications for the fuel elements of the 3rd core of the reactor of the NS Otto Hahn. (orig./HP) [de

  20. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  1. Low-fluence 1,064-nm laser hair reduction for pseudofolliculitis barbae in skin types IV, V, and VI.

    Science.gov (United States)

    Schulze, Rafael; Meehan, Ken J; Lopez, Antonia; Sweeney, Kasina; Winstanley, Doug; Apruzzese, William; Victor Ross, E

    2009-01-01

    To evaluate the efficacy of a 1,064-nm neodymium-doped yttrium aluminium garnet (Nd:YAG) laser using lower than traditional fluences (22-40 J/cm(2)) for treatment of pseudofolliculitis barbae (PFB). Twenty-two patients with PFB refractory to conservative therapy received five weekly treatments over the anterior neck using a 1,064-nm Nd:YAG laser at 12 J/cm(2). Pulse duration was 20 ms with 10 mm spot size. Topical anesthesia was not used. Treatments were completed 15 minutes after patient arrival. Patients presented for 2- and 4-week follow-up. Ten evaluators used a Global Assessment Scale (GAS) to assess dyspigmentation, papule counts, and cobblestoning by comparing baseline to 4-week follow-up visit photographs. Hair and papule counts were performed on five patients and compared with the GAS. Investigators recorded adverse effects using a visual analog and side effects scale. Eleven patients demonstrated 83% improvement on the GAS (pPFB. Subjects noted minimal pain without topical anesthesia.

  2. Sub?40?fs, 1060?nm Yb?fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    OpenAIRE

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-01-01

    © 2015 The Authors. Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a > 100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key perform...

  3. Selective tuning of magnetization dynamics damping in Tb- and Nd-doped permalloy ultrathin films by adjacent copper nanolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong, E-mail: physzd@yahoo.com [School of Physics Science and Information Engineering, Key Lab. of Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252059 (China); Physics Department, Southeast University, Nanjing 211189 (China); Yue, Jinjin; Jiang, Sheng [Physics Department, Southeast University, Nanjing 211189 (China); Zhai, Ya, E-mail: yazhai@seu.edu.cn [Physics Department, Southeast University, Nanjing 211189 (China); National Laboratory of Solid Microstructures, Nanjing University, Nanjing 210093 (China); Du, Jun; Zhai, Hongru [National Laboratory of Solid Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-07-05

    The mechanism of angular dependence of ferromagnetic resonance linewidth of dilute Tb and Nd doping in permalloy thin films with various thicknesses of adjacent copper layer are investigated by experimental approach and theoretical fitting by considering the contributions from intrinsic spin-orbit coupling, inhomogeneous broadening and two-magnon scattering. The results show that the damping coefficient α, by intrinsic contribution extracted from ferromagnetic resonance linewidth, increases from 0.0153 to 0.0218 for NiFe–Nd films and from 0.0193 to 0.0261 for NiFe–Tb films resulting from the spin pumping effect at the interface of NiFe–Nd(or Tb)/Cu as the thickness of copper layer increases from 1 nm to 15 nm. The surface magnetic anisotropy constant K{sub 1} is obtained and shows an decreasing trend from positive to negative, which implies that the copper layer could reduce the surface perpendicular anisotropy. The fitting spin mixed conductivity is (2.72 ± 0.18) × 10{sup 15} cm{sup −2} at NiFe–Tb/Cu interface and (2.4 ± 0.2) × 10{sup 15} cm{sup −2} at Cu/NiFe–Nd interface, respectively. - Highlights: • The thickness of Cu buffer layer affects the surface perpendicular anisotropy of FM layer. • The interface roughness could be investigated by using FMR linewidth. • The damping coefficient is enhanced by spin-pumping effect.

