WorldWideScience

Sample records for nitrogen silicon chalcogen

  1. Femtosecond Laser Microstructuring and Chalcogen Inclusion in Silicon

    Science.gov (United States)

    2011-02-12

    Conversation with Researchers and Students at the Benem¿rita Universidad Aut¿noma de Puebla in Puebla , Puebla , Mexico on 29 May 2009 Black silicon...Society Published on Web 04/19/2006 Following laser irradiation, the microstructured silicon surfaces were treated for 60 s in air plasma. Immediately...microstructure height and the distance between microstructures. After laser microstructuring, the sample surface is treated in air plasma to clean the

  2. Nitrogen-Phosphorus(III)-Chalcogen Macrocycles for the Synthesis of Polynuclear Silver(I) Sandwich Complexes.

    Science.gov (United States)

    Yogendra, Sivathmeehan; Hennersdorf, Felix; Weigand, Jan J

    2017-08-07

    The synthesis of inorganic N-P(III)-Ch-based macrocycles [-PhP-NMe-PPh-Ch-]2 (8Ch; Ch = S, Se) is presented by incorporating two nitrogen, two chalcogen, and four phosphorus atoms. The macrocycles are conveniently obtained via the cyclocondensation reaction of Na2Ch (Ch = S, Se) with the acyclic dichlorodiphosphazane ClPhP-NMe-PClPh (9). Treatment with elemental sulfur (S8) or gray selenium (Segray) results in an oxidative ring contraction to give 1,3,2,4-thiazadiphosphetidine 2,4-disulfide (10S) and 1,3,2,4-selenazadiphosphetidine 2,4-diselenide (10Se), respectively. Macrocycles 8Ch are excellent multidentate ligands for transition metal complexation, as demonstrated by the isolation of mono-, di- tri-, and tetranuclear silver sandwich complexes. The polynuclear silver complexes are comprehensively characterized, including detailed NMR and X-ray analysis.

  3. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium

    Science.gov (United States)

    Eom, Kwangsup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.

    2017-01-01

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene--SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2-1. The achieved cathode capacity is 403 mAh gSeS2-1 (1,209 mAh cmSeS2-3).

  4. A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium

    Science.gov (United States)

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.

    2017-01-01

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene—SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2−1. The achieved cathode capacity is 403 mAh gSeS2−1 (1,209 mAh cmSeS2−3). PMID:28054543

  5. Nitridation of silicon by nitrogen neutral beam

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Yasuhiro, E-mail: yasuhirohara2002@yahoo.co.jp [Organization for Research and Development of Innovative Science and Technology, Kansai University, Yamate-cho 3-3-35, Suita 564-8680, Osaka (Japan); Shimizu, Tomohiro; Shingubara, Shoso [Department of Mechanical Engineering, Faculty of Engineering Science, Kansai University, Yamate-cho 3-3-35, Suita 564-8680, Osaka (Japan)

    2016-02-15

    Graphical abstract: - Highlights: • Nitrided silicon was formed by nitrogen neutral beam at room temperature. • Si{sub 3}N{sub 4} layer was formed at the acceleration voltage more than 20 V. • Formed Si{sub 3}N{sub 4} layer show the effective as the passivation film in the wet etching process. - Abstract: Silicon nitridation was investigated at room temperature using a nitrogen neutral beam (NB) extracted at acceleration voltages of less than 100 V. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of a Si{sub 3}N{sub 4} layer on a Si (1 0 0) substrate when the acceleration voltage was higher than 20 V. The XPS depth profile indicated that nitrogen diffused to a depth of 36 nm for acceleration voltages of 60 V and higher. The thickness of the silicon nitrided layer increased with the acceleration voltages from 20 V to 60 V. Cross-sectional transmission electron microscopy (TEM) analysis indicated a Si{sub 3}N{sub 4} layer thickness of 3.1 nm was obtained at an acceleration voltage of 100 V. Moreover, it was proved that the nitrided silicon layer formed by the nitrogen NB at room temperature was effective as the passivation film in the wet etching process.

  6. Kinetics of Nitrogen Indiffusion in Czochralski Silicon Annealed in Nitrogen Ambient

    Institute of Scientific and Technical Information of China (English)

    LI Ming; MA Xiang-Yang; YANG De-Ren

    2008-01-01

    By means of low-temperature(10K)Fourier transform infrared absorption spectroscopy,the kinetics of nitrogen indiffusion in Czochralski(CZ)silicon annealed 8t 1150-1250°C in nitrogen ambient is investigated.Moreover,the nitrogen diffusivities in CZ silicon at elevated temperatures deduced herein are in good agreement with those previously obtained in float-zone silicon,thus leading to the conclusion that the nitrogen indiffusion in CZ silicon at elevated temperatures is via nitrogen pairs.

  7. Study of Nitrogen Concentration in Silicon Carbide

    Science.gov (United States)

    Wang, Hui; Yan, Cheng-Feng; Kong, Hai-Kuan; Chen, Jian-Jun; Xin, Jun; Shi, Er-Wei; Yang, Jian-Hua

    2013-06-01

    This work focused on studying the nitrogen concentration ( C N) in SiC. The variations of C N in the synthesis of SiC powder as well as the transport during SiC crystal growth have been investigated for broad ranges of temperature and Ar pressure. Before SiC crystal growth, SiC powders were synthesized from high-purity silicon and carbon powders. The concentrations of nitrogen, free C, and free Si in the as-prepared powders were all measured. C N in the SiC source powder decreased with increasing temperature and decreasing Ar pressure, whereas it did not show a remarkable trend with the molar ratio of free Si to free C. SiC crystal was then grown by the physical vapor transport (PVT) technique using the as-prepared powder. The distribution of C N in the remaining material indirectly indicated the temperature field of crystal growth. In addition, compared with introducing N2 during SiC crystal growth, doping with nitrogen during synthesis of the SiC source powder might be a better method to control C N in SiC crystals.

  8. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    Science.gov (United States)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  9. Photoluminescence of Dislocations in Nitrogen Doped Czochralski Silicon

    Institute of Scientific and Technical Information of China (English)

    LI Dong-Sheng; YANG De-Ren; E.Leoni; S.Binetti; S.Pizzini

    2004-01-01

    @@ We investigate optical properties of dislocations in nitrogen-doped and nitrogen-free Czochralski silicon. The dislocations are formed during crystal growth, but not formed during deformation. The results show that in nitrogen-doped samples, a broad band replaced the D1 band of dislocation, regardless of dislocation density. The replacement ofD1 band is caused by the non-irradiation combination induced by oxygen precipitation. Moreover,a new emission at 0.975 eV is observed in both the nitrogen-free and doped samples when the dislocation density is lower than 104 cm-2.

  10. A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiao; Zhu, Zhen; Shao, Hezhu; Rong, Ximing; Zhuang, Jun, E-mail: junzhuang@fudan.edu.cn [Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Li, Ning; Liang, Cong; Sun, Haibin; Zhao, Li, E-mail: lizhao@fudan.edu.cn [State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433 (China); Feng, Guojin [Spectrophotometry Laboratory, National Institute of Metrology, Beijing 100013 (China)

    2014-03-03

    A supersaturation of nitrogen atoms is found in the surface layer of microstructured silicon after femtosecond (fs) laser irradiation in NF{sub 3}. The average nitrogen concentration in the uppermost 50 nm is about 0.5 ± 0.2 at. %, several orders of magnitude higher than the solid solubility of nitrogen atoms in silicon. The nitrogen-hyperdoped silicon shows high crystallinity in the doped layer, which is due to the repairing effect of nitrogen on defects in silicon lattices. Nitrogen atoms and vacancies can be combined into thermal stable complexes after fs laser irradiation, which makes the nitrogen-hyperdoped silicon exhibit good thermal stability of optical properties.

  11. Deposition of silicon films in presence of nitrogen plasma—A feasibility study

    Indian Academy of Sciences (India)

    Sheetal J Patil; Dhananjay S Bodas; G J Phatak; S A Gangal

    2002-10-01

    A design, development and validation work of plasma based ‘activated reactive evaporation (ARE) system’ is implemented for the deposition of the silicon films in presence of nitrogen plasma on substrate maintained at room temperature. This plasma based deposition system involves evaporation of pure silicon by e-beam gun in presence of nitrogen plasma, excited by inductively coupled RF source (13.56 MHz). The activated silicon reacts with the ionized nitrogen and the films get deposited on silicon substrate. Different physical and process related parameters are changed. The grown films are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and ellipsometry. The results indicate that the film contains silicon nitride and a phase of silicon oxy nitride deposited even at room temperature. This shows the feasibility of using the ARE technique for the deposition of silicon films in nitrogen plasma.

  12. Nitrogen effects on silicon growth, defects, and carrier lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Ciszek, T.F.; Wang, T.H.; Burrows, R.W. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-08-01

    Silicon crystal or multicrystal growth in N{sub 2} or partial-N{sub 2} atmospheres can provide mechanical strengthening, lower purge-gas costs (nitrogen from liquid sources is about a factor of 4 less expensive than argon from liquid sources), and reduce swirl-type microdefect formation in dislocation-free (DF) crystals. There is not much literature on electrical effects of N in Si, including lifetime effects. We studied the effects of Si growth in atmospheres containing N{sub 2} on minority charge carrier lifetime E using the float-zone (FZ) crystal growth method. Ingots were grown with purge gases that ranged from pure argon (99.9995%) to pure N{sub 2} (99-999%). We found that multicrystalline silicon ingot growth in a partial or total nitrogen ambient has a negligible effect on {tau}. Values of 40 {mu}s < {tau} < 100 {mu}s were typical regardless of ambient. For DF growth, the degradation of {tau} is minimal and {tau} values above 1000 {mu}s are obtained if the amount of N{sub 2} in the purge gas is below the level at which nitride compounds form in the melt and disrupt DF growth.

  13. Infrared absorption peaks in nitrogen doped CZ silicon

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, N. [RIAST, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8570 (Japan); JEITA Nitrogen Measurement WG, 3-11 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)]. E-mail: inouen@riast.osakafu-u.ac.jp; Nakatsu, M. [RIAST, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8570 (Japan); Ono, H. [Japan Fine Ceramics Center, 2-4-3 Nishi-shinbashi, Minato-ku, Tokyo 105-0003 (Japan); JEITA Nitrogen Measurement WG, 3-11 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Inoue, Y. [Tokyo University of Education, Bunkyo-ku, Tokyo 117-0002 (Japan)

    2006-10-15

    Dependences on annealing temperature and nitrogen concentration were examined for new local vibration mode infrared absorption peaks at 856, 973, 984 and 1002 cm{sup -1} in nitrogen-doped CZ silicon crystal. The new absorption peaks were so weak that two sets of samples were examined for temperature and concentration dependences, respectively, to get reliable results. The peak at 1002 cm{sup -1} behaved similarly for annealing, though much weaker, to the known peaks at 810 and 1018 cm{sup -1} which are attributed to interstitial N pair accompanied by the two oxygen interstitials (NNO {sub i}O {sub i}). This suggests that the origin contains 2 O {sub i} also. It was strong in low concentration regime, which is similar to the behavior of shallow thermal donors. This suggests that the structure contains one nitrogen rather than two (N-O interstitial pair). The results were compared with the electronic transition absorption by shallow thermal donors (STD). The absorptions at 1002 and 240 cm{sup -1} behaved similarly. These suggest that the peak at 1002 cm{sup -1} is likely due to NOO {sub i}O {sub i} which is the candidate for STD. The temperature dependence of the other new peaks was slightly different from each other. Origin of the other peaks is not clear yet.

  14. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    OpenAIRE

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M

    2015-01-01

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping o...

  15. The allylic chalcogen effect in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuya A. Lin

    2010-12-01

    Full Text Available Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  16. The allylic chalcogen effect in olefin metathesis

    Science.gov (United States)

    Lin, Yuya A

    2010-01-01

    Summary Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications. PMID:21283554

  17. Photoluminescence and Raman spectroscopy characterization of boron- and nitrogen-doped 6H silicon carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan

    2011-01-01

    Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could be propo......Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could...

  18. Synthesis and Characterization of Mesoporous Silicon Oxynitride MCM-41 with High Nitrogen Content

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cunman; XU Zheng; LIU Qian

    2005-01-01

    Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size distribution and good order), but also are amorphous. The composition and structure of the materials were investigated by CNH element analysis, XPS, Si MAS NMR, XRD, HRTEM and N2 sorption, respectively. Mesoporous silicon oxynitrides MCM-41 with a high nitrogen content are still non-crystal (amorphous).

  19. Photoluminescence and Raman spectroscopy characterization of boron- and nitrogen-doped 6H silicon carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan

    2011-01-01

    Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could...

  20. Optical absorption and emission of nitrogen-doped silicon nanocrystals.

    Science.gov (United States)

    Pi, Xiaodong; Chen, Xiaobo; Ma, Yeshi; Yang, Deren

    2011-11-01

    Silicon nanocrystals (Si NCs) may be both unintentionally and intentionally doped with nitrogen (N) during their synthesis and processing. Since the importance of Si NCs largely originates from their remarkable optical properties, it is critical to understand the effect of N doping on the optical behavior of Si NCs. On the basis of theoretical calculations, we show that the doping of Si NCs with N most likely leads to the formation of paired interstitial N at the NC surface, which causes both the optical absorption and emission of Si NCs to redshift. But these redshifts are smaller than those induced by doubly bonded O at the NC surface. It is found that high radiative recombination rates can be reliably obtained for Si NCs with paired interstitial N at the NC surface. The current results not only help to understand the optical behavior of Si NCs synthesized and processed in N-containing environments, but also inspire intentional N doping as an additional means to control the optical properties of Si NCs.

  1. Synthesis of silicon carbide in a nitrogen plasma torch: rotational temperature determination and material analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Camacho, J; Castell, R [Universidad Simon BolIvar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Castro, A; Manrique, M [Universidad Simon BolIvar, Departamento de Ciencias de los Materiales, Caracas (Venezuela, Bolivarian Republic of)], E-mail: jgruiz@usb.ve

    2008-09-07

    Experiments on silicon carbide synthesis were performed using a dc nitrogen plasma torch. Measurements of rotational temperature of nitrogen molecules by emission spectroscopy were performed, based on the band (0, 1) of the first negative system of nitrogen N{sub 2}{sup +}(B{sup 2}{sigma}{sub u}{sup +}{yields}X{sup 2}{sigma}{sub g}{sup +}) for the R branch. Three different plasma torch powers were studied in order to optimize the production of silicon carbide with our experimental set-up. The synthesized products were characterized by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy.

  2. Synthesis of silicon carbide in a nitrogen plasma torch: rotational temperature determination and material analysis

    Science.gov (United States)

    Ruiz-Camacho, J.; Castell, R.; Castro, A.; Manrique, M.

    2008-09-01

    Experiments on silicon carbide synthesis were performed using a dc nitrogen plasma torch. Measurements of rotational temperature of nitrogen molecules by emission spectroscopy were performed, based on the band (0, 1) of the first negative system of nitrogen N_2^+ (B\\,{}^2\\Sigma_u^+ \\to X\\,{}^2\\Sigma _g^+) for the R branch. Three different plasma torch powers were studied in order to optimize the production of silicon carbide with our experimental set-up. The synthesized products were characterized by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy.

  3. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane

    2014-01-01

    Nitrogen is an essential input factor required for plant growth and biomass production. However, very limited information is available on how nitrogen fertilization affects the quality of crop residues to be used as lignocellulosic feedstock. In the present study, straw of winter wheat plants grown...... linearly from 0.32% to 0.71% over the range of nitrogen treatments. Cellulose and hemicellulose were not affected by the nitrogen supply while lignin peaked at medium rates of nitrogen application. The nitrogen treatments had a distinct influence on the silicon concentration, which decreased from 2.5% to 1...... saccharification efficiency was negatively correlated with the rate of nitrogen supply. We conclude that the level of nitrogen supply to wheat plants alters the composition of cell wall components in the straw and that this may result in reduced saccharification efficiency....

  4. Tellurium: a maverick among the chalcogens.

    Science.gov (United States)

    Chivers, Tristram; Laitinen, Risto S

    2015-04-07

    The scant attention paid to tellurium in both inorganic and organic chemistry textbooks may reflect, in part, the very low natural abundance of the element. Such treatments commonly imply that the structures and reactivities of tellurium compounds can be extrapolated from the behaviour of their lighter chalcogen analogues (sulfur and selenium). In fact, recent findings and well-established observations clearly illustrate that this assumption is not valid. The emerging importance of the unique properties of tellurium compounds is apparent from the variety of their known and potential applications in both inorganic and organic chemistry, as well as materials science. With reference to selected contemporary examples, this Tutorial Review examines the fundamental concepts that are essential for an understanding of the unique features of tellurium chemistry with an emphasis on hypervalency, three-centre bonding, secondary bonding interactions, σ and π-bond energies (multiply bonded compounds), and Lewis acid behaviour.

  5. Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study

    Institute of Scientific and Technical Information of China (English)

    Dai Xian-Qi; Tang Ya-Nan; Dai Ya-Wei; Li Yan-Hui; Zhao Jian-Hua; Zhao Bao; Yang Zong-Xian

    2011-01-01

    The structures of Pt clusters on nitrogen-, boron-, silicon- doped graphenes are theoretically studied using densityfunctional theory. These dopants (nitrogen, boron and silicon) each do not induce a local curvature in the graphene and the doped graphenes all retain their planar form. The formation energy of the silicon-graphene system is lower than those of the nitrogen-, boron-doped graphenes, indicating that the silicon atom is easier to incorporate into the graphene.All the substitutional impurities enhance the interaction between the Pt atom and the graphene. The adsorption energy of a Pt adsorbed on the silicon-doped graphene is much higher than those on the nitrogen- and boron-doped graphenes.The doped silicon atom can provide more charges to enhance the Pt-graphene interaction and the formation of Pt clusters each with a large size. The stable structures of Pt clusters on the doped-graphenes are dimeric, triangle and tetrahedron with the increase of the Pt coverage. Of all the studied structures, the tetrahedron is the most stable cluster which has the least influence on the planar surface of doped-graphene.

  6. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon.

    Science.gov (United States)

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-05-27

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing.

  7. Structural characterization of buried nitride layers formed by nitrogen ion implantation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, A.D. [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai, Maharashtra 400098 (India)], E-mail: adyadav@physics.mu.ac.in; Patel, A.P.; Dubey, S.K. [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai, Maharashtra 400098 (India); Panigrahi, B.K.; Kesavamoorthy, R.; Nair, K.G.M. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu 603102 (India)

    2008-04-15

    The synthesis of buried silicon nitride insulating layers was carried out by SIMNI (separation by implanted nitrogen) process using implantation of 140 keV nitrogen ({sup 14}N{sup +}) ions at fluence of 1.0 x 10{sup 17}, 2.5 x 10{sup 17} and 5.0 x 10{sup 17} cm{sup -2} into <1 1 1> single crystal silicon substrates held at elevated temperature (410 deg. C). The structures of ion-beam synthesized buried silicon nitride layers were studied by X-ray diffraction (XRD) technique. The XRD studies reveal the formation of hexagonal silicon nitride (Si{sub 3}N{sub 4}) structure at all fluences. The concentration of the silicon nitride phase was found to be dependent on the ion fluence. The intensity and full width at half maximum (FWHM) of XRD peak were found to increase with increase in ion fluence. The Raman spectra for samples implanted with different ion fluences show crystalline silicon (c-Si) substrate peak at wavenumber 520 cm{sup -1}. The intensity of the silicon peak was found to decrease with increase in ion fluence.

  8. Thin tantalum-silicon-oxygen/tantalum-silicon-nitrogen films as high-efficiency humidity diffusion barriers for solar cell encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, H. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany)]. E-mail: Henning.Heuer@izfp-d.fraunhofer.de; Wenzel, C. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Herrmann, D. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Zentrum fuer Sonnenenergie-und Wasserstoff-Forschung (ZSW) Industriestrasse 6, 70565 Stuttgart (Germany); Huebner, R. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Leibniz Institut fuer Festkoerper-und Werkstoffforschung Dresden (IFW) Helmholtzstrasse 20, 01069, Dresden (Germany); Zhang, Z.L. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Max-Planck-Gesellschaft fuer Metallforschung (MPI) Heisenbergstrasse 3, 70569 Stuttgart (Germany); Bartha, J.W. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany)

    2006-12-05

    Flexible thin-film solar cells require flexible encapsulation to protect the copper-indium-2 selenide (CIS) absorber layer from humidity and aggressive environmental influences. Tantalum-silicon-based diffusion barriers are currently a favorite material to prevent future semiconductor devices from copper diffusion. In this work tantalum-silicon-nitrogen (Ta-Si-N) and tantalum-silicon-oxygen (Ta-Si-O) films were investigated and optimized for thin-film solar cell encapsulation of next-generation flexible solar modules. CIS solar modules were coated with tantalum-based barrier layers. The performance of the thin-film barrier encapsulation was determined by measuring the remaining module efficiency after a 1000 h accelerated aging test. A significantly enhanced stability against humidity diffusion in comparison to non-encapsulated modules was reached with a reactively sputtered thin-film system consisting of 250 nm Ta-Si-O and 15 nm Ta-Si-N.

  9. Investigating silver coordination to mixed chalcogen ligands.

    Science.gov (United States)

    Knight, Fergus R; Randall, Rebecca A M; Wakefield, Lucy; Slawin, Alexandra M Z; Woollins, J Derek

    2012-11-08

    Six silver(I) coordination complexes have been prepared and structurally characterised. Mixed chalcogen-donor acenaphthene ligands L1-L3 [Acenap(EPh)(E'Ph)] (Acenap = acenaphthene-5,6-diyl; E/E' = S, Se, Te) were independently treated with silver(I) salts (AgBF₄/AgOTf). In order to keep the number of variables to a minimum, all reactions were carried out using a 1:1 ratio of Ag/L and run in dichloromethane. The nature of the donor atoms, the coordinating ability of the respective counter-anion and the type of solvent used in recrystallisation, all affect the structural architecture of the final silver(I) complex, generating monomeric, silver(I) complexes {[AgBF₄(L)₂] (1 L = L1; 2 L = L2; 3 L = L3), [AgOTf(L)₃] (4 L = L1; 5 L = L3), [AgBF₄(L)₃] (2a L = L1; 3a L = L3)} and a 1D polymeric chain {[AgOTf(L3)](n) 6}. The organic acenaphthene ligands L1-L3 adopt a number of ligation modes (bis-monodentate μ₂-η²-bridging, quasi-chelating combining monodentate and η⁶-E(phenyl)-Ag(I) and classical monodentate coordination) with the central silver atom at the centre of a tetrahedral or trigonal planar coordination geometry in each case. The importance of weak interactions in the formation of metal-organic structures is also highlighted by the number of short non-covalent contacts present within each complex.

  10. Investigating Silver Coordination to Mixed Chalcogen Ligands

    Directory of Open Access Journals (Sweden)

    J. Derek Woollins

    2012-11-01

    Full Text Available Six silver(I coordination complexes have been prepared and structurally characterised. Mixed chalcogen-donor acenaphthene ligands L1–L3 [Acenap(EPh(E'Ph] (Acenap = acenaphthene-5,6-diyl; E/E' = S, Se, Te were independently treated with silver(I salts (AgBF4/AgOTf. In order to keep the number of variables to a minimum, all reactions were carried out using a 1:1 ratio of Ag/L and run in dichloromethane. The nature of the donor atoms, the coordinating ability of the respective counter-anion and the type of solvent used in recrystallisation, all affect the structural architecture of the final silver(I complex, generating monomeric, silver(I complexes {[AgBF4(L2] (1 L = L1; 2 L = L2; 3 L = L3, [AgOTf(L3] (4 L = L1; 5 L = L3, [AgBF4(L3] (2a L = L1; 3a L = L3} and a 1D polymeric chain {[AgOTf(L3]n 6}. The organic acenaphthene ligands L1-L3 adopt a number of ligation modes (bis-monodentate μ2-η2-bridging, quasi-chelating combining monodentate and η6-E(phenyl-Ag(I and classical monodentate coordination with the central silver atom at the centre of a tetrahedral or trigonal planar coordination geometry in each case. The importance of weak interactions in the formation of metal-organic structures is also highlighted by the number of short non-covalent contacts present within each complex.

  11. Syntheses and Reactions of Chalcogen-containing Heterocycles.

    Science.gov (United States)

    Sashida, Haruki

    2016-01-01

    The advances in my laboratory for the past 20-25 years concerning the chemistry of chalcogen-containing heterocycles are reviewed. The intramolecular cyclization of the chalcogenols (-TeH, -SeH, -SH) into a triple bond or appropriate leaving group produced various chalcogen-containing heterocycles. The reactions of the obtained products were examined: the reactions of 1-benzo- and 2-benzopyrylium salts containing a tellurium or selenium element with several nucleophiles, including alkoxides, amines, the cyanide ion, an active methyl compound (acetone), Grignard reagents, copper reagents, and tin reagents, along with hydrogenation and hydrolysis reactions, provided corresponding chromes or isochromes having various functional groups at the 2- or 1-C position. Isothiocyanate and isoselenocyanate were used as chalcogen sources for the preparation of five- or six-membered heterocycles. In addition, double intramolecular cyclization, ring-expansion reactions, electrophilic cyclization and iodocyclization were also carried out.

  12. Combustion synthesis of silicon carbide in nitrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, O. (College of General Education, Osaka Industrial Univ., Daito, Osaka 574 (JP)); Hirao, K. (Narumi Technical Lab., Midoriku, Nagoya 458 (JP)); Koizumi, M. (Institute for Science and Technology, Ryukoku Univ., Fushimiku, Kyoto 612 (JP)); Miyamoto, Y. (Institute for Science and Industrial Research, Osaka Univ., Ibariki, Osaka 567 (JP))

    1989-09-01

    This paper reports on fine SiC powders synthesized by burning the mixed reactants Si and C in a nitrogen atmosphere of 3 to 10 MPa. The exothermic synthesis reaction propagated spontaneously after igniting the reactants at room temperature. The SiC powders obtained had a uniform size distribution of about 0.2 {mu}m. The combustion velocity was 0.8 to 1.5 mm/s. The maximum temperature measured at the reaction was 2500 K, which was higher than the adiabatic combustion temperature of SiC, but slightly lower than the decomposition temperature of Si{sub 3}N{sub 4} under nitrogen pressure.

  13. Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature.

    Science.gov (United States)

    Akiba, M; Tsujino, K; Sato, K; Sasaki, M

    2009-09-14

    Multipixel silicon avalanche photodiodes (Si APDs) are novel photodetectors used as silicon photomultipliers (SiPMs), or multipixel photon counter (MPPC), because they have fast response, photon-number resolution, and a high count rate; one drawback, however, is the high dark count rate. We developed a system for cooling an MPPC to liquid nitrogen temperature and thus reduce the dark count rate. Our system achieved dark count rates of <0.2 cps. Here we present the afterpulse probability, counting capability, timing jitter, and photon-number resolution of our system at 78.5 K and 295 K.

  14. Defects in Fast-Neutron Irradiated Nitrogen-Doped Czochralski Silicon after Annealing at High Temperature

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fast-neutron irradiated nitrogen-doped Czochralski silicon (NCZ-Si) was annealed at 1100 ℃ for different time, then FTIR and optical microscope were used to study the behavior of oxygen. It is found that [Oi] increase at the early stage then decrease along with the increasing of anneal time. High density induced-defects can be found in the cleavage plane. By comparing NCZ-Si with Czochralski silicon (CZ-Si), [Oi] in NCZ-Si decrease more after anneal 24 h.

  15. Application of four-membered ring chalcogenation reagents to the synthesis of new phosphorus-chalcogen heterocycles

    OpenAIRE

    Hua, Guoxiong; Cordes, David Bradford; Slawin, Alexandra Martha Zoya; Woollins, J. Derek

    2016-01-01

    The authors are grateful to the University of St Andrews for financial support. The reaction of four-membered ring chalcogenation reagents such as Lawesson’s reagent, 2,4-diferrocenyl-1,3,2,4-diathiadiphosphetane 2,4-disulfide (the ferrocene analogy of Lawesson’s reagent) and Woollins’ reagent with alkyl- or aryl-dithiols in refluxing toluene gave a series of five- to seven-membered organo-phosphorus-chalcogen heterocycles in 24% to 87% yields. Five representative X-ray structures confirm ...

  16. Contactless Microwave Measurements of Photoconductivity in Silicon Hyperdoped with Chalcogens

    Science.gov (United States)

    2012-01-01

    microwaves emitted by a Millitech Gunn diode pass, via a waveguide, through an isolator to protect the source from reflections. A ‘‘magic tee’’ then...sample. Lasers were modulated at 286Hz using a Thorlabs LDC500 laser diode controller. The photoinduced change in the intensity of reflected microwaves was

  17. A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries.

    Science.gov (United States)

    Chen, Bing-Hong; Chuang, Shang-I; Liu, Wei-Ren; Duh, Jenq-Gong

    2015-12-30

    In this study, a jumbo silicon/silicon carbide (Si/SiC) composite (JSC), a novel anode material source, was extracted from solar power industry cutting waste and used as a material for lithium-ion batteries (LIBs), instead of manufacturing the nanolized-Si. Unlike previous methods used for preventing volume expansion and solid electrolyte interphase (SEI), the approach proposed here simply entails applying surface modification to JSC-based electrodes by using nitrogen-atmospheric pressure plasma jet (N-APPJ) treatment process. Surface organic bonds were rearranged and N-doped compounds were formed on the electrodes through applying different plasma treatment durations, and the qualitative examinations of before/after plasma treatment were identified by X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA). The surface modification resulted in the enhancement of electrochemical performance with stable capacity retention and high Coulombic efficiency. In addition, depth profile and scanning electron microscope (SEM) images were executed to determine the existence of Li-N matrix and how the nitrogen compounds change the surface conditions of the electrodes. The N-APPJ-induced rapid surface modification is a major breakthrough for processing recycled waste that can serve as anode materials for next-generation high-performance LIBs.

  18. Annealing effect on thermodynamic and physical properties of mesoporous silicon: A simulation and nitrogen sorption study

    Science.gov (United States)

    Kumar, Pushpendra; Huber, Patrick

    2016-04-01

    Discovery of porous silicon formation in silicon substrate in 1956 while electro-polishing crystalline Si in hydrofluoric acid (HF), has triggered large scale investigations of porous silicon formation and their changes in physical and chemical properties with thermal and chemical treatment. A nitrogen sorption study is used to investigate the effect of thermal annealing on electrochemically etched mesoporous silicon (PS). The PS was thermally annealed from 200˚C to 800˚C for 1 hr in the presence of air. It was shown that the pore diameter and porosity of PS vary with annealing temperature. The experimentally obtained adsorption / desorption isotherms show hysteresis typical for capillary condensation in porous materials. A simulation study based on Saam and Cole model was performed and compared with experimentally observed sorption isotherms to study the physics behind of hysteresis formation. We discuss the shape of the hysteresis loops in the framework of the morphology of the layers. The different behavior of adsorption and desorption of nitrogen in PS with pore diameter was discussed in terms of concave menisci formation inside the pore space, which was shown to related with the induced pressure in varying the pore diameter from 7.2 nm to 3.4 nm.

  19. Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces.

    Science.gov (United States)

    Singh, Sonal; Catledge, Shane A

    2013-01-28

    Fluorescent nanodiamonds were produced by incorporation of silicon-vacancy (Si-V) defect centers in as-received diamonds of averaged size ∼255 nm using microwave plasma chemical vapor deposition. The potential for further enhancement of Si-V emission in nanodiamonds (NDs) is demonstrated through controlled nitrogen doping by adding varying amounts of N(2) in a H(2) + CH(4) feedgas mixture. Nitrogen doping promoted strong narrow-band (FWHM ∼ 10 nm) emission from the Si-V defects in NDs, as confirmed by room temperature photoluminescence. At low levels, isolated substitutional nitrogen in {100} growth sectors is believed to act as a donor to increase the population of optically active (Si-V)(-) at the expense of optically inactive Si-V defects, thus increasing the observed luminescence from this center. At higher levels, clustered nitrogen leads to deterioration of diamond quality with twinning and increased surface roughness primarily on {111} faces, leading to a quenching of the Si-V luminescence. Enhancement of the Si-V defect through controlled nitrogen doping offers a viable alternative to nitrogen-vacancy defects in biolabeling/sensing applications involving sub-10 nm diamonds for which luminescent activity and stability are reportedly poor.

  20. Characterization of nitrogen doped silicon-carbon multi-layer nanostructures obtained by TVA method

    Science.gov (United States)

    Ciupina, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Prodan, Gabriel C.; Lungu, Cristian P.; Vladoiu, Rodica; Jepu, Ionut; Mandes, Aurelia; Dinca, Virginia; Caraiane, Aureliana; Nicolescu, Virginia; Dinca, Paul; Zaharia, Agripina

    2016-09-01

    Ionized nitrogen doped Si-C multi-layer thin films used to increase the oxidation resistance of carbon have been obtained by Thermionic Vacuum Arc (TVA) method. The 100 nm thickness carbon thin films were deposed on silicon or glass substrates and then seven N doped Si-C successively layers on carbon were deposed. To characterize the microstructure, tribological and electrical properties of as prepared N-SiC multi-layer films, Transmission Electron Microscopy (TEM, STEM), Energy Dispersive X-Ray Spectroscopy (EDXS), electrical and tribological techniques were achieved. Samples containing multi-layer N doped Si-C coating on carbon were investigated up to 1000°C. Oxidation protection is based on the reaction between SiC and elemental oxygen, resulting SiO2 and CO2, and also on the reaction involving N, O and Si-C, resulting silicon oxynitride (SiNxOy) with a continuously vary composition, and because nitrogen can acts as a trapping barrier for oxygen. The tribological properties of structures were studied using a tribometer with ball-on-disk configuration from CSM device with sapphire ball. The measurements show that the friction coefficient on the N-SiC is smaller than friction coefficient on uncoated carbon layer. Electrical conductivity at different temperatures was measured in constant current mode. The results confirm the fact that conductivity is greater when nitrogen content is greater. To justify the temperature dependence of conductivity we assume a thermally activated electrical transport mechanism.

  1. A dipole moment study of organo-chalcogen compoun

    Science.gov (United States)

    Lumbroso, H.; Liégeois, Ch.; Dereu, N.; Christiaens, L.; LuXen, A.

    1980-10-01

    Analysis of the dipole moments of chalcogenoanisoles, the directions of which are given by those of their p-bromo derivatives, shows that the mesomeric moment decreases on passing from anisole to thioanisole, selenoanisole and telluroanisole ( m = 1.1, 0.5, 0.25 and 0.18 D, respectively). In p-nitrochalcogenoanisoles and 1-chalcogenochroman-4-ones the interaction moment follows the reverse order, which is ascribed to the increasing sensitivity of the chalcogen mesomeric moment to the chalcogen atomic number and polarizability. The less-hindered (Te, O)- cis conformation is preferred for 2-acyl-3-methyltellurothiophenes and 3-acyl-2-methyltellurothiophenes (acyl: formyl or acetyl), and 3-formyl-4-methyltellurothiophene. Rotational isomerism in bis(2-furyl), bis(2-thienyl), bis(3-thienyl) and bis(2-selenienyl) ditelluride is also examined, and the dipole moments of 1-chalcogenochroman-4-ones, 2-chalcogenochroman-1-ones and 2-chalco-genochrom-1-ones analyzed.

  2. Local vibration modes of shallow thermal donors in nitrogen-doped CZ silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, N. [RIAST, Osaka Prefecture University, Sakai, 599-8570 (Japan) and Nitrogen Measurement WG, JEITA, Tokyo, 101-0062 (Japan)]. E-mail: inouen@riast.osakafu-u.ac.jp; Nakatsu, M. [RIAST, Osaka Prefecture University, Sakai, 599-8570 (Japan); Ono, H. [Japan Fine Ceramics Center, Tokyo, 105-0003 (Japan); Nitrogen Measurement WG, JEITA, Tokyo, 101-0062 (Japan)

    2006-04-01

    Local vibration mode (LVM) infrared absorption from shallow thermal donors (STD) composed of nitrogen-oxygen complexes in nitrogen-doped CZ silicon crystals was examined. The samples whose STD concentration had been determined were measured. The sample dependence of the peaks at 810 and 1018cm{sup -1} was similar to that of STD but the estimated concentration was slightly higher. New LVM peaks were found at 855, 973, 982, 1002cm{sup -1} and so on. Their magnitude and sample dependence agreed well with those of STD. Annealing temperature dependence of other samples supported the results. Annealing time dependence of STD concentration at 650 deg. C was examined. STD peaks at 250, 242 and those at 240, 234 and 238cm{sup -1} behaved differently, suggesting the presence of two kinds of STD origin.

  3. Structural and emission properties of Tb3+-doped nitrogen-rich silicon oxynitride films

    Science.gov (United States)

    Labbé, C.; An, Y.-T.; Zatryb, G.; Portier, X.; Podhorodecki, A.; Marie, P.; Frilay, C.; Cardin, J.; Gourbilleau, F.

