WorldWideScience

Sample records for nk gene complex

  1. Evolution of the C-Type Lectin-Like Receptor Genes of the DECTIN-1 Cluster in the NK Gene Complex

    Directory of Open Access Journals (Sweden)

    Susanne Sattler

    2012-01-01

    Full Text Available Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.

  2. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  3. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    Energy Technology Data Exchange (ETDEWEB)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application.

  4. Identification of human pre-T/NK cell-associated genes

    NARCIS (Netherlands)

    Ranes-Goldberg, M. G.; Hori, T.; Mohan-Peterson, S.; Spits, H.

    1993-01-01

    We have used a combination of subtractive cloning and differential screening techniques to identify genes preferentially expressed in early stages of human T/NK cell development compared with mature T and NK cells. A fetal liver-derived cytoplasmic (c) CD3+ membrane (m) CD3- clone, FL508, which

  5. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    Science.gov (United States)

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus

  6. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2014-12-01

    Full Text Available Yin Zhu,1,* Ming Cheng,2,* Zhen Yang,3 Chun-Yan Zeng,3 Jiang Chen,3 Yong Xie,3 Shi-Wen Luo,3 Kun-He Zhang,3 Shu-Feng Zhou,4 Nong-Hua Lu1,31Department of Gastroenterology, 2Department of Orthopedics, 3Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workAbstract: Mesenchymal stem cells (MSCs have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP. Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor

  7. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia.

    Science.gov (United States)

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A F; Drexler, Hans G

    2017-09-15

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells.

  8. Expression of the Bovine NK-Lysin Gene Family and Activity against Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Junfeng Chen

    Full Text Available Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome contains a family of four genes, one of which is expressed preferentially in the lung. In this study, we compared the expression of the four bovine NK-lysin genes in healthy animals to animals challenged with pathogens known to be associated with bovine respiratory disease (BRD using transcriptome sequencing (RNA-seq. The expression of several NK-lysins, especially NK2C, was elevated in challenged relative to control animals. The effects of synthetic peptides corresponding to functional region helices 2 and 3 of each gene product were tested on both model membranes and bio-membranes. Circular dichroism spectroscopy indicated that these peptides adopted a more helical secondary structure upon binding to an anionic model membrane and liposome leakage assays suggested that these peptides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects of these peptides on BRD-associated bacteria, including both Pasteurella multocida and Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multocida cells by transmission electron microscopy revealed the lysis of target membranes. These studies demonstrate that the expanded bovine NK-lysin gene family is potentially important in host defense against pathogens involved in bovine respiratory disease.

  9. Neurokinin-1 (NK-1 receptor and brain-derived neurotrophic factor (BDNF gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain

    Directory of Open Access Journals (Sweden)

    McCarson Kenneth E

    2007-10-01

    Full Text Available Abstract Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1 receptors and brain-derived neurotrophic factor (BDNF, known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB, while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  10. NK cells are intrinsically functional in pigs with Severe Combined Immunodeficiency (SCID) caused by spontaneous mutations in the Artemis gene

    Science.gov (United States)

    We have identified Severe Combined Immunodeficiency (SCID) in a line of Yorkshire pigs at Iowa State University. These SCID pigs lack B-cells and T-cells, but possess Natural Killer (NK) cells. This SCID phenotype is caused by recessive mutations in the Artemis gene. Interestingly, two human tumor c...

  11. Complex-network analysis of combinatorial spaces: the NK landscape case.

    Science.gov (United States)

    Tomassini, Marco; Vérel, Sébastien; Ochoa, Gabriela

    2008-12-01

    We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inherent networks proposed for energy surfaces. We use the well-known family of NK landscapes as an example. In our case the inherent network is the graph whose vertices represent the local maxima in the landscape, and the edges account for the transition probabilities between their corresponding basins of attraction. We exhaustively extracted such networks on representative NK landscape instances, and performed a statistical characterization of their properties. We found that most of these network properties are related to the search difficulty on the underlying NK landscapes with varying values of K .

  12. Mapping and genotypic analysis of NK-lysin gene in chicken

    Science.gov (United States)

    NK-lysin is a cationic anti-microbial peptide that plays a critical role in innate immunity against infectious pathogens. Chicken NK-lysin has been cloned and its antimicrobial and anticancer activity has been described but its location in the chicken genome prior this study was unknown. A 6000 rad ...

  13. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  14. Decreased methylation of the NK3 receptor coding gene (TACR3) after cocaine-induced place preference in marmoset monkeys.

    Science.gov (United States)

    Barros, Marilia; Dempster, Emma L; Illott, Nicholas; Chabrawi, Soha; Maior, Rafael S; Tomaz, Carlos; Silva, Maria A De Souza; Huston, Joseph P; Mill, Jonathan; Müller, Christian P

    2013-05-01

    Epigenetic processes have been implicated in neuronal plasticity following repeated cocaine application. Here we measured DNA methylation at promoter CpG sites of the dopamine transporter (DAT1) and serotonin transporter (SERT) and neurokinin3-receptor (NK3-R)-receptor (TACR3) coding genes in marmoset monkeys after repeated cocaine injections in a conditioned place preference paradigm. We found a decrease in DNA methylation at a specific CpG site in TACR3, but not DAT1 or SERT. Thus, TACR3 is a locus for DNA methylation changes in response to repeated cocaine administration and its establishment as a reinforcer, in support of other evidence implicating the NK3-R in reinforcement- and addiction-related processes. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  15. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440.

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Chi; Gong, Ting; Zuo, Zhenqiang; Zhao, Fengjie; Fan, Xu; Yang, Chao; Song, Cunjiang

    2015-06-01

    A markerless gene replacement method was adapted by combining a suicide plasmid, pEX18Tc, with a counterselectable marker, the upp gene encoding uracil phosphoribosyltransferase (UPRTase), for the medium-chain length polyhydroxyalkanoates (PHA(MCL))-producing strain Pseudomonas mendocina NK-01. An NK-01 5-fluorouracil (5-FU) resistant background strain was first constructed by deleting the chromosomal upp gene. The suicide plasmid pEX18Tc, carrying a functional allele of the upp gene of P. mendocina NK-01, was used to construct the vectors to delete the algA (encoding mannose-1-phosphate guanylyltransferase) and phaZ (encoding PHA(MCL) depolymerase) genes, and a 30 kb chromosomal fragment in the 5-FU resistant background host. The genes were removed efficiently from the genome of P. mendocina NK-01 and left a markerless chromosomal mutant. In addition, two exogenous genes were inserted into the phaC1 (PHA(MCL) polymerase) loci of Pseudomonas putida KT-∆UPP simultaneously. Thus, we constructed a genetically stable and marker-free P. putida KT2440 mutant with integrated mpd (encoding methyl parathion hydrolase (MPH)) and pytH (encoding a pyrethroid-hydrolyzing carboxylesterase (PytH)) gene on the chromosome. The upp-based counterselection system could be further adapted for P. mendocina NK-01 and P. putida KT2440 and used for genome reduction and metabolic pathway engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas.

    Science.gov (United States)

    Rosario, Maximillian; Liu, Bai; Kong, Lin; Collins, Lynne I; Schneider, Stephanie E; Chen, Xiaoyue; Han, Kaiping; Jeng, Emily K; Rhode, Peter R; Leong, Jeffrey W; Schappe, Timothy; Jewell, Brea A; Keppel, Catherine R; Shah, Keval; Hess, Brian; Romee, Rizwan; Piwnica-Worms, David R; Cashen, Amanda F; Bartlett, Nancy L; Wong, Hing C; Fehniger, Todd A

    2016-02-01

    Anti-CD20 monoclonal antibodies (mAb) are an important immunotherapy for B-cell lymphoma, and provide evidence that the immune system may be harnessed as an effective lymphoma treatment approach. ALT-803 is a superagonist IL-15 mutant and IL-15Rα-Fc fusion complex that activates the IL-15 receptor constitutively expressed on natural killer (NK) cells. We hypothesized that ALT-803 would enhance anti-CD20 mAb-directed NK-cell responses and antibody-dependent cellular cytotoxicity (ADCC). We tested this hypothesis by adding ALT-803 immunostimulation to anti-CD20 mAb triggering of NK cells in vitro and in vivo. Cell lines and primary human lymphoma cells were utilized as targets for primary human NK cells. Two complementary in vivo mouse models were used, which included human NK-cell xenografts in NOD/SCID-γc (-/-) mice. We demonstrate that short-term ALT-803 stimulation significantly increased degranulation, IFNγ production, and ADCC by human NK cells against B-cell lymphoma cell lines or primary follicular lymphoma cells. ALT-803 augmented cytotoxicity and the expression of granzyme B and perforin, providing one potential mechanism for this enhanced functionality. Moreover, in two distinct in vivo B-cell lymphoma models, the addition of ALT-803 to anti-CD20 mAb therapy resulted in significantly reduced tumor cell burden and increased survival. Long-term ALT-803 stimulation of human NK cells induced proliferation and NK-cell subset changes with preserved ADCC. ALT-803 represents a novel immunostimulatory drug that enhances NK-cell antilymphoma responses in vitro and in vivo, thereby supporting the clinical investigation of ALT-803 plus anti-CD20 mAbs in patients with indolent B-cell lymphoma. ©2015 American Association for Cancer Research.

  17. Deep intronic mis-splicing mutation in JAK3 gene underlies T-B+NK- severe combined immunodeficiency phenotype.

    Science.gov (United States)

    Stepensky, Polina; Keller, Baerbel; Shamriz, Oded; NaserEddin, Adeeb; Rumman, Nisreen; Weintraub, Michael; Warnatz, Klaus; Elpeleg, Orly; Barak, Yaacov

    2016-02-01

    Severe combined immune deficiency (SCID) is a group of genetically heterogeneous diseases caused by an early block in T cell differentiation and present with life threatening infections, often within the first year of life. Janus kinase (JAK)3 gene mutations have been found to cause autosomal recessive T-B+ SCID phenotype. In this study we describe three patients with a novel deep intronic mis-splicing mutation in JAK3 as a cause of T-B+NK- SCID highlighting the need for careful evaluation of intronic regulatory elements of known genes associated with clearly defined clinical phenotypes. We present the cases and discuss the current literature. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The human herpesvirus-7 (HHV-7 U21 immunoevasin subverts NK-mediated cytoxicity through modulation of MICA and MICB.

    Directory of Open Access Journals (Sweden)

    Christine L Schneider

    2011-11-01

    Full Text Available Herpesviruses have evolved numerous immune evasion strategies to facilitate establishment of lifelong persistent infections. Many herpesviruses encode gene products devoted to preventing viral antigen presentation as a means of escaping detection by cytotoxic T lymphocytes. The human herpesvirus-7 (HHV-7 U21 gene product, for example, is an immunoevasin that binds to class I major histocompatibility complex molecules and redirects them to the lysosomal compartment. Virus infection can also induce the upregulation of surface ligands that activate NK cells. Accordingly, the herpesviruses have evolved a diverse array of mechanisms to prevent NK cell engagement of NK-activating ligands on virus-infected cells. Here we demonstrate that the HHV-7 U21 gene product interferes with NK recognition. U21 can bind to the NK activating ligand ULBP1 and reroute it to the lysosomal compartment. In addition, U21 downregulates the surface expression of the NK activating ligands MICA and MICB, resulting in a reduction in NK-mediated cytotoxicity. These results suggest that this single viral protein may interfere both with CTL-mediated recognition through the downregulation of class I MHC molecules as well as NK-mediated recognition through downregulation of NK activating ligands.

  19. Structure of the Enterovirus 71 3C Protease in Complex with NK-1.8k and Indications for the Development of Antienterovirus Protease Inhibitor.

    Science.gov (United States)

    Wang, Yaxin; Cao, Lin; Zhai, Yangyang; Yin, Zheng; Sun, Yuna; Shang, Luqing

    2017-07-01

    Hand-foot-and-mouth disease (HFMD), caused by enterovirus, is a threat to public health worldwide. To date, enterovirus 71 (EV71) has been one of the major causative agents of HFMD in the Pacific-Asia region, and outbreaks with EV71 cause millions of infections. However, no drug is currently available for clinical therapeutics. In our previous works, we developed a set of protease inhibitors (PIs) targeting the EV71 3C protease (3C pro ). Among these are NK-1.8k and NK-1.9k, which have various active groups and high potencies and selectivities. In the study described here, we determined the structures of the PI NK-1.8k in complex with wild-type (WT) and drug-resistant EV71 3C pro Comparison of these structures with the structure of unliganded EV71 3C pro and its complex with AG7088 indicated that the mutation of N69 to a serine residue destabilized the S2 pocket. Thus, the mutation influenced the cleavage activity of EV71 3C pro and the inhibitory activity of NK-1.8k in an in vitro protease assay and highlighted that site 69 is an additional key site for PI design. More information for the optimization of the P1' to P4 groups of PIs was also obtained from these structures. Together with the results of our previous works, these in-depth results elucidate the inhibitory mechanism of PIs and shed light to develop PIs for the clinical treatment of infections caused by EV71 and other enteroviruses. Copyright © 2017 American Society for Microbiology.

  20. NK Cell Exhaustion

    Science.gov (United States)

    Bi, Jiacheng; Tian, Zhigang

    2017-01-01

    Natural killer cells are important effector lymphocytes of the innate immune system, playing critical roles in antitumor and anti-infection host defense. Tumor progression or chronic infections, however, usually leads to exhaustion of NK cells, thus limiting the antitumor/infection potential of NK cells. In many tumors or chronic infections, multiple mechanisms might contribute to the exhaustion of NK cells, such as dysregulated NK cell receptors signaling, as well as suppressive effects by regulatory cells or soluble factors within the microenvironment. Better understanding of the characteristics, as well as the underlying mechanisms of NK cell exhaustion, not only should increase our understanding of the basic biology of NK cells but also could reveal novel NK cell-based antitumor/infection targets. Here, we provide an overview of our current knowledge on NK cell exhaustion in tumors, and in chronic infections. PMID:28702032

  1. HIV exposed seronegative (HESN compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness.

    Directory of Open Access Journals (Sweden)

    Elise Jackson

    Full Text Available Previously, we showed that Killer Immunoglobulin-like Receptor (KIR3DS1 homozygotes (hmz are more frequent in HIV exposed seronegative (HESN than in recently HIV infected (HIV+ individuals. KIR3DS1 encodes an activating Natural Killer (NK cell receptor (NKR. The link between KIR genotype and HIV outcomes likely arises from the function that NK cells acquire through expression of particular NKRs. An initial screen of 97 HESN and 123 HIV+ subjects for the frequency of KIR region gene carriage observed between-group differences for several telomeric KIR region loci. In a larger set of up to 106 HESN and 439 HIV+ individuals, more HESN than HIV+ subjects were KIR3DS1 homozygotes, lacked a full length KIR2DS4 gene and carried the telomeric group B KIR haplotype motif, TB01. TB01 is characterized by the presence of KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1, in linkage disequilibrium with each other. We assessed which of the TB01 encoded KIR gene products contributed to NK cell responsiveness by stimulating NK cells from 8 HIV seronegative KIR3DS1 and TB01 motif homozygotes with 721.221 HLA null cells and evaluating the frequency of KIR3DS1+/-KIR2DL5+/-, KIR3DS1+/-KIR2DS1+/-, KIR3DS1+/-KIR2DS5+/- NK cells secreting IFN-γ and/or expressing CD107a. A higher frequency of NK cells expressing, versus not, KIR3DS1 responded to 721.221 stimulation. KIR2DL5A+, KIR2DS1+ and KIR2DS5+ NK cells did not contribute to 721.221 responses or modulate those by KIR3DS1+ NK cells. Thus, of the TB01 KIR gene products, only KIR3DS1 conferred responsiveness to HLA-null stimulation, demonstrating its ligation can activate ex vivo NK cells.

  2. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness.

    Science.gov (United States)

    Jackson, Elise; Zhang, Cindy Xinyu; Kiani, Zahra; Lisovsky, Irene; Tallon, Benjamin; Del Corpo, Alexa; Gilbert, Louise; Bruneau, Julie; Thomas, Réjean; Côté, Pierre; Trottier, Benoit; LeBlanc, Roger; Rouleau, Danielle; Tremblay, Cécile; Tsoukas, Christos M; Routy, Jean-Pierre; Ni, Xiaoyan; Mabanga, Tsoarello; Bernard, Nicole F

    2017-01-01

    Previously, we showed that Killer Immunoglobulin-like Receptor (KIR)3DS1 homozygotes (hmz) are more frequent in HIV exposed seronegative (HESN) than in recently HIV infected (HIV+) individuals. KIR3DS1 encodes an activating Natural Killer (NK) cell receptor (NKR). The link between KIR genotype and HIV outcomes likely arises from the function that NK cells acquire through expression of particular NKRs. An initial screen of 97 HESN and 123 HIV+ subjects for the frequency of KIR region gene carriage observed between-group differences for several telomeric KIR region loci. In a larger set of up to 106 HESN and 439 HIV+ individuals, more HESN than HIV+ subjects were KIR3DS1 homozygotes, lacked a full length KIR2DS4 gene and carried the telomeric group B KIR haplotype motif, TB01. TB01 is characterized by the presence of KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1, in linkage disequilibrium with each other. We assessed which of the TB01 encoded KIR gene products contributed to NK cell responsiveness by stimulating NK cells from 8 HIV seronegative KIR3DS1 and TB01 motif homozygotes with 721.221 HLA null cells and evaluating the frequency of KIR3DS1+/-KIR2DL5+/-, KIR3DS1+/-KIR2DS1+/-, KIR3DS1+/-KIR2DS5+/- NK cells secreting IFN-γ and/or expressing CD107a. A higher frequency of NK cells expressing, versus not, KIR3DS1 responded to 721.221 stimulation. KIR2DL5A+, KIR2DS1+ and KIR2DS5+ NK cells did not contribute to 721.221 responses or modulate those by KIR3DS1+ NK cells. Thus, of the TB01 KIR gene products, only KIR3DS1 conferred responsiveness to HLA-null stimulation, demonstrating its ligation can activate ex vivo NK cells.

  3. Methylation profiling of Epstein-Barr virus immediate-early gene promoters, BZLF1 and BRLF1 in tumors of epithelial, NK- and B-cell origins

    Directory of Open Access Journals (Sweden)

    Li Lili

    2012-03-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV establishes its latency in EBV-associated malignancies, accompanied by occasionally reactivated lytic cycle. Promoter CpG methylation of EBV genome plays an essential role in maintaining viral latency. Two immediate-early (IE genes, BZLF1 and BRLF1, induce the switch from latent to lytic infection. Studies of methylation-dependent binding of BZLF1 and BRLF1 to EBV promoters have been well reported, but little is known about the methylation status of BZLF1 and BRLF1 promoters (Zp and Rp in tumor samples. Methods We evaluated the methylation profiles of Zp and Rp by methylation-specific PCR (MSP and bisulfite genomic sequencing (BGS, as well as BZLF1 and BRLF1 expression by semiquantitative reverse transcription (RT-PCR in tumors of epithelial, NK- and B-cell origins. Results We found that both Zp and Rp were hypermethylated in all studied EBV-positive cell lines and tumors of lymphoid (B- or NK cell or epithelial origin, while unmethylated Zp and Rp alleles were detected in cell lines expressing BZLF1 and BRLF1. Following azacytidine treatment or combined with trichostatin A (TSA, the expression of BZLF1 and BRLF1 was restored along with concomitant promoter demethylation, which subsequently induced the reactivation of early lytic gene BHRF1 and late lytic gene BLLF1. Conclusions Hypermethylation of Zp and Rp mediates the frequent silencing of BZLF1 and BRLF1 in EBV-associated tumors, which could be reactivated by demethylation agent and ultimately initiated the EBV lytic cascade.

  4. CAM and NK Cells

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2004-01-01

    Full Text Available It is believed that tumor development, outgrowth and metastasis are under the surveillance of the immune system. Although both innate and acquired immune systems play roles, innate immunity is the spearhead against tumors. Recent studies have revealed the critical role of natural killer (NK cells in immune surveillance and that NK cell activity is considerably influenced by various agents, such as environmental factors, stress, foods and drugs. Some of these NK cell stimulants have been used in complementary and alternative medicine (CAM since ancient times. Therefore, the value of CAM should be re-evaluated from this point of view. In this review, we overview the intimate correlation between NK cell functions and CAM agents, and discuss possible underlying mechanisms mediating this. In particular, neuro-immune crosstalk and receptors for CAM agents are the most important and interesting candidates for such mechanisms.

  5. HIV-1 adaptation to NK cell-mediated immune pressure

    DEFF Research Database (Denmark)

    Elemans, Marjet; Boelen, Lies; Rasmussen, Michael

    2017-01-01

    The observation, by Alter et al., of the enrichment of NK cell “escape” variants in individuals carrying certain Killer-cell Immunoglobulin-like Receptor (KIR) genes is compelling evidence that natural killer (NK) cells exert selection pressure on HIV-1. Alter et al hypothesise that variant pepti...

  6. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy

    Science.gov (United States)

    Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang

    2015-01-01

    The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment. PMID:26073325

  7. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans.

    Science.gov (United States)

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-03-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l(-1) when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24-30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans

    Science.gov (United States)

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-01-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l−1 when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24–30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis. PMID:24423427

  9. Complex single gene disorders and epilepsy.

    LENUS (Irish Health Repository)

    Merwick, Aine

    2012-09-01

    Epilepsy is a heterogeneous group of disorders, often associated with significant comorbidity, such as intellectual disability and skin disorder. The genetic underpinnings of many epilepsies are still being elucidated, and we expect further advances over the coming 5 years, as genetic technology improves and prices fall for whole exome and whole genome sequencing. At present, there are several well-characterized complex epilepsies associated with single gene disorders; we review some of these here. They include well-recognized syndromes such as tuberous sclerosis complex, epilepsy associated with Rett syndrome, some of the progressive myoclonic epilepsies, and novel disorders such as epilepsy associated with mutations in the PCDH 19 gene. These disorders are important in informing genetic testing to confirm a diagnosis and to permit better understanding of the variability in phenotype-genotype correlation.

  10. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    OpenAIRE

    Dassanayake, Rohana P.; Falkenberg, Shollie M.; Briggs, Robert E.; Tatum, Fred M.; Sacco, Randy E.

    2017-01-01

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activi...

  11. Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions

    International Nuclear Information System (INIS)

    Arreygue-Garcia, Naela A; Delgado-Rizo, Vidal; Garcia-Iglesias, Trinidad; Hernandez-Flores, Georgina; Toro-Arreola, Susana del; Daneri-Navarro, Adrian; Toro-Arreola, Alicia del; Cid-Arregui, Angel; Gonzalez-Ramella, Oscar; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana; Troyo-Sanroman, Rogelio; Bravo-Cuellar, Alejandro

    2008-01-01

    Cervical cancer is the second most common cancer in women worldwide. NK and cytotoxic T cells play an important role in the elimination of virus-infected and tumor cells through NKG2D activating receptors, which can promote the lysis of target cells by binding to the major histocompatibility complex class I-related chain A (MICA) proteins. Increased serum levels of MICA have been found in patients with epithelial tumors. The aim of this study was to compare the levels of soluble MICA (sMICA) and NKG2D-expressing NK and T cells in blood samples from patients with cervical cancer or precursor lesions with those from healthy donors. Peripheral blood with or without heparin was collected to obtain mononuclear cells or sera, respectively. Serum sMICA levels were measured by ELISA and NKG2D-expressing immune cells were analyzed by flow cytometry. Also, a correlation analysis was performed to associate sMICA levels with either NKG2D expression or with the stage of the lesion. Significant amounts of sMICA were detected in sera from nearly all patients. We found a decrease in the number of NKG2D-expressing NK and T cells in both cervical cancer and lesion groups when compared to healthy donors. Pearson analysis showed a negative correlation between sMICA and NKG2D-expressing T cells; however, we did not find a significant correlation when the analysis was applied to sMICA and NKG2D expression on NK cells. Our results show for the first time that high sMICA levels are found in sera from patients with both cervical cancer and precursor lesions when compared with healthy donors. We also observed a diminution in the number of NKG2D-expressing NK and T cells in the patient samples; however, a significant negative correlation between sMICA and NKG2D expression was only seen in T cells

  12. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques - implications for highly complex MHC-dependent regulation of natural killer cells.

    Science.gov (United States)

    Walter, Lutz; Petersen, Beatrix

    2017-02-01

    The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells. © 2016 John Wiley & Sons Ltd.

  13. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Directory of Open Access Journals (Sweden)

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  14. Peningkatan Ekspresi Gen NKG2D Sel-sel NK oleh Brokoli untuk Mencegah Kanker

    Directory of Open Access Journals (Sweden)

    Diana Krisanti Jasaputra

    2017-08-01

    Cancer is the non-communicable diseases (NCD and the biggest cause of death in the world. One of the factors that affect cancer development is NKG2D receptors (natural-killer group 2, member D is a receptor complex that activates NK cells and is important in cancer immunosurveilance. Broccoli, Cruciferae vegetable, contains glucosinolate and isothiocyanate. Glucosinolate will be hydrolysed by the mirosinase (thioglucodase β and form the isothiocyanate compound. Isothiocyanate compounds essential to prevent cancer are sulforafan compounds. The objective of the study was to assess the effect of broccoli in enhancing NKG2D receptor expression in order to improve NK cell activity to prevent cancer. This experimental study is a comparative true experimental laboratory, conducted in the Aretha Medika Utama in February to July 2016. Broccoli was freeze dryer and made two concentrations of flour, 50 μg/mL and 25 μg/mL. The study begins with multiplication of NK cells (cell line, then continued with treatment for 24 hours and assessment of NKG2D gene expression using qPCR. NKG2D gene expression research data was calculated by Livak formula and analyzed using one-way ANOVA test and Tukey's advanced test (SPSS 16. The administration of broccoli concentrations of 50 μg/mL and 25 μg/mL increased the level of NKG2D gene expression, indicating an increase in NK cell activity. The conclusion of this study is the provision of broccoli increases the activity of NK cells in preventing and fighting cancer cells.

  15. Lipopolysaccharide induces IFN-γ production in human NK cells

    Directory of Open Access Journals (Sweden)

    Leonid M Kanevskiy

    2013-01-01

    Full Text Available NK cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS. Recently TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS induced IFN-γ production in the presence of IL-2 in cell populations containing >98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DRbright, CD14+, CD3+ and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4–CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.

  16. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans

    OpenAIRE

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-01-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as S treptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control...

  17. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors.

    Science.gov (United States)

    Jiang, Wei; Johnson, Chris; Jayaraman, Jyothi; Simecek, Nikol; Noble, Janelle; Moffatt, Miriam F; Cookson, William O; Trowsdale, John; Traherne, James A

    2012-10-01

    The KIR complex appears to be evolving rapidly in humans, and more than 50 different haplotypes have been described, ranging from four to 14 KIR loci. Previously it has been suggested that most KIR haplotypes consist of framework genes, present in all individuals, which bracket a variable number of other genes. We used a new technique to type 793 families from the United Kingdom and United States for both the presence/absence of all individual KIR genes as well as copy number and found that KIR haplotypes are even more complex. It is striking that all KIR loci are subject to copy number variation (CNV), including the so-called framework genes, but CNV is much more frequent in KIR B haplotypes than KIR A haplotypes. These two basic KIR haplotype groups, A and B, appear to be following different evolutionary trajectories. Despite the great diversity, there are 11 common haplotypes, derived by reciprocal recombination near KIR2DL4, which collectively account for 94% of KIR haplotypes determined in Caucasian samples. These haplotypes could be derived from combinations of just three centromeic and two telomeric motifs, simplifying disease analysis for these haplotypes. The remaining 6% of haplotypes displayed novel examples of expansion and contraction of numbers of loci. Conventional KIR typing misses much of this additional complexity, with important implications for studying the genetics of disease association with KIR that can now be explored by CNV analysis.

  18. IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer.

    Science.gov (United States)

    Felices, M; Chu, S; Kodal, B; Bendzick, L; Ryan, C; Lenvik, A J; Boylan, K L M; Wong, H C; Skubitz, A P N; Miller, J S; Geller, M A

    2017-06-01

    Natural killer (NK) cells represent a powerful immunotherapeutic target as they lyse tumors directly, do not require differentiation, and can elicit potent inflammatory responses. The objective of these studies was to use an IL-15 super-agonist complex, ALT-803 (Altor BioScience Corporation), to enhance the function of both normal and ovarian cancer patient derived NK cells by increasing cytotoxicity and cytokine production. NK cell function from normal donor peripheral blood mononuclear cells (PBMCs) and ovarian cancer patient ascites was assessed using flow cytometry and chromium release assays ±ALT-803 stimulation. To evaluate the ability of ALT-803 to enhance NK cell function in vivo against ovarian cancer, we used a MA148-luc ovarian cancer NOD scid gamma (NSG) xenogeneic mouse model with transferred human NK cells. ALT-803 potently enhanced functionality of NK cells against all ovarian cancer cell lines with significant increases seen in CD107a, IFNγ and TNFα expression depending on target cell line. Function was also rescued in NK cells derived from ovarian cancer patient ascites. Finally, only animals treated with intraperitoneal ALT-803 displayed an NK dependent significant decrease in tumor. ALT-803 enhances NK cell cytotoxicity against ovarian cancer in vitro and in vivo and is able to rescue functionality of NK cells derived from ovarian cancer patient ascites. These findings suggest that ALT-803 has the potential to enhance NK cell-based immunotherapeutic approaches for the treatment of ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qichen [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Chen, Hua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Deng, Zhili [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Duan, Enkui, E-mail: duane@ioz.ac.cn [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China)

    2013-06-14

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14{sup −/−} placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14{sup −/−} pregnant uteri compared with Cxcl14{sup +/−} pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14{sup +/+} and Cxcl14{sup −/−} pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus.

  20. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    International Nuclear Information System (INIS)

    Cao, Qichen; Chen, Hua; Deng, Zhili; Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua; Duan, Enkui

    2013-01-01

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14 −/− placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14 −/− pregnant uteri compared with Cxcl14 +/− pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14 +/+ and Cxcl14 −/− pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus

  1. Complexity and evolution of KIR genes in rhesus macaques

    NARCIS (Netherlands)

    Blokhuis, J.H.

    2011-01-01

    Natural killer (NK) cells are essential in shaping immune responses against pathogens, and play an important role during pregnancy. Killer cell immunoglobulin-like receptors (KIR) educate the NK cell and determine its activation state. Because of this broad medical relevance, it is important to

  2. How important is NK alloreactivity and KIR in allogeneic transplantation?

    Science.gov (United States)

    Shaffer, Brian C; Hsu, Katharine C

    2016-12-01

    Relapse of acute myelogenous leukemia (AML) after allogeneic hematopoietic cell transplantation (allo HCT) is a major cause of death in transplant recipients. Efforts to control relapse by promoting donor T-cell alloreactivity, such as withdrawal of immune suppression or donor lymphocyte infusions, are limited by the propensity to induce graft versus host disease (GVHD) and by inadequate efficacy. Therefore, options for AML patients who have relapsed AML after allo HCT are few and outcomes are poor. Similar to T-cells, natural killer (NK) cells have potent anti-leukemia effector capacity, and yet unlike T-cells, NK cells do not mediate GVHD. Furthermore, their function does not require matching of human leukocyte antigens (HLA) between donor and recipient. Maximizing donor NK alloreactivity thus holds the exciting possibility to induce the graft versus leukemia (GVL) effect without engendering GVHD. Among the array of activating and inhibitory NK cell surface receptors, the killer Ig-like receptors (KIR) play a central role in modulating NK effector function. Here we will review how KIR mediates donor alloreactivity, discuss the role of KIR gene and allele typing to optimize allo HCT donor selection, and discuss how KIR may aid adoptive NK and other cell therapies. Copyright © 2016. Published by Elsevier Ltd.

  3. Regional sublocalization of the human CD69 gene to chromosome bands 12p12.3-p13.2, the predicted region of the human natural killer cell gene complex

    NARCIS (Netherlands)

    Schnittger, S.; Hamann, J. [=Jörg; Dannenberg, C.; Fiebig, H.; Strauss, M.; Fonatsch, C.

    1993-01-01

    The early activation antigen CD69 is a member of a supergene family of type II integral membrane proteins with a C-type lectin domain. In recent reports the genes encoding the natural killer (NK) cell-related molecules of this supergene family, NKR-P1, NK1.1 and Ly-49, were shown to be clustered in

  4. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Science.gov (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  5. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  6. The NSL Complex Regulates Housekeeping Genes in Drosophila

    Science.gov (United States)

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  7. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes.

    Science.gov (United States)

    Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine

    2009-08-01

    Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.

  8. Analysis of Class I Major Histocompatibility Complex Gene Transcription in Human Tumors Caused by Human Papillomavirus Infection.

    Science.gov (United States)

    Gameiro, Steven F; Zhang, Ali; Ghasemi, Farhad; Barrett, John W; Nichols, Anthony C; Mymryk, Joe S

    2017-09-10

    Oncoproteins from high-risk human papillomaviruses (HPV) downregulate the transcription of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus in tissue culture model systems. This could allow infected or transformed cells to evade the adaptive immune response. Using data from over 800 human cervical and head & neck tumors from The Cancer Genome Atlas (TCGA), we determined the impact of HPV status on the mRNA expression of all six MHC-I heavy chain genes, and the β2 microglobulin light chain. Unexpectedly, these genes were all expressed at high levels in HPV positive (HPV+) cancers compared with normal control tissues. Indeed, many of these genes were expressed at significantly enhanced levels in HPV+ tumors. Similarly, the transcript levels of several other components of the MHC-I peptide-loading complex were also high in HPV+ cancers. The coordinated expression of high mRNA levels of the MHC-I antigen presentation apparatus could be a consequence of the higher intratumoral levels of interferon γ in HPV+ carcinomas, which correlate with signatures of increased infiltration by T- and NK-cells. These data, which were obtained from both cervical and oral tumors in large human cohorts, indicates that HPV oncoproteins do not efficiently suppress the transcription of the antigen presentation apparatus in human tumors.

  9. β-Cyclodextrin-curcumin complex inhibit telomerase gene ...

    African Journals Online (AJOL)

    Expression of telomerase gene in cells effectively was reduced as the concentration of β-cyclodextrin –curcumin complex was increased. The results show that β-cyclodextrin -curcumin complex have cytotoxic effect on T47D cell line through down regulation of telomerase expression and induction apoptosis by enhancing ...

  10. Polycomb complexes act redundantly to repress genomic repeats and genes

    DEFF Research Database (Denmark)

    Leeb, Martin; Pasini, Diego; Novatchkova, Maria

    2010-01-01

    Polycomb complexes establish chromatin modifications for maintaining gene repression and are essential for embryonic development in mice. Here we use pluripotent embryonic stem (ES) cells to demonstrate an unexpected redundancy between Polycomb-repressive complex 1 (PRC1) and PRC2 during the form...

  11. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni.

    Directory of Open Access Journals (Sweden)

    Rohana P Dassanayake

    Full Text Available Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni. Four, 30-mer peptides corresponding to the functional region of NK-lysin helices 2 and 3 were synthesized and assessed for antibacterial activity on four bovine pneumonic H. somni isolates. Although there were some differences in the efficiency of bactericidal activity among the NK-lysin peptides at lower concentrations (2-5 μM, all four peptides effectively killed most H. somni isolates at higher concentrations (10-30 μM as determined by a bacterial killing assay. Confocal microscopic and flow cytometric analysis of Live/Dead Baclight stained H. somni (which were preincubated with NK-lysin peptides were consistent with the killing assay findings and suggest NK-lysin peptides are bactericidal for H. somni. Among the four peptides, NK2A-derived peptide consistently showed the highest antimicrobial activity against all four H. somni isolates. Electron microscopic examination of H. somni following incubation with NK-lysin revealed extensive cell membrane damage, protrusions of outer membranes, and cytoplasmic content leakage. Taken together, the findings from this study clearly demonstrate the antimicrobial activity of all four bovine NK-lysin-derived peptides against bovine H. somni isolates.

  12. Amelioration of NK cell function driven by Vα24+ invariant NKT cell activation in multiple myeloma.

    Science.gov (United States)

    Iyoda, Tomonori; Yamasaki, Satoru; Hidaka, Michihiro; Kawano, Fumio; Abe, Yu; Suzuki, Kenshi; Kadowaki, Norimitsu; Shimizu, Kanako; Fujii, Shin-Ichiro

    2018-02-01

    NK cells represent a first line of immune defense, but are progressively dysregulated in multiple myeloma (MM) patients. To restore and facilitate their antitumor effect, NK cells are required in sufficient quantities and must be stimulated. We initially assessed the proportions of NKT and NK cells in 34 MM patients. The frequencies of both in PBMC populations correlated with those in BMMNCs irrespective of low BMMNC numbers. We then assessed the adjunctive effect of stimulating NKT cells with CD1d and α-GalCer complexes on the NK cells. The expression of NKG2D on CD56 dim CD16 + NK cells and DNAM-1 on CD56 bright CD16 - NK cells increased after NKT cell activation. Apparently, NK cell-mediated anti-tumor effects were dependent on NKG2D and DNAM-1 ligands on myeloma cells. Thus, NK cell function in patients could be ameliorated, beyond the effect of immunosuppression, by NKT cell activation. This NKT-driven NK cell therapy could represent a potential new treatment modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Localization of tachykinin binding sites (NK1, NK2, NK3 ligands) in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Saffroy, M.; Beaujouan, J.C.; Torrens, Y.; Besseyre, J.; Bergstroem, L.G.; Glowinski, J.

    1988-03-01

    A comparative autoradiographic analysis of the distribution of tachykinin binding sites was made on brain serial sections using several ligands. (1) /sup 3/H-SP, /sup 125/I-BHSP and /sup 3/H-physalaemin labeled identical binding sites (NK1 type). (2) /sup 3/H-NKB, /sup 125/I-BHE and /sup 3/H-eledoisin also labeled identical sites (NK3 type). (3) /sup 125/I-BHNKA preferentially labeled NK3 binding sites, the distribution of /sup 125/I-BHNKA binding sites being identical to that of /sup 3/H-NKB or /sup 125/I-BHE binding sites. (4) The distributions of /sup 3/H-SP and /sup 3/H-NKB binding sites were markedly different. (5) A very low density of labeling was found with /sup 3/H-NKA or /sup 125/I-NKA, and these binding sites were distributed only in areas rich in either /sup 3/H-SP or /sup 3/H-NKB binding sites. (6) Particular efforts were made to look for the presence of tachykinin binding sites in the substantia nigra, since this structure is particularly rich in SP and NKA and contains functional tachykinin receptors of the NK1 and NK2 types as suggested by physiological studies. Confirming previous reports, low or very low labeling was observed in the substantia nigra with /sup 3/H-SP or /sup 125/I-BHSP and /sup 3/H-NKB or /sup 125/I-BHE. Similar results were found with /sup 3/H-NKA, /sup 125/I-NKA or /sup 125/I-BHNKA. In conclusion, our data do not provide evidence yet for the existence of NK2 binding sites in the rat brain.

  14. The substance P/NK-1 receptor system: NK-1 receptor antagonists ...

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  15. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly

    Science.gov (United States)

    Wells, Jonathan N.; Bergendahl, L. Therese; Marsh, Joseph A.

    2016-01-01

    Summary The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization. PMID:26804901

  16. NK cells and T cells: mirror images?

    NARCIS (Netherlands)

    Versteeg, R.

    1992-01-01

    The expression of MHC class I molecules protects cells against lysis by natural killer (NK) cells. It is possible that NK cells are 'educated' to recognize self MHC class I molecules and that the combination of self peptide and MHC class I molecule blocks NK-mediated lysis. Here, Rogier Versteeg

  17. Nuclear pore complexes as hubs for gene regulation.

    Science.gov (United States)

    D'Angelo, Maximiliano A

    2018-01-01

    Nuclear pore complexes (NPCs), the channels connecting the nucleus with the cytoplasm, are the largest protein structures of the nuclear envelope. In addition to their role in regulating nucleocytoplasmic transport, increasing evidence shows that these multiprotein structures play central roles in the regulation of gene activity. In light of recent discoveries, NPCs are emerging as scaffolds that mediate the regulation of specific gene sets at the nuclear periphery. The function of NPCs as genome organizers and hubs for transcriptional regulation provides additional evidence that the compartmentalization of genes and transcriptional regulators within the nuclear space is an important mechanism of gene expression regulation.

  18. NK cells in the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsen, Stine K; Gao, Yanhua; Basse, Per H

    2014-01-01

    The presence of natural killer (NK) cells in the tumor microenvironment correlates with outcome in a variety of cancers. However, the role of intratumoral NK cells is unclear. Preclinical studies have shown that, while NK cells efficiently kill circulating tumor cells of almost any origin......, they seem to have very little effect against the same type of tumor cells when these have extravasated. The ability to kill extravasated tumor cells is, however, is dependent of the level of activation of the NK cells, as more recent published and unpublished studies, discussed below, have demonstrated...... that interleukin-2-activated NK cells are able to attack well-established solid tumors....

  19. Role of type I interferon receptor signaling on NK cell development and functions.

    Directory of Open Access Journals (Sweden)

    Jean Guan

    Full Text Available Type I interferons (IFN are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.

  20. Comparative genomics of natural killer cell receptor gene clusters.

    Directory of Open Access Journals (Sweden)

    James Kelley

    2005-08-01

    Full Text Available Many receptors on natural killer (NK cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.

  1. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  3. Complexity and Entropy Analysis of DNMT1 Gene

    Science.gov (United States)

    Background: The application of complexity information on DNA sequence and protein in biological processes are well established in this study. Available sequences for DNMT1 gene, which is a maintenance methyltransferase is responsible for copying DNA methylation patterns to the daughter strands durin...

  4. β-Cyclodextrin-curcumin complex inhibit telomerase gene ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... have various applications in cancer therapy. But, its low water solubility and bioavailability is possible for poor drug delivery of curcumin. In this study, we prepared β-cyclodextrin-curcumin complex to determine the inhibitory effect of this drug on telomerase gene expression. Curcumin was encapsulated.

  5. Identification of an elaborate NK-specific system regulating HLA-C expression.

    Directory of Open Access Journals (Sweden)

    Hongchuan Li

    2018-01-01

    Full Text Available The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development.

  6. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    Science.gov (United States)

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  7. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  8. IL-15 Enables Septic Shock by Maintaining NK Cell Integrity and Function.

    Science.gov (United States)

    Guo, Yin; Luan, Liming; Patil, Naeem K; Wang, Jingbin; Bohannon, Julia K; Rabacal, Whitney; Fensterheim, Benjamin A; Hernandez, Antonio; Sherwood, Edward R

    2017-02-01

    Interleukin 15 is essential for the development and differentiation of NK and memory CD8 + (mCD8 + ) T cells. Our laboratory previously showed that NK and CD8 + T lymphocytes facilitate the pathobiology of septic shock. However, factors that regulate NK and CD8 + T lymphocyte functions during sepsis are not well characterized. We hypothesized that IL-15 promotes the pathogenesis of sepsis by maintaining NK and mCD8 + T cell integrity. To test our hypothesis, the pathogenesis of sepsis was assessed in IL-15-deficient (IL-15 knockout, KO) mice. IL-15 KO mice showed improved survival, attenuated hypothermia, and less proinflammatory cytokine production during septic shock caused by cecal ligation and puncture or endotoxin-induced shock. Treatment with IL-15 superagonist (IL-15 SA, IL-15/IL-15Rα complex) regenerated NK and mCD8 + T cells and re-established mortality of IL-15 KO mice during septic shock. Preventing NK cell regeneration attenuated the restoration of mortality caused by IL-15 SA. If given immediately prior to septic challenge, IL-15-neutralizing IgG M96 failed to protect against septic shock. However, M96 caused NK cell depletion if given 4 d prior to septic challenge and conferred protection. IL-15 SA treatment amplified endotoxin shock, which was prevented by NK cell or IFN-γ depletion. IL-15 SA treatment also exacerbated septic shock caused by cecal ligation and puncture when given after the onset of sepsis. In conclusion, endogenous IL-15 does not directly augment the pathogenesis of sepsis but enables the development of septic shock by maintaining NK cell numbers and integrity. Exogenous IL-15 exacerbates the severity of sepsis by activating NK cells and facilitating IFN-γ production. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. The substance P/NK-1 receptor system: NK-1 receptor antagonists ...

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the ... NK-1 receptor may be a promising target in the treatment of cancer; NK-1 receptor antagonists could act as specific ...... mycin, ifosfamide, cisplatin) in MG-63 human osteosarcoma cells, but not in ...

  10. Immunomodulation by chicken NK-Lysin-derived peptide, cNK-2 on chicken macrophages and monocytes

    Science.gov (United States)

    Chicken NK-lysin (cNK-lysin) is a homologue of human granulysin. Human granulysin is found in the cytolytic granules located in human natural killer and cytotoxic T lymphocytes. We previously demonstrated that cNK-lysin and cNK-2, a synthetic peptide incorporating the core a-helical region of cNK-ly...

  11. Immunomodulation by chicken NK-lysin-derived peptide, c-NK2 on chicken macrophages and monocytes

    Science.gov (United States)

    Chicken NK-lysin (cNK-lysin) is a homologue of human granulysin. Human granulysin is found in the cytolytic granules located in human natural killer and cytotoxic T lymphocytes. We previously demonstrated that cNK-lysin and cNK-2, a synthetic peptide incorporating the core a-helical region of cNK-ly...

  12. The NK1 Receptor Antagonist L822429 Reduces Heroin Reinforcement

    Science.gov (United States)

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-01-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects. PMID:23303056

  13. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Hou, Zhaohua; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2017-01-01

    Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection. PMID:27238466

  14. Cattle NK Cell Heterogeneity and the Influence of MHC Class I.

    Science.gov (United States)

    Allan, Alasdair J; Sanderson, Nicholas D; Gubbins, Simon; Ellis, Shirley A; Hammond, John A

    2015-09-01

    Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination. Copyright © 2015 The Authors.

  15. Associations of MICB with cervical cancer in north-eastern Thais: identification of major histocompatibility complex class I chain-related gene B motifs influencing natural killer cell activation

    Science.gov (United States)

    Jumnainsong, A; Jearanaikoon, P; Khahmahpahte, S; Wongsena, W; Romphruk, A V; Chumworathayi, B; Vaeteewoottacharn, K; Ponglikitmongkol, M; Romphruk, A; Leelayuwat, C

    2008-01-01

    The expression of MICB, a member of the major histocompatibility complex class I chain-related gene B family, is induced in response to cellular stress. It is one of the ligands to the NKG2D receptor. MICB is polymorphic, but the distribution of MICB polymorphism in north-eastern Thais and their potential associations with cancer have not yet been elucidated. In this study, polymerase chain reaction–sequence-specific primers were developed to identify 15 MICB alleles and one group of alleles. We performed MICB typing in 100 healthy north-eastern Thai females (NETF) and 99 cervical cancer patients to evaluate the association of MICB polymorphisms and the risk of developing cervical cancer. Eight and nine alleles were detected in the NETF and cervical cancer respectively. MICB*00502 was associated negatively with a corrected P-value of 0·0009, suggesting the existence of a protective allele in cervical cancer. Amino acid substitutions carried by this allele were investigated for their potential involvement in natural killer (NK) cell activation. Although lysine at amino acid position 80 (Lys80) and aspartic acid at position 136 (Asp136) were associated negatively with cervical cancer, only MICB carrying Asp136 could induce NK cell killing more efficiently than MICB-Lys80 when the NK cells were blocked by anti-NKG2D. This result suggested that aspartic acid at position 136 may affect NKG2D binding, leading to different degrees of immune cell activation. PMID:18505429

  16. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...

  17. Treatment of Aggressive NK-Cell Leukemia

    DEFF Research Database (Denmark)

    Boysen, Anders Kindberg; Jensen, Paw; Johansen, Preben

    2011-01-01

    Aggressive NK-cell leukemia is a rare malignancy with neoplastic proliferation of natural killer cells. It often presents with constitutional symptoms, a rapid declining clinical course, and a poor prognosis with a median survival of a few months. The disease is usually resistant to cytotoxic...... literature concerning treatment of aggressive NK-cell leukemia....

  18. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection.

    Science.gov (United States)

    Li, Haijun; Zhai, Naicui; Wang, Zhongfeng; Song, Hongxiao; Yang, Yang; Cui, An; Li, Tianyang; Wang, Guangyi; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2017-09-12

    HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. NKG2D is required for NK cell activation and function in response to E1-deleted adenovirus.