  4. In-vivo third-harmonic generation microscopy at 1550nm three-dimensional long-term time-lapse studies in living C. elegans embryos

    Science.gov (United States)

    Aviles-Espinosa, Rodrigo; Santos, Susana I. C. O.; Brodschelm, Andreas; Kaenders, Wilhelm G.; Alonso-Ortega, Cesar; Artigas, David; Loza-Alvarez, Pablo

    2011-03-01

    In-vivo microscopic long term time-lapse studies require controlled imaging conditions to preserve sample viability. Therefore it is crucial to meet specific exposure conditions as these may limit the applicability of established techniques. In this work we demonstrate the use of third harmonic generation (THG) microscopy for long term time-lapse three-dimensional studies (4D) in living Caenorhabditis elegans embryos employing a 1550 nm femtosecond fiber laser. We take advantage of the fact that THG only requires the existence of interfaces to generate signal or a change in the refractive index or in the χ3 nonlinear coefficient, therefore no markers are required. In addition, by using this wavelength the emitted THG signal is generated at visible wavelengths (516 nm) enabling the use of standard collection optics and detectors operating near their maximum efficiency. This enables the reduction of the incident light intensity at the sample plane allowing to image the sample for several hours. THG signal is obtained through all embryo development stages, providing different tissue/structure information. By means of control samples, we demonstrate that the expected water absorption at this wavelength does not severely compromise sample viability. Certainly, this technique reduces the complexity of sample preparation (i.e. genetic modification) required by established linear and nonlinear fluorescence based techniques. We demonstrate the non-invasiveness, reduced specimen interference, and strong potential of this particular wavelength to be used to perform long-term 4D recordings.

  5. Luminescence properties of Nd3+-doped Y2O3 nanoparticles in organic media

    International Nuclear Information System (INIS)

    Cui, Xiaoxia; Hou, Chaoqi; Lu, Jiabao; Gao, Chao; Wei, Wei; Peng, Bo

    2011-01-01

    Nd 3+ -doped yttrium oxide nanoparticles (Y 2 O 3 :Nd) with cubic phase were obtained successfully by a glycine-nitrate solution combustion method. The results of Fourier transform infrared spectra (FTIR) showed that the -OH groups residing on the nanoparticles surfaces were reduced effectively by modifying with capping agent. The modified Y 2 O 3 :Nd nanoparticles displayed good monodispersity and excellent luminescence in N,N-dimethylformamide (DMF) solvent. Some optical parameters were calculated by Judd-Ofelt analysis based on absorption and fluorescence spectra. A relative large stimulated emission cross section, 1.7 x 10 -20 cm 2 , of the 4 F 3/2 → 4 I 11/2 transition was calculated. Theses results show that the modified Y 2 O 3 :Nd nanoparticles display good luminescence behavior in organic media. (orig.)

  6. Characteristics of a Ti:sapphire laser pumped by a Nd:YAG laser and its analysis. Nd:YAG laser reiki Ti:sapphire laser no dosa tokusei to sono kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T.; Masumoto, J.; Mizunami, T.; Maeda, M.; Muraoka, K. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1991-06-29

    Although Ti: Sapphire expects of a possibility of being a light source much superior to a dye laser having been used as a wavelength variable laser for spectral analyses, it has a limitation that it does not oscillate directly in the visible and ultraviolet regions. In order to develop a light source that is synchronizable over ultraviolet-near infrared regions, by means of combining a Ti: Sapphire laser of a high peak power, comprising an oscillator and a multistage amplifier, with a non-linear frequency conversion method for harmonic generation and Raman conversion, a prototype Ti:Sapphire laser that is excited by YAG laser second harmonic, and that synchronizes with a prism was fabricated, and its operational characteristics were investigated. As a result, an output energy of 35.6 mJ at a maximum was obtained at a wavelength of 773 nm against an excitation energy of 129 mJ, a conversion efficiency of 38.2% was obtained against the absorption energy of the crystals, and a continuous synchronism was achieved over 750 to 900 nm. 4 refs., 9 figs., 1 tab.

  7. A route for recycling Nd from Nd-Fe-B magnets using Cu melts

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Martina; Gebert, Annett, E-mail: a.gebert@ifw-dresden.de; Stoica, Mihai; Uhlemann, Margitta; Löser, Wolfgang