    2017-03-01

    Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb3+ ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si-N and Si-O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the ‘out-of-phase’ stretching vibration mode of the Si-O bond. The highest Tb3+ photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare earth

  4. [Progress in the research on silicon-nitrogen based phosphor for white LED].

    Science.gov (United States)

    Xu, Guo-Tang; Liang, Pei; Wang, Le; Dong, Qian-Min; Liu, Yang; Li, Xiao-Yan

    2013-11-01

    With the rapid development of white LED technology, the traditional YAG : Ce3+ phosphor is difficult to meet the requirement due to the low color rendering and high color temperature. Using ultraviolet chip to stimulate the tri-phosphor has become an effective way for white LED, and it is urgent to develop novel tri-phosphor with high-performance, especially for red light-emitting materials. Silicon-nitrogen based compounds contain the network structure composed of SiN4 tetrahedron, with higher chemical and thermal stability. Because of their diversity structures, these phosphors have a higher absorption efficiency in UV-blue region, and also, with the change of substrate and active ion, emission spectrum will cover the entire visible region, resulting in a higher light conversion efficiency and light color stability, coupled with the advantages of being not sensitive to the changes in temperature and drive current, etc. These studies will have a far-reaching impact on the development of white LED. In the present paper, we introduce the preparation and latest progress of silicon-nitrogen based phosphor, including the crystal structure, spectroscopic properties and application characteristics.

  5. Black Silicon for Next-Generation Infrared Sensors

    Science.gov (United States)

    2012-08-01

    3 0 0 n m Ion-implant chalcogen (S, Se, Te) into p-Si (1) Pulsed-laser melting ( PLM ) “heals” implant damage Crystalline Si, supersaturated...34@ N 0.50 ro E ~ 0 0.25 c A = (1 - R - T) I (1 - R) fs-laser doping , , lon implant+ PLM doping ,..,1020 em""’ chalcogens silicon w fer S.Si

  6. Total dose radiation response of modified commercial silicon-on-insulator materials with nitrogen implanted buried oxide

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhong-Shan; Liu Zhong-Li; Yu Fang; Li Ning

    2012-01-01

    Nitrogen ions of various doses are implanted into the buried oxide (BOX) of commercial silicon-on-insulator (SOI)materials,and subsequent annealings are carried out at various temperatures.The total dose radiation responses of the nitrogen-implanted SOI wafers are characterized by the high frequency capacitance-voltage (C-V) technique after irradiation using a Co-60 source.It is found that there exist relatively complex relationships between the radiation hardness of the nitrogen implanted BOX and the nitrogen implantation dose at different irradiation doses.Fhe experimental results also suggest that a lower dose nitrogen implantation and a higher post-implantation annealing temperature are suitable for improving the radiation hardness of SOI wafer.Based on the measured C-V data,secondary ion mass spectrometry (SIMS),and Fourier transform infrared (FTIR) spectroscopy,the total dose responses of the nitrogen-implanted SOI wafers are discussed.

  7. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Science.gov (United States)

    Hayat, Asma; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm2 and 4 J/cm2 resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm2 under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm2, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly dependent upon the laser fluence as well as environmental conditions. The difference in surface morphology is attributable to cooling, confinement and shielding effects as well as difference in plasma temperature, density and pressure of environmental media that corresponds to different energy deposition

  8. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  9. Behavior of incorporated nitrogen in plasma-nitrided silicon oxide formed by chemical vapor deposition

    Science.gov (United States)

    Shinoda, Nao; Itokawa, Hiroshi; Fujitsuka, Ryota; Sekine, Katsuyuki; Onoue, Seiji; Tonotani, Junichi

    2016-04-01

    The behavior of nitrogen (N) atoms in plasma-nitrided silicon oxide (SiO2) formed by chemical vapor deposition (CVD) was characterized by physical analysis and from electrical properties. The changes in the chemical bonding and distribution of N in plasma-nitrided SiO2 were investigated for different subsequent processes. N-Si3, N-Si2O, and N2 are formed in a SiO2 film by plasma nitridation. N2 molecules diffuse out during annealing at temperatures higher than 900 °C. NH species are generated from N2 molecules and H in the SiO2 film with subsequent oxide deposition using O3 as an oxidant. The capacitance-voltage (C-V) curves of metal-oxide-semiconductor (MOS) capacitors are obtained. The negative shift of the C-V curve is caused by the increase in the density of positive fix charge traps in CVD-SiO2 induced by plasma nitridation. The C-V curve of plasma-nitrided SiO2 subjected to annealing shifts to the positive direction and that subjected to the subsequent oxide deposition shifts markedly to the negative direction. It is clarified that the density of positive charge fixed traps in plasma-nitrided SiO2 films decrease because the amount of N2 molecules is decreased by annealing, and that the density of traps increases because NH species are generated and move to the interface between SiO2 and the Si substrate with the subsequent oxide deposition.

  10. Growth and Nitrogen Fixation in Silicon and/or Potassium Fed Chickpeas Grown under Drought and Well Watered Conditions

    Directory of Open Access Journals (Sweden)

    Fawaz Kurdali

    2013-08-01

    Full Text Available A pot experiment was conducted to study the effects of silicon (Si and/or potassium (K on plant growth, nitrogen uptake and N2-fixation in water stressed (FC1 and well watered (FC2 chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. For most of the growth parameters, it was found that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of almost all studied parameters. The Si100K+ (FC1 and Si50K+ (FC2 treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leave’s dry matter in response to the solely added Si (Si50K- and Si100K- is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE. Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be also considered an important element for the symbiotic performance of chickpea plants. It can be concluded that the synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.

  11. The dominant role of chalcogen bonding in the crystal packing of 2D/3D aromatics.

    Science.gov (United States)

    Fanfrlík, Jindřich; Přáda, Adam; Padělková, Zdeňka; Pecina, Adam; Macháček, Jan; Lepšík, Martin; Holub, Josef; Růžička, Aleš; Hnyk, Drahomír; Hobza, Pavel

    2014-09-15

    The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.

  12. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  13. Optimization of time–temperature schedule for nitridation of silicon compact on the basis of silicon and nitrogen reaction kinetics

    Indian Academy of Sciences (India)

    J Rakshit; P K Das

    2000-08-01

    A time–temperature schedule for formation of silicon–nitride by direct nitridation of silicon compact was optimized by kinetic study of the reaction, 3Si + 2N2 = Si3N4 at four different temperatures (1250°C, 1300°C, 1350°C and 1400°C). From kinetic study, three different temperature schedules were selected each of duration 20 h in the temperature range 1250°–1450°C, for complete nitridation. Theoretically full nitridation (100% i.e. 66.7% weight gain) was not achieved in the product having no unreacted silicon in the matrix, because impurities in Si powder and loss of material during nitridation would result in 5–10% reduction of weight gain. Green compact of density < 66% was fully nitrided by any one of the three schedules. For compact of density > 66%, the nitridation schedule was maneuvered for complete nitridation. Iron promotes nitridation reaction. Higher weight loss during nitridation of iron doped compact is the main cause of lower nitridation gain compared to undoped compact in the same firing schedule. Iron also enhances the amount of -Si3N4 phase by formation of low melting FeSi phase.

  14. Role of oxygen and nitrogen in n-type microcrystalline silicon carbide grown by hot wire chemical vapor deposition

    Science.gov (United States)

    Pomaska, Manuel; Mock, Jan; Köhler, Florian; Zastrow, Uwe; Perani, Martina; Astakhov, Oleksandr; Cavalcoli, Daniela; Carius, Reinhard; Finger, Friedhelm; Ding, Kaining

    2016-12-01

    N-type microcrystalline silicon carbide (μc-SiC:H(n)) deposited by hot wire chemical vapor deposition provides advantageous opto-electronic properties for window layer material in silicon-based thin-film solar cells and silicon heterojunction solar cells. So far, it is known that the dark conductivity (σd) increases with the increase in the crystallinity of μc-SiC:H(n)films. However, due to the fact that no active doping source is used, the mechanism of electrical transport in these films is still under debate. It is suggested that unintentional doping by atmospheric oxygen (O) or nitrogen (N) contamination plays an important role in the electrical transport. To investigate the impact of O and N, we incorporated O and N in μc-SiC:H(n) films and compared the influence on the microstructural, electronic, and optical properties. We discovered that, in addition to increasing the crystallinity, it is also possible to increase the σd by several orders of magnitude by increasing the O-concentration or the N-concentration in the films. Combining a high concentration of O and N, along with a high crystallinity in the film, we optimized the σd to a maximum of 5 S/cm.

  15. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

    Science.gov (United States)

    Zhou, Shengqiang; Liu, Fang; Prucnal, S; Gao, Kun; Khalid, M; Baehtz, C; Posselt, M; Skorupa, W; Helm, M

    2015-02-09

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

  16. Measurement of bonding energy in an anhydrous nitrogen atmosphere and its application to silicon direct bonding technology

    Science.gov (United States)

    Fournel, F.; Continni, L.; Morales, C.; Da Fonseca, J.; Moriceau, H.; Rieutord, F.; Barthelemy, A.; Radu, I.

    2012-05-01

    Bonding energy represents an important parameter for direct bonding applications as well as for the elaboration of physical mechanisms at bonding interfaces. Measurement of bonding energy using double cantilever beam (DCB) under prescribed displacement is the most used technique thanks to its simplicity. The measurements are typically done in standard atmosphere with relative humidity above 30%. Therefore, the obtained bonding energies are strongly impacted by the water stress corrosion at the bonding interfaces. This paper presents measurements of bonding energies of directly bonded silicon wafers under anhydrous nitrogen conditions in order to prevent the water stress corrosion effect. It is shown that the measurements under anhydrous nitrogen conditions (less than 0.2 ppm of water in nitrogen) lead to high stable debonding lengths under static load and to higher bonding energies compared to the values measured under standard ambient conditions. Moreover, the bonding energies of Si/SiO2 or SiO2/SiO2 bonding interfaces are measured overall the classical post bond annealing temperature range. These new results allow to revisit the reported bonding mechanisms and to highlight physical and chemical phenomena in the absence of stress corrosion effect.

  17. Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters.

    Science.gov (United States)

    Kremer, Adrian; Aurisicchio, Claudia; De Leo, Federica; Ventura, Barbara; Wouters, Johan; Armaroli, Nicola; Barbieri, Andrea; Bonifazi, Davide

    2015-10-19

    The synthesis, X-ray crystal structures, ground- and excited-state UV/Vis absorption spectra, and luminescence properties of chalcogen-doped organic emitters equipped on both extremities with benzoxa-, benzothia-, benzoselena- and benzotellurazole (1X and 2X ) moieties have been reported for the first time. The insertion of the four different chalcogen atoms within the same molecular skeleton enables the investigation of only the chalcogenic effect on the organisation and photophysical properties of the material. Detailed crystal-structure analyses provide evidence of similar packing for 2O -2Se , in which the benzoazoles are engaged in π-π stacking and, for the heavier atoms, in secondary X⋅⋅⋅X and X⋅⋅⋅N bonding interactions. Detailed computational analysis shows that the arrangement is essentially governed by the interplay of van der Waals and secondary bonding interactions. Progressive quenching of the fluorescence and concomitant onset of phosphorescence features with gradually shorter lifetimes are detected as the atomic weight of the chalcogen heteroatom increases, with the tellurium-doped derivatives exhibiting only emission from the lowest triplet excited state. Notably, the phosphorescence spectra of the selenium and tellurium derivatives can be recorded even at room temperature; this is a very rare finding for fully organic emitters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nitrogen and silicon fertilization of upland rice Adubação nitrogenada e silicatada do arroz de terras altas

    Directory of Open Access Journals (Sweden)

    Munir Mauad

    2003-12-01

    Full Text Available Silicon is not considered an essential element for plant development and growth, but its absorption brings several benefits to some crops, especially rice, by increasing cellular wall thickness, providing mechanical resistance to the penetration of fungi, improving the opening angle of leaves and making them more erect, decreasing self-shading and increasing resistance to lodging, especially under high nitrogen rates. To evaluate the effects of nitrogen and silicon fertilization on vegetative and yield components, plant height, and yield of rice cultivar IAC 202, an experiment was carried out combining three nitrogen rates (5, 75 and 150 mg N kg-1 soil applied as urea, and four silicon rates (0, 200, 400 and 600 mg SiO2 kg-1 soil applied as calcium silicate. Trial was set up in a completely randomized design 3 ´ 4 factorial scheme, (N = 5. Nitrogen fertilization increased the number of stems and panicles per square meter and the total number of spikelets, reflecting on grain productivity. Excessive tillering caused by inadequate nitrogen fertilization reduced the percentage of fertile stalks, spikelet fertility and grain mass. Silicon fertilization reduced the number of blank spikelets per panicles and increased grain mass, but did not affect grain productivity.O silício não é considerado um elemento essencial para o crescimento e desenvolvimento das plantas, entretanto, sua absorção traz inúmeros benefícios, principalmente ao arroz, como aumento da espessura da parede celular, conferindo resistência mecânica a penetração de fungos, melhora o ângulo de abertura das folhas tornando-as mais eretas, diminuindo o auto-sombreamento e aumentando a resistência ao acamamento, especialmente sob altas doses de nitrogênio. O presente trabalho teve por objetivo avaliar os efeitos da adubação nitrogenada e silicatada nos componentes vegetativos, nos componentes da produção, na altura da planta e na produtividade da cultivar de arroz IAC

  19. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions?

    Science.gov (United States)

    Dortch, Quay; Whitledge, Terry E.

    1992-11-01

    The Mississippi River carries very high concentrations of nutrients into the otherwise oligotrophic Gulf of Mexico, resulting in high primary production and hypoxia along the Louisiana continental shelf. The hypothesis that nitrogen availability controls and ultimately limits phytoplankton production on the shelf was tested by measuring an indicator of nitrogen deficiency, the ratio of intracellular free amino acids/particulate protein (AA/Pr), in the area of the Mississippi River plume on a spring and a summer cruise. Neither AA/Pr ratios or nutrients in the water showed nitrogen limitation to be widespread. Ammonium concentrations were generally quite high, so the lack of phytoplankton nitrogen deficiency can be explained by rapid regeneration rates. Nitrogen limitation was most likely in the summer at high salinities. However, ratios of dissolved nutrient concentrations suggested that silicate was as likely, or sometimes more likely, to be a limiting nutrient than nitrogen. Although silicate depletion may not cause a decrease in productivity, it could result in major changes in phytoplankton size and species composition, and ultimately influence trophodynamics, regeneration, the fate of carbon, and severity and extent of hypoxia.

  20. Hydrophobic recovery of repeatedly plasma-treated silicone rubber .2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen

    NARCIS (Netherlands)

    Everaert, EP; VanderMei, HC; Busscher, HJ

    1996-01-01

    Surfaces of medical grade silicone rubber (Q7-4750, Dow Coming) were modified by repeated (six times) RF plasma treatments using various discharge gases: oxygen, argon, carbon dioxide, and ammonia. The treated samples were stored for a period of 3 months in ambient air, water, or liquid nitrogen. Su

  1. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    Directory of Open Access Journals (Sweden)

    Kurdali, Fawaz

    2013-02-01

    Full Text Available The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si and/or potassium (K applications on growth and nitrogen uptake in barley plants grown under water (FC1 and non water (FC2 stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. Dry matter (DM and N yield (NY in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the watering regime level under which the plants have been grown. Solely added K or in combination with adequate rate of Si (Si 100 were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing higher spike's N yield. Solely added Si or in combination with K significantly reduced leaves ∆13 C reflecting their bifacial effects on water use efficiency (WUE, particularly in plants grown under well watering regime. This result indicated that Si might be involved in saving water loss through reducing transpiration rate and facilitating water uptake; consequently, increasing WUE. Although the rising of soil humidity generally increased fertilizer nitrogen uptake (Ndff and its use efficiency (%NUE in barley plants, applications of K or Si fertilizers to water stressed plants resulted in significant increments of these parameters as compared with the control. Our results highlight that Si or K is not only involved in amelioration of growth of barley plants, but can also improve nitrogen uptake and fertilizer nitrogen use efficiency particularly under water deficit conditions.

  2. Design and Development of Surface Modified p and n Type Silicon Sensor for Nitrogen Gas Flow Measurement

    CERN Document Server

    Satheesh, U; Devaprakasam, D

    2014-01-01

    We report a gas flow driven voltage generation of Octyltrichlorosilane (OTS) molecules self assembled on silicon wafers (Si wafers). OTS Self assembled Monolayer (SAM) has been coated on both p-type and n-type doped silicon wafers (p-Si and n-Si wafers) using dip coating method. We have measured the flow induced voltage generation on OTS SAM coated Si wafers/ Uncoated Si wafers at modest gas flow velocities of subsonic regime (Mach number < 0.2) using national instruments NI-PXI-1044 Workstation. The gas flow driven voltage generation is mainly due to the interplay mechanisms of Bernoulli principle and Seebeck effect. The surface morphology of OTS SAM coated p-Si and n-Si wafers were characterized by SEM analysis. In this study, our results shows that OTS SAM coated p-Si and n-Si wafers shows better sensitivity towards nitrogen gas flow when compared with the uncoated Si wafers. OTS SAM also exhibits high thermal stability and hydrophobicity.

  3. Photoluminescence and Raman Spectroscopy Characterization of Boron- and Nitrogen-Doped 6H Silicon Carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan

    2012-01-01

    Nitrogen-boron doped 6H-SiC epilayers grown on low off-axis 6H-SiC substrates have been characterized by photoluminescence and Raman spectroscopy. The photoluminescence results show that a doping larger than 1018 cm-3 is favorable to observe the luminescence and addition of nitrogen is resulting...... in an increased luminescence. A dopant concentration difference larger than 4x1018 cm-3 is proposed to achieve intense photoluminescence. Raman spectroscopy further confirmed the doping type and concentrations for the samples. The results indicate that N-B doped SiC is being a good wavelength converter in white...

  4. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes

    Science.gov (United States)

    Tali, S. A. Safiabadi; Soleimani-Amiri, S.; Sanaee, Z.; Mohajerzadeh, S.

    2017-02-01

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C2H2 and N2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm2 (45 F/cm3) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 103 Wh/m3 (8.3 × 106 J/m3) and ultra-high power density of 2.6 × 108 W/m3 which is among the highest reported values.

  5. Activation of chalcogens and chalcogenides at reactive uranium centers

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Michael Sebastian

    2015-07-23

    The high reactivity of many trivalent uranium complexes was investigated in the Meyer group, however, these studies were not limited to small-molecule activation, but were extended to other relatively inert reagents like the heavier elemental chalcogens sulfur, selenium, and tellurium. The tripodal N-anchored chelate ({sup Ad,Me}ArO){sub 3}N{sup 3-} (trianion of tris(3-Adamantyl-2-hydroxy-5-methylbenzyl)amine) was found to be a very suitable candidate for this task and the respective uranium(III) complex [(({sup Ad,Me}ArO){sub 3}N)U{sup III}(DME)] is able to activate elemental sulfur and selenium to form the dinuclear, chalcogenido-bridged complexes [{(("A"d","M"eArO)_3N)U"I"V(DME)}{sub 2}(μ-E)] (E = S, Se). Starting from this previously accomplished work, research in this thesis aimed at furthering reactivity studies of trivalent [(({sup Ad,Me}ArO){sub 3}N)U{sup III}(DME)], but also its chalcogenido-bridged uranium(IV) products, and the spectroscopic characterization of all newly synthesized compounds. Furthermore, the development of the new phenol HOAr* (Ar* = 2,6-(CHPh{sub 2}){sub 2}-4-Me-C{sub 6}H{sub 2}, 2,6-bis(diphenylmethyl)-4-methylphenyl) and its establishment as a ligand to be used for uranium coordination chemistry was another goal of this thesis. The activation of CO{sub 2} by uranium(III) complex [(({sup Ad,Me}ArO){sub 3}N)U{sup III}(DME)] to yield the dinuclear, carbonate-bridged uranium(IV/IV) complex [{(("A"d","M"eArO)_3N)U"I"V(DME)}{sub 2}(μ-κ{sup 1}:κ{sup 2}-CO{sub 3})] and CO was reported in 2010 by Meyer and co-workers. These previous results led to the pursuit of the isolation of mixed chalcogenocarbonate complexes from the reaction of the bridging chalcogenidos [{(("A"d","M"eArO)_3N)U"I"V(DME)}{sub 2}(μ-E)] (E = S, Se) with either CO{sub 2} or its heterocumulene analogs COS or CS{sub 2}. The chalcogeno-carbonates [{(("A"d","M"eArO)_3N)U"I"V(DME)}{sub 2}(μ-κ{sup 1}:κ{sup 2}-CO{sub 2}E)] und [{(("A"d","M"eArO)_3N)U"I"V-(DME)}{sub 2}(

  6. Use of ionic liquids in synthesis of nanocrystals, nanorods and nanowires of elemental chalcogens

    Indian Academy of Sciences (India)

    A Thirumurugan

    2007-04-01

    Nanocrystals of elemental chalcogens have been synthesized solvothermally by using elemental chalcogen powder (Se and Te) and NaBH4 in imidazolium[BMIM]-based ionic liquids as solvents at 180–200°C. Nanorods and nanowires of Se and Te have been obtained when polyethyleneglycol was used as a co-solvent. Se nanowires have been prepared by using an ionic liquid with a small amount of water at room temperature. Sulfur microspheres have been prepared by heating sulfur powder in a mixture of [BMIM][BF4] and polyethyleneglycol over the temperature range 150–250°C. The nanostructures obtained are single crystalline in all the cases.

  7. Synthesis and characterization of unusual valent organocationic chalcogen species

    OpenAIRE

    Kobayashi, Katsutoshi

    2000-01-01

    In the recent decades, organic chemistry has attracted attention in the industrial and bological point of view. Organic chemistry has traditionally been defined as the chemistry of compounds where the carbon atom is the principal element. Carbon is a second row element whose position in the periodic table is shown in Table 1. The unique ability of carbon atoms to bond together and to form stable compounds with atoms such as hydrogen, oxygen and nitrogen, is the basis for all biological life, ...

  8. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang

    2017-08-29

    Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.

  9. Application of INEPT nitrogen-15 and silicon-29 nuclear magnetic resonance spectrometry to derivatized fulvic acids

    Science.gov (United States)

    Thorn, K.A.; Folan, D.W.; Arterburn, J.B.; Mikita, M.A.; MacCarthy, P.

    1989-01-01

    Use of the INEPT experiment has been examined in two derivatization studies of the Suwannee River fulvic acid. In the first study, the fulvic acid was derivatized with 15N enriched hydroxylamine. The quantitative 15N NMR spectrum, acquired with a 45° pulse angle, 2.0 second pulse delay and inverse gated decoupling, showed that oximes (390-340 ppm) were the major derivatives, followed by nitriles (270-240 ppm), hydroxamic acids (170-160 ppm), secondary amides (150-115 ppm), and lactams (115-90 ppm). The INEPT 15N NMR spectrum was acquired using refocussing delays and polarization transfer times optimized for signal enhancement of singly protonated nitrogens. INEPT greatly enhanced the amide and lactam resonances, and showed that resonances downfield of 180 ppm in the quantitative spectrum represented nonprotonated nitrogens. In the second study, the fulvic acid was first methylated with diazomethane and then silylated with hexamethyldisilazane. The 29Si NMR spectra exhibited two major peaks, from approximately 33 to 22 ppm, representing silyl esters of carboxylic acids, and from 22 to 13 ppm, representing silyl ethers of alcohols and phenols. The INEPT 29Si NMR spectrum was virtually identical to the quantitative 29Si spectrum, acquired with a 90° pulse angle, 5.0 second pulse delay, inverse gated decoupling, and relaxation reagent. INEPT therefore can be used for quantitative analysis of trimethylsilyl derivatives of the fulvic acid, saving spectrometer time and eliminating the need for relaxation reagents.

  10. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  11. Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane

    OpenAIRE

    Keeping, Malcolm G.; Miles, Neil; Sewpersad, Chandini

    2014-01-01

    The stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) is a major limiting factor in South African sugarcane production, while yield is also reduced by sugarcane thrips Fulmekiola serrata Kobus (Thysanoptera: Thripidae). Borer management options include appropriate nitrogen (N) and enhanced silicon (Si) nutrition; the effect of N on sugarcane thrips is unknown. We tested the effects of these nutrients, in combination with resistant (N33) and susceptible (N27) sugarcane cultivars, o...

  12. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes.

    Science.gov (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-21

    The hierarchically macro/micro-porous silicon-carbon-nitrogen (Si-C-N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g(-1) and 1084.5 mg·g(-1) for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si-C-N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants.

  13. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    Science.gov (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon-carbon-nitrogen (Si-C-N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg.g-1 and 1084.5 mg.g-1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si-C-N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants.

  14. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon

    Science.gov (United States)

    Ali, Muataz; Zhou, Fengling; Chen, Kun; Kotzur, Christopher; Xiao, Changlong; Bourgeois, Laure; Zhang, Xinyi; Macfarlane, Douglas R.

    2016-04-01

    Ammonia (NH3) is one of the most widely produced chemicals worldwide. It has application in the production of many important chemicals, particularly fertilizers. It is also, potentially, an important energy storage intermediate and clean energy carrier. Ammonia production, however, mostly uses fossil fuels and currently accounts for more than 1.6% of global CO2 emissions (0.57 Gt in 2015). Here we describe a solar-driven nanostructured photoelectrochemical cell based on plasmon-enhanced black silicon for the conversion of atmospheric N2 to ammonia producing yields of 13.3 mg m-2 h-1 under 2 suns illumination. The yield increases with pressure; the highest observed in this work was 60 mg m-2 h-1 at 7 atm. In the presence of sulfite as a reactant, the process also offers a direct solar energy route to ammonium sulfate, a fertilizer of economic importance. Although the yields are currently not sufficient for practical application, there is much scope for improvement in the active materials in this cell.

  15. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sekhar C., E-mail: Raysc@unisa.ac.za [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg (South Africa); Pong, W.F. [Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan (China); Papakonstantinou, P. [Nanotechnology and Integrated Bio-Engineering Centre, University of Ulster, Shore Road, Newtownabbey BT37 0QB (United Kingdom)

    2016-07-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp{sup 3} network to sp{sup 2} as evidenced by an increase of the sp{sup 2} cluster and I{sub D}/I{sub G} ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp{sup 2} cluster and I{sub D}/I{sub G} ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp{sup 3}-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp{sup 3} and sp{sup 2} contents are estimated from C K-edge XANES and VB-PES measurements.

  16. Co-implantation of carbon and nitrogen into silicon dioxide for synthesis of carbon nitride materials

    CERN Document Server

    Huang, M B; Nuesca, G; Moore, R

    2002-01-01

    Materials synthesis of carbon nitride has been attempted with co-implantation of carbon and nitrogen into thermally grown SiO sub 2. Following implantation of C and N ions to doses of 10 sup 1 sup 7 cm sup - sup 2 , thermal annealing of the implanted SiO sub 2 sample was conducted at 1000 degree sign C in an N sub 2 ambient. As evidenced in Fourier transform infrared measurements and X-ray photoelectron spectroscopy, different bonding configurations between C and N, including C-N single bonds, C=N double bonds and C=N triple bonds, were found to develop in the SiO sub 2 film after annealing. Chemical composition profiles obtained with secondary ion mass spectroscopy were correlated with the depth information of the chemical shifts of N 1s core-level electrons, allowing us to examine the formation of C-N bonding for different atomic concentration ratios between N and C. X-ray diffraction and transmission electron microscopy showed no sign of the formation of crystalline C sub 3 N sub 4 precipitates in the SiO ...

  17. Defect chemistry and chalcogen diffusion in thin-film Cu2ZnSnSe4 materials

    Science.gov (United States)

    Harvey, Steven P.; Repins, Ingrid; Teeter, Glenn

    2015-02-01

    Selenium diffusion in polycrystalline thin-film Cu2ZnSn(S,Se)4 (CZTSe) on molybdenum-coated soda-lime glass substrates was investigated by in situ monitoring of the molybdenum back-contact resistance during high-temperature selenization treatments. In these measurements, selenium diffusion through the CZTSe layer results in conversion of the molybdenum layer to MoSe2, increasing the sheet resistance of the film stack. By monitoring the rate of MoSe2 formation as a function of annealing temperature, an activation energy of 0.5 ± 0.1 eV has been measured for selenium diffusion in CZTSe. The partial pressure dependence of chalcogen diffusion suggests that chalcogen vacancies are not the defect controlling chalcogen diffusion in thin-film CZTSe.

  18. Defect chemistry and chalcogen diffusion in thin-film Cu{sub 2}ZnSnSe{sub 4} materials

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steven P.; Repins, Ingrid; Teeter, Glenn [National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, Colorado 80401 (United States)

    2015-02-21

    Selenium diffusion in polycrystalline thin-film Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSe) on molybdenum-coated soda-lime glass substrates was investigated by in situ monitoring of the molybdenum back-contact resistance during high-temperature selenization treatments. In these measurements, selenium diffusion through the CZTSe layer results in conversion of the molybdenum layer to MoSe{sub 2}, increasing the sheet resistance of the film stack. By monitoring the rate of MoSe{sub 2} formation as a function of annealing temperature, an activation energy of 0.5 ± 0.1 eV has been measured for selenium diffusion in CZTSe. The partial pressure dependence of chalcogen diffusion suggests that chalcogen vacancies are not the defect controlling chalcogen diffusion in thin-film CZTSe.

  19. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Roberto, E-mail: roberto.borghese@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Baccolini, Chiara; Francia, Francesco [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Sabatino, Piera [Department of Chemistry G. Ciamician, University of Bologna (Italy); Turner, Raymond J. [Department of Biological Sciences, University of Calgary, Calgary, Alberta (Canada); Zannoni, Davide, E-mail: davide.zannoni@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • R. capsulatus cells produce extracellular chalcogens nanoprecipitates when lawsone is present. • Lawsone acts as a redox mediator from reducing equivalents to tellurite and selenite. • Nanoprecipitates production depends on carbon source and requires metabolically active cells. • Te{sup 0} and Se{sup 0} nanoprecipitates are identified by X-ray diffraction (XRD) spectroscopy. - Abstract: The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te{sup IV}) and selenite (Se{sup IV}) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te{sup 0} in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se{sup 0} precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te{sup 0} and Se{sup 0}nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te{sup 0} and Se{sup 0} nature of the nanoparticles.

  20. Synthesis and crystal structure determination of Br2SeIBr polyhalogen–chalcogen

    Indian Academy of Sciences (India)

    A A Alemi; E Solaimani

    2004-06-01

    In this paper polyhalogen–chalcogen Br2SeIBr was synthesized and the crystal structure was determined by single crystal X-ray diffraction method. This compound was prepared in the temperature range 150–50°C which was brownish-red in colour and crystallized in monoclinic crystal system and space group 21/c with four molecules per unit cell. Lattice parameters were: = 6.3711(1), = 6.7522(2), = 16.8850(5) Å, = = 90°, = 95·96°, = 722·45 Å3.

  1. Theoretical Study of Intramolecular Interactions in Peri-Substituted Naphthalenes: Chalcogen and Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Goar Sánchez–Sanz

    2017-02-01

    Full Text Available A theoretical study of the peri interactions, both intramolecular hydrogen (HB and chalcogen bonds (YB, in 1-hydroxy-8YH-naphthalene, 1,4-dihydroxy-5,8-di-YH-naphthalene, and 1,5-dihydroxy-4,8-di-YH-naphthalene, with Y = O, S, and Se was carried out. The systems with a OH:Y hydrogen bond are the most stable ones followed by those with a chalcogen O:Y interaction, those with a YH:O hydrogen bond (Y = S and Se being the least stable ones. The electron density values at the hydrogen bond critical points indicate that they have partial covalent character. Natural Bond Orbital (NBO analysis shows stabilization due to the charge transfer between lone pair orbitals towards empty Y-H that correlate with the interatomic distances. The electron density shift maps and non-covalent indexes in the different systems are consistent with the relative strength of the interactions. The structures found on the CSD were used to compare the experimental and calculated results.

  2. Understanding the effect of substitution on the formation of S. . .F chalcogen bond

    Indian Academy of Sciences (India)

    RAHUL SHUKLA; DEEPAK CHOPRA

    2016-10-01

    In this study, we have investigated the effect of substitution on the formation of S. . .F non-covalent interactions in XHS. . .FCH₃ complexes (X= −H, −F, −Cl, −OH, −OCH₃, −NH₂, −NHCH₃, −NO₂, −CN) at MP2/aug-cc-pVDZ level of theory. The formation of S. . .F chalcogen bonds was observed in all the cases, except for X = −H. The binding energy of the S. . .F non-covalent interactions is strongly dependent on the nature of the substituent groups. The energy decomposition analysis revealed that electrostatic and exchangeenergy component are the dominant contributors towards the stability of these interactions. The topological analysis established the presence of the S. . .F chalcogen bond due to the presence of a bond critical point exclusively between sulphur and fluorine atoms representing a closed-shell interaction. The natural bondorbital analysis shows that the stability of the interaction comes from a charge transfer from F(lp) to σ* (S-X) orbital transition.

  3. Suppression Effect and Mechanism of Platinum and Nitrogen-Containing Silane on the Tracking and Erosion of Silicone Rubber for High-Voltage Insulation.

    Science.gov (United States)

    Chen, Wan Juan; Zeng, Xingrong; Lai, Xuejun; Li, Hongqiang; Fang, Wei Zhen; Hou, Fei

    2016-08-17

    How to effectively improve the tracking and erosion resistance of silicone rubber (SR) was an urgent topic in the field of high-voltage insulation. In this work, the tracking and erosion resistance of SR was significantly improved by incorporating platinum (Pt) catalyst and nitrogen-containing silane (NS). The suppression effect and mechanism of Pt/NS on tracking and erosion were studied by inclined plane (IP) test, thermogravimetry (TG), thermogravimetry-Fourier transform infrared spectrometry, laser Raman spectroscopy, and scanning electron microscopy. It revealed that when 1.4 phr of NS and 6.7 ppm of Pt were added, the tracking resistance of SR was improved from 2.5 to 4.5 kV level in the IP test, and the eroded mass was significantly reduced. This might be attributed to the synergistic effect of Pt/NS on silicone chains. At a high temperature produced by arc discharge, Pt/NS would catalyze radical cross-linking, meanwhile suppressing oxidation and depolymerization of silicone chains. Hence, a tightly cross-linked network was formed and protected inner materials from arc ablation. Moreover, carbon deposit during pyrolysis was suppressed by Pt/NS, which served as the secondary mechanism of tracking suppression.

  4. Adsorption of Ammonia Nitrogen by Silicon-Based Zeolite Filter Material%硅基沸石滤料对氨氮静态吸附实验

    Institute of Scientific and Technical Information of China (English)

    刘振亮; 于衍真; 冯岩; 赵春辉

    2011-01-01

    以天然斜发沸石为原料,研制硅基沸石滤料,并以硅基沸石滤料作为填料,研究探讨硅基沸石滤料对废水中氨氮的静态吸附作用.对比天然斜发沸石,通过质量浓度与吸附量的Langmuir曲线和Freundlich曲线,对硅基沸石滤料的吸附机理和离子交换性能进行分析.实验表明,自行研制的硅基沸石滤料符合国家标准,对氨氮的静态吸附容量可高达150mg/g,是其原料天然斜发沸石吸附容量的5倍;硅基沸石滤料对氨氮的静态吸附作用是物理吸附和化学吸附共同作用的结果,在一定的氨氮初始质量浓度范围内,硅基沸石滤料对于氨氮的去除率随着氨氮初始质量浓度的增加而增加,最高可达62.7%,远远高于天然斜发沸石.%The silicon-zeolite filter material is prepared using natural clinoptilolite as raw material.Taking it as additives, we investigated the adsorption of ammonia nitrogen in wastewater on it and analyzed its adsorption mechanism and ion exchanging behavior through Langmuir and Freundlich cures which describe the relation between mass concentration and the amount of adsorption.Experimental results show that the silicon-based zeolite filter material follows the national standard,and its static adsorption capacity of ammonia is up to 150 mg/g,which is 5 times that of natural zeolite ;the adsorption of ammonia nitrogen on the silicon-based zeolite filter mate rial is the results of physical adsorption and chemical adsorption ;in a certain range of initial ammonia concentration, the removal of ammonia by the silicon-based zeolite increases with the increase of initial ammonia concentration, the highest being 62.7%, which is higher than that of natural zeolite.

  5. CdS nanoparticles modified to chalcogen sites: new supramolecular complexes, butterfly bridging, and related optical effects.