    Science.gov (United States)

    Zhu, Jiangao; Huang, Xiaopei; Yang, Yiping

    2010-12-15

    Despite high transduction efficiency in vivo, the application of recombinant E1-deleted adenoviral vectors for in vivo gene therapy has been limited by the attendant innate and adaptive immune responses to adenoviral vectors. NK cells have been shown to play an important role in innate immune elimination of adenoviral vectors in vivo. However, the mechanisms underlying NK cell activation and function in response to adenoviral vectors remain largely undefined. In this study, we showed that NK cell activation upon adenoviral infection was dependent on accessory cells such as dendritic cells and macrophages and that cell contact-dependent signals from the accessory cells are necessary for NK cell activation. We further demonstrated that ligands of the NK activating receptor NKG2D were upregulated in accessory cells upon adenoviral infection and that blockade of NKG2D inhibited NK cell activation upon adenoviral infection, leading to a delay in adenoviral clearance in vivo. In addition, NKG2D was required for NK cell-mediated cytolysis on adenovirus-infected targets. Taken together, these results suggest that efficient NK cell activation and function in response to adenoviral infection is critically dependent on the NKG2D pathway, which understanding may assist in the design of effective strategies to improve the outcome of adenovirus-mediated gene therapy.

  20. Complex Dynamic Behavior in Simple Gene Regulatory Networks

    Science.gov (United States)

    Santillán Zerón, Moisés

    2007-02-01

    Knowing the complete genome of a given species is just a piece of the puzzle. To fully unveil the systems behavior of an organism, an organ, or even a single cell, we need to understand the underlying gene regulatory dynamics. Given the complexity of the whole system, the ultimate goal is unattainable for the moment. But perhaps, by analyzing the most simple genetic systems, we may be able to develop the mathematical techniques and procedures required to tackle more complex genetic networks in the near future. In the present work, the techniques for developing mathematical models of simple bacterial gene networks, like the tryptophan and lactose operons are introduced. Despite all of the underlying assumptions, such models can provide valuable information regarding gene regulation dynamics. Here, we pay special attention to robustness as an emergent property. These notes are organized as follows. In the first section, the long historical relation between mathematics, physics, and biology is briefly reviewed. Recently, the multidisciplinary work in biology has received great attention in the form of systems biology. The main concepts of this novel science are discussed in the second section. A very slim introduction to the essential concepts of molecular biology is given in the third section. In the fourth section, a brief introduction to chemical kinetics is presented. Finally, in the fifth section, a mathematical model for the lactose operon is developed and analyzed..

  1. Mechanisms of copy number variation and hybrid gene formation in the KIR immune gene complex.

    Science.gov (United States)

    Traherne, James A; Martin, Maureen; Ward, Rosemary; Ohashi, Maki; Pellett, Fawnda; Gladman, Dafna; Middleton, Derek; Carrington, Mary; Trowsdale, John

    2010-03-01

    The fine-scale structure of the majority of copy number variation (CNV) regions remains unknown. The killer immunoglobulin receptor (KIR) gene complex exhibits significant CNV. The evolutionary plasticity of the KIRs and their broad biomedical relevance makes it important to understand how these immune receptors evolve. In this paper, we describe haplotype re-arrangement creating novel loci at the KIR complex. We completely sequenced, after fosmid cloning, two rare contracted haplotypes. Evidence of frequent hybrid KIR genes in samples from many populations suggested that re-arrangements may be frequent and selectively advantageous. We propose mechanisms for formation of novel hybrid KIR genes, facilitated by protrusive non-B DNA structures at transposon recombination sites. The heightened propensity to generate novel hybrid KIR receptors may provide a proactive evolutionary measure, to militate against pathogen evasion or subversion. We propose that CNV in KIR is an evolutionary strategy, which KIR typing for disease association must take into account.

  2. Complexation of oppositely charged polyelectrolytes in gene delivery and biology

    Science.gov (United States)

    Shklovskii, Boris

    2009-03-01

    Charge inversion of a DNA double helix by a positively charged flexible polymer (polyelectrolyte) is widely used to facilitate DNA contact with negative cell membranes for gene delivery. Motivated by this application in the first part of the talk I study the phase diagram a solution of long polyanions (PA) with a shorter polycations (PC) as a function the ratio of total charges of PC and PA in the solution, x, and the concentration of monovalent salt. Each PA attracts many PCs to form a complex. When x= 1, the complexes are neutral and condense in a macroscopic drop. When x is far away from 1, complexes are strongly charged and stable. PA are overcharged by PC at x > 1 and undercharged by PC at x < 1. As x approaches 1, PCs attached to PA disproportionate between complexes. Some complexes become neutral and condensed in a macroscopic drop while others become even stronger charged and stay free. The second part of the talk deals with biological example of PA -PC complexes namely self-assembly of vegetable viruses from long ss-RNA molecule paying role of scaffold and identical capsid proteins with long positive tails. I show that optimization Coulomb energy of the virus leads to the charge of RNA twice larger than the total charge of the capsid, in agreement with the experimental data. Then I discuss kinetics of the Coulomb complexation driven virus self-assembly. Capsid proteins stick to unassembled chain of ss RNA (which we call ``antenna'') and slide on it towards the assembly site. I show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ss-RNA, antenna slows self-assembly down. Several experiments are proposed to verify the role of ss-RNA antenna in self-assembly.

  3. Candida albicans induces Metabolic Reprogramming in human NK cells and responds to Perforin with a Zinc Depletion Response

    Directory of Open Access Journals (Sweden)

    Daniela eHellwig

    2016-05-01

    Full Text Available As part of the innate immune system, natural killer (NK cells are directly involved in the response to fungal infections. Perforin has been identified as the major effector molecule acting against many fungal pathogens. While several studies have shown that perforin mediated fungicidal effects can contribute to fungal clearance, neither the activation of NK cells by fungal pathogens nor the effects of perforin on fungal cells are well understood. In a dual approach, we have studied the global gene expression pattern of primary and cytokine activated NK cells after co-incubation with C. albicans and the transcriptomic adaptation of C. albicans to perforin exposure. NK cells responded to the fungal pathogen with an up-regulation of genes involved in immune signaling and release of cytokines. Furthermore, we observed a pronounced increase of genes involved in glycolysis and glycolysis inhibitor 2-deoxy-D-glucose impaired C. albicans induced NK cell activation. This strongly indicates that metabolic adaptation is a major part of the NK cell response to C. albicans infections. In the fungal pathogen, perforin induced a strong up-regulation of several fungal genes involved in the zinc depletion response, such as PRA1 and ZRT1. These data suggest that fungal zinc homeostasis is linked to the reaction to perforin secreted by NK cells. However, deletion mutants in PRA1 and ZRT1 did not show altered susceptibility to perforin.

  4. Revisiting the Functional Impact of NK Cells.

    Science.gov (United States)

    Poli, Aurélie; Michel, Tatiana; Patil, Neha; Zimmer, Jacques

    2018-02-26

    Immune responses are critical for the maintenance of homeostasis but can also upset the equilibrium, depending on the context and magnitude of the response. Natural killer (NK) cells are well known for their important roles in antiviral and antitumor immune responses, and they are currently used, mostly under optimized forms, as immunotherapeutic agents against cancer. Nevertheless, with accumulating examples of deleterious effects of NK cells, it is paramount to consider their negative contributions. Here, we critically review and comment on the literature surrounding undesirable aspects of NK cell activity, focusing on situations where they play a harmful rather than a protective role. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management

    Directory of Open Access Journals (Sweden)

    Yohann Petit-Houdenot

    2017-06-01

    Full Text Available During infection, pathogens secrete an arsenal of molecules, collectively called effectors, key elements of pathogenesis which modulate innate immunity of the plant and facilitate infection. Some of these effectors can be recognized directly or indirectly by resistance (R proteins from the plant and are then called avirulence (AVR proteins. This recognition usually triggers defense responses including the hypersensitive response and results in resistance of the plant. R—AVR gene interactions are frequently exploited in the field to control diseases. Recently, the availability of fungal genomes has accelerated the identification of AVR genes in plant pathogenic fungi, including in fungi infecting agronomically important crops. While single AVR genes recognized by their corresponding R gene were identified, more and more complex interactions between AVR and R genes are reported (e.g., AVR genes recognized by several R genes, R genes recognizing several AVR genes in distinct organisms, one AVR gene suppressing recognition of another AVR gene by its corresponding R gene, two cooperating R genes both necessary to recognize an AVR gene. These complex interactions were particularly reported in pathosystems showing a long co-evolution with their host plant but could also result from the way agronomic crops were obtained and improved (e.g., through interspecific hybridization or introgression of resistance genes from wild related species into cultivated crops. In this review, we describe some complex R—AVR interactions between plants and fungi that were recently reported and discuss their implications for AVR gene evolution and R gene management.

  6. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  7. Immunomodulatory activity of chicken NK-lysin peptides

    Science.gov (United States)

    Chicken NK-lysin (cNK-lysin), the chicken homologue of human granulysin, is a cationic amphiphilic antimicrobial peptide (AMP) produced by cytotoxic T cells and natural killer cells. We have previously demonstrated that cNK-lysin and cNK-2, which is a synthetic peptide incorporating core alpha-helic...

  8. The diagnosis and management of NK/T-cell lymphomas

    Directory of Open Access Journals (Sweden)

    Eric Tse

    2017-04-01

    Full Text Available Abstract Extranodal natural killer (NK/T-cell lymphoma is an aggressive malignancy of putative NK-cell origin, with a minority deriving from the T-cell lineage. Pathologically, the malignancy occurs in two forms, extranodal NK/T-cell lymphoma, nasal type; and aggressive NK-cell leukaemia. Lymphoma occur most commonly (80% in the nose and upper aerodigestive tract, less commonly (20% in non-nasal areas (skin, gastrointestinal tract, testis, salivary gland, and rarely as disseminated disease with a leukemic phase. Genetic analysis showed mutations of genes involved in the JAK/STAT pathway, RNA assembly, epigenetic regulation, and tumor suppression. In initial clinical evaluation, positron emission tomography computed tomography, and quantification of plasma EBV DNA are mandatory as they are useful for response monitoring and prognostication. In stage I/II diseases, combined chemotherapy and radiotherapy (sequentially or concurrently is the best approach. Conventional anthracycline-containing regimens are ineffective and should be replaced by non-anthracycline-containing regimens, preferably including L-asparaginase. Radiotherapy alone is associated with high systemic relapse rates and should be avoided. In stage III/IV diseases, non-anthracycline-regimens-containing L-asparaginase are the standard. In relapsed/refractory cases, blockade of the programmed death protein 1 has recently shown promising results with high response rates. In the era of effective non-anthracycline-containing regimens, autologous haematopoietic stem cell transplantation (HSCT has not been shown to be beneficial. However, allogeneic HSCT may be considered for high-risk or advanced-stage patients in remission or relapsed/refractory patients responding to salvage therapy. Prognostic models taking into account presentation, interim, and end-of-treatment parameters are useful in triaging patients to different treatment strategies.

  9. A Modified NK Cell Degranulation Assay Applicable for Routine Evaluation of NK Cell Function

    Directory of Open Access Journals (Sweden)

    Snehal Shabrish

    2016-01-01

    Full Text Available Natural killer (NK cells play important role in innate immunity against tumors and viral infections. Studies show that lysosome-associated membrane protein-1 (LAMP-1, CD107a is a marker for degranulation of NK and cytotoxic T cells and its expression is a sensitive marker for the cytotoxic activity determination. The conventional methods of determination of CD107a on NK cells involve use of peripheral blood mononuclear cells (PBMC or pure NK cells and K562 cells as stimulants. Thus, it requires large volume of blood sample which is usually difficult to obtain in pediatric patients and patients with cytopenia and also requires specialized laboratory for maintaining cell line. We have designed a flow cytometric assay to determine CD107a on NK cells using whole blood, eliminating the need for isolation of PBMC or isolate NK cells. This assay uses phorbol-12-myristate-13-acetate (PMA and calcium ionophore (Ca2+-ionophore instead of K562 cells for stimulation and thus does not require specialized cell culture laboratory. CD107a expression on NK cells using modified NK cell degranulation assay compared to the conventional assay was significantly elevated (p<0.0001. It was also validated by testing patients diagnosed with familial hemophagocytic lymphohistiocytosis (FHL with defect in exocytosis. This assay is rapid, cost effective, and reproducible and requires significantly less volume of blood which is important for clinical evaluation of NK cells.

  10. Evidence of gene conversion in genes encoding the Gal/GalNac lectin complex of Entamoeba.

    Directory of Open Access Journals (Sweden)

    Gareth D Weedall

    2011-06-01

    Full Text Available The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion, therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the parasites.

  11. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Science.gov (United States)

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  12. DNA Methylation Maintains Allele-specific KIR Gene Expression in Human Natural Killer Cells

    Science.gov (United States)

    Chan, Huei-Wei; Kurago, Zoya B.; Stewart, C. Andrew; Wilson, Michael J.; Martin, Maureen P.; Mace, Brian E.; Carrington, Mary; Trowsdale, John; Lutz, Charles T.

    2003-01-01

    Killer immunoglobulin-like receptors (KIR) bind self–major histocompatibility complex class I molecules, allowing natural killer (NK) cells to recognize aberrant cells that have down-regulated class I. NK cells express variable numbers and combinations of highly homologous clonally restricted KIR genes, but uniformly express KIR2DL4. We show that NK clones express both 2DL4 alleles and either one or both alleles of the clonally restricted KIR 3DL1 and 3DL2 genes. Despite allele-independent expression, 3DL1 alleles differed in the core promoter by only one or two nucleotides. Allele-specific 3DL1 gene expression correlated with promoter and 5′ gene DNA hypomethylation in NK cells in vitro and in vivo. The DNA methylase inhibitor, 5-aza-2′-deoxycytidine, induced KIR DNA hypomethylation and heterogeneous expression of multiple KIR genes. Thus, NK cells use DNA methylation to maintain clonally restricted expression of highly homologous KIR genes and alleles. PMID:12538663

  13. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology.

    Science.gov (United States)

    Spataro, Nino; Rodríguez, Juan Antonio; Navarro, Arcadi; Bosch, Elena

    2017-02-01

    Do genes presenting variation that has been linked to human disease have different biological properties than genes that have never been related to disease? What is the relationship between disease and fitness? Are the evolutionary pressures that affect genes linked to Mendelian diseases the same to those acting on genes whose variation contributes to complex disorders? The answers to these questions could shed light on the architecture of human genetic disorders and may have relevant implications when designing mapping strategies in future genetic studies. Here we show that, relative to non-disease genes, human disease (HD) genes have specific evolutionary profiles and protein network properties. Additionally, our results indicate that the mutation-selection balance renders an insufficient account of the evolutionary history of some HD genes and that adaptive selection could also contribute to shape their genetic architecture. Notably, several biological features of HD genes depend on the type of pathology (complex or Mendelian) with which they are related. For example, genes harbouring both causal variants for Mendelian disorders and risk factors for complex disease traits (Complex-Mendelian genes), tend to present higher functional relevance in the protein network and higher expression levels than genes associated only with complex disorders. Moreover, risk variants in Complex-Mendelian genes tend to present higher odds ratios than those on genes associated with the same complex disorders but with no link to Mendelian diseases. Taken together, our results suggest that genetic variation at genes linked to Mendelian disorders plays an important role in driving susceptibility to complex disease. © The Author 2017. Published by Oxford University Press.

  14. The Prolactin Gene: A Paradigm of Tissue-Specific Gene Regulation with Complex Temporal Transcription Dynamics

    Science.gov (United States)

    Featherstone, K; White, M R H; Davis, J R E

    2012-01-01

    Transcription of numerous mammalian genes is highly pulsatile, with bursts of expression occurring with variable duration and frequency. The presence of this stochastic or ‘noisy’ expression pattern has been relatively unexplored in tissue systems. The prolactin gene provides a model of tissue-specific gene regulation resulting in pulsatile transcription dynamics in both cell lines and endocrine tissues. In most cell culture models, prolactin transcription appears to be highly variable between cells, with differences in transcription pulse duration and frequency. This apparently stochastic transcription is constrained by a transcriptional refractory period, which may be related to cycles of chromatin remodelling. We propose that prolactin transcription dynamics result from the summation of oscillatory cellular inputs and by regulation through chromatin remodelling cycles. Observations of transcription dynamics in cells within pituitary tissue show reduced transcriptional heterogeneity and can be grouped into a small number of distinct patterns. Thus, it appears that the tissue environment is able to reduce transcriptional noise to enable coordinated tissue responses to environmental change. We review the current knowledge on the complex tissue-specific regulation of the prolactin gene in pituitary and extra-pituitary sites, highlighting differences between humans and rodent experimental animal models. Within this context, we describe the transcription dynamics of prolactin gene expression and how this may relate to specific processes occurring within the cell. PMID:22420298

  15. NK cell killer Ig-like receptor repertoire acquisition and maturation are strongly modulated by HLA class I molecules.

    Science.gov (United States)

    Sleiman, Marwan; Brons, Nicolaas H C; Kaoma, Tony; Dogu, Figen; Villa-Forte, Alexandra; Lenoble, Patrick; Hentges, François; Kotsch, Katja; Gadola, Stephan D; Vilches, Carlos; Zimmer, Jacques

    2014-03-15

    The interaction between clonally distributed inhibitory receptors and their activating counterparts on NK cells and HLA class I molecules defines NK cell functions, but the role of HLA class I ligands in the acquisition of their receptors during NK development is still unclear. Although some studies demonstrated that HLA-C affects the expression of killer Ig-like receptors (KIR), other studies showed that NK cells acquire their KIR repertoire in a stochastic manner. Only when infected with human CMV is an expansion of self-specific KIR(+) NKG2C(+) NK cells detected. To gain more insight into this question, we compared the coexpression of different KIR molecules, NKG2A, CD8, and CD57, on NK cells in healthy donors and seven patients with deficient HLA class I expression due to mutations in one of the TAP genes. Our results show a correlation between the presence/absence of HLA class I molecules and the coexpression of their receptors. In an HLA class I low-expression context, an increase in KIR molecules' coexpression is detected on the NKG2A(+) CD8(+) subset. In functional assays, hyporesponsiveness was observed for TAP-deficient NK cells derived from four patients. In contrast, NK cells from patient five were functional, whereas CD107a(+) and IFN-γ(+) CD56(dim) NK cells presented a different pattern of HLA class I receptors compared with healthy donors. Taken together, our results provide strong evidence for the role of HLA class I molecules in NK cell maturation and KIR repertoire acquisition.

  16. Comparison of the cattle leukocyte receptor complex with related livestock species

    Science.gov (United States)

    The natural killer (NK) cell receptor gene complexes are highly variable between species, and their repetitive nature makes genomic assembly and characterization problematic. As a result, most reference genome assemblies are heavily fragmented and/or misassembled over these regions. However, new lon...

  17. Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: relationship to TBT-induced decreases in NK function.

    Science.gov (United States)

    Dudimah, Fred D; Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M

    2007-01-01

    The purpose of this study was to investigate the role that tributyltin (TBT)-induced decreases in ATP levels may play in TBT-induced decreases in the tumor lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes that act as an initial immune defense against tumor cells and virally infected cells. TBT is an environmental contaminant that has been detected in human blood, which has been shown to interfere with ATP synthesis. Previous studies have shown that TBT is able to decrease very significantly the lytic function of NK cells. In this study NK cells were exposed to various concentrations of TBT and to two other compounds that interfere with ATP synthesis (rotenone a complex I inhibitor and oligomycin an ATP synthase inhibitor) for various lengths of time before determining the levels of ATP and lytic function. Exposures of NK cells to 10, 25, 50 and 100 nm TBT did not significantly reduce ATP levels after 24 h. However, these same exposures caused significant decreases in cytotoxic function. Studies of brief 1 h exposures to a range of TBT, rotenone and oligomycin concentrations followed by 24 h, 48 h and 6 day periods in compound-free media prior to assaying for ATP levels or cytotoxic function showed that each of the compounds caused persistent decreases in ATP levels and lytic function of NK cells. Exposures to 0.05-5 microm rotenone or oligomycin for 1 h reduced ATP levels by 20-25% but did not have any measurable effect on the ability of NK cells to lyse tumor cells. ATP levels were also decreased by about 20-25% after 24 h or 48 h exposures to rotenone or oligomycin (0.5 microm ), and the lytic function was decreased by about 50%. The results suggest that TBT-induced decreases in ATP levels were not responsible for the loss of cytotoxic function seen at 1 h and 24 h. However, TBT-induced decreases of NK-ATP levels may be at least in part responsible for losses of NK-cytotoxic function seen after 48 h and 6 day exposures

  18. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology

    OpenAIRE

    Spataro, Nino, 1984-; Rodríguez, Juan Antonio; Navarro i Cuartiellas, Arcadi, 1969-; Bosch Fusté, Elena

    2017-01-01

    Abstract Do genes presenting variation that has been linked to human disease have different biological properties than genes that have never been related to disease? What is the relationship between disease and fitness? Are the evolutionary pressures that affect genes linked to Mendelian diseases the same to those acting on genes whose variation contributes to complex disorders? The answers to these questions could shed light on the architecture of human genetic disorders and may have relevan...

  19. NK cell terminal differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs.

    Directory of Open Access Journals (Sweden)

    Vivien Béziat

    Full Text Available BACKGROUND: Terminal differentiation of NK cells is crucial in maintaining broad responsiveness to pathogens and discriminating normal cells from cells in distress. Although it is well established that KIRs, in conjunction with NKG2A, play a major role in the NK cell education that determines whether cells will end up competent or hyporesponsive, the events underlying the differentiation are still debated. METHODOLOGY/PRINCIPAL FINDINGS: A combination of complementary approaches to assess the kinetics of the appearance of each subset during development allowed us to obtain new insights into these terminal stages of differentiation, characterising their gene expression profiles at a pan-genomic level, their distinct surface receptor patterns and their prototypic effector functions. The present study supports the hypothesis that CD56dim cells derive from the CD56bright subset and suggests that NK cell responsiveness is determined by persistent inhibitory signals received during their education. We report here the inverse correlation of NKG2A expression with KIR expression and explore whether this correlation bestows functional competence on NK cells. We show that CD56dimNKG2A-KIR+ cells display the most differentiated phenotype associated to their unique ability to respond against HLA-E+ target cells. Importantly, after IL-12+IL-18 stimulation, reacquisition of NKG2A strongly correlates with IFN-gamma production in CD56dimNKG2A- NK cells. CONCLUSIONS/SIGNIFICANCE: Together, these findings call for the reclassification of mature human NK cells into distinct subsets and support a new model, in which the NK cell differentiation and functional fate are based on a stepwise decrease of NKG2A and acquisition of KIRs.

  20. Non-electrostatic complexes with DNA: towards novel synthetic gene delivery systems.

    Science.gov (United States)

    Soto, J; Bessodes, M; Pitard, B; Mailhe, P; Scherman, D; Byk, G

    2000-05-01

    We have developed new DNA complexing amphiphile based on Hoechst 33258 interaction with DNA grooves. The synthesis and physicochemical characterisation of lipid/DNA complexes, as compared to that of classical lipopolyamine for gene delivery, are described and discussed.

  1. The Natural Selection of Herpesviruses and Virus-Specific NK Cell Receptors

    Directory of Open Access Journals (Sweden)

    Joseph C. Sun

    2009-10-01

    Full Text Available During the co-evolution of cytomegalovirus (CMV and natural killer (NK cells, each has evolved specific tactics in an attempt to prevail. CMV has evolved multiple immune evasion mechanisms to avoid detection by NK cells and other immune cells, leading to chronic infection. Meanwhile, the host has evolved virus-specific receptors to counter these evasion strategies. The natural selection of viral genes and host receptors allows us to observe a unique molecular example of "survival of the fittest", as virus and immune cells try to out-maneuver one another or for the virus to achieve détente for optimal dissemination in the population.

  2. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    Science.gov (United States)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  3. A license to kill : The evolution of NK cell receptors

    NARCIS (Netherlands)

    Carrillo Bustamante, N.P.

    2015-01-01

    Natural killer (NK) cells innate immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells must be tightly regulated. Unlike B and T cells, NK cell do not undergo DNA

  4. Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control.

    Science.gov (United States)

    Mishra, Rabinarayan; Polic, Bojan; Welsh, Raymond M; Szomolanyi-Tsuda, Eva

    2013-07-15

    Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell)-RAE-1 (target cell)-dependent manner; but in T cell-deficient mice, NK cells only delay but do not prevent the development of PyV-induced tumors. In this article, we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that downregulate RAE-1. These factors include the proinflammatory cytokines IL-1α, IL-1β, IL-33, and TNF. Each of these cytokines downregulates RAE-1 expression and susceptibility to NK cell-mediated cytotoxicity. CD11b(+)F4/80(+) macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1β and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors.

  5. Contribution of NK cell education to both direct and anti-HIV-1 antibody-dependent NK cell functions.

    Science.gov (United States)

    Kristensen, Anne B; Kent, Stephen J; Parsons, Matthew S

    2018-03-07

    Antibody Fc-dependent functions are linked to prevention and control of HIV-1 infection. Basic NK cell biology is likely key to understanding the contributions anti-HIV-1 antibody-dependent NK cell activation and cytolysis make to HIV-1 susceptibility and disease progression. The importance of NK cell education through inhibitory receptors specific for self-HLA-I in determining the potency of anti-HIV-1 antibody mediated NK cell activation and cytolysis is controversial. To address this issue more definitively we utilized HLA-I genotyping, flow cytometry staining panels and cytolysis assays to assess the functionality of educated and non-educated peripheral blood NK cells. We now demonstrate that educated NK cells are superior in terms of their capacity to become activated and/or mediate cytolysis following anti-HIV-1 antibody-dependent stimulation. The profiles of activation observed were similar to those observed upon direct stimulation of NK cells with HLA-I devoid target cells. Non-educated NK cells make significantly lower contributions to total NK cell activation than would be expected from their frequency within the total NK cell population (i.e., are hypofunctional) and educated NK cells make similar or higher contributions as their frequency in the total NK cell population. Finally, NK cells educated through at least one killer immunoglobulin-like receptor and NKG2A exhibited the most significant difference between actual and expected contribution to the total NK cell response, based on their frequency within the total NK cell population, suggesting summation of NK cell education through inhibitory receptors determines overall NK cell functionality. These observations have potential implications for understanding HIV-1 vaccine efficacy and disease progression. IMPORTANCE NK cells are major mediators of anti-HIV-1 antibody-dependent functions, including cytokine production and cytolysis. The mechanisms controlling the capacity of individual NK cells to

  6. GMDR: Versatile Software for Detecting Gene-Gene and Gene-Environ- ment Interactions Underlying Complex Traits

    Science.gov (United States)

    Xu, Hai-Ming; Xu, Li-Feng; Hou, Ting-Ting; Luo, Lin-Feng; Chen, Guo-Bo; Sun, Xi-Wei; Lou, Xiang-Yang

    2016-01-01

    Identification of multifactor gene-gene (G×G) and gene-environment (G×E) interactions underlying complex traits poses one of the great challenges to today’s genetic study. Development of the generalized multifactor dimensionality reduction (GMDR) method provides a practicable solution to problems in detection of interactions. To exploit the opportunities brought by the availability of diverse data, it is in high demand to develop the corresponding GMDR software that can handle a breadth of phenotypes, such as continuous, count, dichotomous, polytomous nominal, ordinal, survival and multivariate, and various kinds of study designs, such as unrelated case-control, family-based and pooled unrelated and family samples, and also allows adjustment for covariates. We developed a versatile GMDR package to implement this serial of GMDR analyses for various scenarios (e.g., unified analysis of unrelated and family samples) and large-scale (e.g., genome-wide) data. This package includes other desirable features such as data management and preprocessing. Permutation testing strategies are also built in to evaluate the threshold or empirical p values. In addition, its performance is scalable to the computational resources. The software is available at http://www.soph.uab.edu/ssg/software or http://ibi.zju.edu.cn/software. PMID:28479868

  7. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  8. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality?

    Science.gov (United States)

    Simoni, Y; Diana, J; Ghazarian, L; Beaudoin, L; Lehuen, A

    2013-01-01

    T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases. © 2012 The Authors. Clinical and Experimental Immunology © 2012 British Society for Immunology.

  9. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  10. Complexity of rice Hsp100 gene family: lessons from rice genome ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... Keywords. Chaperone, gene family, Hsp100, Oryza sativa. Abstract. Elucidation of genome sequence provides an excellent platform to understand detailed complexity of the various gene families. Hsp100 is an important family of chaperones in diverse living systems. There are eight putative gene loci ...

  11. Unraveling the complex epigenetic mechanisms that regulate gene activity

    NARCIS (Netherlands)

    Bemer, Marian

    2018-01-01

    Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve

  12. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also...

  13. Location and cellular stages of NK cell development

    Science.gov (United States)

    Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A

    2013-01-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329

  14. Complexity, Post-genomic Biology and Gene Expression Programs

    Science.gov (United States)

    Williams, Rohan B. H.; Luo, Oscar Junhong

    Gene expression represents the fundamental phenomenon by which information encoded in a genome is utilised for the overall biological objectives of the organism. Understanding this level of information transfer is therefore essential for dissecting the mechanistic basis of form and function of organisms. We survey recent developments in the methodology of the life sciences that is relevant for understanding the organisation and function of the genome and review our current understanding of the regulation of gene expression, and finally, outline some new approaches that may be useful in understanding the organisation of gene regulatory systems.

  15. A complex network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  16. Evolution of major histocompatibility complex class I genes in Cetartiodactyls.

    Science.gov (United States)

    Holmes, Edward C; Roberts, Ann F C; Staines, Karen A; Ellis, Shirley A

    2003-07-01

    Previous studies of cattle MHC have suggested the presence of at least four classical class I loci. Analysis of haplotypes showed that any combination of one, two or three genes may be expressed, although no gene is expressed consistently. The aim of this study was to examine the evolutionary relationships among these genes and to study their phylogenetic history in Cetartiodactyl species, including cattle and their close relatives. A secondary aim was to determine whether recombination had occurred between any of the genes. MHC class I data sets were generated from published sequences or by polymerase chain reaction from cDNA. Phylogenetic analysis revealed that MHC class I sequences from Cetartiodactyl species closely related to cattle were distributed among the main cattle gene "groups", while those from more distantly related species were either scattered (sheep, deer) or clustered in a species-specific manner (sitatunga, giraffe). A comparison between gene and species trees showed a poor match, indicating that divergence of the MHC sequences had occurred independently from that of the hosts from which they were obtained. We also found two clear instances of interlocus recombination among the cattle MHC sequences. Finally, positive natural selection was documented at positions throughout the alpha 1 and 2 domains, primarily on those amino acids directly involved in peptide binding, although two positions in the alpha 3 domain, a region generally conserved in other species, were also shown to be undergoing adaptive evolution.

  17. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  18. Increasing the complexity: new genes and new types of albinism.

    Science.gov (United States)

    Montoliu, Lluís; Grønskov, Karen; Wei, Ai-Hua; Martínez-García, Mónica; Fernández, Almudena; Arveiler, Benoît; Morice-Picard, Fanny; Riazuddin, Saima; Suzuki, Tamio; Ahmed, Zubair M; Rosenberg, Thomas; Li, Wei

    2014-01-01

    Albinism is a rare genetic condition globally characterized by a number of specific deficits in the visual system, resulting in poor vision, in association with a variable hypopigmentation phenotype. This lack or reduction in pigment might affect the eyes, skin, and hair (oculocutaneous albinism, OCA), or only the eyes (ocular albinism, OA). In addition, there are several syndromic forms of albinism (e.g. Hermansky-Pudlak and Chediak-Higashi syndromes, HPS and CHS, respectively) in which the described hypopigmented and visual phenotypes coexist with more severe pathological alterations. Recently, a locus has been mapped to the 4q24 human chromosomal region and thus represents an additional genetic cause of OCA, termed OCA5, while the gene is eventually identified. In addition, two new genes have been identified as causing OCA when mutated: SLC24A5 and C10orf11, and hence designated as OCA6 and OCA7, respectively. This consensus review, involving all laboratories that have reported these new genes, aims to update and agree upon the current gene nomenclature and types of albinism, while providing additional insights from the function of these new genes in pigment cells. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. CD16A activation of NK cells promotes NK cell proliferation and memory-like cytotoxicity against cancer cells.

    Science.gov (United States)

    Pahl, Jens H W; Koch, Joachim; Gotz, Jana-Julia; Arnold, Annette; Reusch, Uwe; Gantke, Thorsten; Rajkovic, Erich; Treder, Martin S; Cerwenka, Adelheid

    2018-03-07

    CD16A is a potent cytotoxicity receptor on human NK cells, which can be exploited by therapeutic bispecific antibodies. So far, the effects of CD16A-mediated activation on NK cell effector functions beyond classical antibody-dependent cytotoxicity have remained poorly elucidated. Here, we investigated NK cell responses after exposure to therapeutic antibodies such as the tetravalent bispecific antibody AFM13 (CD30/CD16A), designed for the treatment of Hodgkin lymphoma and other CD30+ lymphomas. Our results reveal that CD16A engagement enhanced subsequent IL2 and IL15¬-driven NK cell proliferation and expansion. This effect involved the up-regulation of CD25 (IL2Ralpha) and CD132 (gammac) on NK cells, resulting in increased sensitivity to low-dose IL2 or to IL15. CD16A engagement initially induced NK cell cytotoxicity. The lower NK cell reactivity observed one day after CD16A engagement could be recovered by re-culture in IL2 or IL15. After re-culture in IL2 or IL15, these CD16A-experienced NK cells exerted more vigorous IFNgamma production upon re-stimulation with tumor cells or cytokines. Importantly, after re-culture, CD16A-experienced NK cells also exerted increased cytotoxicity towards different tumor targets, mainly through the activating NK cell receptor NKG2D. Our findings uncover a role for CD16A engagement in priming NK cell responses to re-stimulation by cytokines and tumor cells, indicative of a memory-like functionality. Our study suggests that combination of AFM13 with IL2 or IL15 may boost NK cell anti-tumor activity in patients by expanding tumor-reactive NK cells and enhancing NK cell reactivity, even upon repeated tumor encounters. Copyright ©2018, American Association for Cancer Research.

  20. Salivary gland NK cells are phenotypically and functionally unique.

    Directory of Open Access Journals (Sweden)

    Marlowe S Tessmer

    2011-01-01

    Full Text Available Natural killer (NK cells and CD8(+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV. However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  1. Protein Kinase C-theta (PKC-theta in Natural Killer (NK cell function and anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Alberto eAnel

    2012-07-01

    Full Text Available The protein kinase C-theta (PKCtheta, which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK cells, which express PKCtheta, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCtheta-/- mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCtheta in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCtheta is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer activating receptors (KAR. Alternatively, the possibility that PKCtheta is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center (MTOC polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in CTL, and these studies will be also summarized.

  2. Role of NKG2D-Expressing NK Cells and sMICA in Immune Surveillance of Advanced Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jing LIANG

    2009-01-01

    Full Text Available Background and objective NKG2D-expressing NK cells and soluble major histocompatibility complex class Ⅰ-related chain A (sMICA is one of aroused general interests in tumor research area recently. The aimof the study is to investigate the levels of NKG2D-expressing NK cells and sMICA in peripheral blood of advanced lung cancer which are remarkably related to clinical significance and analyse the role of NKG2D-expressing NK cells and sMICA in immune surveillance. Methods Flow cytometry was used to determine the percentage of NKG2D-expressing NK cells, T cell subsets, NK cells, and ELISA was used to mesure the levels of sMICA in peripheral blood of 115 advanced lung cancer patients and 50 healthy controls. Results Compared with control group, the levels of sMICA、CD8+T cells, NK cells increased, while the levels of NKG2D-expressing NK cells, CD3+ T cells, CD4+ T cells, CD4+ T/CD8+ T in experimental group decreased. NKG2D-expressing NK cells had a perfect negative correlation with sMICA (r =-0.319, P <0.05. NKG2D-expressing NK cells had positive correlation with CD4+ T cells, CD4+ T/CD8+ T and negative correlationwith CD8+ T cells (P <0.05, sMICA had negative correlation with CD4+ T cells, CD4+ T/CD8+ T and positive correlation with CD8+ T cells (P <0.05, they had no significant correlation with CD3+ T cells, NK cells respectively (P <0.05. Conclusion Accumulation of sMICA in serum may lead to the down-modulation of NKG2D-expressing NK which has been proposed to be a novel mechanism used by cancer cells to evade the tumor immunosurveillance. They may be potential indicators investigating immune functions and helpful in the evaluation of their happening and proceeding.

  3. Differential Cytotoxicity but Augmented IFN-γ Secretion by NK Cells after Interaction with Monocytes from Humans, and Those from Wild Type and Myeloid-Specific COX-2 Knockout Mice

    Science.gov (United States)

    Tseng, Han-Ching; Arasteh, Aida; Kaur, Kawaljit; Kozlowska, Anna; Topchyan, Paytsar; Jewett, Anahid

    2015-01-01

    The list of genes, which augment NK cell function when knocked out in neighboring cells is increasing, and may point to the fundamental function of NK cells targeting cells with diminished capability to differentiate optimally since NK cells are able to target less differentiated cells, and aid in their differentiation. In this paper, we aimed at understanding the effect of monocytes from targeted knockout of COX-2 in myeloid cells (Cox-2flox/flox;LysMCre/+) and from control littermates (Cox-2flox/flox;LysM+/+) on ex vivo function of NK cells. Furthermore, we compared the effect of monocytes treated with and without lipopolysaccharide (LPS) on NK cells from mice and humans. NK cells purified from Cox-2flox/flox;LysMCre/+ mice had heightened cytotoxic activity when compared to those obtained from control littermates. In addition, NK cells cultured with autologous Cox-2flox/flox;LysMCre/+ monocytes and DCs, mouse embryonic fibroblasts from global knockout COX-2, but not with knockout of COX-2 in T cells, had increased cytotoxic function as well as augmented IFN-γ secretion when compared to NK cells from control littermates cultured with monocytes. LPS inhibited NK cell cytotoxicity while increasing IFN-γ secretion when cultured in the presence of monocytes from either Cox-2flox/flox;LysMCre/+ or control littermates. In contrast to mice, NK cells from humans when cultured with monocytes lost cytotoxic function and gained ability to secrete large amounts of IFN-γ, a process, which we had previously coined as “split anergy.” Similar to mice, LPS potentiated the loss of human NK cell cytotoxicity while increasing IFN-γ secretion in the presence of monocytes. Greater loss of cytotoxicity and larger secretion of IFN-γ in NK cells induced by gene knockout cells may be important for the greater need of these cells for differentiation. PMID:26106386

  4. Persistence of decidual NK cells and KIR genotypes in healthy pregnant and preeclamptic women: a case-control study in the third trimester of gestation

    Directory of Open Access Journals (Sweden)

    Cerbón Marco

    2011-01-01

    Full Text Available Abstract Background Natural Killer (NK cells are the most abundant lymphocytes in the decidua during early gestation. The interactions of NK cells with the extravillous cytotrophoblast have been associated with a normal spiral artery remodeling process, an essential event for a successful pregnancy. Recent data indicate that alterations in the amount of decidual NK (dNK cells contribute to the development of preeclampsia (PE. Moreover, genetic studies suggest that Killer Immunoglobulin-like Receptors (KIR expressed in dNK cells influence the susceptibility to PE. Although dNK cells have been well characterized during early pregnancy, they have been scarcely studied in the third trimester of gestation. The aim of this work was to characterize dNK cells at the last trimester of gestation and to analyze the KIR genotype of healthy and PE women. Methods Decidual samples were obtained during Caesarean section from control (n = 10 and PE (n = 9 women. Flow cytometric analysis of CD3, CD56, CD16 and CD9 was used to characterize and quantify dNK cells in both groups. Cell surface markers from decidual leukocytes were compared with PBMC from healthy donors. KIR genotyping was performed in genomic DNA (control, n = 86; PE, n = 90 using PCR-SSP. Results The results indicate that dNK cells persist throughout pregnancy. They represented 20% of total leukocytes in control and PE groups, and they expressed the same cell surface markers (CD3-, CD56+, CD16- and CD9+ as dNK in the first trimester of gestation. There were no significant differences in the percentage of dNK cells between control and PE groups. The analysis of KIR gene frequencies and genotypes was not statistically different between control and PE groups. The ratio of activating to inhibitory genes indicated that the overall inhibitory balance (0.2-0.5 was more frequent in the PE group (control, 31.3% vs PE, 45.5%, and the activating balance (0.6-1.1 was more frequent in the control group (control

  5. Epidemiology and Pathogenesis of Nasal NK/T-Cell Lymphoma: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Katsuyuki Aozasa

    2011-01-01

    Full Text Available Nasal NK/T-cell lymphoma (NKTCL frequently presents with necrotic, granulomatous lesions in the upper respiratory tract, and usually shows a highly aggressive clinical course. Thus, it was initially included in the clinical condition of lethal midline granuloma. Recently, the disease has been recognized as a neoplastic proliferation of NK/T cells. The disease is much more frequent in Asian and Latin American countries than in Western countries, and is universally associated with Epstein-Barr virus (EBV infection. Analyses of gene mutations, especially p53 and c-kit, revealed the different frequencies by district. Abnormalities of other genes have also been reported. Case-control studies showed that the exposure to pesticides and chemical solvents could be causative of NKTCL. Further studies including HLA antigen typing of patients is necessary to further clarify the disease mechanism.

  6. Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy.

    NARCIS (Netherlands)

    Loeffen, J.L.C.M.; Elpeleg, O.N.; Smeitink, J.A.M.; Smeets, R.J.P.; Stockler-Ipsiroglu, S.; Mandel, H.; Sengers, R.C.A.; Trijbels, J.M.F.; Heuvel, L.P.W.J. van den

    2001-01-01

    Human complex I is built up and regulated by genes encoded by the mitochondrial DNA (mtDNA) as well as the nuclear DNA (nDNA). In recent years, attention mainly focused on the relation between complex I deficiency and mtDNA mutations. However, a high percentage of consanguinity and an

  7. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    Directory of Open Access Journals (Sweden)

    Vanessa Rodrigues Paixão-Côrtes

    Full Text Available Paired box (PAX genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.

  8. Inhibition of human natural killer (NK) cytotoxicity by Candida albicans

    International Nuclear Information System (INIS)

    Zunino, S.; Hudig, D.

    1986-01-01

    Experiments were initiated to determine whether human NK cells are cytotoxic to C. albicans with similar activity observed for mouse NK cells against the yeast Paracoccidiodes brasiliensis. In 48 hour assays using limiting dilutions of C. albicans, strain 3153A, mononuclear leukocytes with NK activity had only marginal effects on yeast outgrowth, whereas granulocytes killed most of the yeast. However, these yeast were able to block NK activity in 4 hr 51 Cr release assays with K562 cells, at yeast to K562 ratios of 10:1 and 100:1. Yeast pretreated with the serum of the majority of donors blocked the NK activity more than untreated yeast. Two of the 7 donors did not enhance NK inhibition after pretreatment of the yeast with their serum. Serum antibody to C. albicans and complement consumption by the yeast correlated with the relative efficiency of NK inhibition for most donors. This report suggests that there may be in vivo interactions between NK cells of the immune system and opportunistic fungal pathogens, which may compromise NK cell function

  9. The DREAM complex: master coordinator of cell cycle-dependent gene expression.

    Science.gov (United States)

    Sadasivam, Subhashini; DeCaprio, James A

    2013-08-01

    The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.

  10. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation.

    Science.gov (United States)

    Nielsen, Carolyn M; Wolf, Asia-Sophia; Goodier, Martin R; Riley, Eleanor M

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose-response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen-antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes.

  11. Cis and trans interactions between genes encoding PAF1 complex and ESCRT machinery components in yeast.

    Science.gov (United States)

    Rodrigues, Joana; Lydall, David

    2018-03-22

    Saccharomyces cerevisiae is a commonly used model organism for understanding eukaryotic gene function. However, the close proximity between yeast genes can complicate the interpretation of yeast genetic data, particularly high-throughput data. In this study, we examined the interplay between genes encoding components of the PAF1 complex and VPS36, the gene located next to CDC73 on chromosome XII. The PAF1 complex (Cdc73, Paf1, Ctr9, Leo1, and Rtf1, in yeast) affects RNA levels by affecting transcription, histone modifications, and post-transcriptional RNA processing. The human PAF1 complex is linked to cancer, and in yeast, it has been reported to play a role in telomere biology. Vps36, part of the ESCRT-II complex, is involved in sorting proteins for vacuolar/lysosomal degradation. We document a complex set of genetic interactions, which include an adjacent gene effect between CDC73 and VPS36 and synthetic sickness between vps36Δ and cdc73Δ, paf1Δ, or ctr9Δ. Importantly, paf1Δ and ctr9Δ are synthetically lethal with deletions of other components of the ESCRT-II (SNF8 and VPS25), ESCRT-I (STP22), or ESCRT-III (SNF7) complexes. We found that RNA levels of VPS36, but not other ESCRT components, are positively regulated by all components of the PAF1 complex. Finally, we show that deletion of ESCRT components decreases the telomere length in the S288C yeast genetic background, but not in the W303 background. Together, our results outline complex interactions, in cis and in trans, between genes encoding PAF1 and ESCRT-II complex components that affect telomere function and cell viability in yeast.

  12. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  13. Molecular Basis of Natural Killer Cell Tumor Target Recognition: The NKr/MHC Class I Complex

    National Research Council Canada - National Science Library

    Hasemann, Charles

    1999-01-01

    .... We have pursued this via the heterologous expression of wild type and mutant NK receptors for the purpose of the determination of the atomic structure of an NK receptor/ class I MHC complex via X-ray crystallography...

  14. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ptaquiloside reduces NK cell activities by enhancing metallothionein expression, which is prevented by selenium.

    Science.gov (United States)

    Latorre, Andreia O; Caniceiro, Beatriz D; Fukumasu, Heidge; Gardner, Dale R; Lopes, Fabricio M; Wysochi, Harry L; da Silva, Tereza C; Haraguchi, Mitsue; Bressan, Fabiana F; Górniak, Silvana L

    2013-02-08

    Pteridium aquilinum, one of the most important poisonous plants in the world, is known to be carcinogenic to animals and humans. Moreover, our previous studies showed that the immunosuppressive effects of ptaquiloside, its main toxic agent, were prevented by selenium in mouse natural killer (NK) cells. We also verified that this immunosuppression facilitated development of cancer. Here, we performed gene expression microarray analysis in splenic NK cells from mice treated for 14 days with ptaquiloside (5.3 mg/kg) and/or selenium (1.3 mg/kg) to identify gene transcripts altered by ptaquiloside that could be linked to the immunosuppression and that would be prevented by selenium. Transcriptome analysis of ptaquiloside samples revealed that 872 transcripts were expressed differentially (fold change>2 and p<0.05), including 77 up-regulated and 795 down-regulated transcripts. Gene ontology analysis mapped these up-regulated transcripts to three main biological processes (cellular ion homeostasis, negative regulation of apoptosis and regulation of transcription). Considering the immunosuppressive effect of ptaquiloside, we hypothesized that two genes involved in cellular ion homeostasis, metallothionein 1 (Mt1) and metallothionein 2 (Mt2), could be implicated because Mt1 and Mt2 are responsible for zinc homeostasis, and a reduction of free intracellular zinc impairs NK functions. We confirm these hypotheses and show increased expression of metallothionein in splenic NK cells and reduction in free intracellular zinc following treatment with ptaquiloside that were completely prevented by selenium co-treatment. These findings could help avoid the higher susceptibility to cancer that is induced by P. aquilinum-mediated immunosuppressive effects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids.

    Science.gov (United States)

    Lin, Choun-Sea; Chen, Jeremy J W; Chiu, Chi-Chou; Hsiao, Han C W; Yang, Chen-Jui; Jin, Xiao-Hua; Leebens-Mack, James; de Pamphilis, Claude W; Huang, Yao-Ting; Yang, Ling-Hung; Chang, Wan-Jung; Kui, Ling; Wong, Gane Ka-Shu; Hu, Jer-Ming; Wang, Wen; Shih, Ming-Che

    2017-06-01

    The chloroplast NAD(P)H dehydrogenase-like (NDH) complex consists of about 30 subunits from both the nuclear and chloroplast genomes and is ubiquitous across most land plants. In some orchids, such as Phalaenopsis equestris, Dendrobium officinale and Dendrobium catenatum, most of the 11 chloroplast genome-encoded ndh genes (cp-ndh) have been lost. Here we investigated whether functional cp-ndh genes have been completely lost in these orchids or whether they have been transferred and retained in the nuclear genome. Further, we assessed whether both cp-ndh genes and nucleus-encoded NDH-related genes can be lost, resulting in the absence of the NDH complex. Comparative analyses of the genome of Apostasia odorata, an orchid species with a complete complement of cp-ndh genes which represents the sister lineage to all other orchids, and three published orchid genome sequences for P. equestris, D. officinale and D. catenatum, which are all missing cp-ndh genes, indicated that copies of cp-ndh genes are not present in any of these four nuclear genomes. This observation suggests that the NDH complex is not necessary for some plants. Comparative genomic/transcriptomic analyses of currently available plastid genome sequences and nuclear transcriptome data showed that 47 out of 660 photoautotrophic plants and all the heterotrophic plants are missing plastid-encoded cp-ndh genes and exhibit no evidence for maintenance of a functional NDH complex. Our data indicate that the NDH complex can be lost in photoautotrophic plant species. Further, the loss of the NDH complex may increase the probability of transition from a photoautotrophic to a heterotrophic life history. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. The identification of informative genes from multiple datasets with increasing complexity

    Directory of Open Access Journals (Sweden)

    't Hoen Peter AC

    2010-01-01

    Full Text Available Abstract Background In microarray data analysis, factors such as data quality, biological variation, and the increasingly multi-layered nature of more complex biological systems complicates the modelling of regulatory networks that can represent and capture the interactions among genes. We believe that the use of multiple datasets derived from related biological systems leads to more robust models. Therefore, we developed a novel framework for modelling regulatory networks that involves training and evaluation on independent datasets. Our approach includes the following steps: (1 ordering the datasets based on their level of noise and informativeness; (2 selection of a Bayesian classifier with an appropriate level of complexity by evaluation of predictive performance on independent data sets; (3 comparing the different gene selections and the influence of increasing the model complexity; (4 functional analysis of the informative genes. Results In this paper, we identify the most appropriate model complexity using cross-validation and independent test set validation for predicting gene expression in three published datasets related to myogenesis and muscle differentiation. Furthermore, we demonstrate that models trained on simpler datasets can be used to identify interactions among genes and select the most informative. We also show that these models can explain the myogenesis-related genes (genes of interest significantly better than others (P et al. in identifying informative genes from multiple datasets with increasing complexity whilst additionally modelling the interaction between genes. Conclusions We show that Bayesian networks derived from simpler controlled systems have better performance than those trained on datasets from more complex biological systems. Further, we present that highly predictive and consistent genes, from the pool of differentially expressed genes, across independent datasets are more likely to be fundamentally

  18. Atypical NK-cell proliferation of the gastrointestinal tract in a patient with antigliadin antibodies but not celiac disease.