    2015-10-25

    Phase evolutions in Nd-Fe-B magnet/Cu systems have been explored with regard to Nd recycling. It was demonstrated that large scale phase separation into a ferromagnetic Fe(B)-rich ingot core with α-Fe main phase and a non-magnetic (Cu,Nd)-rich ingot rim takes place upon arc melting with Cu fractions ≥ 21.5 wt.-%. The re-solidification of the Nd{sub 2}Fe{sub 14}B magnet main phase is suppressed. The rim consists of the Cu{sub 2}Nd main phase and CuNd/Cu{sub 4}Nd minority phases in which Al traces from the magnetic material are gathered. Induction melting of such Nd-Fe-B/Cu mixtures can support the separation of these phase regions with very sharp boundaries. Main features of liquid phase separation and microstructure evolution have been interpreted on the basis of Nd-Fe-Cu phase diagram data. The key advantage with respect to Nd recycling from Nd-Fe-B permanent magnet scrap is the substantial accumulation of Nd in the (Cu,Nd)-rich region of the phase separated solidified specimen, which can be easily detached from the Fe-rich part by mechanical-magnetic treatments. Such portions contained up to ∼44 wt.-% Nd (25 at.-%) in first lab-scale experiments. Nd recovery from the (Cu,Nd)-rich fractions is possible by exploiting the large chemical property differences between the reactive rare earths elements and Cu. - Highlights: • phase evolution analysis in Nd-Fe-B magnet/Cu systems with regard to Nd recycling. • Cu ≥ 21 wt.-%, large scale phase separation- Fe(B)-rich ingot core, (Cu,Nd)-rich rim. • high Nd content (∼44 wt.-%) of (Cu,Nd)-rich region, mechanical-magnetic treatments.

  8. Read-through transcript from NM23-H1 into the neighboring NM23-H2 gene encodes a novel protein, NM23-LV

    NARCIS (Netherlands)

    Valentijn, Linda J.; Koster, Jan; Versteeg, Rogier

    2006-01-01

    NM23-H1 and NM23-H2 are neighboring genes on chromosome 17q. They encode nucleoside diphosphate kinases that have additional roles in signal transduction, transcription, and apoptosis. NM23-H1 expression is a strong marker for prognosis and metastatic behavior in many tumor types. A new

  9. Laser Requirements for High-Order Harmonic Generation by Relativistic Plasma Singularities

    Directory of Open Access Journals (Sweden)

    Alexander S. Pirozhkov

    2018-03-01

    Full Text Available We discuss requirements on relativistic-irradiance (I0 > 1018 W/cm2 high-power (multi-terawatt ultrashort (femtosecond lasers for efficient generation of high-order harmonics in gas jet targets in a new regime discovered recently (Pirozhkov et al., 2012. Here, we present the results of several experimental campaigns performed with different irradiances, analyse the obtained results and derive the required laser parameters. In particular, we found that the root mean square (RMS wavefront error should be smaller than ~100 nm (~λ/8. Further, the angular dispersion should be kept considerably smaller than the diffraction divergence, i.e., μrad level for 100–300-mm beam diameters. The corresponding angular chirp should not exceed 10−2 μrad/nm for a 40-nm bandwidth. We show the status of the J-KAREN-P laser (Kiriyama et al., 2015; Pirozhkov et al., 2017 and report on the progress towards satisfying these requirements.

  10. High output power of differently cut Nd:MgO:LiTaO3 CW lasers

    Science.gov (United States)

    Sun, D. H.; Liu, S. D.; Wang, D. Z.; Sang, Y. H.; Kang, X. L.; Liu, H.; Bi, Y.; Yan, B. X.; He, J. L.; Wang, J. Y.

    2013-04-01

    A high-quality Nd3+ and Mg2+ co-doped LiTaO3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd-Ofelt (J-O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd3+ doped periodically poled MgO:LiTaO3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices.

  11. High output power of differently cut Nd:MgO:LiTaO3 CW lasers

    International Nuclear Information System (INIS)

    Sun, D H; Liu, S D; Wang, D Z; Sang, Y H; Kang, X L; Liu, H; He, J L; Wang, J Y; Bi, Y; Yan, B X

    2013-01-01

    A high-quality Nd 3+ and Mg 2+ co-doped LiTaO 3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd–Ofelt (J–O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd 3+ doped periodically poled MgO:LiTaO 3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices. (paper)

  12. Study on magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys

    Science.gov (United States)

    Tan, G. S.; Xu, H.; Yu, L. Y.; Tan, X. H.; Zhang, Q.; Gu, Y.; Hou, X. L.

    2017-09-01

    In the present work, (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH)max) and remanence (Br) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd0.8Ce0.2)1.6Fe12Co2B alloy.

  13. Single crystal growth and nonlinear optical properties of Nd3+ doped STGS crystal for self-frequency-doubling application

    Science.gov (United States)

    Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian

    2017-11-01

    The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.