    Science.gov (United States)

    Ni, Tong; Nagesha, Dattatri K; Robles, Juvencio; Materer, Nicholas F; Müssig, Stefan; Kotov, Nicholas A

    2002-04-17

    All present approaches to surface modification of nanoparticles (NPs) with organic ligands exploit metal (cadmium) sites as anchor points. To obtain efficient interaction of NP surface with p-orbitals of organic chromophores, we utilize the chalcogen (sulfur) sites on the NP surface. These sites present several advantages stemming from a stronger interaction of their atomic orbitals with both modifier and NP core. The chalcogen modification of CdS was achieved by using a mixed ligand (2,2'-bipyridyl-N,N')(malonato-O,O')-copper(II) monohydrate complex. The weak monodentate ligands (water) are replaced by a copper-sulfur bond during the modification reaction. The structure of the product was investigated by optical spectroscopy, electron spin resonance, and nuclear magnetic resonance. The modified NP can be described as a few tens (malonato-O,O')-copper units attached to the CdS core. Steady-state and time-resolved luminescence measurements, molecular orbital calculations, and UPS data indicate that delocalized surface states enveloping the surface chalcogen atoms of NP, transition metal, and p-orbitals of the bipyridine ligand are present in the synthesized species. The delocalized states are made possible due to the bridging of p-levels of sulfur and pi-orbitals of bipyridine by butterfly d-orbitals of the transition metal atom placed between them. Chalcogen-modified NP can be considered as a new member of the family of supramolecular compounds based on transition metal complexes. Both NP and metal complex parts of the prepared supramolecules are very versatile structural units, and new molecular constructs of similar design, in which quantum effects of NPs are combined with optical properties of transition metal complexes, can be obtained with different NPs and metal complexes.

  6. Highly siderophile and chalcogen element constraints on the origin of components of the Allende and Murchison meteorites

    Science.gov (United States)

    Kadlag, Yogita; Becker, Harry

    2016-06-01

    187Re-187Os systematics, abundances of highly siderophile elements (HSE: Re, PGE, and Au), chalcogen elements (Te, Se, and S), and some major and minor elements were determined in physically separated components of the Allende (CV3) and Murchison (CM2) carbonaceous chondrites. Substantial differences exist in the absolute and relative abundances of elements in the components, but the similarity of calculated and literature bulk rock abundances of HSE and chalcogens indicate that chemical complementarity exists among the components, with CI chondrite-like ratios for many elements. Despite subsequent alteration and oxidation, the overall cosmochemical behavior of most moderately to highly siderophile elements during high-temperature processing has been preserved in components of Allende at the sampling scale of the present study. The 187Re-187Os systematics and element variations of Allende are less disturbed compared with Murchison, which reflects different degrees of oxidation and alteration of these meteorites. The HSE systematics (with the exception of Au) is controlled by two types of materials: Pd-depleted condensates and CI chondrite-like material. Enrichment and heterogeneous distribution of Au among the components is likely the result of hydrothermal alteration. Chalcogen elements are depleted compared with HSE in all components, presumably due to their higher volatility. Small systematic variations of S, Se, and Te in components bear the signature of fractional condensation/partial evaporation and metal-sulfide-silicate partitioning.

  7. Synthesis of low-oxide blue luminescent alkyl-functionalized silicon nanoparticles with no nitrogen containing surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jason A.; Ashby, Shane P.; Huld, Frederik [University of East Anglia, School of Chemistry (United Kingdom); Pennycook, Timothy J. [SuperSTEM Laboratory, STFC Daresbury Campus (United Kingdom); Chao, Yimin, E-mail: y.chao@uea.ac.uk [University of East Anglia, School of Chemistry (United Kingdom)

    2015-05-15

    Of ever growing interest in the fields of physical chemistry and materials science, silicon nanoparticles show a great deal of potential. Methods for their synthesis are, however, often hazardous, expensive or otherwise impractical. In the literature, there is a safe, fast and cheap inverse micelle-based method for the production of alkyl-functionalized blue luminescent silicon nanoparticles, which nonetheless found limitations, due to undesirable Si-alkoxy and remaining Si–H functionalization. In the following work, these problems are addressed, whereby an optimisation of the reaction mechanism encourages more desirable capping, and the introduction of alcohol is replaced by the use of anhydrous copper (II) chloride. The resulting particles, when compared with their predecessors through a myriad of spectroscopic techniques, are shown to have greatly reduced levels of ‘undesirable’ capping, with a much lower surface oxide level; whilst also maintaining long-term air stability, strong photoluminescence and high yields.

  8. Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Liam P [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Yang, Ping [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory

    2009-01-01

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  9. Chalcogenated Schiff bases: Complexation with palladium(II) and Suzuki coupling reactions

    Indian Academy of Sciences (India)

    Pradhumn Singh; G K Rao; Mohd Salman Karim; Ajai K Singh

    2012-11-01

    Chalcogenated Schiff bases of 5-chloroisatin (L1-L3), 2-(methythio)benzaldehyde (L4), 2-acetylpyridine (L5) and benzaldehyde (L6-L7) have been synthesized. Both the carbonyl groups of 5- chloroisatin appear to be reactive (noticed for the first time) for making >C=N bond, of course one at a time only. The 1H, 13C{1H}, 77Se{1H} and 125Te{1H} NMR spectroscopy have been used to establish the coexistence of two products, which were found in the ratio 53:47 (E = S), 55:45 (E = Se) and 81:19 (E = Te). The larger amount is of the one in which C=O group away from NH is derivatized. The two products are not separable. Palladium complexes (1-4) of Schiff bases of other three aldehydes were synthesized. The ligands as well as complexes were characterized by multinuclear NMR spectroscopy. The crystal structures of [Pd(L4/L5)Cl][ClO4] (1/2) have been solved. The Pd-Se bond lengths are 2.4172(17) and 2.3675(4) Å, respectively for 1 and 2. The Pd-complexes (3-4) of L6-L7 were explored for Suzuki-Miyaura coupling and found promising as 0.006 mol % of 3 is sufficient to obtain good conversion with TON up to 1.58 × 104.

  10. Uranium(VI) bis(imido) chalcogenate complexes: synthesis and density functional theory analysis.

    Science.gov (United States)

    Spencer, Liam P; Yang, Ping; Scott, Brian L; Batista, Enrique R; Boncella, James M

    2009-03-16

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(N(t)Bu)(2)(EAr)(2)(OPPh(3))(2) (EAr = O-2-(t)BuC(6)H(4), SPh, SePh, TePh) and U(N(t)Bu)(2)(EAr)(2)(R(2)bpy) (EAr = SPh, SePh, TePh) (R(2)bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, (t)Bu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(N(t)Bu)(2)(EAr)(2)(OPPh(3))(2) as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  11. Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation

    Energy Technology Data Exchange (ETDEWEB)

    Meenatchi, Boominathan [Cauvery College for Women, Tamilnadu (India); Renuga, Velayutham [National College, Tamilnadu (India); Manikandan, Ayyar [Bharath Institute of Higher Education and Research, Bharath University, Tamilnadu (India)

    2016-03-15

    Green synthesis of selenium (chalcogen) nanoparticles (SeNPs) has been successfully attained by simple wet chemical method that involves the reaction of six different protic ionic liquids with imidazolium cations and sodium hydrogen selenide (NaHSe) in the presence of poly ethylene glycol-600 (PEG-600) as an additional stabilizer. The obtained SeNPs were characterized using UV spectral (UV), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM) with energy dispersive X-ray (EDX) and high resolution transmission electron microscope (TEM) analysis. The results illustrate that the synthesized SeNPs are spherical in shape with size ranging 19-24 nm and possess good optical property with greater band gap energy, high thermal stability up to 330 .deg. C, low melting point of 218-220 .deg. C comparing to precursor selenium. Using the synthesized SeNPs, two chalcogenides such as ZnSe and CdSe semiconductor nanoparticles were synthesized and characterized using XRD, SEM with EDX and TEM analysis. The fabricated CdSe and ZnSe nanoparticles appeared like pebble and cluster structure with particle size of 29.97 nm and 22.73 nm respectively.

  12. Preparation of nitrogen doped silicon oxides thin films by plasma polymerization of 3-aminopropyltriethoxylsilane using atmospheric pressure plasma jet

    Science.gov (United States)

    Lin, Yu-Chun; Wang, Meng-Jiy

    2016-01-01

    Surface modification techniques have been applied in various applications including self-cleaning surface, antibacterial filter, and biomaterials. In this study we employed the atmospheric pressure plasma jet (APPJ) deposition, a dry process for surface modification, to deposit 3-aminopropyltriethoxylsilane (APTES) on stainless steel (SS) on the purposes of simultaneously incorporating SiOx and nitrogen containing functionalities for the modulation of biofunctionality. The APPJ deposition allowed to form a thin layer of APTES with linear growth rate by controlling the deposition time. In addition, the surface chemical and physical properties, such as surface chemical composition, wettability, film thickness, and interactions with mammalian cells were evaluated by using different analytical methods. The results showed that the surface wettability was improved significantly due to the APTES deposition along with the increase of the incorporated nitrogen content. Moreover, the viability of L-929 fibroblasts was clearly promoted on the APTES deposited SS, which is most probably due to the thicker deposited films and higher density of nitrogen-containing functional groups. The outcomes of this research showed great potential to apply on metallic substrates in real time for biomedical related applications.

  13. Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane.

    Science.gov (United States)

    Keeping, Malcolm G; Miles, Neil; Sewpersad, Chandini

    2014-01-01

    The stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) is a major limiting factor in South African sugarcane production, while yield is also reduced by sugarcane thrips Fulmekiola serrata Kobus (Thysanoptera: Thripidae). Borer management options include appropriate nitrogen (N) and enhanced silicon (Si) nutrition; the effect of N on sugarcane thrips is unknown. We tested the effects of these nutrients, in combination with resistant (N33) and susceptible (N27) sugarcane cultivars, on E. saccharina and F. serrata infestation. Two pot trials with three levels of N (60, 120, and 180 kg ha(-1)) and two levels each of calcium silicate and dolomitic lime (5 and 10 t ha(-1)) were naturally infested with thrips, then artificially water stressed and infested with borer. Higher N levels increased borer survival and stalk damage, while Si reduced these compared with controls. Silicon significantly reduced stalk damage in N27 but not in N33; hence, Si provided relatively greater protection for susceptible cultivars than for resistant ones. High N treatments were associated with greater thrips numbers, while Si treatments did not significantly influence thrips infestation. The reduction in borer survival and stalk damage by Si application at all N rates indicates that under field conditions, the opportunity exists for optimizing sugarcane yields through maintaining adequate N nutrition, while reducing populations of E. saccharina using integrated pest management (IPM) tactics that include improved Si nutrition of the crop and reduced plant water stress. Improved management of N nutrition may also provide an option for thrips IPM. The contrasting effects of Si on stalk borer and thrips indicate that Si-mediated resistance to insect herbivores in sugarcane has mechanical and biochemical components that are well developed in the stalk tissues targeted by E. saccharina but poorly developed in the young leaf spindles where F. serrata occurs.

  14. Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina but not sugarcane thrips (Fulmekiola serrata infestations in sugarcane

    Directory of Open Access Journals (Sweden)

    Malcolm Geoffrey Keeping

    2014-06-01

    Full Text Available The stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae is a major limiting factor in South African sugarcane production, while yield is also reduced by sugarcane thrips Fulmekiola serrata Kobus (Thysanoptera: Thripidae. Borer management options include appropriate nitrogen (N and enhanced silicon (Si nutrition; the effect of N on sugarcane thrips is unknown. We tested the effects of these nutrients, in combination with resistant (N33 and susceptible (N27 sugarcane cultivars, on E. saccharina and F. serrata infestation. Two pot trials with three levels of N (60, 120 and 180 kg ha-1 and two levels each of calcium silicate and dolomitic lime (5 t ha-1, 10 t ha-1 were naturally infested with thrips, then artificially water stressed and infested with borer. Higher N levels increased borer survival and stalk damage, while Si reduced these compared with controls. Silicon significantly reduced stalk damage in N27 but not in N33; hence, Si provided relatively greater protection for susceptible cultivars than for resistant ones. High N treatments were associated with greater thrips numbers, while Si treatments did not significantly influence thrips infestation. The reduction in borer survival and stalk damage by Si application at all N rates indicates that under field conditions, the opportunity exists for optimising sugarcane yields through maintaining adequate N nutrition, while reducing populations of E. saccharina using integrated pest management (IPM tactics that include improved Si nutrition of the crop and reduced plant water stress. Improved management of N nutrition may also provide an option for thrips IPM. The contrasting effects of Si on stalk borer and thrips indicate that Si-mediated resistance to insect herbivores in sugarcane has mechanical and biochemical components that are well developed in the stalk tissues targeted by E. saccharina but poorly developed in the young leaf spindles where F. serrata occurs.

  15. A comparative study of Cu(II)-assisted vs Cu(II)-free chalcogenation on benzyl and 2°/3°-cycloalkyl moieties

    Indian Academy of Sciences (India)

    Santosh K Sahoo

    2015-12-01

    A relative synthetic strategy toward intermolecular oxidative C−Chalcogen bond formation of alkanes has been illustrated using both Cu(II) assisted Cu(II) free conditions. This led to construction of a comparative study of hydrocarbon benzylic and 2°/3°-cycloalkyl moieties bond sulfenylation and selenation protocol by the chalcogen sources, particularly sulfur and selenium, respectively. In addition, this protocol disclosed the auspicious formation of sp3C−S coupling products over leading the sp3C−N coupling products by using 2-mercaptobenzothiazole (MBT) substrates.

  16. Tribological properties and thermal stability of hydrogenated, silicon/nitrogen-coincorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Nakazawa, Hideki; Okuno, Saori; Magara, Kohei; Nakamura, Kazuki; Miura, Soushi; Enta, Yoshiharu

    2016-12-01

    We have deposited hydrogenated, silicon/nitrogen-incorporated diamond-like carbon (Si-N-DLC) films by plasma-enhanced chemical vapor deposition using hexamethyldisilazane [((CH3)3Si)2NH; HMDS] as the Si and N source, and compared the tribological performance and thermal stability of the Si-N-DLC films with those of hydrogenated, Si-incorporated DLC (Si-DLC) films prepared using dimethylsilane [SiH2(CH3)2] as the Si source. The deposited films were annealed at 723-873 K in air atmosphere. The friction coefficients of hydrogenated DLC films after annealing significantly increased at the initial stages of friction tests. On the other hand, the friction coefficients of the Si-N-DLC films deposited at an HMDS flow ratio [HMDS/(HMDS+CH4)] of 2.27% remained low after the annealing even at 873 K. We found that the wear rate of the Si-N-DLC film deposited at 2.27% and -1000 V remained almost unchanged after the annealing at 873 K, whereas that of the Si-DLC film with a similar Si fraction deposited at -1000 V significantly increased after the annealing at 773 K.

  17. Crystallization Behavior of Virgin TR-55 Silicone Rubber Measured Using Dynamic Mechanical Thermal Analysis with Liquid Nitrogen Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Wilson, T S

    2010-02-11

    Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Two dynamic temperature sweep tests, 25 to -100 C and 25 to -70 to 0 C (ramp rate = 1 C/min), were conducted at a frequency of 6.28 rad/s (1 Hz) using a torsion rectangular test geometry. A strain of 0.1% was used, which was near the upper limit of the linear viscoelastic region of the material based on an initial dynamic strain sweep test. Storage (G{prime}) and loss (G{double_prime}) moduli, the ratio G{double_prime}/G{prime} (tan {delta}), and the coefficient of linear thermal expansion ({alpha}) were determined as a function of temperature. Crystallization occurred between -40 and -60 C, with G{prime} increasing from {approx}6 x 10{sup 6} to {approx}4 x 10{sup 8} Pa. The value of {alpha} was fairly constant before ({approx}4 x 10{sup -4} mm/mm- C) and after ({approx}3 x 10{sup -4} mm/mm- C) the transition, and peaked during the transition ({approx}3 x 10{sup -3} mm/mm- C). Melting occurred around -30 C upon heating.

  18. Optoelectronic properties of Cu(In,Ga)(S,Se){sub 2} thin film solar obtained from varied chalcogenization processes

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Robin; Knipper, Martin; Riedel, Ingo; Parisi, Juergen [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg (Germany)

    2010-07-01

    Thin film solar cells made of the chalcopyrite compound semiconductor Cu(In,Ga)(S,Se){sub 2} (CIGSSe) exhibit strong potential for achieving high efficiency at relatively low production costs. While large scale production of CIGSSe-modules has been launched in different companies the transfer of high laboratory cell efficiencies to the module scale is still a major challenge. In order to improve module efficiencies optimisation of the large scale production process presents a major issue. In this work the influence of chalcogenization (selenisation and sulfurisation) parameter variation on the device characteristics was studied using temperature and illumination dependent current-voltage profiling, external quantum efficiency measurements as well as temperature dependent capacitance-voltage measurements. From these measurements we derived important characteristics of the light absorber like activation energy of the recombination current, estimation of the absorber band gap as well as the doping concentration along with the diffusion potential. These studies were completed by defect spectroscopy for analysis of defect formation in the absorber material. The results obtained from these investigations are compared for samples exposed to different conditions of the chalcogenization process.

  19. Chalcogen-height dependent magnetic interactions and magnetic order switching in FeSexTe1-x.

    Science.gov (United States)

    Moon, Chang-Youn; Choi, Hyoung Joon

    2010-02-05

    Magnetic properties of iron chalcogenide superconducting materials are investigated using density-functional calculations. We find that the stability of magnetic phases is very sensitive to the height of chalcogen species from the Fe plane: while FeTe with optimized Te height has the double-stripe (pi, 0) magnetic ordering, the single-stripe (pi, pi) ordering becomes the ground state when Te is lowered below a critical height by, e.g., Se doping. This behavior is understood by opposite Te-height dependences of the superexchange interaction and a longer range magnetic interaction mediated by itinerant electrons. We also demonstrate a linear temperature dependence of the macroscopic magnetic susceptibility in the single-stripe phase in contrast with the constant behavior in the double-stripe phase. Our findings provide a comprehensive and unified view on the magnetism in FeSexTe1-x and iron pnictide superconductors.

  20. Bond Angles in the Crystalline Silicon/Silicon Nitride Interface

    Science.gov (United States)

    Leonard, Robert H.; Bachlechner, Martina E.

    2006-03-01

    Silicon nitride deposited on a silicon substrate has major applications in both dielectric layers in microelectronics and as antireflection and passivation coatings in photovoltaic applications. Molecular dynamic simulations are performed to investigate the influence of temperature and rate of externally applied strain on the structural and mechanical properties of the silicon/silicon nitride interface. Bond-angles between various atom types in the system are used to find and understand more about the mechanisms leading to the failure of the crystal. Ideally in crystalline silicon nitride, bond angles of 109.5 occur when a silicon atom is at the vertex and 120 angles occur when a nitrogen atom is at the vertex. The comparison of the calculated angles to the ideal values give information on the mechanisms of failure in silicon/silicon nitride system.

  1. Interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS∙∙∙NH₃ (X = F, OH, NC, CN, and FCC) complex.

    Science.gov (United States)

    Zhao, Qiang

    2014-10-01

    The interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS and XCl∙∙∙OCS∙∙∙NH3 (X = F, OH, NC, CN, and FCC) complex was studied at the MP2/6-311++G(d,p) computational level. Cooperative effect is observed when halogen and chalcogen bonding coexist in the same complex. The effect is studied by means of binding distance, interaction energy, and cooperative energy. Molecular electrostatic potential calculation reveals the electrostatic nature of the interactions. Cooperative effect is explained by the difference of the electron density. Second-order stabilization energy was calculated to study the orbital interaction in the complex. Atoms in molecules analysis was performed to analyze the enhancement of the electron density in the bond critical point.

  2. The Influence of Nitrogen and Boron Implant into Silicon Substrate on the Phase and Internal Stress of c-BN Films

    Institute of Scientific and Technical Information of China (English)

    TAN Jun; CAI Zhi-hai; ZHANG Ping

    2004-01-01

    Cubic boron nitride(c-BN) film was deposited on a Si (100) substrate by the RF-magnetron sputtering.The mainly problems for fabrication of c-BN films are the low purity and high intrinsic compressive stress. In order to solve the two problems, the c-BN film with the buffer interlayer was deposited on the substrate which had been implanted with nitrogen and/or boron ions. The results show: the implantation of nitrogen ions can obviously increase c-BN content and reduce the internal stress slightly; while the implantation of boron shows no obvious improvement to the content of c-BN, which can reduce the internal stress in the film obviously. In addition, it is suggested that the implantation of nitrogen and boron shows the best result, which not only can increase the content of c-BN, but also reduce the internal stress in the c-BN film obviously.

  3. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  4. 氮气压力对多孔氮化硅陶瓷显微组织和力学性能的影响%Effects of Nitrogen Pressure on Microstructure and Mechanical Performance of Porous Silicon Nitride Ceramics

    Institute of Scientific and Technical Information of China (English)

    张俊禧; 徐照芸; 王波; 秦毅; 杨建锋; 赵中坚; 胡伟; 施志伟

    2014-01-01

    Porous silicon nitride ceramic was fabricated by usingα-Si3N4 as raw material and Y2O3 as a sintering ad-ditive, with nitrogen pressure of 0.12 MPa, 0.32 MPa and 0.52 MPa. Effects of the nitrogen pressure on grain mor-phology and mechanical properties of the resultant porous Si3N4 ceramics were characterized by SEM, XRD and flex-ural strength. With the increasing of nitrogen pressure, sintering shrinkage decreased, with a corresponding increased porosity. Due to the increase of nitrogen pressure, the viscosity of liquid phase increased due to increased N solubility, leading to the low densification in the sintering. Fibrousβ-Si3N4 grains were developed in the porous microstructure and the grain morphology and aspect ratio were greatly affected by the nitrogen pressures. The high viscosity of the liquid phase in nitrogen at high pressure led to restraining of theβ-Si3N4 nucleation, and preferential growth ofβ-Si3N4. Due to the formation of elongatedβ-Si3N4, flexural strength of the porous Si3N4 ceramic was improved by the increase of nitrogen pressure, while decreased with the increase of porosity. The porous Si3N4 ceramics with porosity of 58%and flexural strength of 140 MPa were obtained at the nitrogen pressure of 0.52 MPa.%以α-Si3N4为原料, Y2O3为烧结助剂,在三种不同的氮气压力(0.12、0.32和0.52 MPa)下烧结制备了多孔氮化硅陶瓷。研究了氮气压力对氮化硅的烧结行为、显微组织和力学性能的影响,分别通过SEM观察显微组织并统计晶粒的长径比,通过 XRD 对物相进行分析,并对烧结试样进行三点弯曲强度测试。随着氮气压力的提高,多孔陶瓷的线收缩率降低、气孔率提高,这是由于低熔点的液相中N含量随氮气压力的提升而增加,导致了液相粘度提高,抑制陶瓷致密化。随着氮气压力的提高,组织中的棒状β-Si3N4生长良好,晶粒长径比增大,其原因是高的液相粘度抑制了β-Si3N4

  5. Fabrication of Ultrathin SiO2 Gate Dielectric by Direct Nitrogen Implantation into Silicon Substrate%硅衬底注氮方法制备超薄SiO2栅介质

    Institute of Scientific and Technical Information of China (English)

    许晓燕; 程行之; 黄如; 张兴

    2005-01-01

    Nitrogen implantation in silicon substrate at fixed energy of 35keV and split dose of 1014~5×1014cm-2 is performed before gate oxidation.The experiment results indicate that with the increasing of implantation dose of nitrogen,oxidation rate of gate decreases.The retardation in oxide growth is weakened due to thermal annealing after nitrogen implantation.After nitrogen is implanted at the dose of 2×1014cm-2,initial O2 injection method which is composed of an O2 injection/N2 annealing/main oxidation,is applied for preparation of 3.4nm gate oxide.Compared with the control process,which is composed of N2 annealing/main oxidation,initial O2 injection process suppresses leakage current of the gate oxide.But Qbd and HF C-V characteristics are almost identical for the samples fabricated by two different oxidation processes.%利用栅氧化前在硅衬底内注氮可抑制氧化速率的方法,制得3.4nm厚的SiO2栅介质,并将其应用于MOS电容样品的制备.研究了N+注入后在Si/SiO2中的分布及热退火对该分布的影响;考察了不同注氮剂量对栅氧化速率的影响.对MOS电容样品的I-V特性,恒流应力下的Qbd,SILC及C-V特性进行了测试,分析了不同氧化工艺条件下栅介质的性能.实验结果表明:注氮后的热退火过程会使氮在Si/SiO2界面堆积;硅衬底内注入的氮的剂量越大,对氧化速率的抑制作用越明显;高温栅氧化前进行低温预氧化的注氮样品较不进行该工艺步骤的注氮样品具有更低的低场漏电流和更小的SILC电流密度,但二者恒流应力下的Qbd值及高频C-V特性相近.

  6. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods; Caracterisation des elements: carbone, azote, oxygene et metal refractaire dans des depots binaires et ternaires a base de silicium par methodes d'analyse utilisant les faisceaux d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Somatri-Bouamrane, R. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)

    1996-12-19

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions {sup 12}C({alpha},{alpha}), {sup 14}N({alpha},{alpha}), {sup 16}O({alpha},{alpha}), {sup 28}Si({alpha},{alpha}) and {sup 14}N({alpha},p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  7. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    Science.gov (United States)

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  8. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  9. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States); Wiley, John B., E-mail: jwiley@uno.edu [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States)

    2012-06-15

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb{sub 2}O{sub 7}, is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb{sub 2}LaNb{sub 2}O{sub 7}. This compound is then reacted at room-temperature with in situ generated H{sub 2}S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb{sub 2}Cl)LaNb{sub 2}O{sub 7} where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S{sup 2−} alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H{sub 2}Se{sub (g)} were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  10. Cryostable lightweight frit bonded silicon mirror

    Science.gov (United States)

    Anthony, F.; McCarter, D.; Tangedahl, M.; Content, D.

    The excellent polishability, low density and relatively high stiffness of silicon make it an attractive candidate for optical applications that require superior performance. Assembly of silicon details by means of glass frit bonding permits significant light weighting thus enhancing the benefit of silicon mirrors. To demonstrate the performance potential, a small lightweight glass frit bonded silicon mirror was fabricated and tested for cryoability. The test mirror was 12.5cm in diameter with a 60cm spherical radius and a maximum thickness, at the perimeter, of 2.5cm. A machined silicon core was used to stiffen the two face sheets of the silicon sandwich. These three elements were assembled, by glass frit bonding, to form the substrate that was polished. The experimental evaluation in a liquid nitrogen cryostat, demonstrated cryostability performance significantly better than required by the mirror specification. Key WordsCryostable, Lightweight, Silicon, Frit Bond, Spherical, Mirror

  11. Carbon, Nitrogen, and Chalcogen Substitution Effects on 2,1,3-Benzothiadiazole Derivative: Theoretical Investigations of Electronic,Optical, and Charge Transport Properties

    Institute of Scientific and Technical Information of China (English)

    Bo Hu; Chan Yao; Qing-wei Wang; Hao Zhang; Jian-kang Yu

    2012-01-01

    A series of CH2,NH,O,and Se substituted 2,1,3-benzothiadiazole derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emitting diodes.Both ab initio Hartree-Fock and hybrid density functional methods are used.It is found that adjusting the central aromatic ring by replacing S by CH2,NH,O,and Se makes it possible to fine-tune the electronic,optical,and charge transport properties of the pristine molecule.

  12. Prediction and characterization of a chalcogen-hydride interaction with metal hybrids as an electron donor in F2CS-HM and F2CSe-HM (M = Li, Na, BeH, MgH, MgCH3) complexes.

    Science.gov (United States)

    Li, Qing-Zhong; Qi, Hui; Li, Ran; Liu, Xiao-Feng; Li, Wen-Zuo; Cheng, Jian-Bo

    2012-03-07

    A novel type of σ-hole bonding has been predicted and characterized in F(2)CS-HM and F(2)CSe-HM (M = Li, Na, BeH, MgH) complexes at the MP2/aug-cc-pVTZ level. This interaction, termed a chalcogen-hydride interaction, was analyzed in terms of geometric, energetic and spectroscopic features of the complexes. It exhibits similar properties to hydrogen bonding and halogen bonding. The methyl group in metal hydrides makes a positive contribution to the formation of chalcogen-hydride bonded complexes. In the F(2)CSe-HLi-OH(2) complex, the chalcogen-hydride bonding shows synergetic effects with lithium bonding. These complexes have been analyzed with the atoms in molecules (AIM) theory and symmetry adapted perturbation theory (SAPT) method. The results show that the chalcogen-hydride bonding is dominated with an electrostatic interaction.

  13. Antifuse with a single silicon-rich silicon nitride insulating layer

    Science.gov (United States)

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  14. Activation of silicon quantum dots for emission

    Institute of Scientific and Technical Information of China (English)

    Huang Wei-Qi; Miao Xin-Jian; Huang Zhong-Mei; Liu Shi-Rong; Qin Chao-Jian

    2012-01-01

    The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs.From this point of view,we can build up radiative matter for emission.Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots.Our experimental results demonstrate that annealing is important in the treatment of the activation,and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.

  15. Silicon nitride equation of state

    Science.gov (United States)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  16. Silicon spintronics.

    Science.gov (United States)

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  17. Silicon Needles Fabricated by Highly Selective Anisotropic Dry Etching and Their Field Emission Current Characteristics

    Science.gov (United States)

    Kanechika, Masakazu; Mitsushima, Yasuichi

    2000-12-01

    A new process to fabricate a silicon needle, whose tip radius is about 5 nm and aspect ratio is about 7, was developed. The silicon needles were fabricated by highly selective anisotropic dry etching. The etching mask was oxygen precipitation, which was formed by nitrogen ion implantation and the subsequent oxidation. The process is simple enough to be integrated with complementary metal-oxide-semiconductor (CMOS) circuits. The density of the silicon needle can be controlled by adjusting the dose for nitrogen ion implantation. The position of the silicon needle can be controlled by adjusting the position for nitrogen ion implantation, because silicon needles are formed only in the nitrogen ion implantation area. Furthermore, using these silicon needles as micro emitters, a field emission diode was fabricated. The Fowler-Nordheim plot shows that the field around the tip of the silicon needles was highly enhanced.

  18. Theoretical Analysis of Pnicogen and Chalcogen Bonds in H2XP…SHY Complexes%H2XP…SHY复合物中磷键与硫键的理论研究

    Institute of Scientific and Technical Information of China (English)

    刘玉震; 黎安勇

    2015-01-01

    The MP2 and CCSD(T) ab initio quantum chemistry methods were applied to study the pnicogen bonds X―P…S and chalcogen bonds Y―S…P formed between PH2X and SHY (X, Y=H, F, Cl, Br) and the effects of the substituents X and Y on the bonds. Calculated results show that the chalcogen bonds are stronger than the pnicogen bonds. Strongly electronegative substituents that are connected to the Lewis acid strengthened the bonds and significantly affected the structures and properties of the monomers. Conversely, the substituents connected to the Lewis bases produced opposite effects. The energies of chalcogen bonds were 8.37-23.45 kJ∙mol-1;the strongest chalcogen bond was found in the structure HFS-PH3 using the CCSD (T) method with a bonding energy of 16.04 kJ∙mol-1. The energies of pnicogen bonds were in the range 7.54-14.65 kJ∙mol-1;the strongest pnicogen bond was found in H2FP-SH2 using CCSD(T) with a bonding energy 12.52 kJ∙mol-1. The most important factors for bond strength for both types of bonds were the exchange and electrostatic energies. The hyperconjugations lp(S)-σ*(PX) and lp(P)-σ*(SY) play important roles in the formation of the pnicogen and chalcogen bonds, which both lead to polarization of the monomers. Polarization caused by the chalcogen bond is larger than that by the pnicogen bond, resulting in the chalcogen bond having less of a covalent character.%用从头算量子化学方法MP2与CCSD(T)研究了H2XP和SHY (X, Y=H, F, Cl, Br)分子的P与S之间形成的磷键X―P…S与硫键Y―S…P的本质与规律以及取代基X与Y对成键的影响.计算结果表明,硫键比磷键强,连接在Lewis酸上的取代基的电负性增大导致形成的磷键或硫键增强,键能增大,对单体的结构和性质的影响也增大;而连接在Lewis碱上的取代基效应则相反.硫键键能为8.37-23.45 kJ∙mol-1,最强的硫键结构是Y电负性最大而X电负性最小的HFS…PH3, CCSD(T)计算的键能是16.04 kJ∙mol-1

  19. Silicon carbide reinforced silicon carbide composite

    Science.gov (United States)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  20. Influence of high-dose nitrogen implantation on the positive charge density of the buried oxide of silicon-on-insulator wafers%高剂量注氮对注氧隔离硅材料埋氧层中正电荷密度的影响

    Institute of Scientific and Technical Information of China (English)

    唐海马; 郑中山; 张恩霞; 于芳; 李宁; 王宁娟; 李国花; 马红芝

    2011-01-01

    The influence of nitrogen implantation on the properties of silicon-on-insulator buried oxide using separation by oxygen implantation was studied. Nitrogen ions were implanted into the buried oxide layer with a high-dose of 1016 cm-2.The experimental results showed that the positive charge density of the nitrogen-implanted buried oxide was obviously increased, compared with the control sampes without nitrogen implantation. It was also found that the post-implantation annealing caused an additional increase of the positive charge density in the nitrogen implanted samples. However,annealing time displayed a small effect on the positive charge density of the nitrogen implanted buried oxide, compared with the significant increase induced by nitrogen implantation. Moreover, the capacitance-voltage results showed that the positive charge density of the unannealed sample with nitrogen implanted is approximately equal to that of the sample annealed at 1100 ℃ for 2. 5 h in N2 ambient, despite an additional increase brought with annealing, and the buried oxide of the sample after 0.5 h annealing has a maximum value of positive charge density. According to the simulating results,the nitrogen implantation resulted in a heavy damage to the buried oxide, a lot of silicon and oxygen vacancies were introduced in the buried oxide during implantation. However, the Fourier transform infrared spectroscopy of the samples indicates that implantation induced defects can be basically eliminated after an annealing at 1100 ℃ for 0. 5 h. The increase of the positive charge density of the nitrogen implanted buried oxide is ascribed to the accumulation of implanted nitrogen near the interface of buried oxide and silicon, which caused the break of weak Si - Si bonds and the production of positive silicon ions in the silicon-rich region of the buried oxide near the interface, and this conclusion is supported by the results of secondary ion mass spectrometry.%为研究注氮改性对注氧

  1. Heteroatomic SenS8-n Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries.

    Science.gov (United States)

    Sun, Fugen; Cheng, Hongye; Chen, Jianzhuang; Zheng, Nan; Li, Yongsheng; Shi, Jianlin

    2016-09-27

    A reversible cathode material in an ether-based electrolyte for high-energy lithium batteries was successfully fabricated by homogeneously confining heteroatomic SenS8-n molecules into nitrogen-doped mesoporous carbons (NMCs) via a facile melt-impregnation route. The resultant SenS8-n/NMC composites exhibit highly reversible electrochemical behavior, where selenium sulfides are recovered through the reversible conversion of polysulfoselenide intermediates during discharge-charge cycles. The recovery of selenium sulfide molecules endows the SenS8-n/NMC cathodes with the rational integration of S and Se cathodes. Density functional theory calculations further reveal that heteroatomic selenium sulfide molecules with higher polarizability could bind more strongly with NMCs than homoatomic sulfur molecules, which provides more efficient suppression of the shuttling phenomenon. Therefore, with further assistance of mesopore confinement of the nitrogen-doped carbons, the Se2S6/NMC composite with an optimal Se/S mole ratio of 2/6 presents excellent cycle stability with a high initial Coulombic efficiency of 96.5% and a high reversible capacity of 883 mAh g(-1) after 100 cycles and 780 mAh g(-1) after 200 cycles at 250 mA g(-1). These encouraging results suggest that the heteroatomization of chalcogen (such as S, Se, or Te) molecules in mesostructured carbon hosts is a promising strategy in enhancing the electrochemical performances of chalcogen/carbon-based cathodes for Li batteries.

  2. Silicon Spintronics

    NARCIS (Netherlands)

    Jansen, R.

    2008-01-01

    Integration of magnetism and mainstream semiconductor electronics could impact information technology in ways beyond imagination. A pivotal step is implementation of spin-based electronic functionality in silicon devices. Remarkable progress made during the last two years gives confidence that this

  3. Lithographically patterned silicon nanostructures on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Megouda, Nacera [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Piret, Gaeelle; Galopin, Elisabeth; Coffinier, Yannick [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Hadjersi, Toufik, E-mail: hadjersi@yahoo.com [Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Elkechai, Omar [Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); and others

    2012-06-01

    The paper reports on controlled formation of silicon nanostructures patterns by the combination of optical lithography and metal-assisted chemical dissolution of crystalline silicon. First, a 20 nm-thick gold film was deposited onto hydrogen-terminated silicon substrate by thermal evaporation. Gold patterns (50 {mu}m Multiplication-Sign 50 {mu}m spaced by 20 {mu}m) were transferred onto the silicon wafer by means of photolithography. The etching process of crystalline silicon in HF/AgNO{sub 3} aqueous solution was studied as a function of the silicon resistivity, etching time and temperature. Controlled formation of silicon nanowire arrays in the unprotected areas was demonstrated for highly resistive silicon substrate, while silicon etching was observed on both gold protected and unprotected areas for moderately doped silicon. The resulting layers were characterized using scanning electron microscopy (SEM).