    Science.gov (United States)

    Vega, Francisco; Chang, Chung-Che; Schwartz, Mary R; Preti, Hector Alejandro; Younes, Mamoun; Ewton, April; Verm, Ray; Jaffe, Elaine S

    2006-04-01

    We describe a unique case of atypical natural killer (NK)-cell proliferation likely related to gluten sensitivity, mimicking NK-cell lymphoma. The patient, a 32-year-old man, has had persistent multiple erythematous bull-eye lesions in the stomach, small bowel, and large bowel for 3 years. Histologically, the lesions were well circumscribed and relatively superficial, composed of atypical medium-sized to large-sized lymphocytes with slightly irregular nuclear contours, a dispersed chromatin pattern, and clear cytoplasm. Immunohistochemistry and flow cytometry showed that the cells were NK cells expressing CD56 (aberrantly bright), T-cell intracellular antigen (TIA)-1, cytoplasmic CD3, and CD94, but not surface CD3, with bright aberrant expression of CD7 and a lack of other NK cell-associated markers. Polymerase chain reaction for rearrangement of the T-cell receptor-gamma chain gene showed no evidence of a clonal T-cell population, and in situ hybridization for Epstein-Barr virus encoded RNA was negative. There was no evidence of the involvement of peripheral blood or bone marrow. Although a diagnosis of extranodal NK/T-cell lymphoma was considered because of the atypical morphology and immunophenotypic aberrancy, no chemotherapy was given because of the relatively superficial nature of the infiltrates, lack of significant symptoms, and negativity for Epstein-Barr virus. Two years after initial presentation, the patient was found to have high titers of antigliadin antibodies with no other evidence of celiac disease. After instituting a gluten-free diet, many of the lesions regressed, suggesting that this atypical NK-cell proliferation may be driven by an anomalous immune response. Awareness of this case may prevent pathologists from misdiagnosing similar lesions as NK/T-cell lymphomas. It is as yet unknown whether this process occurs more commonly in patients with gluten sensitivity, or in other settings, and the pathogenesis is as yet undetermined.

  19. The plant mitochondrial mat-r gene/nad1 gene complex. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wolstenholme, D.R.

    1994-06-01

    The authors have completed sequencing the segments (totalling 19 kb, both complementary strands) of the maize mtDNA molecule that encode the entire NADH dehydrogenase subunit (nadl) gene. They have identified nucleotides in mature transcripts of the nadl gene that are edited and have generated clones of cDNAs of entire mature (fully spliced) nadl transcripts. They have examined the relative rates of splicing in transcripts of the four nadl gene group II introns and begun examining nadl intron cDNAs to determine the extent and distribution of RNA edits in introns, in order to evaluate the possibility that intron excision and exon splicing might be editing independent.

  20. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization.

    Science.gov (United States)

    Pérez-Quintero, Luis-Alberto; Roncagalli, Romain; Guo, Huaijian; Latour, Sylvain; Davidson, Dominique; Veillette, André

    2014-04-07

    Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.

  1. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity.

    Science.gov (United States)

    Liu, E; Tong, Y; Dotti, G; Shaim, H; Savoldo, B; Mukherjee, M; Orange, J; Wan, X; Lu, X; Reynolds, A; Gagea, M; Banerjee, P; Cai, R; Bdaiwi, M H; Basar, R; Muftuoglu, M; Li, L; Marin, D; Wierda, W; Keating, M; Champlin, R; Shpall, E; Rezvani, K

    2018-02-01

    Chimeric antigen receptors (CARs) have been used to redirect the specificity of autologous T cells against leukemia and lymphoma with promising clinical results. Extending this approach to allogeneic T cells is problematic as they carry a significant risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are highly cytotoxic effectors, killing their targets in a non-antigen-specific manner without causing GVHD. Cord blood (CB) offers an attractive, allogeneic, off-the-self source of NK cells for immunotherapy. We transduced CB-derived NK cells with a retroviral vector incorporating the genes for CAR-CD19, IL-15 and inducible caspase-9-based suicide gene (iC9), and demonstrated efficient killing of CD19-expressing cell lines and primary leukemia cells in vitro, with marked prolongation of survival in a xenograft Raji lymphoma murine model. Interleukin-15 (IL-15) production by the transduced CB-NK cells critically improved their function. Moreover, iC9/CAR.19/IL-15 CB-NK cells were readily eliminated upon pharmacologic activation of the iC9 suicide gene. In conclusion, we have developed a novel approach to immunotherapy using engineered CB-derived NK cells, which are easy to produce, exhibit striking efficacy and incorporate safety measures to limit toxicity. This approach should greatly improve the logistics of delivering this therapy to large numbers of patients, a major limitation to current CAR-T-cell therapies.

  2. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  3. IL-15 Superagonist–Mediated Immunotoxicity: Role of NK Cells and IFN-γ

    Science.gov (United States)

    Guo, Yin; Luan, Liming; Rabacal, Whitney; Bohannon, Julia K.; Fensterheim, Benjamin A.; Hernandez, Antonio

    2015-01-01

    IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8+ T (mCD8+ T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8+ T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8+ T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA–induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA–mediated immunotoxicity. PMID:26216888

  4. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  5. LYMPHOME T/NK PRIMITIF DU LARYNx : LOCALISATION ...

    African Journals Online (AJOL)

    des lymphomes de type MALT de la zone marginale, cependant les lymphomes T ou Nk sont rarement rappor- tés au niveau du larynx (2). Nous rapportons un cas de lymphome Nk primitif du larynx, et à travers d'une revue de la littérature, nous rap- pelons les principales caractéristiques cliniques, paracli- niques ...

  6. Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden.

    Directory of Open Access Journals (Sweden)

    Gunlög Rasmussen

    Full Text Available Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also, the significance of different virulence genes, mainly adhesins, for the development of infective endocarditis was investigated. DNA microarray technology was used to analyze 134 S. aureus isolates, all methicillin-susceptible, derived from three groups of clinically well-characterized patients: nasal carriers (n=46, bacteremia (n=55, and bacteremia with infective endocarditis (n=33. Invasive isolates were dominant in four of the major clonal complexes: 5, 8, 15, and 25. Of the 170 virulence genes examined, those encoding accessory gene regulator group II (agr II, capsule polysaccharide serotype 5 (cap5, and adhesins such as S. aureus surface protein G (sasG and fibronectin-binding protein B (fnbB were found to be associated with invasive disease. The same was shown for the leukocidin genes lukD/lukE, as well as the genes encoding serine protease A and B (splA/splB, staphylococcal complement inhibitor (scn and the staphylococcal exotoxin-like protein (setC or selX. In addition, there was a trend of higher prevalence of certain genes or gene clusters (sasG, agr II, cap5 among isolates causing infective endocarditis compared to other invasive isolates. In most cases, the presence of virulence genes was linked to clonal complex affiliation. In conclusion, certain S. aureus clonal lineages harboring specific sets of virulence genes seem to be more successful in causing invasive disease.

  7. Significant impact of miRNA-target gene networks on genetics of human complex traits.

    Science.gov (United States)

    Okada, Yukinori; Muramatsu, Tomoki; Suita, Naomasa; Kanai, Masahiro; Kawakami, Eiryo; Iotchkova, Valentina; Soranzo, Nicole; Inazawa, Johji; Tanaka, Toshihiro

    2016-03-01

    The impact of microRNA (miRNA) on the genetics of human complex traits, especially in the context of miRNA-target gene networks, has not been fully assessed. Here, we developed a novel analytical method, MIGWAS, to comprehensively evaluate enrichment of genome-wide association study (GWAS) signals in miRNA-target gene networks. We applied the method to the GWAS results of the 18 human complex traits from >1.75 million subjects, and identified significant enrichment in rheumatoid arthritis (RA), kidney function, and adult height (P impact of miRNA-target gene networks on the genetics of human complex traits, and provided resources which should contribute to drug discovery and nucleic acid medicine.

  8. Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma

    NARCIS (Netherlands)

    Boot, Johan D.; de Haas, Sanne; Tarasevych, Svetlana; Roy, Christine; Wang, Lin; Amin, Dilip; Cohen, Judith; Sterk, Peter J.; Miller, Barry; Paccaly, Anne; Burggraaf, Jacobus; Cohen, Adam F.; Diamant, Zuzana

    2007-01-01

    RATIONALE: The tachykinins substance P and neurokinin A (NKA) are implicated in the pathophysiology of asthma. Objective: We tested the safety, tolerability, and pharmacologic and biological efficacy of a tachykinin NK(1)/NK(2) receptor antagonist, AVE5883, in patients with asthma in two

  9. Epinephrine-induced mobilization of natural killer (NK) cells and NK-like T cells in HIV-infected patients

    DEFF Research Database (Denmark)

    Sondergaard, S R; Ullum, H; Skinhoj, P

    1999-01-01

    age- and sex-matched controls received a 1-h epinephrine infusion. Epinephrine induced mobilization of high numbers of NK-like T cells with no difference between HIV-infected patients and controls. Interestingly, all subjects mobilized NK cells containing increased proportions of perforin...

  10. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes

    Directory of Open Access Journals (Sweden)

    Syahril Abdullah

    2010-01-01

    Full Text Available A novel cationic polymer, dextran-spermine (D-SPM, has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.

  11. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2012-12-01

    Full Text Available Abstract Background Collections of Clusters of Orthologous Genes (COGs provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs. Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea. Results The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer. Conclusions The updated collection

  12. The human cytomegalovirus gene products essential for late viral gene expression assemble into prereplication complexes before viral DNA replication.

    Science.gov (United States)

    Isomura, Hiroki; Stinski, Mark F; Murata, Takayuki; Yamashita, Yoriko; Kanda, Teru; Toyokuni, Shinya; Tsurumi, Tatsuya

    2011-07-01

    The regulation of human cytomegalovirus (HCMV) late gene expression by viral proteins is poorly understood, and these viral proteins could be targets for novel antivirals. HCMV open reading frames (ORFs) UL79, -87, and -95 encode proteins with homology to late gene transcription factors of murine gammaherpesvirus 68 ORFs 18, 24, and 34, respectively. To determine whether these HCMV proteins are also essential for late gene transcription of a betaherpesvirus, we mutated HCMV ORFs UL79, -87, and -95. Cells were infected with the recombinant viruses at high and low multiplicities of infection (MOIs). While viral DNA was detected with the recombinant viruses, infectious virus was not detected unless the wild-type viral proteins were expressed in trans. At a high MOI, mutation of ORF UL79, -87, or -95 had no effect on the level of major immediate-early (MIE) gene expression or viral DNA replication, but late viral gene expression from the UL44, -75, and -99 ORFs was not detected. At a low MOI, preexpression of UL79 or -87, but not UL95, in human fibroblast cells negatively affected the level of MIE viral gene expression and viral DNA replication. The products of ORFs UL79, -87, and -95 were expressed as early viral proteins and recruited to prereplication complexes (pre-RCs), along with UL44, before the initiation of viral DNA replication. All three HCMV ORFs are indispensable for late viral gene expression and viral growth. The roles of UL79, -87, and -95 in pre-RCs for late viral gene expression are discussed.

  13. Exploring NK fitness landscapes using imitative learning

    Science.gov (United States)

    Fontanari, José F.

    2015-10-01

    The idea that a group of cooperating agents can solve problems more efficiently than when those agents work independently is hardly controversial, despite our obliviousness of the conditions that make cooperation a successful problem solving strategy. Here we investigate the performance of a group of agents in locating the global maxima of NK fitness landscapes with varying degrees of ruggedness. Cooperation is taken into account through imitative learning and the broadcasting of messages informing on the fitness of each agent. We find a trade-off between the group size and the frequency of imitation: for rugged landscapes, too much imitation or too large a group yield a performance poorer than that of independent agents. By decreasing the diversity of the group, imitative learning may lead to duplication of work and hence to a decrease of its effective size. However, when the parameters are set to optimal values the cooperative group substantially outperforms the independent agents.

  14. Increased sMICA and TGFβ1levels in HNSCC patients impair NKG2D-dependent functionality of activated NK cells.

    Science.gov (United States)

    Klöß, Stephan; Chambron, Nicole; Gardlowski, Tanja; Arseniev, Lubomir; Koch, Joachim; Esser, Ruth; Glienke, Wolfgang; Seitz, Oliver; Köhl, Ulrike

    2015-11-01

    Disseminated head-and-neck squamous cell carcinoma (HNSCC) escapes immune surveillance and thus frequently manifests as fatal disease. Here, we report on the distribution of distinct immune cell subpopulations, natural killer (NK) cell cytotoxicity and tumor immune escape mechanisms (TIEMs) in 55 HNSCC patients, either at initial diagnosis or present with tumor relapse. Compared to healthy controls, the regulatory NK cells and the ratio of pro/anti-inflammatory cytokines were decreased in HNSCC patients, while soluble major histocompatibility complex Class I chain-related peptide A (sMICA) and transforming growth factor β 1 (TGFβ 1 ) plasma levels were markedly elevated. Increased sMICA and TGFβ 1 concentrations correlated with tumor progression and staging characteristics in 7 follow-up HNSCC patients, with significantly elevated levels of both soluble factors from the time of initial diagnosis to that of relapse. Patient plasma containing elevated sMICA and TGFβ 1 markedly impaired NKG2D-dependent cytotoxicity against HNSCC cells upon incubation with patient-derived and IL-2 activated NK cells vs. those derived from healthy donors. Decreased antitumor recognition was accompanied by reduced NKG2D expression on the NK cell surface and an enhanced caspase-3 activity. In-vitro blocking and neutralization experiments demonstrated a synergistic negative impact of sMICA and TGFβ 1 on NK cell functionality. Although we previously showed the feasibility and safety of transfer of allogeneic donor NK cells in a prior clinical study encompassing various leukemia and tumor patients, our present results suggest the need for caution regarding the sole use of adoptive NK cell transfer. The presence of soluble NKG2D ligands in the plasma of HNSCC patients and the decreased NK cell cytotoxicity due to several factors, especially TGFβ 1 , indicates timely depletion of these immunosuppressing molecules may promote NK cell-based immunotherapy.

  15. A Cbx8-containing polycomb complex facilitates the transition to gene activation during ES cell differentiation.

    Directory of Open Access Journals (Sweden)

    Catherine Creppe

    2014-12-01

    Full Text Available Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq. Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs.

  16. Synonymous codon usage of genes in polymerase complex of Newcastle disease virus.

    Science.gov (United States)

    Kumar, Chandra Shekhar; Kumar, Sachin

    2017-06-01

    Newcastle disease virus (NDV) is pathogenic to both avian and non-avian species but extensively finds poultry as its primary host and causes heavy economic losses in the poultry industry. In this study, a total of 186 polymerase complex comprising of nucleoprotein (N), phosphoprotein (P), and large polymerase (L) genes of NDV was analyzed for synonymous codon usage. The relative synonymous codon usage and effective number of codons (ENC) values were used to estimate codon usage variation in each gene. Correspondence analysis (COA) was used to study the major trend in codon usage variation. Analyzing the ENC plot values against GC3s (at synonymous third codon position) we concluded that mutational pressure was the main factor determining codon usage bias than translational selection in NDV N, P, and L genes. Moreover, correlation analysis indicated, that aromaticity of N, P, and L genes also influenced the codon usage variation. The varied distribution of pathotypes for N, P, and L gene clearly suggests that change in codon usage for NDV is pathotype specific. The codon usage preference similarity in N, P, and L gene might be detrimental for polymerase complex functioning. The study represents a comprehensive analysis to date of N, P, and L genes codon usage pattern of NDV and provides a basic understanding of the mechanisms for codon usage bias. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2008-10-01

    Full Text Available Abstract Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS, which spans the promoter and untranslated regions of the ghrelin gene (GHRL. Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2. Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis, as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA genes, including 5' capping, polyadenylation, extensive splicing and short open reading

  18. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data.

    Science.gov (United States)

    Gui, Shupeng; Rice, Andrew P; Chen, Rui; Wu, Liang; Liu, Ji; Miao, Hongyu

    2017-01-31

    Gene regulatory interactions are of fundamental importance to various biological functions and processes. However, only a few previous computational studies have claimed success in revealing genome-wide regulatory landscapes from temporal gene expression data, especially for complex eukaryotes like human. Moreover, recent work suggests that these methods still suffer from the curse of dimensionality if a network size increases to 100 or higher. Here we present a novel scalable algorithm for identifying genome-wide gene regulatory network (GRN) structures, and we have verified the algorithm performances by extensive simulation studies based on the DREAM challenge benchmark data. The highlight of our method is that its superior performance does not degenerate even for a network size on the order of 10 4 , and is thus readily applicable to large-scale complex networks. Such a breakthrough is achieved by considering both prior biological knowledge and multiple topological properties (i.e., sparsity and hub gene structure) of complex networks in the regularized formulation. We also validate and illustrate the application of our algorithm in practice using the time-course gene expression data from a study on human respiratory epithelial cells in response to influenza A virus (IAV) infection, as well as the CHIP-seq data from ENCODE on transcription factor (TF) and target gene interactions. An interesting finding, owing to the proposed algorithm, is that the biggest hub structures (e.g., top ten) in the GRN all center at some transcription factors in the context of epithelial cell infection by IAV. The proposed algorithm is the first scalable method for large complex network structure identification. The GRN structure identified by our algorithm could reveal possible biological links and help researchers to choose which gene functions to investigate in a biological event. The algorithm described in this article is implemented in MATLAB Ⓡ , and the source code is freely

  19. The plant mitochondrial mat-r gene/nad1 gene complex

    Energy Technology Data Exchange (ETDEWEB)

    Wolstenhome, D.R.

    1996-12-31

    We have completed sequencing segments of the maize mitochondrial (mt) DNA that contains all five of the exons (A-E) of the gene (nad1) for subunit I of the respiratory chain NADH dehydrogenase. Analysis of these sequences indicates that exons B and C are joined by a continuous group II intron, but the remaining exons are associated with partial group II introns and are encoded at widely separated locations in the maize mtDNA molecule. We have shown that mature transcripts of the maize nad1 gene contain 23 edited nucleotides, and that transcripts of maize and soybean mat-r genes contain 15 and 14 edits, respectively. The majority of edits in nad1 transcripts result in amino acid replacements that increase similarity between the maize NAD1 protein and NAD1 proteins of other plant species and of animal species. We found that the intron between exons b and c is not edited. From data obtained using PCR and sequencing we have shown that transcripts containing all possible exon combinations exist in maize mitochondria.

  20. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.

    Science.gov (United States)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W

    2002-07-01

    Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.

  1. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhao QQ

    2012-06-01

    Full Text Available Qing-Qing Zhao,1,2 Yu-Lan Hu,1 Yang Zhou,3 Ni Li,1 Min Han,1 Gu-Ping Tang,4 Feng Qiu,2 Yasuhiko Tabata,5 Jian-Qing Gao,11Institute of Pharmaceutics, Zhejiang University, Hangzhou, China; 2Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; 3Institute of Biochemistry, Iowa State University, Ames, IA, USA; 4Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, China; 5Institute for Frontier Medical Sciences, Kyoto University, Kyoto, JapanBackground: The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity.Methods: A liver cancer-targeted specific peptide (FQHPSF sequence was successfully synthesized and linked with chitosan-linked polyethylenimine (CP to form a new targeted gene delivery vector called CPT (CP/peptide. The structure of CPT was confirmed by 1H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model.Results: The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT

  2. Radiosensitivity of CD3-CD8+CD56+ NK cells

    Energy Technology Data Exchange (ETDEWEB)

    Vokurkova, Doris [Charles University in Prague, Faculty of Medicine in Hradec Kralove, Department of Medical Biochemistry, Simkova 870, 50038 Hradec Kralove 1 (Czech Republic); Vavrova, Jirina [University of Defence, Faculty of Military Health Sciences, Department of Radiobiology, Hradec Kralove (Czech Republic); Sinkora, Jiri [Becton Dickinson (Czech Republic); Stoklasova, Alena [Charles University in Prague, Faculty of Medicine in Hradec Kralove, Department of Medical Biochemistry, Simkova 870, 50038 Hradec Kralove 1 (Czech Republic); Blaha, Vaclav [University of Defence, Faculty of Military Health Sciences, Department of Radiobiology, Hradec Kralove (Czech Republic); Rezacova, Martina, E-mail: rezacovam@lfhk.cuni.c [Charles University in Prague, Faculty of Medicine in Hradec Kralove, Department of Medical Biochemistry, Simkova 870, 50038 Hradec Kralove 1 (Czech Republic)

    2010-10-15

    The effect of lower doses (0.5-3.0 Gy) of gamma radiation on radiosensitivity of CD3-/CD8+ NK cells subpopulation isolated from the peripheral blood of healthy volunteers was studied 48 h after the irradiation. Only a subtle increase in terms of induction of apoptosis (A+ cells), was observed in Annexin positive CD3-/CD8+ NK cells. The assessment of the relative presence of CD3{sup -}/CD8{sup +} NK cells in Annexin negative populations of lymphocytes considerably contributes to the elimination of individual variability and could be useful in biodosimetry. Living CD3-/CD8+; Annexin negative NK cells were analyzed using five-color flow cytometry 16 h after irradiation by the doses of 1-10 Gy. The study was carried out on NK cells subsets CD3-/CD8- CD16+, CD56 (dim) and CD56 (bright). NK cells characterized with their low-density expression of CD56 (dim) are more cytotoxic and express CD16. Those with high-density expression of CD56 (bright) are known for their capacity to produce cytokines following activation of monocytes but their natural cytotoxicity is low; they are classified as CD16- or CD16 (dim). A dose-depending decrease in the relative presence of CD3-/CD8+ NK cells was observed 16 h after ionizing radiation (1-10 Gy). The decrease was highly pronounced in CD56 (bright) subset of NK cells and this subpopulation was considered as the most radiosensitive one. Unfortunately, the most radiosensitive subpopulation of NK cells - CD56bright cannot be used as a biodosimetric marker due to its insufficient amount in peripheral blood.

  3. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex

    NARCIS (Netherlands)

    Taherzadeh, Zhila; VanBavel, Ed; de Vos, Judith; Matlung, Hanke L.; van Montfrans, Gert; Brewster, Lizzy M.; Seghers, Leonard; Quax, Paul H. A.; Bakker, Erik N. T. P.

    2010-01-01

    Taherzadeh Z, VanBavel E, de Vos J, Matlung HL, van Montfrans G, Brewster LM, Seghers L, Quax PH, Bakker EN. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex. Am J Physiol Heart Circ Physiol 298: H1273-H1282, 2010. First published February 12, 2010;

  4. Major Histocompatibility Complex and Background Genes in Chickens Influence Susceptibility to High Pathogenicity Avian Influenza Virus

    Science.gov (United States)

    The chicken’s major histocompatibility complex (MHC) haplotype has profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both line...

  5. Homologues of insecticidal toxin complex genes within a genomic island in the marine bacterium Vibrio parahaemolyticus.

    Science.gov (United States)

    Tang, Kathy F J; Lightner, Donald V

    2014-12-01

    Three insecticidal toxin complex (tc)-like genes were identified in Vibrio parahaemolyticus 13-028/A3, which can cause acute hepatopancreatic necrosis disease in penaeid shrimp. The three genes are a tcdA-like gene (7710 bp), predicted to code for a 284-kDa protein; a tcdB-like gene (4272 bp), predicted to code for a 158-kDa protein; and a tccC3-like gene (2916 bp), predicted to encode a 107-kDa protein. All three predicted proteins contain conserved domains that are characteristic of their respective Tc proteins. By RT-PCR, all three tc-like genes were found to be expressed in this bacterium. Through genome walking and the use of PCR to join contigs surrounding these three genes, a genomic island (87 712 bp, named tc-GIvp) was found on chromosome II localized next to the tRNA Gly. The GC content of this island, which is not found in other Vibrio species, is 40%. The tc-GIvp is characterized to have 60 ORFs encoding regulatory or virulence factors. These include a type 6 secretion protein VgrG, EAL domain-containing proteins, fimbriae subunits and assembly proteins, invasin-like proteins, peptidoglycan-binding proteins, and Tc proteins. The tc-GIvp also contains 21 transposase genes, suggesting that it was acquired through horizontal transfer from other organisms. © 2014 Federation of European Microbiological Societies.

  6. Genetic variation of major histocompatibility complex genes in the endangered red-crowned crane.

    Science.gov (United States)

    Akiyama, Takuya; Kohyama, Tetsuo I; Nishida, Chizuko; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2017-07-01

    Populations that have drastically decreased in the past often have low genetic variation, which may increase the risk of extinction. The genes of major histocompatibility complex (MHC) play an important role in the adaptive immune response of jawed vertebrates. Maintenance of adaptive genetic diversity such as that of MHC genes is important for wildlife conservation. Here, we determined genotypes of exon 3 of MHC class IA genes (MHCIA) and exon 2 of MHC class IIB genes (MHCIIB) to evaluate genetic variation of the endangered red-crowned crane population on Hokkaido Island, Japan, which experienced severe population decline in the past. We identified 16 and 6 alleles of MHCIA and MHCIIB, respectively, from 152 individuals. We found evidence of a positive selection at the antigen-binding sites in MHCIA exon 3 and MHCIIB exon 2. The phylogenetic analyses indicated evidence of trans-species polymorphism among the crane MHC genes. The genetic variability in both classes of MHC genes at the population level was low. No geographic structure was found based on the genetic diversity of microsatellite and MHC genes. Our study provides useful data for the optimal management of the red-crowned crane population in Hokkaido and can contribute to future studies on MHC genes of the continental populations of the red-crowned crane and other crane species.

  7. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    Directory of Open Access Journals (Sweden)

    Simard Frederic

    2008-03-01

    Full Text Available Abstract Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9 might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria.

  8. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    International Nuclear Information System (INIS)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong; Lee, Lu-Yuan; Xu, Fadi

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA 1 receptor, ADA 1 R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA 1 R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein changes in

  9. Region-specific expression of mitochondrial complex I genes during murine brain development.

    Directory of Open Access Journals (Sweden)

    Stefanie Wirtz

    Full Text Available Mutations in the nuclear encoded subunits of mitochondrial complex I (NADH:ubiquinone oxidoreductase may cause circumscribed cerebral lesions ranging from degeneration of the striatal and brainstem gray matter (Leigh syndrome to leukodystrophy. We hypothesized that such pattern of regional pathology might be due to local differences in the dependence on complex I function. Using in situ hybridization we investigated the relative expression of 33 nuclear encoded complex I subunits in different brain regions of the mouse at E11.5, E17.5, P1, P11, P28 and adult (12 weeks. With respect to timing and relative intensity of complex I gene expression we found a highly variant pattern in different regions during development. High average expression levels were detected in periods of intense neurogenesis. In cerebellar Purkinje and in hippocampal CA1/CA3 pyramidal neurons we found a second even higher peak during the period of synaptogenesis and maturation. The extraordinary dependence of these structures on complex I gene expression during synaptogenesis is in accord with our recent findings that gamma oscillations--known to be associated with higher cognitive functions of the mammalian brain--strongly depend on the complex I activity. However, with the exception of the mesencephalon, we detected only average complex I expression levels in the striatum and basal ganglia, which does not explain the exquisite vulnerability of these structures in mitochondrial disorders.

  10. Human major histocompatibility complex contains genes for the major heat shock protein HSP70

    International Nuclear Information System (INIS)

    Sargent, C.A.; Dunham, I.; Campbell, R.D.; Trowsdale, J.

    1989-01-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, as well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, the authors have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis factor genes. The HSP70 loci are 12 kilobases apart and lie 92 kilobases telomeric of the C2 gene. As HSP70 proteins have been linked with a protective role during and after cellular stress, and HSP70 analogues are often presented as antigens in bacterial and protozoal infections, this finding may have major implications with regard to the major histocompatibility complex and associated diseases

  11. Human major histocompatibility complex contains genes for the major heat shock protein HSP70

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, C.A.; Dunham, I.; Campbell, R.D. (Medical Research Council Immunochemistry Unit , Oxford (England)); Trowsdale, J. (Imperial Cancer Research Fund, London (England))

    1989-03-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, as well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, the authors have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis factor genes. The HSP70 loci are 12 kilobases apart and lie 92 kilobases telomeric of the C2 gene. As HSP70 proteins have been linked with a protective role during and after cellular stress, and HSP70 analogues are often presented as antigens in bacterial and protozoal infections, this finding may have major implications with regard to the major histocompatibility complex and associated diseases.

  12. Genetic recombination within the human T-cell receptor α-chain gene complex

    International Nuclear Information System (INIS)

    Robinson, M.A.; Kindt, T.J.

    1987-01-01

    Genetic analyses of the human T-cell receptor (TCR) α-chain genes indicate that recombination events may occur frequently within this gene complex. Examination of the inheritance of restriction fragment length polymorphisms (RFLP) detected by using probes for constant or variable region gene segments made it possible to assign TCRα haplotypes to the 16 parents and 43 offspring of eight families studied. A total of six RFLP, three for the constant region and three for variable region segments, were examined in the present studies. Most enzyme and probe combinations tested revealed no polymorphism and those finally selected for the study showed limited polymorphism in that only two or, in one case, three allelic forms of the gene were seen. In spite of limited variability at this level, extensive heterogeneity was observed for the combinations of markers present in haplotypes, suggesting that frequent recombination events have occurred. Most strikingly, multiple combinations of RFLP occurring in close proximity of the TCRα constant region gene were observed in this study. A high recombination frequency for the TCRα gene complex is further supported by the observation that two children, one in each of two families, inherited recombinant TCRα haplotypes

  13. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus / sinensis complex (Poaceae)

    KAUST Repository

    Huang, Chao-Li

    2014-11-11

    Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M=3.36x10(-9) to 1.20x10(-6), resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M.sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.

  14. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma

    DEFF Research Database (Denmark)

    Aoude, Lauren G; Pritchard, Antonia L; Robles-Espinoza, Carla Daniela

    2015-01-01

    . Maximum likelihood and LOD [logarithm (base 10) of odds] analyses were used. Mutation clustering was assessed with χ(2) and Fisher's exact tests. P values under .05 were considered statistically significant (one-tailed with Yates' correction). RESULTS: Six families had mutations in ACD and four families......BACKGROUND: The shelterin complex protects chromosomal ends by regulating how the telomerase complex interacts with telomeres. Following the recent finding in familial melanoma of inactivating germline mutations in POT1, encoding a member of the shelterin complex, we searched for mutations...... in the other five components of the shelterin complex in melanoma families. METHODS: Next-generation sequencing techniques were used to screen 510 melanoma families (with unknown genetic etiology) and control cohorts for mutations in shelterin complex encoding genes: ACD, TERF2IP, TERF1, TERF2, and TINF 2...

  15. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  16. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Golubovskaya, Vita M., E-mail: Vita.Golubovskaya@roswellpark.org; Ho, Baotran [Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Conroy, Jeffrey [Genomics Shared Resource, Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Liu, Song; Wang, Dan [Bioinformatics Core Facility, Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Cance, William G. [Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States)

    2014-01-21

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53{sup +/+} and p53{sup −/−} cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53{sup +/+} cells but not in p53{sup −/−} cells. Among up-regulated genes in HCT p53{sup +/+} cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53{sup +/+} colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach.

  17. Tuberous sclerosis complex and polycystic kidney disease contiguous gene syndrome with Moyamoya disease.

    Science.gov (United States)

    Lai, Jonathan; Modi, Lopa; Ramai, Daryl; Tortora, Matthew

    2017-04-01

    Tuberous sclerosis complex (TSC) and autosomal dominant polycystic kidney disease (ADPKD) are two diseases sharing close genetic loci on chromosome 16. Due to contiguous gene syndrome, also known as contiguous gene deletion syndrome, the proximity of TSC2 and PKD1 genes increases the risk of co-deletion resulting in a shared clinical presentation. Furthermore, Moyamoya disease (MMD) is a rare vaso-occlusive disease in the circle of Willis. We present the first case of TSC2/PKD1 contiguous gene syndrome in a patient with MMD along with detailed histopathologic, radiologic, and cytogenetic analyses. We also highlight the clinical presentation and surgical complications in this case. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Defining early human NK cell developmental stages in primary and secondary lymphoid tissues

    NARCIS (Netherlands)

    D.N. Eissens (Diana); J. Spanholtz (Jan); A. van der Meer (Arnold); B. van Cranenbroek (Bram); H. Dolstra (Harry); J. Kwekkeboom (Jaap); F.W.M.B. Preijers (Frank); I. Joosten (Irma)

    2012-01-01

    textabstractA better understanding of human NK cell development in vivo is crucial to exploit NK cells for immunotherapy. Here, we identified seven distinctive NK cell developmental stages in bone marrow of single donors using 10-color flow cytometry and found that NK cell development is accompanied

  19. TTT and PIKK Complex Genes Reverted to Single Copy Following Polyploidization and Retain Function Despite Massive Retrotransposition in Maize

    Directory of Open Access Journals (Sweden)

    Nelson Garcia

    2017-11-01

    Full Text Available The TEL2, TTI1, and TTI2 proteins are co-chaperones for heat shock protein 90 (HSP90 to regulate the protein folding and maturation of phosphatidylinositol 3-kinase-related kinases (PIKKs. Referred to as the TTT complex, the genes that encode them are highly conserved from man to maize. TTT complex and PIKK genes exist mostly as single copy genes in organisms where they have been characterized. Members of this interacting protein network in maize were identified and synteny analyses were performed to study their evolution. Similar to other species, there is only one copy of each of these genes in maize which was due to a loss of the duplicated copy created by ancient allotetraploidy. Moreover, the retained copies of the TTT complex and the PIKK genes tolerated extensive retrotransposon insertion in their introns that resulted in increased gene lengths and gene body methylation, without apparent effect in normal gene expression and function. The results raise an interesting question on whether the reversion to single copy was due to selection against deleterious unbalanced gene duplications between members of the complex as predicted by the gene balance hypothesis, or due to neutral loss of extra copies. Uneven alteration of dosage either by adding extra copies or modulating gene expression of complex members is being proposed as a means to investigate whether the data supports the gene balance hypothesis or not.

  20. Radiosensitive SCID patients with Artemis gene mutations show a complete B-cell differentiation arrest at the pre-B-cell receptor checkpoint in bone marrow.

    NARCIS (Netherlands)

    Noordzij, J.G.; Verkaik, N.S.; Burg, M.E.L. van der; Veelen, L.R. van; Bruin-Versteeg, S. de; Wiegant, W.; Vossen, J.M.J.J.; Weemaes, C.M.R.; Groot, R. de; Zdzienicka, M.Z.; Gent, D.C. van; Dongen, J.J.M. van

    2003-01-01

    Severe combined immunodeficiency disease (SCID) can be immunologically classified by the absence or presence of T, B, and natural killer (NK) cells. About 30% of T(-)B(-)NK(+) SCID patients carry mutations in the recombination activating genes (RAG). Some T(-)B(-)NK(+) SCID patients without RAG gene

  1. Learning a structural and functional representation for gene expressions: To systematically dissect complex cancer phenotypes.

    Science.gov (United States)

    Wang, Yanbo; Liu, Quan; Huang, Shan; Yuan, Bo

    2017-05-08

    Cancer is a heterogeneous disease, thus one of the central problems is how to dissect the resulting complex phenotypes in terms of their biological building blocks. Computationally, this is to represent and interpret high dimensional observations through a structural and conceptual abstraction into the most influential determinants underlying the problem. The working hypothesis of this report is to consider gene interaction to be largely responsible for the manifestation of complex cancer phenotypes, thus where the representation is to be conceptualized. Here we report a representation learning strategy combined with regularizations, in which gene expressions are described in terms of a regularized product of meta-genes and their expression levels. The meta-genes are constrained by gene interactions thus representing their original topological contexts. The expression levels are supervised by their conditional dependencies among the observations thus providing a cluster-specific constraint. We obtain both of these structural constraints using a node-based graphical model. Our representation allows the selection of more influential modules, thus implicating their possible roles in neoplastic transformations. We validate our representation strategy by its robust recognitions of various cancer phenotypes comparing with various classical methods. The modules discovered are either shared or specify for different types or stages of human cancers, all of which are consistent with literature and biology.

  2. [Analysis of UQCRB gene mutation in a child with mitochondrial complex III deficiency].

    Science.gov (United States)

    Zhang, Ting; Hong, Fang; Qian, Guling; Tong, Fan; Zhou, Xuelian; Huang, Xiaolei; Yang, Rulai; Huang, Xinwen

    2017-06-10

    To delineate the clinical, biochemical and genetic mutational characteristics of a child with mitochondrial complex III deficiency. Clinical information and results of auxiliary examination of the patient were analyzed. Next-generation sequencing of the mitochondrial genome and related nuclear genes was carried out. Suspected mutation was confirmed in both parents with Sanger sequencing. Heterozygous deletion was mapped with chromosomal microarray analysis and confirmed with real-time PCR. The patient presented with vomiting, polypnea, fever, metabolic acidosis, hyperlactatemia, hypoglycemia, dysfunction of coagulation and immune system, in addition with increased lactate dehydrogenase and creatine kinase isoenzyme. Elevation of blood alanine and acylcarnitines as well as urinary ketotic dicarboxylic acid were also noted. The patient also presented development delay, mental retardation and hypotonia. Sequence analysis revealed two mutations in the nuclear gene UQCRB, which included a previously reported frameshift mutation c.306_309delAAAA(p.Arg105Lysfs*22) and a novel large deletion encompassing the entire UQCRB gene. The clinical, biochemical and gene mutation characteristics of a child with mitochondrial complex III deficiency caused by mutations of the UQCRB gene have been delineated.

  3. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The

  4. Clonal deleted latent membrane protein 1 variants of Epstein-Barr virus are predominant in European extranodal NK/T lymphomas and disappear during successful treatment.

    Science.gov (United States)

    Halabi, Mohamad Adnan; Jaccard, Arnaud; Moulinas, Rémi; Bahri, Racha; Al Mouhammad, Hazar; Mammari, Nour; Feuillard, Jean; Ranger-Rogez, Sylvie

    2016-08-15

    Extranodal natural killer/T-cell lymphomas (NK/TL), rare in Europe, are Epstein-Barr virus (EBV) associated lymphomas with poor outcomes. Here, we determined the virus type and analyzed the EBV latent membrane protein-1 (LMP1) gene sequence in NK/TL from French patients. Six clones of viral LMP1 were sequenced by Sanger technology in blood from 13 patients before treatment with an l-asparaginase based regimen and, for 8 of them, throughout the treatment. Blood LMP1 sequences from 21 patients without any known malignancy were tested as controls. EBV Type A was identified for 11/13 patients and for all controls. Before treatment, a clonal LMP1 gene containing a 30 bp deletion (del30) was found in 46.1% of NK/TL and only in 4.8% of controls. Treatment was less effective in these patients who died more rapidly than the others. Patients with a deleted strain evolving toward a wild-type strain during treatment reached complete remission. The LMP1 gene was sequenced by highly sensitive next-generation sequencing technology in five NK/TL nasopharyngeal biopsies, two of them originating from the previous patients. Del30 was present in 100% of the biopsies; two viruses at least coexisted in three biopsies. These results suggest that del30 may be associated with poor prognosis NK/TL and that strain evolution could be used as a potential marker to monitor treatment. © 2016 UICC.

  5. Influenza vaccine induces intracellular immune memory of human NK cells.

    Science.gov (United States)

    Dou, Yaling; Fu, Binqing; Sun, Rui; Li, Wenting; Hu, Wanfu; Tian, Zhigang; Wei, Haiming

    2015-01-01

    Influenza vaccines elicit antigen-specific antibodies and immune memory to protect humans from infection with drift variants. However, what supports or limits vaccine efficacy and duration is unclear. Here, we vaccinated healthy volunteers with annual vaccine formulations and investigated the dynamics of T cell, natural killer (NK) cell and antibody responses upon restimulation with heterologous or homologous influenza virus strains. Influenza vaccines induced potential memory NK cells with increased antigen-specific recall IFN-γ responses during the first 6 months. In the absence of significant changes in other NK cell markers (CD45RO, NKp44, CXCR6, CD57, NKG2C, CCR7, CD62L and CD27), influenza vaccines induced memory NK cells with the distinct feature of intracellular NKp46 expression. Indeed, surface NKp46 was internalized, and the dynamic increase in NKp46(intracellular)+CD56dim NK cells positively correlated with increased IFN-γ production to influenza virus restimulation after vaccination. In addition, anti-NKp46 antibodies blocked IFN-γ responses. These findings provide insights into a novel mechanism underlying vaccine-induced immunity and NK-related diseases, which may help to design persisting and universal vaccines in the future.

  6. Tachykinin NK2 receptor antagonists. A patent review (2006 - 2010).

    Science.gov (United States)

    Altamura, Maria

    2012-01-01

    Tachykinins are endogenous peptide neurotransmitters, acting through the NK1, NK2 and NK3 receptors, at central and peripheral level. At peripheral level, they are involved in contraction of smooth muscle, secretion of water and ion from epithelia, as well as modulation of visceral pain sensitivity. Tachykinin NK2 receptor antagonists have the potential to be useful in the treatment of various gastrointestinal, genitourinary and CNS diseases. In this review, an overview of the patenting activity in the last 5 years is provided. Patents from different companies and research groups are discussed for their novelty and evaluated in relation to proposed indications and clinical studies. Relevant biological data are also presented. Patents claiming new therapeutic indications are included in a dedicated section. Although there is still no tachykinin NK2 receptor antagonist approved for use in human therapy, research in the field is still proposing new compounds and possible uses. A number of candidates are being evaluated in Phase II clinical studies, in indications ranging from gastrointestinal disorders to inflammatory diseases. The results of these studies will indicate the role of tachykinin NK2 receptor antagonists in human therapy.

  7. Gene-Environment Interactions in the Development of Complex Disease Phenotypes

    Directory of Open Access Journals (Sweden)

    Kenneth Olden

    2008-03-01

    Full Text Available The lack of knowledge about the earliest events in disease development is due to the multi-factorial nature of disease risk. This information gap is the consequence of the lack of appreciation for the fact that most diseases arise from the complex interactions between genes and the environment as a function of the age or stage of development of the individual. Whether an environmental exposure causes illness or not is dependent on the efficiency of the so-called “environmental response machinery” (i.e., the complex of metabolic pathways that can modulate response to environmental perturbations that one has inherited. Thus, elucidating the causes of most chronic diseases will require an understanding of both the genetic and environmental contribution to their etiology. Unfortunately, the exploration of the relationship between genes and the environment has been hampered in the past by the limited knowledge of the human genome, and by the inclination of scientists to study disease development using experimental models that consider exposure to a single environmental agent. Rarely in the past were interactions between multiple genes or between genes and environmental agents considered in studies of human disease etiology. The most critical issue is how to relate exposure-disease association studies to pathways and mechanisms. To understand how genes and environmental factors interact to perturb biological pathways to cause injury or disease, scientists will need tools with the capacity to monitor the global expression of thousands of genes, proteins and metabolites simultaneously. The generation of such data in multiple species can be used to identify conserved and functionally significant genes and pathways involved in geneenvironment interactions. Ultimately, it is this knowledge that will be used to guide agencies such as the U.S. Department of Health and Human Services in decisions regarding biomedical research funding

  8. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.

    Science.gov (United States)

    Tabuchi, Tomoko M; Deplancke, Bart; Osato, Naoki; Zhu, Lihua J; Barrasa, M Inmaculada; Harrison, Melissa M; Horvitz, H Robert; Walhout, Albertha J M; Hagstrom, Kirsten A

    2011-05-01

    DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.

  9. Preparation and toxicity evaluation of a novel nattokinase-tauroursodeoxycholate complex

    Directory of Open Access Journals (Sweden)

    Rui Feng

    2018-03-01

    Full Text Available Nattokinase (NK, which has been identified as a potent fibrinolytic protease, has remarkable potential in treatment of thrombolysis, and even has the ability to ameliorate chronic vein thrombosis. To reduce the hemorrhagic risk from an intravenous injection of NK, nattokinase-tauroursodeoxycholate (NK-TUDCA complex was prepared at different pH values and with different ratios of NK and TUDCA. When assessing survival time, survival state, tail injury, and the body weight of mice, it was found that the NK-TUDCA complex (NK: 10 kIU/ml; TUDCA: 10 mg/ml; pH 5.0 had a lower toxicity when administered at an NK dosage of 130 kIU/kg in the acute toxicity test and 13 kIU/kg in the repeated low-dose challenge. From the results of the in vitro thrombolytic test and characterization of NK-TUDCA, we speculated that the delayed release of NK-TUDCA might be the main cause of toxicity reduction by the complex. This study described the preparation of an NK complex with low toxicity following intravenous administration, which could be utilized for further clinical study of NK. Keywords: Nattokinase, Tauroursodeoxycholate, Complex, Toxicity test, In vitro thrombolytic test

  10. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  11. The Role of Natural Killer (NK) Cells and NK Cell Receptor Polymorphisms in the Assessment of HIV-1 Neutralization

    Science.gov (United States)

    2012-04-11

    antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor ( KIR ) and FccRIIIa alleles appear to be...diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor ( KIR ) and FccRIIIa alleles appear...killer immunoglobulin receptors ( KIR ), and Fc gamma receptors (FccR). Significant biologic associations with either permissivity or neutralization were

  12. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells.

    Directory of Open Access Journals (Sweden)

    Subhashis Sarkar

    Full Text Available BACKGROUND: Multiple Myeloma (MM is an incurable plasma cell malignancy residing within the bone marrow (BM. We aim to develop allogeneic Natural Killer (NK cell immunotherapy for MM. As the BM contains hypoxic regions and the tumor environment can be immunosuppressive, we hypothesized that hypoxia inhibits NK cell anti-MM responses. METHODS: NK cells were isolated from healthy donors by negative selection and NK cell function and phenotype were examined at oxygen levels representative of hypoxic BM using flowcytometry. Additionally, NK cells were activated with IL-2 to enhance NK cell cytotoxicity under hypoxia. RESULTS: Hypoxia reduced NK cell killing of MM cell lines in an oxygen dependent manner. Under hypoxia, NK cells maintained their ability to degranulate in response to target cells, though, the percentage of degranulating NK cells was slightly reduced. Adaptation of NK- or MM cells to hypoxia was not required, hence, the oxygen level during the killing process was critical. Hypoxia did not alter surface expression of NK cell ligands (HLA-ABC, -E, MICA/B and ULBP1-2 and receptors (KIR, NKG2A/C, DNAM-1, NCRs and 2B4. It did, however, decrease expression of the activating NKG2D receptor and of intracellular perforin and granzyme B. Pre-activation of NK cells by IL-2 abrogated the detrimental effects of hypoxia and increased NKG2D expression. This emphasized that activated NK cells can mediate anti-MM effects, even under hypoxic conditions. CONCLUSIONS: Hypoxia abolishes the killing potential of NK cells against multiple myeloma, which can be restored by IL-2 activation. Our study shows that for the design of NK cell-based immunotherapy it is necessary to study biological interactions between NK- and tumor cells also under hypoxic conditions.

  13. Multivariate dimensionality reduction approaches to identify gene-gene and gene-environment interactions underlying multiple complex traits.