  14. Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In

    Science.gov (United States)

    Sala, G.; Mašková, S.; Stone, M. B.

    2017-10-01

    We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.

  15. Phase relations in the ZrO2-Nd2O3-Y2O3 system. Experimental study and CALPHAD assessment

    International Nuclear Information System (INIS)

    Fabrichnaya, Olga; Savinykh, Galina; Schreiber, Gerhard; Seifert, Hans J.

    2010-01-01

    The thermodynamic parameters of the Nd 2 O 3 Y 2 O 3 system were re-assessed for better reproduction of experimental data. The thermodynamic parameters were combined from binary descriptions to calculate phase diagrams for the ternary system ZrO 2 -Nd 2 O 3 Y 2 O 3 . The calculated phase diagrams were used to select compositions for the experimental studies at 1250, 1400 and 1600 C. The samples were synthesised by co-precipitation and heat treated at 1250-1600 C, investigated by X-ray diffraction and scanning electron microscopy combined with energy dispersive X-ray spectroscopy. It was found that solubility of the Y 2 O 3 in the pyrochlore phase exceeds 10 mol.%. The experimental data obtained for phase equilibria were used to derive thermodynamic parameters for fluorite, Y 2 O 3 cubic phase C, monoclinic B and Nd 2 O 3 hexagonal A phases by CALPHAD method. The isothermal sections and liquidus surface were calculated for the ZrO 2 -Nd 2 O 3 Y 2 O 3 system. (orig.)

  16. 2nd International Arctic Ungulate Conference

    OpenAIRE

    Anonymous, A.

    1996-01-01

    The 2nd International Arctic Ungulate Conference was held 13-17 August 1995 on the University of Alaska Fairbanks campus. The Institute of Arctic Biology and the Alaska Cooperative Fish and Wildlife Research Unit were responsible for organizing the conference with assistance from biologists with state and federal agencies and commercial organizations. David R. Klein was chair of the conference organizing committee. Over 200 people attended the conference, coming from 10 different countries. T...

  17. Relation of high harmonic spectra to electronic structure in N2

    International Nuclear Information System (INIS)

    Farrell, J.P.; McFarland, B.K.; Guehr, M.; Bucksbaum, P.H.

    2009-01-01

    High harmonics of N 2 exhibit a number of features that are related to the electronic structure and sub-femtosecond dynamics of the molecule. Through measurements and simulations, we show how the harmonic spectral shape, spectral phase, alignment angle dependence, and intensity dependence can be related to the strong-field ionization and recombination dynamics of the HOMO and HOMO-1 electron orbitals. A field-free static model of the molecule is insufficient to explain the observations.

  18. A prototype imaging second harmonic interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.; Bretz, N.L.

    1997-01-01

    We have built a prototype imaging second harmonic interferometer, which is intended to test critical elements of a design for a tangential array interferometer on C-Mod 6 . The prototype uses a pulsed, 35 mJ, 10 Hz multimode, Nd:YAG laser, LiB 3 O 5 doublers, a fan beam created by a cylindrical lens, four retroreflector elements, and a CCD camera as a detector. The prototype also uses a polarization scheme in which the interference information is eventually carried by two second harmonic beams with crossed polarization. These are vector summed and differenced, and separated, by a Wollaston prism, to give two spots on the CCD. There is a pair of these spots for each retroreflector used. The phase information is directly available as the ratio of the difference to sum the intensities of the two spots. We have tested a single channel configuration of this prototype, varying the phase by changing the pressure in an air cell, and we have obtained a 5:1 light to dark ratio, and a clear sinusoidal variation of the ratio as a function of pressure change. copyright 1997 American Institute of Physics

  19. Nonlinear processes in laser-produced dense plasma (observation of the fractional harmonics)

    International Nuclear Information System (INIS)

    Lyu, K.S.