  4. Nitridation of silicon /111/ - Auger and LEED results

    Science.gov (United States)

    Delord, J. F.; Schrott, A. G.; Fain, S. C., Jr.

    1980-01-01

    Clean silicon (111) (7x7) surfaces at up to 1050 C have been reacted with nitrogen ions and neutrals produced by a low energy ion gun. The LEED patterns observed are similar to those previously reported for reaction of silicon (111) (7x7) with NH3. The nitrogen KLL peak exhibits no shift or change in shape with nitride growth. At the same time the magnitude of the elemental silicon LVV peak at 92 eV decreases progressively as a new peak at 84 eV increases. The position of both peaks appears to be independent of the degree of nitridation. Since the Auger spectra are free of oxygen and other impurities, these features can be attributed only to silicon, nitrogen, and their reaction products. Characteristic features of the Auger spectra are related to LEED observations and to the growth of microcrystals of Si3N4.

  5. The role of the alkali and chalcogen atoms on the stability of the layered chalcogenide \\mathbf{{{A}_{2}}{{M}^{II}}M_{3}^{\\,IV}{{Q}_{8}}} (A  =  alkali-metal M  =  metal-cations Q  =  chalcogen) compounds: a density functional theory investigation within van der Waals corrections

    Science.gov (United States)

    Besse, Rafael; Da Silva, Juarez L. F.

    2017-01-01

    There is a great interest to design two-dimensional (2D) chalcogenide materials, however, our atomistic understanding of the major physical parameters that drive the formation of 2D or three-dimensional (3D) chalcogenides is far from satisfactory, in particular, for complex quaternary systems. To address this problem, we selected a set of quaternary 2D and 3D chalcogenide compounds, namely, {{\\text{A}}2}\\text{ZnS}{{\\text{n}}3}{{\\text{Q}}8} (A  =  Li, K, Cs; Q  =  S, Se, Te), which were investigated by density functional theory calculations within van der Waals (vdW) corrections. Employing experimental crystal structures and well designed crystal modifications, we found that the average atomic radius of the alkali-metal, A, and chalcogen, Q, species play a crucial role in the stability of the 2D structures. For example, the 2D structures are energetically favored for smaller (R1.8~{\\mathring{\\text{A}}}) average atomic radius, while 3D structures are favored at intermediate average atomic radius. Those results are explained in terms of strain minimization and Coulomb repulsion of the anionic species in the structure framework. Furthermore, the equilibrium lattice parameters are in excellent agreement with experimental results. Thus, the present insights can help in the design of stable quartenary 2D chalcogenide compounds.

  6. Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure.

    Science.gov (United States)

    Azcatl, Angelica; Qin, Xiaoye; Prakash, Abhijith; Zhang, Chenxi; Cheng, Lanxia; Wang, Qingxiao; Lu, Ning; Kim, Moon J; Kim, Jiyoung; Cho, Kyeongjae; Addou, Rafik; Hinkle, Christopher L; Appenzeller, Joerg; Wallace, Robert M

    2016-09-14

    Controllable doping of two-dimensional materials is highly desired for ideal device performance in both hetero- and p-n homojunctions. Herein, we propose an effective strategy for doping of MoS2 with nitrogen through a remote N2 plasma surface treatment. By monitoring the surface chemistry of MoS2 upon N2 plasma exposure using in situ X-ray photoelectron spectroscopy, we identified the presence of covalently bonded nitrogen in MoS2, where substitution of the chalcogen sulfur by nitrogen is determined as the doping mechanism. Furthermore, the electrical characterization demonstrates that p-type doping of MoS2 is achieved by nitrogen doping, which is in agreement with theoretical predictions. Notably, we found that the presence of nitrogen can induce compressive strain in the MoS2 structure, which represents the first evidence of strain induced by substitutional doping in a transition metal dichalcogenide material. Finally, our first principle calculations support the experimental demonstration of such strain, and a correlation between nitrogen doping concentration and compressive strain in MoS2 is elucidated.

  7. Positron annihilation spectroscopy applied to silicon-based materials

    CERN Document Server

    Taylor, J W

    2000-01-01

    deposition on silicon substrates has been examined. The systematic correlations observed between the nitrogen content of the films and both the fitted Doppler parameters and the positron diffusion lengths are discussed in detail. Profiling measurements of silicon nitride films deposited on silicon substrates and subsequently implanted with silicon ions at a range of fluences were also performed. For higher implantation doses, damage was seen to extend beyond the film layers and into the silicon substrates. Subsequent annealing of two of the samples was seen to have a significant influence on the nature of the films. Positron annihilation spectroscopy, in conjunction with a variable-energy positron beam, has been employed to probe non-destructively the surface and near-surface regions of a selection of technologically important silicon-based samples. By measuring the Doppler broadening of the 511 keV annihilation lineshape, information on the positrons' microenvironment prior to annihilation may be obtained. T...

  8. Double stabilization of nanocrystalline silicon: a bonus from solvent

    Energy Technology Data Exchange (ETDEWEB)

    Kolyagin, Y. G.; Zakharov, V. N.; Yatsenko, A. V.; Paseshnichenko, K. A.; Savilov, S. V.; Aslanov, L. A., E-mail: aslanov.38@mail.ru [Lomonosov Moscow State University (Russian Federation)

    2016-01-15

    Double stabilization of the silicon nanocrystals was observed for the first time by {sup 29}Si and {sup 13}C MAS NMR spectroscopy. The role of solvent, 1,2-dimethoxyethane (glyme), in formation and stabilization of silicon nanocrystals as well as mechanism of modification of the surface of silicon nanocrystals by nitrogen-heterocyclic carbene (NHC) was studied in this research. It was shown that silicon nanocrystals were stabilized by the products of cleavage of the C–O bonds in ethers and similar compounds. The fact of stabilization of silicon nanoparticles with NHC ligands in glyme was experimentally detected. It was demonstrated that MAS NMR spectroscopy is rather informative for study of the surface of silicon nanoparticles but it needs very pure samples.

  9. Carbothermal synthesis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Wei, G.C.; Kennedy, C.R.; Harris, L.A.

    1985-05-01

    Silicon carbide powders were synthesized from various silica and carbon sources by a carbothermal reduction process at temperatures between 1500 and 1600/sup 0/C. The silica sources were fumed silica, methyltrimethoxysilane, and microcrystalline quartz. The carbon sources were petroleum pitch, phenolic resin, sucrose, and carbon black. Submicron SiC powders were synthesized. Their morphologies included equiaxed loosely-bound agglomerates, equiaxed hard-shell agglomerates, and whiskers. Morphology changed with the furnace atmosphere (argon, nitrogen, or nitrogen-4% hydrogen). The best sintering was observed in SiC derived from the fumed-silica-pitch and fumed-silica-sucrose precursors. The poorest sintering was observed in SiC derived from microcrystalline quartz and carbon black. 11 refs., 16 figs., 10 tabs.

  10. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  11. Nitrogen tank

    CERN Document Server

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  12. Implanted Bottom Gate for Epitaxial Graphene on Silicon Carbide

    OpenAIRE

    Waldmann, Daniel; Jobst, Johannes; Fromm, Felix; Speck, Florian; Seyller, Thomas; Krieger, Michael; Weber, Heiko B.

    2011-01-01

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic...

  13. Silicon Nitride Balls For Cryogenic Bearings

    Science.gov (United States)

    Butner, Myles F.; Ng, Lillian W.

    1990-01-01

    Resistance to wear greater than that of 440C steel. Experiments show lives of ball bearings immersed in liquid nitrogen or liquid oxygen increased significantly when 440C steel balls (running on 440C steel races) replaced by balls of silicon nitride. Developed for use at high temperatures, where lubrication poor or nonexistent. Best wear life of any bearing tested to date and ball material spalls without fracturing. Plans for future tests call for use of liquid oxygen as working fluid.

  14. Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains: R2P-Ndbnd Sdbnd N-PR2 and R2P-Ndbnd Sdbnd N-AsR2

    Science.gov (United States)

    Bal, Kristof M.; Cautereels, Julie; Blockhuys, Frank

    2017-03-01

    The conformational and configurational preferences of Me2P-Ndbnd Sdbnd N-PMe2 (3) and Me2P-Ndbnd Sdbnd N-AsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.

  15. The Silicon / Silicon Nitride Interface and Fracture in Si: Molecular Dynamics Simulations

    Science.gov (United States)

    Bachlechner, Martina E.; Kalia, Rajiv K.; Vashishta, Priya; Ebbsjö, Ingvar

    1997-03-01

    The interface structure of a Si_3N_4(0001) film on a Si(111) substrate is studied using the molecular dynamics (MD) method. Bulk Si is described by the Stillinger-Weber potential and Si_3N4 by a combination of two-body and three-body contributions. At the interface, the charge transfer from silicon to nitrogen is taken from LCAO electronic structure calculations. Using these Si, Si_3N4 and interface interactions in MD simulations, we determine structural correlations in the interfacial regions. Results for crack propagation in silicon will also be presented.

  16. Similarities in the electrical conduction processes in hydrogenated amorphous silicon oxynitride and silicon nitride

    CERN Document Server

    Kato, H; Ohki, Y; Seol, K S; Noma, T

    2003-01-01

    Electrical conduction at high fields was examined in a series of hydrogenated amorphous silicon oxynitride and silicon nitride films with different nitrogen contents deposited by plasma-enhanced chemical vapour deposition. It was shown that the conduction is attributable to the Poole-Frenkel (PF) emission in the two materials. The energy depths of the PF sites and the dependences on the sample's chemical composition are quite similar for the two samples. It is considered that the PF sites in the two materials are identical.

  17. Doping Silicon Wafers with Boron by Use of Silicon Paste

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Shu Zhou; Yunfan Zhang; Chen Dong; Xiaodong Pi; Deren Yang

    2013-01-01

    In this work we introduce recently developed silicon-paste-enabled p-type doping for silicon.Boron-doped silicon nanoparticles are synthesized by a plasma approach.They are then dispersed in solvents to form silicon paste.Silicon paste is screen-printed at the surface of silicon wafers.By annealing,boron atoms in silicon paste diffuse into silicon wafers.Chemical analysis is employed to obtain the concentrations of boron in silicon nanoparticles.The successful doping of silicon wafers with boron is evidenced by secondary ion mass spectroscopy (SIMS) and sheet resistance measurements.

  18. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible luminescenc

  19. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  20. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    2001-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible luminescenc

  1. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  2. Does Silicon Have a Role in Ornamental Crop Production?

    Science.gov (United States)

    Silicon (Si) is not considered to be an essential plant nutrient because most plant species can complete their life cycle without it. Still, some plants can accumulate Si at concentrations greater than nitrogen and potassium, and all species evaluated so far have concentrations of Si in tissue grea...

  3. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  4. Glass-silicon column

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  5. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  6. Process for making silicon carbide reinforced silicon carbide composite

    Science.gov (United States)

    Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    1998-01-01

    A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  7. NITROGEN REMOVAL FROM NATURAL GAS

    Energy Technology Data Exchange (ETDEWEB)

    K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

    1999-12-31

    The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest

  8. Synthesis of buried silicon oxynitride layers by ion implantation for silicon-on-insulator (SOI) structures

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, A.D. [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400 098 (India)]. E-mail: adyadav@physics.mu.ac.in; Polji, Rucha H. [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400 098 (India); Singh, Vibha [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400 098 (India); Dubey, S.K. [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400 098 (India); Gundu Rao, T.K. [Regional Sophisticated Instrumentation Center, IIT Bombay, Powai, Mumbai 400 076 (India)

    2006-04-15

    Silicon oxynitride (Si {sub x}O {sub y}N {sub z}) buried insulating layers were synthesized by SIMNOX (separation by implanted nitrogen-oxygen) process by {sup 14}N{sup +} and {sup 16}O{sup +} ion implantation to high fluence levels 1 x 10{sup 17}, 2.5 x 10{sup 17} and 5 x 10{sup 17} ions cm{sup -2} sequentially in the ratio 1:1 at 150 keV into p-type (1 0 0) silicon wafers. The identification of structures and defects in the ion beam synthesized buried layers were carried out by FTIR, XRD and ESR measurements before and after RTA treatments at different temperatures in nitrogen ambient. The FTIR spectra show single broad absorption band in the wavenumber range 1250-600 cm{sup -1} confirming the formation of silicon oxynitride. The integrated absorption band intensity is found to increase with increasing ion fluence and on annealing indicating gradual chemical transformation of the ion implanted layer into silicon oxynitride. The XRD data of the implanted samples show the formation of Si{sub 2}N{sub 2}O (O) phase of silicon oxynitride. On annealing the samples, SiO{sub 2} (H)/Si{sub 3}N{sub 4} (H) phases are also formed in addition to Si{sub 2}N{sub 2}O (O) phase. The concentration of the formed phases is found to increase with increase in the ion fluence as well as the annealing temperature. The ESR studies both at room temperature and at low temperatures reveal the presence of a defect center associated with silicon dangling bonds. The increase in ion fluence gives rise to small variations in g-values and increase in the spin density. The spin density decreases in general with increasing the annealing temperature.

  9. Inhibition of the Cysteine Protease Human Cathepsin L by Triazine Nitriles: Amide⋅⋅⋅Heteroarene π-Stacking Interactions and Chalcogen Bonding in the S3 Pocket.

    Science.gov (United States)

    Giroud, Maude; Ivkovic, Jakov; Martignoni, Mara; Fleuti, Marianne; Trapp, Nils; Haap, Wolfgang; Kuglstatter, Andreas; Benz, Jörg; Kuhn, Bernd; Schirmeister, Tanja; Diederich, François

    2017-02-03

    We report an extensive "heteroarene scan" of triazine nitrile ligands of the cysteine protease human cathepsin L (hCatL) to investigate π-stacking on the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket. This heteroarene⋅⋅⋅peptide bond stacking was supported by a co-crystal structure of an imidazopyridine ligand with hCatL. Inhibitory constants (Ki ) are strongly influenced by the diverse nature of the heterocycles and specific interactions with the local environment of the S3 pocket. Binding affinities vary by three orders of magnitude. All heteroaromatic ligands feature enhanced binding by comparison with hydrocarbon analogues. Predicted energetic contributions from the orientation of the local dipole moments of heteroarene and peptide bond could not be confirmed. Binding of benzothienyl (Ki =4 nm) and benzothiazolyl (Ki =17 nm) ligands was enhanced by intermolecular C-S⋅⋅⋅O=C interactions (chalcogen bonding) with the backbone C=O of Asn66 in the S3 pocket. The ligands were also tested for the related enzyme rhodesain. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  11. Silicon micro-mold

    Science.gov (United States)

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  12. Nitrogen Contents on Tribological Properties of Magnetron Sputtered SiCN Coatings

    Institute of Scientific and Technical Information of China (English)

    TIETUNSUN; Y.Q.FU; J.WEI; H.J.DU

    2004-01-01

    Silicon carbonitride (SiCN) coatings were deposited on silicon and tungsten carbide substrates by co-sputtering silicon and carbon in argon and nitrogen mixture atmosphere using magnetron-sputtering system. The effect of the N2 concentration, RF substrate bias voltage and target current on film deposition rate, roughness, adhesion, mechanical and tribological properties of coatings were investigated. The deposition rate was found to increase with the increasing nitrogen concentration. X-ray photoelectron spectroscopy analysis showed that high nitrogen concentration in the nitrogen-argon gas mixture enhanced the incorporation of C and N but reduced the incorporation of Si. SiCN coatings have good tribological properties at a N2 concentration of approximately 60%.

  13. Nitrogen Contents on Tribological Properties of Magnetron Sputtered SiCN Coatings

    Institute of Scientific and Technical Information of China (English)

    TIETUN SUN; Y.Q. FU; J. WEI; H. J. DU

    2004-01-01

    Silicon carbonitride (SiCN) coatings were deposited on silicon and tungsten carbide substrates by co-sputtering silicon and carbon in argon and nitrogen mixture atmosphere using magnetron-sputtering system. The effect of the N2concentration, RF substrate bias voltage and target current on film deposition rate, roughness, adhesion, mechanical and tribological properties of coatings were investigated. The deposition rate was found to increase with the increasing nitrogen concentration. X-ray photoelectron spectroscopy analysis showed that high nitrogen concentration in the nitrogen-argon gas mixture enhanced the incorporation of C and N but reduced the incorporation of Si. SiCN coatings have good tribological properties at a N2 concentration of approximately 60%.

  14. SILICON CARBIDE FOR SEMICONDUCTORS

    Science.gov (United States)

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  15. Silicon Carbide Shapes.

    Science.gov (United States)

    Free-standing silicon carbide shapes are produced by passing a properly diluted stream of a reactant gas, for example methyltrichlorosilane, into a...reaction chamber housing a thin walled, hollow graphite body heated to 1300-1500C. After the graphite body is sufficiently coated with silicon carbide , the...graphite body is fired, converting the graphite to gaseous CO2 and CO and leaving a silicon carbide shaped article remaining.

  16. Novel Silicon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Novel silicon nanotubes with inner-diameter of 60-80 nm was prepared using hydrogen-added dechlorination of SiCl4 followed by chemical vapor deposition (CVD) on a NixMgyO catalyst. The TEM observation showed that the suitable reaction temperature is 973 K for the formation of silicon nanotubes. Most of silicon nanotubes have one open end and some have two closed ends. The shape ofnanoscale silicon, however, is a micro-crystal type at 873 K, a rod or needle type at 993 K and an onion-type at 1023 K, respectively.

  17. Breast Implants: Saline vs. Silicone

    Science.gov (United States)

    ... differ in material and consistency, however. Saline breast implants Saline implants are filled with sterile salt water. ... of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with silicone gel — ...

  18. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  19. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  20. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  1. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  2. SILICON CARBIDE DATA SHEETS

    Science.gov (United States)

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  3. Silicon Valley Ecosystem

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu

    2005-01-01

    @@ It is unlikely that any industrial region of the world has received as much scrutiny and study as Silicon Valley. Despite the recent crash of Internet and telecommunications stocks,Silicon Valley remains the world's engine of growth for numerous high-technology sectors.

  4. Nitrogen responses and nitrogen management in potato

    NARCIS (Netherlands)

    Vos, J.

    2009-01-01

    Innumerable experiments have been carried out to establish the yield response of potato to the rate of nitrogen (N) supply. Given the continuing change in production level of potato and because of the need to maximise the nutrient use efficiency and to reduce losses of harmful nitrogenous compounds

  5. Photoluminescence of Silicon Nanocrystals in Silicon Oxide

    Directory of Open Access Journals (Sweden)

    L. Ferraioli

    2007-01-01

    Full Text Available Recent results on the photoluminescence properties of silicon nanocrystals embedded in silicon oxide are reviewed and discussed. The attention is focused on Si nanocrystals produced by high-temperature annealing of silicon rich oxide layers deposited by plasma-enhanced chemical vapor deposition. The influence of deposition parameters and layer thickness is analyzed in detail. The nanocrystal size can be roughly controlled by means of Si content and annealing temperature and time. Unfortunately, a technique for independently fine tuning the emission efficiency and the size is still lacking; thus, only middle size nanocrystals have high emission efficiency. Interestingly, the layer thickness affects the nucleation and growth kinetics so changing the luminescence efficiency.

  6. Structural studies of silicon oxynitride layers formed by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Alka R. [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400 098 (India); Yadav, A.D. [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400 098 (India)], E-mail: adyadav@physics.mu.ac.in; Dubey, S.K. [Department of Physics, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400 098 (India); Gundu Rao, T.K. [SAIF, IIT Bombay, Mumbai (India)

    2008-04-15

    Silicon oxynitride (Si{sub x}O{sub y}N{sub z}) layers were synthesized by implanting {sup 16}O{sub 2}{sup +} and {sup 14}N{sub 2}{sup +} 30 keV ions in 1:1 ratio with fluences ranging from 5 x 10{sup 16} to 1 x 10{sup 18} ions cm{sup -2} into single crystal silicon at room temperature. Rapid thermal annealing (RTA) of the samples was carried out at different temperatures in nitrogen ambient for 5 min. The FTIR studies show that the structures of ion-beam synthesized oxynitride layers are strongly dependent on total ion-fluence and annealing temperature. It is found that the structures formed at lower ion fluences ({approx}1 x 10{sup 17} ions cm{sup -2}) are homogenous oxygen-rich silicon oxynitride. However, at higher fluence levels ({approx}1 x 10{sup 18} ions cm{sup -2}) formation of homogenous nitrogen rich silicon oxynitride is observed due to ion-beam induced surface sputtering effects. The Micro-Raman studies on 1173 K annealed samples show formation of partially amorphous oxygen and nitrogen rich silicon oxynitride structures with crystalline silicon beneath it for lower and higher ion fluences, respectively. The Ellipsometry studies on 1173 K annealed samples show an increase in the thickness of silicon oxynitride layer with increasing ion fluence. The refractive index of the ion-beam synthesized layers is found to be in the range 1.54-1.96.

  7. Steps towards silicon optoelectronics

    CERN Document Server

    Starovoytov, A

    1999-01-01

    nanostructure fabrication. Thus, this thesis makes a dual contribution to the chosen field: it summarises the present knowledge on the possibility of utilising optical properties of nanocrystalline silicon in silicon-based electronics, and it reports new results within the framework of the subject. The main conclusion is that due to its promising optoelectronic properties nanocrystalline silicon remains a prospective competitor for the cheapest and fastest microelectronics of the next century. This thesis addresses the issue of a potential future microelectronics technology, namely the possibility of utilising the optical properties of nanocrystalline silicon for optoelectronic circuits. The subject is subdivided into three chapters. Chapter 1 is an introduction. It formulates the oncoming problem for microelectronic development, explains the basics of Integrated Optoelectronics, introduces porous silicon as a new light-emitting material and gives a brief review of other competing light-emitting material syst...

  8. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  9. The teleconnection between marine silicon supply and desertification in China

    Institute of Scientific and Technical Information of China (English)

    YANG Dongfang; WU Jianping; CHEN Shengtao; LU Qing

    2007-01-01

    Desertification has been notably expanding in China in the recent decade, especially in North China where dust/sand storm (DSS) frequently assaulted local communities. Analyses in marine ecology found that the earth ecosystem could be able to complement nutrient silicon for keeping sustainable development of marine ecosystem, and decreasing CO2 concentration in the atmosphere; as a result,the area of desertification would be enlarged. Modem human being activities have resulted in constant changes in the amount of silicon transport from land into sea, leading to oversupply of nitrogen and phosphorus but silicon in seawater. The proportion of nitrogen, phosphorus and silicon was seriously imbalanced and the limitation of silicon for phytoplankton growth has become more serious. The silicon deficiency has damaged the marine ecosystem in coastal regions and slowed down the carbon sedimentation in the atmosphere of the world. The authors believe that the continual discharge of CO2 into the atmosphere is the cause for the global warming including marine water temperature rise. Consequently, the earth ecosystem would have to trigger its complementary action to resume to the silicon balance by algae bloom in seawater for reducing air and water temperatures. In order to complement nutrient silicon into the sea, the ecosystem would transport silicon via the atmosphere; therefore, the desertification in the inner land is a natural reaction. As marine phytoplankton booming can reduce the CO2 concentration in the atmosphere and further ease the green-house effect, during this process, a large amount of silicon are demanded by the ecosystem, which human being are unable to stop desertification from happening but slow down the progress and ease the risk. Therefore, as an important role in earth ecosystem, people should reduce the CO2 discharge into the atmosphere first; then, the normal function of river transporting silicon must be restored. In this way, the CO2 in the

  10. Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Zhongshan [Department of Physics, University of Jinan, Jinan 250022 (China); Liu Zhongli; Li Ning; Li Guohua [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang Enxia, E-mail: ss_zhengzs@ujn.edu.c [College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2010-02-15

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis. (semiconductor technology)

  11. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ://www.eoearth.org/article/Marine_nitrogen_cycle equatorial Pacific and the Southern Ocean where low concentration of a micronutrient (iron) appears to limit photosynthesis. In areas characterized by low dissolved inorganic nitrogen (DIN) concentration in surface waters, dissolved organic nitrogen (DON...

  12. Annual reports in inorganic and general syntheses 1973

    CERN Document Server

    Niedenzu, Kurt

    1974-01-01

    Annual Reports in Inorganic and General Syntheses-1973 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book covers the synthetic aspects and structural or mechanistic features of elements, including the main group hydrides, alkali and alkaline earth elements, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, and lead, nitrogen, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens and pseudohalogens, and noble gases. The text also discusses the synthetic aspects and structural or mechanistic features of

  13. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  14. Silicon applications in photonics

    Science.gov (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  15. Roadmap on silicon photonics

    Science.gov (United States)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  16. Recrystallization of polycrystalline silicon

    Science.gov (United States)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  17. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  18. Microstructured silicon radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Derzon, Mark S.; Draper, Bruce L.

    2017-03-14

    A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 .mu.m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.

  19. Emissivity of microstructured silicon.

    Science.gov (United States)

    Maloney, Patrick G; Smith, Peter; King, Vernon; Billman, Curtis; Winkler, Mark; Mazur, Eric

    2010-03-01

    Infrared transmittance and hemispherical-directional reflectance data from 2.5 to 25 microm on microstructured silicon surfaces have been measured, and spectral emissivity has been calculated for this wavelength range. Hemispherical-total emissivity is calculated for the samples and found to be 0.84 before a measurement-induced annealing and 0.65 after the measurement for the sulfur-doped sample. Secondary samples lack a measurement-induced anneal, and reasons for this discrepancy are presented. Emissivity numbers are plotted and compared with a silicon substrate, and Aeroglaze Z306 black paint. Use of microstructured silicon as a blackbody or microbolometer surface is modeled and presented, respectively.

  20. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  1. Synthesis of silicon carbide-silicon nitride composite ultrafine particles using a carbon dioxide laser

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masaaki; Maniette, Yves; Nakata, Yoshinori; Okutani, Takeshi (Government Industrial Development Lab., Hokkaido, Sapporo (Japan))

    1993-05-01

    The synthesis and the structure of silicon carbide-silicon nitride (SiC-Si[sub 3]N[sub 4]) composite ultrafine particles have been studied. SiC-Si[sub 3]N[sub 4] composite ultrafine particles were prepared by irradiating a SiH[sub 4], C[sub 2]H[sub 4], and NH[sub 3] gas mixture with a CO[sub 2] laser at atmospheric pressure. The composition of composite powders changed with the reactant gas flow rate. The carbon and nitrogen content of the powder could be controlled in a wide range from 0 to 30 wt%. The composite powder, which contained 25.3 wt% carbon and 5.8 wt% nitrogen, had a [beta]-SiC structure. As the nitrogen content increased, SiC decreased and amorphous phase, Si[sub 3]N[sub 4], Si appeared. The results of XPS and lattice constant measurements suggested that Si, C, and N atoms were intimately mixed in the composite particles.

  2. Nitrogen, phosphorus and silicon in riparian ecosystems along the ...

    African Journals Online (AJOL)

    2011-09-05

    Sep 5, 2011 ... 2Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, .... transformation processes, e.g. removal by denitrification (e.g. ... riparian wetlands, as well as the effects of increasing human.

  3. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)]. E-mail: yinaoep@yahoo.mx; Aceves, Mariano [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico); Carrillo, Jesus [CIDS, BUAP, Puebla, Pue. (Mexico); Lopez-Estopier, Rosa [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)

    2006-12-05

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V {sub T}. When the applied voltage is smaller than V {sub T}, the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V {sub T}, the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained.

  4. Integrated silicon optoelectronics

    CERN Document Server

    Zimmermann, Horst

    2000-01-01

    'Integrated Silicon Optoelectronics'assembles optoelectronics and microelectronics The book concentrates on silicon as the major basis of modern semiconductor devices and circuits Starting from the basics of optical emission and absorption and from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included The book, furthermore, contains a review of the state of research on eagerly expected silicon light emitters In order to cover the topic of the book comprehensively, integrated waveguides, gratings, and optoelectronic power devices are included in addition Numerous elaborate illustrations promote an easy comprehension 'Integrated Silicon Optoelectronics'will be of value to engineers, physicists, and scientists in industry and at universities The book is also recommendable for graduate students speciali...

  5. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  6. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  7. Neuromorphic Silicon Photonics

    CERN Document Server

    Tait, Alexander N; de Lima, Thomas Ferreira; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2016-01-01

    We report first observations of an integrated analog photonic network, in which connections are configured by microring weight banks, as well as the first use of electro-optic modulators as photonic neurons. A mathematical isomorphism between the silicon photonic circuit and a continuous neural model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, existing neural engineering tools can be adapted to silicon photonic information processing systems. A 49-node silicon photonic neural network programmed using a "neural compiler" is simulated and predicted to outperform a conventional approach 1,960-fold in a toy differential system emulation task. Photonic neural networks leveraging silicon photonic platforms could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  8. Preparation of SiN x film by pulsed laser ablation in nitrogen gas ambient

    Science.gov (United States)

    Umezu, I.; Yamaguchi, T.; Kohno, K.; Inada, M.; Sugimura, A.

    2002-09-01

    Silicon nitride films were synthesized by reactive pulsed laser ablation (PLA) of a Si target in N 2 gas atmosphere. At different laser fluences and N 2 gas pressures the infrared absorption peak attributed to Si-N bond was evaluated. The nitrogen concentration in the film increased with the increasing fluence. Nitrogen concentration depended also on N 2 gas pressure; it increased as N 2 pressure increase up to 10 Pa and then it decreased with further increasing N 2 gas pressure. These results indicate that decomposition of N 2 molecules and collisions of SiN x clusters with N 2 molecules are essential to prepare silicon nitride films by PLA method. The PLA is a promising method to fabricate nitrogen rich silicon nitride films without using poisonous gases such as silane and ammonia.

  9. The DELPHI silicon tracker

    CERN Document Server

    Pernegger, H

    1997-01-01

    The DELPHI collaboration has upgraded the Silicon Vertex Detector in order to cope with the physics requirements for LEP200. The new detector consists of a barrel section with three layers of microstrip detectors and a forward extension made of hybrid pixel and large pitch strip detectors. The layout of the detector and the techniques used for the different parts of the new silicon detector shall be described.

  10. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  11. Silicon-Based Light Sources for Silicon Integrated Circuits

    Directory of Open Access Journals (Sweden)

    L. Pavesi

    2008-01-01

    Full Text Available Silicon the material per excellence for electronics is not used for sourcing light due to the lack of efficient light emitters and lasers. In this review, after having introduced the basics on lasing, I will discuss the physical reasons why silicon is not a laser material and the approaches to make it lasing. I will start with bulk silicon, then I will discuss silicon nanocrystals and Er3+ coupled silicon nanocrystals where significant advances have been done in the past and can be expected in the near future. I will conclude with an optimistic note on silicon lasing.

  12. Oxygen defect processes in silicon and silicon germanium

    Energy Technology Data Exchange (ETDEWEB)

    Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk [Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry CV1 5FB (United Kingdom); Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Sgourou, E. N.; Londos, C. A. [Solid State Section, Physics Department, University of Athens, Panepistimiopolis, Zografos, 157 84 Athens (Greece); Schwingenschlögl, U. [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia)

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  13. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  14. Implanted bottom gate for epitaxial graphene on silicon carbide

    Science.gov (United States)

    Waldmann, D.; Jobst, J.; Fromm, F.; Speck, F.; Seyller, T.; Krieger, M.; Weber, H. B.

    2012-04-01

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic temperature operation. Depending on implantation dose and temperature we operate in two gating regimes. In the first, the gating mechanism is similar to a MOSFET, the second is based on a tuned space charge region of the silicon carbide semiconductor. We present a detailed model that describes the two gating regimes and the transition in between.

  15. Surface bioactivity of plasma implanted silicon and amorphous carbon

    Institute of Scientific and Technical Information of China (English)

    Paul K CHU

    2004-01-01

    Plasma immersion ion implantation and deposition (PⅢ&D) has been shown to be an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification single-crystal silicon and amorphous carbon is reviewed. Silicon is the most important material in the integrated circuit industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PⅢ into silicon and observed the biomimetic growth of apatite on its surface in simulated body fluid. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness. The use of this material in biomedical engineering has also attracted much attention. It has been observed in our laboratory that doping DLC with nitrogen by means of PⅢ can improve the surface blood compatibility. The properties as well as in vitro biological test results will be discussed in this article.

  16. Albert Behnke: nitrogen narcosis.

    Science.gov (United States)

    Grover, Casey A; Grover, David H

    2014-02-01

    As early as 1826, divers diving to great depths noted that descent often resulted in a phenomenon of intoxication and euphoria. In 1935, Albert Behnke discovered nitrogen as the cause of this clinical syndrome, a condition now known as nitrogen narcosis. Nitrogen narcosis consists of the development of euphoria, a false sense of security, and impaired judgment upon underwater descent using compressed air below 3-4 atmospheres (99 to 132 feet). At greater depths, symptoms can progress to loss of consciousness. The syndrome remains relatively unchanged in modern diving when compressed air is used. Behnke's use of non-nitrogen-containing gas mixtures subsequent to his discovery during the 1939 rescue of the wrecked submarine USS Squalus pioneered the use of non-nitrogen-containing gas mixtures, which are used by modern divers when working at great depth to avoid the effects of nitrogen narcosis.

  17. Compressive creep of silicon nitride with additives; Fluencia por compressao de nitreto de silicio aditivado

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Newton Hissao; Cavalcanti, Celso Berilo Cidade; Piorino Neto, Francisco; Silva, Vitor Alexandre da; Silva, Cosme Roberto Moreira da [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco

    1995-12-31

    Manufacturing of engine and turbine components made of silicon nitride based ceramics requires knowledge of thermochemical properties such as resistance to compressive creep. In order to characterize this property a compressive creep apparatus was assembled at AMR/IAE/CTA, able to work at 1450 deg C in a continuous mode. Test pieces were prepared from mixtures of silicon nitride with rare earth carbonate and aluminium nitride. These test pieces were pressureless sintered at 1750 deg C for 30 minutes under nitrogen atmosphere. Experiments showed that rare earth carbonate and aluminium nitride are suitable additives for silicon nitride. (author) 1 fig., 2 tabs.

  18. Fifth workshop on the role of impurities and defects in silicon device processing. Extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Luque, A.; Sopori, B.; Swanson, D.; Gee, J.; Kalejs, J.; Jastrzebski, L.; Tan, T.

    1995-08-01

    This workshop dealt with engineering aspects and material properties of silicon electronic devices. Crystalline silicon growth, modeling, and properties are discussed in general and as applied to solar cells. Topics considered in discussions of silicon growth include: casting, string ribbons, Al backside contacts, ion implantation, gettering, passivation, and ultrasound treatments. Properties studies include: Electronic properties of defects and impurities, dopant and carrier concentrations, structure and bonding, nitrogen effects, degradation of bulk diffusion length, and recombination parameters. Individual papers from the workshop are indexed separately on the Energy Data Bases.

  19. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  20. Effects of nitrogen content on structure and electrical properties of nitrogen-doped fluorinated diamond-like carbon films

    Institute of Scientific and Technical Information of China (English)

    XIAO Jian-rong; LI Xin-hai; WANG Zhi-xing

    2009-01-01

    Nitrogen-doped fluorinated diamond-like carbon (FN-DLC) films were prepared on single crystal silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) under different deposited conditions with CF4,CH4 and nitrogen as source gases.The influence of nitrogen content on the structure and electrical properties of the films was studied.The films were investigated in terms of surface morphology,microstructure,chemical composition and electrical properties.Atomic force microscopy (AFM) results revealed that the surface morphology of the films became smooth due to doping nitrogen.Fourier transform infrared absorption spectrometry (FTIR) results showed that amouts of C=N and C≡N bonds increased gradually with increasing nitrogen partial pressure r (r=p(N_2)/p(N_2+CF_4+CH_4)).Gaussian fit results of C 1s and N 1s in X-ray photoelectron spectra (XPS) showed that the incorporation of nitrogen presented mainly in the forms of β-C_3N_4 and a-CN_x (x=1,2,3) in the films.The current-voltage (I-V) measurement results showed that the electrical conductivity of the films increased with increasing nitrogen content.