    Science.gov (United States)

    Xu, Hai-Ming; Sun, Xi-Wei; Qi, Ting; Lin, Wan-Yu; Liu, Nianjun; Lou, Xiang-Yang

    2014-01-01

    The elusive but ubiquitous multifactor interactions represent a stumbling block that urgently needs to be removed in searching for determinants involved in human complex diseases. The dimensionality reduction approaches are a promising tool for this task. Many complex diseases exhibit composite syndromes required to be measured in a cluster of clinical traits with varying correlations and/or are inherently longitudinal in nature (changing over time and measured dynamically at multiple time points). A multivariate approach for detecting interactions is thus greatly needed on the purposes of handling a multifaceted phenotype and longitudinal data, as well as improving statistical power for multiple significance testing via a two-stage testing procedure that involves a multivariate analysis for grouped phenotypes followed by univariate analysis for the phenotypes in the significant group(s). In this article, we propose a multivariate extension of generalized multifactor dimensionality reduction (GMDR) based on multivariate generalized linear, multivariate quasi-likelihood and generalized estimating equations models. Simulations and real data analysis for the cohort from the Study of Addiction: Genetics and Environment are performed to investigate the properties and performance of the proposed method, as compared with the univariate method. The results suggest that the proposed multivariate GMDR substantially boosts statistical power.

  14. Multivariate dimensionality reduction approaches to identify gene-gene and gene-environment interactions underlying multiple complex traits.

    Directory of Open Access Journals (Sweden)

    Hai-Ming Xu

    Full Text Available The elusive but ubiquitous multifactor interactions represent a stumbling block that urgently needs to be removed in searching for determinants involved in human complex diseases. The dimensionality reduction approaches are a promising tool for this task. Many complex diseases exhibit composite syndromes required to be measured in a cluster of clinical traits with varying correlations and/or are inherently longitudinal in nature (changing over time and measured dynamically at multiple time points. A multivariate approach for detecting interactions is thus greatly needed on the purposes of handling a multifaceted phenotype and longitudinal data, as well as improving statistical power for multiple significance testing via a two-stage testing procedure that involves a multivariate analysis for grouped phenotypes followed by univariate analysis for the phenotypes in the significant group(s. In this article, we propose a multivariate extension of generalized multifactor dimensionality reduction (GMDR based on multivariate generalized linear, multivariate quasi-likelihood and generalized estimating equations models. Simulations and real data analysis for the cohort from the Study of Addiction: Genetics and Environment are performed to investigate the properties and performance of the proposed method, as compared with the univariate method. The results suggest that the proposed multivariate GMDR substantially boosts statistical power.

  15. Tachykinin NK1 and NK2 receptors mediate inhibitory vs excitatory motor responses in human isolated corpus cavernosum and spongiosum

    Science.gov (United States)

    Patacchini, Riccardo; Barbagli, Guido; Palminteri, Enzo; Lazzeri, Massimo; Turini, Damiano; Maggi, Carlo Alberto

    2002-01-01

    Motor effects produced by tachykinins were studied in human isolated corpus spongiosum and cavernosum. In quiescent preparations neurokinin A caused potent contractions (pD2=8.3 – 7.9 respectively) prevented by the NK2 receptor-selective antagonist nepadutant, whereas [Sar9]SP sulfone and senktide (NK1 and NK3 receptor-selective agonists) produced no effect or spare contractions. In KCl-precontracted corpus spongiosum septide (pD2=7.1) and [Sar9]SP sulfone (pD2=7.7) produced tetrodotoxin-resistant relaxations, abolished by the tachykinin NK1 receptor-selective antagonist SR 140333. [Sar9]SP sulfone (1 μM) produced similar relaxations in precontracted corpus cavernosum. Electrical field stimulation (EFS) elicited tetrodotoxin-sensitive relaxations, which were additive to those produced by [Sar9]SP sulfone. Nω-nitro-L-arginine (L-NOARG) totally prevented both [Sar9]SP sulfone- and EFS-induced relaxations. These results show that tachykinin NK1 and NK2 receptors mediate opposite motor effects in human penile tissues, suggesting a possible modulatory role of tachykinins on smooth muscle tone in these organs. PMID:11906947

  16. Presentation of Complex Homozygous Allele in ABCA4 Gene in a Patient with Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Māreta Audere

    2015-01-01

    Full Text Available Retinitis pigmentosa is a degenerative retinal disease characterized by progressive photoreceptor damage, which causes loss of peripheral and night vision and the development of tunnel vision and may result in loss of central vision. This study describes a patient with retinitis pigmentosa caused by a mutation in the ABCA4 gene with complex allele c.1622T>C, p.L541P; c.3113C>T, p.A1038V in homozygous state.

  17. A complex network approach reveals a pivotal substructure of genes linked to schizophrenia.

    Directory of Open Access Journals (Sweden)

    Alfonso Monaco

    Full Text Available Research on brain disorders with a strong genetic component and complex heritability, such as schizophrenia, has led to the development of brain transcriptomics. This field seeks to gain a deeper understanding of gene expression, a key factor in exploring further research issues. Our study focused on how genes are associated amongst each other. In this perspective, we have developed a novel data-driven strategy for characterizing genetic modules, i.e., clusters of strongly interacting genes. The aim was to uncover a pivotal community of genes linked to a target gene for schizophrenia. Our approach combined network topological properties with information theory to highlight the presence of a pivotal community, for a specific gene, and to simultaneously assess the information content of partitions with the Shannon's entropy based on betweenness. We analyzed the publicly available BrainCloud dataset containing post-mortem gene expression data and focused on the Dopamine D2 receptor, encoded by the DRD2 gene. We used four different community detection algorithms to evaluate the consistence of our approach. A pivotal DRD2 community emerged for all the procedures applied, with a considerable reduction in size, compared to the initial network. The stability of the results was confirmed by a Dice index ≥80% within a range of tested parameters. The detected community was also the most informative, as it represented an optimization of the Shannon entropy. Lastly, we verified the strength of connection of the DRD2 community, which was stronger than any other randomly selected community and even more so than the Weighted Gene Co-expression Network Analysis module, commonly considered the standard approach for such studies. This finding substantiates the conclusion that the detected community represents a more connected and informative cluster of genes for the DRD2 community, and therefore better elucidates the behavior of this module of strongly related

  18. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes.

    Science.gov (United States)

    Hume, David A

    2012-09-01

    Monocytes and macrophages differentiate from progenitor cells under the influence of colony-stimulating factors. Genome-scale data have enabled the identification of the set of genes that distinguishes macrophages from other cell types and the ways in which thousands of genes are regulated in response to pathogen challenge. Although there has been a focus on a small subset of lineage-enriched transcription factors, such as PU.1, more than one-half of the transcription factors in the genome can be expressed in macrophage lineage cells under some state of activation, and they interact in a complex network. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. The data and publication deluge related to macrophage biology require the development of new analytical tools and ways of presenting information in an accessible form.

  19. Identifying driving gene clusters in complex diseases through critical transition theory

    Science.gov (United States)

    Wolanyk, Nathaniel; Wang, Xujing; Hessner, Martin; Gao, Shouguo; Chen, Ye; Jia, Shuang

    A novel approach of looking at the human body using critical transition theory has yielded positive results: clusters of genes that act in tandem to drive complex disease progression. This cluster of genes can be thought of as the first part of a large genetic force that pushes the body from a curable, but sick, point to an incurable diseased point through a catastrophic bifurcation. The data analyzed is time course microarray blood assay data of 7 high risk individuals for Type 1 Diabetes who progressed into a clinical onset, with an additional larger study requested to be presented at the conference. The normalized data is 25,000 genes strong, which were narrowed down based on statistical metrics, and finally a machine learning algorithm using critical transition metrics found the driving network. This approach was created to be repeatable across multiple complex diseases with only progression time course data needed so that it would be applicable to identifying when an individual is at risk of developing a complex disease. Thusly, preventative measures can be enacted, and in the longer term, offers a possible solution to prevent all Type 1 Diabetes.

  20. Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach

    Directory of Open Access Journals (Sweden)

    Serb Jeanne M

    2010-04-01

    Full Text Available Abstract Background Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1 genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2 genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes. Results Using protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene families known to be involved in eye development or phototransduction and deduced their phylogenetic relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes. Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a significantly higher rate than those within a randomly shuffled matrix, many genes with known functional relationships in model organisms

  1. Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells.

    Science.gov (United States)

    Sun, Rui; Luo, Jing; Li, Dong; Shu, Yu; Luo, Chao; Wang, Shan-Shan; Qin, Jian; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-30

    In tumor-bearing state, the function of neutrophils is converted from tumor-suppressing to tumor-promoting. Here we report that priming with IFN-γ and TNF-α could convert the potential of neutrophils from tumor-promoting to tumor-suppressing. The neutrophils with protumor potential have not lost their responsiveness to IFN-γ and TNF-α. After priming with IFN-γ and TNF-α, the potential of the neutrophils to express Bv8 and Mmp9 genes was reduced. Conversely, the tumor-promotional neutrophils recovered the expression of Rab27a and Trail, resumed the activation levels of PI3K and p38 MAPK pathways in response to stimuli, and expressed higher levels of IL-18 and NK-activating ligands such as RAE-1, MULT-1, and H60. Therefore, the anti-tumor function of the neutrophils was augmented, including the cytotoxicity to tumor cells, the capability of degranulation, and the capacity to activate NK cells. Since the function of NK cells is impaired in tumor-bearing state, the administration of normal NK cells could significantly augment the efficiency of tumor therapy based on neutrophil priming. These findings highlight the reversibility of neutrophil function in tumor-bearing state, and suggest that neutrophil priming by IFN-γ/TNF-α might be a potential approach to eliminate residual tumor cells in comprehensive strategy for tumor therapy.

  2. Association of activating KIR copy number variation of NK cells with containment of SIV replication in rhesus monkeys.

    Directory of Open Access Journals (Sweden)

    Ina Hellmann

    2011-12-01

    Full Text Available While the contribution of CD8⁺ cytotoxic T lymphocytes to early containment of HIV-1 spread is well established, a role for NK cells in controlling HIV-1 replication during primary infection has been uncertain. The highly polymorphic family of KIR molecules expressed on NK cells can inhibit or activate these effector cells and might therefore modulate their activity against HIV-1-infected cells. In the present study, we investigated copy number variation in KIR3DH loci encoding the only activating KIR receptor family in rhesus monkeys and its effect on simian immunodeficiency virus (SIV replication during primary infection in rhesus monkeys. We observed an association between copy numbers of KIR3DH genes and control of SIV replication in Mamu-A*01⁻ rhesus monkeys that express restrictive TRIM5 alleles. These findings provide further evidence for an association between NK cells and the early containment of SIV replication, and underscore the potential importance of activating KIRs in stimulating NK cell responses to control SIV spread.

  3. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes.

    Science.gov (United States)

    Dearnley, Megan; Reynolds, Nicholas P; Cass, Peter; Wei, Xiaohu; Shi, Shuning; Mohammed, A Aalam; Le, Tam; Gunatillake, Pathiraja; Tizard, Mark L; Thang, San H; Hinton, Tracey M

    2016-11-14

    The translation of siRNA into clinical therapies has been significantly delayed by issues surrounding the delivery of naked siRNA to target cells. Here we investigate siRNA delivery by cationic acrylic polymers developed by Reversible Addition-Fragmentation chain Transfer (RAFT) mediated free radical polymerization. We investigated cell uptake and gene silencing of a series of siRNA-star polymer complexes both in the presence and absence of a protein "corona". Using a multidisciplinary approach including quantitative nanoscale mechanical-atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis we have characterized the nanoscale morphology, stiffness, and surface charge of the complexes with and without the protein corona. This is one of the first examples of a comprehensive physiochemical analysis of siRNA-polymer complexes being performed alongside in vitro biological assays, allowing us to describe a set of desirable physical features of cationic polymer complexes that promote gene silencing. Multifaceted studies such as this will improve our understanding of structure-function relationships in nanotherapeutics, facilitating the rational design of polymer-mediated siRNA delivery systems for novel treatment strategies.

  4. Characterization of the major histocompatibility complex class II genes in miiuy croaker.

    Directory of Open Access Journals (Sweden)

    Tianjun Xu

    Full Text Available Major histocompatibility complex (MHC has a central role in the adaptive immune system by presenting foreign peptide to the T-cell receptor. In order to study the molecular function and genomic characteristic of class II genes in teleost, the full lengths of MHC class IIA and IIB cDNA and genomic sequence were cloned from miiuy croaker (Miichthys miiuy. As in other teleost, four exons and three introns were identified in miiuy croaker class IIA gene; but the difference is that six exons and five introns were identified in the miiuy croaker class IIB gene. The deduced amino acid sequence of class IIA and class IIB had 26.3-85.7% and 11.0-88.8% identity with those of mammal and teleost, respectively. Real-time quantitative RT-PCR demonstrated that the MHC class IIA and IIB were ubiquitously expressed in ten normal tissues; expression levels of MHC genes were found first upregulated and then downregulated, and finally by a recovery to normal level throughout the pathogenic bacteria infection process. In addition, we report on the underlying mechanism that maintains sequences diversity among many fish species. A series of site-model tests implemented in the CODEML program revealed that positive Darwinian selection is likely the cause of the molecular evolution in the fish MHC class II genes.

  5. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function

    Science.gov (United States)

    Schlums, Heinrich; Cichocki, Frank; Tesi, Bianca; Theorell, Jakob; Beziat, Vivien; Holmes, Tim D.; Han, Hongya; Chiang, Samuel C.C.; Foley, Bree; Mattsson, Kristin; Larsson, Stella; Schaffer, Marie; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Miller, Jeffrey S.; Bryceson, Yenan T.

    2015-01-01

    SUMMARY The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hyperme-thylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets. PMID:25786176

  6. Outsourcing the Nucleus: Nuclear Pore Complex Genes are no Longer Encoded in Nucleomorph Genomes

    Directory of Open Access Journals (Sweden)

    Nadja Neumann

    2006-01-01

    Full Text Available The nuclear pore complex (NPC facilitates transport between nucleus and cytoplasm. The protein constituents of the NPC, termed nucleoporins (Nups, are conserved across a wide diversity of eukaryotes. In apparent exception to this, no nucleoporin genes have been identified in nucleomorph genomes. Nucleomorphs, nuclear remnants of once free-living eukaryotes, took up residence as secondary endosymbionts in cryptomonad and chlorarachniophyte algae. As these genomes are highly reduced, Nup genes may have been lost, or relocated to the host nucleus. However, Nup genes are often poorly conserved between species, so absence may be an artifact of low sequence similarity. We therefore constructed an evolutionary bioinformatic screen to establish whether the apparent absence of Nup genes in nucleomorph genomes is due to genuine absence or the inability of current methods to detect homologues. We searched green plant (Arabidopsis and rice, green alga (Chlamydomonas reinhardtii and red alga (Cyanidioschyzon merolae genomes, plus two nucleomorph genomes (Bigelowiella natans and Guillardia theta with profile hidden Markov models (HMMs from curated alignments of known vertebrate/yeast Nups. Since the plant, algal and nucleomorph genomes all belong to the kingdom Plantae, and are evolutionarily distant from the outgroup (vertebrate/yeast training set, we use the plant and algal genomes as internal positive controls for the sensitivity of the searches in nucleomorph genomes. We fi nd numerous Nup homologues in all plant and free-living algal species, but none in either nucleomorph genome. BLAST searches using identified plant and algal Nups also failed to detect nucleomorph homologues. We conclude that nucleomorph Nup genes have either been lost, being replaced by host Nup genes, or, that nucleomorph Nup genes have been transferred to the host nucleus twice independently; once in the evolution of the red algal nucleomorph and once in the green algal nucleomorph.

  7. Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    Directory of Open Access Journals (Sweden)

    Dinesen Lotte C

    2009-01-01

    Full Text Available Abstract Background Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. Methods We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110 from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90, and performed a meta-analysis to increase power to detect non-tissue specific effects. Results In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (cis expression quantitative trait loci, eQTLs. 135 of the detected SNP-probe effects (reflecting 51 unique probes were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. Conclusion In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.

  8. Identification of candidate genes for dissecting complex branch number trait in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Kumar, Vinod; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-04-01

    The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350-400 kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958 × ICC 17160)- and intra (ICC 12299 × ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4-5 fold) of the validated seven branch number-associated genes especially in high branch number as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations was apparent. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea. Copyright © 2016 Elsevier

  9. Tumour necrosis factor gene complex polymorphisms in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Ruse, Charlotte E; Hill, Maureen C; Tobin, Martin; Neale, Natalie; Connolly, Martin J; Parker, Stuart G; Wardlaw, Andrew J

    2007-02-01

    We aimed to examine the role of tumour necrosis factor gene complex polymorphisms in subjects with chronic obstructive pulmonary disease (COPD). We hypothesized that individuals possessing polymorphic variants associated with higher tumour necrosis factor (TNF) secretion would be more susceptible to and/or have more severe disease. Patients with COPD and population controls underwent detailed clinical phenotyping. Genotyping for the tumour necrosis factor-308 and the lymphotoxin alpha NcoI (LTalpha polymorphisms was carried out by 'blinded' laboratory staff. Three hundred and sixty one individuals (220 cases and 141 controls) were recruited. We showed an association between the LTalphaNcol polymorphism and forced vital capacity (FVC) in a population of older adults with and without COPD. The LTalphaNcol*2 allele was associated with poorer lung function, under a codominant model, with a fall in FVC (expressed as a percentage of its predicted value) of 3.7% for each copy of the LTalphaNcol*2 allele possessed (for FVC, regression coefficient (95% CI)=-3.73(-7.01 to -0.44), P=0.026; for FEV(1) regression coefficient=-3.56(-7.80 to 0.70), P=0.101. However, there was no difference in genotype distribution between the case and control populations. This study adds weight to the suggestion that the TNF gene complex is involved in physiological alterations (FVC) that may affect the development and severity of COPD. The absence of a significant association between the TNF gene-complex polymorphisms in this study does not rule out a modest effect of these polymorphisms on the risk of COPD, as much larger studies are needed to detect modest gene effects on binary disease endpoints.

  10. A novel approach to simulate gene-environment interactions in complex diseases

    Directory of Open Access Journals (Sweden)

    Nicodemi Mario

    2010-01-01

    Full Text Available Abstract Background Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.. Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS, a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte

  11. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors

  12. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Directory of Open Access Journals (Sweden)

    Anna Bauer-Mehren

    Full Text Available BACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and

  13. From 'omics' to complex disease: a systems biology approach to gene-environment interactions in cancer

    Directory of Open Access Journals (Sweden)

    Knox Sarah S

    2010-04-01

    Full Text Available Abstract Background Cancer is a complex disease that involves a sequence of gene-environment interactions in a progressive process that cannot occur without dysfunction in multiple systems, including DNA repair, apoptotic and immune functions. Epigenetic mechanisms, responding to numerous internal and external cues in a dynamic ongoing exchange, play a key role in mediating environmental influences on gene expression and tumor development. Hypothesis The hypothesis put forth in this paper addresses the limited success of treatment outcomes in clinical oncology. It states that improvement in treatment efficacy requires a new paradigm that focuses on reversing systemic dysfunction and tailoring treatments to specific stages in the process. It requires moving from a reductionist framework of seeking to destroy aberrant cells and pathways to a transdisciplinary systems biology approach aimed at reversing multiple levels of dysfunction. Conclusion Because there are many biological pathways and multiple epigenetic influences working simultaneously in the expression of cancer phenotypes, studying individual components in isolation does not allow an adequate understanding of phenotypic expression. A systems biology approach using new modeling techniques and nonlinear mathematics is needed to investigate gene-environment interactions and improve treatment efficacy. A broader array of study designs will also be required, including prospective molecular epidemiology, immune competent animal models and in vitro/in vivo translational research that more accurately reflects the complex process of tumor initiation and progression.

  14. A computational interactome for prioritizing genes associated with complex agronomic traits in rice (Oryza sativa).

    Science.gov (United States)

    Liu, Shiwei; Liu, Yihui; Zhao, Jiawei; Cai, Shitao; Qian, Hongmei; Zuo, Kaijing; Zhao, Lingxia; Zhang, Lida

    2017-04-01

    Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome-wide rice protein-protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non-transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein-protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain-mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet-based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2-11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Contribution of chromosomal abnormalities and genes of the major histocompatibility complex to early pregnancy losses

    Directory of Open Access Journals (Sweden)

    Tkach I. R.

    2015-02-01

    Full Text Available Aim. The determination of chromosomal abnormalities in samples from early pregnancy losses and allelic polymorphism of HLA–DRB1 and DQA1 genes in couples with recurrent miscarriage. Methods. Banding cytogenetic and interphase mFISH analysis, DNA extraction by salting method, PCR, agarose gel electrophoresis. Results. Cytogenetic and molecular-cytogenetic investigations of SA material identified karyotype anomalies in 32.4 % of cases with prevalence of autosomal trisomy – 42.65 %, triploidy – 30.38 % and monosomy X – 19.11 %. Complex analysis of frequency and distribution of allelic variants of genes HLA-DRB1 and HLA-DQA1 allowed establishing the alleles DRB1*0301, DRB1*1101-1104 and DQA1*0501 to be aggressor alleles in women with recurrent pregnancy loss (RPL. The cumulative homology of allelic polymorphism of more than 50 % of HLA-DRB1 and HLA-DQA1 loci between partners increases the risk of RPL by almost four times. Conclusion. The detected chromosome aneuploidies in the samples from products of conception and the changes in the major histocompatibility complex genes can cause the failure of a couples reproductive function and can lead to an early fetal loss.

  16. Brownie, a gene involved in building complex respiratory devices in insect eggshells.

    Directory of Open Access Journals (Sweden)

    Paula Irles

    Full Text Available BACKGROUND: Insect eggshells must combine protection for the yolk and embryo with provisions for respiration and for the entry of sperm, which are ensured by aeropyles and micropyles, respectively. Insects which oviposit the eggs in an egg-case have a double problem of respiration as gas exchange then involves two barriers. An example of this situation is found in the cockroach Blattella germanica, where the aeropyle and the micropyle are combined in a complex structure called the sponge-like body. The sponge-like body has been well described morphologically, but nothing is known about how it is built up. METHODOLOGY/PRINCIPAL FINDINGS: In a library designed to find genes expressed during late chorion formation in B. germanica, we isolated the novel sequence Bg30009 (now called Brownie, which was outstanding due to its high copy number. In the present work, we show that Brownie is expressed in the follicle cells localized in the anterior pole of the oocyte in late choriogenesis. RNA interference (RNAi of Brownie impaired correct formation of the sponge-like body and, as a result, the egg-case was also ill-formed and the eggs were not viable. CONCLUSIONS/SIGNIFICANCE: Results indicate that the novel gene Brownie plays a pivotal role in building up the sponge-like body. Brownie is the first reported gene involved in the construction of complex eggshell respiratory structures.

  17. Natural killer (NK) and NK-like cells at mucosal epithelia: Mediators of anti-microbial defense and maintenance of tissue integrity

    Science.gov (United States)

    Colonna, M.

    2011-01-01

    Natural killer (NK) cells are innate lymphocytes that play important roles in the defense against microbial pathogens through secretion of IFN-γ and recognition and lysis of virally or bacterially infected host cells. A recently identified population of NK-like cells that shares characteristics of both NK cells and lymphoid tissue inducer (LTi) cells promotes innate immune responses in epithelial tissue through the secretion of IL-22. In contrast to classical NK cells, NK-like cells are localized preferentially at mucosal sites, such as the intestinal mucosa. In this review, we consider the function of NK and NK-like cells in anti-microbial defense as well as the maintenance of tissue integrity in the mucosal epithelium of the intestine, lung, and female reproductive tract. Current experimental evidence supports an important protective role for IL-22-producing NK-like cells during intestinal infections, whereas classical NK cells are crucial in the early defense against many pathogens in the respiratory tract. NK cells isolated from the pregnant uterus differ significantly in phenotype and function from those at other tissue locations. Uterine NK cells clearly contribute to the tissue remodeling that takes place during placentation, but their role in anti-microbial defense remains largely undefined. PMID:24516732

  18. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma.

    Science.gov (United States)

    Aoude, Lauren G; Pritchard, Antonia L; Robles-Espinoza, Carla Daniela; Wadt, Karin; Harland, Mark; Choi, Jiyeon; Gartside, Michael; Quesada, Víctor; Johansson, Peter; Palmer, Jane M; Ramsay, Andrew J; Zhang, Xijun; Jones, Kristine; Symmons, Judith; Holland, Elizabeth A; Schmid, Helen; Bonazzi, Vanessa; Woods, Susan; Dutton-Regester, Ken; Stark, Mitchell S; Snowden, Helen; van Doorn, Remco; Montgomery, Grant W; Martin, Nicholas G; Keane, Thomas M; López-Otín, Carlos; Gerdes, Anne-Marie; Olsson, Håkan; Ingvar, Christian; Borg, Ake; Gruis, Nelleke A; Trent, Jeffrey M; Jönsson, Göran; Bishop, D Timothy; Mann, Graham J; Newton-Bishop, Julia A; Brown, Kevin M; Adams, David J; Hayward, Nicholas K

    2015-02-01

    The shelterin complex protects chromosomal ends by regulating how the telomerase complex interacts with telomeres. Following the recent finding in familial melanoma of inactivating germline mutations in POT1, encoding a member of the shelterin complex, we searched for mutations in the other five components of the shelterin complex in melanoma families. Next-generation sequencing techniques were used to screen 510 melanoma families (with unknown genetic etiology) and control cohorts for mutations in shelterin complex encoding genes: ACD, TERF2IP, TERF1, TERF2, and TINF 2. Maximum likelihood and LOD [logarithm (base 10) of odds] analyses were used. Mutation clustering was assessed with χ(2) and Fisher's exact tests. P values under .05 were considered statistically significant (one-tailed with Yates' correction). Six families had mutations in ACD and four families carried TERF2IP variants, which included nonsense mutations in both genes (p.Q320X and p.R364X, respectively) and point mutations that cosegregated with melanoma. Of five distinct mutations in ACD, four clustered in the POT1 binding domain, including p.Q320X. This clustering of novel mutations in the POT1 binding domain of ACD was statistically higher (P = .005) in melanoma probands compared with population control individuals (n = 6785), as were all novel and rare variants in both ACD (P = .040) and TERF2IP (P = .022). Families carrying ACD and TERF2IP mutations were also enriched with other cancer types, suggesting that these variants also predispose to a broader spectrum of cancers than just melanoma. Novel mutations were also observed in TERF1, TERF2, and TINF2, but these were not convincingly associated with melanoma. Our findings add to the growing support for telomere dysregulation as a key process associated with melanoma susceptibility. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. A Simple Zn2+ Complex-Based Composite System for Efficient Gene Delivery.

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    Full Text Available Metal complexes might become a new type of promising gene delivery systems because of their low cytotoxicity, structural diversity, controllable aqua- and lipo-solubility, and appropriate density and distribution of positive charges. In this study, Zn2+ complexes (1-10 formed with a series of ligands contained benzimidazole(bzimwere prepared and characterized. They were observed to have different affinities for DNA, dependent on their numbers of positive charges, bzim groups, and coordination structures around Zn2+. The binding induced DNA to condensate into spherical nanoparticles with ~ 50 nm in diameter. The cell transfection efficiency of the DNA nanoparticles was poor, although they were low toxic. The sequential addition of the cell-penetrating peptide (CPP TAT(48-60 and polyethylene glycol (PEG resulted in the large DNA condensates (~ 100 nm in diameter and the increased cellular uptake. The clathrin-mediated endocytosis was found to be a key cellular uptake pathway of the nanoparticles formed with or without TAT(48-60 or/and PEG. The DNA nanoparticles with TAT(48-60 and PEG was found to have the cell transfection efficiency up to 20% of the commercial carrier Lipofect. These results indicated that a simple Zn2+-bzim complex-based composite system can be developed for efficient and low toxic gene delivery through the combination with PEG and CPPs such as TAT.

  20. The HOXB4 homeoprotein promotes the ex vivo enrichment of functional human embryonic stem cell-derived NK cells.

    Directory of Open Access Journals (Sweden)

    Aniya Larbi

    Full Text Available Human embryonic stem cells (hESCs can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34(+CD45RA(+ precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.

  1. NF-Y and the immune response: Dissecting the complex regulation of MHC genes.

    Science.gov (United States)

    Sachini, Nikoleta; Papamatheakis, Joseph

    2017-05-01

    Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Knockdown of Broad-Complex Gene Expression of Bombyx mori by Oligopyrrole Carboxamides Enhances Silk Production.

    Science.gov (United States)

    Ali, Asfa; Bovilla, Venugopal Reddy; Mysarla, Danti Kumari; Siripurapu, Prasanthi; Pathak, Rashmi U; Basu, Bhakti; Mamillapalli, Anitha; Bhattacharya, Santanu

    2017-04-11

    Bombyx mori (B. mori) is important due to its major role in the silk production. Though DNA binding ligands often influence gene expression, no attempt has been made to exploit their use in sericulture. The telomeric heterochromatin of B. mori is enriched with 5'-TTAGG-3' sequences. These sequences were also found to be present in several genes in the euchromatic regions. We examined three synthetic oligopyrrole carboxamides that target 5'-TTAGG-3' sequences in controlling the gene expression in B. mori. The ligands did not show any defect or feeding difference in the larval stage, crucial for silk production. The ligands caused silencing of various isoforms of the broad-complex transcription factor and cuticle proteins which resulted in late pupal developmental defects. Furthermore, treatment with such drugs resulted in statistically enhanced cocoon weight, shell weight, and silk yield. This study shows for the first time use of oligopyrrole carboxamide drugs in controlling gene expression in B. mori and their long term use in enhancing silk production.

  3. NK-cell activity in immunotoxicity drug evaluation

    International Nuclear Information System (INIS)

    Cederbrant, Karin; Marcusson-Staaahl, Maritha; Condevaux, Fabienne; Descotes, Jacques

    2003-01-01

    NK-cell activity as a tool for detection of immunotoxic effects of new human drugs has gained further attention when the recent European note for guidance CPMP/SWP/1042/99 was adopted. The inclusion of NK-cell activity plus distribution of lymphocyte subsets were suggested as an alternative to the primary antibody response to a T-cell dependent antigen. Either of the two test alternatives should be included as a routine parameter in at least one repeated dose-toxicity study, rats or mice being the species of choice. The standard procedure for measuring NK-cell activity is the 51 Cr-release assay. However, a new flow-cytometric assay, adapted for rat peripheral blood, does not require dedicated groups of animals, offers the possibility of repeated testing, and shows at least as sensitive as the conventional 51 Cr-release assay

  4. The Genetic Deletion of 6q21 and PRDM1 and Clinical Implications in Extranodal NK/T Cell Lymphoma, Nasal Type

    Directory of Open Access Journals (Sweden)

    Li Liang

    2015-01-01

    Full Text Available 6q21 genetic deletion has been frequently detected in extranodal NK/T cell lymphoma, nasal type (EN-NK/T-NT, and PRDM1 is considered as candidate gene. However, direct detection of PRDM1 deletion has not been well documented. We investigated genetic alterations of 6q21 and PRDM1 in 43 cases of EN-NK/T-NT and cell lines by FISH. PRDM1 expression was evaluated by immunohistochemistry and Western blot. The correlation between genetic alteration and PRDM1 expression and the significance in clinic-pathologic were analyzed. Heterozygous deletion of 6q21 and/or PRDM1 was observed in 24 of 43 cases (55.81% of EN-NK/T-NT including 16 cases (37.21% for 6q21 deletion and 19 cases (44.19% for PRDM1 deletion. Similarly, heterozygous codeletion of 6q21 and PRDM1 was identified in NK92 and NKL cells. The heterozygous deletion of 6q21 and/or PRDM1 was correlated with PRDM1 expression. However, genetic deletion of 6q21 and/or PRDM1 was not correlated with clinicopathological features of EN-NK/T-NT, while PRDM1 expression showed positive effect on the outcome of patients as those as disease site, B symptom, and clinical stage. Thus, heterozygous deletion of 6q21 and/or PRDM1 was frequently detected in EN-NK/T-NT and correlated with downregulation of PRDM1. But the prognostic role of genetic deletion needs to be further evaluated in larger cohort.

  5. Preliminary studies on gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats

    International Nuclear Information System (INIS)

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan; Gao Yabing; Xiong Chengqi; Long Jianyin; Wang Huixin; Peng Ruiyun; Cui Xuemei

    2001-01-01

    Objective: To observed the efficiency of gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats. Methods: TGFβ1 sense and antisense gene expression vectors and adenovirus transfer vector were introduced into rat bronchus by way of intratracheal instillation. Results: At day 1.5 after TGFβ1 sense and antisense gene transfer, PCR amplification using neo gene-specific primer from lung tissue DNA was all positive. After day 5.5, 67% (2/3) of lung tissue DNA was positive. RNA dot blot hybridization indicated that TGFβ1 mRNA content of lung tissue transfected with pMAMneo-antiTGFβ1 gene decreased. Detection of lung hydroxyproline (Hyp) content after day 35 of gene transfer showed that even in lung of rats received pMAMneo-AntiTGFβ1 lipid complexes it raised remarkably (P 9 pfu/ml were instilled into bronchus at 0.5 ml per rat. After day 2 day 6, the lung tissues of all six rats (three per each group )expressed the transfected luciferase gene by luminometer. Conclusion: Cationic lipid-mediated TGFβ1 antisense gene therapy was a simple and easy method. It can slow down the course of pathogenesis of lung fibrosis. Replication-deficient recombinant adenovirus-mediated gene therapy of lung diseases is a good and efficient method

  6. Numerous BAF complex genes are mutated in Coffin-Siris syndrome.

    Science.gov (United States)

    Miyake, Noriko; Tsurusaki, Yoshinori; Matsumoto, Naomichi

    2014-09-01

    Coffin-Siris syndrome (CSS; OMIM#135900) is a rare congenital anomaly syndrome characterized by intellectual disability, coarse face, hypertrichosis, and absence/hypoplasia of the fifth digits' nails. As the majority of patients are sporadic, an autosomal dominant inheritance model has been postulated. Recently, whole exome sequencing (WES) emerged as a comprehensive analytical method for rare variants. We applied WES on five CSS patients and found two de novo mutations in SMARCB1. SMARCB1 was completely sequenced in 23 CSS patients and the mutations were found in two more patients. As SMARCB1 encodes a subunit of the BAF complex functioning as a chromatin remodeling factor, mutations in 15 other subunit genes may cause CSS and thus were analyzed in 23 CSS patients. We identified heterozygous mutations in either of six genes (SMARCA4, SMARCB1, SMARCA2, SMARCE1, ARID1A, and ARID1B) in 20 out of 23 CSS patients. The patient with a SMARCA2 mutation was re-evaluated and identified as having Nicolaides-Baraitser syndrome (OMIM#601358), which is similar to but different from CSS. Additionally, 49 more CSS patients were analyzed as a second cohort. Together with the first cohort, 37 out of 71 (22 plus 49) patients were found to have a mutation in either one of five BAF complex genes. Furthermore, two CSS patients were reported to have a PHF6 abnormality, which can also cause Borjeson-Forssman-Lehmann syndrome (OMIM#301900), an X-linked intellectual disability syndrome with epilepsy and endocrine abnormalities. The current list of mutated genes in CSS is far from being complete and analysis of more patients is required. © 2014 Wiley Periodicals, Inc.

  7. The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre.

    Directory of Open Access Journals (Sweden)

    K G Guruharsha

    2009-09-01

    Full Text Available A key early player in the regulation of myoblast fusion is the gene dumbfounded (duf, also known as kirre. Duf must be expressed, and function, in founder cells (FCs. A fixed number of FCs are chosen from a pool of equivalent myoblasts and serve to attract fusion-competent myoblasts (FCMs to fuse with them to form a multinucleate muscle-fibre. The spatial and temporal regulation of duf expression and function are important and play a deciding role in choice of fibre number, location and perhaps size. We have used a combination of bioinformatics and functional enhancer deletion approaches to understand the regulation of duf. By transgenic enhancer-reporter deletion analysis of the duf regulatory region, we found that several distinct enhancer modules regulate duf expression in specific muscle founders of the embryo and the adult. In addition to existing bioinformatics tools, we used a new program for analysis of regulatory sequence, PhyloGibbs-MP, whose development was largely motivated by the requirements of this work. The results complement our deletion analysis by identifying transcription factors whose predicted binding regions match with our deletion constructs. Experimental evidence for the relevance of some of these TF binding sites comes from available ChIP-on-chip from the literature, and from our analysis of localization of myogenic transcription factors with duf enhancer reporter gene expression. Our results demonstrate the complex regulation in each founder cell of a gene that is expressed in all founder cells. They provide evidence for transcriptional control--both activation and repression--as an important player in the regulation of myoblast fusion. The set of enhancer constructs generated will be valuable in identifying novel trans-acting factor-binding sites and chromatin regulation during myoblast fusion in Drosophila. Our results and the bioinformatics tools developed provide a basis for the study of the transcriptional

  8. The application of natural killer (NK cell immunotherapy for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Rayne H Rouce

    2015-11-01

    Full Text Available Natural killer (NK cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo expanded, chimeric antigen receptor (CAR engineered or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated anti-tumor effect can be achieved in the absence of graft-versus-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer such as the failure of infused NK cells to expand and persist in vivo. Therefore efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next

  9. Mutational Analysis of Extranodal NK/T-Cell Lymphoma Using Targeted Sequencing with a Comprehensive Cancer Panel

    Directory of Open Access Journals (Sweden)

    Seungkyu Choi

    2016-09-01

    Full Text Available Extranodal natural killer (NK/T-cell lymphoma, nasal type (NKTCL, is a malignant disorder of cytotoxic lymphocytes of NK or T cells. It is an aggressive neoplasm with a very poor prognosis. Although extranodal NKTCL reportedly has a strong association with Epstein-Barr virus, the molecular pathogenesis of NKTCL has been unexplored. The recent technological advancements in next-generation sequencing (NGS have made DNA sequencing cost- and time-effective, with more reliable results. Using the Ion Proton Comprehensive Cancer Panel, we sequenced 409 cancer-related genes to identify somatic mutations in five NKTCL tissue samples. The sequencing analysis detected 25 mutations in 21 genes. Among them, KMT2D, a histone modification-related gene, was the most frequently mutated gene (four of the five cases. This result was consistent with recent NGS studies that have suggested KMT2D as a novel driver gene in NKTCL. Mutations were also found in ARID1A, a chromatin remodeling gene, and TP53, which also recurred in recent NGS studies. We also found mutations in 18 novel candidate genes, with molecular functions that were potentially implicated in cancer development. We suggest that these genes may result in multiple oncogenic events and may be used as potential bio-markers of NKTCL in the future.

  10. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  11. Human major histocompatibility complex contains genes for the major heat shock protein HSP70.

    OpenAIRE

    Sargent, C A; Dunham, I; Trowsdale, J; Campbell, R D

    1989-01-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, aas well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, we have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis f...

  12. Orbital involvement by non-Hodgkin lymphoma NK T cells.

    Science.gov (United States)

    Hervás-Ontiveros, A; España-Gregori, E; Hernández-Martínez, P; Vera-Sempere, F J; Díaz-Llopis, M

    2014-11-01

    The case is presented of 37 year-old male with a history of nasal obstruction with right rhinorrhea, headache, hearing loss and right exophthalmos of 4 months progression. The MRI revealed that the ethmoidal and maxillary sinuses contained inflammatory tissue extending into the orbital region. The biopsy confirmed a non-Hodgkin lymphoma of natural killer (NK) T cells. Non-Hodgkin's T NK lymphoma is a rare tumor in the orbital area that requires an early detection and multi-disciplinary care to ensure appropriate monitoring and treatment. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  13. Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene.

    Science.gov (United States)

    Ishmukhametova, Aliya; Chen, Jian-Min; Bernard, Rafaëlle; de Massy, Bernard; Baudat, Frédéric; Boyer, Amandine; Méchin, Déborah; Thorel, Delphine; Chabrol, Brigitte; Vincent, Marie-Claire; Khau Van Kien, Philippe; Claustres, Mireille; Tuffery-Giraud, Sylvie

    2013-08-01

    Pathogenic complex genomic rearrangements are being increasingly characterized at the nucleotide level, providing unprecedented opportunities to evaluate the complexities of mutational mechanisms. Here, we report the molecular characterization of a complex duplication-triplication rearrangement involving exons 45-60 of the DMD gene. Inverted repeats facilitated this complex rearrangement, which shares common genomic organization with the recently described duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) events; specifically, a 690-kb region comprising DMD exons from 45 to 60 was duplicated in tandem, and another 46-kb segment containing exon 51 was inserted inversely in between them. Taking into consideration (1) the presence of a predicted PRDM9 binding site in the near vicinity of the junction involving two inverted L1 elements and (2) the inherent properties of X-Y chromosome recombination during male meiosis, we proposed an alternative two-step model for the generation of this X-linked DMD DUP-TRP/INV-DUP event. © 2013 WILEY PERIODICALS, INC.

  14. Transcriptome analysis of human brain tissue identifies reduced expression of complement complex C1Q Genes in Rett syndrome.

    Science.gov (United States)

    Lin, Peijie; Nicholls, Laura; Assareh, Hassan; Fang, Zhiming; Amos, Timothy G; Edwards, Richard J; Assareh, Amelia A; Voineagu, Irina

    2016-06-06

    MECP2, the gene mutated in the majority of Rett syndrome cases, is a transcriptional regulator that can activate or repress transcription. Although the transcription regulatory function of MECP2 has been known for over a decade, it remains unclear how transcriptional dysregulation leads to the neurodevelopmental disorder. Notably, little convergence was previously observed between the genes abnormally expressed in the brain of Rett syndrome mouse models and those identified in human studies. Here we carried out a comprehensive transcriptome analysis of human brain tissue from Rett syndrome brain using both RNA-seq and microarrays. We identified over two hundred differentially expressed genes, and identified the complement C1Q complex genes (C1QA, C1QB and C1QC) as a point of convergence between gene expression changes in human and mouse Rett syndrome brain. The results of our study support a role for alterations in the expression level of C1Q complex genes in RTT pathogenesis.

  15. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Science.gov (United States)

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  16. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Directory of Open Access Journals (Sweden)

    Kuduk Katarzyna

    2012-10-01

    Full Text Available Abstract Background Major histocompatibility complex (MHC proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN exceeded the rate of synonymous substitutions (dS at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  17. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    Science.gov (United States)

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  18. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  19. Identification of susceptible genes for complex chronic diseases based on disease risk functional SNPs and interaction networks.

    Science.gov (United States)

    Li, Wan; Zhu, Lina; Huang, Hao; He, Yuehan; Lv, Junjie; Li, Weimin; Chen, Lina; He, Weiming

    2017-10-01

    Complex chronic diseases are caused by the effects of genetic and environmental factors. Single nucleotide polymorphisms (SNPs), one common type of genetic variations, played vital roles in diseases. We hypothesized that disease risk functional SNPs in coding regions and protein interaction network modules were more likely to contribute to the identification of disease susceptible genes for complex chronic diseases. This could help to further reveal the pathogenesis of complex chronic diseases. Disease risk SNPs were first recognized from public SNP data for coronary heart disease (CHD), hypertension (HT) and type 2 diabetes (T2D). SNPs in coding regions that were classified into nonsense and missense by integrating several SNP functional annotation databases were treated as functional SNPs. Then, regions significantly associated with each disease were screened using random permutations for disease risk functional SNPs. Corresponding to these regions, 155, 169 and 173 potential disease susceptible genes were identified for CHD, HT and T2D, respectively. A disease-related gene product interaction network in environmental context was constructed for interacting gene products of both disease genes and potential disease susceptible genes for these diseases. After functional enrichment analysis for disease associated modules, 5 CHD susceptible genes, 7 HT susceptible genes and 3 T2D susceptible genes were finally identified, some of which had pleiotropic effects. Most of these genes were verified to be related to these diseases in literature. This was similar for disease genes identified from another method proposed by Lee et al. from a different aspect. This research could provide novel perspectives for diagnosis and treatment of complex chronic diseases and susceptible genes identification for other diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Differential inhibitory and activating NK cell receptor levels and NK/NKT-like cell functionality in chronic and recovered stages of chikungunya.

    Science.gov (United States)

    Thanapati, Subrat; Ganu, Mohini A; Tripathy, Anuradha S

    2017-01-01

    The role of natural killer (NK; CD3-CD56+)/NKT (CD3+CD56+)-like cells in chikungunya virus (CHIKV) disease progression/recovery remains unclear. Here, we investigated the expression profiles and function of NK and NKT-like cells from 35 chronic chikungunya patients, 30 recovered individuals, and 69 controls. Percentage of NKT-like cells was low in chronic chikungunya patients. NKp30+, CD244+, DNAM-1+, and NKG2D+ NK cell percentages were also lower (MFI and/or percentage), while those of CD94+ and NKG2A+ NKT-like cells were higher (MFI and/or percentage) in chronic patients than in recovered subjects. IFN-γ and TNF-α expression on NKT-like cells was high in the chronic patients, while only IFN-γ expression on NK cells was high in the recovered individuals. Furthermore, percentage of perforin+NK cells was low in the chronic patients. Lower cytotoxic activity was observed in the chronic patients than in the controls. CD107a expression on NK and NKT-like cells post anti-CD94/anti-NKG2A blocking was comparable among the patients and controls. Upregulated inhibitory and downregulated activating NK receptor expressions on NK/NKT-like cells, lower perforin+ and CD107a+NK cells are likely responsible for inhibiting the NK and NKT-like cell function in the chronic stage of chikungunya. Therefore, deregulation of NKR expression might underlie CHIKV-induced chronicity.

  1. The NK1R-/- mouse phenotype suggests that small body size, with a sex- and diet-dependent excess in body mass and fat, are physical biomarkers for a human endophenotype with vulnerability to attention deficit hyperactivity disorder.

    Science.gov (United States)

    Pillidge, Katharine; Heal, David J; Stanford, S Clare

    2016-09-01

    The abnormal behaviour of NK1R-/- mice (locomotor hyperactivity, inattentiveness and impulsivity in the 5-Choice Serial Reaction-Time Test) is arguably analogous to that of patients with attention deficit hyperactivity disorder (ADHD). Evidence suggests that small body size and increased body weight are risk factors for ADHD. Here, we compared the body size, body mass and body composition of male and female NK1R-/- mice and their wildtypes that had been fed either standard laboratory chow or a high-fat (45%: 'Western') diet. Male NK1R-/- mice from both cohorts were approximately 7% shorter than wildtypes. A similar trend was evident in females. Male NK1R-/- mice fed the normal diet weighed less than wildtypes but the 'body mass index' ('mBMI': weight (mg)/length (cm)(2)) of female NK1R-/- mice was higher than wildtypes. When given the high-fat diet, the mBMI of both male and female NK1R-/- mice was higher than wildtypes. There were no consistent genotype or sex differences in protein, ash or water content of mice from the two cohorts. However, the fat content of male NK1R-/- mice on the Western diet was considerably (35%) higher than wildtypes and resembled that of females from both genotypes. We conclude that a lack of functional NK1R is associated with small body size but increases vulnerability to an increase in mBMI and fat content, especially in males. This phenotype could also be evident in ADHD patients with polymorphism(s) of the TACR1 gene (the human equivalent of Nk1r). © The Author(s) 2016.

  2. The interaction with H-2Dd in cis is associated with a conformational change in the Ly49A NK cell receptor

    Directory of Open Access Journals (Sweden)

    Jonathan eBack

    2011-10-01

    Full Text Available Mouse Natural killer (NK cells express Ly49 family receptors that recognize major histocompatibility complex class I (MHC-I molecules. By interacting with MHC-I molecules expressed on other cells (in trans, inhibitory Ly49 receptors prevent the NK cell-mediated killing of normal cells. In addition, some Ly49 receptors have the unusual property to also interact with MHC-I molecules expressed by the NK cell itself (in cis. Cis binding sequesters a significant fraction of the NK cells' Ly49 receptors, reducing the number of receptors available for trans binding. This lowers the threshold at which NK cell activation exceeds inhibition rendering NK cells more sensitive. It is unclear how Ly49 receptors can bind MHC-I in trans and in cis using the same binding site. We have proposed that this is mediated by two distinct conformations of Ly49 receptors. Here we have tested this model by inferring the distance between the ligand-binding domain of Ly49A and the cell membrane using fluorescence resonance energy transfer (FRET. Consistent with the concept, reducing the distance between the ligand-binding domain of Ly49A and the cell membrane, by shortening the Ly49A stalk, resulted in a substantially increased FRET. The co-expression of cognate MHC-I ligand reduced FRET derived from Ly49A variants with a shortened stalk, indicating that cis association alters FRET. Indeed, FRET improved when cis complexes were disrupted using acid-mediated destruction of MHC-I complexes. These data provide direct evidence that the interaction with MHC-I in cis is associated with a conformational change in the Ly49A receptor on the surface of live cells. The novel FRET based approach may be generally applicable to study conformational changes in cell surface receptors.

  3. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2011-05-18

    Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN

  4. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  5. Biofilm formation and genetic variability of BCR1 gene in the Candida parapsilosis complex.