    1988-01-01

    One of the main issues of laser plasma physics interactions is harmonic generation. The harmonic emission spectrum provides clues as to which non-linear processes take place in the plasma. Several effects contribute to a given line as judged from the complexity of the actual spectra. Unfolding of them has not been done satisfactorily yet. Harmonic lines with half integer or integer orders have been observed, but the physics are far from complete. In this dissertation research, we observed the usual second harmonic generation and a set of fractional harmonics which we believe have been observed for the first time in plasma physics. The plasma was produced by a high power laser and we have characterized its properties from the analysis of the radiation spectra, including the harmonic lines, as measured using the methods of transient spectroscopy. We produced the plasma with a Nd:glass laser which had a 65 nsec pulse width (FWHM) with a total energy of up to 6 Joules. The targets were steel alloys, copper, and aluminum. The harmonic generation from the plasma with a planar metal target was not strong. But, it became stronger when we made a dead hole (cavity) at the laser spot on the target surface. The second harmonic line appears first before the time of the peak of laser pulse. The fractional harmonics, which are related to the laser wavelength by rational number other than integers or half integers, appear near or after the time of the laser peak and weaker in UV wavelength range but stronger if some atomic emission line are near by. To understand the plasma evolution better, we developed computer simulation codes. The codes contain all relevant processes necessary to compute the plasma evolution

  20. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  1. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  2. Near-infrared photoluminescence in La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{sup 3+}(Ln = Nd/Yb) for sensitization of c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawala, N. S., E-mail: nssawala@gmail.com; Koparkar, K. A.; Omanwar, S. K. [Department of Physics, SantGadge Baba Amravati University, Amravati - MH, 444602 (India); Bajaj, N. S. [Department of Physics, Toshniwal Art, Commerce and Science College, Sengoan, Hingoli - MH (India)

    2016-05-06

    The host matrix LaAlO{sub 3} was synthesized by conventional solid state reaction method in which the Nd{sup 3+} ions and Yb{sup 3+} ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd{sup 3+} ion doped LaAlO{sub 3} converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb{sup 3+} ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{sup 3+}(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.

  3. Optical properties of Nd3+ doped barium lithium fluoroborate glasses for near-infrared (NIR) emission

    Science.gov (United States)

    Mariselvam, K.; Arun Kumar, R.; Suresh, K.

    2018-04-01

    The neodymium doped barium lithium fluoroborate (Nd3+: BLFB) glasses with the chemical composition (70-x) H3BO3 - 10 Li2CO3 - 10 BaCO3- 5 CaF2-5 ZnO - x Nd2O3 (where x = 0.05, 0.1, 0.25, 0.5, 1, 2 in wt %) have been prepared by the conventional melt quenching technique and characterised through optical absorption, near infrared emission and decay-time measurements. The x-ray diffraction studies confirm the amorphous nature of the prepared glasses. The optical absorption spectra and emission spectra were recorded in the wavelength ranges of 190-1100 nm. The optical band gap (Eg) and Urbach energy (ΔE) values were calculated from the absorption spectra. The Judd-Ofelt intensity parameters were determined from the systematic analysis of the absorption spectrum of neodymium ions in the prepared glasses. The emission spectra exhibited three prominent peaks at 874, 1057, 1331 nm corresponding to the 4F3/2 → 4I9/2, 11/2, 13/2 transitions levels respectively in the near infrared region. The emission intensity of the 4F3/2 → 4I11/2 transition increases with the increase in neodymium concentration up to 0.5 wt% and the concentration quenching mechanism was observed for 1 wt% and 2 wt% concentrations. The lifetime of the 4F3/2 level was found to decrease with increasing Nd3+ ion concentration. The nature of energy transfer process was a single exponential curve which was studied for all the glasses and analysed.

  4. From 1st- to 2nd-Generation Biofuel Technologies: Extended Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report looks at the technical challenges facing 2nd-generation biofuels, evaluates their costs and examines related current policies to support their development and deployment. The potential for production of more advanced biofuels is also discussed. Although significant progress continues to be made to overcome the technical and economic challenges, 2nd-generation biofuels still face major constraints to their commercial deployment.

  5. Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe_2

    International Nuclear Information System (INIS)

    Wang Pei-Pei; Xue Mian-Qi; Long Yu-Jia; Zhao Ling-Xiao; Cai Yao; Yang Huai-Xin; Li Jian-Qi; Ren Zhi-An; Chen Gen-Fu

    2015-01-01

    We synthesize a set of Pd-doped polycrystalline samples Pd_xNdSeTe_2 and measure their physical properties. Compared with pure NdSeTe_2, the charge density wave (CDW) order is continuously suppressed with the Pd-intercalation. Bulk superconductivity first appears at x = 0.06 with T_c nearly 2.5K, coexisting with a CDW transition at 176K. Further Pd-doping enhances T_c, until it reaches the maximum value 2.84K at x=0.1, meanwhile the CDW transition vanishes. The upper critical field for the optimal doping sample Pd_0_._1NdSeTe_2 is determined from the R-H measurement, which is estimated to be 0.6 T. These results provide another kind of ideal compound for studying the interplay between CDW and superconductivity systematically. (paper)

  6. Harmonic sextupole magnets for Indus-2

    International Nuclear Information System (INIS)

    Thakur, Vanshree; Das, S.; Kumar, Sudhir; Sreeramulu, K.; Kumar, Ashok; Srinivasan, B.; Singh, Kushraj; Mishra, Anil Kumar; Shinde, R.S.

    2015-01-01

    The chromaticity correction of electron beam in Indus-2 is done using 32 sextupole magnets. To suppress the non-linearity induced by these chromatic sextupole magnets and thereby to improve the dynamic aperture, harmonic sextupole magnets are required in Indus-2. Due to the limitation of space in the ring, these magnets also incorporate windings for skew quadrupole component to reduce the coupling between the two transverse planes and combined function (horizontal-H and vertical-V) steering field components for the beam orbit correction. These magnets will replace the existing 32 combined function H and V steering magnets. The limited space along and across the beam direction in the ring put a restriction on the size of the magnet. Also space constraint in the power cable tray demands the use of low current air cooled conductor for the coil windings of skew quadrupole and steering dipole components. These restrictions made the design optimization of harmonic sextupole magnet is more challenging. The design has been carried out using 2d POISSON and OPERA 3d codes. The steel length is chosen as 126 mm to keep the overall physical length of the magnet within 250 mm to accommodate it in the existing limited available space in Indus-2. The magnet is designed with the aperture radius of 60 mm for the maximum integrated strength of 17 T/m and 0.1 T for the sextupole and skew quadrupole fields respectively and 1.6 mrad kick strength for the horizontal and vertical steering. A prototype magnet with core made of low carbon steel material has been developed. The details of the design and development of the prototype magnet with results will be discussed in this paper. (author)

  7. Characterization of caries progression on dentin after irradiation with Nd:YAG laser by FTIR spectroscopy and fluorescence imaging

    Science.gov (United States)

    Ana, P. A.; Brito, A. M. M.; Zezell, D. M.; Lins, E. C. C. C.

    2015-06-01

    Considering the use of high intensity lasers for preventing dental caries, this blind in vitro study evaluated the compositional and fluorescence effects promoted by Nd:YAG laser (λ=1064 nm) when applied for prevention of progression of dentin caries, in association or not with topical application of acidulated phosphate fluoride (APF). Sixty bovine root dentin slabs were prepared and demineralized by 32h in order to create early caries lesions. After, the slabs were distributed into six experimental groups: G1- untreated and not submitted to a pH-cycling model; G2- untreated and submitted to a pH-cycling model; G3- acidulated phosphate fluoride application (APF); G4- Nd:YAG irradiation (84.9 J/cm2, 60 mJ/pulse); G5- treated with Nd:YAG+APF; G6- treated with APF+Nd:YAG. After treatments, the samples of groups G2 to G6 were submitted to a 4-day pH-cycling model in order to simulate the progression of early caries lesions. All samples were characterized by the micro-attenuated total reflection technique of Fourier transformed infrared spectroscopy (μATR-FTIR), using a diamond crystal, and by a fluorescence imaging system (FIS), in which it was used an illuminating system at λ= 405±30 nm. Demineralization promoted reduction in carbonate and phosphate contents, exposing the organic matter; as well, it was observed a significant reduction of fluorescence intensity. Nd:YAG laser promoted additional chemical changes, and increased the fluorescence intensity even with the development of caries lesions. It was concluded that the compositional changes promoted by Nd:YAG, when associated to APF, are responsible for the reduction of demineralization progression observed on root dentin.

  8. Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal

    International Nuclear Information System (INIS)

    Chen Yujin; Lin Yanfu; Gong Xinghong; Tan Qiguang; Zhuang Jian; Luo Zundu; Huang Yidong

    2007-01-01

    The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd 3+ :KGd(WO 4 ) 2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd 3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd 3+ :KGd(WO 4 ) 2 crystal was discussed

  9. Structural and magnetic transformations in NdMn2Hx hydrides

    International Nuclear Information System (INIS)

    Budziak, A.; Zachariasz, P.; Pełka, R.; Figiel, H.; Żukrowski, J.; Woch, M.W.