  1. Stoichiometric silicon oxynitride thin films reactively sputtered in Ar/N2O plasmas by HiPIMS

    Science.gov (United States)

    Hänninen, Tuomas; Schmidt, Susann; Wissting, Jonas; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2016-04-01

    Silicon oxynitride (SiO x N y , x=0.2-1.3, y=0.2 -0.7) thin films were synthesized by reactive high power impulse magnetron sputtering from a pure silicon target in Ar/N2O atmospheres. It was found that the composition of the material can be controlled by the reactive gas flow and the average target power. X-ray photoelectron spectroscopy (XPS) shows that high average powers result in more silicon-rich films, while lower target powers yield silicon-oxide-like material due to more pronounced target poisoning. The amount of nitrogen in the films can be controlled by the percentage of nitrous oxide in the working gas. The nitrogen content remains at a constant level while the target is operated in the transition region between metallic and poisoned target surface conditions. The extent of target poisoning is gauged by the changes in peak target current under the different deposition conditions. XPS also shows that varying concentrations and ratios of oxygen and nitrogen in the films result in film chemical bonding structures ranging from silicon-rich to stoichiometric silicon oxynitrides having no observable Si-Si bond contributions. Spectroscopic ellipsometry shows that the film optical properties depend on the amount and ratio of oxygen and nitrogen in the compound, with film refractive indices measured at 633 nm ranging between those of SiO2 and Si3N4.

  2. Spintronics: Silicon takes a spin

    NARCIS (Netherlands)

    Jansen, Ron

    2007-01-01

    An efficient way to transport electron spins from a ferromagnet into silicon essentially makes silicon magnetic, and provides an exciting step towards integration of magnetism and mainstream semiconductor electronics.

  3. High Nitrogen Stainless Steel

    Science.gov (United States)

    2011-07-19

    Kiev, 1993. 7. High Nitrogen Steels, edited by M. Kikuchi and Y. Mishima , Vol. 36, No. 7, Iron and Steel Institute of Japan Inernational, Tokyo...the Corrosion of Iron and Steels,” High Nitrogen Steels, edited by M. Kikuchi and Y. Mishima , Vol. 36, No. 7, Iron and Steel Institute of Japan

  4. Nitrogen use efficiency (NUE)

    NARCIS (Netherlands)

    Oenema, O.

    2015-01-01

    There is a need for communications about resource use efficiency and for measures to increase the use efficiency of nutrients in relation to food production. This holds especially for nitrogen. Nitrogen (N) is essential for life and a main nutrient element. It is needed in relatively large quantitie

  5. Nitrogen trading tool

    Science.gov (United States)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  6. Thick silicon growth techniques

    Science.gov (United States)

    Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.

    1973-01-01

    Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies.

  7. The electrophotonic silicon biosensor

    Science.gov (United States)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  8. Floating Silicon Method

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  9. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  10. Silicon photonics: optical modulators

    Science.gov (United States)

    Reed, G. T.; Gardes, F. Y.; Hu, Youfang; Thomson, D.; Lever, L.; Kelsall, R.; Ikonic, Z.

    2010-01-01

    Silicon Photonics has the potential to revolutionise a whole raft of application areas. Currently, the main focus is on various forms of optical interconnects as this is a near term bottleneck for the computing industry, and hence a number of companies have also released products onto the market place. The adoption of silicon photonics for mass production will significantly benefit a range of other application areas. One of the key components that will enable silicon photonics to flourish in all of the potential application areas is a high performance optical modulator. An overview is given of the major Si photonics modulator research that has been pursued at the University of Surrey to date as well as a worldwide state of the art showing the trend and technology available. We will show the trend taken toward integration of optical and electronic components with the difficulties that are inherent in such a technology.

  11. Integrated Silicon Optoelectronics

    CERN Document Server

    Zimmermann, Horst K

    2010-01-01

    Integrated Silicon Optoelectronics synthesizes topics from optoelectronics and microelectronics. The book concentrates on silicon as the major base of modern semiconductor devices and circuits. Starting from the basics of optical emission and absorption, as well as from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed. Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included. The book, furthermore, contains a review of the newest state of research on eagerly anticipated silicon light emitters. In order to cover the topics comprehensively, also included are integrated waveguides, gratings, and optoelectronic power devices. Numerous elaborate illustrations facilitate and enhance comprehension. This extended edition will be of value to engineers, physicists, and scientists in industry and at universities. The book is also recommended to graduate student...

  12. Microgravity silicon zoning investigation

    Science.gov (United States)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  13. The LHCb Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Mark, E-mail: Mark.Tobin@epfl.ch

    2016-09-21

    The LHCb experiment is dedicated to the study of heavy flavour physics at the Large Hadron Collider (LHC). The primary goal of the experiment is to search for indirect evidence of new physics via measurements of CP violation and rare decays of beauty and charm hadrons. The LHCb detector has a large-area silicon micro-strip detector located upstream of a dipole magnet, and three tracking stations with silicon micro-strip detectors in the innermost region downstream of the magnet. These two sub-detectors form the LHCb Silicon Tracker (ST). This paper gives an overview of the performance and operation of the ST during LHC Run 1. Measurements of the observed radiation damage are shown and compared to the expectation from simulation.

  14. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  15. The electrophotonic silicon biosensor

    Science.gov (United States)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  16. Silicon microphones - a Danish perspective

    DEFF Research Database (Denmark)

    Bouwstra, Siebe; Storgaard-Larsen, Torben; Scheeper, Patrick

    1998-01-01

    Two application areas of microphones are discussed, those for precision measurement and those for hearing instruments. Silicon microphones are under investigation for both areas, and Danish industry plays a key role in both. The opportunities of silicon, as well as the challenges and expectations......, are discussed. For precision measurement the challenge for silicon is large, while for hearing instruments silicon seems to be very promising....

  17. Nitrogen Lewis Acids.

    Science.gov (United States)

    Pogoreltsev, Alla; Tulchinsky, Yuri; Fridman, Natalia; Gandelman, Mark

    2017-03-22

    Being a major conception of chemistry, Lewis acids have found countless applications throughout chemical enterprise. Although many chemical elements can serve as the central atom of Lewis acids, nitrogen is usually associated with Lewis bases. Here, we report on the first example of robust and modifiable Lewis acids centered on the nitrogen atom, which provide stable and well-characterized adducts with various Lewis bases. On the basis of the reactivity of nitrogen Lewis acids, we prepared, for the first time, cyclic triazanes, a class of cyclic organic compounds sequentially bearing three all-saturated nitrogen atoms (N-N-N motif). Reactivity abilities of these N-Lewis acids were explained by theoretical calculations. Properties and future applications of nitrogen Lewis acids are intriguing.

  18. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  19. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  20. CMS silicon tracker developments

    Energy Technology Data Exchange (ETDEWEB)

    Civinini, C. E-mail: carlo.civinini@fi.infn.it; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell' Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B

    2002-01-21

    The CMS Silicon tracker consists of 70 m{sup 2} of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors.

  1. CMS silicon tracker developments

    CERN Document Server

    Civinini, C; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A; Bagliesi, G; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Bosi, F; Borrello, L; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Buffini, A; Busoni, S; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Creanza, D; D'Alessandro, R; Da Rold, M; Demaria, N; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Feld, L; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Frey, A; Fürtjes, A; Giassi, A; Giorgi, M; Giraldo, A; Glessing, B; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Honma, A; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; König, S; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Meschini, M; Messineo, A; Migliore, E; My, S; Paccagnella, A; Palla, Fabrizio; Pandoulas, D; Papi, A; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Radicci, V; Raffaelli, F; Raymond, M; Santocchia, A; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Starodumov, Andrei; Stavitski, I; Stefanini, G; Surrow, B; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Xie, Z; Li Ya Hong; Watts, S; Wittmer, B

    2002-01-01

    The CMS Silicon tracker consists of 70 m/sup 2/ of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors. (9 refs).

  2. Irradiation Defects in Silicon Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The application of irradiation in silicon crystal is introduced.The defects caused by irradiation are reviewed and some major ways of studying defects in irradiated silicon are summarized.Furthermore the problems in the investigation of irradiated silicon are discussed as well as its properties.

  3. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    Chen Min-gan; Chen Ming-an; Li Jin-chai; Li Jin-chai; Liu Chuan-sheng; Liu Chuan-sheng; Ma You-peng; Ma You-peng; Lu Xian-feng; Lu Xian-feng; Ye Ming-sheng; Ye Ming-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  4. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    ChertMing-an; LiJin-chai; LiuChuan-sheng; MaYou-peng; LuXlan-feng; YeMing-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12. 6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3. 2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  5. Molecular Biology of Nitrogen Fixation

    Science.gov (United States)

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  6. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    quality, etch rate. The response of these parameters to high temperature anneals were correlated with structural changes in the silicon nitride films as measured by using the hydrogen bond concentration. Plasma enhanced chemical vapour deposition allows continuous variation in nearly all deposition parameters. The parameters studied in this work are the gas flow ratios and excitation power. In both direct and remote deposition systems, the increase in deposition power density lead to higher activation of ammonia which in turn lead to augmented incorporation of nitrogen into the films and thus lower refractive index. For a direct system, the same parameter change lead to a drastic fall in passivation quality of Czochralski silicon attributed to an increase in ion bombardment as well as the general observation that as deposited passivation tends to increase with refractive index. Silicon nitride films with variations in refractive index were also made by varying the silane-to-ammonia gas flow ratio. This simple parameter adjustment makes plasma enhanced chemical vapour deposited silicon nitride applicable to double layer anti-reflective coatings simulated in this work. The films were found to have an etch rate in 5% hydrofluoric acid that decreased with increasing refractive index. This behaviour is attributed to the decreasing concentration of nitrogen-to-hydrogen bonds in the films. Such bonds at the surface of silicon nitride have been suggested to be involved in the main reaction mechanism when etching silicon nitride in hydrofluoric acid. Annealing the films lead to a drastic fall in etch rates and was linked to the release of hydrogen from the nitrogen-hydrogen bonds. (author). 115 refs., 35 figs., 6 tabs

  7. Pair distribution functions of silicon/silicon nitride interfaces

    Science.gov (United States)

    Cao, Deng; Bachlechner, Martina E.

    2006-03-01

    Using molecular dynamics simulations, we investigate different mechanical and structural properties of the silicon/silicon nitride interface. One way to characterize the structure as tensile strain is applied parallel to the interface is to calculate pair distribution functions for specific atom types. The pair distribution function gives the probability of finding a pair of atoms a distance r apart, relative to the probability expected for a completely random distribution at the same density. The pair distribution functions for bulk silicon nitride reflect the fracture of the silicon nitride film at about 8 % and the fact that the centerpiece of the silicon nitride film returns to its original structure after fracture. The pair distribution functions for interface silicon atoms reveal the formation of bonds for originally unbound atom pairs, which is indicative of the interstitial-vacancy defect that causes failure in silicon.

  8. The study of laser plasma plume radiation produced by laser ablation of silicon

    Science.gov (United States)

    Huang, Qingju

    2014-12-01

    In order to study the laser plasma plume radiation mechanisms induced by the interaction between Nd: YAG plused laser and silicon, the radiation model of silicon laser plasma plume is established. Laser plasma plume radiation includes atom characteristic lines, ion lines and continuous background. It can reflect the characteristics of laser plasma plume radiation, reveal the mechanism of laser ablation on silicon. Time-resolved measurment of laser plasma plume radiation produced by pulsed Nd: YAG laser ablation of silicon in different ambient gas is thoroughly studied. The experimental ambient gas are N2 and O2.The pulse width of Nd: YAG plused laser adopted in the experiment is 20ns, the pulse energy is 60mJ, the laser pulsing frequency is 10Hz, and the emitted laser wavelength is 1064nm, The silicon target purity is 99.99%, The target is rotating at a speed of 240r/min. The focusing area of the laser on the Si target has a diameter of around 0.8mm.The pressure of ambient gas is tunable between 13Pa and 101.3kPa in the induced chamber, the number of points used in averaging is 15. The experimental results show that the ambient gas has obvious enhancement effect on the radiation intensity of silicon laser plasma plume. With the increase of the ambient gas pressure, the silicon laser plasma plume radiation intensity will first be increased and then be decreased, and the ambient gas has an obvious compression effect on the scope of silicon laser plasma plume radiation. For the two different ambient gases, the maximum silicon laser plasma plume radiation intensity and maximum pressure for they are different, for oxygen at 35kPa, for nitrogen at 50kPa. The silicon laser plasma plume radiation intensity in oxygen is bigger than that in nitrogen.The main excition mechanisms of laser plasma plume radiation induced by Nd:YAG plused laser induced silicon is analyzed, The plused laser can makes part molecules in the ambient gas and silicon atoms ionized at the surface of

  9. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    has been an obstacle for a simple realization of electro-optic modulators, and its indirect band gap has prevented the realization of efficient silicon light emitting diodes and lasers. Still, significant progress has been made in the past few years. Electro-optic modulators based on the free carrier...

  10. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  11. On nanostructured silicon success

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard; Frandsen, Lars Hagedorn

    2016-01-01

    Recent Letters by Piggott et al. 1 and Shen et al. 2 claim the smallest ever dielectric wave length and polarization splitters. The associated News & Views article by Aydin3 states that these works “are the first experimental demonstration of on-chip, silicon photonic components based on complex...

  12. Silicon Valley's Turnaround

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu

    2006-01-01

    @@ During Silicon Valley's dramatic economic growth fueled by the Internet boom and business investment in information technology, employment in the region's high-tech sec tor tripled between 1995 and 2000. The economic boom gave rise to many new firms,drawing em ployees into high-tech jobs from other regions and other industries.

  13. Characterization of Silicon Carbide.

    Science.gov (United States)

    The various electrical and structural measurement techniques for silicon carbide are described. The electrical measurements include conductivity, resistivity, carrier concentration, mobility, doping energy levels, and lifetime. The structural measurements include polytype determination and crystalline perfection. Both bulk and epitaxial films are included.

  14. Composition Comprising Silicon Carbide

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  15. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  16. OPAL Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  17. Antifuse with a single silicon-rich silicon nitride insulating layer

    Energy Technology Data Exchange (ETDEWEB)

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  18. Nitrogen Backbone Oligomers.

    Science.gov (United States)

    Wang, Hongbo; Eremets, Mikhail I; Troyan, Ivan; Liu, Hanyu; Ma, Yanming; Vereecken, Luc

    2015-08-19

    We found that nitrogen and hydrogen directly react at room temperature and pressures of ~35 GPa forming chains of single-bonded nitrogen atom with the rest of the bonds terminated with hydrogen atoms - as identified by IR absorption, Raman, X-ray diffraction experiments and theoretical calculations. At releasing pressures below ~10 GPa, the product transforms into hydrazine. Our findings might open a way for the practical synthesis of these extremely high energetic materials as the formation of nitrogen-hydrogen compounds is favorable already at pressures above 2 GPa according to the calculations.

  19. Silicon in beer and brewing.

    Science.gov (United States)

    Casey, Troy R; Bamforth, Charles W

    2010-04-15

    It has been claimed that beer is one of the richest sources of silicon in the diet; however, little is known of the relationship between silicon content and beer style and the manner in which beer is produced. The purpose of this study was to measure silicon in a diversity of beers and ascertain the grist selection and brewing factors that impact the level of silicon obtained in beer. Commercial beers ranged from 6.4 to 56.5 mg L(-1) in silicon. Products derived from a grist of barley tended to contain more silicon than did those from a wheat-based grist, likely because of the high levels of silica in the retained husk layer of barley. Hops contain substantially more silicon than does grain, but quantitatively hops make a much smaller contribution than malt to the production of beer and therefore relatively less silicon in beer derives from them. During brewing the vast majority of the silicon remains with the spent grains; however, aggressive treatment during wort production in the brewhouse leads to increased extraction of silicon into wort and much of this survives into beer. It is confirmed that beer is a very rich source of silicon. (c) 2010 Society of Chemical Industry.

  20. Low Hydrogen Content Silicon Nitride Films Deposited at Room Temperature with an ECR Plasma Source

    NARCIS (Netherlands)

    Isai, Gratiela I.; Holleman, Jisk; Wallinga, Hans; Woerlee, Pierre H.

    2004-01-01

    Silicon nitride layers with very low hydrogen content (less than 1 atomic percent) were deposited at near room temperature, from N2 and SiH4, with a multipolar electron cyclotron resonance plasma. The influences of pressure and nitrogen flow rate on physical and electrical properties were studied in

  1. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis.

    Science.gov (United States)

    Schaller, J; Brackhage, C; Gessner, M O; Bäuker, E; Gert Dudel, E

    2012-03-01

    Silicon is a non-essential element for plant growth. Nevertheless, it affects plant stress resistance and in some plants, such as grasses, it may substitute carbon (C) compounds in cell walls, thereby influencing C allocation patterns and biomass production. How variation in silicon supply over a narrow range affects nitrogen (N) and phosphorus (P) uptake by plants has also been investigated in some detail. However, little is known about effects on the stoichiometric relationships between C, N and P when silicon supply varies over a broader range. Here, we assessed the effect of silicon on aboveground biomass production and C:N:P stoichiometry of common reed, Phragmites australis, in a pot experiment in which three widely differing levels of silicon were supplied. Scanning electron microscopy (SEM) showed that elevated silicon supply promoted silica deposition in the epidermis of Phragmites leaves. This resulted in altered N:P ratios, whereas C:N ratios changed only slightly. Plant growth was slightly (but not significantly) enhanced at intermediate silicon supply levels but significantly decreased at high levels. These findings point to the potential of silicon to impact plant growth and elemental stoichiometry and, by extension, to affect biogeochemical cycles in ecosystems dominated by Phragmites and other grasses and sedges.

  2. Gas flow characteristics in straight silicon microchannels

    Institute of Scientific and Technical Information of China (English)

    丁英涛; 姚朝晖; 沈孟育

    2002-01-01

    Experiments have been conducted to investigate nitrogen gas flow characteristics through four trapezoidal sili-con microchannels with different hydraulic diameters. The volume flow rate and pressure ratio are measured in theexperiments. It is found that the friction coefficient is no longer a constant, which is different from the conventionaltheory. The characteristics are first explained by the theoretical analysis. A simplified rectangular model (rectangularstraight channel model) is then proposed. The experimental results are compared with the theoretical predictions basedon the simplified rectangular model and the two-dimensional flow between the parallel-plate model which was usuallyuse The difference between the experimental data and the theoretical predictions is found in the high-pressure ratiocasesx. The influence of the gas compressibility effect based on the Boltzmann gas kinetic analysis method is studiedto interpret the discrepancy. We discuss two important factors affecting the application extent of different predictionmodels.

  3. Mineral commodity profiles: nitrogen

    Science.gov (United States)

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  4. Commercial Nitrogen Fertilizer Purchased

    Data.gov (United States)

    U.S. Environmental Protection Agency — Amounts of fertilizer nitrogen (N) purchased by states in individual years 2003, 2005, 2007, 2009 and 2011, and the % change in average amounts purchased per year...

  5. Protein Nitrogen Determination

    Science.gov (United States)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  6. Brucella, nitrogen and virulence.

    Science.gov (United States)

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  7. Erbium doped stain etched porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Diaz-Herrera, B. [Departamento de Energia Fotovoltaica, Instituto Tecnologico de Energias Renovables (ITER), Poligono Industrial de Granadilla, 38611 S/C Tenerife (Spain); Guerrero-Lemus, R. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain)], E-mail: rglemus@ull.es; Mendez-Ramos, J.; Rodriguez, V.D. [Departamento de Fisica Fundamental, Experimental Electronica y Sistemas, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Hernandez-Rodriguez, C. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Martinez-Duart, J.M. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2008-01-15

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO{sub 3} solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er{sup 3+} ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy.

  8. Silicon carbonitrides - a novel class of materials

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, H. (Max-Planck-Inst. of Metals Research, Lab. for Powder Metallurgy, Inst. of Materials Science, Stuttgart (Germany)); Aldinger, F. (Max-Planck-Inst. of Metals Research, Lab. for Powder Metallurgy, Inst. of Materials Science, Stuttgart (Germany)); Riedel, R. (Max-Planck-Inst. of Metals Research, Lab. for Powder Metallurgy, Inst. of Materials Science, Stuttgart (Germany) Univ. of Darmstadt, Inst. of Materials Science, Darmstadt (Germany))

    1993-11-01

    Silicon carbonitride monoliths derived from polymer powder compacts via polymer pyrolysis represent a new class of structural ceramic materials due to the complete coalescence of the powder particles during polymer decomposition and the formation of a uniform ceramic matrix free from any grain boundaries or secondary phases. The submicron pore channel system penetrating the material can be minimized in volume by infiltration of liquid polysilazane solution or by post-HIPing so that relative densities of 96 % can be reached. The monoliths are oxidation resistant up to 1600 C in air due to the formation of a highly pure silica oxidation layer and they exhibit a creep rate of 1.10[sup -6] s[sup -1] at 1650 C and 30 MPa load. Initially x-ray amorphous silicon carbonitride can be crystallized in nitrogen or in air to form Si[sub 3]N[sub 4]/SiC or Si[sub 3]N[sub 4]/SiC/C nanocomposites. (orig.).

  9. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  10. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found....... This relation suggest that the refractive index of oxy-nitride with a low nitrogen concentration is determined by the material density. It is suggested that the relative oxygen concentration in the gas flow is the major deposition characterization parameter, and that water vapor is the predominant reaction by...

  11. A silicon electromechanical photodetector

    CERN Document Server

    Tallur, Siddharth

    2013-01-01

    Opto-mechanical systems have enabled wide-band optical frequency conversion and multi-channel all-optical radio frequency amplification. Realization of an on-chip silicon communication platform is limited by photodetectors needed to convert optical information to electrical signals for further signal processing. In this paper we present a coupled silicon micro-resonator, which converts near-IR optical intensity modulation at 174.2MHz and 1.198GHz into motional electrical current. This device emulates a photodetector which detects intensity modulation of continuous wave laser light in the full-width-at-half-maximum bandwidth of the mechanical resonance. The resonant principle of operation eliminates dark current challenges associated with convetional photodetectors.

  12. The CMS silicon tracker

    Energy Technology Data Exchange (ETDEWEB)

    Focardi, E. E-mail: focardi@pi.infn.it; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell' Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B

    2000-10-11

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction.

  13. Superhydrophobic Porous Silicon Surfaces

    Directory of Open Access Journals (Sweden)

    Paolo NENZI

    2011-12-01

    Full Text Available In this paper, we present an inexpensive technique to produce superhydrophobic surfaces from porous silicon. Superhydrophobic surfaces are a key technology for their ability to reduce friction losses in microchannels and their self cleaning properties. The morphology of a p-type silicon wafer is modified by a electrochemical wet etch to produce pores with controlled size and distribution and coated with a silane hydrophobic layer. Surface morphology is characterized by means of scanning electron microscope images. Large contact angles are observed on such surfaces and the results are compared with classical wetting models (Cassie and Wenzel suggesting a mixed Wenzel-Cassie behavior. The presented technique represents a cost-effective means for friction reduction in microfluidic applications, such as lab-on-a-chip.

  14. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Haematic silicon in drowning.

    Science.gov (United States)

    Pierucci, Giovanni; Merlano, Federica; Chen, Yao; Sturini, Michela; Maraschi, Federica; Profumo, Antonella

    2016-04-01

    The aim of this paper was to evaluate silicon (Si) concentration in human whole ventricular blood as a further potential chemical marker in the diagnosis of drowning. We employed an acidic digestion for the extraction of soluble Si, and an alkaline digestion for the determination of total Si, including particulate matter, both arising from drowning medium. 29 suspected drowning situations, 24 in fresh water (Fw) and 5 in seawater (Sw), were examined. The difference in Si concentration between the left and right ventricular blood (Si ΔL-R) was measured and alkaline Si ΔL-R seems, indeed, a potentially significant complementary tool in the diagnosis of Fw drowning, because insoluble silicon fraction does not undergo hemo-dilution or hemo-concentration, and the ΔL-R is not affected by exogenous factors. In spite of the limited number of cases investigated, a good correlation was observed between the analytical results and the macro-microscopic autoptic findings.

  16. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  17. Building China's Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Ellis Rahhal and Andrew Schorr sit across from each other in the minimalist office of their tech startup,all clean lines and white linoleum floors.A pair of toothbrushes hint at many a late night hunched over their computers.Outside the window,the sun is slowly setting behind jagged mountains.The scene is classic Silicon Valley.But Rahhal and Schorr aren't in California.They're in suburban Beijing.

  18. Silicon Containing Photoresists.

    Science.gov (United States)

    1987-11-13

    generation of high resolution patterns. The vast majority of the commercial positive photoresists are comprised of a base soluble Novolac type resin (Cresol...plays a passive role. The generation of silicon containing Novolac- type resins represents one such effort. Workers at AT&T Bell Labs have prepared a...and formaldehyde (20). The silylated Novolac type resins were designed for use with substituted 1,2-napthoquinone-2-diazide sensitizers employed in

  19. Bringing Silicon Valley inside.

    Science.gov (United States)

    Hamel, G

    1999-01-01

    In 1998, Silicon Valley companies produced 41 IPOs, which by January 1999 had a combined market capitalization of $27 billion--that works out to $54,000 in new wealth creation per worker in a single year. Multiply the number of employees in your company by $54,000. Did your business create that much new wealth last year? Half that amount? It's not a group of geniuses generating such riches. It's a business model. In Silicon Valley, ideas, capital, and talent circulate freely, gathering into whatever combinations are most likely to generate innovation and wealth. Unlike most traditional companies, which spend their energy in resource allocation--a system designed to avoid failure--the Valley operates through resource attraction--a system that nurtures innovation. In a traditional company, people with innovative ideas must go hat in hand to the guardians of the old ideas for funding and for staff. But in Silicon Valley, a slew of venture capitalists vie to attract the best new ideas, infusing relatively small amounts of capital into a portfolio of ventures. And talent is free to go to the companies offering the most exhilarating work and the greatest potential rewards. It should actually be easier for large, traditional companies to set up similar markets for capital, ideas, and talent internally. After all, big companies often already have extensive capital, marketing, and distribution resources, and a first crack at the talent in their own ranks. And some of them are doing it. The choice is yours--you can do your best to make sure you never put a dollar of capital at risk, or you can tap into the kind of wealth that's being created every day in Silicon Valley.

  20. Silicon photonics manufacturing.

    Science.gov (United States)

    Zortman, William A; Trotter, Douglas C; Watts, Michael R

    2010-11-08

    Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system's frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35 μm process controls microdisk resonant frequencies for the TE fundamental resonances to within 1 THz across a wafer and 105 GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231 μW. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology.

  1. Purity of (28)Si-Enriched Silicon Material Used for the Determination of the Avogadro Constant.

    Science.gov (United States)

    D'Agostino, Giancarlo; Di Luzio, Marco; Mana, Giovanni; Oddone, Massimo; Bennett, John W; Stopic, Attila

    2016-07-05

    At present, counting atoms in a one-kilogram sphere made of (28)Si-enriched silicon allows the determination of the Avogadro constant with the 2.0 × 10(-8) relative standard uncertainty required for the realization of the definition of the new kilogram. With the exception of carbon, oxygen, boron, nitrogen, and hydrogen, the claimed uncertainty is based on the postulation that the silicon material used to manufacture the sphere was above a particular level of purity. Two samples of the silicon were measured using instrumental neutron activation analysis to collect experimental data to test the purity assumption. The results obtained in two experiments carried out using different research reactor neutron sources are reported. The analysis confirmed that the silicon material was of sufficient purity by quantifying the ultratrace concentration of 12 elements and determining the detection limits of another 54 elements.

  2. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  3. Stabilization of elusive silicon oxides.

    Science.gov (United States)

    Wang, Yuzhong; Chen, Mingwei; Xie, Yaoming; Wei, Pingrong; Schaefer, Henry F; Schleyer, Paul von R; Robinson, Gregory H

    2015-06-01

    Molecular SiO2 and other simple silicon oxides have remained elusive despite the indispensable use of silicon dioxide materials in advanced electronic devices. Owing to the great reactivity of silicon-oxygen double bonds, as well as the low oxidation state of silicon atoms, the chemistry of simple silicon oxides is essentially unknown. We now report that the soluble disilicon compound, L:Si=Si:L (where L: = :C{N(2,6-(i)Pr2C6H3)CH}2), can be directly oxidized by N2O and O2 to give the carbene-stabilized Si2O3 and Si2O4 moieties, respectively. The nature of the silicon oxide units in these compounds is probed by spectroscopic methods, complementary computations and single-crystal X-ray diffraction.

  4. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    how Si influences cell wall composition in cereal straw and, consequently, the enzymatic saccharification efficiency. Considering the importance of Nitrogen (N) fertilization in cereal production, an additional objective was to elucidate the effect of N supply on Si concentration and cell wall...

  5. Silicon processing for photovoltaics II

    CERN Document Server

    Khattak, CP

    2012-01-01

    The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the

  6. Laboratory course on silicon sensors

    CERN Document Server

    Crescio, E; Roe, S; Rudge, A

    2003-01-01

    The laboratory course consisted of four different mini sessions, in order to give the student some hands-on experience on various aspects of silicon sensors and related integrated electronics. The four experiments were. 1. Characterisation of silicon diodes for particle detection 2. Study of noise performance of the Viking readout circuit 3. Study of the position resolution of a silicon microstrip sensor 4. Study of charge transport in silicon with a fast amplifier The data in the following were obtained during the ICFA school by the students.

  7. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  8. Social Networks in Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu

    2006-01-01

    @@ Social network is a dominant, distinguishing characteristic of Silicon Valley. Because innovation entails coping with a high degree of uncertainty,such innovation is particularly dependent on networks.

  9. Large Brillouin Amplification in Silicon

    CERN Document Server

    Kittlaus, Eric A; Rakich, Peter T

    2015-01-01

    Strong Brillouin coupling has only recently been realized in silicon using a new class of optomechanical waveguides that yield both optical and phononic confinement. Despite these major advances, appreciable Brillouin amplification has yet to be observed in silicon. Using a new membrane-suspended silicon waveguide we report large Brillouin amplification for the first time, reaching levels greater than 5 dB for modest pump powers, and demonstrate a record low (5 mW) threshold for net amplification. This work represents a crucial advance necessary to realize high-performance Brillouin lasers and amplifiers in silicon.

  10. Solar silicon from directional solidification of MG silicon produced via the silicon carbide route

    Science.gov (United States)

    Rustioni, M.; Margadonna, D.; Pirazzi, R.; Pizzini, S.

    1986-01-01

    A process of metallurgical grade (MG) silicon production is presented which appears particularly suitable for photovoltaic (PV) applications. The MG silicon is prepared in a 240 KVA, three electrode submerged arc furnace, starting from high grade quartz and high purity silicon carbide. The silicon smelted from the arc furnace was shown to be sufficiently pure to be directionally solidified to 10 to 15 kg. After grinding and acid leaching, had a material yield larger than 90%. With a MG silicon feedstock containing 3 ppmw B, 290 ppmw Fe, 190 ppmw Ti, and 170 ppmw Al, blended with 50% of off grade electronic grade (EG) silicon to reconduct the boron content to a concentration acceptable for solar cell fabrication, the 99% of deep level impurities were concentrated in the last 5% of the ingot. Quite remarkably this material has OCV values higher tham 540 mV and no appreciable shorts due to SiC particles.

  11. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  12. Silicon on insulator with active buried regions

    Science.gov (United States)

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  13. New process of silicon carbide purification intended for silicon passivation

    Science.gov (United States)

    Barbouche, M.; Zaghouani, R. Benabderrahmane; Benammar, N. E.; Aglieri, V.; Mosca, M.; Macaluso, R.; Khirouni, K.; Ezzaouia, H.

    2017-01-01

    In this work, we report on a new, efficient and low cost process of silicon carbide (SiC) powder purification intended to be used in photovoltaic applications. This process consists on the preparation of porous silicon carbide layers followed by a photo-thermal annealing under oxygen atmosphere and chemical treatment. The effect of etching time on impurities removal efficiency was studied. Inductively coupled plasma atomic emission spectrometry (ICP-AES) results showed that the best result was achieved for an etching time of 10 min followed by gettering at 900 °C during 1 h. SiC purity is improved from 3N (99.9771%) to 4N (99.9946%). Silicon carbide thin films were deposited onto silicon substrates by pulsed laser deposition technique (PLD) using purified SiC powder as target. Significant improvement of the minority carrier lifetime was obtained encouraging the use of SiC as a passivation layer for silicon.

  14. Vinyl ether silicones

    Energy Technology Data Exchange (ETDEWEB)

    Herzig, C.; Dauth, J.; Deubzer, B.; Weis, J. [Wacker-Chemie GmbH, Burghausen (Germany)

    1995-12-01

    Siloxanes with vinyl ether groups are prepared by hydrosilylation reaction of dihydrosiloxanes with divinyl ethers in excess. Different stoichiometry, produces linear copolymers of different viscosities and double bond concentrations always with an active vinyl ether group at each chain end. Polymerisations triggered by UV light were done with mixtures of these compounds and a series of onium salts. Very fast cure is observed even with low doses at 290 nm. V.E. silicones are found to cure essentially quantitative. The comparison with other highly reactive cationic monomers revealed that compounds are among the fastest curing prepolymers in cationic chemistry.

  15. Silicon production process evaluations

    Science.gov (United States)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  16. Edgeless silicon pad detectors

    Science.gov (United States)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in "edgeless" planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5±8 stat..±6 syst.) μm.

  17. Edgeless silicon pad detectors

    Energy Technology Data Exchange (ETDEWEB)

    Perea Solano, B. [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: blanca.perea.solano@cern.ch; Abreu, M.C. [LIP and University of Algarve, 8000 Faro (Portugal); Avati, V. [CERN, CH-1211 Geneva 23 (Switzerland); Boccali, T. [INFN Sez. di Pisa and Scuola Normale Superiore, Pisa (Italy); Boccone, V. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Bozzo, M. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Capra, R. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Casagrande, L. [INFN Sez. di Roma 2 and Universita di Roma 2, Rome (Italy); Chen, W. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Eggert, K. [CERN, CH-1211 Geneva 23 (Switzerland); Heijne, E. [CERN, CH-1211 Geneva 23 (Switzerland); Klauke, S. [CERN, CH-1211 Geneva 23 (Switzerland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Maeki, T. [Helsinki Institute of Physics, Helsinki (Finland); Mirabito, L. [CERN, CH-1211 Geneva 23 (Switzerland); Morelli, A. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Niinikoski, T.O. [CERN, CH-1211 Geneva 23 (Switzerland); Oljemark, F. [Helsinki Institute of Physics, Helsinki (Finland); Palmieri, V.G. [Helsinki Institute of Physics, Helsinki (Finland); Rato Mendes, P. [LIP and University of Algarve, 8000 Faro (Portugal); Rodrigues, S. [LIP and University of Algarve, 8000 Faro (Portugal); Siegrist, P. [CERN, CH-1211 Geneva 23 (Switzerland); Silvestris, L. [INFN Sez. Di Bari, Bari (Italy); Sousa, P. [LIP and University of Algarve, 8000 Faro (Portugal); Tapprogge, S. [Helsinki Institute of Physics, Helsinki (Finland); Trocme, B. [Institut de Physique Nucleaire, Villeurbanne (France)

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in 'edgeless' planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5{+-}8{sub stat.}.{+-}6{sub syst.}) {mu}m.

  18. The LHCb Silicon Tracker

    CERN Document Server

    Elsasser, Ch; Gallas Torreira, A; Pérez Trigo, A; Rodríguez Pérez, P; Bay, A; Blanc, F; Dupertuis, F; Haefeli, G; Komarov, I; Märki, R; Muster, B; Nakada, T; Schneider, O; Tobin, M; Tran, M T; Anderson, J; Bursche, A; Chiapolini, N; Saornil, S; Steiner, S; Steinkamp, O; Straumann, U; Vollhardt, A; Britsch, M; Schmelling, M; Voss, H; Okhrimenko, O; Pugatch, V

    2013-01-01

    The aim of the LHCb experiment is to study rare heavy quark decays and CP vio- lation with the high rate of beauty and charmed hadrons produced in $pp$ collisions at the LHC. The detector is designed as a single-arm forward spectrometer with excellent tracking and particle identification performance. The Silicon Tracker is a key part of the tracking system to measure the particle trajectories to high precision. This paper reports the performance as well as the results of the radiation damage monitoring based on leakage currents and on charge collection efficiency scans during the data taking in the LHC Run I.

  19. Light Emitting Porous Silicon

    Science.gov (United States)

    1993-05-01

    ml - mm m lm m ~ m m ThO report Page 14 preparation method which has been originally described by Wohler [23] leads to a bright yellow substance with...Solid State Commun. 81, 307 (1992). [221 H. Kautsky, and H. Zocher, Z. Phys. 9,267 (1992). L TNO report Page 28 [231 F. Wohler , Lieb. Ann. 127, 275 (1863...Netherlands Fax + 31 70 328 09 61 Phone + 31 70 326 42 21 TNO- report copy no. e FEL-93eo047r Lh Emitting Porous Silicon sitho(s): DTICHMi.P.Th

  20. Silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  1. Silicon Valley Lifestyle

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu

    2005-01-01

    @@ As we embrace the rapid developments of the new media age,competitiveness in the field of internet and computer technology is an increasingly crucial factor in stimulating new business,jobs and new industry in the region.Accelerating advancements in new media,internet,software and computer technologies offer new commercial opportunities and sources of economic revenue. Silicon Valley has been a model of the new age since its existence.While the dream place not only has a unique business model,but also has a very special lifestyle.