    Science.gov (United States)

    Treviño-Rangel, Rogelio de J; Rodríguez-Sánchez, Irám P; Rosas-Taraco, Adrián G; Hernández-Bello, Romel; González, José G; González, Gloria M

    2015-01-01

    Candida parapsilosis sensu stricto, Candida orthopsilosis, and Candida metapsilosis are cryptic species that belong to the C. parapsilosis complex, which has been increasingly associated to fungemia in various geographic regions, principally due to the capability of these yeasts to form biofilms on indwelling medical devices. BCR1 is one of the most studied genes related to Candida spp. biofilms. To evaluate the biofilm forming capability of a subset of 65 clinical isolates of the C. parapsilosis complex using two conventional approaches, and to look for an association between the biofilm forming phenotype and genetic variants of a fragment of BCR1. The biofilm determination was carried out by crystal violet staining and tetrazolium reduction assay. On the other hand, a segment of BCR1 gene was sequenced by Sanger methodology. C. parapsilosis sensu stricto was statistically associated with a low biofilm production phenotype, while C. orthopsilosis was significantly associated with both phenotypes (high and low biofilm producers). According to the BCR1 sequence analysis, genetic variability was detected in C. orthopsilosis and C. metapsilosis without a particular biofilm formation phenotype association. Under the adopted experimental design, C. parapsilosis sensu stricto was associated with the low biofilm phenotype and C. orthopsilosis with both phenotypes (high and low biofilm producers). On the other hand, an association between a biofilm forming phenotype and a particular genetic variant of the analyzed BCR1 fragment was not found. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  6. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    Science.gov (United States)

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  7. Linfoma nasal de células T/NK Nasal T/NK cell lymphoma

    Directory of Open Access Journals (Sweden)

    A. Torre Iturraspe

    2005-04-01

    Full Text Available El linfoma nasal de células T/ natural killer (NK (LNT/NK, tras haber recibido múltiples denominaciones, ha sido definido y caracterizado en el año 2001 por la Organización Mundial de la Salud (OMS, basándose en una clasificación previa de la Revised European-American Lymphoma Classification (REAL, de la manera en que se le conoce actualmente. Su incidencia en el mundo occidental es baja, mientras que en Asia supone el segundo grupo de linfomas más frecuente, tras los gastrointestinales. Se localiza preferentemente en las fosas nasales y senos maxilares, mostrando un curso clínico agresivo, definido por una destrucción de los tejidos circundantes. Su diagnóstico definitivo se realiza por medio de técnicas de hibridación in situ, llegando a la determinación de su inmunofenotipo. Se ha observado una frecuente asociación con el virus de Epstein-Barr (VEB. El pronóstico de esta enfermedad viene definido por el índice pronóstico internacional (IPI y por el volumen alcanzado por el tumor. A pesar de ser radiosensible, su pronóstico es infausto, aconteciendo la muerte del paciente poco tiempo después del diagnóstico, generalmente como consecuencia de las complicaciones del tratamiento.Nasal T-cell and Natural Killer cell lymphoma (NT/NKL, having been given many names, was defined and described in the year 2001 by the World Health Organization (WHO, on the basis of a previous classification by the Revised European-American Lymphoma Classification (REAL as it is known today. Its incidence in the western world is low, while in Asia it represents the second most frequent group of lymphomas, followed by the gastrointestinal [lymphoma]. It is typically located in the nasal cavity and maxillary sinuses. It is associated with an aggressive clinical course, characterized by the destruction of surrounding tissue. The definitive diagnosis is made by means of in situ hybridization techniques, in order to determine the immunophenotype. Its

  8. [Identification of gene-gene interactions related to the etiology of complex disease: a multifactor dimensionality reduction-genotype pedigree disequilibrium test].

    Science.gov (United States)

    Li, Na; Tang, Xun; Chen, Da-fang; Hu, Yong-hua

    2007-10-01

    To introduce the application of a multifactor dimensionality reduction-genotype pedigree disequilibrium test (MDR-PDT) for detecting gene-gene interactions in the etiology of complex disease. A brief overview on the basic theory, implementing steps and features of MDR-PDT were described, and a practical research case was demonstrated to application of MDR-PDT in nuclear family studies. The MDR-PDT approach was the extension or development of conventional MDR method which could be used for detecting gene-gene interactions in families of diverse structure. MDR-PDT was a new nonparametric and model-free method which might use additional family members in the nuclear families and had a good power to identify gene-gene interactions.

  9. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records

    DEFF Research Database (Denmark)

    Jiang, Li; Edwards, Stefan M.; Thomsen, Bo

    2014-01-01

    Background: Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic...... from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining...... causal genes supported the reliability of our approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a complex mode of inheritance. Conclusion: We have implemented and validated a network-based approach to prioritize genes for human diseases based...

  10. Complete physical map of the human immunoglobulin heavy chain constant region gene complex

    International Nuclear Information System (INIS)

    Hofker, M.H.; Walter, M.A.; Cox, D.W.

    1989-01-01

    The authors have found by pulsed-field gel electrophoresis that the human immunoglobulin heavy chain constant region gene complex maps entirely to a 350-kilobase (kb) Mlu I fragment. The enzyme Eag I was used with pulsed-field gel electrophoresis alone and in double digests with Spe I to map the region. C γ 3 maps 60 kb to the 3' side of C δ ; Cγ2 maps 80 kb to the 3' side of C α 1. C ψγ maps 35 kb to the 3' side of C α 1 and is in the same transcriptional orientation as the other genes. Although in the cloned DNA many CpG-containing restriction sites were identified, most of these were methylated in peripheral blood leukocytes. The sites that were not methylated were predominantly found in three clusters, or Hpa I tiny fragment islands. A region showing strong linkage disequilibrium between all C γ genes spans at least 160 kb. The 70-kb C μ -C γ 3 region, however, shows no linkage disequilibrium, possibly indicating a recombination hot spot. The immunoglobulin heavy chain constant region has been almost entirely cloned and mapped, and thus most rearrangements occurring in this region should be detectable

  11. Characterisation of major histocompatibility complex class I genes in Japanese Ranidae frogs.

    Science.gov (United States)

    Lau, Quintin; Igawa, Takeshi; Komaki, Shohei; Satta, Yoko

    2016-11-01

    The major histocompatibility complex (MHC) is a key component of adaptive immunity in all jawed vertebrates, and understanding the evolutionary mechanisms that have shaped these genes in amphibians, one of the earliest terrestrial tetrapods, is important. We characterised MHC class I variation in three common Japanese Rana species (Rana japonica, Rana ornativentris and Rana tagoi tagoi) and identified a total of 60 variants from 21 individuals. We also found evolutionary signatures of gene duplication, recombination and balancing selection (including trans-species polymorphism), all of which drive increased MHC diversity. A unique feature of MHC class I from these three Ranidae species includes low synonymous differences per site (d S ) within species, which we attribute to a more recent diversification of these sequences or recent gene duplication. The resulting higher d N /d S ratio relative to other anurans studied could be related to stronger selection pressure at peptide binding sites. This is one of the first studies to investigate MHC in Japanese amphibians and permits further exploration of the polygenetic factors associated with resistance to infectious diseases.

  12. Novel mutations in genes encoding subcortical maternal complex proteins may cause human embryonic developmental arrest.

    Science.gov (United States)

    Wang, Xueqian; Song, Di; Mykytenko, Dmytro; Kuang, Yanping; Lv, Qifeng; Li, Bin; Chen, Biaobang; Mao, Xiaoyan; Xu, Yao; Zukin, Valery; Mazur, Pavlo; Mu, Jian; Yan, Zheng; Zhou, Zhou; Li, Qiaoli; Liu, Suying; Jin, Li; He, Lin; Sang, Qing; Sun, Zhaogui; Dong, Xi; Wang, Lei

    2018-03-21

    Successful human reproduction initiates from normal gamete formation, fertilization and early embryonic development. Abnormalities in any of these steps will lead to infertility. Many infertile patients undergo several failures of IVF and intracytoplasmic sperm injection (ICSI) cycles, and embryonic developmental arrest is a common phenotype in cases of recurrent failure of IVF/ICSI attempts. However, the genetic basis for this phenotype is poorly understood. The subcortical maternal complex (SCMC) genes play important roles during embryonic development, and using whole-exome sequencing novel biallelic mutations in the SCMC genes TLE6, PADI6 and KHDC3L were identified in four patients with embryonic developmental arrest. A mutation in TLE6 was found in a patient with cleaved embryos that arrested on day 3 and failed to form blastocysts. Two patients with embryos that arrested at the cleavage stage had mutations in PADI6, and a mutation in KHDC3L was found in a patient with embryos arrested at the morula stage. No mutations were identified in these genes in an additional 80 patients. These findings provide further evidence for the important roles of TLE6, PADI6 and KHDC3L in embryonic development. This work lays the foundation for the genetic diagnosis of patients with recurrent IVF/ICSI failure. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire.

    Science.gov (United States)

    Feyaerts, D; Kuret, T; van Cranenbroek, B; van der Zeeuw-Hingrez, S; van der Heijden, O W H; van der Meer, A; Joosten, I; van der Molen, R G

    2018-02-13

    Is the natural killer (NK) cell receptor repertoire of endometrial NK (eNK) cells tissue-specific? The NK cell receptor (NKR) expression profile in pre-pregnancy endometrium appears to have a unique tissue-specific phenotype, different from that found in NK cells in peripheral blood, suggesting that these cells are finely tuned towards the reception of an allogeneic fetus. NK cells are important for successful pregnancy. After implantation, NK cells encounter extravillous trophoblast cells and regulate trophoblast invasion. NK cell activity is amongst others regulated by C-type lectin heterodimer (CD94/NKG2) and killer cell immunoglobulin-like (KIR) receptors. KIR expression on decidual NK cells is affected by the presence of maternal HLA-C and biased towards KIR2D expression. However, little is known about NKR expression on eNK cells prior to pregnancy. In this study, matched peripheral and menstrual blood (a source of endometrial cells) was obtained from 25 healthy females with regular menstrual cycles. Menstrual blood was collected during the first 36 h of menstruation using a menstrual cup, a non-invasive technique to obtain endometrial cells. KIR and NKG2 receptor expression on eNK cells was characterized by 10-color flow cytometry, and compared to matched pbNK cells of the same female. KIR and HLA-C genotypes were determined by PCR-SSOP techniques. Anti-CMV IgG antibodies in plasma were measured by chemiluminescence immunoassay. KIR expression patterns of eNK cells collected from the same female do not differ over consecutive menstrual cycles. The percentage of NK cells expressing KIR2DL2/L3/S2, KIR2DL3, KIR2DL1, LILRB1 and/or NKG2A was significantly higher in eNK cells compared to pbNK cells, while no significant difference was observed for NKG2C, KIR2DL1/S1, and KIR3DL1. The NKR repertoire of eNK cells was clearly different from pbNK cells, with eNK cells co-expressing more than three NKR simultaneously. In addition, outlier analysis revealed 8 and 15 NKR

  14. Construction of "Toxin Complex" in a Mutant Serotype C Strain of Clostridium botulinum Harboring a Defective Neurotoxin Gene.

    Science.gov (United States)

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2017-01-01

    A non-toxigenic mutant of the toxigenic serotype C Clostridium botulinum strain Stockholm (C-St), C-N71, does not produce the botulinum neurotoxin (BoNT). However, the original strain C-St produces botulinum toxin complex, in which BoNT is associated with non-toxic non-hemagglutinin (NTNHA) and three hemagglutinin proteins (HA-70, HA-33, and HA-17). Therefore, in this study, we aimed to elucidate the effects of bont gene knockout on the formation of the "toxin complex." Nucleotide sequence analysis revealed that a premature stop codon was introduced in the bont gene, whereas other genes were not affected by this mutation. Moreover, we successfully purified the "toxin complex" produced by C-N71. The "toxin complex" was identified as a mixture of NTNHA/HA-70/HA-17/HA-33 complexes with intact NTNHA or C-terminally truncated NTNHA, without BoNT. These results indicated that knockout of the bont gene does not affect the formation of the "toxin complex." Since the botulinum toxin complex has been shown to play an important role in oral toxin transport in the human and animal body, a non-neurotoxic "toxin complex" of C-N71 may be valuable for the development of an oral drug delivery system.

  15. Susceptibility genes for lung diseases in the major histocompatibility complex revealed by lung expression quantitative trait loci analysis

    NARCIS (Netherlands)

    Lamontagne, Maxime; Joubert, Philippe; Timens, Wim; Postma, Dirkje S.; Hao, Ke; Nickle, David; Sin, Don D.; Pare, Peter D.; Laviolette, Michel; Bosse, Yohan

    The major histocompatibility complex (MHC) has been linked with hundreds of diseases [1]. The MHC is one of the most complex regions of the human genome, because of the high gene density, extended linkage disequilibrium (LD) and sequence diversity [2]. Recent genome-wide association studies (GWAS)

  16. Lateral gene transfer of an ABC transporter complex between major constituents of the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Meehan Conor J

    2012-11-01

    Full Text Available Abstract Background Several links have been established between the human gut microbiome and conditions such as obesity and inflammatory bowel syndrome. This highlights the importance of understanding what properties of the gut microbiome can affect the health of the human host. Studies have been undertaken to determine the species composition of this microbiome and infer functional profiles associated with such host properties. However, lateral gene transfer (LGT between community members may result in misleading taxonomic attributions for the recipient organisms, thus making species-function links difficult to establish. Results We identified a peptides/nickel transport complex whose components differed in abundance based upon levels of host obesity, and assigned the encoded proteins to members of the microbial community. Each protein was assigned to several distinct taxonomic groups, with moderate levels of agreement observed among different proteins in the complex. Phylogenetic trees of these proteins produced clusters that differed greatly from taxonomic attributions and indicated that habitat-directed LGT of this complex is likely to have occurred, though not always between the same partners. Conclusions These findings demonstrate that certain membrane transport systems may be an important factor within an obese-associated gut microbiome and that such complexes may be acquired several times by different strains of the same species. Additionally, an example of individual proteins from different organisms being transferred into one operon was observed, potentially demonstrating a functional complex despite the donors of the subunits being taxonomically disparate. Our results also highlight the potential impact of habitat-directed LGT on the resident microbiota.

  17. Biological and Pharmacological Aspects of the NK1-Receptor

    Directory of Open Access Journals (Sweden)

    Susana Garcia-Recio

    2015-01-01

    Full Text Available The neurokinin 1 receptor (NK-1R is the main receptor for the tachykinin family of peptides. Substance P (SP is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema. This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV. The first of these antagonists, aprepitant (oral administration and fosaprepitant (intravenous administration, are prescribed for high and moderate emesis.

  18. Biological and Pharmacological Aspects of the NK1-Receptor

    Science.gov (United States)

    Garcia-Recio, Susana; Gascón, Pedro

    2015-01-01

    The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis. PMID:26421291

  19. Universality Classes of Interaction Structures for NK Fitness Landscapes

    Science.gov (United States)

    Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim

    2018-02-01

    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.

  20. LYMPHOME T/NK PRIMITIF DU LARYNx : LOCALISATION ...

    African Journals Online (AJOL)

    A rare case of primary laryngeal T/Nk- cell lymphoma, nasal type is reported. The patient was 22-year old male who pre- sented with dysphonia, dyspnea. Chemotherapy protocol SMiLE and radiotherapy were instituted with complete remis- sion of the tumor. Eight months afterward, he presented with tumor recurrence, ...

  1. Interactions between human NK cells and macrophages in response to Salmonella infection.

    Science.gov (United States)

    Lapaque, Nicolas; Walzer, Thierry; Méresse, Stéphane; Vivier, Eric; Trowsdale, John

    2009-04-01

    NK cells play a key role in host resistance to a range of pathogenic microorganisms, particularly during the initial stages of infection. NK cell interactions with cells infected with viruses and parasites have been studied extensively, but human bacterial infections have not been given the same attention. We studied crosstalk between human NK cells and macrophages infected with intracellular Salmonella. These macrophages activated NK cells, resulting in secretion of IFN-gamma and degranulation. Reciprocally, NK cell activation led to a dramatic reduction in numbers of intramacrophagic live bacteria. We identified three elements in the interaction of NK cells with infected macrophages. First, communication between NK cells and infected macrophages was contact-dependent. The second requirement was IL-2- and/or IL-15-dependent priming of NK cells to produce IFN-gamma. The third was activation of NK cells by IL-12 and IL-18, which were secreted by the Salmonella-infected macrophages. Adhesion molecules and IL-12Rbeta2 were enriched in the contact zone between NK cells and macrophages, consistent with contact- and IL-12/IL-18-dependent NK activation. Our results suggest that, in humans, bacterial clearance is consistent with a model invoking a "ménage à trois" involving NK cells, IL-2/IL-15-secreting cells, and infected macrophages.

  2. EBI3 regulates the NK cell response to mouse cytomegalovirus infection

    DEFF Research Database (Denmark)

    Jensen, Helle; Chen, Shih-Yu; Folkersen, Lasse Westergaard

    2017-01-01

    Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection...

  3. Proteomic and functional analyses of protein-DNA complexes during gene transfer.

    Science.gov (United States)

    Badding, Melissa A; Lapek, John D; Friedman, Alan E; Dean, David A

    2013-04-01

    One of the barriers to successful nonviral gene delivery is the crowded cytoplasm, which plasmids need to actively traverse for gene expression. Relatively little is known about how this process occurs, but our lab and others have shown that the microtubule network and motors are required for plasmid movement to the nucleus. To further investigate how plasmids exploit normal physiological processes to transfect cells, we have taken a proteomics approach to identify the proteins that comprise the plasmid-trafficking complex. We have developed a live cell DNA-protein pull-down assay to isolate complexes at certain time points post-transfection (15 minutes to 4 hours) for analysis by mass spectrometry (MS). Plasmids containing promoter sequences bound hundreds of unique proteins as early as 15 minutes post-electroporation, while a plasmid lacking any eukaryotic sequences failed to bind many of the proteins. Specific proteins included microtubule-based motor proteins (e.g., kinesin and dynein), proteins involved in protein nuclear import (e.g., importin 1, 2, 4, and 7, Crm1, RAN, and several RAN-binding proteins), a number of heterogeneous nuclear ribonucleoprotein (hnRNP)- and mRNA-binding proteins, and transcription factors. The significance of several of the proteins involved in protein nuclear localization and plasmid trafficking was determined by monitoring movement of microinjected fluorescently labeled plasmids via live cell particle tracking in cells following protein knockdown by small-interfering RNA (siRNA) or through the use of specific inhibitors. While importin β1 was required for plasmid trafficking and subsequent nuclear import, importin α1 played no role in microtubule trafficking but was required for optimal plasmid nuclear import. Surprisingly, the nuclear export protein Crm1 also was found to complex with the transfected plasmids and was necessary for plasmid trafficking along microtubules and nuclear import. Our results show that various proteins

  4. Dissecting epigenetic silencing complexity in the mouse lung cancer suppressor gene Cadm1.

    Directory of Open Access Journals (Sweden)

    Stella Marie Reamon-Buettner

    Full Text Available Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3, and opposing histone modification marks (H3K4me3 and H3K27me3 all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and 'bivalent' histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer.

  5. Whole transcriptome data of primary human NK cells under hypoxia and interleukin 15 priming: A 2×2 factorial design experiment.

    Science.gov (United States)

    Figueiredo, Ana Sofia; Killian, Doreen; Schulte, Jutta; Sticht, Carsten; Lindner, Holger A

    2017-10-01

    Natural Killer (NK) cells mediate innate immunity against cancer and intracellular infection, at that, operating in often oxygen-deprived environments. We performed a microarray experiment with a 2×2 factorial design to profile gene expression in human NK cells (Velasquez et al., 2016) [1]. In this experiment, NK cells from 5 healthy volunteers were primed or not for 6 h with the survival factor and inflammatory cytokine interleukin 15 (IL-15) under hypoxic or normoxic culture conditions (20 samples in total). Here, we provide details on the culture setup that govern the actual O 2 partial pressure (pO 2 ) experienced by the cells, as well as on the RNA extraction procedure used, which we optimized from commercial spin column protocols to obtain highly concentrated total RNA. We present a quality control analysis of the normalized microarray data, as well as overviews for differentially regulated genes. These data provide insights into NK cell transcriptional responses to immune stimulation under physiologically relevant low oxygen conditions. This dataset is deposited in the Gene Expression Omnibus database (accession number GSE70214).

  6. Imaging Case: NK/T-Cell Lymphoma, Nasal Type

    Directory of Open Access Journals (Sweden)

    Srini vasan

    2015-11-01

    Full Text Available Peripheral T-cell lymphomas are a group of heterogeneous disorders and according to WHO classification, are categorized into nodal and extranodal forms. NK/T-cell lymphoma, nasal type, is a subtype of extranodal peripheral T-cell lymphoma and commonly presents as a midfacial destructive lesion. This disorder is more prevalent in Asia and South America and has a strong association with Epstein Barr Virus infection. Invasion of vessel walls by lymphoid cells, which is known as angiocentricity, is characteristic of nasal type NK/T-cell lymphoma. The tumor cells express CD2 and CD56 antigens; but not CD3. The nasal cavity is the mostly frequently affected site. Other commonly affected sites include palate and upper airways. On cross sectional imaging, the nasal involvement is seen as a diffuse sheet-like mucosal thickening along the nasal turbinates and septum or as a destructive midline mass (Figs 1,2. The latter form was previously described as a lethal midline granuloma or polymorphic reticulosis. The mass frequently extends into subcutaneous tissues of nasal ala and buccinator space (Fig.3. Regional lymphadenopathy is usually not seen. The radiological differential diagnoses for a midline nasal cavity mass include squamous cell carcinoma, minor salivary gland tumor, Wegener’s granulomatosis, and fungal infections. The imaging appearances of NK/T-cell lymphoma are often indistinguishable from the above mentioned conditions. However, predilection to involve both sides of the nasal cavity and tendency to spread as a diffuse thin sheet-like soft tissue along the walls of the nasal cavity enveloping the nasal turbinates and nasal septum favour the diagnosis of NK/T-cell lymphoma. Contiguous extension into the nasopharynx, palate, upper airways, and subcutaneous tissues can also suggest the possibility of NK/T-cell lymphoma, nasal type (Fig.4. T-cell lymphoma, compared to B-cell lymphoma, has an aggressive course and poor prognosis. The median

  7. Ultrastructural characterization of effector-target interactions for human neonatal and adult NK cells reveals reduced intercellular surface contacts of neonatal cells

    NARCIS (Netherlands)

    Ribeiro-do-Couto, Laura M.; Poelen, Martien; Hooibrink, Berend; Dormans, Jan A. M. A.; Roholl, Paul J. M.; Boog, Claire J. P.

    2003-01-01

    Limitations in neonatal natural killer (NK) cell responses may be associated with the less efficient newborn capacity to solve viral infections. Although these limitations have been extensively reported they are poorly characterized. Making use of the major histocompatibility complex (MHC) class I

  8. Complex gene expression in the dragline silk producing glands of the Western black widow (Latrodectus hesperus).

    Science.gov (United States)

    Lane, Amanda Kelly; Hayashi, Cheryl Y; Whitworth, Gregg B; Ayoub, Nadia A

    2013-12-02

    Orb-web and cob-web weaving spiders spin dragline silk fibers that are among the strongest materials known. Draglines are primarily composed of MaSp1 and MaSp2, two spidroins (spider fibrous proteins) expressed in the major ampullate (MA) silk glands. Prior genetic studies of dragline silk have focused mostly on determining the sequence of these spidroins, leaving other genetic aspects of silk synthesis largely uncharacterized. Here, we used deep sequencing to profile gene expression patterns in the Western black widow, Latrodectus hesperus. We sequenced millions of 3'-anchored "tags" of cDNAs derived either from MA glands or control tissue (cephalothorax) mRNAs, then associated the tags with genes by compiling a reference database from our newly constructed normalized L. hesperus cDNA library and published L. hesperus sequences. We were able to determine transcript abundance and alternative polyadenylation of each of three loci encoding MaSp1. The ratio of MaSp1:MaSp2 transcripts varied between individuals, but on average was similar to the estimated ratio of MaSp1:MaSp2 in dragline fibers. We also identified transcription of TuSp1 in MA glands, another spidroin family member that encodes the primary component of egg-sac silk, synthesized in tubuliform glands. In addition to the spidroin paralogs, we identified 30 genes that are more abundantly represented in MA glands than cephalothoraxes and represent new candidates for involvement in spider silk synthesis. Modulating expression rates of MaSp1 variants as well as MaSp2 and TuSp1 could lead to differences in mechanical properties of dragline fibers. Many of the newly identified candidate genes likely encode secreted proteins, suggesting they could be incorporated into dragline fibers or assist in protein processing and fiber assembly. Our results demonstrate previously unrecognized transcript complexity in spider silk glands.

  9. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  10. Comprehensive analysis of gene mutation and phenotype of tuberous sclerosis complex in China

    Directory of Open Access Journals (Sweden)

    Guo-qiang HUANG

    2015-04-01

    Full Text Available Objective To summarize the clinical features of tuberous sclerosis complex (TSC, the distribution and description of TSC gene, and to probe into the correlation of genotype with phenotype.  Methods According to the 1998 International Tuberous Sclerosis Complex Diagnostic Criteria, a total of 163 TSC patients with pathogenic mutation in TSC gene (3 cases were detected in our hospital, and the other 160 cases were collected from other institutions in China were enrolled, and their gene detection results and clinical data were analyzed.  Results Among 163 cases, TSC1 mutation (31 cases accounted for 19.02% [32.26% (10/31 in exon 15, 16.13% (5/31 in exon 21, 12.90% (4/31 in exon 18], and TSC2 mutation (132 cases accounted for 80.98% [9.85% (13/132 in exon 37, 7.58% (10/132 in exon 40, 6.82%(9/132 in exon 33]. The proportion of base replacement in TSC1 was 41.94% (13/31, and 52.27% (69/132 in TSC2. Male patients exhibited significantly more subependymal nodules or calcifications than thefemale patients (χ2 = 8.016, P = 0.005. Sporadic patients exhibited significantly more cortical tubers than familial patients (χ2 = 6.273, P = 0.012. Patients with TSC2 mutations had significantly higher frequencies of hypomelanotic macules than patients with TSC1 mutations (χ2 = 6.756, P = 0.009. Patients with missense mutations were more likely to have facial angiofibromas compared with patients with other mutations (χ2 = 4.438, P = 0.035.  Conclusions Exon 15, 21 and 18 of TSC1 and exon 37, 40 and 33 of TSC2 accounted for higher percentage of mutations. Correlating genotypes with phenotypes should facilitate the individualized treatment and prognostic assessment of tuberous sclerosis complex. DOI: 10.3969/j.issn.1672-6731.2015.04.013

  11. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia

    International Nuclear Information System (INIS)

    Mosor, Maria; Ziółkowska-Suchanek, Iwona; Nowicka, Karina; Dzikiewicz-Krawczyk, Agnieszka; Januszkiewicz–Lewandowska, Danuta; Nowak, Jerzy

    2013-01-01

    The MRE11, RAD50, and NBN genes encode proteins of the MRE11-RAD50-NBN (MRN) complex involved in cellular response to DNA damage and the maintenance of genome stability. In our previous study we showed that the germline p.I171V mutation in NBN may be considered as a risk factor in the development of childhood acute lymphoblastic leukemia (ALL) and some specific haplotypes of that gene may be associated with childhood leukemia. These findings raise important questions about the role of mutations in others genes of the MRN complex in childhood leukemia. The aim of this study was to answer the question whether MRE11 and RAD50 alterations may be associated with childhood ALL or AML. We estimated the frequency of constitutional mutations and polymorphisms in selected regions of MRE11, RAD50, and NBN in the group of 220 children diagnosed with childhood leukemias and controls (n=504/2200). The analysis was performed by specific amplification of region of interest by PCR and followed by multi-temperature single-strand conformation polymorphism (PCR-MSSCP) technique. We performed two molecular tests to examine any potential function of the detected the c.551+19G>A SNP in RAD50 gene. To our knowledge, this is the first analysis of the MRE11, RAD50 and NBN genes in childhood leukemia. The frequency of either the AA genotype or A allele of RAD50-rs17166050 were significantly different in controls compared to leukemia group (ALL+AML) (p<0.0019 and p<0.0019, respectively). The cDNA analysis of AA or GA genotypes carriers has not revealed evidence of splicing abnormality of RAD50 pre-mRNA. We measured the allelic-specific expression of G and A alleles at c.551+19G>A and the statistically significant overexpression of the G allele has been observed. Additionally we confirmed the higher incidence of the p.I171V mutation in the leukemia group (7/220) than among controls (12/2400) (p<0.0001). The formerly reported sequence variants in the RAD50 and MRE11 gene may not constitute a

  12. Mesenchymal Stromal Cells Prevent Allostimulation In Vivo and Control Checkpoints of Th1 Priming: Migration of Human DC to Lymph Nodes and NK Cell Activation.

    Science.gov (United States)

    Consentius, C; Akyüz, L; Schmidt-Lucke, J A; Tschöpe, C; Pinzur, L; Ofir, R; Reinke, P; Volk, H-D; Juelke, K

    2015-10-01

    Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity. © 2015 AlphaMed Press.

  13. Progression to AIDS in SIV-Infected Rhesus Macaques is Associated with Distinct KIR and MHC class I Polymorphisms and NK Cell Dysfunction

    Science.gov (United States)

    Albrecht, Christina; Malzahn, Dörthe; Brameier, Markus; Hermes, Meike; Ansari, Aftab A.; Walter, Lutz

    2014-01-01

    Killer cell immunoglobulin-like receptors (KIR) regulate the activity of natural killer (NK) cells and have been shown to be associated with susceptibility to a number of human infectious diseases. Here, we analyzed NK cell function and genetic associations in a cohort of 52 rhesus macaques experimentally infected with SIVmac and subsequently stratified into high viral load (HVL) and low viral load (LVL) plasma viral loads at set point. This stratification coincided with fast (HVL) and slow (LVL) disease progression indicated by the disease course and critical clinical parameters including CD4+ T cell counts. HVL animals revealed sustained proliferation of NK cells but distinct loss of peripheral blood NK cell numbers and lytic function. Genetic analyses revealed that KIR genes 3DL05, 3DS05, and 3DL10 as well as 3DSW08, 3DLW03, and 3DSW09 are correlated, most likely due to underlying haplotypes. SIV-infection outcome associated with presence of transcripts for two inhibitory KIR genes (KIR3DL02, KIR3DL10) and three activating KIR genes (KIR3DSW08, KIR3DS02, KIR3DS05). Presence of KIR3DL02 and KIR3DSW08 was associated with LVL outcome, whereas presence of KIR3DS02 was associated with HVL outcome. Furthermore, we identified epistasis between KIR and MHC class I alleles as the transcript presence of the correlated genes KIR3DL05, KIR3DS05, and KIR3DL10 increased HVL risk when Mamu-B*012 transcripts were also present or when Mamu-A1*001 transcripts were absent. These genetic associations were mirrored by changes in the numbers, the level of proliferation, and lytic capabilities of NK cells as well as overall survival time and gastro-intestinal tissue viral load. PMID:25506344

  14. Natural killer (NK cells and their involvement in different types of cancer. Current status of clinical research

    Directory of Open Access Journals (Sweden)

    Isadora Zaharescu

    2017-04-01

    Full Text Available Natural killer cells are the main agents of innate immunity. Since 1970, various studies have repeatedly confirmed their involvement in decreasing local tumor growth and also decreasing the risk of metastasis, due to their cytotoxic effects and also through the release of immunostimulatory cytokines such as IFN-gamma. In the 1990s, several studies demonstrated the existence of certain inhibiting and stimulating receptors of these cells, leading to the concept of “induced self”, thus explaining why tumors with MHC-1 are destroyed and autologous cells without it are saved out. Recognition and destruction of tumor cells by the NK cells are the result of complex interactions between inhibiting and activating factors. This paper, based on extensive research of currently available studies, summarizes the mechanisms employed by the NK cells to destroy the cancer cells, thus highlighting their role in the risk of tumor recurrence as well as their use and handling in certain types of immunotherapy

  15. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis

    DEFF Research Database (Denmark)

    Holst, B; Hastrup, H; Raffetseder, U

    2001-01-01

    either Galpha(s) or Galpha(q) and the NK1 receptor with a truncated tail, which secured non-promiscuous G-protein interaction, demonstrated monocomponent agonist binding closely corresponding to either of the two affinity states found in the wild-type receptor. High affinity binding of both substance P...... and neurokinin A was observed in the tail-truncated Galpha(s) fusion construct, whereas the lower affinity component was displayed by the tail-truncated Galpha(q) fusion. The elusive difference between the affinity determined in heterologous versus homologous binding assays for substance P and especially...... in the tail-truncated Galpha(q) fusion construct. Thus, the heterogenous pharmacological phenotype displayed by the NK1 receptor is a reflection of the occurrence of two active conformations or molecular phenotypes representing complexes with the Galpha(s) and Galpha(q) species, respectively. We propose...

  16. New views of the human NK cell immunological synapse: recent advances enabled by super- and high- resolution imaging techniques

    Directory of Open Access Journals (Sweden)

    Emily M. Mace

    2013-01-01

    Full Text Available Imaging technology has undergone rapid growth with the development of super resolution microscopy, which enables resolution below the diffraction barrier of light (~200 nm. In addition, new techniques for single molecule imaging are being added to the cell biologist’s arsenal. Immunologists have exploited these techniques to advance understanding of NK biology, particularly that of the immune synapse. The immune synapse’s relatively small size and complex architecture combined with its exquisitely controlled signaling milieu have made it a challenge to visualize. In this review we highlight and discuss new insights into NK cell immune synapse formation and regulation revealed by cutting edge imaging techniques, including super resolution microscopy and high resolution total internal reflection microscopy and Förster resonance energy transfer.

  17. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses

    Science.gov (United States)

    Orange, Jordan S.; Ramesh, Narayanaswamy; Remold-O'Donnell, Eileen; Sasahara, Yoji; Koopman, Louise; Byrne, Michael; Bonilla, Francisco A.; Rosen, Fred S.; Geha, Raif S.; Strominger, Jack L.

    2002-08-01

    The Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disorder caused by a mutation in WAS protein (WASp) that results in defective actin polymerization. Although the function of many hematopoietic cells requires WASp, the specific expression and function of this molecule in natural killer (NK) cells is unknown. Here, we report that WAS patients have increased percentages of peripheral blood NK cells and that fresh enriched NK cells from two patients with a WASp mutation have defective cytolytic function. In normal NK cells, WASp was expressed and localized to the activating immunologic synapse (IS) with filamentous actin (F-actin). Perforin also localized to the NK cell-activating IS but at a lesser frequency than F-actin and WASp. The accumulation of F-actin and WASp at the activating IS was decreased significantly in NK cells that had been treated with the inhibitor of actin polymerization, cytochalasin D. NK cells from WAS patients lacked expression of WASp and accumulated F-actin at the activating IS infrequently. Thus, WASp has an important function in NK cells. In patients with WASp mutations, the resulting NK cell defects are likely to contribute to their disease.

  18. Nonviral Gene Delivery from Nonwoven Fibrous Scaffolds Fabricated by Interfacial Complexation of Polyelectrolytes

    Science.gov (United States)

    Lim, Shawn H.; Liao, I-Chien; Leong, Kam W.

    2008-01-01

    We investigated a novel nonwoven fibrous scaffold as a vehicle for delivery of DNA. Fibers were formed by polyelectrolyte complexation of water-soluble chitin and alginate, and PEI–DNA nanoparticles were encapsulated during the fiber drawing process. Nanoparticles released from the fibers over time retained their bioactivity and successfully transfected cells seeded on the scaffold in a sustained manner. Transgene expression in HEK293 cells and human dermal fibroblasts seeded on the transfecting scaffolds was significant even after 2 weeks of culture compared to 3-day expression in two-dimensional controls. Fibroblasts seeded on scaffolds containing DNA encoding basic fibroblast growth factor (bFGF) demonstrated prolonged secretion of bFGF at levels significantly higher than baseline. This work establishes the potential of this fibrous scaffold as a matrix capable of delivering genes to direct and support cellular development in tissue engineering. PMID:16497560

  19. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.

    Science.gov (United States)

    Korenke, Georg-Christoph; Eggert, Marlene; Thiele, Holger; Nürnberg, Peter; Sander, Thomas; Steinlein, Ortrud K

    2016-03-01

    Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  20. Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Lau, Quintin; Jobbins, Sarah E; Belov, Katherine; Higgins, Damien P

    2013-01-01

    Major histocompatibility complex (MHC) class II molecules have an integral role in the adaptive immune response, as they bind and present antigenic peptides to T helper lymphocytes. In this study of koalas, species-specific primers were designed to amplify exon 2 of the MHC class II DA and DB genes, which contain much of the peptide-binding regions of the α and β chains. A total of two DA α1 domain variants and eight DA β1 (DAB), three DB α1 and five DB β1 variants were amplified from 20 koalas from two free-living populations from South East Queensland and the Port Macquarie region in northern New South Wales. We detected greater variation in the β1 than in the α1 domains as well as evidence of positive selection in DAB. The present study provides a springboard to future investigation of the role of MHC in disease susceptibility in koalas.

  1. Regulation of the Drosophila Enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins.

    Directory of Open Access Journals (Sweden)

    Cheri A Schaaf

    2009-07-01

    Full Text Available The cohesin protein complex was first recognized for holding sister chromatids together and ensuring proper chromosome segregation. Cohesin also regulates gene expression, but the mechanisms are unknown. Cohesin associates preferentially with active genes, and is generally absent from regions in which histone H3 is methylated by the Enhancer of zeste [E(z] Polycomb group silencing protein. Here we show that transcription is hypersensitive to cohesin levels in two exceptional cases where cohesin and the E(z-mediated histone methylation simultaneously coat the entire Enhancer of split and invected-engrailed gene complexes in cells derived from Drosophila central nervous system. These gene complexes are modestly transcribed, and produce seven of the twelve transcripts that increase the most with cohesin knockdown genome-wide. Cohesin mutations alter eye development in the same manner as increased Enhancer of split activity, suggesting that similar regulation occurs in vivo. We propose that cohesin helps restrain transcription of these gene complexes, and that deregulation of similarly cohesin-hypersensitive genes may underlie developmental deficits in Cornelia de Lange syndrome.

  2. Major histocompatibility complex haplotypes and class II genes in non-Jewish patients with pemphigus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, A.R. (Harvard School of Dental Medicine, Boston, MA (United States) Center for Blood Research, Boston, MA (United States) American Red Cross Blood Services-Northeast Region, Dedham, MA (United States)); Wagner, R.; Khatri, K.; Notani, G.; Awdeh, Z.; Alper, C.A. (Center for Blood Research, Boston, MA (United States)); Yunis, E.J. (Center for Blood Research, Boston, MA (United States) American Red Cross Blood Services-Northeast Region, Dedham, MA (United States))

    1991-06-01

    Previous studies demonstrated that HLA-DR4 was markedly increased among Ashkenazi Jewish patients with pemphigus vulgaris (PV), almost entirely as the common Jewish extended haplotype (HLA-B38, SC21, DR4, DQw8) or as the haplotype HLA-B35, SC31, DR4, DQw8, and that HLA-DR4, DQw8 was distributed among patients in a manner consistent with dominant expression of a class II (D-region or D-region-linked) susceptibility gene. In the present study of major histocompatibility complex (MHC) halotypes in 25 non-Jewish PV patients, DR4, DQw8 was found in 12 of the patients and DRw6, DQw5 was found in 15. Only 3 patients had neither. The non-Jewish patients were of more Southern European extraction than our controls. This suggests that there are two major MHC susceptibility alleles in American patients with PV. The more ancient apparently arose on a haplotype in the Jews, HLA-B38(35), SC21(SC31), DR4, DQw8, and spread to other populations largely as D-region segments. The other arose in or near Italy on the haplotype HLA-Bw55, SB45, DRw14, DQw5 amd has also partially fragmented so that many patients carry only DRw14, DQw5. The available data do not permit the specific localization of either the DR4, DQw8-or the DRw14, DQw5-linked susceptibility genes.

  3. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC) Genes.

    Science.gov (United States)

    Ejsmond, Maciej Jan; Radwan, Jacek

    2015-11-01

    Major Histocompatibility Complex (MHC) genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens) of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS) are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process). Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  4. Genetic variation and origin of parthenogenesis in the Aspidoscelis cozumela complex: evidence from mitochondrial genes.

    Science.gov (United States)

    Manríquez-Morán, Norma L; Cruz, Fausto R Méndez-de la; Murphy, Robert W

    2014-01-01

    Parthenogenesis is a form of clonal reproduction. Eggs develop in the absence of sperm and offspring are genetically identical to their mother. Although common in invertebrates, it occurs in only a few species of squamate reptiles. Parthenogenetic reptiles have their origin in interspecific hybridization, and their populations are exclusively female. Because of its high mutation rate and maternal inheritance, mitochondrial DNA sequence data can evaluate the origin and evolution of all-female vertebrates. Partial sequences from two mitochondrial genes, Cytb and ND4, were analyzed to investigate questions about the origin of parthenogenesis in the Aspidoscelis cozumela complex, which includes A. cozumela, A. maslini and A. rodecki. Low levels of divergence were detected among parthenogenetic species, and between them and A. angusticeps, confirming it as the maternal species of the parthenoforms. A gene tree was constructed using sequences from three populations of A. angusticeps and nine of its unisexual daughter species. The phylogeny suggests that two independent hybridization events between A. angusticeps and A. deppii formed three unisexual species. One hybridization resulted in A. rodecki and the other formed A. maslini and A. cozumela. Although A. cozumela has the haplotype characteristic of A. maslini from Puerto Morelos, it is considered to be a different species based on karyological and morphological characteristics and its geographical isolation.

  5. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC Genes.

    Directory of Open Access Journals (Sweden)

    Maciej Jan Ejsmond

    2015-11-01

    Full Text Available Major Histocompatibility Complex (MHC genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process. Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  6. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    Science.gov (United States)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  7. Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes

    Science.gov (United States)

    Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.

    2002-01-01

    Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.

  8. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    Science.gov (United States)

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Changes in cytokine levels and NK cell activation associated with influenza.

    Directory of Open Access Journals (Sweden)

    Stephanie Jost

    Full Text Available Several studies have highlighted the important role played by murine natural killer (NK cells in the control of influenza infection. However, human NK cell responses in acute influenza infection, including infection with the 2009 pandemic H1N1 influenza virus, are poorly documented. Here, we examined changes in NK cell phenotype and function and plasma cytokine levels associated with influenza infection and vaccination. We show that absolute numbers of peripheral blood NK cells, and particularly those of CD56(bright NK cells, decreased upon acute influenza infection while this NK cell subset expanded following intramuscular influenza vaccination. NK cells exposed to influenza antigens were activated, with higher proportions of NK cells expressing CD69 in study subjects infected with seasonal influenza strains. Vaccination led to increased levels of CD25+ NK cells, and notably CD56(bright CD25+ NK cells, whereas decreased amounts of this subset were present in the peripheral blood of influenza infected individuals, and predominantly in study subjects infected with the 2009 pandemic H1N1 influenza virus. Finally, acute influenza infection was associated with low plasma concentrations of inflammatory cytokines, including IFN-γ, MIP-1β, IL-2 and IL-15, and high levels of the anti-inflammatory cytokines IL-10 and IL-1ra. Altogether, these data suggest a role for the CD56(bright NK cell subset in the response to influenza, potentially involving their recruitment to infected tissues and a local production and/or uptake of inflammatory cytokines.

  10. Effect of TIM-3 Blockade on the Immunophenotype and Cytokine Profile of Murine Uterine NK Cells.

    Directory of Open Access Journals (Sweden)

    Sudipta Tripathi

    Full Text Available NK cells are the most abundant lymphocyte population in the feto-maternal interface during gestation. The uterine NK cells (uNK are transient, have a unique immunophenotype and produce a number of cytokines. These cytokines play an important role in establishment and maintenance of vascular remodeling and tolerance associated with successful pregnancy. The uNK cells also express TIM-3 during gestation and blockade of TIM-3 expression results in fetal loss in mice. In this study we determined the effect of TIM-3 blockade on uNK cells. Specifically we observed surface receptor phenotype and cytokine production by uNK cells following TIM-3 blockade. Our results show that TIM-3 plays a role in regulating the uNK cells and contributes to the maintenance of tolerance at the feto-maternal interface.

  11. Probing Human NK Cell Biology Using Human Immune System (HIS) Mice.

    Science.gov (United States)

    Li, Yan; Di Santo, James P

    2016-01-01

    Our incomplete understanding of the mechanisms that orchestrate human lymphocyte differentiation and condition human immune responses is in part due to the limited access to normal human tissue samples that can inform on these complex processes. In addition, in vitro culture conditions fail to recapitulate the three-dimensional microenvironments that influence cell-cell interactions and impact on immune outcomes. Small animals provide a preclinical model to dissect and probe immunity and over the past decades, development of immunodeficient hosts that can be engrafted with human hematopoietic precursors and mature cells have led to the development of new in vivo models to study human lymphocyte development and function. Natural killer (NK) cells are implicated in the recognition and elimination of pathogen-infected and transformed cells and belong to a family of diverse innate lymphoid cells (ILCs) that provide early immune defense against disease. Here, we summarize the use of humanized mouse models for the study of NK cell and group 1 ILCs and their respective roles in immunity and tissue homeostasis.

  12. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?

    Science.gov (United States)

    Carrillo-Bustamante, Paola; Kesmir, Can; de Boer, Rob J.

    2015-01-01

    Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection). Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses, which are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure. PMID:26136746

  13. The NK-2 receptor antagonist SR 48968C does not improve adenosine hyperresponsiveness and airway obstruction in allergic asthma

    NARCIS (Netherlands)

    Kraan, J; Vink-Klooster, H; Postma, DS

    Background When stimulated, excitatory nonadrenergic noncholinergic (e-NANC) nerves locally release tachykinins like Neurokinin (NK) A and Substance P, causing neurogenic inflammation and airway obstruction via activation of specific NK-1 and NK-2 receptors. The recently developed nonpeptide NK-2

  14. Integrated genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in aggressive NK-cell leukemia.

    Science.gov (United States)

    Huang, Liang; Liu, Dan; Wang, Na; Ling, Shaoping; Tang, Yuting; Wu, Jun; Hao, Lingtong; Luo, Hui; Hu, Xuelian; Sheng, Lingshuang; Zhu, Lijun; Wang, Di; Luo, Yi; Shang, Zhen; Xiao, Min; Mao, Xia; Zhou, Kuangguo; Cao, Lihua; Dong, Lili; Zheng, Xinchang; Sui, Pinpin; He, Jianlin; Mo, Shanlan; Yan, Jin; Ao, Qilin; Qiu, Lugui; Zhou, Hongsheng; Liu, Qifa; Zhang, Hongyu; Li, Jianyong; Jin, Jie; Fu, Li; Zhao, Weili; Chen, Jieping; Du, Xin; Qing, Guoliang; Liu, Hudan; Liu, Xin; Huang, Gang; Ma, Ding; Zhou, Jianfeng; Wang, Qian-Fei

    2018-02-01

    Aggressive NK-cell leukemia (ANKL) is a rare form of NK cell neoplasm that is more prevalent among people from Asia and Central and South America. Patients usually die within days to months, even after receiving prompt therapeutic management. Here we performed the first comprehensive study of ANKL by integrating whole genome, transcriptome and targeted sequencing, cytokine array as well as functional assays. Mutations in the JAK-STAT pathway were identified in 48% (14/29) of ANKL patients, while the extracellular STAT3 stimulator IL10 was elevated by an average of 56-fold (P < 0.0001) in the plasma of all patients examined. Additional frequently mutated genes included TP53 (34%), TET2 (28%), CREBBP (21%) and MLL2 (21%). Patient NK leukemia cells showed prominent activation of STAT3 phosphorylation, MYC expression and transcriptional activities in multiple metabolic pathways. Functionally, STAT3 activation and MYC expression were critical for the proliferation and survival of ANKL cells. STAT signaling regulated the MYC transcription program, and both STAT signaling and MYC transcription were required to maintain the activation of nucleotide synthesis and glycolysis. Collectively, the JAK-STAT pathway represents a major target for genomic alterations and IL10 stimulation in ANKL. This newly discovered JAK/STAT-MYC-biosynthesis axis may provide opportunities for the development of novel therapeutic strategies in treating this subtype of leukemia.

  15. 2DL1, 2DL2 and 2DL3 all contribute to KIR phenotype variability on human NK cells.

    Science.gov (United States)

    Dunphy, S E; Guinan, K J; Chorcora, C Ní; Jayaraman, J; Traherne, J A; Trowsdale, J; Pende, D; Middleton, D; Gardiner, C M

    2015-01-01

    Natural killer (NK) cells are lymphocytes that function as part of the innate immune system. Their activity is controlled by a range of inhibitory and activating receptors, including the important killer-cell immunoglobulin-like receptors (KIR). The KIR are a multi-gene family of receptors that interact with the human leukocyte antigen (HLA) class I family of molecules and are characterised by extensive allelic polymorphism. Their expression on the cell surface of NK cells is highly variable, but the factors responsible for this variability are not yet clearly understood. In the current study, we investigated KIR expression in a healthy human cohort that we had previously characterised in depth at a genetic level, with KIR allele typing and HLA class I ligand genotypes available for all donors (n=198). Allelic polymorphism significantly affected the phenotypic expression of all KIR analysed, whereas HLA ligand background influenced the expression levels of 2DL1 and 2DL3. In particular, we found that although 2DL2 may influence 2DL1 expression, this appears to be owing to variation in 2DL1 copy number. Finally, the inhibitory receptor LILRB1 had higher expression levels in individuals with B/B KIR genotypes, suggesting a possible relationship between KIR and non-KIR receptors, which serves to balance NK cell activation potential.