    2012-01-01

    Highlights: ► Full structural phase diagram is presented for the NdMn 2 H x (2.0 ≤ x ≤ 4.0) hydrides in the temperature range of 70–385 K. ► For samples x = 2.0, 2.5, and 4.0 a splitting into two phases with different hydrogen concentrations are observed. ► Only for samples with x = 3.0 and 3.5 no spinodal decompositions are detected. ► The effects of hydrogen absorption on structural properties are shown to be reflected in magnetic behavior. ► A huge jump of magnetic ordering temperatures from ∼104 K for host NdMn 2 to above 200 K for its hydrides is observed or anticipated. - Abstract: X-ray powder diffraction and bulk magnetization measurements were used to study structural and magnetic properties of hydrides NdMn 2 H x (2.0 ≤ x ≤ 4.0). The X-ray investigations performed in the temperature range 70–385 K have revealed many structural transformations at low temperatures. In particular, a transformation from the hexagonal to the monoclinic phase and spinodal decompositions were observed. The magnetic behavior of the hydrides is correlated with the structural transitions. A tentative structural diagram is presented. The obtained results are compared with the properties of other cubic and hexagonal RMn 2 H x hydrides.

  10. Measurement and control of the frequency chirp rate of high-order harmonic pulses

    International Nuclear Information System (INIS)

    Mauritsson, J.; Johnsson, P.; Lopez-Martens, R.; Varju, K.; L'Huillier, A.; Kornelis, W.; Biegert, J.; Keller, U.; Gaarde, M.B.; Schafer, K.J.

    2004-01-01

    We measure the chirp rate of harmonics 13 to 23 in argon by cross correlation with a 12 femtosecond probe pulse. Under low ionization conditions, we directly measure the negative chirp due to the atomic dipole phase, and show that an additional chirp on the pump pulse is transferred to the qth harmonic as q times the fundamental chirp. Our results are in accord with simulations using the experimentally measured 815 nm pump and probe pulses. The ability to measure and manipulate the harmonic chirp rate is essential for the characterization and optimization of attosecond pulse trains

  11. An Enhanced GINGER Simulation Code with Harmonic Emission and HDF5 IO Capabilities

    International Nuclear Information System (INIS)

    Fawley, William M.

    2006-01-01

    GINGER [1] is an axisymmetric, polychromatic (r-z-t) FEL simulation code originally developed in the mid-1980's to model the performance of single-pass amplifiers. Over the past 15 years GINGER's capabilities have been extended to include more complicated configurations such as undulators with drift spaces, dispersive sections, and vacuum chamber wakefield effects; multi-pass oscillators; and multi-stage harmonic cascades. Its coding base has been tuned to permit running effectively on platforms ranging from desktop PC's to massively parallel processors such as the IBM-SP. Recently, we have made significant changes to GINGER by replacing the original predictor-corrector field solver with a new direct implicit algorithm, adding harmonic emission capability, and switching to the HDF5 IO library [2] for output diagnostics. In this paper, we discuss some details regarding these changes and also present simulation results for LCLS SASE emission at λ = 0.15 nm and higher harmonics

  12. Effect of Nd substitution for Ca on crystal structure, optical and magnetic properties of multiferroic Bi0.9Ca0.1FeO3

    International Nuclear Information System (INIS)

    Quan, Chuye; Ma, Yuhui; Han, Yumin; Tang, Xingxing; Lu, Mengjia; Mao, Weiwei; Zhang, Jian; Yang, Jianping; Li, Xing’ao

    2015-01-01

    Highlights: • Crystal structure of doped samples transform to two phase coexistence. • The crystal size decreased to ∼50 nm after doping. • Ultraviolet absorption peak demonstrates apparent blue shift for doped sample. • The ratio of Fe 2+ increased by merging Nd. • Ca, Nd co-doped can promote the ferromagnetism obviously. - Abstract: Pure and co-doped BiFeO 3 (Ca, Nd) nanoparticles with diameter in the range of 50–250 nm were synthesized through a sol–gel method. X-ray diffraction (XRD) and Raman results show that Bi-site co-doped with Ca, Nd could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). An apparent blue shift can be observed in the co-doped samples along with a decrease of the direct optical band gap. Moreover, the leakage current was decreased due to the introduction of nonvolatile Ca and Nd at Bi 3+ site. Analysis of MPMS-VSM magnetic hysteresis data reveals a further enhancement in magnetism in the Nd doped Bi 0.9 Ca 0.1 FeO 3, which is further explained by XPS characterization

  13. Second harmonic inversion for ultrasound contrast harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  14. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  15. Dual functional NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ core-shell nanoparticles for cell temperature sensing and imaging

    Science.gov (United States)

    Shi, Zengliang; Duan, Yue; Zhu, Xingjun; Wang, Qiwei; Li, DongDong; Hu, Ke; Feng, Wei; Li, Fuyou; Xu, Chunxiang

    2018-03-01

    Lanthanide-doped up-conversion nanoparticles (UCNPs) provide a remote temperature sensing approach to monitoring biological microenvironments. In this research, the UCNPs of NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ with hexagonal (β)-phase were synthesized and applied in cell temperature sensing as well as imaging after surface modification with meso-2, 3-dimercaptosuccinic acid. In the core-shell UCNPs, Yb3+ ions were introduced as energy transfer media between sensitizers of Nd3+ and activators of Er3+ to improve Er3+emission and prevent their quenching behavior due to multiple energy levels of Nd3+. Under the excitations of 808 nm and 980 nm lasers, the NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ nanoparticles exhibited an efficient green band with two emission peaks at 525 nm and 545 nm, respectively, which originated from the transitions of 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 for Er3+ ions. We demonstrate that an occurrence of good logarithmic linearity exists between the intensity ratio of these two emission peaks and the reciprocal of the inside or outside temperature of NIH-3T3 cells. A better thermal stability is proved through temperature-dependent spectra with a heating-cooling cycle. The obtained viability of NIH-3T3 cells is greater than 90% after incubations of about 12 and 24 (h), and they possess a lower cytotoxicity of UCNPs. This work provides a method for monitoring the cell temperature and its living state from multiple dimensions including temperature response, cell images and visual up-conversion fluorescent color.

  16. Preparation and Properties of Anisotropic Nano-crystalline NdFeB Powders Made by Hydrogen Decrepitation of Die Upsetting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yi, P P; Lee, D; Yan, A R, E-mail: ypp@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2011-01-01

    Anisotropic nanocrystalline NdFeB powders were prepared by hydrogen decrepitation (HD) of die upsetting magnets. The effects of varying temperatures of HD on the microstructure and magnetic properties of the anisotropic NdFeB particles were studied. It shows that the powders which obtained by HD process at higher temperature were larger than that at lower temperature, and the HD powders show a well anisotropy at 723 K, the remanence (B{sub r}) was more than 12.46 kG, the maximum energy product ((BH){sub max}) was 19.06 MGOe, and the coercivity (H{sub cj}) was 7.2 kOe. The microstructure of the anisotropic powders revealed that with a reasonable HD temperature, the platelet grains were not destroyed. They were nearly 150-300 nm long and 30-50 nm wide. The results indicate that HD process was an effective way to prepare the anisotropic NdFeB powders.

  17. Nd Fe10 Mo2 alloys production through reduction-diffusion for nitrogenation

    International Nuclear Information System (INIS)

    Guilherme, Eneida da G.; Rechenberg, Hercilio R.

    1996-01-01

    In this work we have examined the effect of various processing variables on the Nd Fe 10 Mo 2 phase formation by reduction-diffusion calciothermic process (R D C). The best results were obtained for 4 hours treatment at 950 deg C with 40% excess content Nd Cl 3 and 50% excess content of Ca, for alloy Nd Fe 10.5 Mo 1.5 . Preliminary nitrogen absorption experiments have been done, without any further powder size reduction at temperatures between 300 and 350 deg C. (author)

  18. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.

    Science.gov (United States)

    Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing

    2016-01-25

    Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.

  19. High-resolution second-harmonic microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2003-01-01

    , and the spatial resolution at the pump wavelength of 790 nm is determined to be better than 0.7 m. SHSOM images of positively poled silica waveguides were obtained for different polarization combinations of the incident pump beam and the detected second-harmonic radiation. Calibration of the SHSOM with a Ga...

  20. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser

    Science.gov (United States)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin

    2018-04-01

    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.