  2. Nitrogen use efficiency revisited.

    Science.gov (United States)

    Hirose, Tadaki

    2011-08-01

    Nitrogen use efficiency (NUE) was originally defined as the dry mass productivity per unit N taken up from soil. The term was subsequently redefined as the product of nitrogen productivity (NP) and mean residence time of nitrogen (MRT). However, this redefinition was found to contradict the original definition under certain conditions, and confusion arose when the MRT defined for a steady-state system was applied to a system that was actually not at steady state. As MRT is the expected length of time that a unit of N newly taken up from soil is retained before being lost, it can be translated into the plant nitrogen duration (PND) divided by the total N uptake. This MRT is determined equally well for a steady state- and a non-steady state system and is in accordance with the original definition of NUE. It can be applied to a herbaceous perennial stand (that was at a steady state) and to an annual stand (that was not at a steady state) to determine NUE. NUE is also applicable when plant growth and reproduction are analyzed in relation to N use.

  3. Nitrogen recommendation systems

    Science.gov (United States)

    Nitrogen fertilization for corn production is complicated by soil and weather variability, yet has far-reaching economic and environmental implications. To address this challenge, alternative N management strategies have been explored extensively in recent years by both public and private groups for...

  4. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  5. ODD NITROGEN PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Harold S.

    1980-01-01

    This chapter is in three parts. The first concerns interpretations that can be made from atmospheric observations regarding nitrogen compounds and ozone, the second reviews some predictions made by atmospheric models, and the third compares between certain model results and atmospheric measurements with an emphasis on detecting evidence of significant disagreements.

  6. Nitrogen Fixation in Cyanobacteria

    NARCIS (Netherlands)

    Stal, L.J.

    2015-01-01

    Cyanobacteria are oxygenic photosynthetic bacteria that are widespread in marine, freshwater and terrestrial environments, and many of them are capable of fixing atmospheric nitrogen. However, ironically, nitrogenase, the enzyme that is responsible for the reduction of N2, is extremely sensitive to

  7. Nitrogen Fixation in Cyanobacteria

    NARCIS (Netherlands)

    Stal, L.J.

    2015-01-01

    Cyanobacteria are oxygenic photosynthetic bacteria that are widespread in marine, freshwater and terrestrial environments, and many of them are capable of fixing atmospheric nitrogen. However, ironically, nitrogenase, the enzyme that is responsible for the reduction of N2, is extremely sensitive to

  8. Nitrogen Trading Tool (NTT)

    Science.gov (United States)

    The Natural Resources Conservation Service (NRCS) recently developed a prototype web-based nitrogen trading tool to facilitate water quality credit trading. The development team has worked closely with the Agriculture Research Service Soil Plant Nutrient Research Unit (ARS-SPNR) and the Environmenta...

  9. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  10. Hydrodynamic slip in silicon nanochannels

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-03-01

    Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.

  11. III-V Growth on Silicon Toward a Multijunction Cell

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, J.; Olson, J.; McMahon, W.; Friedman, D.; Kibbler, A.; Kramer, C.; Young, M.; Duda, A.; Ward, S.; Ptak, A.; Kurtz, S.; Wanlass, M.; Ahrenkiel, P.; Jiang, C. S.; Moutinho, H.; Norman, A.; Jones, K.; Romero, M.; Reedy, B.

    2005-11-01

    A III-V on Si multijunction solar cell promises high efficiency at relatively low cost. The challenges to epitaxial growth of high-quality III-Vs on Si, though, are extensive. Lattice-matched (LM) dilute-nitride GaNPAs solar cells have been grown on Si, but their performance is limited by defects related to the nitrogen. Advances in the growth of lattice-mismatched (LMM) materials make more traditional III-Vs, such as GaInP and GaAsP, very attractive for use in multijunction solar cells on silicon.

  12. Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility.

    Science.gov (United States)

    Ren, T B; Weigel, Th; Groth, Th; Lendlein, A

    2008-07-01

    The microwave plasma surface modification of silicone elastomer with allylamine was studied to improve the biocompatibility of the material. An effort was made to clarify the relationships among plasma conditions and surface chemical composition, physical surface properties and biocompatibility of material, as well as the stability of plasma deposited layers. ATR-IR, XPS, Ellipsometry measurements, and contact angle measurements were used to investigate the changes of surface. The stability of plasma-treated silicone surfaces were also studied. The results demonstrated that the temperature and pressure had a strong influence on the chemical composition and structure of surface-deposited layer. The layer was nearly completely crosslinking when the modification was carried out at 60 degrees C. The polymerization speed decreased linearly with temperature. The XPS analysis results showed that the nitrogen element content in the surface layer was very high, especially under low pressure. The nitrogen/carbon ratio in the layer even greatly surpassed that of the allylamine monomer. The wettability of the silicone surface was greatly improved after plasma modification, and increased with the quantities of amine groups. The plasma-treated surfaces have good storage stability in air up to 3 months. The wettability of the surfaces decreased incipiently and then it dramatically increased with further time. The human skin fibroblasts were used to evaluate biocompatibility of plasma-treated silicone elastomer. The surface biocompatibility was greatly improved after modification; human skin fibroblasts adhered quickly and grew well on the modified silicone surface.

  13. RF-sputtered silicon and hafnium nitrides - Properties and adhesion to 440C stainless steel

    Science.gov (United States)

    Grill, A.; Aron, P. R.

    1983-01-01

    Silicon nitride and hafnium nitride coatings were deposited by reactive RF sputtering on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. Depositions were at two background pressures, 8 and 20 mtorr, and at two different fractions (f) of nitrogen in argon, 0.25 and 0.60, for hafnium nitride and at f = 0.25 for silicon nitride. The coatings and the interface between the coating and substrates were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. A Knoop microhardness of 1650 + or 100 kg/sq mm was measured for hafnium nitride and 3900 + or 500 kg/sq mm for silicon nitride. The friction coefficients between a 440C rider and the coatings were measured under lubricated conditions. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C.

  14. RF-sputtered silicon and hafnium nitrides - Properties and adhesion to 440C stainless steel

    Science.gov (United States)

    Grill, A.; Aron, P. R.

    1983-01-01

    Silicon nitride and hafnium nitride coatings were deposited by reactive RF sputtering on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. Depositions were at two background pressures, 8 and 20 mtorr, and at two different fractions (f) of nitrogen in argon, 0.25 and 0.60, for hafnium nitride and at f = 0.25 for silicon nitride. The coatings and the interface between the coating and substrates were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. A Knoop microhardness of 1650 + or 100 kg/sq mm was measured for hafnium nitride and 3900 + or 500 kg/sq mm for silicon nitride. The friction coefficients between a 440C rider and the coatings were measured under lubricated conditions. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C.

  15. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  16. Nanodiamonds with silicon vacancy defects for non-toxic photostable fluorescent labeling of neural precursor cells

    CERN Document Server

    Merson, Tobias D; Aharonovich, Igor; Turbic, Alisa; Kilpatrick, Trevor J; Turnley, Ann M

    2013-01-01

    Nanodiamonds (NDs) containing silicon vacancy (SiV) defects were evaluated as a potential biomarker for the labeling and fluorescent imaging of neural precursor cells (NPCs). SiV-containing NDs were synthesized using chemical vapor deposition and silicon ion implantation. Spectrally, SiV-containing NDs exhibited extremely stable fluorescence and narrow bandwidth emission with an excellent signal to noise ratio exceeding that of NDs containing nitrogen-vacancy (NV) centers. NPCs labeled with NDs exhibited normal cell viability and proliferative properties consistent with biocompatibility. We conclude that SiVcontaining NDs are a promising biomedical research tool for cellular labeling and optical imaging in stem cell research.

  17. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    Science.gov (United States)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  18. Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar

    2007-01-01

    Full Text Available The most common fabrication technique of porous silicon (PS is electrochemical etching of a crystalline silicon wafer in a hydrofluoric (HF acid-based solution. The electrochemical process allows for precise control of the properties of PS such as thickness of the porous layer, porosity, and average pore diameter. The control of these properties of PS was shown to depend on the HF concentration in the used electrolyte, the applied current density, and the thickness of PS. The change in pore diameter, porosity, and specific surface area of PS was investigated by measuring nitrogen sorption isotherms.

  19. Influence of the initial nitrogen content in titanium films on the nitridation and silicidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, C.; Perez-Casero, R.; Martinez-Duart, J.M. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Aplicada; Perez-Rigueiro, J. [Dpto. Ciencia de Materiales, ETSI Caminos, Universidad Politecnica de Madrid, E-28040, Madrid (Spain); Vazquez, L.; Fernandez, M. [Instituto Ciencia de Materiales, CSIC, E-28049, Madrid (Spain)

    1997-08-15

    The rapid thermal annealing of Ti films on silicon in a nitrogen atmosphere seems to be a very promising method to obtain the Si/TiSi{sub 2}/TiN structure. We have tried to increase the final nitrogen content (i.e. TiN thickness) by incorporating nitrogen during the deposition of the initial Ti films. The influence of the nitrogen present in the titanium film on the silicidation process has been studied by comparison with the silicidation of pure titanium. The evolution of the nitrogen content with thermal treatment conditions has been established by nuclear reaction analysis (NRA). The nitrogen initially incorporated in the Ti film plays a passive role during the nitridation process, since its initial presence does not strongly influence the further incorporation of nitrogen from the atmosphere. The final nitrogen content of the N-doped samples is the addition of the nitrogen incorporated from the atmosphere during the thermal treatment in pure titanium samples and the nitrogen incorporated during deposition. The silicidation process has been studied using complementary techniques. The sheet resistances, Rutherford backscattering spectra and grazing X-ray diffraction (GXRD) diagrams have allowed us to establish the evolution of the reaction. Silicidation is not affected by the nitrogen incorporated during deposition. No differences have been found due to the presence of nitrogen. Nevertheless, changes in the surface morphology were found by atomic force microscopy (AFM). The Ti(N{sub 2}) samples are characterized by lower root mean square (rms) surface roughness values and different features. (orig.) 14 refs.

  20. Molecular nitrogen yields from fuel nitrogen in backmixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, R.C.; Monteith, L.E.; Malte, P.C.

    1977-01-01

    The major species disposition of nitrogen from pyridine, added to a propane-argon-oxygen stream burned in a jet-stirred reactor, was investigated. Fuel/oxidant equivalence ratio ranged from 0.9 to 1.5, residence time from 10-50 ms, and temperature from 1500-1900/sup 0/K. Nitrogen mass fraction relative to propane plus pyridine was normally 0.01, in a few cases 0.02. Molecular nitrogen (measured by gas chromatograph) included with nitrogen oxides (chemiluminescent analyzer) and ammonia and hydrogen cyanide (wet chemistry) indicate for each reactor setting a complete nitrogen balance consistent with an estimated random error of approximately 10%. Examination of accumulated results for over 20 best quality cases suggest no systematic imbalance. The results are consistent with data from comparison runs using atmospheric air oxidant (hence no molecular nitrogen measurement) with fuel nitrogen provided in the form of pyridine again, and also as ammonia and nitric oxide.

  1. Growth of silicon sheets from metallurgical-grade silicon

    Science.gov (United States)

    Ciszek, T.; Schietzelt, M.; Kazmerski, L. L.; Hurd, J. L.; Fernelius, B.

    1981-05-01

    Impure silicon is difficult to solidify in sheet form because of morphological proturberances which may result from constitutional supercooling. Sheet growth methods which require a specific crystallographic orientation or which are characterized by a narrow melt meniscus are most affected by this problem. The edge-supported pulling technique was applied to sheet growth of metallurgical grade silicon and DAR (Direct Arc Reactor) silicon. The 7 mm meniscus height associated with this technique allowed the growth of 5 cm wide sheets from both materials. In each case, the sheets were p-type.

  2. Lipid membranes on nanostructured silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Slade, Andrea Lynn; Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Ista, Linnea K. (University of New Mexico, Albuquerque, NM); O' Brien, Michael J. (University of New Mexico, Albuquerque, NM); Sasaki, Darryl Yoshio; Bisong, Paul (University of New Mexico, Albuquerque, NM); Zeineldin, Reema R. (University of New Mexico, Albuquerque, NM); Last, Julie A.; Brueck, Stephen R. J. (University of New Mexico, Albuquerque, NM)

    2004-12-01

    A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

  3. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  4. Ideal anodization of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yamani, Z.; Thompson, W.H.; AbuHassan, L.; Nayfeh, M.H. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801 (United States)

    1997-06-01

    Silicon has been anodized such that the porous layer is passivated with a homogeneous stretching phase by incorporating H{sub 2}O{sub 2} in the anodization mixture. Fourier transform infrared spectroscopy measurements show that the Si{endash}H stretching mode oriented perpendicular to the surface at {approximately}2100cm{sup {minus}1} dominates the spectrum with negligible contribution from the bending modes in the 600{endash}900cm{sup {minus}1} region. Material analysis using Auger electron spectroscopy shows that the samples have very little impurities, and that the luminescent layer is very thin (5{endash}10 nm). Scanning electron microscopy shows that the surface is smoother with features smaller than those of conventional samples. {copyright} {ital 1997 American Institute of Physics.}

  5. Silicon force sensor

    Science.gov (United States)

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  6. Monolithic silicon bolometers

    Science.gov (United States)

    Downey, P. M.; Jeffries, A. D.; Meyer, S. S.; Weiss, R.; Bachner, F. J.; Donnelly, J. P.; Lindley, W. T.; Mountain, R. W.; Silversmith, D. J.

    1984-01-01

    A new type of bolometer detector for the millimeter and submillimeter spectral range is described. The bolometer is constructed of silicon using integrated circuit fabrication techniques. Ion implantation is used to give controlled resistance vs temperature properties as well as extremely low 1/f noise contacts. The devices have been tested between 4.2 and 0.3 K. The best electrical NEP measured is 4 x 10 to the -16th W/Hz to the 1/2 at 0.35 K between 1- and 10-Hz modulation frequency. This device had a detecting area of 0.25 sq cm and a time constant of 20 msec at a bath temperature of 0.35 K.

  7. Computer simulation for the formation of the insulator layer of silicon-on-insulator devices by N sup + and O sup + Co-implantation

    CERN Document Server

    Lin Qing; Xie Xin Yun; Lin Chenglu; Liu Xiang Hua

    2002-01-01

    A buried sandwiched layer consisting of silicon dioxide (upper part), silicon oxynitride (medium part) and silicon nitride (lower part) is formed by N sup + and O sup + co-implantation in silicon wafers at a constant temperature of 550 degree C. The microstructure is performed by cross-sectional transmission electron microscopy. To predict the quality of the buried sandwiched layer, the authors study the computer simulation for the formation of the SIMON (separated by implantation of oxygen and nitrogen) structure. The simulation program for SIMOX (separated by implantation of oxygen) is improved in order to be applied in O sup + and N sup + co-implantation on the basis of different formation mechanism between SIMOX and SIMNI (separated by implantation of nitrogen) structures. There is a good agreement between experiment and simulation results verifying the theoretical model and presumption in the program

  8. Automated silicon module assembly for the CMS silicon tracker

    CERN Document Server

    Surrow, B

    2001-01-01

    The CMS silicon tracker requires the assembly of about 20000 individual silicon detector modules. To ensure the assembly of such an amount with high, reproducible quality, an automated procedure has been developed for module assembly based on a high-precision robotic positioning machine. This procedure allows a much higher throughput and will result in much reduced manpower requirements than for traditional manual techniques. (1 refs).

  9. Integrated silicon and silicon nitride photonic circuits on flexible substrates.

    Science.gov (United States)

    Chen, Yu; Li, Mo

    2014-06-15

    Flexible integrated photonic devices based on crystalline materials on plastic substrates have a promising potential in many unconventional applications. In this Letter, we demonstrate a fully integrated photonic system including ring resonators and grating couplers, based on both crystalline silicon and silicon nitride, on flexible plastic substrate by using the stamping-transfer method. A high yield has been achieved by a simple, yet reliable transfer method without significant performance degradation.

  10. Acute pneumonitis secondary to subcutaneous silicone injection

    Directory of Open Access Journals (Sweden)

    Gopie P

    2011-06-01

    Full Text Available Priya Gopie, Sateesh Sakhamuri, Anu Sharma, Sanjeev Solomon, Surujpal TeelucksinghClinical Medical Sciences, University of the West Indies, St Augustine, TrinidadAbstract: Following silicone injection, end organ toxicity can occur. To our knowledge this report documents the first case of silicone embolization in the Caribbean and serves to highlight an emergent danger associated with its illicit use for cosmetic purposes in this region.Keywords: silicone, silicone embolism, silicone pneumonitis, alveolar hemorrhage, pneumonitis

  11. Silicon Holder For Molecular-Beam Epitaxy

    Science.gov (United States)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  12. Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD

    CSIR Research Space (South Africa)

    Malgas, GF

    2008-02-01

    Full Text Available This paper reports on the growth of carbon nanotubes (CNTs) by thermal Chemical Vapour Deposition (CVD) and investigates the effects of nitrogen carrier gas flow rates and mixture ratios on the morphology of CNTs on a silicon substrate by vaporizing...

  13. Studies of silicon carbide and silicon carbide nitride thin films

    Science.gov (United States)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  14. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  15. Imprinted silicon-based nanophotonics

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn

    2007-01-01

    We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern ...

  16. Scattering characteristics from porous silicon

    Directory of Open Access Journals (Sweden)

    R. Sabet-Dariani

    2000-12-01

    Full Text Available   Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet.   In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.

  17. The History of Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu

    2005-01-01

    @@ Just as Manchester was once the center for indus trial progress, the microelectronics industry also has a heartland. Silicon Valley is located in a thirty by ten miles strip between San Francisco and San Jose,California.

  18. Optical information capacity of silicon

    CERN Document Server

    Dimitropoulos, Dimitris

    2014-01-01

    Modern computing and data storage systems increasingly rely on parallel architectures where processing and storage load is distributed within a cluster of nodes. The necessity for high-bandwidth data links has made optical communication a critical constituent of modern information systems and silicon the leading platform for creating the necessary optical components. While silicon is arguably the most extensively studied material in history, one of its most important attributes, an analysis of its capacity to carry optical information, has not been reported. The calculation of the information capacity of silicon is complicated by nonlinear losses, phenomena that emerge in optical nanowires as a result of the concentration of optical power in a small geometry. Nonlinear losses are absent in silica glass optical fiber and other common communication channels. While nonlinear loss in silicon is well known, noise and fluctuations that arise from it have never been considered. Here we report sources of fluctuations...

  19. Ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H. F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N.; Marchetto, F. [INFN Torino, Torino (Italy); Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A. [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, Firenze (Italy)

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R and D topics are discussed. -- Highlights: •We are proposing thin pixel silicon sensors with 10's of picoseconds time resolution. •Fast charge collection is coupled with internal charge multiplication. •The truly 4-D sensors will revolutionize imaging and particle counting in many applications.

  20. Silicon Drift Detectors for ALICE

    CERN Document Server

    Navach, F; CERN. Geneva

    1992-01-01

    The Silicon Drift Detector (SDD) is a semiconductor, not yet extensively used in HEP experiment, which has an excellent spatial resolution and granularity about comparable to a pixel device requiring a number of readout channels two order of magnitude less.

  1. Social Networks in Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph; Leu

    2006-01-01

      Social network is a dominant, distinguishing characteristic of Silicon Valley. Because innovation entails coping with a high degree of uncertainty,such innovation is particularly dependent on networks.……

  2. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    Science.gov (United States)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  3. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  4. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  5. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration.......An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  6. Silicone-Rubber Stitching Seal

    Science.gov (United States)

    Wang, D. S.

    1985-01-01

    Fabric products protected from raveling by coating threads and filling stitching holes with silicone rubber. Uncored silicone rubber applied to stitching lines with air-pressurized sealant gun. Next, plastic release film placed on coated side, and blanket flipped over so release film lies underneath. Blanket then bagged and adhesive cured under partial vacuum of about 3.5 psi or under pressure. Applications include balloons, parachutes, ultralight aircraft, sails, rescue harnesses, tents, or other fabric products highly stressed in use.

  7. Silicon superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  8. Silicon Sensors for HEP Experiments

    CERN Document Server

    Dierlamm, Alexander Hermann

    2017-01-01

    With increasing luminosity of accelerators for experiments in High Energy Physics the demands on the detectors increase as well. Especially tracking and vertexing detectors made of silicon sensors close to the interaction point need to be equipped with more radiation hard devices. This article introduces the different types of silicon sensors, describes measures to increase radiation hardness and provides an overview of present upgrade choices of HEP experiments.

  9. Uniform Silicon Isotope Ratios Across the Milky Way Galaxy

    Science.gov (United States)

    Monson, Nathaniel N.; Morris, Mark R.; Young, Edward D.

    2017-04-01

    We report the relative abundances of the three stable isotopes of silicon, 28Si, 29Si, and 30Si, across the Galaxy using the v=0,J=1\\to 0 transition of silicon monoxide. The chosen sources represent a range in Galactocentric radii ({R}{GC}) from 0 to 9.8 kpc. The high spectral resolution and sensitivity afforded by the Green Bank Telescope permit isotope ratios to be corrected for optical depths. The optical-depth-corrected data indicate that the secondary-to-primary silicon isotope ratios {}29{Si}{/}28{Si} and {}30{Si}{/}28{Si} vary much less than predicted on the basis of other stable isotope ratio gradients across the Galaxy. Indeed, there is no detectable variation in Si isotope ratios with {R}{GC}. This lack of an isotope ratio gradient stands in stark contrast to the monotonically decreasing trend with {R}{GC} exhibited by published secondary-to-primary oxygen isotope ratios. These results, when considered in the context of the expectations for chemical evolution, suggest that the reported oxygen isotope ratio trends, and perhaps those for carbon as well, require further investigation. The methods developed in this study for SiO isotopologue ratio measurements are equally applicable to Galactic oxygen, carbon, and nitrogen isotope ratio measurements, and should prove useful for future observations of these isotope systems.

  10. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  11. Deposited low temperature silicon GHz modulator

    CERN Document Server

    Lee, Yoon Ho Daniel; Lipson, Michal

    2013-01-01

    The majority of silicon photonics is built on silicon-on-insulator (SOI) wafers while the majority of electronics, including CPUs and memory, are built on bulk silicon wafers, limiting broader acceptance of silicon photonics. This discrepancy is a result of silicon photonics's requirement for a single-crystalline silicon (c-Si) layer and a thick undercladding for optical guiding that bulk silicon wafers to not provide. While the undercladding problem can be partially addressed by substrate removal techniques, the complexity of co-integrating photonics with state-of-the-art transistors and real estate competition between electronics and photonics remain problematic. We show here a platform for deposited GHz silicon photonics based on polycrystalline silicon with high optical quality suitable for high performance electro-optic devices. We demonstrate 3 Gbps polysilicon electro-optic modulator fabricated on a deposited polysilicon layer fully compatible with CMOS backend integration. These results open up an arr...

  12. Direct Production of Silicones From Sand

    Energy Technology Data Exchange (ETDEWEB)

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  13. Silicon active photonic devices

    Science.gov (United States)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  14. Nitrogen doping in carbon nanotubes.

    Science.gov (United States)

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  15. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    Science.gov (United States)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  16. Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C1s and N 1s spectra shift to lower binding energy due to the formation of C-Si and N-Si bonds. The Si-C-N bonds were observed in the deconvolved C1s and N 1s spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM).

  17. Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite

    Science.gov (United States)

    Qi, Gongjin; Zhang, Changrui; Hu, Haifeng; Cao, Feng; Wang, Siqing; Jiang, Yonggang; Li, Bin

    2005-10-01

    The crystallization behavior of a new type of ceramic matrix composites, three-dimensional silica fiber reinforced silicon nitride matrix composite prepared by perhydropolysilazane infiltration and pyrolysis, was investigated by X-ray diffractometry and Fourier transform infrared spectroscopy. With the post-annealing treatment of the amorphous as-received composite at elevated tempertures of 1400 and 1600 °C in nitrogen atmosphere, there was remarkable suppression of the crystallization of polymer-derived silicon nitride ceramic matrix into α-Si 3N 4 and silica fibers into α-cristobalite, which was probably attributed to the phase of silicon oxynitrides originating from the strong fiber/matrix interfacial chemical reaction.

  18. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    concentration in both wheat and rice straw. In field grown wheat, the Si concentration decreased by more than 50 % in response to N application, while at the same time the concentration of lignin increased. Assuming that there was no limitation in Si availability under field conditions, the drastic reduction...... such as germanium and arsenite. The Si concentration in the mutant plant was significantly reduced by more than 80 %. Rice mutants defective in Si transporters OsLsi1 and OsLsi2 also showed significantly lower straw Si concentration. It is concluded that the quality of straw biomass for bioenergy purposes can...... how Si influences cell wall composition in cereal straw and, consequently, the enzymatic saccharification efficiency. Considering the importance of Nitrogen (N) fertilization in cereal production, an additional objective was to elucidate the effect of N supply on Si concentration and cell wall...

  19. Nitrogen Forms in Humic Substances

    Institute of Scientific and Technical Information of China (English)

    ZHUOSU-NENG; WENQI-XIAO

    1992-01-01

    In this paper,the nitrogen forms in newly-formed humic substances,including humic acid (HA),fulvic acid (FA) and humic acid in humin (HAI),were studied by using the 15N CP-MAS NMR technique in combination with chemical approaches.Results show that the majority of nitrogen in HA,FA and HAI was in the amide form with some presented as aliphatic and/ or aromatic amines and some as pyrrole type nitrogen,although the contents of nonhydrolyzable nitrogen in them differed greatly from each other (15-55%).

  20. Silicon Tetrafluoride on Io

    CERN Document Server

    Schaefer, L; Schaefer, Laura

    2005-01-01

    Silicon tetrafluoride (SiF4) is observed in terrestrial volcanic gases and is predicted to be the major F - bearing species in low temperature volcanic gases on Io (Schaefer and Fegley, 2005b). SiF4 gas is also a potential indicator of silica-rich crust on Io. We used F/S ratios in terrestrial and extraterrestrial basalts, and gas/lava enrichment factors for F and S measured at terrestrial volcanoes to calculate equilibrium SiF4/SO2 ratios in volcanic gases on Io. We conclude that SiF4 can be produced at levels comparable to the observed NaCl/SO2 gas ratio. We also considered potential loss processes for SiF4 in volcanic plumes and in Io's atmosphere including ion-molecule reactions, electron chemistry, photochemistry, reactions with the major atmospheric constituents, and condensation. Photochemical destruction (tchem ~ 266 days) and/or condensation as Na2SiF6 (s) appear to be the major sinks for SiF4. We recommend searching for SiF4 with infrared spectroscopy using its 9.7 micron band as done on Earth.

  1. Collimation: a silicon solution

    CERN Multimedia

    2007-01-01

    Silicon crystals could be used very efficiently to deflect high-energy beams. Testing at CERN has produced conclusive results, which could pave the way for a new generation of collimators. The set of five crystals used to test the reflection of the beams. The crystals are 0.75 mm wide and their alignment is adjusted with extreme precision. This figure shows the deflection of a beam by channelling and by reflection in the block of five crystals. Depending on the orientation of the crystals: 1) The beam passes without "seeing" the crystals and is not deflected 2) The beam is deflected by channelling (with an angle of around 100 μrad) 3) The beam is reflected (with an angle of around 50 μrad). The intensity of the deflected beam is illustrated by the intensity of the spot. The spot of the reflected beam is clearly more intense than that one of the channelled beam, demonstrating the efficiency of t...

  2. Nanoporous silicon oxide memory.

    Science.gov (United States)

    Wang, Gunuk; Yang, Yang; Lee, Jae-Hwang; Abramova, Vera; Fei, Huilong; Ruan, Gedeng; Thomas, Edwin L; Tour, James M

    2014-08-13

    Oxide-based two-terminal resistive random access memory (RRAM) is considered one of the most promising candidates for next-generation nonvolatile memory. We introduce here a new RRAM memory structure employing a nanoporous (NP) silicon oxide (SiOx) material which enables unipolar switching through its internal vertical nanogap. Through the control of the stochastic filament formation at low voltage, the NP SiOx memory exhibited an extremely low electroforming voltage (∼ 1.6 V) and outstanding performance metrics. These include multibit storage ability (up to 9-bits), a high ON-OFF ratio (up to 10(7) A), a long high-temperature lifetime (≥ 10(4) s at 100 °C), excellent cycling endurance (≥ 10(5)), sub-50 ns switching speeds, and low power consumption (∼ 6 × 10(-5) W/bit). Also provided is the room temperature processability for versatile fabrication without any compliance current being needed during electroforming or switching operations. Taken together, these metrics in NP SiOx RRAM provide a route toward easily accessed nonvolatile memory applications.

  3. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron;

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  4. THERMODYNAMIC ANALYSIS AND EXPERIMENTAL VERIFICATION FOR SYNTHESIZING SILICON NITRIDE NANOPARTICLES USING RF PLASMA CVD

    Institute of Scientific and Technical Information of China (English)

    Ruoyu Hong; Jianmin Ding; Hongzhong Li

    2003-01-01

    Silicon nitride nanoparticles were synthesized by radio-frequency (RF) plasma chemical vapor deposition (PCVD) using silicon tetrachloride and ammonia as precursors, and argon as carrier gas. By assuming chemical thermodynamic equilibrium in the system, a computer program based on chemical thermodynamics was used to calculate the compositions of the system at different initial concentrations and final temperatures. At first, five elements and thirty-four species were considered. The effects of temperatures, and concentrations of ammonia, hydrogen and nitrogen on the equilibrium compositions were analyzed. It was found that the optimal reaction temperature range should be 1200 to 1500 K to obtain the highest conversion and yield of Si3N4. The inlet position of ammonia should be lower than that of silicon tetrachloride, and both should be located at the tail of the plasma torch. The best mole ratio of ammonia to silicon tetrachloride was found to be about 6. Later, the influences of water (and oxygen) were considered, and 17 additional species were included in the computations. It was found that oxygen or water content in the raw materials should be as low as possible in order to have high nitride content in the produced Si3N4. Nitrogen or hydrogen might be used to replace some or even all the argon to improve the yield of silicon nitride and reduce the cost. The ratio of ammonia to silicon tetrachloride should be high enough to obtain high conversion, but not excessively high to reduce the oxygen content due to the existence of water in ammonia. The simulated results were verified by experiments.

  5. Next generation structural silicone glazing

    Directory of Open Access Journals (Sweden)

    Charles D. Clift

    2015-06-01

    Full Text Available This paper presents an advanced engineering evaluation, using nonlinear analysis of hyper elastic material that provides significant improvement to structural silicone glazing (SSG design in high performance curtain wall systems. Very high cladding wind pressures required in hurricane zones often result in bulky SSG profile dimensions. Architectural desire for aesthetically slender curtain wall framing sight-lines in combination with a desire to reduce aluminium usage led to optimization of silicone material geometry for better stress distribution.To accomplish accurate simulation of predicted behaviour under structural load, robust stress-strain curves of the silicone material are essential. The silicone manufacturer provided physical property testing via a specialized laboratory protocol. A series of rigorous curve fit techniques were then made to closely model test data in the finite element computer analysis that accounts for nonlinear strain of hyper elastic silicone.Comparison of this advanced design technique to traditional SSG design highlights differences in stress distribution contours in the silicone material. Simplified structural engineering per the traditional SSG design method does not provide accurate forecasting of material and stress optimization as shown in the advanced design.Full-scale specimens subject to structural load testing were performed to verify the design capacity, not only for high wind pressure values, but also for debris impact per ASTM E1886 and ASTM E1996. Also, construction of the test specimens allowed development of SSG installation techniques necessitated by the unique geometry of the silicone profile. Finally, correlation of physical test results with theoretical simulations is made, so evaluation of design confidence is possible. This design technique will introduce significant engineering advancement to the curtain wall industry.

  6. Palladium interaction with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, M., E-mail: Marialuisa.Gentile@manchester.ac.uk [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Abram, T. [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-07-15

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd{sub 3}Si and SiO{sub 2} phases, while the second peak and the third peak are correlated with the formation of Pd{sub 2}Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO{sub 2} phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiC{sub x}O{sub y} phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  7. Palladium interaction with silicon carbide

    Science.gov (United States)

    Gentile, M.; Xiao, P.; Abram, T.

    2015-07-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC-5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  8. Deterministic fabrication of dielectric loaded waveguides coupled to single nitrogen vacancy centers in nanodiamonds

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    We report on the fabrication of dielectric-loaded-waveguides which are excited by single-nitrogen-vacancy (NV) centers in nanodiamonds. The waveguides are deterministically written onto the pre-characterized nanodiamonds by using electron beam lithography of hydrogen silsesquioxane (HSQ) resist...... on silver-coated silicon substrate. Change in lifetime for NV-centers is observed after fabrication of waveguides and an antibunching in correlation measurement confirms that nanodiamonds contain single NV-centers....

  9. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Science.gov (United States)

    Höger, Ingmar; Himmerlich, Marcel; Gawlik, Annett; Brückner, Uwe; Krischok, Stefan; Andrä, Gudrun

    2016-01-01

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiOxNy) or silicon oxide (SiO2) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiOxNy formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiOxNy top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  10. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  11. Nitrogen accumulation and residual effects of nitrogen catch crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    The nitrogen accumulation in Italian ryegrass (Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.), white mustard (Sinapis alba L.) and tansy phacelia (Phacelia tanacetifolia L.), under- or aftersown as nitrogen catch crops to spring barley (Hordeum vulgare L.) and field pea (Pisum s...

  12. Nitrogen release during coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  13. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

    Indian Academy of Sciences (India)

    A K Mukhopadhyay

    2001-04-01

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker’s microhardness tester at various loads in the range 1–20 N. Subsequently, the gradual evolution of the damage was characterized using an optical microscope in conjunction with the image analysing technique. The materials were classified in the order of the decreasing resistance against repeated indentation fatigue at the highest applied load of 20 N. It was further shown that there was a strong influence of grain size on the development of resistance against repeated indentation fatigue on the same spot. Finally, the poor performance of the sintered silicon carbide was found out to be linked to its previous thermal history.

  14. Silicon-to-silicon wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Lindahl, M.

    1998-01-01

    Anodic bending of silicon to silicon 4-in. wafers using an electron-beam evaporated glass (Schott 8329) was performed successfully in air at temperatures ranging from 200 degrees C to 450 degrees C. The composition of the deposited glass is enriched in sodium as compared to the target material....... The roughness of the as-deposited films was below 5 nm and was found to be unchanged by annealing at 500 degrees C for 1 h in air. No change in the macroscopic edge profiles of the glass film was found as a function of annealing; however, small extrusions appear when annealing above 450 degrees C. Annealing...... of silicon/glass structures in air around 340 degrees C for 15 min leads to stress-free structures. Bonded wafer pairs, however, show no reduction in stress and always exhibit compressive stress. The bond yield is larger than 95% for bonding temperatures around 350 degrees C and is above 80% for bonding...

  15. Silicon-micromachined microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles P. E-mail: NanoSystem@aol.com; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R. E-mail: winn@fair1.fairfield.edu

    2000-03-11

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of {approx}0.5 to {approx}25 {mu}m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented.

  16. Silicon-micromachined microchannel plates

    Science.gov (United States)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-03-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ˜0.5 to ˜25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200°C, also compatible with high-temperture brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented.

  17. Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  18. Microbial conversions of nitrogenous heterocycles

    OpenAIRE

    Parshikov, Igor A

    2015-01-01

    The monography describes examples of the application of microbial technologies for obtaining of derivatives from a series of nitrogen heterocycles (saturated nitrogen heterocycles, azaarenes and quinolones). It is proposed alternative ways for synthesize substances that are difficult to obtain by the methods of organic chemistry. Microbial technologies of synthesis of organic compounds may find out a practical application in the production of various drugs.

  19. Effect of alloying and heat treatment on the structure and tribological properties of nitrogen-bearing stainless austenitic steels under abrasive and adhesive wear

    Science.gov (United States)

    Korshunov, L. G.; Goikhenberg, Yu. N.; Chernenko, N. K.

    2007-05-01

    The effect of nitrogen, silicon, and aging modes on the structure, resistance to abrasive and adhesive wear, friction factor, and mechanical properties of nitrogen-bearing (0.27-0.83% N) chromium-manganese austenitic steels is studied. It is shown that it is possible to ensure a favorable combination of mechanical and tribological properties in such steels by choosing the appropriate chemical composition and aging mode.

  20. Solid structures with bioorganic films on silicon

    Science.gov (United States)

    Tutov, E. A.

    2012-06-01

    The electrophysical parameters of ovalbumin/silicon and propolis/silicon heterostructures are studied using impedance spectroscopy and high-frequency capacitance-voltage characteristics under water vapor sorption conditions.

  1. Cationic Nitrogen Doped Helical Nanographenes.

    Science.gov (United States)

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A silicon tracker for Christmas

    CERN Multimedia

    2008-01-01

    The CMS experiment installed the world’s largest silicon tracker just before Christmas. Marcello Mannelli: physicist and deputy CMS project leader, and Alan Honma, physicist, compare two generations of tracker: OPAL for the LEP (at the front) and CMS for the LHC (behind). There is quite a difference between 1m2 and 205m2.. CMS received an early Christmas present on 18 December when the silicon tracker was installed in the heart of the CMS magnet. The CMS tracker team couldn’t have hoped for a better present. Carefully wrapped in shiny plastic, the world’s largest silicon tracker arrived at Cessy ready for installation inside the CMS magnet on 18 December. This rounded off the year for CMS with a major event, the crowning touch to ten years of work on the project by over five hundred scientists and engineers. "Building a scientific instrument of this size and complexity is a huge technical a...

  3. Tunneling magnetoresistance of silicon chains

    Science.gov (United States)

    Matsuura, Yukihito

    2016-05-01

    The tunneling magnetoresistance (TMR) of a silicon chain sandwiched between nickel electrodes was examined by using first-principles density functional theory. The relative orientation of the magnetization in a parallel-alignment (PA) configuration of two nickel electrodes enhanced the current with a bias less than 0.4 V compared with that in an antiparallel-alignment configuration. Consequently, the silicon chain-nickel electrodes yielded good TMR characteristics. In addition, there was polarized spin current in the PA configuration. The spin polarization of sulfur atoms functioning as a linking bridge between the chain and nickel electrode played an important role in the magnetic effects of the electric current. Moreover, the hybridization of the sulfur 3p orbital and σ-conjugated silicon 3p orbital contributed to increasing the total current.

  4. Belle II Silicon Vertex Detector

    CERN Document Server

    Mohanty, Gagan B

    2015-01-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by a vertex detector, which comprises two layers of pixelated silicon detector and four layers of silicon vertex detector. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector that is aimed to be commissioned towards the middle of 2017.

  5. Birefringence Measurements on Crystalline Silicon

    CERN Document Server

    Krüger, Christoph; Khalaidovski, Alexander; Steinlechner, Jessica; Nawrodt, Ronny; Schnabel, Roman; Lück, Harald

    2015-01-01

    Crystalline silicon has been proposed as a new test mass material in third generation gravitational wave detectors such as the Einstein Telescope (ET). Birefringence can reduce the interferometric contrast and can produce dynamical disturbances in interferometers. In this work we use the method of polarisation-dependent resonance frequency analysis of Fabry-Perot-cavities containing silicon as a birefringent medium. Our measurements show a birefringence of silicon along the (111) axis of the order of $\\Delta\\, n \\approx 10^{-7}$ at a laser wavelength of 1550nm and room temperature. A model is presented that explains the results of different settings of our measurements as a superposition of elastic strains caused by external stresses in the sample and plastic strains possibly generated during the production process. An application of our theory on the proposed ET test mass geometry suggests no critical effect on birefringence due to elastic strains.

  6. Belle II silicon vertex detector

    Science.gov (United States)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  7. Belle II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others

    2016-09-21

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  8. SILICON REFINING BY VACUUM TREATMENT

    Directory of Open Access Journals (Sweden)

    André Alexandrino Lotto

    2014-12-01

    Full Text Available This work aims to investigate the phosphorus removal by vacuum from metallurgical grade silicon (MGSi (98.5% to 99% Si. Melting experiments were carried out in a vacuum induction furnace, varying parameters such as temperature, time and relation area exposed to the vacuum / volume of molten silicon. The results of chemical analysis were obtained by inductively coupled plasma (ICP, and evaluated based on thermodynamic and kinetic aspects of the reaction of vaporization of the phosphorus in the silicon. The phosphorus was decreased from 33 to approximately 1.5 ppm after three hours of vacuum treatment, concluding that the evaporation step is the controlling step of the process for parameters of temperature, pressure and agitation used and refining by this process is technically feasible.

  9. Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, K; Feng, J Y; Zhang, Z J [Department of Materials Science and Engineering, Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2006-09-28

    In the present work we investigated the photoluminescence property of silicon nanocrystals in silicon nitride prepared by ammonia sputtering. Silicon nanocrystals were demonstrated to form even after thermal annealing at 700 deg. C. Compared with the control sample using N{sub 2} as the reactive gas, the luminescence intensity of silicon nanocrystals in silicon nitride prepared by NH{sub 3} sputtering was greatly increased. The improvement in photoluminescence was attributed to the introduction of hydrogen-related bonds, which could well passivate the nonradiative defects existing at the interface between silicon nanocrystals and the silicon nitride matrix.

  10. 360-nm Photoluminescence from Silicon Oxide Films Embedded with Silicon Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    YANG Lin-lin; GUO Heng-qun; ZENG You-hua; WANG Qi-ming

    2006-01-01

    Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescence(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanocrystals was discussed.

  11. Performance of Honeywell silicon pressure transducers

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Nagvekar, S.; Prabhudesai, S.; Damodaran, V.

    strain gauge, semiconductor strain gauge, and quartz crystal beam. In this paper we examine the laboratory performance of a few temperature-compensated Honeywell silicon strain gauge pressure transducers based on their static calibration. 2. Silicon... Thin-Diaphragm Strain Gauge Pressure Transducer Although semiconductor materials such as germanium and silicon exhibit substantial temperature-dependence, they possess pressure-sensitivities several times that of metallic strain gauges. Silicon...

  12. Automatic Replenishment Of Dopant In Silicon Growth

    Science.gov (United States)

    Kochka, E. L.

    1988-01-01

    Dopant incorporated feed pellets to maintain required concentration. Technique of continuous replenishment of dopant in silicon melt helps ensure correct resistivity in solid silicon grown from melt. Technique used in dendritic-web growth process in which ribbon of silicon continously pulled from molten material. Providing uniform doping and resistivity in ribbon technique enables production of high-quality silicon ribbon at high yields for use in semiconductor devices.

  13. Silicon nanocrystal inks, films, and methods

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  14. Hybrid silicon evanescent approach to optical interconnects

    OpenAIRE

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-hao; Jones, Richard; Bowers, John E

    2009-01-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III–V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication...

  15. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.;

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  16. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  17. Epitaxial Growth of High-Quality Silicon Films on Double-Layer Porous Silicon

    Institute of Scientific and Technical Information of China (English)

    黄宜平; 竺士炀; 李爱珍; 王瑾; 黄靖云; 叶志镇

    2001-01-01

    The epitaxial growth of a high-quality silicon layer on double-layer porous silicon by ultra-high vacuum/chemical vapour deposition has been reported. The two-step anodization process results in a double-layer porous silicon structure with a different porosity. This double-layer porous silicon structure and an extended low-temperature annealing in a vacuum system was found to be helpful in subsequent silicon epitaxial growth. X-ray diffraction,cross-sectional transmission electron microscopy and spreading resistance testing were used in this work to study the properties of epitaxial silicon layers grown on the double-layer porous silicon. The results show that the epitaxial silicon layer is of good crystallinity and the same orientation with the silicon substrate and the porous silicon layer.

  18. Laser wafering for silicon solar.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-03-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  19. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  20. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  1. Biocatalytic synthesis of silicone polyesters.

    Science.gov (United States)

    Frampton, Mark B; Subczynska, Izabela; Zelisko, Paul M

    2010-07-12

    The immobilized lipase B from Candida antarctica (CALB) was used to synthesize silicone polyesters. CALB routinely generated between 74-95% polytransesterification depending on the monomers that were used. Low molecular weight diols resulted in the highest rates of esterification. Rate constants were determined for the CALB catalyzed polytransesterifications at various reaction temperatures. The temperature dependence of the CALB-mediated polytransesterifications was examined. A lipase from C. rugosa was only successful in performing esterifications using carboxy-modified silicones that possessed alkyl chains greater than three methylene units between the carbonyl and the dimethylsiloxy groups. The proteases alpha-chymotrypsin and papain were not suitable enzymes for catalyzing any polytransesterification reactions.

  2. The SUPERB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Forti, F., E-mail: Francesco.Forti@pi.infn.it [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Calderini, G.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Neri, N. [INFN-Pisa and Universita di Pisa (Italy)

    2011-04-21

    The SUPERB asymmetric e{sup +}e{sup -} collider, to be built near the INFN National Frascati Laboratory in Italy, has been designed to deliver a luminosity greater than 10{sup 36} cm{sup -2} s{sup -1} with moderate beam currents, allowing precision measurements in the flavour sector sensitive to New Physics. The conceptual design of the Silicon Vertex Tracker for the SUPERB Detector is presented, based on double-sided silicon strip detectors for the outer layers, with the addition of an innermost Layer 0 close to the interaction point, with low material budget and capable of sustaining a background rate of several MHz/cm{sup 2}.

  3. Luminescence decay of porous silicon

    Science.gov (United States)

    Chen, X.; Uttamchandani, D.; Sander, D.; O'Donnell, K. P.

    1993-04-01

    The luminescence decay pattern of porous silicon samples prepared by electrochemical etching is characterised experimentally by a non-exponential profile, a strong dependence on temperature and an absence of spectral diffusion. We describe this luminescence as carrier-dopping-assisted recombination. Following the correlation function approach to non-dispersive transport developed by Scher and co-workers [Physics Today 41 (1991) 26], we suggest a simple derivation of analytical functions which accurately describes the anomalous luminescence decay of porous silicon, and show that this model includes exponential and Kohlrausch [Pogg. Ann. Phys. 119 (1863) 352] (stretched-exponential) relaxations as special cases.

  4. Silicon Geiger mode avalanche photodiodes

    Institute of Scientific and Technical Information of China (English)

    M. Mazzillo; S. Billotta; G. Bonanno; A. Campisi; L. Cosentino; P. Finocchiaro; F. Musumeci; S.Privitera; S. Tudisco; G. Condorelli; D. Sanfilippo; G. Fallica; E. Sciacca; S. Aurite; S. Lombardo; E. Rlmini; M. Belluso

    2007-01-01

    In this letter we present the results regarding the electrical and optical characterization of Geiger mode silicon avalanche photodiodes (GMAP) fabricated by silicon standard planar technology. Low dark count rates, negligible afterpulsing effects,good timing resolution and high quantum detection efficiency in all the visible range have been measured. The very good electro-optical performances of our photodiodes make them attractive for the fabrication of arrays with a large number of GMAP to be used both in the commercial and the scientific fields, as telecommunications and nuclear medical imaging.

  5. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlögl, Udo

    2010-06-17

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  6. Extrinsic doping in silicon revisited

    Energy Technology Data Exchange (ETDEWEB)

    Schwingenschloegl, Udo [PSE Division, KAUST, Thuwal, Kingdom of Saudi Arabia (Saudi Arabia); Chroneos, Alexander; Grimes, Robin [Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Schuster, Cosima [Institut fuer Physik, Universitaet Augsburg, 86135 Augsburg (Germany)

    2011-07-01

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regard dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  7. Microdefects in cast multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, E.; Klinger, D.; Bergmann, S. [Inst. of Crystal Growth Berlin (Germany)

    1995-08-01

    The microdefect etching behavior of cast multicrystalline BAYSIX and SILSO samples is mainly the same as that of EFG silicon, in spite of the very different growth parameters applied to these two techniques and the different carbon contents of the investigated materials. Intentional decorating of mc silicon with copper, iron and gold did not influence the results of etching and with help of infrared transmission microscopy no metal precipitates at the assumed microdefects could be established. There are many open questions concerning the origin of the assumed, not yet doubtless proved microdefects.

  8. ePIXfab - The silicon photonics platform

    NARCIS (Netherlands)

    Khanna, A.; Drissi, Y.; Dumon, P.; Baets, R.; Absil, P.; Pozo Torres, J.M.; Lo Cascio, D.M.R.; Fournier, M.; Fedeli, J.M.; Fulbert, L.; Zimmermann, L.; Tillack, B.; Aalto, T.; O'Brien, P.; Deptuck, D.; Xu, J.; Gale, D.

    2013-01-01

    ePIXfab-The European Silicon Photonics Support Center continues to provide state-of-the-art silicon photonics solutions to academia and industry for prototyping and research. ePIXfab is a consortium of EU research centers providing diverse expertise in the silicon photonics food chain, from training

  9. PECVD silicon nitride diaphragms for condenser microphones

    NARCIS (Netherlands)

    Scheeper, P.R.; Voorthuyzen, J.A.; Bergveld, P.

    1991-01-01

    The application of plasma-enhanced chemical vapour deposited (PECVD) silicon nitride as a diaphragm material for condenser microphones has been investigated. By means of adjusting the SiH4/NH3 gas-flow composition, silicon-rich silicon nitride films have been obtained with a relatively low tensile s

  10. Preventing Freezeup in Silicon Ribbon Growth

    Science.gov (United States)

    Mackintosh, B.

    1983-01-01

    Carefully-shaped heat conductor helps control thermal gradients crucial to growth of single-crystal silicon sheets for solar cells. Ends of die through which silicon sheet is drawn as ribbon from molten silicon. Profiled heat extractor prevents ribbon ends from solidifying prematurely and breaking.

  11. ePIXfab - The silicon photonics platform

    NARCIS (Netherlands)

    Khanna, A.; Drissi, Y.; Dumon, P.; Baets, R.; Absil, P.; Pozo Torres, J.M.; Lo Cascio, D.M.R.; Fournier, M.; Fedeli, J.M.; Fulbert, L.; Zimmermann, L.; Tillack, B.; Aalto, T.; O'Brien, P.; Deptuck, D.; Xu, J.; Gale, D.

    2013-01-01

    ePIXfab-The European Silicon Photonics Support Center continues to provide state-of-the-art silicon photonics solutions to academia and industry for prototyping and research. ePIXfab is a consortium of EU research centers providing diverse expertise in the silicon photonics food chain, from training

  12. 77 FR 20649 - Silicon Metal From China

    Science.gov (United States)

    2012-04-05

    ... COMMISSION Silicon Metal From China Determination On the basis of the record \\1\\ developed in the subject... order on silicon metal from China would be likely to lead to continuation or recurrence of material... Publication 4312 (March 2012), entitled Silicon Metal from China: Investigation No. 731-TA-472 (Third Review...

  13. Aquaporins Mediate Silicon Transport in Humans.

    Science.gov (United States)

    Garneau, Alexandre P; Carpentier, Gabriel A; Marcoux, Andrée-Anne; Frenette-Cotton, Rachelle; Simard, Charles F; Rémus-Borel, Wilfried; Caron, Luc; Jacob-Wagner, Mariève; Noël, Micheline; Powell, Jonathan J; Bélanger, Richard; Côté, François; Isenring, Paul

    2015-01-01

    In animals, silicon is an abundant and differentially distributed trace element that is believed to play important biological functions. One would thus expect silicon concentrations in body fluids to be regulated by silicon transporters at the surface of many cell types. Curiously, however, and even though they exist in plants and algae, no such transporters have been identified to date in vertebrates. Here, we show for the first time that the human aquaglyceroporins, i.e., AQP3, AQP7, AQP9 and AQP10 can act as silicon transporters in both Xenopus laevis oocytes and HEK-293 cells. In particular, heterologously expressed AQP7, AQP9 and AQP10 are all able to induce robust, saturable, phloretin-sensitive silicon transport activity in the range that was observed for low silicon rice 1 (lsi1), a silicon transporter in plant. Furthermore, we show that the aquaglyceroporins appear as relevant silicon permeation pathways in both mice and humans based on 1) the kinetics of substrate transport, 2) their presence in tissues where silicon is presumed to play key roles and 3) their transcriptional responses to changes in dietary silicon. Taken together, our data provide new evidence that silicon is a potentially important biological element in animals and that its body distribution is regulated. They should open up original areas of investigations aimed at deciphering the true physiological role of silicon in vertebrates.

  14. Analysis of silicon transporters in turfgrass species

    Science.gov (United States)

    Silicon is an abundant element on earth and is also known to be beneficial as an amendment in some crops such as rice. Despite its abundance in many soils, accumulation of silicon in plants is species-specific and can be widely different. It has been shown that the genes responsible for silicon upta...

  15. 21 CFR 172.480 - Silicon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silicon dioxide. 172.480 Section 172.480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.480 Silicon dioxide. The food additive silicon dioxide may be safely used in food...

  16. 21 CFR 573.940 - Silicon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Silicon dioxide. 573.940 Section 573.940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Listing § 573.940 Silicon dioxide. The food additive silicon dioxide may be safely used in animal feed...

  17. Aquaporins Mediate Silicon Transport in Humans.

    Directory of Open Access Journals (Sweden)

    Alexandre P Garneau

    Full Text Available In animals, silicon is an abundant and differentially distributed trace element that is believed to play important biological functions. One would thus expect silicon concentrations in body fluids to be regulated by silicon transporters at the surface of many cell types. Curiously, however, and even though they exist in plants and algae, no such transporters have been identified to date in vertebrates. Here, we show for the first time that the human aquaglyceroporins, i.e., AQP3, AQP7, AQP9 and AQP10 can act as silicon transporters in both Xenopus laevis oocytes and HEK-293 cells. In particular, heterologously expressed AQP7, AQP9 and AQP10 are all able to induce robust, saturable, phloretin-sensitive silicon transport activity in the range that was observed for low silicon rice 1 (lsi1, a silicon transporter in plant. Furthermore, we show that the aquaglyceroporins appear as relevant silicon permeation pathways in both mice and humans based on 1 the kinetics of substrate transport, 2 their presence in tissues where silicon is presumed to play key roles and 3 their transcriptional responses to changes in dietary silicon. Taken together, our data provide new evidence that silicon is a potentially important biological element in animals and that its body distribution is regulated. They should open up original areas of investigations aimed at deciphering the true physiological role of silicon in vertebrates.

  18. Degradation of a tantalum filament during the hot-wire CVD of silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oliphant, C.J. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Arendse, C.J., E-mail: cjarendse@uwc.ac.za [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muller, T.F.G. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Jordaan, W.A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Knoesen, D. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-01-30

    Electron backscatter diffraction revealed that during the hot-wire deposition of silicon nitride, a tantalum filament partially transformed to some of its nitrides and silicides. The deposition of an encapsulating silicon nitride layer occurred at the cooler filament ends. Time-of-flight secondary ion mass spectroscopy disclosed the presence of hydrogen, nitrogen and silicon containing ions within the aged filament bulk. Hardness measurements revealed that the recrystallized tantalum core experienced significant hardening, whereas the silicides and nitrides were harder but more brittle. Crack growth, porosity and the different thermal expansion amongst the various phases are all enhanced at the hotter centre regions, which resulted in failure at these areas. - Highlights: • Tantalum filament degrades and fails during hot-wire CVD of silicon nitride thin films. • An encapsulating silicon nitride layer is deposited at the cooler ends. • Electron backscatter diffraction reveals Ta-silicides and -nitrides with a Ta core. • Filament failure occurs at hot centre regions due to different mechanical properties of Ta, its silicides and nitrides.

  19. Surface nitridation of silicon nano-particles using double multi-hollow discharge plasma CVD

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Giichiro; Yamamoto, Kosuke; Kawashima, Yuki; Sato, Muneharu; Nakahara, Kenta; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka (Japan); Kamataki, Kunihiro [Center for Reserch and Advancement in Higher Education, Kyushu University, Fukuoka (Japan); Kondo, Michio [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2011-10-15

    We present production of silicon nano-particles and their surface nitridation for efficient multiple-exciton generation. Nitridated silicon nano-particles were produced using double multi-hollow discharge plasma CVD, where generation of silicon particles and their nitridation were independently performed using SiH{sub 4}/H{sub 2} and N{sub 2} multi-hollow discharge plasmas. We succeeded in controlling nitrogen content in a silicon nano-particle by varying a number density of N radicals irradiated to the Si particle. We also observed strong photoluminescence (PL) emission around 300-500 nm from silicon nano-particles, where the PL peak energy is about 2.5 and 3.1 eV for pure Si nano-particles, and 2.5, 3.1, and 4.1 eV for nitridated Si nano-particles. The additional UV-peak of 4.1 eV from nitridated Si particles is closely related to the nitridation surface layer on Si nano-particles (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. RESPONSE OF SOILD FOLIAR APLICATION OF SILICON AND MICRO NUTRIENTS ON LEAF NUTRIENT STATUS OF SAPOTA

    Directory of Open Access Journals (Sweden)

    K. A. LATHIYA

    2014-03-01

    Full Text Available The field experiment was conducted to know the response of soil and foliar application of silicon and micronutrients on nutrient status of sapota at College of Horticulture Mudigere, Chikamagalur district during the year 2010- 2012. Silicon sources like potassium silicate and calcium silicate and micronutrient contents like solubor and kiecite –G were used. Macro nutrients like nitrogen (1.583 %, phosphorous (0.175 % and the potassium (1.20 % and silicon content (1.20 % in leaf were recorded highest with potassium silicate spray with 8 ml per litre. Whereas micronutrient content has not increased considerably with respect to application of silicon sources. The maximum content of iron (179.89 ppm, copper (7.61 ppm, zinc (35.13 ppm and manganese (91.16 ppm was recorded in the leaf due to foliar spray of micronutrients at 4 ml per litre. As macro nutrient and silicon content was more in the treatment with foliar application of potassium silicate at 8 ml per litre resulted in more yield and quality of fruits.

  1. Eighth international congress on nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  2. Efficiency of nitrogen fertilizers for rice

    OpenAIRE

    Roger, Pierre-Armand; I. F. Grant; Reddy, P. M.; Watanabe, I.

    1987-01-01

    The photosynthetic biomass that develops in the floodwater of wetland rice fields affects nitrogen dynamics in the ecosystem. This review summarizes available data on the nature, productivity, and composition of the photosynthetic aquatic biomass, and its major activities regarding the nitrogen cycle, i.e., nitrogen fixation by free living blue-green algae and #Azolla$, nitrogen trapping, nitrogen accumulation at the soil surface, its effect on nitrogen losses by ammonia volatilization, nitro...

  3. Leakage current mechanisms and their dependence on composition in silicon carbonitride thin films

    Science.gov (United States)

    Vijayakumar, Vishnuvardhanan; Varadarajan, Bhadri

    2015-04-01

    Electrical conduction in amorphous silicon carbonitride (a-SiCN:H) thin films deposited by plasma enhanced chemical vapor deposition (PECVD) is investigated for varying carbon to nitrogen ratios at room temperature. Films deposited with a lower carbon/nitrogen ratio showed two modes of electrical conduction; namely, Schottky emission mode below 2.3 MV cm-1 electric field and Poole-Frenkel mode from 2.3 MV cm-1 up to the breakdown field. Films with higher carbon/nitrogen ratios showed only Poole-Frenkel mode of conduction throughout the entire range of operation up to the breakdown field. The carbon rich films exhibited higher leakage currents attributed to its shallow defect energy levels leading to its higher Poole-Frenkel conductivity.

  4. 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2016-02-16

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process. The research conducted during Project Silicon led to the first industrial scaling of 1366’s Direct Wafer™ process – an innovative, US-friendly (efficient, low-labor content) manufacturing process that destroys the main cost barrier limiting silicon PV cost-reductions: the 35-year-old grand challenge of making quality wafers (40% of the cost of modules) without the cost and waste of sawing. The SunPath program made it possible for 1366 Technologies to build its demonstration factory, a key and critical step in the Company’s evolution. The demonstration factory allowed 1366 to build every step of the process flow at production size, eliminating potential risk and ensuring the success of the Company’s subsequent scaling for a 1 GW factory to be constructed in Western New York in 2016 and 2017. Moreover, the commercial viability of the Direct Wafer process and its resulting wafers were established as 1366 formed key strategic partnerships, gained entry into the $8B/year multi-Si wafer market, and installed modules featuring Direct Wafer products – the veritable proving grounds for the technology. The program also contributed to the development of three Generation 3 Direct Wafer furnaces. These furnaces are the platform for copying intelligently and preparing our supply chain – large-scale expansion will not require a bigger machine but more machines. SunPath filled the

  5. Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite

    Science.gov (United States)

    Zinner, E.; Ming, T.; Anders, E.

    1987-12-01

    Primitive meteorites contain several noble gas components with anomalous isotopic compositions which imply that they - and their solid 'carrier' phases - are of exotic, pre-solar origin. The authors found that minor fractions of the Murray meteorite contain two minerals not previously seen in meteorites: silicon carbide and an amorphous Si-O phase. They report ion microprobe analyses of these phases which reveal very large isotopic anomalies in silicon, nitrogen and carbon, exceeding the highest anomalies previously measured by factors of up to ≡50. It is concluded that these phases are circumstellar grains from carbon-rich stars, whose chemical inertness allowed them to survive in exceptionally well-preserved form.

  6. Characteristics of Amorphous Silicon Nitride Films Deposited by LF-PECVD from SiH4/N2

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhi-qin; ZHANG Yi; YU Zhi-wei; DAI Li-ping; ZHANG Guo-jun; WANG Yu-mei; WANG Gang; WANG Shu-ya

    2009-01-01

    Amorphous silicon nitride films were deposited by low-frequency plasma-enhanced chemical vapor deposition(LF-PECVD) using silane and nitrogen as precursors. Characteristics such as deposition rate,surface morphology,and chemical composition were measured by spectroscopic ellipsometry(SE),atomic force microscope(AFM) and x-ray photoelectron spectroscopy(XPS).It was shown that amorphous silicon nitride film could be prepared by LF-PECVD with good uniformity and even surface.The XPS result indicated that a small quantity of oxygen was involved in the sample,which was discussed in this paper.

  7. High-nitrogen explosives

    Energy Technology Data Exchange (ETDEWEB)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz

  8. Modification of diamond-like carbon films by nitrogen incorporation via plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Flege, S., E-mail: flege@ca.tu-darmstadt.de [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Hatada, R.; Hoefling, M.; Hanauer, A.; Abel, A. [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Baba, K. [Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Nagasaki 856-0026 (Japan); Ensinger, W. [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2015-12-15

    Highlights: • Nitrogen containing diamond-like carbon films were prepared by a plasma ignited by a high voltage. • Variation of preparation method (N{sub 2} implantation, N{sub 2} and C{sub 2}H{sub 4} co-deposition). • Maximum nitrogen content similar for co-deposition and implantation. • Electrical resistivity decreases for small nitrogen contents, increases again for higher contents. - Abstract: The addition of nitrogen to diamond-like carbon films affects properties such as the inner stress of the film, the conductivity, biocompatibility and wettability. The nitrogen content is limited, though, and the maximum concentration depends on the preparation method. Here, plasma immersion ion implantation was used for the deposition of the films, without the use of a separate plasma source, i.e. the plasma was generated by a high voltage applied to the samples. The plasma gas consisted of a mixture of C{sub 2}H{sub 4} and N{sub 2}, the substrates were silicon and glass. By changing the experimental parameters (high voltage, pulse length and repetition rate and gas flow ratio) layers with different N content were prepared. Additionally, some samples were prepared using a DC voltage. The nitrogen content and bonding was investigated with SIMS, AES, XPS, FTIR and Raman spectroscopy. Their influence on the electrical resistivity of the films was investigated. Depending on the preparation conditions different nitrogen contents were realized with maximum contents around 11 at.%. Those values were compared with the nitrogen concentration that can be achieved by implantation of nitrogen into a DLC film.

  9. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  10. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  11. Method For Producing Mechanically Flexible Silicon Substrate

    KAUST Repository

    Hussain, Muhammad Mustafa

    2014-08-28

    A method for making a mechanically flexible silicon substrate is disclosed. In one embodiment, the method includes providing a silicon substrate. The method further includes forming a first etch stop layer in the silicon substrate and forming a second etch stop layer in the silicon substrate. The method also includes forming one or more trenches over the first etch stop layer and the second etch stop layer. The method further includes removing the silicon substrate between the first etch stop layer and the second etch stop layer.

  12. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  13. Silicon carbide fibers and articles including same

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  14. Methods for producing silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  15. Hybrid Integrated Platforms for Silicon Photonics

    Directory of Open Access Journals (Sweden)

    John E. Bowers

    2010-03-01

    Full Text Available A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  16. The Future of Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu

    2006-01-01

    @@ By the end of 1984, Silicon Valley was going through the down cycle fol lowing the PC boom. A hundred PC companies wanted just 10 percent of the market, wanting to strike it rich, as rich as the Apple IPO (Initial Public Of fering) -the Google celebrity IPO of its day.

  17. Applications of passivated silicon detectors

    Science.gov (United States)

    Kyung, Richard; Park, Chan Ho

    2012-03-01

    We can postulate that dark matter are WIMPS, more specifically, Majorana particles called neutralinos floating through space. Upon neutralino-neutralino annihilation, they create a greater burst of other particles into space: these being all kinds of particles including anti-deuterons which are the indications of the existence of dark matter. For the study of the applications of passivated silicon detectors, this paper shows following procedures in two categories. Painting on little pieces of silicon (Polyimid and Boxcar Red) :Took clean paint brush and painted on Polyimid and Boxcar red samples onto little pieces of sample silicon and dried for a certain number of hours in different conditions. Cooling test : usually done in 7 cycles, cool until usually -35 degrees or -40 degrees Celsius with thermoelectric cooler, dry out, evapate the moisture in the fume hood, take pictures with the microscope and check for irregularities every 1, 4 and 7 times. The results show us how the passivated silicon will act in the real experiment--the vacuum chamber and x-rays (from the radioactive source), and different atmospheric pressures simulate what it will be like in space.

  18. Surface property modification of silicon

    Science.gov (United States)

    Danyluk, S.

    1984-01-01

    The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.

  19. Integrated silicon optofluidic ring resonator

    NARCIS (Netherlands)

    Testa, G.; Huang, Y.; Sarro, P.M.; Zeni, L.; Bernini, R.

    2010-01-01

    The feasibility of an integrated silicon optofluidic ring resonator is demonstrated. Liquid core antiresonant reflecting optical waveguides are used to realize a rectangular ring resonator with a multimode interference liquid core coupler between the ring and the bus waveguide. In this configuration

  20. Molecular dynamics of silicon indentation

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, J.S.; Hoover, W.G.; Hoover, C.G.; De Groot, A.J.; Lee, S.M.; Wooten, F. (Department of Applied Science Davis-Livermore, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-04-01

    We use nonequilibrium molecular dynamics to simulate the elastic-plastic deformation of silicon under tetrahedral nanometer-sized indentors. The results are described in terms of a rate-dependent and temperature-dependent phenomenological yield strength. We follow the structural change during indentation with a computer technique that allows us to model the dynamic simulation of diffraction patterns.

  1. Simulation of Silicon Photomultiplier Signals

    NARCIS (Netherlands)

    Seifert, Stefan; van Dam, Herman T.; Huizenga, Jan; Vinke, Ruud; Dendooven, Peter; Loehner, Herbert; Schaart, Dennis R.

    2009-01-01

    In a silicon photomultiplier (SiPM), also referred to as multi-pixel photon counter (MPPC), many Geiger-mode avalanche photodiodes (GM-APDs) are connected in parallel so as to combine the photon counting capabilities of each of these so-called microcells into a proportional light sensor. The

  2. Simulation of silicon photomultiplier signals

    NARCIS (Netherlands)

    Seifert, S.; Van Dam, H.T.; Huizenga, J.; Vinke, R.; Dendooven, P.; Löhner, H.; Schaart, D.R.

    2009-01-01

    In a silicon photomultiplier (SiPM), also referred to as multi-pixel photon counter (MPPC), many Geiger-mode avalanche photodiodes (GM-APDs) are connected in parallel so as to combine the photon counting capabilities of each of these so-called microcells into a proportional light sensor. The

  3. Let’s talk silicon

    Science.gov (United States)

    While silicon (Si) has been a known plant nutrient for centuries, how plants use this element is still poorly understood. Researchers have identified how plants acquire Si from the environment and transport the element to all plant tissues, including roots, stems, petioles, leaves and flowers. We ...

  4. Mesoporous Silicon-Based Anodes

    Science.gov (United States)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  5. Behavior of dislocations in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sumino, Koji [Nippon Steel Corp., Chiba Prefecture (Japan)

    1995-08-01

    A review is given of dynamic behavior of dislocations in silicon on the basis of works of the author`s group. Topics taken up are generation, motion and multiplication of dislocations as affected by oxygen impurities and immobilization of dislocations due to impurity reaction.

  6. Environmental friendly nitrogen fertilization

    Institute of Scientific and Technical Information of China (English)

    Avi; Shaviv

    2005-01-01

    With the huge intensification of agriculture and the increasing awareness to human health and natural resources sustainability, there was a shift towards the development of environmental friendly N application approaches that support sustainable use of land and sustain food production.The effectiveness of such approaches depends on their ability to synchronize plant nitrogen demand with its supply and the ability to apply favored compositions and dosages of N-species.They are also influenced by farming scale and its sophistication, and include the following key concepts: (i) Improved application modes such as split or localized ("depot") application; (ii) use of bio-amendments like nitrification and urease inhibitors and combinations of (i) and (ii); (iii) use of controlled and slow release fertilizers; (iv) Fertigation-fertilization via irrigation systems including fully automated and controlled systems; and (v) precision fertilization in large scale farming systems. The paper describes the approaches and their action mechanisms and examines their agronomic and environmental significance. The relevance of the approaches for different farming scales, levels of agronomic intensification and agro-technical sophistication is examined as well.

  7. OCULAR COMPLICATIONS OF SILICONE OIL

    Directory of Open Access Journals (Sweden)

    Muhammad Kamran Khalid

    2016-06-01

    Full Text Available Objective: Silicone oil (SO is an invaluable tool in the management of complex retinal detachments (RDs. Injection of silicone oil is associated with a variety of ocular complications specially when it is kept for a long time and its removal is endangering retinal re-detachment. The objective of this study was to determine the frequencies of different ocular complications associated with silicone oil injection in our setup. Study Design: Case series. Place and Duration of Study: This study was conducted at Vitreo-retina division of Al-Shifa Trust Eye Hospital, Rawalpindi from January 2014 to June 2014. Material and Methods: A total of 30 patients were included in the study who underwent pars-planavitrectomy (PPV with silicone oil injection for complex retinal detachments. The patients who had reached between 3 months & 6 months of their postoperative period and were presenting with some complications related to silicone oil injection were included in the study. Their records were reviewed and pre-operative data were collected regarding state of the eye preoperatively. Then the post-operative complications were noted. The descriptive and analytical statistics of different variables were measured using SPSS-17.0 software. Results: Out of thirty patients included in our study 23 (76.7% were male and 7 (23.3% were female. The mean age was 21.53 ± 16.004 years and range was 66 years. The mean pre-operative intra-ocular pressure ( IOP was 14.0 ± 2.150 mmHg and range 8 mmHg and the mean post-operative IOP was 24.93 ± 13.889 mmHg and range 45 mmHg (p=0.001. The pre-operative PVR grade-C was absent in 12 (40% patients and was present in 18 (60% patients and post-operative PVR grade-C was absent in 24 (80% patients and was present in 6 (20% patients (p=0.004; McNemar test. Band keratopathy was seen in 8 (26.7% and corneal decompensation in 2 (6.7% patients. Emulsification of silicone oil was seen in 14 (46.7% patients. Rubeosisiridis was present in 2

  8. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-11-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.

  9. Aluminum gettering in single and multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    McHugo, S.A.; Hieslmair, H.; Weber, E.R. [Univ. of California, Berkeley, CA (United States)

    1995-08-01

    Al gettering has been performed on integrated circuit (I.C.) quality silicon and a variety of single and multicrystalline silicon solar cell materials. The minority carrier diffusion length, Ln, has been used to quantify the gettering response. Vast differences in response to the Al gettering treatment are observed between the I.C. quality silicon and the solar cell materials. The I.C. silicon generally responds well while the solar cell silicon performance progressively degrades with increasing gettering temperature. Preliminary data shows that by performing a Rapid Thermal Annealing treatment prior to the Al gettering, an improved or further degraded Ln emerges in solar cell material depending on the material`s manufacturer. We explain these observed phenomena by suggesting that Al gettering in solar cell silicon is an impurity emission-limited process while for I.C. quality silicon it is diffusion limited.

  10. Inert gas atomization of chemical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, D.; Ferreira Neto, J.B.; Salgado, L.; Nogueira, P.F.; Poco, J.G.R. [Metallurgy Div. Cidade Univ., Inst. for Technological Research, Sao Paulo, SP (Brazil)

    2001-07-01

    The use of inert gas atomization to obtain chemical grade silicon particles was investigated. Both cooling rate and chemical composition are very important regarding a tailored microstructure, related with silicon performance during the synthesis of the silanos, an intermediary raw material in the silicone production. Previously refined silicon was used as raw material. Silicon with different aluminum contents were atomized and analyzed. The atomization temperature was set around 1520 C, and it was used a confined atomization nozzle. It was necessary to use a long atomization chamber to allow the cooling of the coarse silicon particles. After atomization, the powder was characterized and classified. The coarse fraction was milled. Two different particle size groups (different cooling rates) and the as atomized particles were investigated. The chemical behavior during the synthesis of the silanos was analyzed in a laboratory reactor. The relationship between cooling rate, aluminum content and silicon performance during the silanos synthesis is discussed. (orig.)

  11. Silicon influence on resistance induction against Bemisia tabaci biotype B (Genn.) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars.

    Science.gov (United States)

    Ferreira, R S; Moraes, J C; Antunes, C S

    2011-01-01

    The potential of populations of Bemisia tabaci (Genn.) to become resistant to insecticides has stimulated research into alternative tactics of integrated pest management such as the induction of host-plant resistance. Recent data have shown that silicon can increase the degree of resistance of host plants to insect pests. Therefore the aim of our work was to study the effects of silicon application on the vegetative development of soybean plants and on the induction of resistance to the silverleaf whitefly, B. tabaci biotype B. We performed choice and no-choice tests of oviposition preference on two soybean cultivars, IAC-19 (moderately resistant to B. tabaci biotype B) and MONSOY-8001 (susceptible), with and without application of silicon. Silicon did not affect silverleaf whitefly oviposition preferences, but caused significant mortality in nymphs. Thus, silicon increased the degree of resistance to silverleaf whitefly. Silicon decreased the production of phenolic compounds, but did not affect lignin production. However, when applied to cultivar IAC-19, it increased the production of non-protein organic nitrogen. Silicon had no effect on the vegetative development of soybean plants, but it increased the degree of resistance to the silverleaf whitefly. We conclude that silicon applications combined with cultivar IAC-19 can significantly decrease silverleaf whitefly populations, having a positive impact both on the soybean plant and on the environment.

  12. Silicon photonics: some remaining challenges

    Science.gov (United States)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  13. Silicon-Based Anode and Method for Manufacturing the Same

    Science.gov (United States)

    Yushin, Gleb Nikolayevich (Inventor); Luzinov, Igor (Inventor); Zdyrko, Bogdan (Inventor); Magasinski, Alexandre (Inventor)

    2017-01-01

    A silicon-based anode comprising silicon, a carbon coating that coats the surface of the silicon, a polyvinyl acid that binds to at least a portion of the silicon, and vinylene carbonate that seals the interface between the silicon and the polyvinyl acid. Because of its properties, polyvinyl acid binders offer improved anode stability, tunable properties, and many other attractive attributes for silicon-based anodes, which enable the anode to withstand silicon cycles of expansion and contraction during charging and discharging.

  14. Concentration of nitrogen molecules needed by nitrogen nanobubbles existing in bulk water

    Institute of Scientific and Technical Information of China (English)

    张萌; 涂育松; 方海平

    2013-01-01

    This paper investigates the stability of nitrogen nanobubbles under dif-ferent concentrations of nitrogen molecules by molecular dynamics simulations. It is found that the stability of nanobubbles is very sensitive to the concentration of nitrogen molecules in water. A sharp transition between disperse states and assemble states of nitrogen molecules is observed when the concentration of nitrogen molecules is changed. The relevant critical concentration of nitrogen molecules needed by the existing nitrogen nanobubbles is analyzed.

  15. Estimation of Symbiotically Fixed Nitrogen in Soybean Depending on Nitrogen Fertilization

    OpenAIRE

    1998-01-01

    Objectives of investigations were to determine optimal nitrogen rates for the highest soybean seed yield, compare reaction of nodulating and nonodulating soybean varieties to nitrogen fertilization and estimate the amounts of symbiotically fixed nitrogen depending on nitrogen rates. Estimation of the amounts of symbiotically fixed nitrogen was done using the nitrogen contents in soil before and after the vegetation and nitrogen contents in whole plants of nodulating and nonodulating varieties...

  16. Silicon heterojunction solar cell and crystallization of amorphous silicon

    Science.gov (United States)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since they use less materials resulting in lower cost. Polycrystalline silicon (poly-Si) is one promising thin-film material. It has the potential advantages to not only retain the performance and stability of c

  17. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  18. Determination of Ring-OSF Position in Czochralski Silicon Single Crystals by Numerical Analysis of Distribution of Grown-in Defects

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A numerical analysis technique that incorporates Voronkov's model were examined and used to estimate the distribution of defects during crystal growth. By comparisons of the distribution of the density of LSTD and the position of R-OSF in non-nitrogen-doped (non-N-doped) and nitrogen-doped (N-doped) silicon crystals, it is found that the results of the numerical analyses agree with practically evaluated data. The observations suggest that the R-OSF nucleus is a VO2 complex that is formed by bonds between oxygen atoms and residual vacancies consumed during the formation of void defects. This suggests that Voronkov's model can be used to accurately predict the generation and growth of defects in silicon crystals. This numerical analysis technique was also found to be an effective method of estimating the distribution of defects in silicon crystals during crystal growth.

  19. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  20. The nitrogen cycle on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  1. Enhanced nitrogen deposition over China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuejun; Zhang, Ying; Han, Wenxuan; Tang, Aohan; Shen, Jianlin; Cui, Zhenling; Christie, Peter; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Vitousek, Peter [Department of Biology, Stanford University, Stanford, California 94305 (United States); Erisman, Jan Willem [VU University Amsterdam, 1081 HV Amsterdam (Netherlands); Goulding, Keith [The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ (United Kingdom); Fangmeier, Andreas [Institute of Landscape and Plant Ecology, University of Hohenheim, 70593 Stuttgart (Germany)

    2013-02-28

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

  2. Plasma induced by pulsed laser and fabrication of silicon nanostructures

    Science.gov (United States)

    Hang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Liu, Liu Shi-Rong; Huang, Zhong-Mei; Miao, Xin-Jian; Lv, Quan; Qin, Chao-Jian

    2015-08-01

    It is interesting that in preparing process of nanosilicon by pulsed laser, the periodic diffraction pattern from plasmonic lattice structure in the Purcell cavity due to interaction between plasmons and photons is observed. This kind of plasmonic lattice structure confined in the cavity may be similar to the Wigner crystal structure. Emission manipulation on Si nanostructures fabricated by the plasmonic wave induced from pulsed laser is studied by using photoluminescence spectroscopy. The electronic localized states and surface bonding are characterized by several emission bands peaked near 600 nm and 700 nm on samples prepared in oxygen or nitrogen environment. The electroluminescence wavelength is measured in the telecom window on silicon film coated by ytterbium. The enhanced emission originates from surface localized states in band gap due to broken symmetry from some bonds on surface bulges produced by plasmonic wave in the cavity. Project supported by the National Natural Science Foundation of China (Grant Nos. 11264007 and 61465003).

  3. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  4. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Yanping Yuan

    2016-02-01

    Full Text Available In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2 is used to irradiate multi-walled carbon nanotubes (MWCNTs on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM. For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation.

  5. A review of oxide, silicon nitride, and silicon carbide brazing

    Energy Technology Data Exchange (ETDEWEB)

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed.

  6. Debug automation from pre-silicon to post-silicon

    CERN Document Server

    Dehbashi, Mehdi

    2015-01-01

    This book describes automated debugging approaches for the bugs and the faults which appear in different abstraction levels of a hardware system. The authors employ a transaction-based debug approach to systems at the transaction-level, asserting the correct relation of transactions. The automated debug approach for design bugs finds the potential fault candidates at RTL and gate-level of a circuit. Debug techniques for logic bugs and synchronization bugs are demonstrated, enabling readers to localize the most difficult bugs. Debug automation for electrical faults (delay faults)finds the potentially failing speedpaths in a circuit at gate-level. The various debug approaches described achieve high diagnosis accuracy and reduce the debugging time, shortening the IC development cycle and increasing the productivity of designers. Describes a unified framework for debug automation used at both pre-silicon and post-silicon stages; Provides approaches for debug automation of a hardware system at different levels of ...

  7. D0 Silicon Upgrad: D0 Silicon Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Squires, B.; /Fermilab

    1998-07-14

    The cooling system design is not complete. This paper lays out the general design and some of the design calculations that have been performed up to this date. Further refinement will be performed. This is especially true in the piping layout, piping insulation and detector manifold areas. The silicon detector is cooled by means of a coolant in the beryllium channels that also act as the primary supporting device for the silicon ladders and wedges. The coolant is water with ethylene glycol added as a freezing point depressant. The glycol concentration in the coolant is 30% by weight resulting in a freezing point of approximately -15 C. If the water/glycol is not sufficient for maintaining the desired detector temperature the concentration of the water/glycol may be changed or an alternative coolant may be used.

  8. Nitrogen balance during growth of cauliflower

    NARCIS (Netherlands)

    Everaarts, A.P.

    2000-01-01

    The potential for loss of nitrogen to the environment during growth of cauliflower was investigated. A comparison was made between cauliflower growth and nitrogen uptake without, and with, nitrogen application of the recommended amount (=225 kg ha-1 minus mineral nitrogen in the soil layer 0–60 cm,

  9. A general classification of silicon utilizing organisms

    Science.gov (United States)

    Das, P.; Das, S.

    2010-12-01

    Silicon utilizing organisms may be defined as organisms with high silicon content (≥ 1% dry weight) and they can metabolize silicon with or without demonstrable silicon transporter genes (SIT) in them(Das,2010). Silicon is the second most abundant element in the lithosphere (27.70%) and it is as important as phosphorus and magnesium (0.03%) in the biota. Hydrated silica represents the second most abundant biogenic mineral after carbonate minerals. Silicon is accumulated and metabolized by some prokaryotes, and Si compounds can stimulate the growth of a range of fungi. It is well known that Si is essential for diatoms. In mammals, Si is considered an essential trace element, required in bone, cartilage and connective tissue formation, enzymatic activities and other metabolic processes. Silicon was suggested to act as a phosphoprotein effector in bone. In mammals, Si is also reported to positively influence the immune system and to be required for lymphocyte proliferation. The aqueous chemistry of Si is dominated by silicic acid at biological pH ranges. Monosilicic acid can form stable complexes with organic hydroxy-containing molecules . Biosilica also has been identified associated with various biomolecules including proteins and carbohydrates. There are main seven groups of silicon utilizing organisms belonging to Gram positive bacteria, algae, protozoa, sponges, fungi, lichens, and monocotyledon plants. In each group again all the members are not silicon utilizing organisms, thus selective members in each group are further classified depending their degree of silicon utilization. Important silicon utilizing bacteria are Mycobacteria, Nocardia, Streptomyces, Staphylococcus, Bacillus, Lactobacillus spp. etc., Important silicon utilizing algae are Centrobacillariophyceae, Pennatibacillariophyceae and Chrysophyceae. Many protozoa belonging to Heterokonta, Choanoflagellida, Actinopoda are well known silicon utilizing microorganisms. Hexactinellida ( glass sponges

  10. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen.

    Science.gov (United States)

    Dong, Yingbo; Lin, Hai; He, Yinhai

    2017-03-01

    The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

  11. Stable configurations of graphene on silicon

    Science.gov (United States)

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry; Mahapatra, D. Roy; Ravikumar, Abhilash; Hegde, G. M.; Rizwan, M. R.

    2017-08-01

    Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon-silicon dimer formation is changed due to silicon-carbon bonding. These results may help further in band structure engineering of silicon-graphene lattice.

  12. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  13. Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    Science.gov (United States)

    Calaway, M. J.; Rodriquez, M. C.; Stansbery, E. K.

    2007-01-01

    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003.

  14. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation via three-body collision. The particle synthesis in high-density plasma media is beneficial for promoting nucleation process. In addition, further growth of silicon nuclei was able to be favorably terminated in a short-residence time reactor. Micro Raman scattering spectrum showed that as-deposited particles were mostly amorphous silicon with small fraction of silicon nanocrystals. Transmission electron micrograph confirmed individual silicon nanocrystals of 3-15 nm size. Although those particles were not mono-dispersed, they were

  15. Silicon Nanocrystal Synthesis in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  16. Nitrogen nutrition effects on development, growth and nitrogen accumulation of vegetables.

    NARCIS (Netherlands)

    Biemond, H.

    1995-01-01

    In order to be able to match nitrogen supply and nitrogen requirement of vegetable crops, insight is necessary in the responses to nitrogen of important processes of growth and development. This study focused on effects of amount of nitrogen applied and fractionation of nitrogen supply on leaf attri

  17. Nitrogen Fixation in Denitrified Marine Waters

    OpenAIRE

    Camila Fernandez; Laura Farías; Osvaldo Ulloa

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate wat...

  18. Effect of varying nitrogen flow rates on the optical properties of amorphous-SiCN thin films

    Science.gov (United States)

    Rahman, Mohd Azam Abdul; Tong, Goh Boon; Mahmood, Mohamad Rusop; Siong, Chiu Wee; Yian, Haw Choon; Rahman, Saadah Abdul

    2016-11-01

    Series of amorphous silicon carbon nitride (a-SiCN) films are synthesized using RF-PECVD technique on glass and silicon substrates from precursor gas of silane, methane and nitrogen. In this work, the change in nitrogen flow rate from 0 sccm to 50 sccm is a mean used to vary the elemental composition and bonding properties which lead to change in optical properties. The films thickness varies between 327 nm to 944 nm. The changes for the stated properties are discussed against the change in the stated nitrogen flow rate. The optical properties are investigated by means of UV-VIS spectroscopy in the wavelength range of 190 nm to 2500 nm. The transmittance of the films at ultra-violet wavelength is found to increases with increase in nitrogen flow rate. The index of refraction, n obtained for SiCN films from transmittance and reflectance measurements is lower compared to SiC films. The films optical band gap increases from 1.74 eV to 2.08 eV before it decreases to 1.89 eV as nitrogen flow rate increases from 0 to 50 sccm. The optical dispersion parameters were determined according to Wemple and Didomenico method.

  19. Dry etch method for texturing silicon and device

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, Talia S.; Haight, Richard A.; Kim, Jeehwan; Lee, Yun Seog

    2017-07-25

    A method for texturing silicon includes loading a silicon wafer into a vacuum chamber, heating the silicon wafer and thermal cracking a gas to generate cracked sulfur species. The silicon wafer is exposed to the cracked sulfur species for a time duration in accordance with a texture characteristic needed for a surface of the silicon wafer.

  20. Thermal and mechanical joints to cryo-cooled silicon monochromatorcrystals

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, A.; Fakra, S.; Morrison, G.

    2006-07-14

    We describe the performance of various materials used as thethermal interface between silicon to silicon and silicon to copper jointswhen operated at ~;120K and loaded with ~;20 watts of thermal power. Wefind that only the indium based silicon-to-silicon joint isreliable.

  1. Nitrogen Compounds in Radiation Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sims, H.E. [NNL Sellafield (United Kingdom); Dey, G.R. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vaudey, C.E.; Peaucelle, C. [Institut de Physique Nucleaire de Lyon - IPNL, 69 - Lyon (France); Boucher, J.L. [Lab. de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS 45 rue des Saints Peres, 75270 Paris cedex 06, Univ Paris 5, 75 (France); Toulhoat, N. [Institut de Physique Nucleaire de Lyon (France); Commissariat a l' Energie Atomique CEA/DEN, Centre de Saclay (France); Bererd, N. [Institut de Physique Nucleaire de Lyon (France); IUT Departement Chimie, Universite Claude Bernard Lyon 1 (France); Koppenol, W.H. [Department of Chemistry and Applied Biosciences, ETH Zurich (Switzerland); Janata, E. [Helmholtz-Zentrum fuer Materialien und Energie, Solar Energy Research, Berlin (Germany); Dauvois, V.; Durand, D.; Legand, S.; Roujou, J.L.; Doizi, D.; Dannoux, A.; Lamouroux, C. [Laboratoire de Speciation des Radionucleides et des Molecules, DEN/DPC/Service d' Etude du Comportement des Radionucleides, CEA Saclay, 91 - Gif sur yvette (France)

    2009-07-01

    Water radiolysis in presence of N{sub 2} is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N{sub 2} and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO{sub 2}- and NO{sub 3}-. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N{sub 2}O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  2. Metamaterial-inspired silicon nanophotonics

    Science.gov (United States)

    Staude, Isabelle; Schilling, Jörg

    2017-04-01

    The prospect of creating metamaterials with optical properties greatly exceeding the parameter space accessible with natural materials has been inspiring intense research efforts in nanophotonics for more than a decade. Following an era of plasmonic metamaterials, low-loss dielectric nanostructures have recently moved into the focus of metamaterial-related research. This development was mainly triggered by the experimental observation of electric and magnetic multipolar Mie-type resonances in high-refractive-index dielectric nanoparticles. Silicon in particular has emerged as a popular material choice, due to not only its high refractive index and very low absorption losses in the telecom spectral range, but also its paramount technological relevance. This Review overviews recent progress on metamaterial-inspired silicon nanostructures, including Mie-resonant and off-resonant regimes.

  3. CMS silicon tracker milestone 200

    CERN Document Server

    Dierlamm, A

    2002-01-01

    The tracker of CMS will fully consist of silicon micro-strip and pixel sensors. Building a detector with 210 m/sup 2/ sensor surface in about 3 years requires a tightly controlled construction schedule. All different aspects of the production are exercised within a pre- production of 200 modules (Milestone 200) to identify and eliminate possible bottlenecks and to test the complete electronic chain. The quality, process stability and radiation hardness of the silicon sensors will be permanently monitored. Automatic assembly procedure and industrial bonding machines will guarantee a fast and reliable construction. All modules will be tested for signal, noise and pedestals at room temperature and operation temperature of -10 degrees C. Quality assurance of the Milestone 200 sensors and modules including irradiation and stability tests are presented. (6 refs).

  4. Exceptional plasticity of silicon nanobridges

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tadashi; Sato, Takaaki; Toshiyoshi, Hiroshi; Collard, Dominique; Fujita, Hiroyuki [University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba Meguro, Tokyo 153-8505 (Japan); Cleri, Fabrizio [Institut d' Electronique Microelectronique et Nanotechnologie (CNRS UMR 8520), Universite de Lille I, Avenue Poincare BP60069 59652 Villeneuve d' Ascq (France); Kakushima, Kuniyuki [Tokyo Institute of Technology, 4259, Nagatsuda, Midori, Yokohama, Kanagawa 226-8502 (Japan); Mita, Makoto [Department of Spacecraft Engineering, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Miyata, Masaki; Itamura, Noriaki; Sasaki, Naruo [Department of Materials and Life Sciences, Seikei University, 3-3-1, Kitamachi, Kichijoji, Musashino, Tokyo 180-8633 (Japan); Endo, Junji, E-mail: tadashii@iis.u-tokyo.ac.jp [FK Optical laboratory, 1-13-4 Nakano Niiza Saitama, 352-0005 (Japan)

    2011-09-02

    The plasticity of covalently bonded materials is a subject at the forefront of materials science, bearing on a wide range of technological and fundamental aspects. However, covalent materials fracture in a brittle manner when the deformation exceeds just a few per cent. It is predicted that a macroscopically brittle material like silicon can show nanoscale plasticity. Here we report the exceptional plasticity observed in silicon nanocontacts ('nanobridges') at room temperature using a special experimental setup combining a transmission electron microscope and a microelectromechanical system. When accounting for surface diffusion, we succeeded in elongating the nanocontact into a wire-like structure, with a fivefold increase in volume, up to more than twenty times the original length. Such a large plasticity was caused by the stress-assisted diffusion and the sliding of the intergranular, amorphous-like material among the nanocrystals.

  5. Supersonic Dislocation Bursts in Silicon

    Science.gov (United States)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  6. Purity of silicon: with great effect on its performance in graphite-silicon anode materials for lithium-ion batteries

    Science.gov (United States)

    Jin, Chenxin; Xu, Guojun; Liu, Liekai; Yue, Zhihao; Li, Xiaomin; Sun, Fugen; Tang, Hao; Huang, Haibin; Zhou, Lang

    2017-09-01

    Ferrosilicon, industrial grade silicon, solar grade silicon, and electronic grade silicon were ball-milled to form four types of silicon powders, which were mixed with graphite powders at weight ratio of 5:95, respectively, for being used as graphite-silicon anode materials in lithium-ion batteries (LIBs). The effect of the purity of silicon on its electrochemical performance in graphite-silicon anode materials for LIBs was investigated by the cycle and rate tests. Results show that silicon with higher purity shows higher capacity, better cycle, and rate performance. In addition, the significant difference in capacity of the four graphite-silicon anodes with different purities of silicon is not completely resulted from the content of silicon materials, and the influence of the impurity inside the silicon cannot be ignored as well. The sample prepared from electronic grade silicon presents the highest first discharge capacity, which is 440.5 mAh g-1.

  7. Silicon nanocrystals as handy biomarkers

    Science.gov (United States)

    Fujioka, Kouki; Hoshino, Akiyoshi; Manabe, Noriyoshi; Futamura, Yasuhiro; Tilley, Richard; Yamamoto, Kenji

    2007-02-01

    Quantum dots (QDs) have brighter and longer fluorescence than organic dyes. Therefore, QDs can be applied to biotechnology, and have capability to be applied to medical technology. Currently, among the several types of QDs, CdSe with a ZnS shell is one of the most popular QDs to be used in biological experiments. However, when the CdSe QDs were applied to clinical technology, potential toxicological problems due to CdSe core should be considered. To eliminate the problem, silicon nanocrystals, which have the potential of biocompatibility, could be a candidate of alternate probes. Silicon nanocrystals have been synthesized using several techniques such as aerosol, electrochemical etching, laser pyrolysis, plasma deposition, and colloids. Recently, the silicon nanocrystals were reported to be synthesized in inverse micelles and also stabilized with 1-heptene or allylamine capping. Blue fluorescence of the nanocrystals was observed when excited with a UV light. The nanocrystals covered with 1-heptene are hydrophobic, whereas the ones covered with allylamine are hydrophilic. To test the stability in cytosol, the water-soluble nanocrystals covered with allylamine were examined with a Hela cell incorporation experiment. Bright blue fluorescence of the nanocrystals was detected in the cytosol when excited with a UV light, implying that the nanocrystals were able to be applied to biological imaging. In order to expand the application range, we synthesized and compared a series of silicon nanocrystals, which have variable surface modification, such as alkyl group, alcohol group, and odorant molecules. This study will provide a wider range of optoelectronic applications and bioimaging technology.

  8. Chemical Reactions of Silicon Clusters

    OpenAIRE

    Ramakrishna, Mushti V.; Pan, Jun

    1994-01-01

    Smalley and co-workers discovered that chemisorption reactivities of silicon clusters vary over three orders of magnitude as a function of cluster size. In particular, they found that \\Si{33}, \\Si{39}, and \\Si{45} clusters are least reactive towards various reagents compared to their immediate neighbors in size. We explain these observations based on our stuffed fullerene model. This structural model consists of bulk-like core of five atoms surrounded by fullerene-like surface. Reconstruction...

  9. Magic Numbers of Silicon Clusters

    OpenAIRE

    Pan, Jun; Ramakrishna, Mushti V.

    1994-01-01

    A structural model for intermediate sized silicon clusters is proposed that is able to generate unique structures without any dangling bonds. This structural model consists of bulk-like core of five atoms surrounded by fullerene-like surface. Reconstruction of the ideal fullerene geometry results in the formation of crown atoms surrounded by $\\pi$-bonded dimer pairs. This model yields unique structures for \\Si{33}, \\Si{39}, and \\Si{45} clusters without any dangling bonds and hence explains wh...

  10. Characterisation of Silicon Pad Diodes

    CERN Document Server

    Hodson, Thomas Connor

    2017-01-01

    Silicon pad sensors are used in high luminosity particle detectors because of their excellent timing resolution, radiation tolerance and possible high granularity. The effect of different design decisions on detector performance can be investigated nondestructively through electronic characterisation of the sensor diodes. Methods for making accurate measurements of leakage current and cell capacitance are described using both a standard approach with tungsten needles and an automated approach with a custom multiplexer and probing setup.

  11. The ATLAS Silicon Pixel Sensors

    CERN Document Server

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  12. VULCANIZATION KINETICS OF SILICONE RUBBER

    Institute of Scientific and Technical Information of China (English)

    YUAN Qiang; LI Yufu; LI Guangliang

    1988-01-01

    Vulcanization rate of silicone rubber with the aid of organic peroxide or hydrosilylation agent was studied by using oscillation disk rheometer. It was found that the process of network formation would take place through one, two or three steps depending on the structure of the reactants. The effect of phenyl group, vinyl terminals on polysiloxane chain and the functionality of silylation agent was also studied.

  13. Zhongguan Village, China's Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Liu Xinwen

    2008-01-01

    @@ In 1999,driven by the dream of using technology to change people's lives,Li Yanhong,returned to Zhongguancun(Zhongguan Village in Chinese),Beijing from Silicon Valley in the U.S.to create Baidu.com.Over the years,Baidu has become the most frequently hitted website in China as well as the largest Chinesc search engine and Chinese language website in the world.

  14. Silicon spintronics: Progress and challenges

    Science.gov (United States)

    Sverdlov, Viktor; Selberherr, Siegfried

    2015-07-01

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized.

  15. Silicon spintronics: Progress and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sverdlov, Viktor; Selberherr, Siegfried, E-mail: Selberherr@TUWien.ac.at

    2015-07-14

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized.

  16. Characterisation of some experimental silicones.

    Science.gov (United States)

    Parker, S; Meththananda, I; Braden, M; Pearson, G J

    2006-12-01

    Release of antimicrobials/antibacterials like chlorhexidine diacetate (CHD) has proved successful in inhibiting Candidal colonisation of silicone-based biomaterials. However, their addition will increase water uptake and may compromise the mechanical integrity. Two experimental silicones (S1 and S2) differing only in the surface treatment of the filler, were investigated. Ultimate tensile strength (UTS), % elongation at break (Eb), Shore A hardness and, when doped with 1% CHD, water uptake and CHD release were measured. Elastic modulus (E) was calculated from the hardness measurements. There was no significant difference in UTS and Eb between the two materials. However S1 had a higher hardness (30.6 +/- 0.97) and thus E (0.76 MPa) than S2 (hardness = 23.8 +/- 0.48, E = 0.45 MPa). Water uptake for S2 (0.6%) was higher than for S2 (0.1) and addition of CHD dramatically increased the uptake of both (S1 = 3.1%, S2 = 4.0%). Release of CHD was higher for S2 (30%) than S1 (27%). Equating osmotic pressure within the droplets with elastic restraining force gave an extension ratio of 1.95 for S1 and 5.39 for S2. Thus, addition of a hydrophilic agent can compromise the mechanical integrity of low modulus silicones.

  17. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  18. Casting larger polycrystalline silicon ingots

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  19. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  20. Single-Event Effects in Silicon and Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2014-01-01

    NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.

  1. Broadband Nonlinear Signal Processing in Silicon Nanowires

    DEFF Research Database (Denmark)

    Yvind, Kresten; Pu, Minhao; Hvam, Jørn Märcher;

    The fast non-linearity of silicon allows Tbit/s optical signal processing. By choosing suitable dimensions of silicon nanowires their dispersion can be tailored to ensure a high nonlinearity at power levels low enough to avoid significant two-photon abso We have fabricated low insertion and propa......The fast non-linearity of silicon allows Tbit/s optical signal processing. By choosing suitable dimensions of silicon nanowires their dispersion can be tailored to ensure a high nonlinearity at power levels low enough to avoid significant two-photon abso We have fabricated low insertion...... and propagation loss silicon nanowires and use them to demonstrate the broadband capabilities of silicon....

  2. New Perspective of High-Pure Silicon

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The discovery in the middle of 1950s of the semi-con ducting properties of crystalline silicon has led to the impetu ous development of electric power facilities, the sun-power industry, and particularly, the microelectronic industry. The increasing demand for the high-pure silicon requires the production of synthetic crystals. The raw material for the syn thetic crystals, the so-called technical, or metallurgical silicon, is obtained from quartzite and quartz of superior quality by means of carbon-thermal reduction of silicon using an electric arc discharge. The complexity of the technological process, high cost of the related facilities, worsening environmental pollution, and narrow-mindedness of a raw material company are attributed to the rise in price of the final product-silicon plates, resulting in the fall in the production of high-pure silicon, normally used in sun storage batteries.

  3. Photodetectors on the Basis of Porous Silicon

    Directory of Open Access Journals (Sweden)

    I.B. Olenych

    2012-11-01

    Full Text Available The paper studies the electrical characteristics of photodiode structures porous siliconsilicon substrates modified with molecules of iodine. Changes the nature of current-voltage characteristics obtained structures with symmetrical for straightening result of adsorption of iodine are revealed. It is studied the spectral characteristics of photoresponse in the 450-1100 nm wavelength range, its temperature dependence in the 125-325 K range and energy characteristics of photovoltaic structures based on porous silicon. A possible mechanism of influence of iodine adsorption on the electrical and photoelectrical properties of the structures of porous siliconsilicon substrates is proposed. The results extend the perspectives of porous silicon in photoelectronics.

  4. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  5. Signal development in irradiated silicon detectors

    CERN Document Server

    Kramberger, Gregor; Mikuz, Marko

    2001-01-01

    This work provides a detailed study of signal formation in silicon detectors, with the emphasis on detectors with high concentration of irradiation induced defects in the lattice. These defects give rise to deep energy levels in the band gap. As a consequence, the current induced by charge motion in silicon detectors is signifcantly altered. Within the framework of the study a new experimental method, Charge correction method, based on transient current technique (TCT) was proposed for determination of effective electron and hole trapping times in irradiated silicon detectors. Effective carrier trapping times were determined in numerous silicon pad detectors irradiated with neutrons, pions and protons. Studied detectors were fabricated on oxygenated and non-oxygenated silicon wafers with different bulk resistivities. Measured effective carrier trapping times were found to be inversely proportional to fuence and increase with temperature. No dependence on silicon resistivity and oxygen concentration was observ...

  6. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  7. Thermo-Mechanical Characterization of Silicon Carbide-Silicon Carbide Composites at Elevated Temperatures Using a Unique Combustion Facility

    Science.gov (United States)

    2009-09-10

    F THERMO-MECHANICAL CHARACTERIZATION OF SILICON CARBIDE - SILICON CARBIDE COMPOSITES AT ELEVATED...MECHANICAL CTERIZATION OF SILICON CARBIDE -SILIC BIDE COMPOSITES AT LEVATED TEMPER S USING A UNIQUE COMBUSTION FACILITY DISSERTATI N Ted T. Kim...THERMO-MECHANICAL CHARACTERIZATION OF SILICON CARBIDE - SILICON CARBIDE COMPOSITES AT ELEVATED TEMPERATURES USING A UNIQUE COMBUSTION FACILITY

  8. Membrane rejection of nitrogen compounds

    Science.gov (United States)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Rejection characteristics of nitrogen compounds were examined for reverse osmosis, nanofiltration, and low-pressure reverse osmosis membranes. The rejection of nitrogen compounds is explained by integrating experimental results with calculations using the extended Nernst-Planck model coupled with a steric hindrance model. The molecular weight and chemical structure of nitrogen compounds appear to be less important in determining rejection than electrostatic properties. The rejection is greatest when the Donnan potential exceeds 0.05 V or when the ratio of the solute radius to the pore radius is greater than 0.8. The transport of solute in the pore is dominated by diffusion, although convective transport is significant for organic nitrogen compounds. Electromigration contributes negligibly to the overall solute transport in the membrane. Urea, a small organic compound, has lower rejection than ionic compounds such as ammonium, nitrate, and nitrite, indicating the critical role of electrostatic interaction in rejection. This suggests that better treatment efficiency for organic nitrogen compounds can be obtained after ammonification of urea.

  9. Long-wavelength silicon photonic integrated circuits

    OpenAIRE

    2014-01-01

    In this paper we elaborate on our development of silicon photonic integrated circuits operating at wavelengths beyond the telecommunication wavelength window. Silicon-on-insulator waveguide circuits up to 3.8 mu m wavelength are demonstrated as well as germanium-on-silicon waveguide circuits operating in the 5-5 mu m wavelength range. The heterogeneous integration of III-V semiconductors and IV-VI semiconductors on this platform is described for the integration of lasers and photodetectors op...

  10. The Achievements and Challenges of Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Richard Soref

    2008-01-01

    Full Text Available A brief overview of silicon photonics is given here in order to provide a context for invited and contributed papers in this special issue. Recent progress on silicon-based photonic components, photonic integrated circuits, and optoelectronic integrated circuits is surveyed. Present and potential applications are identified along with the scientific and engineering challenges that must be met in order to actualize applications. Some on-going government-sponsored projects in silicon optoelectronics are also described.

  11. Picosecond Pulse Laser Microstructuring of silicon

    Institute of Scientific and Technical Information of China (English)

    赵明; 尹钢; 朱京涛; 赵利

    2003-01-01

    We report the experimental results of picosecond pulse laser microstructuring (pulse duration 35ps, wavelength 1.06μm, repetition rate 10Hz) of silicon using the direct focusing technique. Arrays of sharp conical spikes located below the initial surface have been formed by cumulative picosecond pulsed laser irradiation of silicon in SF6. Irradiation of silicon surface in air, N2, or vacuum creates ripple-like patterns, but does not create the sharp conical spikes.

  12. Carbon nanofibers encapsulated in macropores in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, V.; Red' kin, A. [Institute of Microelectronics Technology and High Purity Materials, RAS, Institutskaya str. 6, Chernogolovka 142432 (Russian Federation)

    2007-05-15

    This work reports on the development of fuel cells electrodes with a porous silicon structure and carbon nanofibers encapsulated in macropores in silicon. It is demonstrated that decomposition of carbon on a Ni catalyst deposited on the pore walls can be used to create a homogeneous carbon nanotube layer that dramatically increases the specific surface area while simultaneously reducing the resistivity of the macroporous silicon layer. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Mid-infrared silicon photonic devices

    Science.gov (United States)

    Mashanovich, Goran Z.; Milosevic, Milan M.; Nedeljkovic, Milos; Owens, Nathan; Headley, William R.; Teo, Ee Jin; Xiong, Boqian; Yang, Pengyuan; Hu, Youfang

    2011-01-01

    The mid-infrared spectral region is interesting for bio-chemical sensing, environmental monitoring, free space communications, or military applications. Silicon is relatively low-loss from 1.2 to 8 μm and from 24 to 100 μm, and therefore silicon photonic circuits can be used in mid- and far- infrared wavelength ranges. In this paper we investigate several silicon based waveguide structures for mid-infrared wavelength region.

  14. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  15. Interactions of Water Management and Nitrogen Fertilizer on Nitrogen Absorption and Utilization in Rice

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-hua; CAO Wei-xing; DING Yan-feng; TIAN Yong-chao; JIANG Dong

    2003-01-01

    The interactions of water management and nitrogen fertilizer on nitrogen absorption and utili-zation were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and re-maining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitro-gen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreasedwith nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, ricenot only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPEwhen mild water stressed. There were obvious interactions between nitrogen fertilizer and water management,such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and thaton decreasing NDMPE was intensified.

  16. Characteristics of Nitrogen Balances of Large-scale Stock Farms and Reduction of Environmental Nitrogen Loads

    Science.gov (United States)

    Hattori, Toshihiro; Takamatsu, Rieko

    We calculated nitrogen balances on farm gate and soil surface on large-scale stock farms and discussed methods for reducing environmental nitrogen loads. Four different types of public stock farms (organic beef, calf supply and daily cows) were surveyed in Aomori Prefecture. (1) Farm gate and soil surface nitrogen inflows were both larger than the respective outflows on all types of farms. Farm gate nitrogen balance for beef farms were worse than that for dairy farms. (2) Soil surface nitrogen outflows and soil nitrogen retention were in proportion to soil surface nitrogen inflows. (3) Reductions in soil surface nitrogen retention were influenced by soil surface nitrogen inflows. (4) In order to reduce farm gate nitrogen retention, inflows of formula feed and chemical fertilizer need to be reduced. (5) In order to reduce soil surface nitrogen retention, inflows of fertilizer need to be reduced and nitrogen balance needs to be controlled.

  17. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    Directory of Open Access Journals (Sweden)

    Brian Ford

    2017-04-01

    Full Text Available The following study focuses on the photoluminescence (PL enhancement of chemically synthesized silicon oxycarbide (SiCxOy thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD, and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2 ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield.

  18. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  19. Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask

    NARCIS (Netherlands)

    Haneveld, Jeroen; Berenschot, Erwin; Maury, Pascale; Jansen, Henri

    2006-01-01

    A method to fabricate nano-ridges over a full wafer is presented. The fabrication method uses local oxidation of silicon, with silicon nitride as a mask, and wet anisotropic etching of silicon. The realized structures are 7–20 nm wide, 40–100 nm high and centimeters long. All dimensions are easily a

  20. Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask

    NARCIS (Netherlands)

    Haneveld, Jeroen; Berenschot, Erwin; Maury, Pascale; Jansen, Henri

    2005-01-01

    A method to fabricate nano-ridges over a full wafer is presented. The fabrication method uses local oxidation of silicon, with silicon nitride as a mask, and wet anisotropic etching of silicon. The realized structures are 7-20 nm wide, 40-100 nm high and centimeters long. All dimensions are easily a