  16. Tributyltin (TBT) and Dibutyltin (DBT) Alter Secretion of Tumor Necrosis Factor Alpha (TNFα) from Human Natural Killer (NK) Cells and a Mixture of T cells and NK Cells

    Science.gov (United States)

    Hurt, Kelsi; Hurd-Brown, Tasia; Whalen, Margaret

    2012-01-01

    Butyltins (BTs) have been in widespread use. Tributyltin (TBT) has been used as a biocide in a variety of applications and is found in human blood samples. Dibutyltin (DBT) has been used as a stabilizer in polyvinyl chloride plastics and as a de-worming agent in poultry. DBT, like TBT, is found in human blood. Human natural killer (NK) cells are the earliest defense against tumors and viral infections and secrete the cytokine tumor necrosis factor (TNF) alpha (α). TNFα is an important regulator of adaptive and innate immune responses. TNFα promotes inflammation and an association between malignant transformation and inflammation has been established. Previously, we have shown that TBT and DBT were able to interfere with the ability of NK cells to lyse tumor target cells. Here we show that BTs alter cytokine secretion by NK cells as well as a mixture of T and NK lymphocytes (T/NK cells). We examined 24 h, 48 h, and 6 day exposures to TBT (200- 2.5 nM) and DBT (5- 0.05 µM) on TNFα secretion by highly enriched human NK cells and T/NK cells. The results indicate that TBT (200 - 2.5 nM) decreased TNFα secretion from NK cells. In the T/NK cells 200 nM TBT decreased secretion while 100-5 nM TBT increased secretion of TNFα. NK cells or T/NK cells exposed to higher concentrations of DBT showed decreased TNFα secretion while lower concentrations showed increased secretion. The effects of BTs on TNFα secretion are seen at concentrations present in human blood. PMID:23047847

  17. A Genome-Wide Association Study and Complex Network Identify Four Core Hub Genes in Bipolar Disorder.

    Science.gov (United States)

    Xie, Zengyan; Yang, Xianyan; Deng, Xiaoya; Ma, Mingyue; Shu, Kunxian

    2017-12-19

    Bipolar disorder is a common and severe mental illness with unsolved pathophysiology. A genome-wide association study (GWAS) has been used to find a number of risk genes, but it is difficult for a GWAS to find genes indirectly associated with a disease. To find core hub genes, we introduce a network analysis after the GWAS was conducted. Six thousand four hundred fifty eight single nucleotide polymorphisms (SNPs) with p sifted out from Wellcome Trust Case Control Consortium (WTCCC) dataset and mapped to 2045 genes, which are then compared with the protein-protein network. One hundred twelve genes with a degree >17 were chosen as hub genes from which five significant modules and four core hub genes ( FBXL13 , WDFY2 , bFGF , and MTHFD1L ) were found. These core hub genes have not been reported to be directly associated with BD but may function by interacting with genes directly related to BD. Our method engenders new thoughts on finding genes indirectly associated with, but important for, complex diseases.

  18. A Genome-Wide Association Study and Complex Network Identify Four Core Hub Genes in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Zengyan Xie

    2017-12-01

    Full Text Available Bipolar disorder is a common and severe mental illness with unsolved pathophysiology. A genome-wide association study (GWAS has been used to find a number of risk genes, but it is difficult for a GWAS to find genes indirectly associated with a disease. To find core hub genes, we introduce a network analysis after the GWAS was conducted. Six thousand four hundred fifty eight single nucleotide polymorphisms (SNPs with p < 0.01 were sifted out from Wellcome Trust Case Control Consortium (WTCCC dataset and mapped to 2045 genes, which are then compared with the protein–protein network. One hundred twelve genes with a degree >17 were chosen as hub genes from which five significant modules and four core hub genes (FBXL13, WDFY2, bFGF, and MTHFD1L were found. These core hub genes have not been reported to be directly associated with BD but may function by interacting with genes directly related to BD. Our method engenders new thoughts on finding genes indirectly associated with, but important for, complex diseases.

  19. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B

    International Nuclear Information System (INIS)

    Spies, T.; Bresnahan, M.; Strominger, J.L.

    1989-01-01

    A 600-kilobase (kb) DNA segment from the human major histocompatibility complex (MHC) class III region was isolated by extension of a previous 435-kb chromosome walk. The contiguous series of cloned overlapping cosmids contains the entire 555-kb interval between C2 in the complement gene cluster and HLA-B. This region is known to encode the tumor necrosis factors (TNFs) α and β, B144, and the major heat shock protein HSP70. Moreover, a cluster of genes, BAT1-BAT5 (HLA-B-associated transcripts) have been localized in the vicinity of the genes for TNFα and TNFβ. An additional four genes were identified by isolation of corresponding cDNA clones with cosmid DNA probes. These genes for BAT6-BAT9 were mapped near the gene for C2 within a 120-kb region that includes a HSP70 gene pair. These results, together with complementary data from a similar recent study, indicated the presence of a minimum of 19 genes within the C2-HLA-B interval of the MHC class III region. Although the functional properties of most of these genes are yet unknown, they may be involved in some aspects of immunity. This idea is supported by the genetic mapping of the hematopoietic histocompatibility locus-1 (Hh-1) in recombinant mice between TNFα and H-2S, which is homologous to the complement gene cluster in humans

  20. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes.

    Science.gov (United States)

    Müller, Gerd A; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A; Engeland, Kurt

    2012-02-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle.

  1. Mutations of the Spliceosome Complex Genes Occur In Adult Patients but Are Very Rare In Children with Myeloid Neoplasia

    DEFF Research Database (Denmark)

    Hirabayashi, Shinsuke; Moetter, Jessica; Yoshida, Kenichi

    -protein complexes that remove noncoding introns from precursor mRNA. We hypothesized that the disruption of the spliceosome complex might play a driving role in the leukemogenesis in pediatric MDS. Using targeted re-sequencing we investigated the 3 exclusive hotspots of 2 spliceosome genes that were found...... negative. The drastically reduced frequency of spliceosome mutations in pediatric compared to adult myeloid malignancies suggests a different pathogenetic mechanism in childhood disease, and fits well with previous reports that somatic mutations of non-Ras-pathway genes, such as DNMT3A, are less prevalent...

  2. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Felipe eMoraga

    2015-10-01

    Full Text Available Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt–Ada–Gcn5 Acetyltransferase is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.

  3. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.

    Science.gov (United States)

    Moraga, Felipe; Aquea, Felipe

    2015-01-01

    Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.

  4. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records

    DEFF Research Database (Denmark)

    Jiang, Li; Edwards, Stefan M.; Thomsen, Bo

    2014-01-01

    Background: Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic...... from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining...... of the phenotype data. Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to a range of human diseases. The resulting accurate ranking of known...

  5. The CHR Promoter Element Controls Cell Cycle-Dependent Gene Transcription and Binds the DREAM and MMB Complexes

    OpenAIRE

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Fischer, Martin; Engeland, Kurt; Padi, Megha; Litovchick, Larisa; DeCaprio, James A.

    2011-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like \\(cyclin B, CDC2\\) and \\(CDC25C\\) are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in \\(G_0/G_1\\). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and...

  6. Role of tachykinin NK1 and NK2 receptors in allergen-induced early and late asthmatic reactions, airway hyperresponsiveness, and airway inflammation in conscious, unrestrained guinea pigs

    NARCIS (Netherlands)

    Schuiling, M; Zuidhof, A.B; Zaagsma, Hans; Meurs, Herman

    Using a guinea pig model of allergic asthma, we investigated the effects of the inhaled, highly selective nonpeptide tachykinin NK1 and NK2 receptor antagonists SR 140333 and SR 48968, respectively, on allergen-induced early (EAR) and late (LAR) asthmatic reactions, airway hyperreactivity (AHR)

  7. Increased Numbers of NK Cells, NKT-Like Cells, and NK Inhibitory Receptors in Peripheral Blood of Patients with Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Ying Tang

    2013-01-01

    Full Text Available T cells and B cells participate in the pathogenesis of COPD. Currently, NK cells and NKT cells have gained increasing attention. In the present study, 19 COPD patients and 12 healthy nonsmokers (HNS were recruited, and their pulmonary function was assessed. The frequencies of CD3+ T, CD4+ T, CD8+ T, B, NK, and NKT-like cells were determined using flow cytometry. The frequencies of spontaneous and inducible IFN-γ+ or CD107a+ NK and NKT-like cells as well as activating or inhibitory receptors were also detected. The potential association of lymphocyte subsets with disease severity was further analyzed. Significantly decreased numbers of CD3+ and CD4+ T cells, and the CD4+/CD8+ ratio, but increased numbers of CD3−CD56+ NK and CD3+CD56+ NKT-like cells were observed in COPD patients compared to HNS. The frequencies of inducible IFN-γ-secreting NK and NKT-like cells were less in COPD patients. The frequencies of CD158a and CD158b on NK cells and CD158b on NKT-like cells were greater. The frequency of CD158b+ NK cells was negatively correlated with FEV1% prediction and FEV1/FVC. Our data indicate that COPD patients have immune dysfunction, and higher frequencies of inhibitory NK cells and NKT-like cells may participate in the pathogenesis of COPD.

  8. p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation.

    Science.gov (United States)

    Rampalli, Shravanti; Li, LiFang; Mak, Esther; Ge, Kai; Brand, Marjorie; Tapscott, Stephen J; Dilworth, F Jeffrey

    2007-12-01

    Cell-specific patterns of gene expression are established through the antagonistic functions of trithorax group (TrxG) and Polycomb group (PcG) proteins. Several muscle-specific genes have previously been shown to be epigenetically marked for repression by PcG proteins in muscle progenitor cells. Here we demonstrate that these developmentally regulated genes become epigenetically marked for gene expression (trimethylated on histone H3 Lys4, H3K4me3) during muscle differentiation through specific recruitment of Ash2L-containing methyltransferase complexes. Targeting of Ash2L to specific genes is mediated by the transcriptional regulator Mef2d. Furthermore, this interaction is modulated during differentiation through activation of the p38 MAPK signaling pathway via phosphorylation of Mef2d. Thus, we provide evidence that signaling pathways regulate the targeting of TrxG-mediated epigenetic modifications at specific promoters during cellular differentiation.

  9. Regulation of major histocompatibility complex class II gene expression in trophoblast cells

    Directory of Open Access Journals (Sweden)

    Choi Jason C

    2004-07-01

    Full Text Available Abstract Trophoblast cells are unique because they are one of the few mammalian cell types that do not express major histocompatibility complex (MHC class II antigens, either constitutively or after exposure to IFN-γ. The absence of MHC class II antigen expression on trophoblast cells has been postulated to be one of the essential mechanisms by which the semi-allogeneic fetus evades immune rejection reactions by the maternal immune system. Consistent with this hypothesis, trophoblast cells from the placentas of women suffering from chronic inflammation of unknown etiology and spontaneous recurrent miscarriages have been reported to aberrantly express MHC class II antigens. The lack of MHC class II antigen expression on trophoblast cells is due to silencing of expression of the class II transactivator (CIITA, a transacting factor that is essential for constitutive and IFN-γ-inducible MHC class II gene transcription. Transfection of trophoblast cells with CIITA expression vectors activates both MHC class II and class Ia antigen expression, which confers on trophoblast cells both the ability to activate helper T cells, and sensitivity to lysis by cytotoxic T lymphocytes. Collectively, these studies strongly suggest that stringent silencing of CIITA (and therefore MHC class II gene expression in trophoblast cells is critical for the prevention of immune rejection responses against the fetus by the maternal immune system. The focus of this review is to summarize studies examining the novel mechanisms by which CIITA is silenced in trophoblast cells. The elucidation of the silencing of CIITA in trophoblast cells may shed light on how the semi-allogeneic fetus evades immune rejection by the maternal immune system during pregnancy.

  10. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis.

    Science.gov (United States)

    Holst, B; Hastrup, H; Raffetseder, U; Martini, L; Schwartz, T W

    2001-06-08

    The NK1 neurokinin receptor presents two non-ideal binding phenomena, two-component binding curves for all agonists and significant differences between agonist affinity determined by homologous versus heterologous competition binding. Whole cell binding with fusion proteins constructed between either Galpha(s) or Galpha(q) and the NK1 receptor with a truncated tail, which secured non-promiscuous G-protein interaction, demonstrated monocomponent agonist binding closely corresponding to either of the two affinity states found in the wild-type receptor. High affinity binding of both substance P and neurokinin A was observed in the tail-truncated Galpha(s) fusion construct, whereas the lower affinity component was displayed by the tail-truncated Galpha(q) fusion. The elusive difference between the affinity determined in heterologous versus homologous binding assays for substance P and especially for neurokinin A was eliminated in the G-protein fusions. An NK1 receptor mutant with a single substitution at the extracellular end of TM-III-(F111S), which totally uncoupled the receptor from Galpha(s) signaling, showed binding properties that were monocomponent and otherwise very similar to those observed in the tail-truncated Galpha(q) fusion construct. Thus, the heterogenous pharmacological phenotype displayed by the NK1 receptor is a reflection of the occurrence of two active conformations or molecular phenotypes representing complexes with the Galpha(s) and Galpha(q) species, respectively. We propose that these molecular forms do not interchange readily, conceivably because of the occurrence of microdomains or "signal-transductosomes" within the cell membrane.

  11. Polyclonal Expansion of NKG2C+ NK Cells in TAP-Deficient Patients

    Science.gov (United States)

    Béziat, Vivien; Sleiman, Marwan; Goodridge, Jodie P.; Kaarbø, Mari; Liu, Lisa L.; Rollag, Halvor; Ljunggren, Hans-Gustaf; Zimmer, Jacques; Malmberg, Karl-Johan

    2015-01-01

    Adaptive natural killer (NK) cell responses to human cytomegalovirus infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs). Here, we set out to study the HLA class I dependency of such NKG2C+ NK cell expansions. We demonstrate the expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP) deficiency, who express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. The emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to antiviral immunity and potentially explain these patients’ low incidence of severe viral infections. PMID:26500647

  12. Composition and dynamics of the uterine NK cell KIR repertoire in menstrual blood.

    Science.gov (United States)

    Ivarsson, M A; Stiglund, N; Marquardt, N; Westgren, M; Gidlöf, S; Björkström, N K

    2017-03-01

    Uterine natural killer (NK) cells are abundantly present in endometrium and decidua. Their function is governed by interactions between killer cell immunoglobulin-like receptors (KIRs) and cognate human leukocyte antigen (HLA) class I ligands. These interactions have implications for reproductive success. Whereas most uterine NK cells are known to express KIRs, little information is available about KIR repertoire formation and stability over time. This is primarily due to inherent difficulties in gaining access to human uterine tissue. As endometrial immune cells are shed during menstruation, menstrual blood may serve as a source for studies of KIRs on uterine NK cells. Here, we performed a combined assessment of six inhibitory and activating KIRs on uterine NK cells from paired menstrual and peripheral blood. Menstrual blood contained a high frequency of uterine NK cells expressing KIRs. The uterine NK cell KIR repertoires were markedly different from those in peripheral blood NK cells, biased toward KIR2D-receptor expression, and formed independently of selection conferred by cognate HLA class I molecules. Moreover, uterine NKG2C + self-KIR + NK cell expansions were detected. Finally, the distinct KIR repertoires of uterine NK cells were stable over multiple menstrual cycles. Our results provide novel insight into KIR repertoire formation on human uterine NK cells.

  13. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.

    Science.gov (United States)

    Klöß, Stephan; Oberschmidt, Olaf; Morgan, Michael; Dahlke, Julia; Arseniev, Lubomir; Huppert, Volker; Granzin, Markus; Gardlowski, Tanja; Matthies, Nadine; Soltenborn, Stephanie; Schambach, Axel; Koehl, Ulrike

    2017-10-01

    The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56 + CD3 - ) was carried out with the CliniMACS Prodigy ® in a single process, starting with approximately 1.2 × 10 9 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 10 6 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO ™ 10, CellGro ® , TexMACS ™ , and NK MACS ® ). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56 + CD3 - target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3

  14. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies.

    Science.gov (United States)

    Vogt, Richard G; Große-Wilde, Ewald; Zhou, Jing-Jiang

    2015-07-01

    Butterflies and moths differ significantly in their daily activities: butterflies are diurnal while moths are largely nocturnal or crepuscular. This life history difference is presumably reflected in their sensory biology, and especially the balance between the use of chemical versus visual signals. Odorant Binding Proteins (OBP) are a class of insect proteins, at least some of which are thought to orchestrate the transfer of odor molecules within an olfactory sensillum (olfactory organ), between the air and odor receptor proteins (ORs) on the olfactory neurons. A Lepidoptera specific subclass of OBPs are the GOBPs and PBPs; these were the first OBPs studied and have well documented associations with olfactory sensilla. We have used the available genomes of two moths, Manduca sexta and Bombyx mori, and two butterflies, Danaus plexippus and Heliconius melpomene, to characterize the GOBP/PBP genes, attempting to identify gene orthologs and document specific gene gain and loss. First, we identified the full repertoire of OBPs in the M. sexta genome, and compared these with the full repertoire of OBPs from the other three lepidopteran genomes, the OBPs of Drosophila melanogaster and select OBPs from other Lepidoptera. We also evaluated the tissue specific expression of the M. sexta OBPs using an available RNAseq databases. In the four lepidopteran species, GOBP2 and all PBPs reside in single gene clusters; in two species GOBP1 is documented to be nearby, about 100 kb from the cluster; all GOBP/PBP genes share a common gene structure indicating a common origin. As such, the GOBP/PBP genes form a gene complex. Our findings suggest that (1) the lepidopteran GOBP/PBP complex is a monophyletic lineage with origins deep within Lepidoptera phylogeny, (2) within this lineage PBP gene evolution is much more dynamic than GOBP gene evolution, and (3) butterflies may have lost a PBP gene that plays an important role in moth pheromone detection, correlating with a shift from

  15. Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: Comparison of primary NK cells with engineered NK-92 and Jurkat T cells.

    Science.gov (United States)

    Hsieh, Yao-Te; Aggarwal, Poonam; Cirelli, David; Gu, Ling; Surowy, Teresa; Mozier, Ned M

    2017-02-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these

  16. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-05-01

    Full Text Available Abstract Background Identification of protein complexes and functional modules from protein-protein interaction (PPI networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI data. A series of time-sequenced subnetworks (TSNs is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology. The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and

  17. Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer

    DEFF Research Database (Denmark)

    Kabisch, Maria; Lorenzo Bermejo, Justo; Dünnebier, Thomas

    2015-01-01

    The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encodi...

  18. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes.

    Science.gov (United States)

    Plasil, Martin; Mohandesan, Elmira; Fitak, Robert R; Musilova, Petra; Kubickova, Svatava; Burger, Pamela A; Horin, Petr

    2016-03-01

    The Major Histocompatibility Complex (MHC) is a genomic region containing genes with crucial roles in immune responses. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. To counteract the high variability of pathogens, the MHC evolved into a region of considerable heterogeneity in its organization, number and extent of polymorphism. Studies of MHCs in different model species contribute to our understanding of mechanisms of immunity, diseases and their evolution. Camels are economically important domestic animals and interesting biomodels. Three species of Old World camels have been recognized: the dromedary (Camelus dromedarius), Bactrian camel (Camelus bactrianus) and the wild camel (Camelus ferus). Despite their importance, little is known about the MHC genomic region, its organization and diversity in camels. The objectives of this study were to identify, map and characterize the MHC region of Old World camelids, with special attention to genetic variation at selected class MHC II loci. Physical mapping located the MHC region to the chromosome 20 in Camelus dromedarius. Cytogenetic and comparative analyses of whole genome sequences showed that the order of the three major sub-regions is "Centromere - Class II - Class III - Class I". DRA, DRB, DQA and DQB exon 2 sequences encoding the antigen binding site of the corresponding class II antigen presenting molecules showed high degree of sequence similarity and extensive allele sharing across the three species. Unexpectedly low extent of polymorphism with low numbers of alleles and haplotypes was observed in all species, despite different geographic origins of the camels analyzed. The DRA locus was found to be polymorphic, with three alleles shared by all three species. DRA and DQA sequences retrieved from ancient DNA samples of Camelus dromedarius suggested that additional polymorphism might exist. This study provided evidence that camels possess an MHC comparable to

  19. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels.

    Directory of Open Access Journals (Sweden)

    Shengxin Chang

    Full Text Available Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.

  20. Susceptibility of human melanoma cells to autologous natural killer (NK cell killing: HLA-related effector mechanisms and role of unlicensed NK cells.

    Directory of Open Access Journals (Sweden)

    Paolo Carrega

    Full Text Available BACKGROUND: Despite Natural Killer (NK cells were originally defined as effectors of spontaneous cytotoxicity against tumors, extremely limited information is so far available in humans on their capability of killing cancer cells in an autologous setting. METHODOLOGY/PRINCIPAL FINDINGS: We have established a series of primary melanoma cell lines from surgically resected specimens and here showed that human melanoma cells were highly susceptible to lysis by activated autologous NK cells. A variety of NK cell activating receptors were involved in killing: particularly, DNAM-1 and NKp46 were the most frequently involved. Since self HLA class I molecules normally play a protective role from NK cell-mediated attack, we analyzed HLA class I expression on melanomas in comparison to autologous lymphocytes. We found that melanoma cells presented specific allelic losses in 50% of the patients analyzed. In addition, CD107a degranulation assays applied to NK cells expressing a single inhibitory receptor, revealed that, even when expressed, specific HLA class I molecules are present on melanoma cell surface in amount often insufficient to inhibit NK cell cytotoxicity. Remarkably, upon activation, also the so called "unlicensed" NK cells, i.e. NK cells not expressing inhibitory receptor specific for self HLA class I molecules, acquired the capability of efficiently killing autologous melanoma cells, thus additionally contributing to the lysis by a mechanism independent of HLA class I expression on melanoma cells. CONCLUSIONS/SIGNIFICANCE: We have investigated in details the mechanisms controlling the recognition and lysis of melanoma cells by autologous NK cells. In these autologous settings, we demonstrated an efficient in vitro killing upon NK cell activation by mechanisms that may be related or not to abnormalities of HLA class I expression on melanoma cells. These findings should be taken into account in the design of novel immunotherapy approaches

  1. Complex evolution in Arundinarieae (Poaceae: Bambusoideae): incongruence between plastid and nuclear GBSSI gene phylogenies.

    Science.gov (United States)

    Zhang, Yu-Xiao; Zeng, Chun-Xia; Li, De-Zhu

    2012-06-01

    The monophyly of tribe Arundinarieae (the temperate woody bamboos) has been unequivocally recovered in previous molecular phylogenetic studies. In a recent phylogenetic study, 10 major lineages in Arundinarieae were resolved based on eight non-coding plastid regions, which conflicted significantly with morphological classifications both at the subtribal and generic levels. Nevertheless, relationships among and within the 10 lineages remain unclear. In order to further unravel the evolutionary history of Arundinarieae, we used the nuclear GBSSI gene sequences along with those of eight plastid regions for phylogenetic reconstruction, with an emphasis on Chinese species. The results of the plastid analyses agreed with previous studies, whereas 13 primary clades revealed in the GBSSI phylogeny were better resolved at the generic level than the plastid phylogeny. Our analyses also revealed many inconsistencies between the plastid DNA and the nuclear GBSSI trees. These results implied that the nuclear genome and the plastid genome had different evolutionary trajectories. The patterns of incongruence suggested that lack of informative characters, incomplete lineage sorting, and/or hybridization (introgression) could be the causes. Seven putative hybrid species were hypothesized, four of which are discussed in detail on the basis of topological incongruence, chromosome numbers, morphology, and distribution patterns, and those taxa probably resulted from homoploid hybrid speciation. Overall, our study indicates that the tribe Arundinarieae has undergone a complex evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Haplotyping the human T-cell receptor β-chain gene complex by use of restriction fragment length polymorphisms

    International Nuclear Information System (INIS)

    Charmley, P.; Chao, A.; Gatti, R.A.; Concannon, P.; Hood, L.

    1990-01-01

    The authors have studied the genetic segregation of human T-cell receptor β-chain (TCRβ) genes on chromosome 7q in 40 CEPH (Centre d'Etude du Polymorphisme Humain) families by using restriction fragment length polymorphisms (RFLPs). They constructed haplotypes from eight RFLPs by using variable- and constant-region cDNA probes, which detect polymorphisms that span more than 600 kilobases of the TCRβ gene complex. Analysis of allele distributions between TCRβ genes revealed significant linkage disequilibrium between only 6 of the 28 different pairs of RFLPs. This linkage disequilibrium strongly influences the most efficient order to proceed for typing of these RFLPs in order to achieve maximum genetic informativeness, which in this study revealed a 97.3% level of heterozygosity within the TCRβ gene complex. The results should provide new insight into recent reports of disease associations with the TCRβ gene complex and should assist in designing future experiments to detect or confirm the existence of disease-susceptibility loci in this region of the human genome

  3. Major histocompatibility complex and host background genes in chickens influence resistance to high pathogenicity avian influenza virus

    Science.gov (United States)

    The chicken’s major histocompatibility complex (MHC) haplotype has a profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both li...

  4. The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders.

    Science.gov (United States)

    Bulmer, Judith N; Lash, Gendie E

    2015-01-01

    The human endometrium contains a substantial population of leucocytes which vary in distribution during the menstrual cycle and pregnancy. An unusual population of natural killer (NK) cells, termed uterine NK (uNK) cells, are the most abundant of these cells in early pregnancy. The increase in number of uNK cells in the mid-secretory phase of the cycle with further increases in early pregnancy has focused attention on the role of uNK cells in early pregnancy. Despite many studies, the in vivo role of these cells is uncertain. This chapter reviews current information regarding the role of uNK cells in healthy human pregnancy and evidence indicating their importance in various reproductive and pregnancy problems. Studies in humans are limited by the availability of suitable tissues and the limitations of extrapolation from animal models.

  5. Amphotericin B, an Anti-Fungal Medication, Directly Increases the Cytotoxicity of NK Cells

    Science.gov (United States)

    Kim, Nayoung; Choi, Ji-Wan; Park, Hye-Ran; Kim, Inki; Kim, Hun Sik

    2017-01-01

    Immunomodulatory drugs (IMiDs) present one example of immunomodulatory agents that improve cancer immunotherapy. Based on the cytotoxic activity of natural killer (NK) cells against cancer cells, a high throughput screening method for the identification of novel immunomodulatory molecules with the potential to stimulate NK cell cytotoxicity against cancer cells was designed and tested using an approved drug library. Among the primary hit compounds, the anti-fungal drug amphotericin B (AMP-B) increased the cytotoxicity of NK cell line and human primary NK cells in a direct manner. The increase in NK cell activity was related to increased formation of NK-target cell conjugates and the subsequent granule polarization toward target cells. The results of the present study indicate that AMP-B could serve a dual function as an anti-fungal and immunomodulatory drug. PMID:28608807

  6. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Melki

    2010-04-01

    Full Text Available Early stages of Human Immunodeficiency Virus-1 (HIV-1 infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK cells and dendritic cells (DCs. Immature DCs (iDCs capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process" at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL-Death Receptor 4 (DR4 pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV. The escape of DC(HIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP and the cellular inhibitor of apoptosis 2 (c-IAP2, induced by NK-DC(HIV cognate interaction. High-mobility group box 1 (HMGB1, an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV. Finally, we demonstrate that restoration of DC(HIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific

  7. Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes.

    Science.gov (United States)

    Carranza, Julio César; Kowaltowski, Alicia J; Mendonça, Marco Aurélio G; de Oliveira, Thays C; Gadelha, Fernanda R; Zingales, Bianca

    2009-06-01

    In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

  8. Complex MHC Class I Gene Transcription Profiles and Their Functional Impact in Orangutans

    NARCIS (Netherlands)

    de Groot, Natasja G; Heijmans, Corrine M C; van der Wiel, Marit K H; Blokhuis, Jeroen H; Mulder, Arend; Guethlein, Lisbeth A; Doxiadis, Gaby G M; Claas, Frans H J; Parham, Peter; Bontrop, Ronald E

    2016-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two

  9. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function

    OpenAIRE

    Schlums, Heinrich; Cichocki, Frank; Tesi, Bianca; Theorell, Jakob; Beziat, Vivien; Holmes, Tim D.; Han, Hongya; Chiang, Samuel C.C.; Foley, Bree; Mattsson, Kristin; Larsson, Stella; Schaffer, Marie; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Miller, Jeffrey S.

    2015-01-01

    The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hyperme-thylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-a...

  10. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  11. Polymorphism in a second ABC transproter gene located within the class II region of the human major histocompatibility complex

    Energy Technology Data Exchange (ETDEWEB)

    Powis, S.H.; Mockridge, I.; Kelly, A.; Glynne, R.; Beck, S.; Trowsdale, J. (Imperial Cancer Research Fund Labs., London (United Kingdom)); Kerr, L.A. (Guy' s Campus, London (United Kingdom)); Gileadi, U. (Univ. of Oxford (United Kingdom))

    1992-02-15

    Recent studies have identified genes within the major histocompatibility complex (MHC) that may play a role in presentation of antigenic peptides to T cells. The authors have previously described RING4, a gene within the human MHC class II region that has sequence homology with members of the ABC (ATP-binding cassette) transporter superfamily. They now report the nucleotide sequence of RING11, a second ABC transporter gene located approximately 7 kilobases telomeric to RING4. RING11 is {gamma}-interferon inducible, a property shared with other genes involved in antigen presentation. Comparison between the amino acid sequences of RING11 and RING4 reveals strong homology. They propose that they form a heterodimer that transports peptides from the cytoplasm into the endoplasmic reticulum. They have identified two RING11 alleles, which differ in length of their derived protein sequence by 17 amino acids. The more common of these alleles is present in a Caucasoid population at a frequency of 79%.

  12. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Science.gov (United States)

    Poterlowicz, Krzysztof; Yarker, Joanne L; Malashchuk, Igor; Lajoie, Brian R; Mardaryev, Andrei N; Gdula, Michal R; Sharov, Andrey A; Kohwi-Shigematsu, Terumi; Botchkarev, Vladimir A; Fessing, Michael Y

    2017-09-01

    Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and

  13. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  14. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  15. Studies on insecticidal activities and action mechanism of novel benzoylphenylurea candidate NK-17.

    Directory of Open Access Journals (Sweden)

    Yongqiang Li

    Full Text Available Insecticidal activity of NK-17 was evaluated both in laboratory and in field. It was found that the toxicity of NK-17 against S. exigua was 1.93 times and 2.69 times those of hexaflumuron and chlorfluazuron respectively, and the toxicity of NK-17 against P. xylostella was 1.36 times and 1.90 times those of hexaflumuron and chlorfluazuron respectively, and the toxicity of NK-17 against M. separate was 18.24 times those of hexaflumuron in laboratory, and 5% NK-17 EC at 60 g a.i ha(-1 can control S. exigua and P. xylostella with the best control efficiency of about 89% and over 88% respectively in Changsha and Tianjin in field. The insecticidal mechanism of NK-17 was explored for the first time by utilizing the fluorescence polarization method. NK-17 could bind to sulfonylurea receptor (SUR of B. germanica with stronger affinity comparing to diflubenzuron and glibenclamide, which suggested that NK-17 may also act on the site of SUR to inhibit the chitin synthesis in insect body and the result can well explain that NK-17 exhibited stronger toxicity against B. germanica than diflubenzuron and glibenclamide in vivo.

  16. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Meccariello, Angela; Monti, Simona Maria; Romanelli, Alessandra; Colonna, Rita; Primo, Pasquale; Inghilterra, Maria Grazia; Del Corsano, Giuseppe; Ramaglia, Antonio; Iazzetti, Giovanni; Chiarore, Antonia; Patti, Francesco; Heinze, Svenia D; Salvemini, Marco; Lindsay, Helen; Chiavacci, Elena; Burger, Alexa; Robinson, Mark D; Mosimann, Christian; Bopp, Daniel; Saccone, Giuseppe

    2017-08-30

    The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.

  17. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    Directory of Open Access Journals (Sweden)

    Sepil Irem

    2012-05-01

    Full Text Available Abstract Background The critical role of Major Histocompatibility Complex (Mhc genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help

  18. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  19. Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus.

    Science.gov (United States)

    Miller, Hilary C; O'Meally, Denis; Ezaz, Tariq; Amemiya, Chris; Marshall-Graves, Jennifer A; Edwards, Scott

    2015-05-07

    Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general. Copyright © 2015 Miller et al.

  20. Tachykinins are involved in local reflex modulation of vagally mediated striated muscle contractions in the rat esophagus via tachykinin NK1 receptors.

    Science.gov (United States)

    Shiina, T; Shimizu, Y; Boudaka, A; Wörl, J; Takewaki, T

    2006-05-12

    The objective of the present study was to investigate the hypothesis of the presence of a local neural reflex modulating the vagally mediated contractions of striated muscle in the rat esophagus and to determine the possible involvement of tachykinins in such a local neural reflex. Electrical stimulation of the vagus nerve evoked twitch contractile responses that were abolished by d-tubocurarine (5 microM). Capsaicin (1-100 microM) inhibited the vagally mediated twitch contractions o f the normal rat esophageal preparations concentration-dependently but not those of the neonatally capsaicin-treated ones. NG-nitro-L-arginine methyl ester (100 microM), a nitric oxide synthase inhibitor, blocked the inhibitory effect of capsaicin and exogenous application of a nitric oxide donor (1 mM) inhibited the vagally mediated twitch contractions. Capsaicin suppressed acetylcholine release from the normal rat esophageal segments evoked by vagus nerve stimulation but not that from the neonatally capsaicin-treated ones. A selective tachykinin NK1 receptor antagonist (0.1 or 1 microM) attenuated the inhibitory effect of capsaicin. However, antagonists of tachykinin NK2, tachykinin NK3 and calcitonin gene-related peptide receptors (1 microM) did not have any effect. A tachykinin NK1 receptor agonist (1 or 5 microM) inhibited the vagally mediated twitch contractions, which was prevented by NG-nitro-L-arginine methyl ester (100 microM). These data suggest that the rat esophagus might have a local neural reflex inhibiting the vagally mediated striated muscle motility, which consists of capsaicin-sensitive sensory neurons and myenteric nitrergic neurons, and that tachykinins might be involved in the neural reflex through tachykinin NK1 receptors.

  1. The peripheral NK cell repertoire after kidney transplantation is modulated by different immunosuppressive drugs

    Directory of Open Access Journals (Sweden)

    Christine eNeudoerfl

    2013-02-01

    Full Text Available In the context of kidney transplantation, little is known about the involvement of NK cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e. calcineurin-inhibitors like CyclosporinA vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56dim NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56dim NK cells was observed with significant differences between CyclosporinA- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR and increased CD94/NKG2A expression in CD56dim NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with PBMC of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and IFN--production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus,NK cells can serve as sensors

  2. Distinct requirements for activation of NKT and NK cells during viral infection.

    Science.gov (United States)

    Tyznik, Aaron J; Verma, Shilpi; Wang, Qiao; Kronenberg, Mitchell; Benedict, Chris A

    2014-04-15

    NK cells are key regulators of innate defense against mouse CMV (MCMV). Like NK cells, NKT cells also produce high levels of IFN-γ rapidly after MCMV infection. However, whether similar mechanisms govern activation of these two cell types, as well as the significance of NKT cells for host resistance, remain unknown. In this article, we show that, although both NKT and NK cells are activated via cytokines, their particular cytokine requirements differ significantly in vitro and in vivo. IL-12 is required for NKT cell activation in vitro but is not sufficient, whereas NK cells have the capacity to be activated more promiscuously in response to individual cytokines from innate cells. In line with these results, GM-CSF-derived dendritic cells activated only NK cells upon MCMV infection, consistent with their virtual lack of IL-12 production, whereas Flt3 ligand-derived dendritic cells produced IL-12 and activated both NK and NKT cells. In vivo, NKT cell activation was abolished in IL-12(-/-) mice infected with MCMV, whereas NK cells were still activated. In turn, splenic NK cell activation was more IL-18 dependent. The differential requirements for IL-12 and IL-18 correlated with the levels of cytokine receptor expression by NK and NKT cells. Finally, mice lacking NKT cells showed reduced control of MCMV, and depleting NK cells further enhanced viral replication. Taken together, our results show that NKT and NK cells have differing requirements for cytokine-mediated activation, and both can contribute nonredundantly to MCMV defense, revealing that these two innate lymphocyte subsets function together to fine-tune antiviral responses.

  3. A Complex Network of MicroRNAs Expressed in Brain and Genes Associated with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Santosh Shinde

    2013-01-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a rare neurological disease affecting mainly motor neurons and often leads to paralysis and death in extreme cases. For exploring the role of microRNAs in genes regulation in ALS disease, miRanda was employed for prediction of target sites of miRNAs expressed in various parts of brain and CNS on 35 genes associated with ALS. Similar search was conducted using TargetScan and PicTar for prediction of target sites in 3′ UTR only. 1456 target sites were predicted using miRanda and more target sites were found in 5′ UTR and CDS region as compared to 3′ UTR. 11 target sites were predicted to be common by all the algorithms and, thus, these represent the most significant sites. Target site hotspots were identified and were recognized as hotspots for multiple miRNAs action, thus, acting as favoured sites of action for the repression of gene expression. The complex interplay of genes and miRNAs brought about by multiplicity and cooperativity was explored. This investigation will aid in elucidating the mechanism of action of miRNAs for the considered genes. The intrinsic network of miRNAs expressed in nervous system and genes associated with ALS may provide rapid and effective outcome for therapeutic applications and diagnosis.

  4. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB

    Directory of Open Access Journals (Sweden)

    Pratick Khara

    2014-01-01

    Full Text Available Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.

  5. Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum.

    Science.gov (United States)

    James, S J; Shpyleva, Svitlana; Melnyk, Stepan; Pavliv, Oleksandra; Pogribny, I P

    2013-02-19

    The elucidation of epigenetic alterations in the autism brain has potential to provide new insights into the molecular mechanisms underlying abnormal gene expression in this disorder. Given strong evidence that engrailed-2 (EN-2) is a developmentally expressed gene relevant to cerebellar abnormalities and autism, the epigenetic evaluation of this candidate gene was undertaken in 26 case and control post-mortem cerebellar samples. Assessments included global DNA methylation, EN-2 promoter methylation, EN-2 gene expression and EN-2 protein levels. Chromatin immunoprecipitation was used to evaluate trimethylation status of histone H3 lysine 27 (H3K27) associated with gene downregulation and histone H3 lysine 4 (H3K4) associated with gene activation. The results revealed an unusual pattern of global and EN-2 promoter region DNA hypermethylation accompanied by significant increases in EN-2 gene expression and protein levels. Consistent with EN-2 overexpression, histone H3K27 trimethylation mark in the EN-2 promoter was significantly decreased in the autism samples relative to matched controls. Supporting a link between reduced histone H3K27 trimethylation and increased EN-2 gene expression, the mean level of histone H3K4 trimethylation was elevated in the autism cerebellar samples. Together, these results suggest that the normal EN-2 downregulation that signals Purkinje cell maturation during late prenatal and early-postnatal development may not have occurred in some individuals with autism and that the postnatal persistence of EN-2 overexpression may contribute to autism cerebellar abnormalities.

  6. The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action.

    Science.gov (United States)

    Xing, Hongyan; Vanderford, Nathan L; Sarge, Kevin D

    2008-11-01

    To maintain phenotypes of cell lineages, cells must 'remember' which genes were active before mitosis entry and transmit this information to their daughter cells so that expression patterns can be faithfully re-established in G1. This phenomenon is called gene bookmarking. However, during mitosis transcription ceases, most sequence-specific proteins dissociate from DNA and the chromatin is tightly compacted, making it difficult to understand how gene activity 'memory' is maintained through this stage of the cell cycle. A feature of gene bookmarking is that in mitotic cells, the promoters of formerly active genes lack compaction, but how compaction of these regions is inhibited is unknown. Here we show that during mitosis, TATA-binding protein (TBP), which remains bound to DNA during mitosis, recruits PP2A. TBP also interacts with condensin to allow efficient dephosphorylation and inactivation of condensin near these promoters to inhibit their compaction. Further, ChIP-on-chip data show that TBP is bound to many chromosomal sites during mitosis, and is higher in transcribed regions but low in regions containing pseudogenes and genes whose expression is tissue-restricted. These results suggest that TBP is involved not only in gene transcription during interphase but also in preserving the memory of gene activity through mitosis to daughter cells.

  7. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex

    Directory of Open Access Journals (Sweden)

    Gribble Kristin E

    2012-08-01

    Full Text Available Abstract Background Chemically mediated prezygotic barriers to reproduction likely play an important role in speciation. In facultatively sexual monogonont rotifers from the Brachionus plicatilis cryptic species complex, mate recognition of females by males is mediated by the Mate Recognition Protein (MRP, a globular glycoprotein on the surface of females, encoded by the mmr-b gene family. In this study, we sequenced mmr-b copies from 27 isolates representing 11 phylotypes of the B. plicatilis species complex, examined the mode of evolution and selection of mmr-b, and determined the relationship between mmr-b genetic distance and mate recognition among isolates. Results Isolates of the B. plicatilis species complex have 1–4 copies of mmr-b, each composed of 2–9 nearly identical tandem repeats. The repeats within a gene copy are generally more similar than are gene copies among phylotypes, suggesting concerted evolution. Compared to housekeeping genes from the same isolates, mmr-b has accumulated only half as many synonymous differences but twice as many non-synonymous differences. Most of the amino acid differences between repeats appear to occur on the outer face of the protein, and these often result in changes in predicted patterns of phosphorylation. However, we found no evidence of positive selection driving these differences. Isolates with the most divergent copies were unable to mate with other isolates and rarely self-crossed. Overall the degree of mate recognition was significantly correlated with the genetic distance of mmr-b. Conclusions Discrimination of compatible mates in the B. plicatilis species complex is determined by proteins encoded by closely related copies of a single gene, mmr-b. While concerted evolution of the tandem repeats in mmr-b may function to maintain identity, it can also lead to the rapid spread of a mutation through all copies in the genome and thus to reproductive isolation. The mmr-b gene is evolving

  8. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors.

    Science.gov (United States)

    Evangelisti, Cecilia; de Biase, Dario; Kurelac, Ivana; Ceccarelli, Claudio; Prokisch, Holger; Meitinger, Thomas; Caria, Paola; Vanni, Roberta; Romeo, Giovanni; Tallini, Giovanni; Gasparre, Giuseppe; Bonora, Elena

    2015-03-21

    Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.

  9. Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations

    Czech Academy of Sciences Publication Activity Database

    Reschel, Tomáš; Koňák, Čestmír; Oupický, D.; Seymour, L. W.; Ulbrich, Karel

    2002-01-01

    Roč. 81, 1-2 (2002), s. 201-217 ISSN 0168-3659 R&D Projects: GA ČR GV307/96/K226; GA AV ČR IAA1050101 Institutional research plan: CEZ:AV0Z4050913 Keywords : gene delivery * self assembly * polycation/DNA complexes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.131, year: 2002

  10. G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter

    DEFF Research Database (Denmark)

    Dou, Q P; Zhao, S; Levin, A H

    1994-01-01

    report that MT2 includes an E2F-like binding site (GTTCGCGGGCAAA), as shown by the following evidence. (i) MT2 bound specifically to an affinity-purified fusion human E2F protein. (ii) Both MT2 and an authentic E2F site (TTTCGCGCGCTTT) bound specifically to similar or identical nuclear protein complexes......, a candidate repressor, from the MT2 site in late G1 may be essential for S phase-dependent transcription of the mouse TK gene....

  11. Complex Formation by the mrpABCDEFG Gene Products, Which Constitute a Principal Na+/H+ Antiporter in Bacillus subtilis▿

    OpenAIRE

    Kajiyama, Yusuke; Otagiri, Masato; Sekiguchi, Junichi; Kosono, Saori; Kudo, Toshiaki

    2007-01-01

    The Bacillus subtilis Mrp (also referred to as Sha) is a particularly unusual Na+/H+ antiporter encoded by mrpABCDEFG. Using His tagging of Mrp proteins, we showed complex formation by the mrpABCDEFG gene products by pull-down and blue native polyacrylamide gel electrophoresis analyses. This is the first molecular evidence that the Mrp is a multicomponent antiporter in the cation-proton antiporter 3 family.

  12. Early Reconstitution of NK and γδ T Cells and Its Implication for the Design of Post-Transplant Immunotherapy.

    Science.gov (United States)

    de Witte, Moniek A; Sarhan, Dhifaf; Davis, Zachary; Felices, Martin; Vallera, Daniel A; Hinderlie, Peter; Curtsinger, Julie; Cooley, Sarah; Wagner, John; Kuball, Jurgen; Miller, Jeffrey S

    2018-03-02

    Relapse is the most frequent cause of treatment failure after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Natural killer (NK) cells and γδ T cells reconstitute early after allo-HSCT, contribute to tumor immunosurveillance via major histocompatibility complex-independent mechanisms and do not induce graft-versus-host disease. Here we performed a quantitative and qualitative analysis of the NK and γδ T cell repertoire in healthy individuals, recipients of HLA-matched sibling or unrelated donor allo-HSCT (MSD/MUD-HSCT) and umbilical cord blood-HSCT (UCB-HSCT). NK cells are present at high frequencies in all allo-HSCT recipients. Immune reconstitution (IR) of vδ2 +  cells depended on stem cell source. In MSD/MUD-HSCT recipients, vδ2 +  comprise up to 8% of the total lymphocyte pool, whereas vδ2 +  T cells are barely detectable in UCB-HSCT recipients. Vδ1 +  IR was driven by CMV reactivation and was comparable between MSD/MUD-HSCT and UCB-HSCT. Strategies to augment NK cell mediated tumor responses, similar to IL-15 and antibodies, also induced vδ2 +  T cell responses against a variety of different tumor targets. Vδ1 +  γδ T cells were induced less by these same stimuli. We also identified elevated expression of the checkpoint inhibitory molecule TIGIT (T cell Ig and ITIM domain), which is also observed on tumor-infiltrating lymphocytes and epidermal γδ T cells. Collectively, these data show multiple strategies that can result in a synergized NK and γδ T cell antitumor response. In the light of recent developments of low-toxicity allo-HSCT platforms, these interventions may contribute to the prevention of early relapse. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium Botulinum Strain PS-5.

    Science.gov (United States)

    Singh, Ajay K; Sachdeva, Amita; Degrasse, Jeffrey A; Croley, Timothy R; Stanker, Larry H; Hodge, David; Sharma, Shashi K

    2013-04-01

    Botulinum neurotoxins are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins. The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presence of NT genes was validated by PCR amplification of toxin specific fragments from genomic DNA of Clostridium botulinum strain PS-5 which indicated the presence of both serotype A and B genes on PS-5 genome. Further, TC was purified and characterized by Western blotting, Digoxin-enzyme linked immunosorbent assay, endopeptidase activity assay, and Liquid chromatography-Mass spectrometry. The data showed the presence of serotype A specific neurotoxin. Based on the analysis of neurotoxin genes and characterization of TC, PS-5 strain appears as a serotype A (B) strain of C. botulinum which produces only serotype A specific TC in the cell culture medium.

  14. Evaluation of hyaluronic acid-combined ternary complexes for serum-resistant and targeted gene delivery system.

    Science.gov (United States)

    Hong, Woong-Gil; Jeong, Gyeong-Won; Nah, Jae-Woon

    2018-04-19

    Branched polyethylenimine (bPEI) was well known as high transfection agent, which has many amine group. However, utilization of bPEI was limited due to high toxicity. To solve these problems, bPEI was introduced to low molecular weight water-soluble chitosan (LMWSC) with coupling agent. In addition, hyaluronic acid (HA), one of natural anion polymer, was introduced to binary complex of pDNA/bPEI-grafted LMWSC (LMPEI) to target the specific cancer cell and impart the serum resistant. Ternary complexes of pDNA/LMPEI/HA were prepared by electrostatic charge interaction and their binding affinity and DNase protection assay were conducted by gel retardation assay. Particle size of ternary complexes showed that had each 482 ± 245.4 (pDNA/LMPEI2%/HA, 1:16:1, w/w/w) and 410 ± 78.5 nm (pDNA/LMPEI4%/HA, 1:16:2, w/w/w). Moreover, to demonstrate serum-resistant effect of ternary complexes, particle size of them was measured according to incubated time (0-10 h) under serum condition. Transfection assay of ternary complexes showed that their transfection efficiency in CD44-receptor overexpressed HCT116 cell was higher than CD44-receptor negative CT26 cell. Additionally, intracellular uptake of ternary complexes with propidium iodide (PI)-labeled pDNA was observed to confirm targeting effect and cellular internalization by fluorescence microscopy. These results suggest that ternary complexes are superb gene carrier with excellent serum-resistant and high gene transfection. Copyright © 2017. Published by Elsevier B.V.

  15. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    Science.gov (United States)

    Baldascino, Elena; Di Cristina, Giulia; Tedesco, Perla; Hobbs, Carl; Shaw, Tanya J.; Ponte, Giovanna; Andrews, Paul L. R.

    2017-01-01

    The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake

  16. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    Directory of Open Access Journals (Sweden)

    Elena Baldascino

    2017-12-01

    Full Text Available The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase. Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i potential roles of the various molecules

  17. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  18. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    Science.gov (United States)

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  19. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes...

  20. An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation

    NARCIS (Netherlands)

    Gross, Catharina; Holler, Ernst; Stangl, Stefan; Dickinson, Anne; Pockley, A. Graham; Asea, Alexzander A.; Mallappa, Nagaraj; Multhoff, Gabriele

    In contrast to solid tumors, leukemic blasts frequently present both Hsp70 and HLA-E on their cell Surface and thereby present activating and inhibitory signals to CD94(+) NK cells. In the first 12 months after stem cell trail splantation (SCT) CD94(+) NK cells clearly dominate over

  1. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Maja eArapovic

    2016-04-01

    Full Text Available In addition to their role as effector cells in virus control, natural killer (NK cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV infection. Here we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in regulation of NK-cell proliferation during viral infections.

  2. Changes in NK and NKT cells in mesenteric lymph nodes after a Schistosoma japonicum infection.

    Science.gov (United States)

    Luo, Xueping; Xie, Hongyan; Chen, Dianhui; Yu, Xiuxue; Wu, Fan; Li, Lu; Wu, Changyou; Huang, Jun

    2014-03-01

    The mesenteric lymph node (MLN) is the main draining lymph node in mouse enterocoelia, which contains many types of immune cells. Among these cells, natural killer (NK) and natural killer T (NKT) cells belong to innate lymphoid cells (ILCs), which have potent activities for controlling a variety of pathogenic infections. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-7 weeks. Lymphocytes were isolated from the MLN to detect changes in the phenotype and function of NK and NKT cells using a fluorescence activating cell sorter (FACS). These results demonstrated that a S. japonicum infection could significantly increase the percentage of NK cells in the mouse MLN, (P cell number of both NK and NKT cells. In addition, we found that NK and NKT cells from infected mice expressed higher levels of CD69 compared to normal mice (P NKT cell activation. Moreover, we found that the expression of CD4 was increased in infected MLN NK cells (P NKT cells of infected mice after phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation (P NKT cells might play roles in modulating the classical T cell response. Finally, our results indicated that the expression of CD94 was decreased in NK cells, suggesting that the downregulation of CD94 expression might served as a mechanism in NK cell activation.

  3. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene

    Directory of Open Access Journals (Sweden)

    Shusaku Uchida

    2017-01-01

    Full Text Available Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets.

  4. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene.

    Science.gov (United States)

    Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P

    2017-01-10

    Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Enhanced gene transfection by photochemical internalization of protomine sulfate/DNA complexes

    Science.gov (United States)

    Hirschberg, Henry; Mathews, Marlon B.; Shih, En-Chung; Madsen, Steen J.; Kwon, Young Jik

    2012-02-01

    Introduction: One of many limitations for cancer gene therapy is the inability of the therapeutic gene to transfect a sufficient number of tumor cells. Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. The utility of PCI for the delivery of the GFP indicator gene on the same plasmid as a tumor suppressor gene (PTEN) was investigated in monolayers of U251 human glioma cells. Materials and Methods: U251 monolayers were incubated in AlPcS2a for 18 h. The monolayers were incubated with non-viral vectors for either 4 or 18 hrs. In all cases, light treatment was performed with a diode laser at a wavelength of 670 nm. The non-viral transfection agents, branched PEI or protomine sulfate (PS), were used with the plasmid construct (GFP-PTEN). Results: PS was much less toxic to the gliomas cells compared to BPEI but was highly inefficient at gene transfection. PCI resulted in a 5-10 fold increase in GFP protein expression compared to controls. Conclusions: Collectively, the results suggest that AlPcS2a-mediated PCI can be used to enhance transfection of tumor suppressor genes in glioma cells.

  6. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness

    Science.gov (United States)

    Bauer, Christopher R; Li, Shuang; Siegal, Mark L

    2015-01-01

    The concept of robustness in biology has gained much attention recently, but a mechanistic understanding of how genetic networks regulate phenotypic variation has remained elusive. One approach to understand the genetic architecture of variability has been to analyze dispensable gene deletions in model organisms; however, the most important genes cannot be deleted. Here, we have utilized two systems in yeast whereby essential genes have been altered to reduce expression. Using high-throughput microscopy and image analysis, we have characterized a large number of morphological phenotypes, and their associated variation, for the majority of essential genes in yeast. Our results indicate that phenotypic robustness is more highly dependent upon the expression of essential genes than on the presence of dispensable genes. Morphological robustness appears to be a general property of a genotype that is closely related to pleiotropy. While the fitness profile across a range of expression levels is idiosyncratic to each gene, the global pattern indicates that there is a window in which phenotypic variation can be released before fitness effects are observable. PMID:25609648

  7. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  8. Effects of Reactive Nitrogen Scavengers on NK-Cell-Mediated Killing of K562 Cells

    Directory of Open Access Journals (Sweden)

    Yili Zeng

    2012-01-01

    Full Text Available This study explored the effects of reactive nitrogen metabolites (RNMS on natural-killer- (NK- cell-mediated killing of K562 cells and the influence of RNM scavengers, such as tiopronin (TIP, glutamylcysteinylglycine (GSH, and histamine dihydrochloride (DHT, on reversing the suppressing effect of RNM. We administered exogenous and endogenous RNM in the NK + K562 culture system and then added RNM scavengers. The concentrations of RNM, TNF-β and IFN-γ, and NK-cell cytotoxicity (NCC and the percentage of living NK cells were then examined. We found that both exogenous and endogenous RNM caused the KIR to decrease (<0.01; however, RNM scavengers such as TIP and GSH rescued this phenomenon dose dependently. In conclusion, our data suggests that RNM scavengers such as TIP and GSH enhance the antineoplasmic activity of NK cells.

  9. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice.

    Science.gov (United States)

    Cha, Hefei; Qin, Wenjuan; Yang, Quan; Xie, Hongyan; Qu, Jiale; Wang, Mei; Chen, Daixiong; Wang, Fang; Dong, Nuo; Chen, Longhua; Huang, Jun

    2017-02-01

    Natural killer cells (NK cells) and natural killer T cells (NKT cells) play a role in anti-infection, anti-tumor, transplantation immunity, and autoimmune regulation. However, the role of NK and NKT cells during Schistosoma japonicum (S. japonicum) infection has not been widely reported, especially regarding lung infections. The aim of this study was to research the NK and NKT cell response to S. japonicum infection in the lungs of mice. Using immunofluorescent histological analysis, NK and NKT cells were found near pulmonary granulomas. Moreover, flow cytometry revealed that the percentage and number of pulmonic NK cells in S. japonicum-infected mice were significantly increased (P cell number of NKT cells were decreased compared to those of normal mice (P NKT cells was increased after infection (P NKT cells (P cells (P NKT cells significantly increased (P NKT cells (P NKT cell activation during S. japonicum infection.

  10. BCG-induced trained immunity in NK cells: Role for non-specific protection to infection.

    Science.gov (United States)

    Kleinnijenhuis, Johanneke; Quintin, Jessica; Preijers, Frank; Joosten, Leo A B; Jacobs, Cor; Xavier, Ramnik J; van der Meer, Jos W M; van Crevel, Reinout; Netea, Mihai G

    2014-12-01

    Adaptive features of innate immunity, also termed 'trained immunity', have recently been shown to characterize monocytes of BCG vaccinated healthy volunteers. Trained immunity leads to increased cytokine production in response to non-related pathogens via epigenetic reprogramming of monocytes. Recently, memory-like properties were also observed in NK cells during viral infections, but it is unknown if memory properties of NK cells contribute to trained immunity due to BCG vaccination. BCG vaccination of healthy volunteers increased proinflammatory cytokine production following ex vivo stimulation of NK cells with mycobacteria and other unrelated pathogens up until at least three months after vaccination. In addition, in a murine model of disseminated candidiasis, BCG vaccination led to an increased survival in SCID mice, which was partially dependent on NK cells. These findings suggest that NK cells may contribute to the non-specific (heterologous) beneficial effects of BCG vaccination. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Integrating genome-wide association study summaries and element-gene interaction datasets identified multiple associations between elements and complex diseases.

    Science.gov (United States)

    He, Awen; Wang, Wenyu; Prakash, N Tejo; Tinkov, Alexey A; Skalny, Anatoly V; Wen, Yan; Hao, Jingcan; Guo, Xiong; Zhang, Feng

    2018-03-01

    Chemical elements are closely related to human health. Extensive genomic profile data of complex diseases offer us a good opportunity to systemically investigate the relationships between elements and complex diseases/traits. In this study, we applied gene set enrichment analysis (GSEA) approach to detect the associations between elements and complex diseases/traits though integrating element-gene interaction datasets and genome-wide association study (GWAS) data of complex diseases/traits. To illustrate the performance of GSEA, the element-gene interaction datasets of 24 elements were extracted from the comparative toxicogenomics database (CTD). GWAS summary datasets of 24 complex diseases or traits were downloaded from the dbGaP or GEFOS websites. We observed significant associations between 7 elements and 13 complex diseases or traits (all false discovery rate (FDR) elements and complex diseases. © 2017 WILEY PERIODICALS, INC.

  12. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    Science.gov (United States)

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes.

    Science.gov (United States)

    Hassani-Pak, Keywan; Rawlings, Christopher

    2017-06-13

    Genetics and "omics" studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.

  14. Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide

    DEFF Research Database (Denmark)

    Riising, Eva Madi; Vacher-Comet, Itys; Leblanc, Benjamin Olivier

    2014-01-01

    Polycomb group (PcG) proteins are required for normal differentiation and development and are frequently deregulated in cancer. PcG proteins are involved in gene silencing; however, their role in initiation and maintenance of transcriptional repression is not well defined. Here, we show that knoc......Polycomb group (PcG) proteins are required for normal differentiation and development and are frequently deregulated in cancer. PcG proteins are involved in gene silencing; however, their role in initiation and maintenance of transcriptional repression is not well defined. Here, we show......-wide ectopic PRC2 recruitment to endogenous PcG target genes found in other tissues. PRC2 binding analysis shows that it is restricted to nucleosome-free CpG islands (CGIs) of untranscribed genes. Our results show that it is the transcriptional state that governs PRC2 binding, and we propose that it binds...

  15. The Putative Natural Killer Decoy Early Gene m04 (gp34) of Murine Cytomegalovirus Encodes an Antigenic Peptide Recognized by Protective Antiviral CD8 T Cells

    OpenAIRE

    Holtappels, Rafaela; Thomas, Doris; Podlech, Jürgen; Geginat, Gernot; Steffens, Hans-Peter; Reddehase, Matthias J.

    2000-01-01

    Several early genes of murine cytomegalovirus (MCMV) encode proteins that mediate immune evasion by interference with the major histocompatibility complex class I (MHC-I) pathway of antigen presentation to cytolytic T lymphocytes (CTL). Specifically, the m152 gene product gp37/40 causes retention of MHC-I molecules in the endoplasmic reticulum (ER)-Golgi intermediate compartment. Lack of MHC-I on the cell surface should activate natural killer (NK) cells recognizing the “missing self.” The re...

  16. Complex MHC class I gene transcription profiles and their functional impact in orangutans

    Science.gov (United States)

    de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.

    2015-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  17. Diverse enterotoxin gene profiles among clonal complexes of Staphylococcus aureus isolates from the Bronx, New York.

    Science.gov (United States)

    Varshney, Avanish K; Mediavilla, José R; Robiou, Natalie; Guh, Alice; Wang, Xiabo; Gialanella, Philip; Levi, Michael H; Kreiswirth, Barry N; Fries, Bettina C

    2009-11-01

    Staphylococcal enterotoxins (SE) can cause toxin-mediated disease, and those that function as superantigens are implicated in the pathogenesis of allergic diseases. The prevalence of 19 enterotoxin genes was determined by PCR in clinical S. aureus strains derived from wounds (108) and blood (99). We performed spa typing and multilocus sequence typing (MLST) to determine clonal origin, and for selected strains staphylococcal enterotoxin B (SEB) production was measured by enzyme-linked immunosorbent assay. Strains carried a median of five SE genes. For most SE genes, the prevalence rates among methicillin-resistant and methicillin-sensitive S. aureus isolates, as well as wound- and blood-derived isolates, did not differ. At least one SE gene was detected in all except two S. aureus isolates (>99%). Complete egc clusters were found in only 11% of S. aureus isolates, whereas the combination of sed, sej, and ser was detected in 24% of clinical strains. S. aureus strains exhibited distinct combinations of SE genes, even if their pulsed-field gel electrophoresis and MLST patterns demonstrated clonality. USA300 strains also showed considerable variability in SE content, although they contained a lower number of SE genes (mean, 3). By contrast, SE content was unchanged in five pairs of serial isolates. SEB production by individual strains varied up to 200-fold, and even up to 15-fold in a pair of serial isolates. In conclusion, our results illustrate the genetic diversity of S. aureus strains with respect to enterotoxin genes and suggest that horizontal transfer of mobile genetic elements encoding virulence genes occurs frequently.

  18. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae).

    Science.gov (United States)

    Passow, Courtney N; Brown, Anthony P; Arias-Rodriguez, Lenin; Yee, Muh-Ching; Sockell, Alexandra; Schartl, Manfred; Warren, Wesley C; Bustamante, Carlos; Kelley, Joanna L; Tobler, Michael

    2017-08-01

    Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H 2 S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H 2 S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments. © 2017 John Wiley & Sons Ltd.

  19. Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Erik; Johnson, B; Koefoed, Pernille

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria......, unipolar depression, epilepsy, migraine, and cognitive impairment was investigated. Genetic linkage analysis and sequencing of the SPG4 gene was performed and electrophysiologic investigations were carried out in six individuals and positron emission tomography (PET) in one patient. The disease was linked...... in those individuals who were clinically affected by a complex phenotype consisting of HSP and cerebellar ataxia. Other features noted in this kindred including epilepsy, cognitive impairment, depression, and migraine did not segregate with the HSP phenotype or mutation, and therefore the significance...

  20. Activated allogeneic NK cells preferentially kill poor prognosis B-cell chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Diego Sanchez-Martinez

    2016-10-01

    Full Text Available Mutational status of TP53 together with expression of wild type (wt IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL patients. Adoptive cell therapy using allogeneic HLA mismatched Natural Killer (NK cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs the most effective stimulus to activate NK cells. Here we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell activating receptors (NKG2D and NCRs and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.□

  1. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia.

    Science.gov (United States)

    Xu, Xin; Weiss, Ido D; Zhang, Hongwei H; Singh, Satya P; Wynn, Thomas A; Wilson, Mark S; Farber, Joshua M

    2014-02-15

    It was reported that host defense against pulmonary Klebsiella pneumoniae infection requires IL-22, which was proposed to be of T cell origin. Supporting a role for IL-22, we found that Il22(-/-) mice had decreased survival compared with wild-type mice after intratracheal infection with K. pneumoniae. Surprisingly, however, Rag2(-/-) mice did not differ from wild-type mice in survival or levels of IL-22 in the lungs postinfection with K. pneumoniae. In contrast, K. pneumoniae-infected Rag2(-/-)Il2rg(-/-) mice failed to produce IL-22. These data suggested a possible role for NK cells or other innate lymphoid cells in host defense and production of IL-22. Unlike NK cell-like innate lymphoid cells that produce IL-22 and display a surface phenotype of NK1.1(-)NKp46(+)CCR6(+), lung NK cells showed the conventional phenotype, NK1.1(+)NKp46(+)CCR6(-). Mice depleted of NK cells using anti-asialo GM1 showed decreased survival and higher lung bacterial counts, as well as increased dissemination of K. pneumoniae to blood and liver, compared with control-treated mice. NK cell depletion also led to decreased production of IL-22 in the lung. Within 1 d postinfection, although there was no increase in the number of lung NK cells, a subset of lung NK cells became competent to produce IL-22, and such cells were found in both wild-type and Rag2(-/-) mice. Our data suggest that, during pulmonary infection of mice with K. pneumoniae, conventional NK cells are required for optimal host defense, which includes the production of IL-22.

  2. Attenuation of NK cells facilitates mammary tumor growth in streptozotocin-induced diabetes in mice.

    Science.gov (United States)

    Gajovic, Nevena; Jurisevic, Milena; Pantic, Jelena; Radosavljevic, Gordana; Arsenijevic, Nebojsa; Lukic, Miodrag L; Jovanovic, Ivan

    2018-04-01

    Diabetic patients have higher incidence and mortality of cancer. Recent study revealed that hyperglycemia-induced oxidative stress is involved in the acceleration of tumor metastasis. We used model of high-dose streptozotocin-induced diabetes to investigate its effect on tumor growth and modulation of antitumor immune response of 4T1 murine breast cancer in BALB/c mice. Diabetes accelerated tumor appearance, growth and weight, which was associated with decreased NK cells cytotoxicity against 4T1 tumor cells in vitro Diabetes reduced frequencies of systemic NKG2D + , perforin + , granzyme + , IFN-γ + and IL-17 + NK cells, while increased level of PD-1 expression and production of IL-10 in NK cells. Diabetes decreased percentage of NKG2D + NK cells and increased percentage of PD-1 + NK cells also in primary tumor. Diabetes increased accumulation of IL-10 + Tregs and TGF-β + myeloid-derived suppressor cells (MDSCs) in spleen and tumor. Diabetic sera in vitro significantly increased the percentage of KLRG-1 + and PD-1 + NK cells, decreased the percentage of IFN-γ + NK cells, expression of NKp46 and production of perforin, granzyme, CD107a and IL-17 per NK cell in comparison to glucose-added mouse sera and control sera. Significantly increased percentages of inducible nitric oxide synthase (iNOS) and indoleamine 2,3-dioxygenase (IDO) producing MDSCs and dendritic cells (DC) were found in the spleens of diabetic mice prior to tumor induction. 1- methyl -DL- tryptophan , specific IDO inhibitor, almost completely restored phenotype of NK cells cultivated in diabetic sera. These findings indicate that diabetes promotes breast cancer growth at least in part through increased accumulation of immunosuppressive cells and IDO-mediated attenuation of NK cells. © 2018 Society for Endocrinology.

  3. Effect of ginseng polysaccharides on NK cell cytotoxicity in immunosuppressed mice.

    Science.gov (United States)

    Sun, Yaoyao; Guo, Mofei; Feng, Yuanjie; Zheng, Huifang; Lei, Ping; Ma, Xiande; Han, Xiaowei; Guan, Hongquan; Hou, Diandong

    2016-12-01

    The aim of the present study was to investigate the effects of Ginseng polysaccharides (GPS) on natural killer (NK) cell cytotoxicity in immunosuppressed mice. Cyclophosphamide (Cy) was used to construct an immunosuppressed mouse model. The mice in each group were submitted to gavages with 200 or 400 mg/kg GPS every day for 10 days. Magnetic-activated cell sorting was used to isolate spleen NK cells, and the NK cell cytotoxicity, blood distribution, expression levels of perforin and granzyme, and the mRNA expression levels of interferon (IFN)-γ were detected. Compared with the normal control group, the cytotoxicity and proportion of NK cells in the blood, and the expression levels of perforin, granzyme and IFN-γ mRNA in the Cy model group were significantly reduced (Pcytotoxicity and proportion of NK cells in the whole blood, and the expression levels of perforin and granzyme in the NK cells in the Cy + low-dose GPS and Cy + high-dose GPS groups were significantly increased (P0.05). Compared with the normal control group, the cytotoxicity and proportion of NK cells in the whole blood, and the expression levels of perforin in the Cy + low-dose GPS and the Cy + high-dose GPS groups were significantly lower (P0.05). These results suggested that GPS promotes NK cell cytotoxicity in immunosuppressed mice by increasing the number of NK cells in the whole blood and upregulating the expression of perforin and granzyme. Thus, the present study investigated the molecular mechanism underlying NK cell activation by GPS, the research showed that GPS have a wide application prospects in the treatment of cancer and immunodeficiency diseases.

  4. How complex an intron may be? The example of the first intron of the CTP synthase gene of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Roberto Piergentili

    2013-02-01

    Full Text Available In eukaryotes, maturation of primary transcripts into mature messenger RNAs involves the elimination of parts of the gene called ‘introns’. The biological significance of introns is not yet completely understood. It has been demonstrated that introns may contain other genes, or regulatory sequences that may be involved in transcriptional control, or also being involved in alternative splicing mechanisms. However, these functions explain the role of only a small number of them, and it is very difficult to formulate any generalization. The CTP synthase gene of Drosophila melanogaster is characterized by the presence of a long first intron (approximately 7.2 kilobases whose role is currently unknown. In the present report we analyzed in silico the content of this intron, and found that it contains at least three interesting sub-sequences. Two of them are homologous to the CTP synthase itself and to a putative nucleotide pyrophosphatase, respectively. The third is a short stretch of DNA able to fold into a thermodynamically stable hairpin and showing homology with other 19 sequences from 21 genes inside the D. melanogaster genome. These findings suggest a complex yet very accurate way of controlling gene expression inside the fruit fly.

  5. [Cloning and eukaryotic expression of HIV-1B gp120 genes from a patient with AIDS dementia complex].

    Science.gov (United States)

    Zhao, Li; Yan, Yu-Fen; Li, Jing; Pu, Shuang-Shuang; Wang, Zhi-Yu; Wen, Hong-Ling; Song, Yan-Yan; Xu, Hong-Zhi

    2012-04-01

    To clone and express the HIV-1B gp120 genes isolated at different organizations from a patient died of AIDS dementia complex (ADC) in eukaryotic cells. Using the genomic DNA isolated from peripheral lymphnodes, choroid plexus and occipital white matter from a patient died of ADC as the template, HIV-1B gp120 gene was amplified with PCR. After sequenced, HIV-1B gp120 was inserted into pcDNA3.1 (+) and recombinant expressing vector gp120/pcDNA3.1 (+) was constructed succeffuly confirming with sequencing. Then expressing vector was transfected into eukaryotic cells U87 using liposome transfection and expression of HIV-1B gp120 gene was assayed with indirect immunofluorescence. HIV-1B gp120 genes isolated from peripheral lymphnodes, choroid plexus and occipital white matter of the ADC patient were successfully cloned and recombinant expressing vector gp120/pcDNA3; 1 (+) could express envelope glycoprotein HIV-1B gp120 in U87 cells. All the HIV-1B gp120 gene isolated at the different organizations of the same ADC patient could express in U87 cells, which may supply a valuable basis for studying the neurotoxicity and neurotoxic mechanism of HIV-1 gp120 protein.

  6. Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model—Recommendations From an NIH Workshop

    Science.gov (United States)

    Bookman, Ebony B.; McAllister, Kimberly; Gillanders, Elizabeth; Wanke, Kay; Balshaw, David; Rutter, Joni; Reedy, Jill; Shaughnessy, Daniel; Agurs-Collins, Tanya; Paltoo, Dina; Atienza, Audie; Bierut, Laura; Kraft, Peter; Fallin, M. Daniele; Perera, Frederica; Turkheimer, Eric; Boardman, Jason; Marazita, Mary L.; Rappaport, Stephen M.; Boerwinkle, Eric; Suomi, Stephen J.; Caporaso, Neil E.; Hertz-Picciotto, Irva; Jacobson, Kristen C.; Lowe, William L.; Goldman, Lynn R.; Duggal, Priya; Gunnar, Megan R.; Manolio, Teri A.; Green, Eric D.; Olster, Deborah H.; Birnbaum, Linda S.

    2011-01-01

    Although it is recognized that many common complex diseases are a result of multiple genetic and environmental risk factors, studies of gene-environment interaction remain a challenge and have had limited success to date. Given the current state-of-the-science, NIH sought input on ways to accelerate investigations of gene-environment interplay in health and disease by inviting experts from a variety of disciplines to give advice about the future direction of gene-environment interaction studies. Participants of the NIH Gene-Environment Interplay Workshop agreed that there is a need for continued emphasis on studies of the interplay between genetic and environmental factors in disease and that studies need to be designed around a multifaceted approach to reflect differences in diseases, exposure attributes, and pertinent stages of human development. The participants indicated that both targeted and agnostic approaches have strengths and weaknesses for evaluating main effects of genetic and environmental factors and their interactions. The unique perspectives represented at the workshop allowed the exploration of diverse study designs and analytical strategies, and conveyed the need for an interdisciplinary approach including data sharing, and data harmonization to fully explore gene-environment interactions. Further, participants also emphasized the continued need for high-quality measures of environmental exposures and new genomic technologies in ongoing and new studies. PMID:21308768

  7. Molecular analysis of T-B-NK+ severe combined immunodeficiency and Omenn syndrome cases in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al-Kayal Fadi

    2009-11-01

    Full Text Available Abstract Background Children with Severe Combined Immunodeficiency (SCID lack autologous T lymphocytes and present with multiple infections early in infancy. Omenn syndrome is characterized by the sole emergence of oligoclonal auto-reactive T lymphocytes, resulting in erythroderma and enteropathy. Omenn syndrome (OS shares the genetic aetiology of T-B-NK+ SCID, with mutations in RAG1, RAG2, or DCLRE1C. Methods Patients diagnosed with T-B-NK+ SCID or phenotypes suggestive of Omenn syndrome were investigated by molecular genetic studies using gene tightly linked microsatellite markers followed by direct sequencing of the coding regions and splice sites of the respective candidate genes. Results We report the molecular genetic basis of T-B-NK+ SCID in 22 patients and of OS in seven patients all of Arab descent from Saudi Arabia. Among the SCID patients, six (from four families displayed four homozygous missense mutations in RAG1 including V433M, R624H, R394W, and R559S. Another four patients (from three familes showed 3 novel homozygous RAG2 mutations including K127X, S18X, and Q4X; all of which predict unique premature truncations of RAG2 protein. Among Omenn patients, four (from two families have S401P and R396H mutations in RAG1, and a fifth patient has a novel I444M mutation in RAG2. Seven other patients (six SCID and one OS showed a gross deletion in exons 1-3 in DCLRE1C. Altogether, mutations in RAG1/2 and DCLRE1C account for around 50% and 25%, respectively, in our study cohort, a proportion much higher than in previous reported series. Seven (24% patients lack a known genetic aetiology, strongly suggesting that they carry mutations in novel genes associated with SCID and Omenn disorders that are yet to be discovered in the Saudi population. Conclusion Mutation-free patients who lack a known genetic aetiology are likely to carry mutations in the regulatory elements in the SCID-causing genes or in novel genes that are yet to be discovered

  8. Relating protein functional diversity to cell type number identifies genes that determine dynamic aspects of chromatin organisation as potential contributors to organismal complexity.

    Science.gov (United States)

    Lopes Cardoso, Daniela; Sharpe, Colin

    2017-01-01

    Organismal complexity broadly relates to the number of different cell types within an organism and generally increases across a phylogeny. Whilst gene expression will underpin organismal complexity, it has long been clear that a simple count of gene number is not a sufficient explanation. In this paper, we use open-access information from the Ensembl databases to quantify the functional diversity of human genes that are broadly involved in transcription. Functional diversity is described in terms of the numbers of paralogues, protein isoforms and structural domains for each gene. The change in functional diversity is then calculated for up to nine orthologues from the nematode worm to human and correlated to the change in cell-type number. Those with the highest correlation are subject to gene ontology term enrichment and interaction analyses. We found that a range of genes that encode proteins associated with dynamic changes to chromatin are good candidates to contribute to organismal complexity.

  9. Natural agonist enhancing bis-His zinc-site in transmembrane segment V of the tachykinin NK3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Lucibello, M; Holst, B

    1998-01-01

    In the wild-type tachykinin NK3A receptor histidyl residues are present at two positions in TM-V, V:01 and V:05, at which Zn2+ functions as an antagonist in NK1 and kappa-opioid receptors with engineered metal-ion sites. Surprisingly, in the NK3A receptor Zn2+ instead increased the binding...

  10. NOVEL ANTI-MICROBIAL PEPTIDE, NK-LYSIN, IS PRODUCED LOCALLY IN THE GUT OF EIMERIA-INFECTED HOST

    Science.gov (United States)

    NK-lysin is an anti-microbial and anti-tumor protein produced by NK cells and T lymphocytes in mammals and is considered to be an important component of the local innate immune response to pathogens. Chicken NK-lysin consists of an 868 bp DNA sequence with an ORF of 140 amino acids with a predicted ...

  11. HHV-6A/6B Infection of NK Cells Modulates the Expression of miRNAs and Transcription Factors Potentially Associated to Impaired NK Activity

    Directory of Open Access Journals (Sweden)

    Roberta Rizzo

    2017-10-01

    Full Text Available Natural killer (NK cells have a critical role in controlling virus infections, and viruses have evolved several mechanisms to escape NK cell functions. In particular, Human herpesvirus 6 (HHV-6 is associated with diseases characterized by immune dysregulation and has been reported to infect NK cells. We recently found that HHV-6 in vitro infection of human thyroid follicular epithelial cells and T-lymphocytes modulates several miRNAs associated with alterations in immune response. Since miRNAs are key regulators of many immune pathways, including NK cell functions, we aimed to study the impact of HHV-6A and -6B in vitro infection on the intracellular mediators correlated to NK cell function. To this purpose, a human NK cell line (NK-92 was infected in vitro with HHV-6A or 6B and analyzed for alterations in the expression of miRNAs and transcription factors. The results showed that both viruses establish lytic replication in NK-92 cells, as shown by the presence of viral DNA, expression of lytic transcripts and antigens, and by the induction of an evident cytopathic effect. Notably, both viruses, although with species-specific differences, induced significant modifications in miRNA expression of miRNAs known for their role in NK cell development, maturation and effector functions (miR-146, miR-155, miR-181, miR-223, and on at least 13 miRNAs with recognized role in inflammation and autoimmunity. Also the expression of transcription factors was significantly modified by HHV-6A/6B infection, with an early increase of ATF3, JUN and FOXA2 by both species, whereas HHV-6A specifically induced a 15-fold decrease of POU2AF1, and HHV-6B an increase of FOXO1 and a decrease of ESR1. Overall, our data show that HHV-6A and -6B infections have a remarkable effect on the expression of miRNAs and transcription factors, which might be important in the induction of NK cell function impairment, virus escape strategies and related pathologies.

  12. NK receptor interactions with MHC class I molecules in pregnancy.

    Science.gov (United States)

    Trowsdale, John; Moffett, Ashley

    2008-12-01

    Both HLA class I molecules and their receptors on Natural Killer cells, the KIR molecules, are highly polymorphic. It is generally believed that this variation is driven in response to the role of these receptors and counter-receptors in resistance to disease. Uterine NK cells are the major maternal leukocyte population present within the decidua, and they express KIR2D receptors for HLA-C, the only polymorphic class I molecule on trophoblast. Genetic and functional data suggest that the maternal KIR/fetal HLA-C interaction in pregnancy may affect the delivery of an optimal blood supply to mother and fetus. The drive for novelty in HLA-C and KIR2D allelic diversity may relate not only to survival from infections but also to reproductive success.

  13. Transcriptional complexity of the HSPG2 gene in the human mast cell line, HMC-1.

    Science.gov (United States)

    Lord, Megan S; Jung, MoonSun; Cheng, Bill; Whitelock, John M

    2014-04-01

    The mammalian HSPG2 gene encodes the proteoglycan protein core perlecan, which has important functions in biology including cell adhesion via integrins, binding to the extracellular matrix via various protein-protein interactions and binding of growth factors via the heparan sulfate chains decorating the N-terminal domain I. Here we show that, in the human mast cell line HMC-1, the transcription of this gene results in a population of mRNA that is processed in such a way to provide a relative increase of transcripts corresponding to domain V or the C-terminus compared to transcripts from either domain III or the N-terminal domain I. This paper also presents evidence of splicing of the HSPG2 gene in HMC-1 cells at exons 2/3 and after comparing this sequence with those published in various databases, a model is postulated to explain what might be happening in these cells with regard to the transcription of the HSPG2 gene. As domain V of perlecan contains the α2β1 integrin binding site that modulates angiogenesis, we hypothesize that the transcriptional control of the HSPG2 gene in mast cells to synthesize these transcripts supports their stimulatory and specific role in wound healing and tissue regeneration. Copyright © 2013 International Society of Matrix Biology. All rights reserved.

  14. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol

    Directory of Open Access Journals (Sweden)

    Ulrike eKoehl

    2013-05-01

    Full Text Available Allogeneic Natural Killer (NK cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity and T cell depletion during GMP-grade NK cell selection. 40 NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T cell depletion, either the depletion 2.1 program in single or double procedure (D2.1 1depl, n=18; D2.1 2depl, n=13 or the faster depletion 3.1 (D3.1, n=9 was used on the CliniMACS instrument. 17 purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59x10e8 CD56+CD3- cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.1 1depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p<0.01 and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.1 1depl/2depl with regard to recovery of CD56+CD3- NK cells (68% vs 41%/38%. Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized.

  15. Involvement of tachykinins and NK1 receptor in the joint inflammation with collagen type II-specific monoclonal antibody-induced arthritis in mice.

    Science.gov (United States)

    Makino, Akira; Sakai, Atsushi; Ito, Hiromoto; Suzuki, Hidenori

    2012-01-01

    Rheumatoid arthritis (RA) is a chronic multisystem disease characterized by persistent joint inflammation associated with severe pain. Because RA is an immune-mediated joint disease and because type II collagen is considered an autoantigen, rodent models of arthritis using collagen type II-specific monoclonal antibodies are valuable for studying the pathogenesis of autoimmune arthritis and for evaluating therapeutic strategies. The tachykinin family peptides, substance P (SP) and hemokinin-1 (HK-1), are expressed in the nervous systems and in many peripheral organs and immunocompetent cells and activate tachykinin NK1 receptors with similar affinities. NK1 receptors are involved in the inflammation and hyperalgesia associated with a variety of inflammatory diseases. In the present study, we examined the involvement of SP and HK-1 in the joint inflammation and hyperalgesia in a collagen antibody-induced arthritis (CAIA) model in mice. The messenger RNA expression levels of the TAC1 gene encoding SP and of the TAC4 gene encoding HK-1 were decreased in the dorsal root ganglia and spinal cord at the peak of the inflammatory symptoms in CAIA. Systemic injection of an NK1 receptor antagonist, WIN 51708, significantly inhibited the joint swelling, but not the mechanical allodynia, on day 7 in CAIA mice. The messenger RNA expression levels of TAC1 and TAC4 in the dorsal root ganglia and dorsal spinal cord were unaffected by treatment with WIN 51708. These findings suggest that tachykinins and NK1 receptors play a key role in joint inflammation, rather than in nociceptive sensitization, in CAIA.

  16. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Directory of Open Access Journals (Sweden)

    Karolina A. Zielińska

    2017-09-01

    Full Text Available Malaria-associated acute respiratory distress syndrome (MA-ARDS is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ and Plasmodium berghei NK65 (PbNK65. Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES by 90% and both CCL2 (MCP-1 and CXCL10 (IP-10 by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1 unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK, JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs.

  17. Evaluation of bovine-derived lacteal complex supplementation on gene expression in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Clerici M

    2011-09-01

    Full Text Available Mario Clerici1,2, Emmanuel Pauze3, Arienne de Jong3, Mara Biasin1, Larry E Miller41Department of Biomedical Sciences and Technology, University of Milan, Milan, Italy; 2Don C Gnocchi Foundation, IRCCS, Milan, Italy; 3Sprim Advanced Life Sciences, Milan, Italy; 4Sprim USA, San Francisco, CA, USAAbstract: We conducted an evaluation of gene expression associated with innate and adaptive immunity in a double-blind ex vivo mouse study using a bovine-derived dietary ingredient (Ai/E10®, Health Technology Resources, Inc., Scottsdale, AZ, USA. BALB/c female mice (5–6 weeks of age were fed chewy granola bars supplemented with (Test or without (Control Ai/E10 for 10 days. After the feeding period, the animals were sacrificed and spleen cells were isolated and incubated with lipopolysaccharide and phorbol myristate acetate-ionomycin. RNA was extracted and mRNA expression of 84 genes involved in innate and acquired immunity was determined with real-time PCR arrays. Numerous genes associated with innate and adaptive immunity were upregulated in the Test group when stimulated with mitogens. Significant upregulation was observed in 30% (25 of 84 of genes upon lipopolysaccharide stimulation and in 14% (12 of 84 of genes upon phorbol myristate acetate + ionomycin stimulation in the Test group relative to Controls. This study illustrates that Ai/E10 supplementation results in significant and specific upregulation of genes associated with innate and adaptive immunity in mice. Notably, this effect was observed only in stimulated cultures.Keywords: dietary supplementation, immunomodulation, mice

  18. Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis

    NARCIS (Netherlands)

    Ai, Ding; Jiang, Hongfeng; Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Ganda, Anjali; Abramowicz, Sandra; Welch, Carrie; Almazan, Felicidad; Zhu, Yi; Miller, Yury I.; Tall, Alan R.

    2014-01-01

    The mammalian target of rapamycin complex 1 inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma low-density lipoprotein levels. This suggests an antiatherogenic effect possibly mediated by the modulation of inflammatory responses in atherosclerotic plaques.

  19. Imaging features of tuberous sclerosis complex with autosomal-dominant polycystic kidney disease: a contiguous gene syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Back, Susan J. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Andronikou, Savvas [University of the Witwatersrand, Radiology Department, Faculty of Health Sciences, Johannesburg (South Africa); Kilborn, Tracy [University of Cape Town, Red Cross War Memorial Children' s Hospital, Cape Town (South Africa); Kaplan, Bernard S. [The Children' s Hospital of Philadelphia, Division of Nephrology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States)

    2015-03-01

    Genes for tuberous sclerosis complex (TSC) type 2 and autosomal-dominant polycystic kidney disease (ADPKD) type 1 are both encoded over a short segment of chromosome 16. When deletions involve both genes, an entity known as the TSC2/ADPKD1 contiguous gene syndrome, variable phenotypes of TSC and ADPKD are exhibited. This syndrome has not been reviewed in the radiology literature. Unlike renal cysts in TSC, cystic disease in TSC2/ADPKD1 contiguous gene syndrome results in hypertension and renal failure. A radiologist might demonstrate polycystic kidney disease before the patient develops other stigmata of TSC. Conversely, in patients with known TSC, enlarged and polycystic kidneys should signal the possibility of the TSC2/ADPKD1 contiguous gene syndrome and not simply TSC. Distinguishing these diagnoses has implications in prognosis, treatment and genetic counseling. To describe the clinical and imaging findings of tuberous sclerosis complex and polycystic kidney disease in seven pediatric patients. We retrospectively reviewed renal and brain imaging of children and young adults with genetically proven or high clinical suspicion for TSC2/ADPKD1 contiguous gene syndrome. We included seven pediatric patients from two referral institutions. Ages ranged from birth to 21 years over the course of imaging. The mean follow-up period was 9 years 8 months (4 years 6 months to 20 years 6 months). No child progressed to end-stage renal disease during this period. Three patients were initially imaged for stigmata of TSC, three for abdominal distension and one for elevated serum creatinine concentration. All patients developed enlarged, polycystic kidneys. The latest available imaging studies demonstrated that in 12 of the 14 kidneys 50% or more of the parenchyma was ultimately replaced by >15 cysts, resulting in significant cortical thinning. The largest cysts in each kidney ranged from 2.4 cm to 9.3 cm. Echogenic lesions were present in 13 of the 14 kidneys, in keeping with

  20. Imaging features of tuberous sclerosis complex with autosomal-dominant polycystic kidney disease: a contiguous gene syndrome

    International Nuclear Information System (INIS)

    Back, Susan J.; Andronikou, Savvas; Kilborn, Tracy; Kaplan, Bernard S.; Darge, Kassa

    2015-01-01

    Genes for tuberous sclerosis complex (TSC) type 2 and autosomal-dominant polycystic kidney disease (ADPKD) type 1 are both encoded over a short segment of chromosome 16. When deletions involve both genes, an entity known as the TSC2/ADPKD1 contiguous gene syndrome, variable phenotypes of TSC and ADPKD are exhibited. This syndrome has not been reviewed in the radiology literature. Unlike renal cysts in TSC, cystic disease in TSC2/ADPKD1 contiguous gene syndrome results in hypertension and renal failure. A radiologist might demonstrate polycystic kidney disease before the patient develops other stigmata of TSC. Conversely, in patients with known TSC, enlarged and polycystic kidneys should signal the possibility of the TSC2/ADPKD1 contiguous gene syndrome and not simply TSC. Distinguishing these diagnoses has implications in prognosis, treatment and genetic counseling. To describe the clinical and imaging findings of tuberous sclerosis complex and polycystic kidney disease in seven pediatric patients. We retrospectively reviewed renal and brain imaging of children and young adults with genetically proven or high clinical suspicion for TSC2/ADPKD1 contiguous gene syndrome. We included seven pediatric patients from two referral institutions. Ages ranged from birth to 21 years over the course of imaging. The mean follow-up period was 9 years 8 months (4 years 6 months to 20 years 6 months). No child progressed to end-stage renal disease during this period. Three patients were initially imaged for stigmata of TSC, three for abdominal distension and one for elevated serum creatinine concentration. All patients developed enlarged, polycystic kidneys. The latest available imaging studies demonstrated that in 12 of the 14 kidneys 50% or more of the parenchyma was ultimately replaced by >15 cysts, resulting in significant cortical thinning. The largest cysts in each kidney ranged from 2.4 cm to 9.3 cm. Echogenic lesions were present in 13 of the 14 kidneys, in keeping with

  1. Genetic architecture of the F7 gene in a Spanish population: implication for mapping complex diseases and for functional assays.

    Science.gov (United States)

    Sabater-Lleal, M; Almasy, L; Martínez-Marchán, E; Martínez-Sánchez, E; Souto, R; Blangero, J; Souto, Jc; Fontcuberta, J; Soria, J M

    2006-05-01

    Delineating the genetic variability of loci coding for complex diseases helps to understand the individual variation in disease susceptibility and drug response. We present the allelic architecture of the F7 gene. This gene is the major determinant of FVII plasma levels, and these plasma levels constitute an important intermediate risk factor for cardiovascular disease. As part of the Genetic Analysis of Idiopathic Thrombophila Project, we completely re-sequenced the F7 locus (promoter, exons, introns, and 3'-untranslated region) in 40 unrelated individuals. We found 49 polymorphisms with only two amino acid changes suggesting that regulatory non-coding and intronic variants are responsible for the FVII variability. These results are important for mapping susceptibility alleles of complex diseases, because differences in pair-wise linkage disequilibrium patterns between DNA variants and haplotype frequency distributions may help to detect disease-associated alleles. In addition, we present the results of an in silico search that established genomic comparisons among different species. In conclusion, our study of the F7 DNA sequence variations is an example of a strategy for analyzing the genetic architecture of a quantitative trait locus. Furthermore, it provides a model for future analyses of genetic factors that contribute to the susceptibility of complex diseases in humans.

  2. A TDG/CBP/RARα Ternary Complex Mediates the Retinoic Acid-dependent Expression of DNA Methylation-sensitive Genes

    Directory of Open Access Journals (Sweden)

    Hélène Léger

    2014-02-01

    Full Text Available The thymine DNA glycosylase (TDG is a multifunctional enzyme, which is essential for embryonic development. It mediates the base excision repair (BER of G:T and G:U DNA mismatches arising from the deamination of 5-methyl cytosine (5-MeC and cytosine, respectively. Recent studies have pointed at a role of TDG during the active demethylation of 5-MeC within CpG islands. TDG interacts with the histone acetylase CREB-binding protein (CBP to activate CBP-dependent transcription. In addition, TDG also interacts with the retinoic acid receptor α (RARα, resulting in the activation of RARα target genes. Here we provide evidence for the existence of a functional ternary complex containing TDG, CBP and activated RARα. Using global transcriptome profiling, we uncover a coupling of de novo methylation-sensitive and RA-dependent transcription, which coincides with a significant subset of CBP target genes. The introduction of a point mutation in TDG, which neither affects overall protein structure nor BER activity, leads to a significant loss in ternary complex stability, resulting in the deregulation of RA targets involved in cellular networks associated with DNA replication, recombination and repair. We thus demonstrate for the first time a direct coupling of TDG’s epigenomic and transcription regulatory function through ternary complexes with CBP and RARα.

  3. The homeobox gene Mohawk represses transcription by recruiting the sin3A/HDAC co-repressor complex.

    Science.gov (United States)

    Anderson, Douglas M; Beres, Brian J; Wilson-Rawls, Jeanne; Rawls, Alan

    2009-03-01

    Mohawk is an atypical homeobox gene expressed in embryonic progenitor cells of skeletal muscle, tendon, and cartilage. We demonstrate that Mohawk functions as a transcriptional repressor capable of blocking the myogenic conversion of 10T1/2 fibroblasts. The repressor activity is located in three small, evolutionarily conserved domains (MRD1-3) in the carboxy-terminal half of the protein. Point mutation analysis revealed six residues in MRD1 are sufficient for repressor function. The carboxy-terminal half of Mohawk is able to recruit components of the Sin3A/HDAC co-repressor complex (Sin3A, Hdac1, and Sap18) and a subset of Polymerase II general transcription factors (Tbp, TFIIA1 and TFIIB). Furthermore, Sap18, a protein that bridges the Sin3A/HDAC complex to DNA-bound transcription factors, is co-immunoprecipitated by MRD1. These data predict that Mohawk can repress transcription through recruitment of the Sin3A/HDAC co-repressor complex, and as a result, repress target genes required for the differentiation of cells to the myogenic lineage. (c) 2009 Wiley-Liss, Inc.

  4. Molecular characterization of KMT2A fusion partner genes in 13 cases of pediatric leukemia with complex or cryptic karyotypes.

    Science.gov (United States)

    Ney Garcia, Daniela R; de Souza, Mariana T; de Figueiredo, Amanda F; Othman, Moneeb A K; Rittscher, Katharina; Abdelhay, Eliana; Capela de Matos, Roberto R; Meyer, Claus; Marschalek, Rolf; Land, Marcelo G P; Liehr, Thomas; Ribeiro, Raul C; Silva, Maria Luiza Macedo

    2017-12-01

    In pediatric acute leukemias, reciprocal chromosomal translocations frequently cause gene fusions involving the lysine (K)-specific methyltransferase 2A gene (KMT2A, also known as MLL). Specific KMT2A fusion partners are associated with the disease phenotype (lymphoblastic vs. myeloid), and the type of KMT2A rearrangement also has prognostic implications. However, the KMT2A partner gene cannot always be identified by banding karyotyping. We sought to identify such partner genes in 13 cases of childhood leukemia with uninformative karyotypes by combining molecular techniques, including multicolor banding FISH, reverse-transcriptase PCR, and long-distance inverse PCR. Of the KMT2A fusion partner genes, MLLT3 was present in five patients, all with acute lymphoblastic leukemia, MLLT1 in two patients, and MLLT10, MLLT4, MLLT11, and AFF1 in one patient each. Reciprocal reading by long-distance inverse PCR also disclosed KMT2A fusions with PITPNA in one patient, with LOC100132273 in another patient, and with DNA sequences not compatible with any gene in three patients. The most common KMT2A breakpoint region was intron/exon 9 (3/8 patients), followed by intron/exon 11 and 10. Finally, multicolor banding revealed breakpoints in other chromosomes whose biological and prognostic implications remain to be determined. We conclude that the combination of molecular techniques used in this study can efficiently identify KMT2A fusion partners in complex pediatric acute leukemia karyotypes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Sinonasal NK/T-Cell Lymphoma with Upper Gastrointestinal Bleeding: A Case Report

    Directory of Open Access Journals (Sweden)

    Kuan-Jung Huang

    2003-12-01

    Full Text Available Natural killer (NK/T-cell lymphoma is the most common malignant lymphoma among sinonasal lymphomas. Diagnosis is difficult and prognosis is poor. Herein, we report the case of a 22-year-old male patient with sinonasal NK/T-cell lymphoma who first presented with nasal obstruction and left facial swelling. There was a mushroom-like mass over the hard palate, diffuse mucosal swelling in the left nasal cavity, and left orbital cellulitis. The patient underwent a Caldwell-Luc operation, functional endoscopic sinus surgery, and wide excision of the palate tumor. Pathologic examination of the maxillary sinus, nasal cavity, and palate tumor showed an NK/T-cell lymphoma. Two days after the operation, the patient suddenly had bloody stool and suffered hematemesis. A series of examinations revealed a small intestinal hemorrhage. Emergent exploratory laparotomy showed an ulcerative tumor mass with bleeding over the jejunum. Pathologic examination of the mass showed that it was the same as the sinonasal mass, an NK/T-cell lymphoma. We reviewed previous studies on nasal NK/T-cell lymphoma and found no report discussing patients with NK/T-cell lymphoma of both nasal and non-nasal origins. From this case, we learned that in patients with sinonasal NK/T-cell lymphoma, other sites may be involved.

  6. NK cell-mediated killing of AML blasts. Role of histamine, monocytes and reactive oxygen metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Brune, M.; Mellqvist, U.H. [Sahlgren`s Univ. Hospital, Dept. of Medicine, Haematology Section, Goeteborg (Sweden); Hansson, M.; Hermodsson, S.; Hellstrand, K. [Sahlgren`s Univ. Hospital, Dept. of Virology, Goeteborg (Sweden)

    1996-10-01

    Blasts recovered from patients with acute myelogenous leukaemia (AML) were lysed by heterologeous natural killer (NK) cells treated with NK cell-activating cytokine-induced killing of AML blasts was inhibited by monocytes, recovered from peripheral blood by counterflow centrifugal elutriation. Histamine, at concentrations exceeding 0.1 {mu}M, abrogated the monocyte-induced inhibition of NK cells; thereby, histamine and IL-2 or histamine and IFN-{alpha} synergistically induced NK cell-mediated destruction of AML blasts. The effect of histamine was completely blocked by the histamine H2-receptor (H2R) antagonist ranitidine but not by its chemical control AH20399AA. Catalase, a scavenger of reactive oxygen metabolites (ROM), reversed the monocyte-induced inhibition of NK cell-mediated killing of blast cells, indicating that the inhibitory signal was mediated by products of the respiratory burst of monocytes. It is concluded that (i) monocytes inhibit anti-leukemic properties of NK cells, (ii) the inhibition is conveyed by monocyte-derived ROM, and (iii) histamine reverses the inhibitory signal and, thereby, synergizes with NK cell-activating cytokines to induce killing of AML blasts. (au) 19 refs.

  7. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  8. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming.

    Science.gov (United States)

    Wagner, Julia A; Rosario, Maximillian; Romee, Rizwan; Berrien-Elliott, Melissa M; Schneider, Stephanie E; Leong, Jeffrey W; Sullivan, Ryan P; Jewell, Brea A; Becker-Hapak, Michelle; Schappe, Timothy; Abdel-Latif, Sara; Ireland, Aaron R; Jaishankar, Devika; King, Justin A; Vij, Ravi; Clement, Dennis; Goodridge, Jodie; Malmberg, Karl-Johan; Wong, Hing C; Fehniger, Todd A

    2017-11-01

    NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15-based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1-, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy.

  9. STATs in NK-Cells: The Good, the Bad, and the Ugly

    Science.gov (United States)

    Gotthardt, Dagmar; Sexl, Veronika

    2017-01-01

    Natural killer (NK)-cells are major players in the fight against viral infections and transformed cells, but there is increasing evidence attributing a disease-promoting role to NK-cells. Cytokines present in the tumor microenvironment shape NK-cell maturation, function, and effector responses. Many cytokines signal via the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway that is also frequently altered and constitutively active in a broad range of tumor cells. As a consequence, there are currently major efforts to develop therapeutic strategies to target this pathway. Therefore, it is of utmost importance to understand the role and contributions of JAK–STAT molecules in NK-cell biology—only this knowledge will allow us to predict effects of JAK–STAT inhibition for NK-cell functions and to successfully apply precision medicine. We will review the current knowledge on the role of JAK–STAT signaling for NK-cell functions and discuss conditions involved in the switch from NK-cell tumor surveillance to disease promotion. PMID:28149296

  10. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  11. Lymphocytes Negatively Regulate NK Cell Activity via Qa-1b following Viral Infection

    Directory of Open Access Journals (Sweden)

    Haifeng C. Xu

    2017-11-01

    Full Text Available NK cells can reduce anti-viral T cell immunity during chronic viral infections, including infection with the lymphocytic choriomeningitis virus (LCMV. However, regulating factors that maintain the equilibrium between productive T cell and NK cell immunity are poorly understood. Here, we show that a large viral load resulted in inhibition of NK cell activation, which correlated with increased expression of Qa-1b, a ligand for inhibitory NK cell receptors. Qa-1b was predominantly upregulated on B cells following LCMV infection, and this upregulation was dependent on type I interferons. Absence of Qa-1b resulted in increased NK cell-mediated regulation of anti-viral T cells following viral infection. Consequently, anti-viral T cell immunity was reduced in Qa-1b- and NKG2A-deficient mice, resulting in increased viral replication and immunopathology. NK cell depletion restored anti-viral immunity and virus control in the absence of Qa-1b. Taken together, our findings indicate that lymphocytes limit NK cell activity during viral infection in order to promote anti-viral T cell immunity.

  12. Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases

    Directory of Open Access Journals (Sweden)

    Giovanni Bernardini

    2016-10-01

    Full Text Available ABSTRACTChemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including NK cells. Current research is focused in analyzing changes of chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells, or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors including CXCR4, CXCR3 and CX3CR1 are differentially expressed by NK cell subsets and their expression levels can be modulated during NK cell activation. This review will at first summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.

  13. Fine tuning a well-oiled machine: Influence of NK1.1 and NKG2D on NKT cell development and function.

    Science.gov (United States)

    Joshi, Sunil K; Lang, Mark L

    2013-10-01

    Natural killer T cells (NKT) represent a group of CD1d-restricted T-lineage cells that provide a functional interface between innate and adaptive immune responses in infectious disease, cancer, allergy and autoimmunity. There have been remarkable advances in understanding the molecular events that underpin NKT development in the thymus and in the complex array of functions in the periphery. Most functional studies have focused on activation of T cell antigen receptors expressed by NKT cells and their responses to CD1d presentation of glycolipid and related antigens. Receiving less attention has been several molecules that are hallmarks of Natural Killer (NK) cells, but nonetheless expressed by NKT cells. These include several activating and inhibitory receptors that may fine-tune NKT development and survival, as well as activation via antigen receptors. Herein, we review the possible roles of the NK1.1 and NKG2D receptors in regulating development and function of NKT cells in health and disease. We suggest that pharmacological alteration of NKT activity should consider the potential complexities commensurate with NK1.1 and NKG2D expression. Published by Elsevier B.V.

  14. Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    NARCIS (Netherlands)

    Heap, Graham A.; Trynka, Gosia; Jansen, Ritsert C.; Bruinenberg, Marcel; Swertz, Morris A.; Dinesen, Lotte C.; Hunt, Karen A.; Wijmenga, Cisca; vanHeel, David A.; Franke, Lude; Heel, David A van

    2009-01-01

    Background: Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. Methods: We correlated gene expression and genetic variation in untouched

  15. Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression

    Science.gov (United States)

    Amber J. Vanden Wymelenberg; Jill A. Gaskell; Michael D. Mozuch; Philip J. Kersten; Grzegorz Sabat; Diego Martinez; Daniel Cullen

    2009-01-01

    The wood decay basidiomycete Phanerochaete chrysosporium was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or...

  16. Statistical applications in nutrigenomics : analyzing multiple genes and proteins in relation to complex diseases in humans

    NARCIS (Netherlands)

    Heidema, A.G.

    2008-01-01

    Background The recent advances in technology provide the possibility to obtain large genomic datasets that contain information on large numbers of variables, while the sample sizes are moderate to small. This has lead to statistical challenges in the analysis of multiple genes and proteins in

  17. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.

    2008-01-01

    Plant pathogens secrete effector molecules that contribute to the establishment of disease in their plant hosts. The identification of cellular cues that regulate effector gene expression is an important aspect of understanding the infection process. Nutritional status in the cell has been

  18. Construction and comparison of gene co-expression networks shows complex plant immune responses

    Directory of Open Access Journals (Sweden)

    Luis Guillermo Leal

    2014-10-01

    Full Text Available Gene co-expression networks (GCNs are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA. Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses.

  19. Fancy a gene? A surprisingly complex evolutionary history/nof peroxiredoxins

    Czech Academy of Sciences Publication Activity Database

    Zíková, Alena; Oborník, Miroslav; Lukeš, Julius

    2015-01-01

    Roč. 2, č. 2 (2015), s. 33-37 E-ISSN 2311-2638 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : horizontal gene transfer * Apicomplexa * endosymbiont * Plasmodium * Chromera * peroxiredoxin * oxidative stress Subject RIV: EB - Genetics ; Molecular Biology

  20. Complexity of rice Hsp100 gene family: lessons from rice genome ...

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-29

    Mar 29, 2007 ... showed that the corresponding transcript is strictly heat- inducible and the induction is transient in nature (Agarwal et al 2003). In the temperature regimes tested, 45°C treatment to intact rice seedlings for 2 h showed maximal levels of. Hsp100 mRNA. This cDNA corresponded to the gene locus.

  1. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis FlowersW

    NARCIS (Netherlands)

    Ginglinger, J.F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T.G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullman, P.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus

  2. The c-myc oncoprotein forms a specific complex with the product of the retinoblastoma gene

    NARCIS (Netherlands)

    Bernards, R.A.; Rustgi, A.K.; Dyson, N.; Hill, D.

    1991-01-01

    Myc proteins are involved in the regulation of cell proliferation and differentiation. Deregulated expression of myc family genes has been implicated in the genesis of a variety of cancers. Myc proteins share significant sequence homology in the carboxyl terminus with a number of

  3. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.

    Science.gov (United States)

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-09-23

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning.

  4. Genome organisation and expression profiling of ABC protein-encoding genes in Heterobasidion annosum s.l. complex.

    Science.gov (United States)

    Baral, Bikash; Kovalchuk, Andriy; Asiegbu, Fred O

    2016-03-01

    Members of Heterobasidion annosum species complex are widely regarded as the most destructive fungal pathogens of conifer trees in the boreal and temperate zones of Northern hemisphere. To invade and colonise their host trees, Heterobasidion fungi must overcome components of host chemical defence, including terpenoid oleoresin and phenolic compounds. ABC transporters may play an important role in this process participating in the export of toxic host metabolites and maintaining their intracellular concentration below the critical level. We have identified and phylogenetically classified Heterobasidion genes encoding ABC transporters and closely related ABC proteins. The number of ABC proteins in the Heterobasidion genome is one of the lowest among analysed species of Agaricomycotina. Using quantitative RT-PCR, we have analysed transcriptional response of Heterobasidion ABC transporter-encoding genes to monoterpenes as well as their expression profile during growth on pine wood in comparison to the growth on defined media. Several ABC transporters were up-regulated during growth on pine wood. The ABC-transporter encoding gene ABCG1.1 was induced both during growth of H. annosum on pine wood and upon exposure to monoterpenes. Our experimental data demonstrate the differential responses of Heterobasidion ABC genes to growth conditions and chemical stressors. The presented results suggest a potential role of Heterobasidion ABC-G transporters in the resistance to the components of conifer chemical defence. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Genetic variation of the major histocompatibility complex (MHC class II B gene in the threatened Hume's pheasant, Syrmaticus humiae.

    Directory of Open Access Journals (Sweden)

    Weicai Chen

    Full Text Available Major histocompatibility complex (MHC genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae, which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  6. Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes.

    Science.gov (United States)

    Byun, Jung S; Wong, Madeline M; Cui, Wenwu; Idelman, Gila; Li, Quentin; De Siervi, Adriana; Bilke, Sven; Haggerty, Cynthia M; Player, Audrey; Wang, Yong Hong; Thirman, Michael J; Kaberlein, Joseph J; Petrovas, Constantinos; Koup, Richard A; Longo, Dan; Ozato, Keiko; Gardner, Kevin

    2009-11-17

    Profiling the dynamic interaction of p300 with proximal promoters of human T cells identified a class of genes that rapidly coassemble p300 and RNA polymerase II (pol II) following mitogen stimulation. Several of these p300 targets are immediate early genes, including FOS, implicating a prominent role for p300 in the control of primary genetic responses. The recruitment of p300 and pol II rapidly transitions to the assembly of several elongation factors, including the positive transcriptional elongation factor (P-TEFb), the bromodomain-containing protein (BRD4), and the elongin-like eleven nineteen lysine-rich leukemia protein (ELL). However, transcription at many of these rapidly induced genes is transient, wherein swift departure of P-TEFb, BRD4, and ELL coincides with termination of transcriptional elongation. Unexpectedly, both p300 and pol II remain accumulated or "bookmarked" at the proximal promoter long after transcription has terminated, demarking a clear mechanistic separation between the recruitment and elongation phases of transcription in vivo. The bookmarked pol II is depleted of both serine-2 and serine-5 phosphorylation of its C-terminal domain and remains proximally positioned at the promoter for hours. Surprisingly, these p300/pol II bookmarked genes can be readily reactivated, and elongation factors can be reassembled by subsequent addition of nonmitogenic agents that, alone, have minimal effects on transcription in the absence of prior preconditioning by mitogen stimulation. These findings suggest that p300 is likely to play an important role in biological processes in which transcriptional bookmarking or preconditioning influences cellular growth and development through the dynamic priming of genes for response to rechallenge by secondary stimuli.

  7. Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties (2011 JGI User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Bork, Peer

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Peer Bork of the European Molecular Biology Laboratory on Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  8. IL-21 augments NK effector functions in chronically HIV-infected individuals

    Science.gov (United States)

    Strbo, Natasa; de Armas, Lesley; Liu, Huanliang; Kolber, Michael A.; Lichtenheld, Mathias; Pahwa, Savita

    2009-01-01

    Objective This study addresses the interleukin (IL)-21 effects on resting peripheral blood NK cells in chronically HIV-infected individuals. Design The effects of IL-21 on perforin expression, proliferation, degranulation, IFN-γ production, cytotoxicity and induction of STAT phosphorylation in NK cells were determined in vitro. Methods Peripheral blood mononuclear cells from HIV-infected and healthy individuals were incubated in vitro for 6h, 24h or 5 days with IL-21 or IL-15. Percentages of perforin, IFN-γ, CD107a, NKG2D and STAT3-5 positive cells were determined within NK cell populations. K562 cells were used as target cells in NK cytotoxicity assay. Results Frequency of CD56dim cells in chronically HIV-infected individuals was diminished. Perforin expression in CD56dim and CD56bright was comparable in healthy and HIV-infected individuals. IL-15 up-regulated perforin expression primarily in CD56bright NK cells while IL-21 up-regulated perforin in both NK subsets. IL-21 and IL- 15 up-regulated CD107a and IFN-γ as well as NK cytotoxicity. IL-15 predominantly activated STAT5, while IL-21 activated STAT5 and STAT3. IL-15, but not IL-21 increased NK cell proliferation in uninfected and HIV-infected individuals. Conclusion IL-21 augments NK effector functions in chronically HIV-infected individuals and due to its perforin enhancing properties it has potential for immunotherapy or as a vaccine adjuvant. PMID:18670213

  9. NYPA/TH!NK Clean Commute Program Report – Inception Through May 2004

    Energy Technology Data Exchange (ETDEWEB)

    Don Karner; James Francfort; Randall Solomon

    2004-11-01

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric vehicles for transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk counties for $199 per month per vehicle. The first Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for returning the vehicles include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles have been returned to Ford as their leases have completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Through May 2004, participants in the Clean Commute Program have driven their vehicles over 370,000 miles, avoiding the use of over 17,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through May 2004.

  10. NYPA/TH!NK Clean Commute Program Final Report - Inception through December 2004

    Energy Technology Data Exchange (ETDEWEB)

    James Francfort; Don Karner

    2005-11-01

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased at total of 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk counties for $199 per month. First Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May, 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for leaving the Program include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles were returned to Ford when the lease was completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Mileage accumulation dropped in the last quarter of the program as vehicle leases were returned to Ford. The impact of the program overall was significant as participants in the Clean Commute Program drove their vehicles over 406,074 miles, avoiding the use of over 18,887 gallons of gasoline. During the active portion of the program, the TH!NK city vehicles were driven an average of between 180 and 230 miles per month. Over 95% of all trips taken with the TH!NK city vehicles replaced trips previously taken in gasoline vehicles. This report covers the period from Program inception through December 2004.

  11. Maternal obesity alters uterine NK activity through a functional KIR2DL1/S1 imbalance.

    Science.gov (United States)

    Castellana, Barbara; Perdu, Sofie; Kim, Yoona; Chan, Kathy; Atif, Jawairia; Marziali, Megan; Beristain, Alexander G

    2018-03-23

    In pregnancy, uterine natural killer cells (uNK) play essential roles in coordinating uterine angiogenesis, blood vessel remodeling, and promoting maternal tolerance to fetal tissue. Deviances from a normal uterine microenvironment are thought to modify uNK function(s) by limiting their ability to establish a healthy pregnancy. While maternal obesity has become a major health concern due to associations with adverse effects on fetal and maternal health, our understanding into how obesity contributes to poor pregnancy disorders is unknown. Given the importance of uNK in pregnancy, this study examines the impact of obesity on uNK function in women in early pregnancy. We identify that uNK from obese women show a greater propensity for cellular activation, but this difference does not translate into increased effector killing potential. Instead, uNK from obese women express an altered repertoire of natural killer receptors, including an imbalance in inhibitory KIR2DL1 and activating KIR2DS1 receptors that favours HLA-C2-directed uNK activation. Notably, we show that obesity-related KIR2DS1 skewing potentiates TNFα production upon receptor crosslinking. Together, these findings suggest that maternal obesity modifies uNK activity by altering the response towards HLA-C2 antigen and KIR2DL1/2DS1-controlled TNFα release. Further, this work identifies alterations in uNK function resulting from maternal obesity that may impact early developmental processes important in pregnancy health. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. NK cell activite in C157BL/Ka mice during the development of radiation induced thymic lymphomas

    International Nuclear Information System (INIS)

    Noel, A.; Schaaf-Lafontaine, N.; Defresne, M.P.; Boniver, J.

    1985-01-01

    Treatment of C57BL/Ka mice with a split dose whole-body irradiation (four weekly irradiations of 1,75 Gy) induces the development of thymic lymphomas. NK activity of spleen cells has been determined at several internals after leukemogenic treatment. Two days after irradiations, NK activity is normal and decreases strongly after one week. This period of decline persists during about one month. Then, NK activity restores and reaches control values. Lymphomas appear in spite of NK activity restauration. The diminution of NK activity during the preleukemic period could favour preleukemic cells apparition [fr

  13. Genetic analysis of VCP and WASH complex genes in a German cohort of sporadic ALS-FTD patients.

    Science.gov (United States)

    Türk, Matthias; Schröder, Rolf; Khuller, Katharina; Hofmann, Andreas; Berwanger, Carolin; Ludolph, Albert C; Dekomien, Gabriele; Müller, Kathrin; Weishaupt, Jochen H; Thiel, Christian T; Clemen, Christoph S

    2017-08-01

    Mutations of the human valosin-containing protein, p97 (VCP) and Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex genes cause motor neuron and cognitive impairment disorders. Here, we analyzed a cohort of German patients with sporadic amyotrophic lateral sclerosis and frontotemporal lobar degeneration comorbidity (ALS/FTD) for VCP and WASH complex gene mutations. Next-generation panel sequencing of VCP, WASH1, FAM21C, CCDC53, SWIP, strumpellin, F-actin capping protein of muscle Z-line alfa 1 (CAPZA1), and CAPZB genes was performed in 43 sporadic ALS/FTD patients. Subsequent analyses included Sanger sequencing, in silico analyses, real-time PCR, and CCDC53 immunoblotting. We identified 1 patient with the heterozygous variant c.26C>T in CAPZA1, predicted to result in p.Ser9Leu, and a second with the heterozygous start codon variant c.2T>C in CCDC53. In silico analysis predicted structural changes in the N-terminus of CAPZα1, which may interfere with CAPZα:CAPZβ dimerization. Though the translation initiation codon of CCDC53 is mutated, real-time PCR and immunoblotting did neither reveal any evidence for a CCDC53 haploinsufficiency nor for aberrant CCDC53 protein species. Moreover, a disease-causing C9orf72 repeat expansion mutation was later on identified in this patient. Thus, with the exception of a putatively pathogenic heterozygous c.26C>T CAPZA1 variant, our genetic analysis did not reveal mutations in VCP and the remaining WASH complex subunits. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of metallothionein and immune related genes.

    Science.gov (United States)

    Ghazy, Haneen A; Abdel-Razek, Mohamed A S; El Nahas, Abeer F; Mahmoud, Shawky

    2017-09-01

    Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Past, Present, and Future of NK Cells in Hematopoietic Cell Transplantation and Adoptive Transfer.

    Science.gov (United States)

    Cichocki, Frank; Verneris, Michael R; Cooley, Sarah; Bachanova, Veronika; Brunstein, Claudio G; Blazar, Bruce R; Wagner, John; Schlums, Heinrich; Bryceson, Yenan T; Weisdorf, Daniel J; Miller, Jeffrey S

    2016-01-01

    Hematopoietic cell transplantation (HCT) has been used as a part of cancer therapy for over half a decade. Beyond the necessity for donor-derived cells to reconstitute hematopoiesis after radiation and chemotherapy, immunologic reconstitution from allogeneic cells is important for the elimination of residual tumor cells. Natural killer (NK) cells are first among lymphocytes to reconstitute post-transplant and protect against cancer relapse. In this review, we provide a historical perspective on the role of NK cells in cancer control in the transplant setting and focus on current research aimed at improving NK cell responses for therapeutic benefit.

  16. Cells that mediate NK like cytotoxicity are present in the human delayed type hypersensitivity response.

    Science.gov (United States)

    Tartof, D; Yung, C W; Curran, J J; Livingston, C; Thalji, Z

    1984-11-01

    By inducing delayed type hypersensitivity (DTH) responses under previously formed skin blisters we determined that cells which mediate natural killer (NK) like cytotoxicity are present in the DTH response in man. Similar levels of killing were not present in cells obtained from skin blisters not associated with positive DTH responses. The DTH response associated killer cell was found to be a mononuclear cell that had presumably undergone stimulation since it not only killed NK sensitive K-562 cells, but also NK resistant Daudi target cells.

  17. Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis.

    Science.gov (United States)

    Cai, Xiaofeng; Teta, Roberta; Kohlhaas, Christoph; Crüsemann, Max; Ueoka, Reiko; Mangoni, Alfonso; Freeman, Michael F; Piel, Jörn

    2013-06-20

    Hormaomycin (HRM) is a structurally remarkable peptide produced by Streptomyces griseoflavus W-384 that acts as a Streptomyces signaling metabolite and exhibits potent antibiotic activity against coryneform actinomycetes. HRM biosynthetic studies have been hampered by inconsistent and low production. To enhance fermentation titers, the role of its cluster-encoded regulatory genes was investigated. Extra copies of the putative regulators hrmA and hrmB were introduced into the wild-type strain, resulting in an increase of HRM production and its analogs up to 135-fold. For the HrmB overproducer, six bioactive analogs were isolated and characterized. This study demonstrates that HrmA and HrmB are positive regulators in HRM biosynthesis. A third gene, hrmH, was identified as encoding a protein capable of shifting the metabolic profile of HRM and its derivatives. Its manipulation resulted in the generation of an additional HRM analog. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Codon usage pattern of complex III gene of respiratory chain among platyhelminths.

    Science.gov (United States)

    Mazumder, Gulshana A; Uddin, Arif; Chakraborty, Supriyo

    2018-01-01

    Codon usage bias refers to the phenomenon where synonymous codons are used with unequal frequencies. To understand the patterns of codon usage in mitochondrial cytochrome B (MT-CYB) gene of phylum platyhelminthes we used bioinformatic approaches to analyze the protein coding sequences of five different classes - cestoda, monogenea, rabditophora, trematoda and turbellaria. It was found from nucleotide composition analysis that in all the classes, A/T-ended codons were preferred to G/C -ended codons. From box plot analysis GC1 was found to have highest response to codon usage bias. Correspondence analysis indicated that besides mutation other factors such as natural selection might also affect the codon usage pattern. Neutrality plot reveals that both mutation and natural selection played role in codon usage pattern in five classes of MT-CYB gene. Various factors namely nucleotide composition, natural selection and mutation pressure affected the codon usage pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity.

    Science.gov (United States)

    Takeda, Kazuyoshi; Okumura, Ko

    2007-03-01

    Nine healthy middle-aged and 10 elderly volunteers drank fermented milk containing 4 x 10(10) live cells of Lactobacillus casei strain Shirota daily for 3 wk, and their natural killer (NK) activity and other immunological functions were examined. In the experiments with middle-aged volunteers, NK activity significantly increased (P<0.01) 3 wk after the start of intake, elevated NK cell activity remained for the next 3 wk, and this effect was particularly prominent in the low-NK-activity individuals. In the experiments with elderly volunteers, NK activity significantly decreased (P<0.01) in the control group 3 wk after the start of intake; however, the intake of Lactobacillus casei strain Shirota maintained the NK activity. These results suggest that daily intake of Lactobacillus casei strain Shirota provides a positive effect on NK-cell activity.

  20. A Mutation in the Tubulin-Encoding Gene Causes Complex Cortical Malformations and Unilateral Hypohidrosis

    Directory of Open Access Journals (Sweden)

    Shinobu Fukumura MD

    2016-08-01

    Full Text Available Recent studies have emphasized the association between tubulin gene mutations and developmental abnormalities of the cortex. In this study, the authors identified a mutation in the tubulin-encoding class III β-tubulin ( TUBB3 gene in a 4-year-old boy presenting with brain abnormalities and unilateral hypohidrosis. The patient showed a left internal strabismus, moderate developmental delay, and congenital hypohidrosis of the right side of the body. Magnetic resonance imaging disclosed gyral disorganization mainly in the left perisylvian region, dysmorphic and hypertrophic basal ganglia with fusion between the putamen and caudate nucleus without affecting the anterior limb of the internal capsule, and moderate hypoplasia of the right brain stem and cerebellum. Diffusion tensor imaging studies revealed disorganization of the pyramidal fibers. The amplitude of the sympathetic skin response was low in the right arm, which led to a diagnosis of focal autonomic neuropathy. Sequencing the TUBB3 gene revealed a de novo missense mutation, c.862G>A (p.E288K.

  1. A complex selection signature at the human AVPR1B gene

    Directory of Open Access Journals (Sweden)

    Cagliani Rachele

    2009-06-01

    Full Text Available Abstract Background The vasopressin receptor type 1b (AVPR1B is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common AVPR1B haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses. Results Here we have analyzed the two exons of the gene and the data we present suggest that AVPR1B has been subjected to natural selection in humans. In particular, analysis of exon 2 strongly suggests the action of balancing selection in African populations and Europeans: the region displays high nucleotide diversity, an excess of intermediate-frequency alleles, a higher level of within-species diversity compared to interspecific divergence and a genealogy with common haplotypes separated by deep branches. This relatively unambiguous situation coexists with unusual features across exon 1, raising the possibility that a nonsynonymous variant (Gly191Arg in this region has been subjected to directional selection. Conclusion Although the underlying selective pressure(s remains to be identified, we consider this to be among the first documented examples of a gene involved in mood disorders and subjected to natural selection in humans; this observation might add support to the long-debated idea that depression/low mood might have played an adaptive role during human evolution.

  2. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex

    NARCIS (Netherlands)

    Cabral, A.; Groenewald, J.Z.; Rego, C.; Oliveira, H.; Crous, P.W.

    2012-01-01

    Ilyonectria radicicola and its Cylindrocarpon-like anamorph represent a species complex that is commonly associated with root rot disease symptoms on a range of hosts. During the course of this study, several species could be distinguished from I. radicicola sensu stricto based on morphological and

  3. Case Study: Skinny Genes? An Interdisciplinary Look at a Complex Behavioral Disorder

    Science.gov (United States)

    Gow, Joan-Beth; Carpino, Lisa A.

    2018-01-01

    Anorexia nervosa is a complex behavioral disorder with the highest risk of death of any psychological disorder. Between 15% and 20% of those suffering from anorexia die from complications that are attributed either directly or indirectly to self-starvation. Heritability for anorexia is around 0.5, meaning about 50% of the risk for anorexia is…

  4. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein

    DEFF Research Database (Denmark)

    Alcalay, M; Tomassoni, L; Colombo, E

    1998-01-01

    by the expression of PML-RAR alpha. We report that PML colocalizes with the nonphosphorylated fraction of the retinoblastoma protein (pRB) within nuclear bodies and that pRB is delocalized by PML-RAR alpha expression. Both PML and PML-RAR alpha form complexes with the nonphosphorylated form of pRB in vivo...

  5. Design, synthesis, and evaluation of gadolinium cationic lipids as tools for biodistribution studies of gene delivery complexes.

    Science.gov (United States)

    Leclercq, Francoise; Cohen-Ohana, Mirit; Mignet, Nathalie; Sbarbati, Andrea; Herscovici, Jean; Scherman, Daniel; Byk, Gerardo

    2003-01-01

    Gadolinium-chelating cationic lipids have been synthesized to obtain lipoplexes with MRI contrast properties. These compounds were designed to follow the biodistribution of synthetic DNA for gene delivery by nuclear magnetic resonance imaging. The lipid MCO-I-68 was synthesized, and chelate complexes with gadolinium were formed and characterized in terms of physicochemical and DNA binding properties. The transfection activity of MCO-I-68-Gd/DNA complexes was assayed in vitro on NIH 3T3. Different formulations of the product were tested. When up to 5% of the gadolinium lipid complexes were co-formulated with the cationic lipid RPR120535 used as a reference, the transfection levels were maintained as compared to RPR120535 alone. To date, only a liposomal formulation of a gadolinium-cationic lipid chelate without DNA had been observed using magnetic resonance imaging. In vivo intratumoral administration of MCO-I-68-Gd/DNA lipoplexes to tumor model led to an important increase of the NMR signal. It was demonstrated that the new complexes also acted as transfection carriers when they were formulated from liposomes.

  6. DNA methylation of methylation complex genes in relation to stress and genome-wide methylation in mother-newborn dyads.

    Science.gov (United States)

    Clukay, Christopher J; Hughes, David A; Rodney, Nicole C; Kertes, Darlene A; Mulligan, Connie J

    2018-01-01

    Early life stress is known to have enduring biological effects, particularly with respect to health. Epigenetic modifications, such as DNA methylation, are a possible mechanism to mediate the biological effect of stress. We previously found correlations between maternal stress, newborn birthweight, and genome-wide measures of DNA methylation. Here we investigate ten genes related to the methylation/demethylation complex in order to better understand the impact of stress on health. DNA methylation and genetic variants at methylation/demethylation genes were assayed. Mean methylation measures were constructed for each gene and tested, in addition to genetic variants, for association with maternal stress measures based on interview and survey data (chronic stress and war trauma), maternal venous, and newborn cord genome-wide mean methylation (GMM), and birthweight. After cell type correction, we found multiple pairwise associations between war trauma, maternal GMM, maternal methylation at DNMT1, DNMT3A, TET3, and MBD2, and birthweight. The association of maternal GMM and maternal methylation at DNMT1, DNMT3A, TET3, and MBD2 is consistent with the role of these genes in establishing, maintaining and altering genome-wide methylation patterns, in some cases in response to stress. DNMT1 produces one of the primary enzymes that reproduces methylation patterns during DNA replication. DNMT3A and TET3 have been implicated in genome-wide hypomethylation in response to glucocorticoid hormones. Although we cannot determine the directionality of the genic and genome-wide changes in methylation, our results suggest that altered methylation of specific methylation genes may be part of the molecular mechanism underlying the human biological response to stress. © 2017 Wiley Periodicals, Inc.

  7. Whole blood assay for NK activity in splenectomized and non-splenectomized hairy cell leukemia patients during IFN-alpha-2b treatment

    DEFF Research Database (Denmark)

    Nielsen, B; Hokland, P; Ellegaard, J

    1989-01-01

    Natural killer cell (NK) activity in peripheral blood (PB) was followed longitudinally for up to 2 yr after initiation of low-dose IFN-alpha-2b therapy in nine hairy cell leukemia (HCL) patients. A whole blood NK (WB-NK) assay was employed in order to measure the NK activity per unit blood. The p...

  8. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities.

    Science.gov (United States)

    Kurzynska-Kokorniak, Anna; Koralewska, Natalia; Pokornowska, Maria; Urbanowicz, Anna; Tworak, Aleksander; Mickiewicz, Agnieszka; Figlerowicz, Marek

    2015-05-19

    There is increasing evidence indicating that the production of small regulatory RNAs is not the only process in which ribonuclease Dicer can participate. For example, it has been demonstrated that this enzyme is also involved in chromatin structure remodelling, inflammation and apoptotic DNA degradation. Moreover, it has become increasingly clear that cellular transcript and protein levels of Dicer must be strictly controlled because even small changes in their accumulation can initiate various pathological processes, including carcinogenesis. Accordingly, in recent years, a number of studies have been performed to identify the factors regulating Dicer gene expression and protein activity. As a result, a large amount of complex and often contradictory data has been generated. None of these data have been subjected to an exhaustive review or critical discussion. This review attempts to fill this gap by summarizing the current knowledge of factors that regulate Dicer gene transcription, primary transcript processing, mRNA translation and enzyme activity. Because of the high complexity of this topic, this review mainly concentrates on human Dicer. This review also focuses on an additional regulatory layer of Dicer activity involving the interactions of protein and RNA factors with Dicer substrates. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  10. [ANALYSIS OF ONE-CARBON METABOLISM GENES AND EPIDERMAL DIFFERENTIATION COMPLEX IN PATIENTS WITH ICHTHYOSIS VULGARIS].

    Science.gov (United States)

    Fedota, O; Roshchenyuk, L; Sadovnychenko, I; Merenkova, I; Gontar, I; Vorontsov, V

    2017-03-01

    The aim of the study was to evaluate the effects of allelic polymorphism of the FLG and MTHFR genes and their associations in gynecological patients with ichthyosis vulgaris. Gynecological disorders are observed in presence of some forms of ichtyosis. From the prospective of improving nation's healthcare, the greatest attention is drawn to reproductive disorders. Based on this, the research was also tasked with studying of the genetic nature of gynecological diseases, as well as the influence of geographical latitude on the frequencies of mutagenic alleles of the FLG gene and heterogeneous carriers of these mutations. The collection of clinical-gynecological history was carried out by the method of single registration of the proband on the basis of the Regional Clinical Dermatological and Venereological Health Center No. 1 and the Dermatovenerological Health Centers of the Kharkiv Region. The diagnosis and form of dermatosis is established on the basis of the analysis of clinical and gynecological data and the results of laboratory tests in accordance with ICD-10: ichthyosis vulgaris (Q 80.1.0, OMIM 146700). The data on 18 women and 20 men from 3 families, aged 26 to 76 years old, suffering from ichthyosis, were analyzed. As a result of the study, a direct correlation was determined between the latitude and frequencies of mutant alleles of the FLG gene, as well as between the geographical latitude and frequency of heterozygous carriers of these mutations. The frequencies of the T allele and the CT genotype according to polymorphic variant C677T of the MTHFR gene demonstrate feedback with the latitude indicators. The frequency distributions of the 2282del4 allele and the CT genotype, the N/2282del4 and CT genotypes, the 2282del4 and T alleles, the N/2282del4 genotype and the T allele have opposite latitudinal zonation. The established connections made it possible to predict the development of gynecological pathologies in women with ichthyosis vulgaris. The

  11. MDR-1 and MRP2 gene polymorphisms in Mexican epileptic pediatric patients with complex partial seizures.

    Directory of Open Access Journals (Sweden)

    David eEscalante-Santiago

    2014-10-01

    Full Text Available Although the Pgp efflux transport protein is overexpressed in resected tissue of patients with epilepsy, the presence of polymorphisms in MDR1 / ABCB1 and MRP2 / ABCC2 in patients with antiepileptic-drugs resistant epilepsy is controversial. The aim of this study was to perform an exploratory study to identify nucleotide changes and search new and reported mutations in patients with antiepileptic-drugs resistant epilepsy (ADR and patients with good response to anti-epileptic drugs (CTR in a rigorously selected population. We analyzed 22 samples from drug-resistant patients with epilepsy and 7 samples from patients with good response to anti-epileptic drugs. Genomic DNA was obtained from leukocytes. Eleven exons in both genes were genotyped. The concentration of drugs in saliva and plasma was determined. The concentration of valproic acid in saliva was lower in ADR than in CRT. In ABCB1, five reported SNPs and five unreported nucleotide changes were identified; rs2229109 (GA and rs2032582 (AT and AG were found only in the ADR. Of six SNPs associated with the ABCC2 that were found in the study population, rs3740066 (TT and 66744T>A (TG were found only in the ADR. The strongest risk factor in the ABCB1 gene was identified as the TA genotype of rs2032582, whereas for the ABCC2 gene the strongest risk factor was the T allele of rs3740066. The screening of SNPs in ACBC1 and ABCC2 indicates that the Mexican patients with epilepsy in this study display frequently reported ABCC1 polymorphisms; however, in the study subjects with a higher risk factor for drug resistance, new nucleotide changes were found in the ABCC2 gene. Thus, the population of Mexican patients with AED-resistant epilepsy used in this study exhibits genetic variability with respect to those reported in other study populations; however, it is necessary to explore this polymorphism in a larger population of patients with AED-resistant epilepsy.

  12. Polymorphisms in Isoniazid and Prothionamide Resistance Genes of the Mycobacterium tuberculosis Complex

    KAUST Repository

    Projahn, M.

    2011-06-27

    Sequence analyses of 74 strains that encompassed major phylogenetic lineages of the Mycobacterium tuberculosis complex revealed 10 polymorphisms in mshA (Rv0486) and four polymorphisms in inhA (Rv1484) that were not responsible for isoniazid or prothionamide resistance. Instead, some of these mutations were phylogenetically informative. This genetic diversity must be taken into consideration for drug development and for the design of molecular tests for drug resistance.

  13. Selenium and vitamin E enriched diet increases NK cell cytotoxicity in cattle

    Directory of Open Access Journals (Sweden)

    Andréia O. Latorre

    2014-11-01

    Full Text Available A number of studies has shown that antioxidants, fatty acids and trace minerals may modulate different immune cell activities, and that their deficiency may be associated with diseases and impaired immune responses. In innate immunity, natural killer (NK cells have a central role, killing virally infected and cancerous cells, and also secreting cytokines that shape adaptive immune responses. Thus, the aim of this study was to evaluate the effect of enriched diets in selenium plus vitamin E and/or canola oil on complete blood count and on NK cell cytotoxicity from blood lymphocytes of Nellore bulls. Bulls that received selenium plus vitamin E had (P=0.0091 higher NK cell cytotoxicity than control bulls. This result positively correlated with serum selenium levels. To the best of our knowledge, this is the first study that showed immunostimulatory effects of selenium plus vitamin E on NK cell cytotoxicity of Nellore bulls.

  14. NK cell imaging by in vitro and in vivo labelling approaches

    International Nuclear Information System (INIS)

    Galli, F.; Histed, S. N.; Aras, O.

    2014-01-01

    Natural killer (NK) cells are a particular lymphocyte subset with a documented cytotoxic activity against cancer cells. Evidence of NK antitumoral effect led researchers to focus on the development of immunotherapies aimed at augmenting NK recruitment and infiltration into tumor and their anti-cancer functions. Studies in animal models proved that the right combination of drugs, cytokines, chemokines and other factors might be used to enhance or suppress tumor targeting by NK cells. Therefore, it would be necessary to have a tool to non-invasively monitor the efficacy of such novel therapies. Available imaging techniques comprise magnetic resonance, optical and nuclear medicine imaging with a pool of compounds that ranges from radiolabelled nanoparticles and radiopharmaceuticals to fluorescent probes. Each tracer and technique has its own pros and cons, but till now, no one emerged as superior among the others.

  15. Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human.

    Science.gov (United States)

    Lecci, Alessandro; Capriati, Angela; Altamura, Maria; Maggi, Carlo Alberto

    2006-06-30

    Tachykinins (TKs), substance P (SP), neurokinin A (NKA) and B (NKB) are important peptide modulators of intestinal motility in animal species studied so far, including humans. Modulation of motility by TKs can occur at various levels, since these peptides are expressed in cholinergic excitatory motor neurons projecting to both circular and longitudinal muscle, interneurons, and intramural and extramural sensory neurons. The effects of SP, NKA and NKB are preferentially mediated through the stimulation of NK1, NK2 and NK3 receptors, respectively; however, the selectivity of natural TKs for their preferred receptors is relative. In addition, SP and NKA are expressed in similar quantities in the human intestine and adequate stimuli can release similar amount of these TKs from enteric nerves. Furthermore, a single anatomical substrate can express more than one TK receptor type, so that the blockade of a single receptor type may not reveal functional effects in integrated models of motility. In isolated human small intestine and colon circular muscle strips, both NK1 and NK2 receptors mediate contractile effects. Indeed, in the human small intestine, smooth muscle electrical and motor events induced by electrical field stimulation (EFS) can involve either or both NK1 and NK2 receptors or these latter receptors predominantly, depending on the experimental conditions. In contrast, in the human colonic smooth muscle, only the NK2 receptor-mediated component of the response to EFS is prominent and some evidence would suggest that this component is the main excitatory motor mechanism at this level. Furthermore, a NK2 receptor-mediated secretory component in the human colonic mucosa has been recently demonstrated. Thus, it could be speculated that the blockade of both NK1 and NK2 receptors will be necessary to antagonise motor effects induced by exogenous administration or endogenous release of TKs in the small intestine, whereas the blockade of the NK2 receptors would be

  16. Role of Common-Gamma Chain Cytokines in NK Cell Development and Function: Perspectives for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Raffaella Meazza

    2011-01-01

    Full Text Available NK cells are components of the innate immunity system and play an important role as a first-line defense mechanism against viral infections and in tumor immune surveillance. Their development and their functional activities are controlled by several factors among which cytokines sharing the usage of the common cytokine-receptor gamma chain play a pivotal role. In particular, IL-2, IL-7, IL-15, and IL-21 are the members of this family predominantly involved in NK cell biology. In this paper, we will address their role in NK cell ontogeny, regulation of functional activities, development of specialized cell subsets, and acquisition of memory-like functions. Finally, the potential application of these cytokines as recombinant molecules to NK cell-based immunotherapy approaches will be discussed.

  17. Persistence of Natural Killer (NK cell lymphocytosis with hyposplenism without development of leukaemia

    Directory of Open Access Journals (Sweden)

    Khan Sujoy

    2005-09-01

    Full Text Available Abstract Background Natural killer (NK cell lymphocytosis usually has an indolent course and can progress into massive lymphocytosis with development of cytopenias and neoplastic diseases. NK-cells usually express one or more "NK-associated" antigens (CD16, CD56, CD57. Reactive expansions are seen in autoimmune diseases, viral infections, solid tumours and non-Hodgkin's lymphoma. Case presentation We report a lady with a benign clinical course over 10 years and persistent CD8+/CD3-/CD57+/CD16+ LGL proliferation with presence of Howell-Jolly bodies (functional hyposplenism, an association not previously described. Conclusion We discuss the possible causes of clonal expansion and conclude that this may be part of the spectrum of immune dysregulation associated with NK-cell lymphocytosis.

  18. Persistence of Natural Killer (NK) cell lymphocytosis with hyposplenism without development of leukaemia

    Science.gov (United States)

    Khan, Sujoy; Myers, K

    2005-01-01

    Background Natural killer (NK) cell lymphocytosis usually has an indolent course and can progress into massive lymphocytosis with development of cytopenias and neoplastic diseases. NK-cells usually express one or more "NK-associated" antigens (CD16, CD56, CD57). Reactive expansions are seen in autoimmune diseases, viral infections, solid tumours and non-Hodgkin's lymphoma. Case presentation We report a lady with a benign clinical course over 10 years and persistent CD8+/CD3-/CD57+/CD16+ LGL proliferation with presence of Howell-Jolly bodies (functional hyposplenism), an association not previously described. Conclusion We discuss the possible causes of clonal expansion and conclude that this may be part of the spectrum of immune dysregulation associated with NK-cell lymphocytosis. PMID:16146576

  19. A new mtDNA COI gene lineage near An. janconnae of the Albitarsis Complex from Caribbean Colombia

    Science.gov (United States)

    Gutiérrez, Lina A; Orrego, Lina M; Gómez, Giovan F; López, Andrés; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2011-01-01

    An understanding of the taxonomic status and vector distribution of anophelines is crucial to malaria control efforts. Previous phylogenetic analyses have supported the description of six species of the Neotropical malaria vector Anopheles (Nyssorhynchus) albitarsis s.l. (Diptera: Culicidae): Anopheles albitarsis, An. deaneorum, An. marajoara, An. oryzalimnetes, An. janconnae and An. albitarsis F. To evaluate the taxonomic status of An. albitarsis s.l. mosquitoes collected in various localities of the Colombian Caribbean region, specimens were analyzed using the complete mtDNA Cytochrome Oxidase I (COI) gene, the ribosomal DNA internal transcribed spacer 2 (ITS2) region and partial nuclear DNA White gene sequences. Phylogenetic analyses of the COI sequences detected a new lineage near An. janconnae in the Caribbean region of Colombia and determined its position relative to the other members of the complex. However, the ITS2 and White gene sequences lacked resolution to support a new lineage near An. janconnae or the An. janconnae clade. Nothing is known about the possible involvement in malaria transmission in Colombia of this new lineage, but its phylogenetic closeness to Anopheles janconnae, which has been incriminated in local malaria transmission in Brazil, is provocative. PMID:21225199

  20. Association Between Major Histocompatibility Complex Class I Chain-Related Gene Polymorphisms and Susceptibility of Systemic Lupus Erythematosus.

    Science.gov (United States)

    Yu, Ping; Zhu, Quan; Chen, Chunjing; Fu, Xiaoling; Li, Yu; Liu, Limin; Luo, Qizhi; Wang, Fuyan; Wang, Yong

    2017-10-01

    Major histocompatibility complex class I chain-related gene (MIC) polymorphisms have been associated with many autoimmune diseases. To explore the correlation between MIC polymorphisms and systemic lupus erythematosus (SLE), we compared the sequence of the MIC gene in Han Chinese patients with SLE from Hainan Island, China, with healthy individuals. In this study, the MIC polymorphisms in 296 subjects (159 patients with SLE and 137 healthy volunteers) of Han ethnicity from Hainan Island were characterized. A chi-square test was performed to evaluate the differences in the allelic frequency of the MIC genes between patients with SLE and the control subjects. The genotyping results indicated that the frequencies of the MICA*010, MICB*014, and MICB*002 alleles were significantly higher in the control subjects than the patients with SLE. Additionally, the results also indicated that the frequency of the MICB*009N in the SLE group was significantly increased compared to that in the matched control subjects. The results of this study suggested that the MICB*009N allele might be a risk factor for SLE, whereas the MICB*014, MICA*010 and MICB*002 alleles were associated with reduced incidence of SLE in the study population. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  1. Estrogen/ERα signaling axis participates in osteoblast maturation via upregulating chromosomal and mitochondrial complex gene expressions

    Science.gov (United States)

    Lin, Pei-I; Tai, Yu-Ting; Chan, Wing P.; Lin, Yi-Ling; Liao, Mei-Hsiu; Chen, Ruei-Ming

    2018-01-01

    Estrogen deficiency usually leads to bone loss and osteoporosis in postmenopausal women. Osteoblasts play crucial roles in bone formation. However, osteoblast functions are influenced by mitochondrial bioenergetic conditions. In this study, we investigated the roles of the estrogen and estrogen receptor alpha (ERα) axis in mitochondrial energy metabolism and subsequent osteoblast mineralization. Exposure of rat calvarial osteoblasts to estradiol caused substantial improvements in alkaline phosphatase activities and cell calcification. In parallel, treatment of human osteoblast-like U2OS cells, derived from a female osteosarcoma patient, with estradiol specifically augmented ERα levels. Sequentially, estradiol stimulated translocation of ERα to nuclei in human osteoblasts and induced expressions of genomic respiratory chain complex NDUFA10, UQCRC1, cytochrome c oxidase (COX)8A, COX6A2, COX8C, COX6C, COX6B2, COX412, and ATP12A genes. Concurrently, estradiol stimulated translocation of ERα to mitochondria from the cytoplasm. A bioinformatic search found the existence of four estrogen response elements in the 5’-promoter region of the mitochondrial cox i gene. Interestingly, estradiol induced COX I mRNA and protein expressions in human osteoblasts or rat calvarial osteoblasts. Knocking-down ERα translation concurrently downregulated estradiol-induced COX I mRNA expression. Consequently, exposure to estradiol led to successive increases in the mitochondrial membrane potential, the mitochondrial enzyme activity, and cellular adenosine triphosphate levels. Taken together, this study showed the roles of the estradiol/ERα signaling axis in improving osteoblast maturation through upregulating the mitochondrial bioenergetic system due to induction of definite chromosomal and mitochondrial complex gene expressions. Our results provide novel insights elucidating the roles of the estrogen/ERα alliance in regulating bone formation. PMID:29416685

  2. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis.

    Science.gov (United States)

    Liang, Ying; Yu, Youjian; Shen, Xiuping; Dong, Heng; Lyu, Meiling; Xu, Liai; Ma, Zhiming; Liu, Tingting; Cao, Jiashu

    2015-12-01

    Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches.

  3. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    International Nuclear Information System (INIS)

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-01-01

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a 32 P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphism was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family

  4. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    Science.gov (United States)

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel