WorldWideScience

Sample records for nitric oxide-dependent vasodilation

  1. Prolonged local forearm hyperinsulinemia induces sustained enhancement of nitric oxide-dependent vasodilation in healthy subjects

    DEFF Research Database (Denmark)

    Hermann, Thomas S; Ihlemann, Nikolaj; Dominguez, Helena

    2005-01-01

    -dependent and -independent vasodilation.N(G)-monomethyl-L-arginine (L-NMMA) was coinfused to test the degree of nitric oxide (NO)-mediated vasodilation. Insulin infusion for 60 min enhanced serotonin-induced vasodilation by 37% compared to vehicle, p = .016. This increase was maintained for 4 h and was blocked by L...

  2. Nitric oxide-dependent vasodilation and Ca2+ signalling induced by erythrodiol in rat aorta

    Directory of Open Access Journals (Sweden)

    Fidèle Ntchapda

    2015-06-01

    Full Text Available Objective: To evaluate the pharmacological property of erythrodiol, a natural triterpenoid contained in propolis, as vasodilatory agent, and to determine its mechanism of action. Methods: Rats aortic rings were isolated and suspended in organ baths, and the effects of erythrodiol were studied by means of isometric tension recording experiments. Nitric oxide (NO was detected by ozone-induced chemiluminescence. The technique used to evaluate changes in intracellular Ca2+ concentration in intact endothelium was opened aortic ring and loaded with 16 µmol Fura-2/AM for 60 min at room temperature, washed and fixed by small pins with the luminal face up. In situ, ECs were visualized by an upright epifluorescence Axiolab microscope (Carl Zeiss, Oberkochen, Germany equipped with a Zeiss×63 Achroplan objective (water immersion, 2.0 mm working distance, 0.9 numerical apertures. ECs were excited alternately at 340 and 380 nm, and the emitted light was detected at 510 nm. Results: In aortic rings with intact endothelium pre-contracted with norepinephrine (10-4 mol/L, the addition of erythrodiol (10-8-10-4 mol/L induced vasorelaxation in a concentration-dependent manner; in endothelium-denuded rings, the relaxant response induced by erythrodiol was almost completely abolished suggesting that vasorelaxation was endothelium-dependent. They had almost no relaxant effect on depolarised or endothelium-denuded aortic segments. The relaxation was significantly attenuated by pre-treatment with the NO synthase inhibitor Nvnitro-L-arginine-methylester. Erythrodiol (10-4 mol/L was able to significantly increase NOx levels. This effect was completely abolished after removal of the vascular endothelium. Erythrodiol (100 µmol/L caused a slow, long-lasting increase in intracellular Ca2+ concentration. These results further supported the hypothesis that erythrodiol can induce activation of the NO/soluble guanylate cyclase/cyclic guanosine monophosphate pathway, as

  3. Sex- and limb-specific differences in the nitric oxide-dependent cutaneous vasodilation in response to local heating

    Science.gov (United States)

    Stanhewicz, Anna E.; Greaney, Jody L.; Larry Kenney, W.

    2014-01-01

    Local heating of the skin is commonly used to assess cutaneous microvasculature function. Controversy exists as to whether there are limb or sex differences in the nitric oxide (NO)-dependent contribution to this vasodilation, as well as the NO synthase (NOS) isoform mediating the responses. We tested the hypotheses that 1) NO-dependent vasodilation would be greater in the calf compared with the forearm; 2) total NO-dependent dilation would not be different between sexes within limb; and 3) women would exhibit greater neuronal NOS (nNOS)-dependent vasodilation in the calf. Two microdialysis fibers were placed in the skin of the ventral forearm and the calf of 19 (10 male and 9 female) young (23 ± 1 yr) adults for the local delivery of Ringer solution (control) or 5 mM Nω-propyl-l-arginine (NPLA; nNOS inhibition). Vasodilation was induced by local heating (42°C) at each site, after which 20 mM NG-nitro-l-arginine methyl ester (l-NAME) was perfused for within-site assessment of NO-dependent vasodilation. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial pressure and normalized to maximum (28 mM sodium nitroprusside, 43°C). Total NO-dependent vasodilation in the calf was lower compared with the forearm in both sexes (Ringer: 42 ± 5 vs. 62 ± 4%; P 0.05). These data suggest that the NO-dependent component of local heating-induced cutaneous vasodilation is lower in the calf compared with the forearm. Contrary to our original hypothesis, there was no contribution of nNOS to NO-dependent vasodilation in either limb during local heating. PMID:25100074

  4. Vasodilators

    Science.gov (United States)

    ... directly on the vessel walls are hydralazine and minoxidil. Doctors prescribe vasodilators to prevent, treat or improve ... http://www.micromedexsolutions.com. Accessed May 23, 2016. Minoxidil. Micromedex 2.0 Healthcare Series. http://www.micromedexsolutions. ...

  5. Nitrate tolerance impairs nitric oxide-mediated vasodilation in vivo

    DEFF Research Database (Denmark)

    Laursen, Jørn Bech; Boesgaard, Søren; Poulsen, Henrik E.

    1996-01-01

    Nitrates, Nitrate tolerence, Nitric oxide, acetylcholine, N-acetylcholine, N-acetylcysteine, L-NAME, Rat, Anesthetized......Nitrates, Nitrate tolerence, Nitric oxide, acetylcholine, N-acetylcholine, N-acetylcysteine, L-NAME, Rat, Anesthetized...

  6. Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation.

    Science.gov (United States)

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B; Luedike, Peter; Berenbrink, Michael; Klare, Johann P; Steinhoff, Heinz-Juergen; Semmler, Dominik; Shiva, Sruti; Williams, Daryl; Kipar, Anja; Gladwin, Mark T; Schrader, Juergen; Kelm, Malte; Cossins, Andrew R; Rassaf, Tienush

    2012-07-17

    Hypoxic vasodilation is a physiological response to low oxygen tension that increases blood supply to match metabolic demands. Although this response has been characterized for >100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin in the heart can reduce nitrite to nitric oxide (NO·) and thereby contribute to cardiomyocyte NO· signaling during ischemia. On the basis of recent observations that myoglobin is expressed in the vasculature of hypoxia-tolerant fish, we hypothesized that endogenous nitrite may contribute to physiological hypoxic vasodilation via reactions with vascular myoglobin to form NO·. We show in the present study that myoglobin is expressed in vascular smooth muscle and contributes significantly to nitrite-dependent hypoxic vasodilation in vivo and ex vivo. The generation of NO· from nitrite reduction by deoxygenated myoglobin activates canonical soluble guanylate cyclase/cGMP signaling pathways. In vivo and ex vivo vasodilation responses, the reduction of nitrite to NO·, and the subsequent signal transduction mechanisms were all significantly impaired in mice without myoglobin. Hypoxic vasodilation studies in myoglobin and endothelial and inducible NO synthase knockout models suggest that only myoglobin contributes to systemic hypoxic vasodilatory responses in mice. Endogenous nitrite is a physiological effector of hypoxic vasodilation. Its reduction to NO· via the heme globin myoglobin enhances blood flow and matches O(2) supply to increased metabolic demands under hypoxic conditions.

  7. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  8. Nitrite Regulates Hypoxic Vasodilation via Myoglobin–Dependent Nitric Oxide Generation

    Science.gov (United States)

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B.; Luedike, Peter; Berenbrink, Michael; Klare, Johann P.; Steinhoff, Heinz-Juergen; Semmler, Dominik; Shiva, Sruti; Williams, Daryl; Kipar, Anja; Gladwin, Mark T.; Schrader, Juergen; Kelm, Malte; Cossins, Andrew R.; Rassaf, Tienush

    2012-01-01

    Background Hypoxic vasodilation is a physiological response to low oxygen (O2) tension that increases blood supply to match metabolic demands. While this response has been characterized for more than 100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin (deoxyMb) in the heart can reduce nitrite to nitric oxide (NO˙) and thereby contribute to cardiomyocyte NO˙ signaling during ischemia. Based on recent observations that Mb is expressed in the vasculature of hypoxia-tolerant fish, we hypothesized that endogenous nitrite may contribute to physiological hypoxic vasodilation via reactions with vascular Mb to form NO˙. Methods and Results We here show that Mb is expressed in vascular smooth muscle and contributes significantly to nitrite-dependent hypoxic vasodilation in vivo and ex vivo. The generation of NO˙ from nitrite reduction by deoxyMb activates canonical soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP) signaling pathways. In vivo and ex vivo vasodilation responses, the reduction of nitrite to NO˙ and the subsequent signal transduction mechanisms were all significantly impaired in mice without myoglobin (Mb−/−). Hypoxic vasodilation studies in Mb, endothelial and inducible NO synthase knockout models (eNOS−/−, iNOS−/−) suggest that only Mb contributes to systemic hypoxic vasodilatory responses in mice. Conclusions Endogenous nitrite is a physiological effector of hypoxic vasodilation. Its reduction to NO˙ via the heme globin Mb enhances blood flow and matches O2 supply to increased metabolic demands under hypoxic conditions. PMID:22685116

  9. Effects of nitric oxide synthase inhibition on cutaneous vasodilation in response to acupuncture stimulation in humans.

    Science.gov (United States)

    Kimura, Kenichi; Takeuchi, Hayato; Yuri, Kuniko; Wakayama, Ikuro

    2013-03-01

    The aim of the present study was to elucidate the mechanism of cutaneous vasodilation following acupuncture stimulation by investigating the roles of nitric oxide (NO) and axon reflex vasodilation. The subjects were 17 healthy male volunteers. The role of NO was investigated by administering N(G)-nitro-l-arginine methyl ester hydrochloride (L-NAME, 20 mM), an NO synthase inhibitor or Ringer's solution (control site), via intradermal microdialysis (protocol 1; n=7). The role of axon reflex vasodilation by local sensory neurones was investigated by comparing vasodilation at sites treated with 'eutectic mixture of local anaesthetics' (EMLA) cream (2.5% lidocaine and 2.5% prilocaine) with untreated sites (control site) (protocol 2; n=10). After 5 min of baseline recording, acupuncture was applied to PC4 and a control site in proximity to PC4 for 10 min and scanning was performed for 60 min after acupuncture stimulation. Skin blood flow (SkBF) was evaluated by laser Doppler perfusion imaging. Cutaneous vascular conductance (CVC) was calculated from the ratio of SkBF to mean arterial blood pressure. In the first protocol, sites administered L-NAME showed significant reductions in CVC responses following acupuncture stimulation compared to control sites (administered Ringer's solution) (pacupuncture stimulation did not differ significantly between treated sites with EMLA cream and untreated sites (p>0.05). These data suggest that cutaneous vasodilation in response to acupuncture stimulation may not occur through an axon reflex as previously reported. Rather, NO mechanisms appear to contribute to the vasodilator response.

  10. The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply-demand matching.

    Science.gov (United States)

    Umbrello, Michele; Dyson, Alex; Feelisch, Martin; Singer, Mervyn

    2013-11-10

    A mismatch between energy supply and demand induces tissue hypoxia with the potential to cause cell death and organ failure. Whenever arterial oxygen concentration is reduced, increases in blood flow--hypoxic vasodilation--occur in an attempt to restore oxygen supply. Nitric oxide (NO) is a major signaling and effector molecule mediating the body's response to hypoxia, given its unique characteristics of vasodilation (improving blood flow and oxygen supply) and modulation of energetic metabolism (reducing oxygen consumption and promoting utilization of alternative pathways). This review covers the role of oxygen in metabolism and responses to hypoxia, the hemodynamic and metabolic effects of NO, and mechanisms underlying the involvement of NO in hypoxic vasodilation. Recent insights into NO metabolism will be discussed, including the role for dietary intake of nitrate, endogenous nitrite (NO₂⁻) reductases, and release of NO from storage pools. The processes through which NO levels are elevated during hypoxia are presented, namely, (i) increased synthesis from NO synthases, increased reduction of NO₂⁻ to NO by heme- or pterin-based enzymes and increased release from NO stores, and (ii) reduced deactivation by mitochondrial cytochrome c oxidase. Several reviews covered modulation of energetic metabolism by NO, while here we highlight the crucial role NO plays in achieving cardiocirculatory homeostasis during acute hypoxia through both vasodilation and metabolic suppression. We identify a key position for NO in the body's adaptation to an acute energy supply-demand mismatch.

  11. Evidence for a role of nitric oxide in hindlimb vasodilation induced by hypothalamic stimulation in anesthetized rats

    Directory of Open Access Journals (Sweden)

    Ferreira-Neto Marcos L.

    2005-01-01

    Full Text Available Electrical stimulation of the hypothalamus produces cardiovascular adjustments consisting of hypertension, tachycardia, visceral vasoconstriction and hindlimb vasodilation. Previous studies have demonstrated that hindlimb vasodilation is due a reduction of sympathetic vasoconstrictor tone and to activation of beta2-adrenergic receptors by catecholamine release. However, the existence of a yet unidentified vasodilator mechanism has also been proposed. Recent studies have suggested that nitric oxide (NO may be involved. The aim of the present study was to investigate the role of NO in the hindquarter vasodilation in response to hypothalamic stimulation. In pentobarbital-anesthetized rats hypothalamic stimulation (100 Hz, 150mA, 6 s produced hypertension, tachycardia, hindquarter vasodilation and mesenteric vasoconstriction. Alpha-adrenoceptor blockade with phentolamine (1.5 mg/kg, iv plus bilateral adrenalectomy did not modify hypertension, tachycardia or mesenteric vasoconstriction induced by hypothalamic stimulation. Hindquarter vasodilation was strongly reduced but not abolished. The remaining vasodilation was completely abolished after iv injection of the NOS inhibitor L-NAME (20 mg/kg, iv. To properly evaluate the role of the mechanism of NO in hindquarter vasodilation, in a second group of animals L-NAME was administered before alpha-adrenoceptor blockade plus adrenalectomy. L-NAME treatment strongly reduced hindquarter vasodilation in magnitude and duration. These results suggest that NO is involved in the hindquarter vasodilation produced by hypothalamic stimulation.

  12. Increasing the Fungicidal Action of Amphotericin B by Inhibiting the Nitric Oxide-Dependent Tolerance Pathway

    Directory of Open Access Journals (Sweden)

    Kim Vriens

    2017-01-01

    Full Text Available Amphotericin B (AmB induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB’s fungicidal activity in Saccharomyces cerevisiae, using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays. The nitric oxide synthase inhibitor L-NAME was used to interfere with nitric oxide radical production. L-NAME increased and accelerated AmB-induced accumulation of superoxide radicals, membrane permeabilization, and loss of proliferative capacity in S. cerevisiae. In contrast, the nitric oxide donor S-nitrosoglutathione inhibited AmB’s action. Hence, superoxide radicals were important for AmB’s fungicidal action, whereas nitric oxide radicals mediated tolerance towards AmB. Finally, also the human pathogens Candida albicans and Candida glabrata were more susceptible to AmB in the presence of L-NAME, pointing to the potential of AmB-L-NAME combination therapy to treat fungal infections.

  13. The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2011-01-01

    Full Text Available Dangkwisoo-San (DS is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO production in human brain microvascular endothelial cells (HBMECs. DS (10–300 μg/mL produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF, although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS inhibitor, N5-(1-iminoethyl-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation.

  14. Role of nitric oxide in vasodilation in upstream muscle during intermittent pneumatic compression.

    Science.gov (United States)

    Chen, Long-En; Liu, Kang; Qi, Wen-Ning; Joneschild, Elizabeth; Tan, Xiangling; Seaber, Anthony V; Stamler, Jonathan S; Urbaniak, James R

    2002-02-01

    This study investigated the dosage effects of nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) on intermittent pneumatic compression (IPC)-induced vasodilation in uncompressed upstream muscle and the effects of IPC on endothelial NOS (eNOS) expression in upstream muscle. After L-NMMA infusion, mean arterial pressure increased by 5% from baseline (99.5 +/- 18.7 mmHg; P < 0.05). Heart rate and respiratory rate were not significantly affected. One-hour IPC application on legs induced a 10% dilation from baseline in 10- to 20-microm arterioles and a 10-20% dilation in 21- to 40 microm arterioles and 41- to 70-microm arteries in uncompressed cremaster muscle. IPC-induced vasodilation was dose dependently reduced, abolished, or even reversed by concurrently infused L-NMMA. Moreover, expression of eNOS mRNA in uncompressed cremaster muscle was upregulated to 2 and 2.5 times normal at the end of 1- and 5-h IPC on legs, respectively, and the expression of eNOS protein was upregulated to 1.8 times normal. These increases returned to baseline level after cessation of IPC. The results suggest that eNOS plays an important role in regulating the microcirculation in upstream muscle during IPC.

  15. Ghrelin enhances food intake and carbohydrate oxidation in a nitric oxide dependent manner.

    Science.gov (United States)

    Abtahi, Shayan; Mirza, Aaisha; Howell, Erin; Currie, Paul J

    2017-09-01

    In the present study we sought to investigate interactions between hypothalamic nitric oxide (NO) and ghrelin signaling on food intake and energy substrate utilization as measured by the respiratory exchange ratio (RER). Guide cannulae were unilaterally implanted in either the arcuate (ArcN) or paraventricular (PVN) nuclei of male Sprague-Dawley rats. Animals were pretreated with subcutaneous (2.5-10mg/kg/ml) or central (0-100pmol) N-nitro-l-Arginine methyl ester (l-NAME) followed by 50pmol of ghrelin administered into either the ArcN or PVN. Both l-NAME and ghrelin were microinjected at the onset of the active cycle and food intake and RER were assessed 2h postinjection. RER was measured as the ratio of the volume of carbon dioxide expelled relative to the volume of oxygen consumed (VCO 2 /VO 2 ) using an open-circuit indirect calorimeter. Our results demonstrated that peripheral and central l-NAME pretreatment dose-dependently attenuated ghrelin induced increases in food intake and RER in either the ArcN or PVN. In fact the 100pmol dose largely reversed the metabolic effects of ghrelin in both anatomical regions. These findings suggest that ghrelin enhancement of food intake and carbohydrate oxidation in the rat ArcN and PVN is NO-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Post-Translational Nitric Oxide-Dependent Modifications In Immune System.

    Science.gov (United States)

    Martínez-Ruiz, Antonio

    2015-08-01

    Nitric oxide non classical signalling is exerted through a series of covalent protein post-translational modifications, which include modification of cysteine residues by S-nitrosylation and S-glutathionylation. A key process in adaptive immunity is the immune synapse that tightly couples T cells with antigen presenting cells, triggering antigen recognition by T cells. In this highly regulated process, we have shown that eNOS is activated, inducing protein S-nitrosylation. While both N-Ras and K-Ras are present in T cells, only N-Ras, which colocalizes in the Golgi with eNOS, is S-nitrosylated and activated during the immune synapse, providing an example of short-range selectivity of NO signalling through S-nitrosylation. We have developed proteomic methods to detect S-nitrosylation and reversible cysteine oxidations. We have applied them to detecting S-nitrosylated proteins in macrophage activation, highlighting the role of denitrosylase mechanism, particularly the thioredoxin pathway, in protecting macrophages from self-modification. We have also applied these proteomic methods to studying protein modification in acute hypoxia. In endothelial cells, there is an increase in cysteine oxidation in several proteins that can mediate acute responses to hypoxia prior to the activation of the HIF pathway, and we are currently studying in more detail the role of protein S-nitrosylation. We have also recently shown that acute hypoxia produces a superoxide burst in cells, which can be converted in an oxidative signal through protein cysteine modification, and we are unraveling the molecular mechanisms producing this superoxide burst in mitochondria. Copyright © 2015. Published by Elsevier B.V.

  17. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism.

    Science.gov (United States)

    Elks, Philip M; Brizee, Sabrina; van der Vaart, Michiel; Walmsley, Sarah R; van Eeden, Fredericus J; Renshaw, Stephen A; Meijer, Annemarie H

    2013-01-01

    Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α) transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for therapeutic

  18. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Philip M Elks

    Full Text Available Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb, becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for

  19. Functional pulmonary atresia in newborn with normal intracardiac anatomy: Successful treatment with inhaled nitric oxide and pulmonary vasodilators

    Directory of Open Access Journals (Sweden)

    Gürkan Altun

    2013-01-01

    Full Text Available Functional pulmonary atresia is characterized by a structurally normal pulmonary valve that does not open during right ventricular ejection. It is usually associated with Ebstein′s anomaly, Uhl′s anomaly, neonatal Marfan syndrome and tricuspid valve dysplasia. However, functional pulmonary atresia is rarely reported in newborn with anatomically normal heart. We report a newborn with functional pulmonary atresia who had normal intracardiac anatomy, who responded to treatment with nitric oxide and other vasodilator therapy successfully.

  20. Baroreceptor stimulation enhanced nitric oxide vasodilator responsiveness, a new aspect of baroreflex physiology.

    Science.gov (United States)

    Gmitrov, Juraj

    2015-03-01

    Increasing evidence suggests that endothelial nitric oxide (NO) deficit and baroreflex dysfunction are associated with a variety of cardiovascular conditions, ranging from arterial hypertension to stroke and coronary heart disease, importantly appearing even in preclinical stages of the disease. To test the hypothesis that the arterial baroreflex has a modulatory effect on NO-dependent vasodilation, sodium nitroprusside (SNP), a spontaneous NO-donor, vasodilatory effect was studied in conjunction with sinocarotid baroreceptor magnetic stimulation and potential implementation in NO deficiency states. Mean femoral artery blood pressure (MAP), heart rate (HR) and ear lobe skin microcirculatory blood flow, measured by a microphotoelectric plethysmogram (MPPG), were simultaneously recorded in conscious rabbits before and after 40-min sinocarotid baroreceptor exposure to 350 mT static magnetic field (SMF), generated by Nd2-Fe4-B alloy (n=8) or sham magnets (n=8, controls). Arterial baroreflex sensitivity (BRS) was measured by changes in HR and MAP (ΔHR/ΔMAP) after intravenous bolus injections of SNP and phenylephrine. The vasodilatory effect of SNP significantly increased after SMF sinocarotid baroreceptor exposure (MPPGbeforeSMF: 2.57 ± 0.81 V vs. MPPGafterSMF: 7.82 ± 1.61 V, pBaroreflex-mediated increment in vessel sensitivity to NO is suggested to be a new mechanism in baroreflex physiology with potential implementation in cardiovascular conditions where NO deficit and autonomic dysfunction increase the risk of morbidity and mortality substantially. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Relative deficiency of nitric oxide-dependent vasodilation in salt hypertensive Dahl rats: the possible role of superoxide anions

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Dobešová, Zdenka; Kuneš, Jaroslav

    2001-01-01

    Roč. 19, č. 2 (2001), s. 247-254 ISSN 0263-6352 R&D Projects: GA AV ČR IAA7011805; GA AV ČR IAA7011711; GA MŠk LN00A069 Institutional research plan: CEZ:AV0Z5011922 Keywords : blood pressure * salt hypertension * Dahl rats Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.210, year: 2001

  2. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation

    Directory of Open Access Journals (Sweden)

    Ghareib SA

    2015-11-01

    Full Text Available Salah A Ghareib,1 Hany M El-Bassossy,1,2 Ahmed A Elberry,3,4 Ahmad Azhar,5 Malcolm L Watson,6 Zainy Mohammed Banjar7 1Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; 3Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 4Department of Pharmacology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt; 5Department of Pediatric Cardiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; 6Department of Pharmacy and Pharmacology, University of Bath, Bath, UK; 7Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg-1, and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3–3 µM on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE. To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester hydrochloride (100 µM, guanylate cyclase inhibitor methylene blue (5 µM, calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM, and cyclooxygenase inhibitor indomethacin (5 µM were added 30 minutes before assessing the direct vasorelaxant effect of 6

  3. Exercise prevents age-related decline in nitric-oxide-mediated vasodilator function in cutaneous microvessels.

    Science.gov (United States)

    Black, Mark A; Green, Daniel J; Cable, N Timothy

    2008-07-15

    Ageing is associated with impaired endothelium-derived nitric oxide (NO) function in human microvessels. We investigated the impact of cardiorespiratory fitness and exercise training on physiological and pharmacological NO-mediated microvascular responses in older subjects. NO-mediated vasodilatation was examined in young, older sedentary and older fit subjects who had two microdialysis fibres embedded into the skin on the ventral aspect of the forearm and laser Doppler probes placed over these sites. Both sites were then heated to 42 degrees C, with Ringer solution infused in one probe and N-nitro-L-arginine methyl ester (L-NAME) through the second. In another study, three doses of ACh were infused in the presence or absence of L-NAME in similar subjects. The older sedentary subjects then undertook exercise training, with repeat studies at 12 and 24 weeks. The NO component of the heat-induced rise in cutaneous vascular conductance (CVC) was diminished in the older sedentary subjects after 30 min of prolonged heating at 42 degrees C (26.9 +/- 3.9%CVC(max)), compared to older fit (46.2 +/- 7.0%CVC(max), P incremental heating (P < 0.05). Similarly, the NO contribution to ACh responses was impaired in the older sedentary versus older fit subjects (low dose 3.2 +/- 1.3 versus 6.6 +/- 1.3%CVC(max); mid dose 11.4 +/- 2.4 versus 21.6 +/- 4.5%CVC(max); high dose 35.2 +/- 6.0 versus 52.6 +/- 7.9%CVC(max), P < 0.05) and training reversed this (12 weeks: 13.7 +/- 3.6, 28.9 +/- 5.3, 56.1 +/- 3.9%CVC(max), P < 0.05). These findings indicate that maintaining a high level of fitness, or undertaking exercise training, prevents age-related decline in indices of physiological and pharmacological microvascular NO-mediated vasodilator function. Since higher levels of NO confer anti-atherogenic benefit, this study has potential implications for the prevention of microvascular dysfunction in humans.

  4. Nitric oxide, cholesterol oxides and endothelium-dependent vasodilation in plasma of patients with essential hypertension

    Directory of Open Access Journals (Sweden)

    P. Moriel

    2002-11-01

    Full Text Available The objective of the present study was to identify disturbances of nitric oxide radical (·NO metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine, water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg.Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia, and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM, urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM, ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol, and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol, in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.

  5. Modulation of vasodilator response via the nitric oxide pathway after acute methyl mercury chloride exposure in rats.

    Science.gov (United States)

    Omanwar, S; Saidullah, B; Ravi, K; Fahim, M

    2013-01-01

    Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO) bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.). The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh). In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10(-4) M) was significantly increased, and in presence of glybenclamide (10(-5) M), the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF). In addition, superoxide dismutase (SOD) + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS) and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  6. Modulation of Vasodilator Response via the Nitric Oxide Pathway after Acute Methyl Mercury Chloride Exposure in Rats

    Directory of Open Access Journals (Sweden)

    S. Omanwar

    2013-01-01

    Full Text Available Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.. The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh. In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M was significantly increased, and in presence of glybenclamide (10-5 M, the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF. In addition, superoxide dismutase (SOD + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  7. Nitric oxide-mediated vasodilation becomes independent of beta-adrenergic receptor activation with increased intensity of hypoxic exercise.

    Science.gov (United States)

    Casey, Darren P; Curry, Timothy B; Wilkins, Brad W; Joyner, Michael J

    2011-03-01

    Hypoxic vasodilation in skeletal muscle at rest is known to include β-adrenergic receptor-stimulated nitric oxide (NO) release. We previously reported that the augmented skeletal muscle vasodilation during mild hypoxic forearm exercise includes β-adrenergic mechanisms. However, it is unclear whether a β-adrenergic receptor-stimulated NO component exists during hypoxic exercise. We hypothesized that NO-mediated vasodilation becomes independent of β-adrenergic receptor activation with increased exercise intensity during hypoxic exercise. Ten subjects (7 men, 3 women; 23 ± 1 yr) breathed hypoxic gas to titrate arterial O(2) saturation to 80% while remaining normocapnic. Subjects performed two consecutive bouts of incremental rhythmic forearm exercise (10% and 20% of maximum) with local administration (via a brachial artery catheter) of propranolol (β-adrenergic receptor inhibition) alone and with the combination of propranolol and nitric oxide synthase inhibition [N(G)-monomethyl-l-arginine (l-NMMA)] under normoxic and hypoxic conditions. Forearm blood flow (FBF, ml/min; Doppler ultrasound) and blood pressure [mean arterial pressure (MAP), mmHg; brachial artery catheter] were assessed, and forearm vascular conductance (FVC, ml·min(-1)·100 mmHg(-1)) was calculated (FBF/MAP). During propranolol alone, the rise in FVC (Δ from normoxic baseline) due to hypoxic exercise was 217 ± 29 and 415 ± 41 ml·min(-1)·100 mmHg(-1) (10% and 20% of maximum, respectively). Combined propranolol-l-NMMA infusion during hypoxic exercise attenuated ΔFVC at 20% (352 ± 44 ml·min(-1)·100 mmHg(-1); P < 0.001) but not at 10% (202 ± 28 ml·min(-1)·100 mmHg(-1); P = 0.08) of maximum compared with propranolol alone. These data, when integrated with earlier findings, demonstrate that NO contributes to the compensatory vasodilation during mild and moderate hypoxic exercise; a β-adrenergic receptor-stimulated NO component exists during low-intensity hypoxic exercise. However, the

  8. Inhibition of IFN-γ-Induced Nitric Oxide Dependent Antimycobacterial Activity by miR-155 and C/EBPβ

    Directory of Open Access Journals (Sweden)

    Yongwei Qin

    2016-04-01

    Full Text Available miR-155 (microRNA-155 is an important non-coding RNA in regulating host crucial biological regulators. However, its regulatory function in mycobacterium infection remains unclear. Our study demonstrates that miR-155 expression is significantly increased in macrophages after Mycobacterium marinum (M.m infection. Transfection with anti-miR-155 enhances nitric oxide (NO synthesis and decreases the mycobacterium burden, and vice versa, in interferon γ (IFN-γ activated macrophages. More importantly, miR-155 can directly bind to the 3′UTR of CCAAT/enhancer binding protein β (C/EBPβ, a positive transcriptional regulator of nitric oxide synthase (NOS2, and regulate C/EBPβ expression negatively. Knockdown of C/EBPβ inhibit the production of nitric oxide synthase and promoted mycobacterium survival. Collectively, these data suggest that M.m-induced upregulation of miR-155 downregulated the expression of C/EBPβ, thus decreasing the production of NO and promoting mycobacterium survival, which may provide an insight into the function of miRNA in subverting the host innate immune response by using mycobacterium for its own profit. Understanding how miRNAs partly regulate microbicidal mechanisms may represent an attractive way to control tuberculosis infectious.

  9. Nitric oxide-dependent vasorelaxation induced by extractive solutions and fractions of Maytenus ilicifolia Mart ex Reissek (Celastraceae) leaves.

    Science.gov (United States)

    Rattmann, Yanna D; Cipriani, Thales R; Sassaki, Guilherme L; Iacomini, Marcello; Rieck, Lia; Marques, Maria C A; da Silva-Santos, José E

    2006-04-06

    This study reveals that an ethanolic supernatant obtained from an aqueous extractive solution prepared from residues of methanolic extracts of ground leaves of Maytenus ilicifolia is able to cause a concentration- and endothelium-dependent relaxation in pre-contract rat aorta rings, with EC(50) of 199.7 (190-210) microg/ml. The non-selective nitric oxide synthase inhibitors l-NAME and l-NMMA abolished this effect, while superoxide dismutase and MnTBAP (a non-enzymatic superoxide dismutase mimetic) enhanced it. Further, relaxation induced by this ethanolic supernatant have been strongly inhibited by the guanylate cyclase inhibitors methylene blue and ODQ, as well as by the potassium channel blockers 4-aminopyridine and tetraethylammonium, but was unchanged by the cyclooxygenase inhibitor indomethacin and the membrane receptor antagonists atropine, HOE-140 and pirilamine. Partition of the ethanolic supernatant between H(2)O and EtOAc generated a fraction several times more potent, able to fully relax endothelium-intact aorta rings with an EC(50) of 4.3 (3.9-4.8) microg/ml. (13)C NMR spectrum of this fraction showed signals typical of catechin. This study reveals that the leaves of M. ilicifolia possess one or more potent substances able to relax endothelium-intact rat aorta rings, an event that appears to involve nitric oxide production, guanylate cyclase activation and potassium channel opening.

  10. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase.

    Science.gov (United States)

    Dal-Secco, Daniela; DalBó, Silvia; Lautherbach, Natalia E S; Gava, Fábio N; Celes, Mara R N; Benedet, Patricia O; Souza, Adriana H; Akinaga, Juliana; Lima, Vanessa; Silva, Katiussia P; Kiguti, Luiz Ricardo A; Rossi, Marcos A; Kettelhut, Isis C; Pupo, André S; Cunha, Fernando Q; Assreuy, Jamil

    2017-07-01

    G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and β-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and β-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in β-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore

  11. Vasodilator efficiency of endogenous prostanoids, Ca2+-activated K+ channels and nitric oxide in rats with spontaneous, salt-dependent or NO-deficient hypertension

    Czech Academy of Sciences Publication Activity Database

    Behuliak, Michal; Pintérová, Mária; Kuneš, Jaroslav; Zicha, Josef

    2011-01-01

    Roč. 34, č. 8 (2011), s. 968-975 ISSN 0916-9636 R&D Projects: GA ČR(CZ) GA305/09/0336; GA AV ČR(CZ) IAA500110902; GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : Ca2+-activated K+ channels * nitric oxide-dependent vasodilatation * prostacyclin Subject RIV: ED - Physiology Impact factor: 2.576, year: 2011

  12. Altered vasodilator role of nitric oxide synthase in the pancreas, heart and brain of rats with spontaneous type 2 diabetes.

    Science.gov (United States)

    Song, Dongzhe; Yao, Reina; Pang, Catherine C Y

    2008-09-04

    Type 2 diabetes is associated with altered regional blood flow and expression of nitric oxide synthase (NOS). We examined the functional role of constitutive and inducible NOS synthase (cNOS and iNOS, respectively) on regional blood flow in thiobutabarbital-anesthetized Zucker diabetic fatty (ZDF) and control rats via the radioactive microspheres technique. Blood flow was measured at baseline (1 h after surgery), after i.v. administration of 1400W (N-3-aminomethyl-benzyl-acetamidine, selective iNOS inhibitor, 3 mg/kg), and again after i.v. N(G)-nitro-l-arginine methyl ester (L-NAME, non-selective NOS inhibitor, 8 mg/kg). Both groups had similar baseline mean arterial pressure, cardiac output and total peripheral resistance, but the ZDF rats had lower heart rate relative to the control rats (272 versus 305 beats/min). Whereas 1400W did not alter mean arterial pressure or blood flow in either group, L-NAME markedly increased mean arterial pressure and total peripheral resistance, and reduced cardiac output, heart rate, blood flow and arterial conductance in all organs/tissues of both the control and ZDF rats. L-NAME caused greater vasoconstriction in the heart (1.5-times the constriction in control rats) and brain (1.5-times) of the ZDF rats, but less in the pancreas (0.6-times). Thus, cNOS had greater vasodilator control of the heart and brain, but less in the pancreas of the ZDF than control rats. iNOS has negligible influence on blood flow in both groups of rats.

  13. Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat.

    Science.gov (United States)

    McNeely, Brendan D; Meade, Robert D; Fujii, Naoto; Seely, Andrew J E; Sigal, Ronald J; Kenny, Glen P

    2017-12-01

    The roles of nitric oxide synthase (NOS), reactive oxygen species (ROS), and angiotensin II type 1 receptor (AT 1 R) activation in regulating cutaneous vasodilation and sweating during prolonged (≥60 min) exercise are currently unclear. Moreover, it remains to be determined whether fluid replacement (FR) modulates the above thermoeffector responses. To investigate, 11 young men completed 90 min of continuous moderate intensity (46% V̇o 2peak ) cycling performed at a fixed rate of metabolic heat production of 600 W (No FR condition). On a separate day, participants completed a second session of the same protocol while receiving FR to offset sweat losses (FR condition). Cutaneous vascular conductance (CVC) and local sweat rate (LSR) were measured at four intradermal microdialysis forearm sites perfused with: 1 ) lactated Ringer (Control); 2 ) 10 mM N G -nitro-l-arginine methyl ester (l-NAME, NOS inhibition); 3 ) 10 mM ascorbate (nonselective antioxidant); or 4 ) 4.34 nM losartan (AT 1 R inhibition). Relative to Control (71% CVC max at both time points), CVC with ascorbate (80% and 83% CVC max ) was elevated at 60 and 90 min of exercise during FR (both P 0.31). In both conditions, CVC was reduced at end exercise with l-NAME (60% CVC max ; both P 0.19). LSR did not differ between sites in either condition (all P > 0.10). We conclude that NOS regulates cutaneous vasodilation, but not sweating, irrespective of FR, and that ROS influence cutaneous vasodilation during prolonged exercise with FR. Copyright © 2017 the American Physiological Society.

  14. Role of Protein Phosphatase 1 and Inhibitor of Protein Phosphatase-1 in Nitric Oxide-Dependent Inhibition of the DNA Damage Response in Pancreatic β-Cells.

    Science.gov (United States)

    Oleson, Bryndon J; Naatz, Aaron; Proudfoot, Sarah C; Yeo, Chay Teng; Corbett, John A

    2018-02-14

    Nitric oxide is produced at micromolar levels by pancreatic β-cells during exposure to proinflammatory cytokines. While classically viewed as damaging, nitric oxide also activates pathways that promote β-cell survival. We have shown that nitric oxide, in a cell type selective manner, inhibits the DNA damage response (DDR) and, in doing so, protects β-cells from DNA damage-induced apoptosis. This study explores potential mechanisms by which nitric oxide inhibits DDR signaling. We show that inhibition of DDR signaling (measured by γH2AX formation and the phosphorylation of KAP1) is selective for nitric oxide, as other forms of reactive oxygen/nitrogen species do not impair DDR signaling. The kinetics and broad range of DDR substrates that are inhibited suggest that protein phosphatase activation may be one mechanism by which nitric oxide attenuates DDR signaling in β-cells. While protein phosphatase 1 (PP1) is a primary regulator of DDR signaling and an inhibitor of protein phosphatase-1 (IPP-1) is selectively expressed only in β-cells, disruption of either IPP-1 or PP1 does not modify the inhibitory actions of nitric oxide on DDR signaling in β-cells. These findings support a PP1-independent mechanism by which nitric oxide selectively impairs DDR signaling and protects β-cells from DNA damage-induced apoptosis. © 2018 by the American Diabetes Association.

  15. Effects of endogenous nitric oxide on adrenergic nerve-mediated vasoconstriction and calcitonin gene-related peptide-containing nerve-mediated vasodilation in pithed rats.

    Science.gov (United States)

    Yamawaki, Kousuke; Zamami, Yoshito; Kawasaki, Hiromu; Takatori, Shingo

    2017-05-05

    Vascular adrenergic nerves mainly regulate the tone of blood vessels. Calcitonin gene-related peptide-containing (CGRPergic) vasodilator nerves also participate in the regulation of vascular tone. Furthermore, there are nitric oxide (NO)-containing (nitrergic) nerves, which include NO in blood vessels as vasodilator nerves, but it remains unclear whether nitrergic nerves participate in vascular regulation. The present study investigated the role of nitrergic nerves in vascular responses to spinal cord stimulation (SCS) and vasoactive agents in pithed rats. Wistar rats were anesthetized and pithed, and vasopressor responses to SCS and injections of norepinephrine were observed. To evaluate vasorelaxant responses, the BP was increased by a continuous infusion of methoxamine with hexamethonium to block autonomic outflow. After the elevated BP stabilized, SCS and injections of acetylcholine (ACh), sodium nitroprusside (SNP), and CGRP were intravenously administered. We then evaluated the effects of the NO synthase (NOS) inhibitor, N-ω-nitro-L-arginine methylester hydrochloride (L-NAME), on these vascular responses. Pressor responses to SCS and norepinephrine in pithed rats were enhanced by L-NAME, while the combined infusion of L-NAME and L-arginine had no effect on these responses. L-NAME infusion significantly increased the release of norepinephrine evoked by SCS. In pithed rats with artificially increased BP and L-NAME infusion, depressor response to ACh (except for 0.05nmol/kg) was suppressed and SNP (only 2nmol/kg) was enhanced. However, depressor responses to SCS and CGRP were similar to control responses. The present results suggest endogenous NO regulates vascular tone through endothelium function and inhibition of adrenergic neurotransmission, but not through CGRPergic nerves. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Stimulation of Baroresponsive Parts of the Nucleus of the Solitary Tract Produces Nitric Oxide-mediated Choroidal Vasodilation in Rat Eye

    Directory of Open Access Journals (Sweden)

    Chunyan Li

    2016-10-01

    Full Text Available Preganglionic parasympathetic neurons of the ventromedial part of the superior salivatory nucleus (SSN mediate vasodilation of orbital and choroidal blood vessels, via their projection to the nitrergic pterygopalatine ganglion (PPG neurons that innervate these vessels. We recently showed that the baroresponsive part of the nucleus of the solitary tract (NTS innervates choroidal control parasympathetic preganglionic neurons of SSN in rats. As this projection provides a means by which blood pressure signals may modulate ChBF, we investigated if activation of baroresponsive NTS evokes ChBF increases in rat eye, using Laser Doppler flowmetry to measure ChBF transclerally. We found that electrical activation of ipsilateral baroresponsive NTS and its efferent fiber pathway to choroidal SSN increased mean ChBF by about 40-80% above baseline, depending on current level. The ChBF responses obtained with stimulation of baroresponsive NTS were driven by increases in both choroidal blood volume (i.e. vasodilation and choroidal blood velocity (presumed orbital vessel dilation. Stimulation of baroresponsive NTS, by contrast, yielded no significant mean increases in systemic arterial blood pressure. We further found that the increases in ChBF with NTS stimulation were significantly reduced by administration of the neuronal nitric oxide synthase inhibitor Nω-propyl-l-arginine (NPA, thus implicating nitrergic PPG terminals in the NTS-elicited ChBF increases. Our results show that NTS neurons projecting to choroidal SSN do mediate increase in ChBF, and thus suggest a role of baroresponsive NTS in the blood pressure-dependent regulation of ChBF.

  17. Propofol causes vasodilation in vivo via TRPA1 ion channels: role of nitric oxide and BKCa channels.

    Science.gov (United States)

    Sinha, Sayantani; Sinharoy, Pritam; Bratz, Ian N; Damron, Derek S

    2015-01-01

    Transient receptor potential (TRP) ion channels of the A1 (TRPA1) and V1 (TRPV1) subtypes are key regulators of vasomotor tone. Propofol is an intravenous anesthetic known to cause vasorelaxation. Our objectives were to examine the extent to which TRPA1 and/or TRPV1 ion channels mediate propofol-induced depressor responses in vivo and to delineate the signaling pathway(s) involved. Mice were subjected to surgery under 1.5-2.5% sevoflurane gas with supplemental oxygen. After a stable baseline in mean arterial pressure (MAP) was achieved propofol (2.5, 5.0, 10.0 mg/kg/min) was administered to assess the hemodynamic actions of the intravenous anesthetic. The effect of nitric oxide synthase (NOS) inhibition with L-NAME and/or calcium-gated K+ channel (BKCa) inhibition with Penetrim A (Pen A), alone and in combination, on propofol-induced decreases in mean arterial pressure were assessed in control C57Bl/6J, TRPA1-/-, TRPV1-/- and double-knockout mice (TRPAV-/-). Propofol decreased MAP in control mice and this effect was markedly attenuated in TRPA1-/- and TRPAV-/- mice but unaffected in TRPV1-/-mice. Moreover, pretreatment with L-NAME or Pen A attenuated the decrease in MAP in control and TRPV1-/- mice, and combined inhibition abolished the depressor response. In contrast, the markedly attenuated propofol-induced depressor response observed in TRPA1-/- and TRPAV-/- mice was unaffected by pre-treatment with Pen A or L-NAME when used either alone or in combination. These data demonstrate for the first time that propofol-induced depressor responses in vivo are predominantly mediated by TRPA1 ion channels with no involvement of TRPV1 ion channels and includes activation of both NOS and BKCa channels.

  18. Off-target function of the Sonic hedgehog inhibitor cyclopamine in mediating apoptosis via nitric oxide-dependent neutral sphingomyelinase 2/ceramide induction.

    Science.gov (United States)

    Meyers-Needham, Marisa; Lewis, Jocelyn A; Gencer, Salih; Sentelle, R David; Saddoughi, Sahar A; Clarke, Christopher J; Hannun, Yusuf A; Norell, Haakan; da Palma, Telma Martins; Nishimura, Michael; Kraveka, Jacqueline M; Khavandgar, Zohreh; Murshed, Monzur; Cevik, M Ozgur; Ogretmen, Besim

    2012-05-01

    Sonic hedgehog (SHh) signaling is important in the pathogenesis of various human cancers, such as medulloblastomas, and it has been identified as a valid target for anticancer therapeutics. The SHh inhibitor cyclopamine induces apoptosis. The bioactive sphingolipid ceramide mediates cell death in response to various chemotherapeutic agents; however, ceramide's roles/mechanisms in cyclopamine-induced apoptosis are unknown. Here, we report that cyclopamine mediates ceramide generation selectively via induction of neutral sphingomyelin phosphodiesterase 3, SMPD3 (nSMase2) in Daoy human medulloblastoma cells. Importantly, short interfering RNA-mediated knockdown of nSMase2 prevented cyclopamine-induced ceramide generation and protected Daoy cells from drug-induced apoptosis. Accordingly, ectopic wild-type N-SMase2 caused cell death, compared with controls, which express the catalytically inactive N-SMase2 mutant. Interestingly, knockdown of smoothened (Smo), a target protein for cyclopamine, or Gli1, a downstream signaling transcription factor of Smo, did not affect nSMase2. Mechanistically, our data showed that cyclopamine induced nSMase2 and cell death selectively via increased nitric oxide (NO) generation by neuronal-nitric oxide synthase (n-NOS) induction, in Daoy medulloblastoma, and multiple other human cancer cell lines. Knockdown of n-NOS prevented nSMase2 induction and cell death in response to cyclopamine. Accordingly, N-SMase2 activity-deficient skin fibroblasts isolated from homozygous fro/fro (fragilitas ossium) mice exhibited resistance to NO-induced cell death. Thus, our data suggest a novel off-target function of cyclopamine in inducing apoptosis, at least in part, by n-NOS/NO-dependent induction of N-SMase2/ceramide axis, independent of Smo/Gli inhibition. ©2012 AACR

  19. Calcium- and Nitric Oxide-Dependent Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Response to Long Chain Bases in Tobacco BY-2 Cells.

    Science.gov (United States)

    Testard, Ambroise; Da Silva, Daniel; Ormancey, Mélanie; Pichereaux, Carole; Pouzet, Cécile; Jauneau, Alain; Grat, Sabine; Robe, Eugénie; Brière, Christian; Cotelle, Valérie; Mazars, Christian; Thuleau, Patrice

    2016-10-01

    Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid long chain bases (LCBs) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in plants. In addition, in tobacco BY-2 cells, it has been shown that DHS triggers a rapid production of H 2 O 2 and nitric oxide (NO). Recently, in analogy to what is known in the animal field, plant cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a ubiquitous enzyme involved in glycolysis, has been suggested to fulfill other functions associated with its oxidative post-translational modifications such as S-nitrosylation on cysteine residues. In particular, in mammals, stress signals inducing NO production promote S-nitrosylation of GAPC and its subsequent translocation into the nucleus where the protein participates in the establishment of apoptosis. In the present study, we investigated the behavior of GAPC in tobacco BY-2 cells treated with DHS. We found that upon DHS treatment, an S-nitrosylated form of GAPC accumulated in the nucleus. This accumulation was dependent on NO production. Two genes encoding GAPCs, namely Nt(BY-2)GAPC1 and Nt(BY-2)GAPC2, were cloned. Transient overexpression of Nt(BY-2)GAPC-green fluorescent protein (GFP) chimeric constructs indicated that both proteins localized in the cytoplasm as well as in the nucleus. Mutating into serine the two cysteine residues thought to be S-nitrosylated in response to DHS did not modify the localization of the proteins, suggesting that S-nitrosylation of GAPCs was probably not necessary for their nuclear relocalization. Interestingly, using Förster resonance energy transfer experiments, we showed that Nt(BY-2)GAPCs interact with nucleic acids in the nucleus. When GAPCs were mutated on their cysteine residues, their interaction with nucleic acids was abolished, suggesting a role for GAPCs in the protection of nucleic acids against oxidative stress. © The Author 2016. Published by Oxford University Press on

  20. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release

    Directory of Open Access Journals (Sweden)

    Min Young Ahn

    2017-09-01

    Full Text Available Background High mobility group box 1 (HMGB1 is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. Methods The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS and/or a C. longa extract-loaded nanoemulsion (CLEN. The levels of released HMGB1, nitric oxide (NO production, inducible NO synthase (iNOS expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. Results We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. Discussion The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1

  1. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits.

    Science.gov (United States)

    Luna-Vázquez, Francisco J; Ibarra-Alvarado, César; Rojas-Molina, Alejandra; Romo-Mancillas, Antonio; López-Vallejo, Fabián H; Solís-Gutiérrez, Mariana; Rojas-Molina, Juana I; Rivero-Cruz, Fausto

    2016-01-12

    The present research aimed to isolate the non-polar secondary metabolites that produce the vasodilator effects induced by the dichloromethane extract of Prunus serotina (P. serotina) fruits and to determine whether the NO/cGMP and the H2S/KATP channel pathways are involved in their mechanism of action. A bioactivity-directed fractionation of the dichloromethane extract of P. serotina fruits led to the isolation of ursolic acid and uvaol as the main non-polar vasodilator compounds. These compounds showed significant relaxant effect on rat aortic rings in an endothelium- and concentration-dependent manner, which was inhibited by NG-nitro-L-arginine methyl ester (L-NAME), DL-propargylglycine (PAG) and glibenclamide (Gli). Additionally, both triterpenes increased NO and H2S production in aortic tissue. Molecular docking studies showed that ursolic acid and uvaol are able to bind to endothelial NOS and CSE with high affinity for residues that form the oligomeric interface of both enzymes. These results suggest that the vasodilator effect produced by ursolic acid and uvaol contained in P. serotina fruits, involves activation of the NO/cGMP and H2S/KATP channel pathways, possibly through direct activation of NOS and CSE.

  2. Vasodilators in Septic Shock Resuscitation: A Clinical Perspective

    NARCIS (Netherlands)

    Corrêa, T.D. (Thiago Domingos); Filho, R.R. (Roberto Rabello); Assunção, M.S.C. (Murillo Santucci Cesar); Silva, E. (Eliézer); A.A.P. Lima (Alexandre )

    2017-01-01

    textabstractABSTRACT: Microcirculatory abnormalities have been shown to be frequent in patients with septic shock despite “normalization” of systemic hemodynamics. Several studies have explored the impact of vasodilator therapy (prostacyclin, inhaled nitric oxide, topic acetylcholine and

  3. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    Science.gov (United States)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  4. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann

    2012-01-01

    of vasodilators have been shown to bring about this increase in blood flow and, importantly, interactions between these compounds seem to be essential for the precise regulation of blood flow. Two compounds stand out as central in these vasodilator interactions; nitric oxide (NO) and prostacyclin. These two...... that this remaining hyperemia may be explained by cAMP and cGMP independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow...... regulation remain to be further explored to fully elucidate the regulation of exercise hyperemia....

  5. Efecto vasodilatador mediado por óxido nítrico del extracto hidroalcohólico de Zea mays L. (maíz morado en anillos aórticos de rata Vasodilator effect mediated by nitric oxide of the Zea mays L (andean purple corn hydroalcoholic extract in aortic rings of rat

    Directory of Open Access Journals (Sweden)

    Oscar Moreno-Loaiza

    2010-12-01

    Full Text Available Objetivo. Evaluar la respuesta vasodilatadora e inhibidora de la vasoconstricción del extracto hidroalcohólico de Zea mays L. (maíz morado y determinar si esta respuesta es mediada por óxido nítrico (NO. Materiales y métodos. Se obtuvo un extracto de las corontas de maíz morado maceradas durante ocho días en etanol al 70%, y posterior concentración del producto. Se trabajó con anillos aórticos de rata en cámara de órganos aislados, bañada con solución Krebs-Hensleit (K-H y se registró la actividad vasomotora con un transductor de tensión isométrica. Se produjo una contracción basal con KCl 120 mM sobre la cual determinó el efecto vasodilatador de tres dosis del extracto: 0,1; 0,5 y 1,0 mg/mL. Se utilizó L-NG-Nitroarginina metil ester (L-NAME para comprobar que la vasodilatación depende de la óxido nítrico sinteasa (NOs. Luego se comparó la inhibición de la contracción vascular tras la incubación durante 30 minutos, con extracto de maíz morado y captopril 10-5 M. Resultados. Se observó una reducción de la contracción máxima (100% a 85,25 ± 2,60%, 77,76 ± 3,23% y 73,3 ± 4,87%, para las dosis de 0,1; 0,5 y 1,0 mg/mL, respectivamente. La vasodilatación fue inhibida por la incubación previa con L-NAME. El extracto de maíz morado no inhibió la contracción vascular, a diferencia del captopril (reducción a 75,27 ± 8,61%. Conclusión. El extracto hidroalcohólico de Zea mays L produce vasodilatación dependiente de la síntesis de NO.Objective: To evaluate the vasodilator response of the hydroalcoholic extract of Zea mays L. (Andean purple corn and to determine if this response is mediated by nitric oxide (NO. Material and methods: We obtained an extract by maceration for eight days of Andean purple corn cobs in 70% ethanol and subsequent concentration of the product. Thoracic aortic rings were evaluated in an isolated organ chamber, bathed with Krebs-Hensleit solution (KH, and vasomotor activity was recorded

  6. Adhesion Development and the Expression of Endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    David M. Svinarich

    2001-01-01

    Full Text Available Objective: This study was conducted to determine whether nitric oxide (NO, a potent vasodilator and inhibitor of thrombus formation, is involved in the formation and maintenance of adhesions.

  7. INDUCTION OF VASODILATION BY HYDROGEN PEROXIDE AND ITS APPLICATION IN EXERCISE SCIENCE

    Directory of Open Access Journals (Sweden)

    Dong-Jun Sung

    2012-04-01

    Full Text Available Regular exercise or physical activity benefits the cardiovascular system, lowers mortality and morbidity, and is a particularly important factor for maintaining the health of blood vessels by improving the function of endothelial cells. Shear stress and increased metabolic rate caused by exercise induce vasodilation by generating endothelium-derived relaxing factors (EDRF such as nitric oxide. In addition, some studies suggest that vasodilation is also induced by endothelium-derived hyperpolarizing factors (EDHF and substances such as H2O2. Thus, we undertook this study to show that reactive oxygen species such as H2O2 that have not previously been investigated in the field of exercise science may induce vasodilation and an increase in blood pressure, and to provide information for application in the field of exercise science. In this review, we discuss reports on H2O2 published in the fields of basic science and exercise science while focusing on vasodilation induced by H2O2. H2O2 induces vasodilation by simultaneously increasing endothelial NOS (eNOS and directly activating the Ca2 - activated K channels of vascular smooth muscle cells. A novel study should be conducted in the field of H2O2 as a factor of vasodilation via increased metabolic rate during exercise.

  8. Effect of nitric oxide scavengers, carboxy-PTIO on endotoxin ...

    African Journals Online (AJOL)

    Physiological changes associated with septic shock are due to an interplay of a number of inflammatory mediators which increase capillary permeability and vasodilation leading to circulatory disturbance. Research evidence shows that sepsis-associated vascular relaxation is mediated by nitric oxide. Nitric oxide formation ...

  9. Vasodilator effect of nicorandil on retinal blood vessels in rats.

    Science.gov (United States)

    Ogawa, Naoto; Saito, Maki; Mori, Asami; Sakamoto, Kenji; Kametaka, Sokichi; Nakahara, Tsutomu; Ishii, Kunio

    2007-07-01

    We examined the effect of nicorandil on retinal blood vessels in rats in vivo. Male Wistar rats (8 to 10 weeks old) were anaesthetised with thiobutabarbital (120 mg/kg, intraperitoneal). Fundus images were captured with a digital camera that was equipped with a special objective lens. Diameters of retinal blood vessels were measured with a personal computer. Nicorandil (1-300 microg kg(-1) min(-1), intravenous [i.v.]) increased diameters of retinal blood vessels and decreased systemic blood pressure in a dose-dependent manner. Both responses to nicorandil were attenuated by glibenclamide (20 mg/kg, i.v.), an adenosine triphosphate (ATP)-dependent K(+) (K(ATP)) channel blocker. On the other hand, indomethacin (5 mg/kg, i.v.), a cyclooxygenase inhibitor, attenuated the vasodilation of retinal blood vessels, but not depressor response, to nicorandil and sodium nitroprusside. Pinacidil (1-300 microg kg(-1) min(-1), i.v.), a K(ATP) channel opener, also dilated retinal blood vessels and decreased systemic blood pressure. The responses to pinacidil were prevented by glibenclamide, but not by indomethacin. The vasodilation of retinal arteriole, but not depressor response, to sodium nitroprusside (1-30 microg kg(-1) min(-1), i.v.), a nitric oxide donor, was attenuated by indomethacin. These results suggest that nicorandil dilates retinal blood vessels through opening of K(ATP) channels and production of prostaglandins that are probably generated by nitric oxide.

  10. Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation.

    Science.gov (United States)

    Strunk, V; Hahnenkamp, K; Schneuing, M; Fischer, L G; Rich, G F

    2001-03-01

    Nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) mediates hypotension and metabolic derangements in sepsis. We hypothesized that selective iNOS-inhibition would prevent hypotension in septic rats without inhibiting endothelium-dependent vasodilation caused by the physiologically important endothelial NOS. Rats were exposed to lipopolysaccharide (LPS) for 6 h and the selective iNOS-inhibitor L-N6-(1-iminoethyl)-lysine (L-NIL), the nonselective NOS-inhibitor N:(G)-nitro-L-arginine methyl ester (L-NAME), or control. Mean arterial pressure (MAP) and vasodilation to acetylcholine (ACh, endothelium-dependent), sodium nitroprusside (SNP, endothelium-independent), and isoproterenol (ISO, endothelium-independent beta agonist) were determined. Exhaled NO, nitrate/nitrite-(NOx) levels, metabolic data, and immunohistochemical staining for nitrotyrosine, a tracer of peroxynitrite-formation were also determined. In control rats, L-NAME increased MAP, decreased the response to ACh, and increased the response to SNP, whereas L-NIL did not alter these variables. LPS decreased MAP by 18% +/- 1%, decreased vasodilation (ACh, SNP, and ISO), increased exhaled NO, NOx, nitrotyrosine staining, and caused acidosis and hypoglycemia. L-NIL restored MAP and vasodilation (ACh, SNP, and ISO) to baseline and prevented the changes in exhaled NO, NOx, pH, and glucose levels. In contrast, L-NAME restored MAP and SNP vasodilation, but did not alter the decreased response to ACh and ISO or prevent the changes in exhaled NO and glucose levels. Finally, L-NIL but not L-NAME decreased nitrotyrosine staining in LPS rats. In conclusion, L-NIL prevents hypotension and metabolic derangements in septic rats without affecting endothelium-dependent vasodilation whereas L-NAME does not. Sepsis causes hypotension and metabolic derangements partly because of increased nitric oxide. Selective inhibition of nitric oxide produced by the inducible nitric oxide synthase enzyme prevents

  11. Endothelium-dependent and -independent vasodilator effects of eugenol in the rat mesenteric vascular bed.

    Science.gov (United States)

    Criddle, David Neil; Madeira, Socorro Vanesca Frota; Soares de Moura, Roberto

    2003-03-01

    The possible involvement of the endothelium in the vasodilator action of eugenol was investigated in the mesenteric vascular bed (MVB) of the rat. Bolus injections of eugenol (0.2, 2 and 20 micromol) and acetylcholine (ACh; 10, 30 and 100 pmol) induced dose-dependent vasodilator responses in noradrenaline-precontracted beds that were partially inhibited by pretreatment of the MVB with deoxycholate (1 mg mL(-1)) to remove the endothelium (approximately 14% and approximately 30% of the control response remaining at the lowest doses of ACh and eugenol, respectively). The vasodilator effect of glyceryl trinitrate (1 micromol) was unaltered by deoxycholate. In the presence of either N(omega)-nitro-L-arginine methyl ester (300 microM) or tetraethylammonium (1 mM)the response to ACh was partially reduced, whereas eugenol-induced vasodilation was unaffected. Similarly the vasodilator effect of eugenol was not inhibited by indometacin (3 microM). Under calcium-free conditions the vasoconstrictor response elicited by bolus injections of noradrenaline (10 nmol) was dose-dependently and completely inhibited by eugenol (0.1-1 mM). Additionally, the pressor effects of bolus injections of calcium chloride in potassium-depolarized MVBs were greatly reduced in the presence of eugenol (0.1 mM), with a maximal reduction of approximately 71% of the control response. Our data showed that eugenol induced dose-dependent, reversible vasodilator responses in the rat MVB, that were partially dependent on the endothelium, although apparently independent of nitric oxide, endothelium-derived hyperpolarizing factor or prostacyclin. Furthermore, an endothelium-independent intracellular site of action seemed likely to participate in its smooth muscle relaxant properties.

  12. Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults

    OpenAIRE

    Richards, Jennifer C.; Racine, Matthew L.; Hearon, Christopher M.; Kunkel, Megan; Luckasen, Gary J.; Larson, Dennis G.; Allen, Jason D.; Dinenno, Frank A.

    2018-01-01

    Abstract Dietary nitrate ( NO 3 − ) is converted to nitrite ( NO 2 − ) and can be further reduced to the vasodilator nitric oxide (NO) amid a low O2 environment. Accordingly, dietary NO 3 − increases hind limb blood flow in rats during treadmill exercise; however, the evidence of such an effect in humans is unclear. We tested the hypothesis that acute dietary NO 3 − (via beetroot [BR] juice) increases forearm blood flow (FBF) via local vasodilation during handgrip exercise in young adults (n ...

  13. Contribution of intravascular versus interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Mortensen, Stefan Peter

    2012-01-01

    Abstract The regulation of blood flow to skeletal muscle involves a complex interaction between several locally formed vasodilators that are produced both in the skeletal muscle interstitium and intravascularly. The gas nitric oxide (NO) and the purines ATP and adenosine, are potent vasodilators...

  14. Hypotensive effect of hydroxylamine, an endogenous nitric oxide donor and SSAO inhibitor.

    Science.gov (United States)

    Vidrio, H; Medina, M

    2007-01-01

    The endogenous compound hydroxylamine relaxes vascular smooth muscle in vitro, apparently through conversion to the vasodilator factor nitric oxide, but its effect on blood pressure has not been characterized. We found that in the anesthetized rat the amine elicits dose-related hypotension when administered by continuous iv infusion. In experiments designed to explore the mechanism of this effect, hydroxylamine was compared with the nitric oxide donor nitroprusside and the direct-acting vasodilator hydralazine, using pretreatments known to modify diverse mechanisms of vasodilation. Hydroxylamine hypotension was enhanced by the SSAO inhibitor isoniazid and the SSAO substrate methylamine, a pattern shared by hydralazine. Responses were blocked by the guanylate cyclase inhibitor methylene blue and were increased by the nitric oxide synthase inhibitor L-NAME, a pattern shared by nitroprusside. It was concluded that hydroxylamine exerts hypotension partly through conversion to nitric oxide and partly by a "hydralazine-like" mechanism involving SSAO inhibition.

  15. Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism

    OpenAIRE

    Elks, Philip M.; Brizee, Sabrina; van der Vaart, Michiel; Walmsley, Sarah R.; van Eeden, Fredericus J.; Renshaw, Stephen A.; Meijer, Annemarie H.

    2013-01-01

    Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection a...

  16. Finger cold-induced vasodilation : A review

    NARCIS (Netherlands)

    Daanen, H. A M

    Cold-induced vasodilation (CIVD) in the finger tips generally occurs 5-10 min after the start of local cold exposure of the extremities. This phenomenon is believed to reduce the risk of local cold injuries. However, CIVD is almost absent during hypothermia, when survival of the organism takes

  17. Finger cold-induced vasodilation : a review

    NARCIS (Netherlands)

    Daanen, H.A.M.

    2003-01-01

    Cold-induced vasodilation (CIVD) in the finger tips generally occurs 5-10 min after the start of local cold exposure of the extremities. This phenomenon is believed to reduce the risk of local cold injuries. However, CIVD is almost absent during hypothermia, when survival of the organism takes

  18. Intermittent PTH 1-34 Administration Improves the Marrow Microenvironment and Endothelium-Dependent Vasodilation in Bone Arteries of Aged Rats.

    Science.gov (United States)

    Lee, Seungyong; Bice, Ashley; Hood, Brianna; Ruiz, Juan; Kim, Jahyun; Prisby, Rhonda D

    2018-02-08

    Inflammation coincides with diminished marrow function, vasodilation of blood vessels and bone mass. Intermittent parathyroid hormone (PTH) administration independently improves marrow and vascular function, potentially impacting bone accrual. Currently, the influence of marrow and intermittent PTH administration on aged bone blood vessels have not been examined. Vasodilation of the femoral principal nutrient artery (PNA) was assessed in the presence and absence of marrow. Further, we determined the influence of PTH 1-34 on 1) endothelium-dependent vasodilation and signaling pathways (i.e., nitric oxide [NO] and prostacyclin [PGI 2 ]), 2) endothelium-independent vasodilation, 3) cytokine production by marrow cells, and 4) bone microarchitecture and bone static and dynamic properties. Young (4-6 mon) and old (22-24 mon) male Fisher-344 rats were treated with PTH 1-34 or a vehicle for 2 weeks. In the absence and presence of marrow, femoral PNAs were given cumulative doses of acetylcholine, with and without the NO and PGI 2 blockers, and DEA NONOate. Marrow-derived cytokines and bone parameters in the distal femur were assessed. Exposure to marrow diminished endothelium-dependent vasodilation in young rats. Reduced bone volume and NO-mediated vasodilation occurred with old age and was partially reversed with PTH. Additionally, PTH treatment in old rats restored endothelium-dependent vasodilation in the presence of marrow and augmented IL-10, an anti-inflammatory cytokine. Endothelium-independent vasodilation was unaltered, and PTH treatment reduced osteoid surfaces in old rats. In conclusion, the marrow microenvironment reduced vascular function in young rats and PTH treatment improved the marrow microenvironment and vasodilation with age.

  19. Acetylcholine-induced vasodilation in the uterine vascular bed of pregnant rats with adriamycin-induced nephrosis.

    Science.gov (United States)

    Yousif, Mariam H; Adeagbo, Ayotunde S; Kadavil, Elizabeth A; Chandrasekhar, Bindu; Oriowo, Mabayoje A

    2002-01-01

    This project was designed to study endothelium-dependent vasodilation in the uterine vascular bed during experimentally induced preeclampsia in rats. Uterine vascular beds were isolated from non-pregnant and pregnant rats with or without treatment with adriamycin (ADR) and perfused with physiological solution. Thereafter, vasodilator responses to acetylcholine were recorded. RECORDS: Pregnant ADR-treated rats displayed symptoms of preeclampsia including hypertension and proteinuria. Blood pressure was 110.0 +/- 4.7 mm Hg (n = 5) in control pregnant rats and 136.0 +/- 5.3 mm Hg (n = 5) in ADR-treated pregnant rats, and urinary protein concentrations were 0.35 mg/ml (n = 5) and 13.2 +/- 3.6 mg/ml (n = 9), respectively. Both blood pressure and proteinuria values were significantly (p acetylcholine-induced dose-dependent vasodilator responses in the vascular beds were not significantly different between the pregnant and nonpregnant rats. Although acetylcholine-induced vasodilation was significantly reduced by N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) in both groups, the residual response to acetylcholine was not affected by indomethacin, suggesting that prostanoids were not involved in this response. The L-NAME-resistant component, endothelium-derived hyperpolarizing factor (EDHF), was greater in ADR-treated uterine beds than in those of the controls, indicating a significant contribution from EDHF in these vessels. In the presence of an elevated external potassium ion concentration, acetylcholine produced similar vasodilator responses, indicating that the release of nitric oxide was not impaired. These results indicate that endothelium-dependent vasodilation was not impaired in this model of preeclampsia.

  20. Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia.

    Directory of Open Access Journals (Sweden)

    Matthias Totzeck

    Full Text Available The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.

  1. Preservation of pressure-induced cutaneous vasodilation by limiting oxidative stress in short-term diabetic mice.

    Science.gov (United States)

    Demiot, Claire; Fromy, Bérengère; Saumet, Jean Louis; Sigaudo-Roussel, Dominique

    2006-01-01

    Pressure-induced vasodilation (PIV) allows skin blood flow to increase in response to locally applied pressure and may be protective against pressure ulcers. We previously showed that PIV was absent in 1-week diabetic mice exhibiting no neuropathy. Our aim was to determine whether the diabetes-induced PIV alteration could be prevented. Diabetic mice received no treatment or a daily treatment with either sorbinil, alagebrium or alpha-lipoic acid (LPA) for 1 week. Laser Doppler flowmetry was used to evaluate PIV as well as endothelium-dependent vasodilation following iontophoretic delivery of acetylcholine (ACh). The effect of each treatment on oxidative stress was examined by plasma 8-isoprostane assay. LPA was the sole treatment to prevent both PIV and ACh vasodilation alterations, with a significant reduction of oxidative stress in diabetic mice. Both PIV and ACh-vasodilation were abolished in LPA-treated diabetic mice following injection of Nomega-nitro-L-arginine (ptreatment significantly reduced the oxidative stress and was able to preserve endothelial nitric oxide availability in the cutaneous microcirculation and then to preserve the PIV response in diabetic mice. LPA treatment could play a key role in limiting the risk of pressure-induced cutaneous ulcer during diabetes.

  2. Calycosin and Formononetin Induce Endothelium-Dependent Vasodilation by the Activation of Large-Conductance Ca2+-Activated K+ Channels (BKCa

    Directory of Open Access Journals (Sweden)

    Hisa Hui Ling Tseng

    2016-01-01

    Full Text Available Calycosin and formononetin are two structurally similar isoflavonoids that have been shown to induce vasodilation in aorta and conduit arteries, but study of their actions on endothelial functions is lacking. Here, we demonstrated that both isoflavonoids relaxed rat mesenteric resistance arteries in a concentration-dependent manner, which was reduced by endothelial disruption and nitric oxide synthase (NOS inhibition, indicating the involvement of both endothelium and vascular smooth muscle. In addition, the endothelium-dependent vasodilation, but not the endothelium-independent vasodilation, was blocked by BKCa inhibitor iberiotoxin (IbTX. Using human umbilical vein endothelial cells (HUVECs as a model, we showed calycosin and formononetin induced dose-dependent outwardly rectifying K+ currents using whole cell patch clamp. These currents were blocked by tetraethylammonium chloride (TEACl, charybdotoxin (ChTX, or IbTX, but not apamin. We further demonstrated that both isoflavonoids significantly increased nitric oxide (NO production and upregulated the activities and expressions of endothelial NOS (eNOS and neuronal NOS (nNOS. These results suggested that calycosin and formononetin act as endothelial BKCa activators for mediating endothelium-dependent vasodilation through enhancing endothelium hyperpolarization and NO production. Since activation of BKCa plays a role in improving behavioral and cognitive disorders, we suggested that these two isoflavonoids could provide beneficial effects to cognitive disorders through vascular regulation.

  3. Oral vasodilators for primary Raynaud's phenomenon.

    Science.gov (United States)

    Stewart, Marlene; Morling, Joanne R

    2012-07-11

    Many different drugs have been suggested for the symptomatic treatment of primary Raynaud's phenomenon. Apart from calcium channel blockers, which are considered the drugs of choice, the evidence of the effects of alternative pharmacological treatments is limited. This is an update of a review first published in 2008. To assess the effects of various drugs with vasodilator actions on primary Raynaud's phenomenon. For this update the Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched 14 May 2012), CENTRAL (Issue 4, 2012) and clinical trials databases. We contacted one pharmaceutical company and one trial author for additional information. In addition, the reference lists of relevant studies were searched for additional citations. There were no language restrictions. Randomised controlled trials evaluating the effects of oral formulations of any drug with vasodilator effects on subjective symptoms in primary Raynaud's phenomenon. Treatment with, or comparison with, calcium channel blockers was not assessed in this review. Two members of the review team independently assessed the trials for inclusion and their quality and extracted the data. Data extraction included adverse events. We contacted trial authors for missing data. Eight studies involving 290 participants were included. Two trials examined the effects of captopril, the rest were single trials on single drugs. All comparisons were with placebo. The methodological quality of most trials was poor.Enalapril was associated with a small increase in the frequency of attacks per week (difference in means 0.8; 95% CI 0.43 to 1.17). The difference between the intervention groups on a subjective improvement score was non-significant. There was a significant effect of buflomedil on the frequency of attacks per week (weighted mean difference (WMD) -8.8; 95% CI -17.55 to -0.09), but there was no evidence of effect on the severity score. The proportion

  4. Inhaled pulmonary vasodilators for persistent pulmonary hypertension of the newborn: safety issues relating to drug administration and delivery devices

    Directory of Open Access Journals (Sweden)

    Cosa N

    2016-04-01

    Full Text Available Nathan Cosa,1 Edward Costa Jr2 1Department of Respiratory Care, Banner Desert Medical Center, Cardon Children's Medical Center, Mesa, AZ, 2Department of Medical Affairs, Mallinckrodt Pharmaceuticals, Hampton, NJ, USA Abstract: Treatment for persistent pulmonary hypertension of the newborn (PPHN aims to reduce pulmonary vascular resistance while maintaining systemic vascular resistance. Selective pulmonary vasodilation may be achieved by targeting pulmonary-specific pathways or by delivering vasodilators directly to the lungs. Abrupt withdrawal of a pulmonary vasodilator can cause rebound pulmonary hypertension. Therefore, use of consistent delivery systems that allow for careful monitoring of drug delivery is important. This manuscript reviews published studies of inhaled vasodilators used for treatment of PPHN and provides an overview of safety issues associated with drug delivery and delivery devices as they relate to the risk of rebound pulmonary hypertension. Off-label use of aerosolized prostacyclins and an aerosolized prostaglandin in neonates with PPHN has been reported; however, evidence from large randomized clinical trials is lacking. The amount of a given dose of aerosolized drug that is actually delivered to the lungs is often unknown, and the actual amount of drug deposited in the lungs can be affected by several factors, including patient size, nebulizer used, and placement of the nebulizer within the breathing circuit. Inhaled nitric oxide (iNO is the only pulmonary vasodilator approved by the US Food and Drug Administration for the treatment of PPHN. The iNO delivery device, INOmax DSIR®, is designed to constantly monitor NO, NO2, and O2 deliveries and is equipped with audible and visual alarms to alert providers of abrupt discontinuation and incorrect drug concentration. Other safety features of this device include two independent backup delivery systems, a backup drug cylinder, a battery that provides up to 6 hours of

  5. Update on the Use of Inhaled Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Robert M Kacmarek

    1996-01-01

    Full Text Available A literature review on nitric oxide would identify thousands of citations on the biological implications of this molecule. From the perspective of respiratory care, the effect inhaled nitric oxide has on pulmonary vasculature is the most intriguing. Over the past five years inhaled nitric oxide has been shown to be useful in the management of oxygenation during acute respiratory distress syndrome, alternation of pulmonary vascular tone in persistent pulmonary hypertension in the newborn, and in the management of chronic pulmonary hypertension in both heart and lung transplant candidates, as well as other potential clinical uses. The key physioligical response is vasodilation of pulmonary vessels in communication with well ventilated lung units and the absence of systemic vascular effects by rapid binding to hemoglobin. Nitric oxide therapy is considered experimental. A delivery system is not commercially available. This has resulted in the development of makeshift delivery systems, many of which may have the potential for adverse effects.

  6. Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Simonsen, Ulf; Fago, Angela

    2007-01-01

    The reduction of circulating nitrite to nitric oxide (NO) has emerged as an important physiological reaction aimed to increase vasodilation during tissue hypoxia. Although hemoglobin, xanthine oxidase, endothelial NO synthase, and the bc(1) complex of the mitochondria are known to reduce nitrite...... effect of nitrite during hypoxia was abolished on inhibition of soluble guanylate cyclase and was unaffected by removal of the endothelium or by inhibition of xanthine oxidase and of the mitochondrial bc(1) complex. In the presence of hemoglobin and inositol hexaphosphate (which increases the fraction...

  7. The Effect of Physical Activity on Passive Leg Movement-Induced Vasodilation with Age

    Science.gov (United States)

    Groot, H. Jonathan; Rossman, Matthew J.; Garten, Ryan S.; Wang, Eivind; Hoff, Jan; Helgerud, Jan; Richardson, Russell S.

    2016-01-01

    Introduction Due to reduced nitric oxide (NO) bioavailability with age, passive leg movement (PLM)-induced vasodilation is attenuated in older sedentary subjects and, unlike the young, cannot be augmented by posture-induced elevations in femoral perfusion pressure. However, whether vasodilator function assessed with PLM, and therefore NO bioavailability, is preserved in older individuals with greater physical activity and fitness is unknown. Methods PLM was performed on four subject groups (young sedentary (Y, 23±1 yrs, n = 12); old sedentary (OS, 73±2 yrs, n = 12); old active (OA, 71±2 yrs, n = 10); old endurance trained (OT, 72±1 yrs, n = 10)) in the supine and upright-seated posture. Hemodynamics were measured utilizing ultrasound Doppler and finger photoplethysmography. Results In the supine posture, PLM-induced peak change in leg vascular conductance (ΔLVCpeak) was significantly attenuated in the OS compared to the young (OS: 4.9±0.5, Y: 6.9±0.7 ml/min/mmHg), but was not different from the young in the OA and OT (OA: 5.9±1.0, OT: 5.4±0.4 ml/min/mmHg). The upright-seated posture significantly augmented ΔLVCpeak in all but the OS (OS: 4.9±0.5, Y: 11.8±1.3, OA: 7.3±0.8, OT: 8.1±0.8 ml/min/mmHg), revealing a significant vasodilatory reserve capacity in the other groups (Y: 4.92±1.18, OA: 1.37±0.55, OT: 2.76±0.95 ml/min/mmHg). Conclusions As PLM predominantly reflects NO-mediated vasodilation, these findings support the idea that augmenting physical activity and fitness can protect NO bioavailability, attenuating the deleterious effects of advancing age on vascular function. PMID:27031748

  8. Redundant Vasodilator Pathways Underlying Radial Artery Flow-Mediated Dilation Are Preserved in Healthy Aging

    Directory of Open Access Journals (Sweden)

    Kevin D. Ballard

    2014-01-01

    Full Text Available Background. Blocking nitric oxide (NO and vasodilator prostanoids (PN does not consistently reduce flow-mediated dilation (FMD in young adults. The impact of aging on the contribution of NO and PG to FMD is unknown. Methods. FMD was measured in older adults (n=10, 65±3 y after arterial infusion of saline, N(G-monomethyl-L-arginine (L-NMMA, and ketorolac + L-NMMA. Data were compared to published data in young adults. Results. L-NMMA reduced FMD in older adults (8.9±3.6 to 5.9±3.7% although this was not statistically significant (P=0.08 and did not differ (P=0.74 from the reduction observed in young adults (10.0±3.8 to 7.6±4.7%; P=0.03. Blocking PN did not affect FMD in young or older adults. In older adults, L-NMMA reduced (n=6; range = 36–123% decrease, augmented (n=3; 10–122% increase, or did not change FMD (n=1; 0.4% increase. After PN blockade, FMD responses were reduced (n=2, augmented (n=6, or unaffected (n=1. Conclusions. NO or PN blockade did not consistently reduce FMD in healthy older adults, suggesting the existence of redundant vasodilator phenotypes as observed previously in young adults.

  9. Mechanisms of vasodilation to PTH 1-84, PTH 1-34, and PTHrP 1-34 in rat bone resistance arteries.

    Science.gov (United States)

    Benson, T; Menezes, T; Campbell, J; Bice, A; Hood, B; Prisby, R

    2016-05-01

    Parathyroid hormone (PTH) augments bone metabolism and bone mass when given intermittently. Enhanced blood flow is requisite to support high tissue metabolism. The bone arteries are responsive to all three PTH analogs, which may serve to augment skeletal blood flow during intermittent PTH administration. PTH augments bone metabolism. Yet, mechanisms by which PTH regulates bone blood vessels are unknown. We deciphered (1) endothelium-dependent and endothelium-independent vasodilation to PTH 1-84, PTH 1-34, and PTHrP 1-34, (2) the signaling pathways (i.e., endothelial nitric oxide synthase [eNOS], cyclooxygenase [COX], protein kinase C [PKC], and protein kinase A [PKA]), and (3) receptor activation. Femoral principal nutrient arteries (PNAs) were given cumulative doses (10(-13)-10(-8) M) of PTH 1-84, PTH 1-34, and PTHrP 1-34 with and without signaling pathway blockade. Vasodilation was also determined following endothelial cell removal (i.e., denudation), PTH 1 receptor (PTH1R) inhibition and to sodium nitroprusside (SNP; a nitric oxide [NO] donor). Vasodilation was lowest to PTH 1-34, and maximal dilation was highest to PTHrP 1-34. Inhibition of eNOS reduced vasodilation to PTH 1-84 (-80 %), PTH 1-34 (-66 %), and PTHrP 1-34 (-48 %), evidencing the contribution of NO. Vasodilation following denudation was eliminated (PTH 1-84 and PTHrP 1-34) and impaired (PTH 1-34, 17 % of maximum), highlighting the importance of endothelial cells for PTH signaling. Denuded and intact PNAs responded similarly to SNP. Both PKA and PKC inhibition diminished vasodilation in all three analogs to varying degrees. PTH1R blockade reduced vasodilation to 1, 12, and 12 % to PTH 1-84, PTH 1-34, and PTHrP 1-34, respectively. Vasodilation of femoral PNAs to the PTH analogs occurred via activation of the endothelial cell PTH1R for NO-mediated events. PTH 1-84 and PTHrP 1-34 primarily stimulated PKA signaling, and PTH 1-34 equally stimulated PKA and PKC signaling.

  10. Cholinergic vasodilator mechanism in human fingers

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, J.D.; Cohen, R.A.

    1987-03-01

    The effect of a cholinergic agonist and antagonist on finger blood flow (FBF) was studied in 10 normal subjects. Total finger blood flow was measured by venous occlusion, air plethysmography, and capillary blood flow (FCF) by the disappearance rate of a radio-isotope from a fingertip injection. Methacholine in doses of 10-80 ..mu..g/min was given by constant infusion via a brachial artery catheter. Average FBF and vascular resistance were not significantly affected. However, the half time (t/sub 1/2/) of the disappearance rate decreased from 50.8 +/- 13.4 to 11.1 +/- 1.5 min; a decrease occurred in all subjects. In seven subjects, atropine (0.2 mg) had no affect alone but inhibited the effect of methacholine on FCF and prevented the redness and sweating of the forearm and hand that occurs with this agent. This study demonstrates a muscarinic cholinergic vasodilator mechanism in the fingertip that uniquely increase capillary blood flow.

  11. [Flow mediated vasodilation in overweight children].

    Science.gov (United States)

    Rodríguez, Diego; Coll, Mauricio; Guerrero, Rafael; Henao, Liliana

    2015-01-01

    Present knowledge suggests that cardiovascular disease originates and progresses from childhood and adolescence. Endothelial dysfunction is an early and crucial event in atherosclerosis. Prospective study that compares Flow Mediated Vasodilation (FMV) in children with overweight (OWC) and normal weight children. An ultrasound transducer a standard method were used to measure FMD. The study included 82 children, of whom 49 were cases (OWC) and 33 controls. FMV values ranged from -6 to 56% (x=11.1%) in OW, and from 0 to 29.6% (x=16.6%) in control children (P<.005). Paradoxical vasoconstriction was found in 34.7% in OWC as compared to nil in controls (P<.005). A significant association was found between vasoconstriction and central obesity and hypertension. The results of this study show that FMV is lower in obese compared to normal children; thus they are more likely to have endothelial dysfunction. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Modulatory Effect of 2-(4-Hydroxyphenylamino-1,4-naphthoquinone on Endothelial Vasodilation in Rat Aorta

    Directory of Open Access Journals (Sweden)

    Javier Palacios

    2016-01-01

    Full Text Available The vascular endothelium plays an essential role in the control of the blood flow. Pharmacological agents like quinone (menadione at various doses modulate this process in a variety of ways. In this study, Q7, a 2-phenylamino-1,4-naphthoquinone derivative, significantly increased oxidative stress and induced vascular dysfunction at concentrations that were not cytotoxic to endothelial or vascular smooth muscle cells. Q7 reduced nitric oxide (NO levels and endothelial vasodilation to acetylcholine in rat aorta. It also blunted the calcium release from intracellular stores by increasing the phenylephrine-induced vasoconstriction when CaCl2 was added to a calcium-free medium but did not affect the influx of calcium from extracellular space. Q7 increased the vasoconstriction to BaCl2 (10−3 M, an inward rectifying K+ channels blocker, and blocked the vasodilation to KCl (10−2 M in aortic rings precontracted with BaCl2. This was recovered with sodium nitroprusside (10−8 M, a NO donor. In conclusion, Q7 induced vasoconstriction was through a modulation of cellular mechanisms involving calcium fluxes through K+ channels, and oxidative stress induced endothelium damage. These findings contribute to the characterization of new quinone derivatives with low cytotoxicity able to pharmacologically modulate vasodilation.

  13. Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats.

    Science.gov (United States)

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Fukushima, Kazuhito; Umetani, Keiji; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2013-07-01

    Metabolic syndrome (MetS) is a combination of clinical disorders that together increase the risk for cardiovascular disease and diabetes. SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with MetS show impaired nitric oxide-mediated relaxation in coronary and mesenteric arteries, and angiotensin II receptor type 1 blockers protect against dysfunction and oxidative-nitrosative stress independently of metabolic effects. We hypothesize that superoxide contributes to functional deterioration in SHRSP.ZF rats. To test our hypothesis, we studied effects of treatment with tempol, a membrane-permeable radical scavenger, on impaired vasodilation in SHRSP.ZF rats. Tempol did not alter body weight, high blood pressure, or metabolic abnormalities, but prevented impairment of acetylcholine-induced and nitroprusside-induced vasodilation in the coronary and mesenteric arteries. Furthermore, tempol reduced the levels of serum thiobarbituric acid reactive substance (TBARS) and 3-nitrotyrosine content in mesenteric arteries. Systemic administration of tempol elevated the expression of soluble guanylate cyclase (sGC) above basal levels in mesenteric arteries of SHRSP.ZF rats. However, acute treatment with tempol or ebselen, a peroxynitrite scavenger, did not ameliorate impaired relaxation of isolated mesenteric arteries. No nitration of tyrosine residues in sGC was observed; however, sGC mRNA expression levels in the arteries of SHRSP.ZF rats were lower than those in the arteries of Wistar-Kyoto rats. Levels of Thr(496)- and Ser(1177)-phosphorylated endothelial nitric oxide synthase (eNOS) were lower in arteries of SHRSP.ZF rats, and acetylcholine decreased Thr(496)-phosphorylated eNOS levels. These results indicated that prolonged superoxide production, leading to oxidative-nitrosative stress, was associated with impaired vasodilation in SHRSP.ZF rats with MetS. Down-regulated sGC expression may be linked to dysfunction, while reduced NO bioavailability/eNOS activity and modified s

  14. PI3K/Akt-independent NOS/HO activation accounts for the facilitatory effect of nicotine on acetylcholine renal vasodilations: modulation by ovarian hormones.

    Directory of Open Access Journals (Sweden)

    Eman Y Gohar

    Full Text Available We investigated the effect of chronic nicotine on cholinergically-mediated renal vasodilations in female rats and its modulation by the nitric oxide synthase (NOS/heme oxygenase (HO pathways. Dose-vasodilatory response curves of acetylcholine (0.01-2.43 nmol were established in isolated phenylephrine-preconstricted perfused kidneys obtained from rats treated with or without nicotine (0.5-4.0 mg/kg/day, 2 weeks. Acetylcholine vasodilations were potentiated by low nicotine doses (0.5 and 1 mg/kg/day in contrast to no effect for higher doses (2 and 4 mg/kg/day. The facilitatory effect of nicotine was acetylcholine specific because it was not observed with other vasodilators such as 5'-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist or papaverine. Increases in NOS and HO-1 activities appear to mediate the nicotine-evoked enhancement of acetylcholine vasodilation because the latter was compromised after pharmacologic inhibition of NOS (L-NAME or HO-1 (zinc protoporphyrin, ZnPP. The renal protein expression of phosphorylated Akt was not affected by nicotine. We also show that the presence of the two ovarian hormones is necessary for the nicotine augmentation of acetylcholine vasodilations to manifest because nicotine facilitation was lost in kidneys of ovariectomized (OVX and restored after combined, but not individual, supplementation with medroxyprogesterone acetate (MPA and estrogen (E2. Together, the data suggests that chronic nicotine potentiates acetylcholine renal vasodilation in female rats via, at least partly, Akt-independent HO-1 upregulation. The facilitatory effect of nicotine is dose dependent and requires the presence of the two ovarian hormones.

  15. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A.; Podratz, P.L.; Graceli, J.B.; Abreu, G.R.

    2015-01-01

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women

  16. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    M.V. Borgo

    2016-01-01

    Full Text Available Drospirenone (DRSP is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2 and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87 at 12 weeks of age were randomly divided into sham operated (Sham, OVX, OVX treated with E2 (E2, and OVX treated with E2 and DRSP (E2+DRSP groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  17. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil); Podratz, P.L.; Graceli, J.B. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil)

    2015-11-17

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  18. Role of local neurons in cerebrocortical vasodilation elicited from cerebellum

    International Nuclear Information System (INIS)

    Iadecola, C.; Arneric, S.P.; Baker, H.D.; Tucker, L.W.; Reis, D.J.

    1987-01-01

    The vasodilation elicited in cerebral cortex by stimulation of the cerebellar fastigial nucleus (FN) is mediated by input pathways coming from the basal forebrain. The authors studied whether these pathways mediate the cortical vasodilation via a direct action on local blood vessels or via interposed local neurons. Neurons were destroyed in the primary sensory cortex by local microinjection of the excitotoxin ibotenic acid (IBO). Five days later rats were anesthetized, paralyzed, and ventilated. Arterial pressure and blood gases were controlled, and FN was stimulated electrically. Local cerebral blood flow (LCBF) was measured using the [ 14 C]iodoantipyrine technique with autoradiography. Five days after IBO, neurons were destroyed in a restricted cortical area, and afferent fibers and terminals were preserved. The selectivity of the neuronal loss was established by histological and biochemical criteria and by transport of horseradish, peroxidase from or into the lesion. Within the lesion, resting LCBF was unaffected, but the increase in LCBF evoked from the FN was abolished. In contrast the vasodilation elicited by hypercapnia was preserved. In the rest of the brain the vasodilation elicited from FN was largely unaffected. The authors conclude that the vasodilation evoked from FN in cerebral cortex depends on the integrity of a restricted population of local neurons that interact with the local microvasculature

  19. Nitric oxide signaling in hypoxia.

    Science.gov (United States)

    Ho, J J David; Man, H S Jeffrey; Marsden, Philip A

    2012-03-01

    Endothelial-derived nitric oxide (NO) is classically viewed as a regulator of vasomotor tone. NO plays an important role in regulating O(2) delivery through paracrine control of vasomotor tone locally and cardiovascular and respiratory responses centrally. Very soon after the cloning and functional characterization of the endothelial nitric oxide synthase (eNOS), studies on the interaction between O(2) and NO made the paradoxical finding that hypoxia led to decreases in eNOS expression and function. Why would decreases in O(2) content in tissues elicit a loss of a potent endothelial-derived vasodilator? We now know that restricting our view of NO as a regulator of vasomotor tone or blood pressure limited deeper levels of mechanistic insight. Exciting new studies indicate that functional interactions between NO and O(2) exhibit profound complexity and are relevant to diseases states, especially those associated with hypoxia in tissues. NOS isoforms catalytically require O(2). Hypoxia regulates steady-state expression of the mRNA and protein abundance of the NOS enzymes. Animals genetically deficient in NOS isoforms have perturbations in their ability to adapt to changes in O(2) supply or demand. Most interestingly, the intracellular pathways for O(2) sensing that evolved to ensure an appropriate balance of O(2) delivery and utilization intersect with NO signaling networks. Recent studies demonstrate that hypoxia-inducible factor (HIF) stabilization and transcriptional activity is achieved through two parallel pathways: (1) a decrease in O(2)-dependent prolyl hydroxylation of HIF and (2) S-nitrosylation of HIF pathway components. Recent findings support a role for S-nitrosothiols as hypoxia-mimetics in certain biological and/or disease settings, such as living at high altitude, exposure to small molecules that can bind NO, or anemia.

  20. Nitric oxide supersensitivity

    DEFF Research Database (Denmark)

    Olesen, J; Iversen, Helle Klingenberg; Thomsen, L L

    1993-01-01

    Nitroglycerin, which may be regarded as a prodrug for nitric oxide, induces a mild to moderate headache in healthy subjects. In order to study whether migraine patients are more sensitive to nitric oxide than non-migrainous subjects, four different doses of intravenous nitroglycerin were given...... previously shown a similar supersensitivity to histamine which in human cerebral arteries activates endothelial H1 receptors and causes endothelial production of nitric oxide. Migraine patients are thus supersensitive to exogenous nitric oxide from nitroglycerin as well as to endothelially produced nitric...... oxide. It is suggested that nitric oxide may be partially or completely responsible for migraine pain....

  1. Nitrite-Mediated Hypoxic Vasodilation Predicted from Mathematical Modeling and Quantified from in Vivo Studies in Rat Mesentery

    Directory of Open Access Journals (Sweden)

    Donald G. Buerk

    2017-12-01

    Full Text Available Nitric oxide (NO generated from nitrite through nitrite reductase activity in red blood cells has been proposed to play a major role in hypoxic vasodilation. However, we have previously predicted from mathematical modeling that much more NO can be derived from tissue nitrite reductase activity than from red blood cell nitrite reductase activity. Evidence in the literature suggests that tissue nitrite reductase activity is associated with xanthine oxidoreductase (XOR and/or aldehyde oxidoreductase (AOR. We investigated the role of XOR and AOR in nitrite-mediated vasodilation from computer simulations and from in vivo exteriorized rat mesentery experiments. Vasodilation responses to nitrite in the superfusion medium bathing the mesentery equilibrated with 5% O2 (normoxia or zero O2 (hypoxia at either normal or acidic pH were quantified. Experiments were also conducted following intraperitoneal (IP injection of nitrite before and after inhibiting XOR with allopurinol or inhibiting AOR with raloxifene. Computer simulations for NO and O2 transport using reaction parameters reported in the literature were also conducted to predict nitrite-dependent NO production from XOR and AOR activity as a function of nitrite concentration, PO2 and pH. Experimentally, the largest arteriolar responses were found with nitrite >10 mM in the superfusate, but no statistically significant differences were found with hypoxic and acidic conditions in the superfusate. Nitrite-mediated vasodilation with IP nitrite injections was reduced or abolished after inhibiting XOR with allopurinol (p < 0.001. Responses to IP nitrite before and after inhibiting AOR with raloxifene were not as consistent. Our mathematical model predicts that under certain conditions, XOR and AOR nitrite reductase activity in tissue can significantly elevate smooth muscle cell NO and can serve as a compensatory pathway when endothelial NO production is limited by hypoxic conditions. Our theoretical and

  2. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects

  3. Unraveling the origin of the nitrite-mediated hypoxic vasodilation

    DEFF Research Database (Denmark)

    Fago, Angela; Dalsgaard, T.; Simonsen, U.

    2007-01-01

    are sufficient to induce NO-mediated vasodilation independently of the nitrite reductase activities here investigated. These results further indicate that the vasoactive effect of nitrite is intrinsic to the vessel and may be due to S-nitrosothiols formed within the arterial smooth muscle....

  4. Generation of nitric oxide from nitrite by carbonic anhydrase

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank B

    2009-01-01

    In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between...... bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced...

  5. Residual pulmonary vasodilative reserve predicts outcome in idiopathic pulmonary hypertension.

    Science.gov (United States)

    Leuchte, Hanno H; Baezner, Carlos; Baumgartner, Rainer A; Muehling, Olaf; Neurohr, Claus; Behr, Juergen

    2015-06-01

    Idiopathic pulmonary arterial hypertension (IPAH) remains a devastating and incurable, albeit treatable condition. Treatment response is not uniform and parameters that help to anticipate a rather benign or a malignant course of the disease are warranted. Acute pulmonary vasoreactivity testing during right heart catheterisation is recommended to identify a minority of patients with IPAH with sustained response to calcium channel blocker therapy. This study aimed to evaluate the prognostic significance of a residual pulmonary vasodilative reserve in patients with IPAH not meeting current vasoresponder criteria. Observational right heart catheter study in 66 (n=66) patients with IPAH not meeting current vasoresponse criteria. Pulmonary vasodilative reserve was assessed by inhalation of 5 µg iloprost-aerosol. Sixty-six (n=66) of 72 (n=72) patients with IPAH did not meet current definition criteria assessed during vasodilator testing to assess pulmonary vasodilatory reserve. In those, iloprost-aerosol caused a reduction of mean pulmonary artery pressure (Δ pulmonary artery pressure-11.4%; p<0.001) and increased cardiac output (Δ cardiac output +16.7%; p<0.001), resulting in a reduction of pulmonary vascular resistance (Δ pulmonary vascular resistance-25%; p<0.001). The magnitude of this response was pronounced in surviving patients. A pulmonary vascular resistance reduction of ≥30% turned out to predict outcome in patients with IPAH. Residual pulmonary vasodilative reserve during acute vasodilator testing is of prognostic relevance in patients with IPAH not meeting current definitions of acute vasoreactivity. Therefore vasoreactivity testing holds more information than currently used. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension

    OpenAIRE

    Afolayan, Adeleye J.; Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G.

    2015-01-01

    Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and...

  7. Nitric Oxide Contributes to Behavioral, Cellular, and Developmental Responses to Low Oxygen in Drosophila

    OpenAIRE

    Wingrove, James A.; O’Farrell, Patrick H.

    1999-01-01

    A nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is thought to play an important role in mammalian vasodilation during hypoxia. We show that Drosophila utilizes components of this pathway to respond to hypoxia. Hypoxic exposure rapidly induced exploratory behavior in larvae and arrested the cell cycle. These behavioral and cellular responses were diminished by an inhibitor of NO synthase and by a polymorphism affecting a form of cGMP-dependent protein kinase. Conversely, these response...

  8. Inhibition of nitric oxide synthesis by systemic N(G)-monomethyl-L-arginine administration in humans

    DEFF Research Database (Denmark)

    Frandsen, U; Bangsbo, J; Langberg, Henning

    2000-01-01

    We examined whether the formation or the release of the vasodilators adenosine, prostacyclin (PGI(2)) and potassium (K(+)) increase in skeletal muscle interstitium in response to nitric oxide synthase (NOS) inhibition. Five subjects performed one-legged knee extensor exercise at 30 W without (con......-keto-prostaglandin F1alpha concentration in controls was 1.17+/-0.20 ng/ml at rest and increased (p0.05) in L-NAME. The interstitial K(+) concentration in controls increased (p...

  9. Vasodilator Activity of the Essential Oil from Aerial Parts of Pectis brevipedunculata and Its Main Constituent Citral in Rat Aorta

    Directory of Open Access Journals (Sweden)

    Gisele Zapata-Sudo

    2013-03-01

    Full Text Available The essential oil of Pectis brevipedunculata (EOPB, a Brazilian ornamental aromatic grass, is characterized by its high content of citral (81.9%: neral 32.7% and geranial 49.2%, limonene (4.7% and α-pinene (3.4%. Vasodilation induced by EOPB and isolated citral was investigated in pre-contracted vascular smooth muscle, using thoracic aorta from Wistar Kyoto (WKY rats which was prepared for isometric tension recording. EOPB promoted intense relaxation of endothelium-intact and denuded aortic rings with the concentration to induce 50% of the maximal relaxation (IC50 of 0.044% ± 0.006% and 0.093% ± 0.015% (p 0.05. In endothelium-intact aorta, EOPB-induced vasorelaxation was significantly reduced by L-NAME, a nitric oxide synthase inhibitor. The vasodilator activity of citral was increased in the KCl-contracted aorta and citral attenuated the contracture elicited by Ca2+ in depolarized aorta. EOPB and citral elicited vasorelaxation on thoracic aorta by affecting the NO/cyclic GMP pathway and the calcium influx through voltage-dependent L-type Ca2+ channels, respectively.

  10. Role of nitric oxide in recombinant tumor necrosis factor-alpha-induced circulatory shock : A study in patients treated for cancer with isolated limb perfusion

    NARCIS (Netherlands)

    Zwaveling, JH; Maring, JK; Moshage, H; vanGinkel, RJ; Hoekstra, HJ; Donse, IF; Girbes, ARJ; Schraffordt Koops, H.

    1996-01-01

    Objectives: To analyze the mechanism of vasodilation and circulatory shock occurring in patients who are treated with isolated limb perfusion with melphalan and recombinant tumor necrosis factor (TNF)-alpha for locally advanced malignant tumors, To determine the role of nitric oxide, if any, by

  11. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide?

    NARCIS (Netherlands)

    Douma, C. E.; de Waart, D. R.; Struijk, D. G.; Krediet, R. T.

    1996-01-01

    Amino acid dialysis solution 1.1% (Nutrineal) contains L-arginine, a substrate for nitric oxide (NO) synthesis. NO causes vasodilation in many organs. To investigate effects of the amino acid dialysis solution on peritoneal permeability and perfusion, standard peritoneal permeability analyses were

  12. Comparison Between the Acute Pulmonary Vascular Effects of Oxygen with Nitric Oxide and Sildenafil

    Directory of Open Access Journals (Sweden)

    Ronald W. Day

    2015-03-01

    Full Text Available Objective. Right heart catheterization is performed in patients with pulmonary arterial hypertension to determine the severity of disease and their pulmonary vascular reactivity. The acute pulmonary vascular effect of inhaled nitric oxide is frequently used to identify patients who will respond favorably to vasodilator therapy. This study sought to determine whether the acute pulmonary vascular effects of oxygen with nitric oxide and intravenous sildenafil are similar. Methods. A retrospective, descriptive study of 13 individuals with pulmonary hypertension who underwent heart catheterization and acute vasodilator testing was performed. The hemodynamic measurements during five phases (21% to 53% oxygen, 100% oxygen, 100% oxygen with 20 ppm nitric oxide, 21% to 51% oxygen, and 21% to 51% oxygen with 0.05 mg/kg to 0.29 mg/kg intravenous sildenafil of the procedures were compared.Results. Mean pulmonary arterial pressure and pulmonary vascular resistance acutely decreased with 100% oxygen with nitric oxide, and 21% to 51% oxygen with sildenafil. Mean pulmonary arterial pressure (mm Hg, mean ± standard error of the mean was 38 ± 4 during 21% to 53% oxygen, 32 ± 3 during 100% oxygen, 29 ± 2 during 100% oxygen with nitric oxide, 37 ± 3 during 21% to 51% oxygen, and 32 ± 2 during 21% to 51% oxygen with sildenafil. There was not a significant correlation between the percent change in pulmonary vascular resistance from baseline with oxygen and nitric oxide, and from baseline with sildenafil (r2 = 0.011, p = 0.738. Conclusions. Oxygen with nitric oxide and sildenafil decreased pulmonary vascular resistance. However, the pulmonary vascular effects of oxygen and nitric oxide cannot be used to predict the acute response to sildenafil. Additional studies are needed to determine whether the acute response to sildenafil can be used to predict the long-term response to treatment with an oral phosphodiesterase V inhibitor.

  13. Distal skin vasodilation promotes rapid sleep onset in preterm neonates.

    Science.gov (United States)

    Barcat, Lucile; Decima, Pauline; Bodin, Emilie; Delanaud, Stephane; Stephan-Blanchard, Erwan; Leke, Andre; Libert, Jean-Pierre; Tourneux, Pierre; Bach, Veronique

    2017-10-01

    Although sleep is of paramount importance for preterm neonates, care of the latter in a neonatal intensive care unit does not favour sleep. Given that several studies in adults have described a 'vegetative preparedness to sleep' (in which distal skin vasodilation before lights-out promotes rapid sleep onset), we looked at whether or not this process operates in preterm neonates. Sleep propensity was assessed in terms of the duration of a spontaneous episode of wakefulness (W). Skin temperatures at six body sites (the abdomen, pectoral region, eye, hand, thigh and foot) were measured (using infrared thermography) during nocturnal polysomnography in 29 9-day-old preterm neonates (postmenstrual age: 209 ± 9 days). We then determined whether the duration of the W episode depended upon the local skin temperatures measured at the start, during and end of the episode. The W episode was shorter when distal skin temperatures (thigh, hand and foot) and the pectoral temperature were higher at the end of the episode (i.e. at sleep onset). The relationship with the duration of the W episode was not significant for temperatures measured at the start of the W episode. We observed gradual distal vasodilation at the pectoral region, the thigh, hand and foot (i.e. affecting most of the body's skin surface) during W episodes. Our results constitute initial evidence to show that distal vasodilation may have a key role in facilitating sleep onset in very preterm neonates. © 2017 European Sleep Research Society.

  14. Modification of active cutaneous vasodilation by oral contraceptive hormones.

    Science.gov (United States)

    Charkoudian, N; Johnson, J M

    1997-12-01

    It is not clear whether the altered thermoregulatory reflex control of the cutaneous circulation seen among phases of the menstrual cycle also occurs with the synthetic estrogen and progesterone in oral contraceptive pills and whether any such modifications include altered control of the cutaneous active vasodilator system. To address these questions, we conducted controlled whole body heating experiments in seven women at the end of the third week of hormone pills (HH) and at the end of the week of placebo/no pills (LH). A water-perfused suit was used to control body temperature. Laser Doppler flowmetry was used to monitor cutaneous blood flow at a control site and at a site at which noradrenergic vasoconstrictor control had been eliminated by iontophoresis of bretylium (BT), isolating the active cutaneous vasodilator system. The oral temperature (Tor) thresholds for cutaneous vasodilation were higher in HH at both control [37.09 +/- 0.12 vs. 36.83 +/- 0.07 degrees C (LH), P system to higher internal temperatures. The similarity of the shifts among thermoregulatory effectors suggests a centrally mediated action of these hormones.

  15. Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults.

    Science.gov (United States)

    Richards, Jennifer C; Racine, Matthew L; Hearon, Christopher M; Kunkel, Megan; Luckasen, Gary J; Larson, Dennis G; Allen, Jason D; Dinenno, Frank A

    2018-01-01

    Dietary nitrate (NO3-) is converted to nitrite (NO2-) and can be further reduced to the vasodilator nitric oxide (NO) amid a low O 2 environment. Accordingly, dietary NO3- increases hind limb blood flow in rats during treadmill exercise; however, the evidence of such an effect in humans is unclear. We tested the hypothesis that acute dietary NO3- (via beetroot [BR] juice) increases forearm blood flow (FBF) via local vasodilation during handgrip exercise in young adults (n = 11; 25 ± 2 years). FBF (Doppler ultrasound) and blood pressure (Finapres) were measured at rest and during graded handgrip exercise at 5%, 15%, and 25% maximal voluntary contraction (MVC) lasting 4 min each. At the highest workload (25% MVC), systemic hypoxia (80% SaO 2 ) was induced and exercise continued for three additional minutes. Subjects ingested concentrated BR (12.6 mmol nitrate (n = 5) or 16.8 mmol nitrate (n = 6) and repeated the exercise bout either 2 (12.6 mmol) or 3 h (16.8 mmol) postconsumption. Compared to control, BR significantly increased FBF at 15% MVC (184 ± 15 vs. 164 ± 15 mL/min), 25% MVC (323 ± 27 vs. 286 ± 28 mL/min), and 25% + hypoxia (373 ± 39 vs. 343 ± 32 mL/min) and this was due to increases in vascular conductance (i.e., vasodilation). The effect of BR on hemodynamics was not different between the two doses of BR ingested. Forearm VO 2 was also elevated during exercise at 15% and 25% MVC. We conclude that acute increases in circulating NO3- and NO2- via BR increases muscle blood flow during moderate- to high-intensity handgrip exercise via local vasodilation. These findings may have important implications for aging and diseased populations that demonstrate impaired muscle perfusion and exercise intolerance. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega − 3 polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Agbor, Larry N.; Walsh, Mary T.; Boberg, Jason R.; Walker, Mary K., E-mail: mwalker@salud.unm.edu

    2012-11-01

    In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega − 3 polyunsaturated fatty acids (n − 3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n − 3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mm Hg, WT 103 ± 1, KO 116 ± 1, n = 5/genotype, p < 0.05), and exhibited a reduced heart rate (beats per minute, WT 575 ± 5; KO 530 ± 7; p < 0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n − 3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP. -- Highlights: ► CYP1A1 KO mice are hypertensive. ► CYP1A1 KO mice exhibit reduced vasodilation responses to n-3 PUFAs. ► Constitutive CYP1A1 expression regulates blood pressure and vascular function.

  17. Comparison of vasodilator drug prazosin with digoxin in aortic regurgitation.

    Science.gov (United States)

    Hockings, B E; Cope, G D; Clarke, G M; Taylor, R R

    1980-01-01

    Intravenous administration of the vasodilator sodium nitroprusside has beneficial haemodynamic effects in subjects with severe aortic regurgitation while acute digitalisation can produce unwanted effects associated with an increase in systemic vascular resistance. This study compares the haemodynamic effects of the vasodilator prazosin and digoxin in eight patients with isolated severe aortic regurgitation. Prazosin 5 mg orally resulted in a 12 +/- 3 (SE) per cent increase in cardiac index (thermodilution), maintained over four to six hours, while digoxin 0.75 mg intravenously did not change the cardiac index. Prazosin reduced mean arterial pressure by 9 +/- 3 mmHg and systemic vascular resistance by 18 +/- 4 per cent while digoxin resulted in a 6 +/- 2 per cent increase in the latter. Mean pulmonary capillary wedge pressure fell 3 mmHg with prazosin. In this group of patients with severe aortic regurgitation but without severe cardiac failure, the changes with either drug, studied in doses conventionally used, were small but those with prazosin were directionally more desirable than those resulting from digoxin. PMID:7378215

  18. Vasodilation increases pulse pressure variation, mimicking hypovolemic status in rabbits

    Directory of Open Access Journals (Sweden)

    Glauco A Westphal

    2010-01-01

    Full Text Available OBJECTIVE: To test the hypothesis that pulse pressure respiratory variation (PPV amplification, observed in hypovolemia, can also be observed during sodium nitroprusside (SNP-induced vasodilation. INTRODUCTION: PPV is largely used for early identification of cardiac responsiveness, especially when hypovolemia is suspected. PPV results from respiratory variation in transpulmonary blood flow and reflects the left ventricular preload variations during respiratory cycles. Any factor that decreases left ventricular preload can be associated with PPV amplification, as seen in hypovolemia. METHODS: Ten anesthetized and mechanically ventilated rabbits underwent progressive hypotension by either controlled hemorrhage (Group 1 or intravenous SNP infusion (Group 2. Animals in Group 1 (n = 5 had graded hemorrhage induced at 10% steps until 50% of the total volume was bled. Mean arterial pressure (MAP steps were registered and assumed as pressure targets to be reached in Group 2. Group 2 (n = 5 was subjected to a progressive SNP infusion to reach similar pressure targets as those defined in Group 1. Heart rate (HR, systolic pressure variation (SPV and PPV were measured at each MAP step, and the values were compared between the groups. RESULTS: SPV and PPV were similar between the experimental models in all steps (p > 0.16. SPV increased earlier in Group 2. CONCLUSION: Both pharmacologic vasodilation and graded hemorrhage induced PPV amplification similar to that observed in hypovolemia, reinforcing the idea that amplified arterial pressure variation does not necessarily represent hypovolemic status but rather potential cardiovascular responsiveness to fluid infusion.

  19. About choosing a vasodilator for vasoreactivity tests in heart transplant candidates

    Directory of Open Access Journals (Sweden)

    А. Е. Баутин

    2015-10-01

    Full Text Available The purpose of our prospective, consistent, non-randomized study was to analyze the results of vasoreactivity tests (VRT performed with nitric oxide (NO or inhaled Iloprost in heart transplant candidates. 72 VRTs were done in 58 candidates for heart transplantation. All patients had heart failure III-IV NYHA and pulmonary hypertension (PH with pulmonary vascular resistance (PVR over 2.5 WU. 43 patients received NO, 80 ppm for 20 min. 29 patients inhaled 20 g of Iloprost (Ventavis, Bayer. Hemodynamic parameters were measured at baseline, 20 min after NO inhalation and 15 min following the completion of Iloprost inhalation. There were no between-group differences in the severity of patient's condition and baseline hemodynamic indicators. Both vasodilators caused statistically significant reduction in mean PAP: in the NO group it dropped (p = 0.002, in the Iloprost group the mean PAP decreased (p<0.0001. A more than 20% decrease in PAP was recorded in 13 cases (30.2% in the NO group and in 16 cases (55.2% in the Iloprost group (p = 0.03. A more than 20% decrease in PVR was noted in 24 cases (55.8% in the NO group and in 24 cases (82.8% in the Iloprost group (p<0.02. We found some differences in the effect of NO and Iloprost on LV efficiency. There were no changes in the stroke volume index (SVI in the NO group, while inhaled Iloprost increased SVI (p<0.001. A probable cause of the increase in LV efficiency might have been the reduction of total peripheral vascular resistance (p<0.0001. There were no differences in SVI during NO inhala-tion. It should be noted in conclusion that Iloprost is more effective in decreasing mean PAP and PVR in heart transplant candidates. Inhaled Iloprost causes favorable changes in preload and afterload of the impaired LV and increases its performance.

  20. Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries

    Science.gov (United States)

    Bottrill, Fiona E; Douglas, Stephen A; Hiley, C Robin; White, Richard

    2000-01-01

    The possible role of the endothelium in modulating responses to human urotensin-II (U-II) was investigated using isolated segments of rat thoracic aorta, small mesenteric artery, left anterior descending coronary artery and basilar artery.Human U-II was a potent vasoconstrictor of endothelium-intact isolated rat thoracic aorta (EC50=3.5±1.1 nM, Rmax=103±10% of control contraction induced by 60 mM KCl and 1 μM noradrenaline). However the contractile response was not significantly altered by removal of the endothelium or inhibition of nitric oxide synthesis with L-NAME (100 μM). Human U-II did not cause relaxation of noradrenaline-precontracted, endothelium-intact rat aortae.Human U-II contracted endothelium-intact rat isolated left anterior descending coronary arteries (EC50=1.3±0.8 nM, Rmax=20.1±4.9% of control contraction induced by 10 μM 5-HT). The contractile response was significantly enhanced by removal of the endothelium (Rmax=55.4±16.1%). Moreover, human U-II caused concentration-dependent relaxation of 5-HT-precontracted arteries, which was abolished by L-NAME or removal of the endothelium.No contractile effects of human U-II were found in rat small mesenteric arteries. However the peptide caused potent, concentration- and endothelium-dependent relaxations of methoxamine-precontracted vessels. The relaxant responses were potentiated by L-NAME (300 μM) but abolished in the additional presence of 25 mM KCl (which inhibits the actions of endothelium-derived hyperpolarizing factor).The present study is the first to show that human U-II is a potent endothelium-dependent vasodilator in some rat resistance vessels, and acts through release of EDHF as well as nitric oxide. Our findings have also highlighted clear anatomical differences in the responses of different vascular beds to human U-II which are likely to be important in determining the overall cardiovascular activity of this peptide. PMID:10952676

  1. Effect of Dietary Docosahexaenoic Acid Supplementation on the Participation of Vasodilator Factors in Aorta from Orchidectomized Rats.

    Directory of Open Access Journals (Sweden)

    Diva M Villalpando

    Full Text Available Benefits of n-3 polyunsaturated fatty acids (PUFAs against cardiovascular diseases have been reported. Vascular tone regulation is largely mediated by endothelial factors whose release is modulated by sex hormones. Since the incidence of cardiovascular pathologies has been correlated with decreased levels of sex hormones, the aim of this study was to analyze whether a diet supplemented with the specific PUFA docosahexaenoic acid (DHA could prevent vascular changes induced by an impaired gonadal function. For this purpose, control and orchidectomized rats were fed with a standard diet supplemented with 5% (w/w sunflower oil or with 3% (w/w sunflower oil plus 2% (w/w DHA. The lipid profile, the blood pressure, the production of prostanoids and nitric oxide (NO, and the redox status of biological samples from control and orchidectomized rats, fed control or DHA-supplemented diet, were analyzed. The vasodilator response and the contribution of NO, prostanoids and hyperpolarizing mechanisms were also studied. The results showed that orchidectomy negatively affected the lipid profile, increased the production of prostanoids and reactive oxygen species (ROS, and decreased NO production and the antioxidant capacity, as well as the participation of hyperpolarizing mechanisms in the vasodilator responses. The DHA-supplemented diet of the orchidectomized rats decreased the release of prostanoids and ROS, while increasing NO production and the antioxidant capacity, and it also improved the lipid profile. Additionally, it restored the participation of hyperpolarizing mechanisms by activating potassium. Since the modifications induced by the DHA-supplemented diet were observed in the orchidectomized, but not in the healthy group, DHA seems to exert cardioprotective effects in physiopathological situations in which vascular dysfunction exists.

  2. Endothelium- and smooth muscle-dependent vasodilator effects of Citrus aurantium L. var. amara: Focus on Ca(2+) modulation.

    Science.gov (United States)

    Kang, Purum; Ryu, Kang-Hyun; Lee, Jeong-Min; Kim, Hyo-Keun; Seol, Geun Hee

    2016-08-01

    Neroli, the essential oil of Citrus aurantium L. var. amara, is a well-characterized alleviative agent used to treat cardiovascular symptoms. However, because it has been found to have multiple effects, its mechanism of action requires further exploration. We sought to clarify the mechanism underlying the actions of neroli in mouse aorta. In aortic rings from mice precontracted with prostaglandin F2 alpha, neroli induced vasodilation. However, relaxation effect of neroli was decreased in endothelium-denuded ring or pre-incubation with the nitric oxide synthase inhibitor NG-Nitro-l-arginine-methyl ester (L-NAME). And also, neroli-induced relaxation was also partially reversed by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), a soluble guanylyl cyclase (sGC) inhibitor. In addition, neroli inhibited extracellular Ca(2+)-dependent, depolarization-induced contraction, an effect that was concentration dependent. Pretreatment with the non-selective cation channel blocker, Ni(2+), attenuated neroli-induced relaxation, whereas the K(+) channel blocker, tetraethylammonium chloride, had no effect. In the presence of verapamil, added to prevent Ca(2+) influx via smooth muscle voltage-gated Ca(2+) channels, neroli-induced relaxation was reduced by the ryanodine receptor (RyR) inhibitor ruthenium red. Our findings further indicate that the endothelial component of neroli-induced vasodilation is partly mediated by the NO-sGC pathway, whereas the smooth muscle component involves modulation of intracellular Ca(2+) concentration through inhibition of cation channel-mediated extracellular Ca(2+) influx and store-operated Ca(2+) release mediated by the RyR signaling pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Nitric oxide bioavailability dysfunction involves in atherosclerosis.

    Science.gov (United States)

    Chen, Jing-Yi; Ye, Zi-Xin; Wang, Xiu-Fen; Chang, Jian; Yang, Mei-Wen; Zhong, Hua-Hua; Hong, Fen-Fang; Yang, Shu-Long

    2018-01-01

    The pathological characteristics of atherosclerosis (AS) include lipid accumulation, fibrosis formation and atherosclerotic plaque produced in artery intima, which leads to vascular sclerosis, lumen stenosis and irritates the ischemic changes of corresponding organs. Endothelial dysfunction was closely associated with AS. Nitric oxide (NO) is a multifunctional signaling molecule involved in the maintenance of metabolic and cardiovascular homeostasis. NO is also a potent endogenous vasodilator and enters for the key processes that suppresses the formation vascular lesion even AS. NO bioavailability indicates the production and utilization of endothelial NO in organisms, its decrease is related to oxidative stress, lipid infiltration, the expressions of some inflammatory factors and the alteration of vascular tone, which plays an important role in endothelial dysfunction. The enhancement of arginase activity and the increase in asymmetric dimethylarginine and hyperhomocysteinemia levels all contribute to AS by intervening NO bioavailability in human beings. Diabetes mellitus, obesity, chronic kidney disease and smoking, etc., also participate in AS by influencing NO bioavailability and NO level. Here, we reviewed the relationship between NO bioavailability and AS according the newest literatures. Copyright © 2017. Published by Elsevier Masson SAS.

  4. The oral microbiome and nitric oxide homoeostasis.

    Science.gov (United States)

    Hezel, M P; Weitzberg, E

    2015-01-01

    The tiny radical nitric oxide (NO) participates in a vast number of physiological functions including vasodilation, nerve transmission, host defence and cellular energetics. Classically produced by a family of specific enzymes, NO synthases (NOSs), NO signals via reactions with other radicals or transition metals. An alternative pathway for the generation of NO is the nitrate-nitrite-NO pathway in which the inorganic anions nitrate (NO(3)(-)) and nitrite (NO(2)(-)) are reduced to NO and other reactive nitrogen intermediates. Nitrate and nitrite are oxidation products from NOS-dependent NO generation but also constituents in our diet, mainly in leafy green vegetables. Irrespective of origin, active uptake of circulating nitrate in the salivary glands, excretion in saliva and subsequent reduction to nitrite by oral commensal bacteria are all necessary steps for further NO generation. This central role of the oral cavity in regulating NO generation from nitrate presents a new and intriguing aspect of the human microbiome in health and disease. In this review, we present recent advances in our understanding of the nitrate-nitrite-NO pathway and specifically highlight the importance of the oral cavity as a hub for its function. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Nitric oxide and cardiovascular risk factors

    Directory of Open Access Journals (Sweden)

    Livio Dai Cas

    2007-06-01

    Full Text Available The endothelium is a dynamic organ with many properties that takes part in the regulation of the principal mechanisms of vascular physiology. Its principal functions include the control of blood-tissue exchange and permeability, the vascular tonus, and the modulation of inflammatory or coagulatory mechanisms. Many vasoactive molecules, produced by the endothelium, are involved in the control of these functions. The most important is nitric oxide (NO, a gaseous molecule electrically neutral with an odd number of electrons that gives the molecule chemically reactive radical properties. Already known in the twentieth century, NO, sometimes considered as a dangerous molecule, recently valued as an important endogenous vasodilator factor. Recently, it was discovered that it is involved in several physiological mechanisms of endothelial protection (Tab. I. In 1992, Science elected it as “molecule of the year”; 6 yrs later three American researchers (Louis Ignarro, Robert Furchgott and Fried Murad obtained a Nobel Prize for Medicine and Physiology “for their discoveries about NO as signal in the cardiovascular system”.

  6. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    Science.gov (United States)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  7. Differential Changes of Aorta and Carotid Vasodilation in Type 2 Diabetic GK and OLETF Rats: Paradoxical Roles of Hyperglycemia and Insulin

    Directory of Open Access Journals (Sweden)

    Mei-Fang Zhong

    2012-01-01

    Full Text Available We investigated large vessel function in lean Goto-Kakizaki diabetic rats (GK and Otsuka Long-Evans Tokushima Fatty diabetic rats (OLETF with possible roles of hyperglycemia/hyperosmolarity and insulin. Both young and old GK showed marked hyperglycemia with normal insulin level and well-preserved endothelium-dependent and endothelium-independent vasodilation in aorta and carotid artery. There were significant elevations in endothelial/inducible nitric oxide synthase (eNOS/iNOS and inducible/constitutive heme oxygenase (HO-1/HO-2 in GK. The endothelium-dependent vasodilation in GK was inhibited partly by NOS blockade and completely by simultaneous blocking of HO and NOS. In contrast, OLETF showed hyperinsulinemia and mild hyperglycemia but significant endothelium dysfunction beginning at early ages with concomitantly reduced eNOS. Insulin injection corrected hyperglycemia in GK but induced endothelium dysfunction and intima hyperplasia. Hyperglycemia/hyperosmolarity in vitro enhanced vessel eNOS/HO. We suggest that hyperinsulinemia plays a role in endothelium dysfunction in obese diabetic OLETF, while hyperglycemia/hyperosmolarity-induced eNOS/HO upregulation participates in the adaptation of endothelium function in lean diabetic GK.

  8. Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Rissler, Jenny; Lykkesfeldt, Jens

    2015-01-01

    ) and PM2.5 levels of 24 versus 3μg/m(3), respectively. The PM contained similar fractions of elemental and black carbon (~20-25%) in both exposure scenarios. Reactive hyperemia and nitroglycerin-induced vasodilation in finger arteries and heart rate variability (HRV) measured within 1 h after exposure......BACKGROUND: Exposure to particulate matter (PM) is generally associated with elevated risk of cardiovascular morbidity and mortality. Elderly and obese subjects may be particularly susceptible, although short-term effects are poorly described. METHODS: Sixty healthy subjects (25 males, 35 females...... were primary outcomes. Potential explanatory mechanistic variables included markers of oxidative stress (ascorbate/dehydroascorbate, nitric oxide-production cofactor tetrahydrobiopterin and its oxidation product dihydrobiopterin) and inflammation markers (C-reactive protein and leukocyte differential...

  9. Inhalation of nitric oxide as a treatment of pulmonary hypertension in congenital diaphragmatic hernia

    DEFF Research Database (Denmark)

    Henneberg, S W; Jepsen, S; Andersen, P K

    1995-01-01

    Congenital diaphragmatic hernia (CDH) still has a mortality risk of around 40%. The concomitant pulmonary hypoplasia and the persistent pulmonary hypertension are of major prognostic importance. The use of a selective pulmonary vasodilator may revert this vicious circle that is fatal to many...... children. Inhalation of nitric oxide (NO) has been suggested as a rational treatment of this condition. The authors report three cases of high-risk infants with CDH where NO was used successfully. It is concluded that hypoxemia in CDH can be treated successfully with NO inhalation when conventional...

  10. Nitroxyl (HNO: A Reduced Form of Nitric Oxide with Distinct Chemical, Pharmacological, and Therapeutic Properties

    Directory of Open Access Journals (Sweden)

    Mai E. Shoman

    2016-01-01

    Full Text Available Nitroxyl (HNO, the one-electron reduced form of nitric oxide (NO, shows a distinct chemical and biological profile from that of NO. HNO is currently being viewed as a vasodilator and positive inotropic agent that can be used as a potential treatment for heart failure. The ability of HNO to react with thiols and thiol containing proteins is largely used to explain the possible biological actions of HNO. Herein, we summarize different aspects related to HNO including HNO donors, chemistry, biology, and methods used for its detection.

  11. Effect of the Menstrual Cycle on Maximum Oxygen Consumption and Endothelium-Dependent Vasodilation

    National Research Council Canada - National Science Library

    Andrews, Thomas

    1997-01-01

    .... We studied endothelium-dependent vasodilation of the brachial artery during three phases of the menstrual cycle in 20 eumenorrheic subjects to determine the effect of endogenous estradiol and progesterone...

  12. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  13. Nitroglycerine-induced vasodilation in coronary and brachial arteries in patients with suspected coronary artery disease.

    Science.gov (United States)

    Maruhashi, Tatsuya; Kajikawa, Masato; Nakashima, Ayumu; Iwamoto, Yumiko; Iwamoto, Akimichi; Oda, Nozomu; Kishimoto, Shinji; Matsui, Shogo; Higaki, Tadanao; Shimonaga, Takashi; Watanabe, Noriaki; Ikenaga, Hiroki; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Aibara, Yoshiki; Noma, Kensuke; Higashi, Yukihito

    2016-09-15

    Nitroglycerine-induced vasodilation, an index of endothelium-independent vasodilation, is measured for the assessment of vascular smooth muscle cell function or alterations of vascular structure. Both coronary and brachial artery responses to nitroglycerine have been demonstrated to be independent prognostic markers of cardiovascular events. The purpose of this study was to evaluate the nitroglycerine-induced vasodilation in coronary and brachial arteries in the same patients. We measured nitroglycerine-induced vasodilation in coronary and brachial arteries in 30 subjects with suspected coronary artery disease who underwent coronary angiography (19 men and 11 women; mean age, 69.0±8.8years; age range, 42-85years). The mean values of nitroglycerine-induced vasodilation in the brachial artery, left anterior descending coronary artery, and left circumflex coronary artery were 12.6±5.2%, 11.6±10.3%, and 11.9±11.0%, respectively. Nitroglycerine-induced vasodilation in the brachial artery correlated significantly with that in the left anterior descending coronary artery (r=0.43, P=0.02) and that in the left circumflex coronary artery (r=0.49, P=0.006). There was also a significant correlation between nitroglycerine-induced vasodilation in the left anterior descending coronary artery and that in the left circumflex coronary artery (r=0.72, Parteries and that in coronary arteries are simultaneously present. Nitroglycerine-induced vasodilation in the brachial artery could be used as a surrogate for that in a coronary artery and as a prognostic marker for cardiovascular events. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Derivatives of benzimidazole: vasodilator activity of 2-(p-chloro-alpha-hydroxybenzyl)-benzimidazole hydrochloride. Preliminary study.

    Science.gov (United States)

    Demenge, P; Carraz, G; Luu Duc, C; Silice, C

    1979-01-01

    The effects of 2-(p-chloro-alpha-hydroxybenzyl)-benzimidazole hydrochloride (HBBPC) have been studied in the rabbit and rat. Most of these studies were performed comparatively with reference vasodilators and papaverine. HBBPC vasodilator activity is nearly the same as that of papaverine in the isolated rabbit ear. The characteristic of the vasoactive action of HBBPC seems to reside in its duration. The mechanism of action of HBBPC seems of peripheral type, that is to say it acts on the vascular smooth muscle.

  15. Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling.

    Science.gov (United States)

    Wolin, Michael S; Gupte, Sachin A; Neo, Boon Hwa; Gao, Qun; Ahmad, Mansoor

    2010-01-01

    Most current theories for the mechanism of hypoxic pulmonary vasoconstriction (HPV) include a role for reactive oxygen species and/or changes in redox regulation, but extreme controversy exists regarding which systems and redox changes mediate the HPV response. Nitric oxide (NO) appears to help to maintain low pulmonary arterial pressure, suppress HPV, and prevent the development of pulmonary hypertension. Our studies have found a key role for glucose-6-phosphate dehydrogenase in bovine pulmonary arterial smooth muscle functioning to maintain elevated levels of cytosolic NADPH which fuels the generation of vasodilator levels of hydrogen peroxide. HPV results from hypoxia removing vasodilation by peroxide. Decreased superoxide generation by Nox4 oxidase and its conversion to peroxide by Cu,Zn-SOD appear to be potential factors in sensing hypoxia, and decreased cGMP-associated vasodilation and removal of redox controlled vasodilator mechanisms by increased cytosolic NADPH may be key coordinators of the HPV response. Oxidant generation associated with vascular disease processes, including the removal of NO by superoxide, and attenuation of its ability to stimulate cGMP production by oxidation of the heme and thiols of soluble guanylate cyclase attenuate potential beneficial actions of NO on pulmonary arterial function. While pulmonary hypertension appears to have multiple poorly understood effects on redox-associated processes, potentially influencing responses to hypoxia and NO-cGMP signaling, much remains to be elucidated regarding how these processes may be important factors in the progression, expression and therapeutic treatment of pulmonary hypertension.

  16. Flicker light-induced retinal vasodilation in diabetes and diabetic retinopathy.

    Science.gov (United States)

    Nguyen, Thanh T; Kawasaki, Ryo; Wang, Jie Jin; Kreis, Andreas J; Shaw, Jonathan; Vilser, Walthard; Wong, Tien Y

    2009-11-01

    Flicker light-induced retinal vasodilation may reflect endothelial function in the retinal circulation. We investigated flicker light-induced vasodilation in individuals with diabetes and diabetic retinopathy. Participants consisted of 224 individuals with diabetes and 103 nondiabetic control subjects. Flicker light-induced retinal vasodilation (percentage increase over baseline diameter) was measured using the Dynamic Vessel Analyzer. Diabetic retinopathy was graded from retinal photographs. Mean +/- SD age was 56.5 +/- 11.8 years for those with diabetes and 48.0 +/- 16.3 years for control subjects. Mean arteriolar and venular dilation after flicker light stimulation were reduced in participants with diabetes compared with those in control subjects (1.43 +/- 2.10 vs. 3.46 +/- 2.36%, P flicker light-induced vasodilation were more likely to have diabetes (odds ratio 19.7 [95% CI 6.5-59.1], P flicker light-induced vasodilation were more likely to have diabetic retinopathy (2.2 [1.2-4.0], P = 0.01 for arteriolar dilation and 2.5 [1.3-4.5], P = 0.004 for venular dilation). Reduced retinal vasodilation after flicker light stimulation is independently associated with diabetes status and, in individuals with diabetes, with diabetic retinopathy. Our findings may therefore support endothelial dysfunction as a pathophysiological mechanism underlying diabetes and its microvascular manifestations.

  17. HDL levels and oxidizability during myocardial infarction are associated with reduced endothelial-mediated vasodilation and nitric oxide bioavailability.

    Science.gov (United States)

    Carvalho, Luiz Sergio F; Panzoldo, Natália; Santos, Simone N; Modolo, Rodrigo; Almeida, Breno; Quinaglia E Silva, Jose C; Nadruz, Wilson; de Faria, Eliana C; Sposito, Andrei C

    2014-12-01

    Acute phase response modifies high-density lipoprotein (HDL) into a dysfunctional particle that may favor oxidative/inflammatory stress and eNOS dysfunction. The present study investigated the impact of this phenomenon on patients presenting ST-elevation myocardial infarction (STEMI). Plasma was obtained from 180 consecutive patients within the first 24-h of onset of STEMI symptoms (D1) and after 5 days (D5). Nitrate/nitrite (NOx) and lipoproteins were isolated by gradient ultracentrifugation. The oxidizability of low-density lipoprotein incubated with HDL (HDLaoxLDL) and the HDL self-oxidizability (HDLautox) were measured after CuSO4 co-incubation. Anti-inflammatory activity of HDL was estimated by VCAM-1 secretion by human umbilical vein endothelial cells after incubation with TNF-α. Flow-mediated dilation (FMD) was assessed at the 30(th) day (D30) after STEMI. Among patients in the first tertile of admission HDL-Cholesterol (42 mg/dL) tertiles, respectively. From D1 to D5, there was a decrease in HDL size (-6.3 ± 0.3%; p < 0.001) and particle number (-22.0 ± 0.6%; p < 0.001) as well as an increase in both HDLaoxLDL (33%(23); p < 0.001) and HDLautox (65%(25); p < 0.001). VCAM-1 secretion after TNF-a stimulation was reduced after co-incubation with HDL from healthy volunteers (-24%(33); p = 0.009), from MI patients at D1 (-23%(37); p = 0.015) and at D30 (-22%(24); p = 0.042) but not at D5 (p = 0.28). During STEMI, high HDL-cholesterol is associated with a greater decline in endothelial function. In parallel, structural and functional changes in HDL occur reducing its anti-inflammatory and anti-oxidant properties. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. [Techniques and complementary techniques. Complementary treatments: nitric oxide, prone positioning and surfactant].

    Science.gov (United States)

    Martos Sánchez, I; Vázquez Martínez, J L; Otheo de Tejada, E; Ros, P

    2003-11-01

    The management of hypoxic respiratory failure is based on oxygen delivery and ventilatory support with lung-protective ventilation strategies. Better understanding of acute lung injury have led to new therapeutic approaches that can modify the outcome of these patients. These adjunctive oxygenation strategies include inhaled nitric oxide and surfactant delivery, and the use of prone positioning. Nitric oxide is a selective pulmonary vasodilator that when inhaled, improves oxygenation in clinical situations such as persistent pulmonary hypertension of the newborn, pulmonary hypertension associated with congenital heart disease, and acute respiratory distress syndrome (ARDS). When applied early in ARDS, prone positioning improves distribution of ventilation and reduces the intrapulmonary shunt. The surfactant has dramatically decreased mortality caused by hyaline membrane disease in premature newborns, although the results have been less successful in ARDS. Greater experience is required to determine whether the combination of these treatments will improve the prognosis of these patients.

  19. Enhancing vascular relaxing effects of nitric oxide-donor ruthenium complexes.

    Science.gov (United States)

    Paulo, Michele; Banin, Tamy M; de Andrade, Fernanda A; Bendhack, Lusiane M

    2014-05-01

    Ruthenium-derived complexes have emerged as new nitric oxide (NO) donors that may help circumvent the NO deficiency that impairs vasodilation. NO in vessels can be produced by the endothelial cells and/or released by NO donors. NO interacts with soluble guanylyl-cyclase to produce cGMP to activate the kinase-G pathway. As a result, conductance arteries, veins and resistance arteries dilate, whereas the cytosolic Ca(2+) levels in the smooth muscle cells decrease. NO also reacts with oxygen or the superoxide anion, to generate reactive oxygen species that modulate NO-induced vasodilation. In this article, we focus on NO production by NO synthase and discuss the vascular changes taking place during hypertension originating from endothelial dysfunction. We will describe how the NO released from ruthenium-derived complexes enhances the vascular effects arising from failed NO generation or lack of NO bioavailability. In addition, how ruthenium-derived NO donors induce the hypotensive effect by vasodilation is also discussed.

  20. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    Science.gov (United States)

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  1. Cold-induced vasodilation comparison between Bangladeshi and Japanese natives.

    Science.gov (United States)

    Khatun, Aklima; Ashikaga, Sakura; Nagano, Hisaho; Hasib, Md Abdul; Taimura, Akihiro

    2016-05-03

    The human thermoregulation system responds to changes in environmental temperature, so humans can self-adapt to a wide range of climates. People from tropical and temperate areas have different cold tolerance. This study compared the tolerance of Bangladeshi (tropical) and Japanese (temperate) people to local cold exposure on cold-induced vasodilation (CIVD). Eight Bangladeshi males (now residing in Japan) and 14 Japanese males (residing in Japan) participated in this study. All are sedentary, regular university students. The Bangladeshi subject's duration of stay in Japan was 2.50 ± 2.52 years. The subject's left hand middle finger was immersed in 5 °C water for 20 min to assess their CIVD response (the experiment was conducted in an artificial climate chamber controlled at 25 °C with 50% RH). Compared with the Bangladeshi (BD) group, the Japanese (JP) group displayed some differences. There were significant differences between the BD and JP groups in temperature before immersion (TBI), which were 33.04 ± 1.98 and 34.62 ± 0.94 °C, and time of temperature rise (TTR), which were 5.35 ± 0.82 and 3.72 ± 0.68 min, respectively. There was also a significant difference in the time of sensation rise (TSR) of 8.69 ± 6.49 and 3.26 ± 0.97 min between the BD and JP groups, respectively (P cold exposure than the Bangladeshi group (tropical) evaluated by the CIVD test.

  2. Coronary vasodilation with nitrocompounds--is there a maximum?

    Science.gov (United States)

    Jost, S; Reil, G; Knop, I; Rafflenbeul, W; Auricchio, A; Frombach, R; Gulba, D; Hecker, H; Lichtlen, P

    1989-01-01

    The maximal extent of the dilation of epicardial coronary arteries attainable with nitro-compounds was investigated in 12 patients with coronary artery disease. Before and 5, 10, 15, 19, 60 and 64 min after onset of a 4-min-intravenous infusion of 0.025 mg SIN-1/kg bodyweight coronary angiograms were performed in identical projection; simultaneously, the mean pulmonary wedge pressure (PWP) was measured. At 15 and 60 min, 0.8 mg nitroglycerin (NTG) were additionally administered as sublingual spray. Mean diameters of angiographically normal coronary segments were analyzed with the computer-assisted contour detection system CAAS; they increased by an average maximum of 29 +/- 5% prior to NTG (p less than 0.001). PWP decreased from 9.2 +/- 3.1 mmHg to an average minimum of 4.3 +/- 1.6 mmHg (p less than 0.01) prior to NTG. Neither of these SIN-1-effects was significantly augmented by additional NTG: at 19 min coronary dilation amounted to 28 +/- 7% (p less than 0.001), PWP to 3.9 +/- 1.0 mmHg (p less than 0.01). At 60 min coronary dilation still amounted to 24 +/- 8% (p less than 0.001), PWP to 6.2 +/- 2.5 mmHg (p less than 0.05). By the second administration of NTG the maximal effects attained before could be reproduced: coronary dilation 28 +/- 8% (p less than 0.001), PWP 4.6 +/- 2.2 mmHg (p less than 0.01). Thus, the dilation reserve of epicardial coronary arteries for nitrocompounds is approximately 30% on average. These results suggest the possibility of a reproducible maximal activation of the enzyme guanylate cyclase which seems to be the mediator of the nitro-compound-induced vasodilation.

  3. Nitric oxide heme interactions in nitrophorin from Cimex lectularius

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, R.; Auerbach, H., E-mail: auerbach@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Berry, R. E.; Walker, F. A. [The University of Arizona, Department of Chemistry and Biochemistry (United States); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The nitrophorin from the bedbug Cimex lectularius (cNP) is a nitric oxide (NO) carrying protein. Like the nitrophorins (rNPs) from the kissing bug Rhodnius prolixus, cNP forms a stable heme Fe(III)-NO complex, where the NO can be stored reversibly for a long period of time. In both cases, the NPs are found in the salivary glands of blood-sucking bugs. The insects use the nitrophorins to transport the NO to the victim’s tissues, resulting in vasodilation and reduced blood coagulation. However, the structure of cNP is significantly different to those of the rNPs from Rhodnius prolixus. Furthermore, the cNP can bind a second NO molecule to the proximal heme cysteine when present at higher concentrations. High field Mössbauer spectroscopy on {sup 57}Fe enriched cNP complexed with NO shows reduction of the heme iron and formation of a ferrous nitric oxide (Fe(II)-NO) complex. Density functional theory calculations reproduce the experimental Mössbauer parameters and confirm this observation.

  4. Oxidant-Dependent Thermoelectric Properties of Undoped ZnO Films by Atomic Layer Deposition

    KAUST Repository

    Kim, Hyunho

    2017-02-27

    Extraordinary oxidant-dependent changes in the thermoelectric properties of undoped ZnO thin films deposited by atomic layer deposition (ALD) have been observed. Specifically, deionized water and ozone oxidants are used in the growth of ZnO by ALD using diethylzinc as a zinc precursor. No substitutional atoms have been added to the ZnO films. By using ozone as an oxidant instead of water, a thermoelectric power factor (σS) of 5.76 × 10 W m K is obtained at 705 K for undoped ZnO films. In contrast, the maximum power factor for the water-based ZnO film is only 2.89 × 10 W m K at 746 K. Materials analysis results indicate that the oxygen vacancy levels in the water- and ozone-grown ZnO films are essentially the same, but the difference comes from Zn-related defects present in the ZnO films. The data suggest that the strong oxidant effect on thermoelectric performance can be explained by a mechanism involving point defect-induced differences in carrier concentration between these two oxides and a self-compensation effect in water-based ZnO due to the competitive formations of both oxygen and zinc vacancies. This strong oxidant effect on the thermoelectric properties of undoped ZnO films provides a pathway to improve the thermoelectric performance of this important material.

  5. Interrelationships Among Flow-Mediated Vasodilation, Nitroglycerine-Induced Vasodilation, Baseline Brachial Artery Diameter, Hyperemic Shear Stress, and Cardiovascular Risk Factors.

    Science.gov (United States)

    Maruhashi, Tatsuya; Iwamoto, Yumiko; Kajikawa, Masato; Oda, Nozomu; Kishimoto, Shinji; Matsui, Shogo; Hashimoto, Haruki; Aibara, Yoshiki; Yusoff, Farina Mohamad; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Noma, Kensuke; Nakashima, Ayumu; Goto, Chikara; Hida, Eisuke; Higashi, Yukihito

    2017-12-29

    Flow-mediated vasodilation (FMD) of the brachial artery has been used for the assessment of endothelial function. Considering the mechanism underlying the vasodilatory response of the brachial artery to reactive hyperemia, hyperemic shear stress (HSS), a stimulus for FMD; nitroglycerine-induced vasodilation (NID), an index of endothelium-independent vasodilation; and baseline brachial artery diameter (BAD) are also involved in vasodilatory response. The purpose of this study was to investigate the interrelationships among FMD, HSS, NID, baseline BAD, and cardiovascular risk factors. We measured FMD, HSS, NID, and baseline BAD simultaneously in 1033 participants (633 men and 400 women; mean age: 58.6±17.0 years). Framingham risk score was negatively correlated with FMD, HSS, and NID and was positively correlated with baseline BAD. HSS and NID were positively correlated with FMD, and baseline BAD was negatively correlated with FMD. In participants with normal NID, FMD was correlated with HSS, NID, and baseline BAD, all of which were independent variables of FMD in multivariate analysis. In participants with impaired NID, FMD was correlated with NID and baseline BAD, both of which were independent variables of FMD in multivariate analysis, but there was no association between FMD and HSS. NID and baseline BAD were independent variables of FMD regardless of the status of endothelium-independent vasodilation, whereas there was a significant association between FMD and HSS in participants with normal NID but not in those with impaired NID. The influence of HSS on FMD seems to be dependent on the status of endothelium-independent vasodilation. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  6. Off-Target Function of the Sonic-Hedgehog Inhibitor Cyclopamine in Mediating Apoptosis via Nitric Oxide-Dependent Neutral Sphingomyelinase 2/Ceramide Induction

    OpenAIRE

    Meyers-Needham, Marisa; Lewis, Jocelyn A.; Gencer, Salih; Sentelle, R. David; Saddoughi, Sahar A.; Clarke, Christopher J.; Hannun, Yusuf A.; Norell, Haakan; da Palma, Telma Martins; Nishimura, Michael; Kraveka, Jacqueline M.; Khavandgar, Zohreh; Murshed, Monzur; Cevik, M. Ozgur; Ogretmen, Besim

    2012-01-01

    Sonic hedgehog (SHh) signaling is important in the pathogenesis of various human cancers, such as medulloblastomas, and it has been identified as a valid target for anti-cancer therapeutics. The SHh inhibitor cyclopamine induces apoptosis. The bioactive sphingolipid ceramide mediates cell death in response to various chemotherapeutic agents; however, ceramide’s roles/mechanisms in cyclopamine-induced apoptosis are unknown. Here, we report that cyclopamine mediates ceramide generation selectiv...

  7. High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase-derived superoxide anion.

    Science.gov (United States)

    Erdei, Nóra; Tóth, Attila; Pásztor, Eniko T; Papp, Zoltán; Edes, István; Koller, Akos; Bagi, Zsolt

    2006-11-01

    Obesity frequently leads to the development of hypertension. We hypothesized that high-fat diet (HFD)-induced obesity impairs the endothelium-dependent dilation of arterioles. Male Wistar rats were fed with normal (control) or HFD (60% of saturated fat, for 10 wk). In rats with HFD, body weight, mean arterial blood pressure, and serum insulin, cholesterol, and glucose were elevated. In isolated gracilis muscle arterioles (diameter: approximately 160 microm) of HFD, rat dilations to ACh (at 1 microM, maximum: 83 +/- 3%) and histamine (at 10 microM, maximum: 16 +/- 4%) were significantly (P < 0.05) decreased compared with those of control responses (maximum: 90 +/- 2 and 46 +/- 4%, respectively). Dilations to the NO donor sodium nitroprusside were similar in the two groups. Inhibition of NO synthesis by N(omega)-nitro-l-arginine methyl ester reduced ACh- and histamine-induced dilations in control arterioles but had no effect on microvessels of HFD rats. The superoxide dismutase mimetic Tiron or xanthine oxidase inhibitor allopurinol enhanced ACh (maximum: 90 +/- 2 and 93 +/- 2%, respectively)- and histamine (maximum: 30 +/- 7 and 37 +/- 8%, respectively)-induced dilations in HFD arterioles, whereas the NAD(P)H oxidase inhibitor apocynin had no significant effect. Correspondingly, in carotid arteries of HFD rats, an enhanced superoxide production was shown by lucigenin-enhanced chemiluminescence, in association with an increased xanthine oxidase, but not NAD(P)H oxidase activity. In addition, a marked xanthine oxidase immunostaining was detected in the endothelial layer of the gracilis arterioles of HFD, but not in control rats. These findings suggest that, in obese rats, NO mediation of endothelium-dependent dilation of skeletal muscle arterioles is reduced because of an enhanced xanthine oxidase-derived superoxide production. These alterations demonstrate substantial dysregulation of arteriolar tone by the endothelium in HFD-induced obesity, which may contribute to disturbed tissue blood flow and development of increased peripheral resistance.

  8. GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1

    DEFF Research Database (Denmark)

    Guan, Xinfu; Stoll, Barbara; Lu, Xiaofeng

    2003-01-01

    (n = 8) received consecutive intravenous infusions of saline, GLP-2, and GLP-2 plus N(G)-Nitro-L-arginine methyl ester (L-NAME, 50 micromol x kg(-1) x hour(-1)) for 4 hours each. RESULTS: GLP-2 acutely increased portal-drained visceral (PDV) blood flow rate (+25%) and intestinal blood volume (+51...

  9. Chlorine gas exposure causes systemic endothelial dysfunction by inhibiting endothelial nitric oxide synthase-dependent signaling.

    Science.gov (United States)

    Honavar, Jaideep; Samal, Andrey A; Bradley, Kelley M; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M; Matalon, Sadis; Patel, Rakesh P

    2011-08-01

    Chlorine gas (Cl(2)) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl(2) exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl(2) promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl(2) for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl(2) dose (0-400 ppm) and time after exposure (0-48 h) were determined. Exposure to Cl(2) (250-400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl(2)-exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl(2) exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl(2)-exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl(2) exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms.

  10. Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling

    Science.gov (United States)

    Honavar, Jaideep; Samal, Andrey A.; Bradley, Kelley M.; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L.; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M.; Matalon, Sadis; Patel, Rakesh P.

    2011-01-01

    Chlorine gas (Cl2) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl2 exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl2 promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl2 for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl2 dose (0–400 ppm) and time after exposure (0–48 h) were determined. Exposure to Cl2 (250–400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl2–exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl2 exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl2–exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl2 exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms. PMID:21131444

  11. Semicarbazide-sensitive amine oxidase: role in the vasculature and vasodilation after in situ inhibition.

    Science.gov (United States)

    Vidrio, H

    2003-01-01

    1. The characteristics of semicarbazide-sensitive amine oxidase (SSAO) are reviewed and the unknown physiological or pathological role of this enzyme emphasized. 2. The various mechanisms of action proposed for the vasodilator drug hydralazine are considered. In particular, the inhibitory action on various enzymes, related or not to cardiovascular function, are discussed. 3. Studies linking inhibition of SSAO to hydralazine hypotension are reviewed and a general hypothesis relating both actions is presented. The hypothesis postulates that (a). vascular SSAO is involved in the regulation of vascular tone, and (b). hydralazine vasodilation is the consequence of vascular SSAO inhibition. 4. Evidence supporting these postulates is presented and vascular SSAO inhibition is proposed as a novel mechanism of vasodilation.

  12. Interaction between isoniazid and diverse vasodilators: role of decreased cerebral GABA.

    Science.gov (United States)

    de los Angeles Sánchez-Salvatori, M; Ríos, C; Vidrio, H

    1998-03-01

    To determine if the interaction between isoniazid and hydralazine, consisting of increased hypotension accompanied by bradycardia, occurs with other vasodilators. Blood pressure and heart rate responses to a number of vasodilators were determined in rats under chloralose-urethane, pretreated or not with 250 mg/kg of isoniazid. The influence of this dose of isoniazid on GABA levels in the hypothalamus and pons-medulla was assessed in other groups of rats. Increased hypotension and bradycardia following i.p. isoniazid were observed with dipyridamole, prazosin, pinacidil and hydralazine given i.v. Bradycardia without increased hypotension appeared with papaverine and verapamil, while increased hypotension with unchanged heart rate was observed with minoxidil and captopril. Isoniazid decreased GABA in the hypothalamus and pons-medulla. At the high dose used, isoniazid interacts with various vasodilators, irrespective of their mechanism of action. The interaction could be due to the influence of the drug on GABA levels at cardiovascular regulatory sites.

  13. Mechanisms of K(+) induced renal vasodilation in normo- and hypertensive rats in vivo

    DEFF Research Database (Denmark)

    Magnusson, Linda Helena Margaretha; Sørensen, Charlotte Mehlin; Braunstein, T H

    2011-01-01

    ) was calculated as the ratio of mean arterial pressure (MAP) and RBF (RVR = MAP/RBF). Test drugs were introduced directly into the renal artery. Inward rectifier K(+) (K(ir) ) channels and Na(+) ,K(+) -ATPase were blocked by Ba(2+) and ouabain (estimated plasma concentrations ~20 and ~7 µm) respectively. Results......: Confocal immunofluorescence microscopy demonstrated K(ir) 2.1 channels in pre-glomerular vessels of SD and SHR. Ba(2+) caused a transient (6-13%) increase in baseline RVR in both SD and SHR. Ouabain had a similar effect. Elevated renal plasma [K(+) ] (~12 mm) caused a small and sustained decrease (5...... the K(+) -induced renal vasodilation. Conclusion: K(+) -induced renal vasodilation is larger in SHR, mediated by K(ir) channels in SD and SHR, and in addition, by Na(+) ,K(+) -ATPase in SD. In addition, NO is not essential for K(+) -induced renal vasodilation....

  14. Non-endothelial endothelin counteracts hypoxic vasodilation in porcine large coronary arteries

    DEFF Research Database (Denmark)

    Hedegaard, Elise Røge; Stankevicius, Edgaras; Simonsen, Ulf

    2011-01-01

    was reduced in endothelin-contracted preparations. Arterial wall ADMA concentrations were unchanged by hypoxia. Blocking of potassium channels with TEA (tetraethylammounium chloride)(10 μM) inhibited vasodilation to O2 lowering as well as to NO. The superoxide scavenger tiron (10 μM) and the putative NADPH...... of large coronary arteries. RESULTS: In prostaglandin F2α (PGF2α, 10 μM)-contracted segments with endothelium, gradual lowering of oxygen tension from 95 to 1% O2 resulted in vasodilation. The vasodilation to O2 lowering was rightward shifted in segments without endothelium at all O2 concentrations except...... at 1% O2. The endothelin receptor antagonist SB217242 (10 μM) markedly increased hypoxic dilation despite the free tissue ET-1 concentration in the arterial wall was unchanged in 1% O2 versus 95% O2. Exogenous ET-1 reversed hypoxic dilation in segments with and without endothelium, and the hypoxic...

  15. Nitric Oxide: The Wonder Molecule

    Indian Academy of Sciences (India)

    Nitric Oxide: The Wonder Molecule. Kushal Chakraborty is a doctoral student at. Department of Life. Sciences and Biology at. Jadavpur University. Presently he is working on the stimulatory effects of various kinds of NSAIDs on different kinds of cells and isolation of that protein from those cells. Keywords. Nitric oxide ...

  16. Oxidative stress impairs cGMP-dependent protein kinase activation and vasodilator-stimulated phosphoprotein serine-phosphorylation.

    Science.gov (United States)

    Banday, Anees A; Lokhandwala, Mustafa F

    2018-02-09

    Reactive oxygen species induce vascular dysfunction and hypertension by directly interacting with nitric oxide (NO) which leads to NO inactivation. In addition to a decrease in NO bioavailability, there is evidence that oxidative stress can also modulate NO signaling during hypertension. Here, we investigated the effect of oxidative stress on NO signaling molecules cGMP-dependent protein kinase (PKG) and vasodilator-stimulated phosphoprotein (VASP) which are known to mediate vasodilatory actions of NO. Male Sprague Dawley (SD) rats were provided with tap water (control), 30 mM L-buthionine sulfoximine (BSO, a pro-oxidant), 1 mM tempol (T, an antioxidant) and BSO + T for 3 wks. BSO-treated rats exhibited high blood pressure and oxidative stress. Incubation of mesenteric arterial rings with NO donors caused concentration-dependent relaxation in control rats. However, the response to NO donors was significantly lower in BSO-treated rats with a marked decrease in pD2. In control rats, NO donors activated mesenteric PKG, increased VASP phosphorylation and its interaction with transient receptor potential channels 4 (TRPC4) and inhibited store-operated Ca 2+ influx. NO failed to activate these signaling molecules in mesenteric arteries from BSO-treated rats. Supplementation of BSO-treated rats with tempol reduced oxidative stress and blood pressure and normalized the NO signaling. These data suggest that oxidative stress can reduce NO-mediated PKG activation and VASP-TRPC4 interaction which leads to failure of NO to reduce Ca 2+ influx in smooth muscle cells. The increase in intracellular Ca 2+ contributes to sustained vasoconstriction and subsequent hypertension. Antioxidant supplementation decreases oxidative stress, normalizes NO signaling and reduces blood pressure.

  17. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (IK...

  18. Use of vasodilators in idiopathic sudden sensorineural hearing loss : A systematic review

    NARCIS (Netherlands)

    De Sousa, Melissa Bravenboer; Cazemier, Selma; Stegeman, Inge; Thomeer, Hans

    2017-01-01

    To compare the effect of vasodilators with that of corticosteroids in patients with idiopathic sudden sensorineural hearing loss (ISSHL). A search in PubMed, Cochrane, and Embase was conducted. Two reviewers screened the data sources to identify articles that comply with predefined inclusion

  19. Vasodilators in the treatment of acute heart failure : what we know, what we don't

    NARCIS (Netherlands)

    Metra, Marco; Teerlink, John R.; Voors, Adriaan A.; Felker, G. Michael; Milo-Cotter, Olga; Weatherley, Beth; Dittrich, Howard; Cotter, Gad

    2009-01-01

    Although we have recently witnessed substantial progress in management and outcome of patients with chronic heart failure, acute heart failure (AHF) management and outcome have not changed over almost a generation. Vasodilators are one of the cornerstones of AHF management; however, to a large

  20. Hydralazine-induced vasodilation involves opening of high conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Bang, Lone; Nielsen-Kudsk, J E; Gruhn, N

    1998-01-01

    The purpose of this study was to investigate whether high conductance Ca2+-activated K+ channels (BK(Ca)) are mediating the vasodilator action of hydralazine. In isolated porcine coronary arteries, hydralazine (1-300 microM), like the K+ channel opener levcromakalim, preferentially relaxed...

  1. Thallium-201 myocardial imaging during coronary vasodilation induced by oral dipyridamole

    International Nuclear Information System (INIS)

    Gould, K.L.; Sorenson, S.G.; Albro, P.; Caldwell, J.H.; Chaudhuri, T.; Hamilton, G.W.

    1986-01-01

    Myocardial perfusion imaging of 201 TI injected during maximum exercise has been an important diagnostic tool for coronary artery disease. Pharmacologic coronary vasodilation by i.v. infusion of dipyridamole may be used in lieu of exercise stress for purposes of diagnostic perfusion imaging. However, i.v. dipyridamole is not currently available from commercial sources for widespread routine use. Accordingly, this study was carried out in order to determine whether high dose, oral dipyridamole would be useful as a coronary vasodilator for purposes of diagnostic perfusion imaging. Fifty-eight patients undergoing diagnostic coronary arteriography also had myocardial perfusion imaging with 201TI under conditions of rest, maximum exercise stress, and high dose oral dipyridamole. Of those patients who had a defect on exercise thallium images, 75% also had a perfusion defect on thallium images after high dose oral dipyridamole. These results indicate that oral dipyridamole causes sufficient coronary arteriolar vasodilation and increase of coronary flow in nonstenotic arteries to identify perfusion defects comparable to those seen on maximum exercise stress in at least 75% of cases. In 25% of patients with exercise defects, no perfusion defect was seen after oral dipyridamole. Thus, oral dipyridamole is a potent coronary vasodilator, comparable to exercise stress in most cases, but in a minority of patients may not be comparable to exercise stress

  2. Acute Vasodilator Response in Pediatric Pulmonary Arterial Hypertension : Current Clinical Practice From the TOPP Registry

    NARCIS (Netherlands)

    Douwes, Johannes M.; Humpl, Tilman; Bonnet, Damien; Beghetti, Maurice; Ivy, D. Dunbar; Berger, Rolf M. F.

    2016-01-01

    BACKGROUND In pulmonary arterial hypertension (PAH), acute vasodilator response testing (AVT) is considered important to identify adult patients with favorable prognosis using calcium-channel blocker (CCB) therapy. However, in pediatric PAH, criteria used to identify acute responders and CCB use are

  3. 49 CFR 173.158 - Nitric acid.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as...

  4. Rho-kinase inhibition improves vasodilator responsiveness during hyperinsulinemia in the metabolic syndrome.

    Science.gov (United States)

    Schinzari, Francesca; Tesauro, Manfredi; Rovella, Valentina; Di Daniele, Nicola; Gentileschi, Paolo; Mores, Nadia; Campia, Umberto; Cardillo, Carmine

    2012-09-15

    In patients with the metabolic syndrome (MetS), the facilitatory effect of insulin on forearm vasodilator responsiveness to different stimuli is impaired. Whether the RhoA/Rho kinase (ROCK) pathway is involved in this abnormality is unknown. We tested the hypotheses that, in MetS patients, ROCK inhibition with fasudil restores insulin-stimulated vasodilator reactivity and that oxidative stress plays a role in this mechanism. Endothelium-dependent and -independent forearm blood flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were assessed in MetS patients (n = 8) and healthy controls (n = 5) before and after the addition of fasudil (200 μg/min) to an intra-arterial infusion of insulin (0.1 mU/kg/min). In MetS patients (n = 5), fasudil was also infused without hyperinsulinemia. The possible involvement of oxidative stress in the effect of fasudil during hyperinsulinemia was investigated in MetS patients (n = 5) by infusing vitamin C (25 mg/min). In MetS patients, compared with saline, fasudil enhanced endothelium-dependent and -independent vasodilator responses during insulin infusion (P < 0.001 and P = 0.008, respectively), but not in the absence of hyperinsulinemia (P = 0.25 and P = 0.13, respectively). By contrast, fasudil did not affect vasoreactivity to ACh and SNP during hyperinsulinemia in controls (P = 0.11 and P = 0.56, respectively). In MetS patients, fasudil added to insulin and vitamin C did not further enhance vasodilation to ACh and SNP (P = 0.15 and P = 0.43, respectively). In the forearm circulation of patients with the MetS, ROCK inhibition by fasudil improves endothelium-dependent and -independent vasodilator responsiveness during hyperinsulinemia; increased oxidative stress seems to be involved in the pathophysiology of this phenomenon.

  5. Efferent pathways in sodium overload-induced renal vasodilation in rats.

    Directory of Open Access Journals (Sweden)

    Nathalia O Amaral

    Full Text Available Hypernatremia stimulates the secretion of oxytocin (OT, but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280-350 g were anesthetized with sodium thiopental (40 mg. kg(-1, i.v.. A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP and renal blood flow (RBF. Renal vascular conductance (RVC was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6, OT infusion (0.03 µg • kg(-1, i.v. induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg(-1 b.wt., i.v. was infused over 60 s. In sham rats (n = 6, hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg(-1 • h(-1, i.v.; n = 7 and renal denervation (RX reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7 completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively, whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.

  6. Uncoupling of Vascular Nitric Oxide Synthase Caused by Intermittent Hypoxia

    Directory of Open Access Journals (Sweden)

    Mohammad Badran

    2016-01-01

    Full Text Available Objective. Obstructive sleep apnea (OSA, characterized by chronic intermittent hypoxia (CIH, is often present in diabetic (DB patients. Both conditions are associated with endothelial dysfunction and cardiovascular disease. We hypothesized that diabetic endothelial dysfunction is further compromised by CIH. Methods. Adult male diabetic (BKS.Cg-Dock7m +/+ Leprdb/J (db/db mice (10 weeks old and their heterozygote littermates were subjected to CIH or intermittent air (IA for 8 weeks. Mice were separated into 4 groups: IA (intermittent air nondiabetic, IH (intermittent hypoxia nondiabetic, IADB (intermittent air diabetic, and IHDB (intermittent hypoxia diabetic groups. Endothelium-dependent and endothelium-independent relaxation and modulation by basal nitric oxide (NO were analyzed using wire myograph. Plasma 8-isoprostane, interleukin-6 (IL-6, and asymmetric dimethylarginine (ADMA were measured using ELISA. Uncoupling of eNOS was measured using dihydroethidium (DHE staining. Results. Endothelium-dependent vasodilation and basal NO production were significantly impaired in the IH and IADB group compared to IA group but was more pronounced in IHDB group. Levels of 8-isoprostane, IL-6, ADMA, and eNOS uncoupling were ≈2-fold higher in IH and IADB groups and were further increased in the IHDB group. Conclusion. Endothelial dysfunction is more pronounced in diabetic mice subjected to CIH compared to diabetic or CIH mice alone. Oxidative stress, ADMA, and eNOS uncoupling were exacerbated by CIH in diabetic mice.

  7. Effects of a novel ACE inhibitor, 3-(3-thienyl-L-alanyl-ornithyl-proline, on endothelial vasodilation and hepatotoxicity in L-NAME-induced hypertensive rats

    Directory of Open Access Journals (Sweden)

    Seth MK

    2016-04-01

    Full Text Available Mahesh Kumar Seth,1–3 M Ejaz Hussain,2 Santosh Pasha,1 Mohammad Fahim3 1Peptide Synthesis Laboratory, CSIR, Institute of Genomics and Integrative Biology, Delhi, India; 2Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India; 3Department of Physiology, Jamia Hamdard Deemed University, New Delhi, India Abstract: Nitric oxide (NO is a widespread biological mediator involved in many physiological and pathological processes, eg, in the regulation of vascular tone and hypertension. Chronic inhibition of NO synthase by NG-nitro-L-arginine methyl ester (ʟ-NAME hydrochloride results in the development of hypertension accompanied by an increase in vascular responsiveness to adrenergic stimuli. Recently, we developed a novel sulfur-containing angiotensin-converting enzyme inhibitor: 3-(3-thienyl-ʟ-alanyl-ornithyl-proline (TOP. Our previous studies indicated a superior nature of the molecule as an antihypertensive agent in spontaneously hypertensive rats (showing the involvement of renin–angiotensin–aldosterone system in comparison to captopril. The aim of the present study was to investigate the effect of TOP on NO pathway in ʟ-NAME-induced hypertensive rats, and captopril was included as the standard treatment group. Treatment with both TOP (20 mg/kg and captopril (40 mg/kg prevented the development of hypertension in ʟ-NAME model, but TOP showed better restoration of NO and normal levels of angiotensin-converting enzyme. In addition, in vitro vasorelaxation assay showed an improvement in endothelium-dependent vasodilation in both the cases. Further, the biochemical (malondialdehyde, alanine aminotransferase, and aspartate aminotransferase and the histopathological effects of TOP on rat liver tissues revealed a protective nature of TOP in comparison to captopril in the ʟ-NAME model. In conclusion, TOP at 50% lesser dose than captopril was found to be better in the ʟ-NAME model. Keywords: nitric oxide

  8. Nitric oxide dilates rat retinal blood vessels by cyclooxygenase-dependent mechanisms.

    Science.gov (United States)

    Ogawa, Naoto; Mori, Asami; Hasebe, Masami; Hoshino, Maya; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2009-10-01

    It has been suggested that nitric oxide (NO) stimulates the cyclooxygenase (COX)-dependent mechanisms in the ocular vasculature; however, the importance of the pathway in regulating retinal circulation in vivo remains to be elucidated. Therefore, we investigated the role of COX-dependent mechanisms in NO-induced vasodilation of retinal blood vessels in thiobutabarbital-anesthetized rats with and without neuronal blockade (tetrodotoxin treatment). Fundus images were captured with a digital camera that was equipped with a special objective lens. The retinal vascular response was assessed by measuring changes in diameter of the retinal blood vessel. The localization of COX and soluble guanylyl cyclase in rat retina was examined using immunohistochemistry. The NO donors (sodium nitroprusside and NOR3) increased the diameter of the retinal blood vessels but decreased systemic blood pressure in a dose-dependent manner. Treatment of rats with indomethacin, a nonselective COX inhibitor, or SC-560, a selective COX-1 inhibitor, markedly attenuated the vasodilation of retinal arterioles, but not the depressor response, to the NO donors. However, both the vascular responses to NO donors were unaffected by the selective COX-2 inhibitors NS-398 and nimesulide. Indomethacin did not change the retinal vascular and depressor responses to hydralazine, 8-(4-chlorophenylthio)-guanosine-3', 5'-cyclic monophosphate (a membrane-permeable cGMP analog) and 8-(4-chlorophenylthio)-adenosine-3', 5'-cyclic monophosphate (a membrane-permeable cAMP analog). Treatment with SQ 22536, an adenylyl cyclase inhibitor, but not ODQ, a soluble guanylyl cyclase inhibitor, significantly attenuated the NOR3-induced vasodilation of retinal arterioles. The COX-1 immunoreactivity was found in retinal blood vessels. The retinal blood vessel was faintly stained for soluble guanylyl cyclase, although the apparent immunoreactivities on mesenteric and choroidal blood vessels were observed. These results suggest

  9. Chlorine gas exposure disrupts nitric oxide homeostasis in the pulmonary vasculature.

    Science.gov (United States)

    Honavar, Jaideep; Bradley, Eddie; Bradley, Kelley; Oh, Joo Yeun; Vallejo, Matthew O; Kelley, Eric E; Cantu-Medellin, Nadiezhda; Doran, Stephen; Dell'italia, Louis J; Matalon, Sadis; Patel, Rakesh P

    2014-07-03

    Exposure to chlorine (Cl2) gas during industrial accidents or chemical warfare leads to significant airway and distal lung epithelial injury that continues post exposure. While lung epithelial injury is prevalent, relatively little is known about whether Cl2 gas also promotes injury to the pulmonary vasculature. To determine this, rats were subjected to a sub-lethal Cl2 gas exposure (400 ppm, 30 min) and then brought back to room air. Pulmonary arteries (PA) were isolated from rats at various times post-exposure and contractile (phenylephrine) and nitric oxide (NO)-dependent vasodilation (acetylcholine and mahmanonoate) responses measured ex vivo. PA contractility did not change, however significant inhibition of NO-dependent vasodilation was observed that was maximal at 24-48 h post exposure. Superoxide dismutase restored NO-dependent vasodilation suggesting a role for increased superoxide formation. This was supported by ∼2-fold increase in superoxide formation (measured using 2-hydroethidine oxidation to 2-OH-E+) from PA isolated from Cl2 exposed rats. We next measured PA pressures in anesthetized rats. Surprisingly, PA pressures were significantly (∼4 mmHg) lower in rats that had been exposed to Cl2 gas 24 h earlier suggesting that deficit in NO-signaling observed in isolated PA experiments did not manifest as increased PA pressures in vivo. Administration of the iNOS selective inhibitor 1400W, restored PA pressures to normal in Cl2 exposed, but not control rats suggesting that any deficit in NO-signaling due to increased superoxide formation in the PA, is offset by increased NO-formation from iNOS. These data indicate that disruption of endogenous NO-signaling mechanisms that maintain PA tone is an important aspect of post-Cl2 gas exposure toxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001☆

    Science.gov (United States)

    Scicinski, Jan; Oronsky, Bryan; Ning, Shoucheng; Knox, Susan; Peehl, Donna; Kim, Michelle M.; Langecker, Peter; Fanger, Gary

    2015-01-01

    The endogenous mediator of vasodilation, nitric oxide (NO), has been shown to be a potent radiosensitizer. However, the underlying mode of action for its role as a radiosensitizer – while not entirely understood – is believed to arise from increased tumor blood flow, effects on cellular respiration, on cell signaling, and on the production of reactive oxygen and nitrogen species (RONS), that can act as radiosensitizers in their own right. NO activity is surprisingly long-lived and more potent in comparison to oxygen. Reports of the effects of NO with radiation have often been contradictory leading to confusion about the true radiosensitizing nature of NO. Whether increasing or decreasing tumor blood flow, acting as radiosensitizer or radioprotector, the effects of NO have been controversial. Key to understanding the role of NO as a radiosensitizer is to recognize the importance of biological context. With a very short half-life and potent activity, the local effects of NO need to be carefully considered and understood when using NO as a radiosensitizer. The systemic effects of NO donors can cause extensive side effects, and also affect the local tumor microenvironment, both directly and indirectly. To minimize systemic effects and maximize effects on tumors, agents that deliver NO on demand selectively to tumors using hypoxia as a trigger may be of greater interest as radiosensitizers. Herein we discuss the multiple effects of NO and focus on the clinical molecule RRx-001, a hypoxia-activated NO donor currently being investigated as a radiosensitizer in the clinic. PMID:26164533

  11. Nitrogen isotope exchange between nitric oxide and nitric acid

    International Nuclear Information System (INIS)

    Axente, D.; Abrudean, M.; Baldea, A.

    1996-01-01

    The rate of nitrogen isotope exchange between NO and HNO 3 has been measured as a function of nitric acid concentration of 1.5-4M x 1 -1 . The exchange rate law is shown to be R=k[HNO 3 ] 2 [N 2 O 3 ] and the measured activation energy is E=67.78 kJ x M -1 (16.2 kcal x M -1 ). It is concluded that N 2 O 3 participates in 15 N/ 14 N exchange between NO and HNO 3 at nitric acid concentrations higher than 1.5M x 1 -1 . (author). 7 refs., 3 figs., 4 tabs

  12. EFFECT OF FREE RADICALS ON CALCITONIN-GENE-RELATED PEPTIDE MEDIATED VASODILATION.

    Science.gov (United States)

    Dekanosidze, M; Saganelidze, K; Mitagvaria, N

    2018-01-01

    It is known that in some pathological conditions, due to the formation of a large number of free oxygen radicals, the cardiovascular system is severely affected. However, the effect of free radicals on CGRP-mediated vasodilation remains unclear. The aim of this work was to study the effect of free radicals on CGRP-mediated neurogenic vasodilation on preparations of an isolated rabbit lingual artery. The experiments were performed on the lingual artery preparations of 6 rabbits of the Chinchilla breed of both sexes. The contractile-relaxation activity of isolated preparations, both with intact endothelial layer and deendotelized, were studied in isometric mode on a strain-gauge unit using mechanotrons of the 6 MX1C type. Our experiments showed that free radicals can disrupt the reactivity of the vascular wall both in the presence and in the absence of endothelium-dependent relaxation factors and that is might be considered as a main conclusion of this study.

  13. Tumor necrosis factor-alpha antagonism improves vasodilation during hyperinsulinemia in metabolic syndrome.

    Science.gov (United States)

    Tesauro, Manfredi; Schinzari, Francesca; Rovella, Valentina; Melina, Domenico; Mores, Nadia; Barini, Angela; Mettimano, Marco; Lauro, Davide; Iantorno, Micaela; Quon, Michael J; Cardillo, Carmine

    2008-07-01

    Obesity is associated with chronic inflammation due to overproduction of proinflammatory cytokines, including tumor necrosis factor (TNF)-alpha. We assessed the effects of TNF-alpha neutralization by infliximab on vascular reactivity during hyperinsulinemia in obesity-related metabolic syndrome. Vascular responses to intra-arterial infusion of acetylcholine (ACh) and sodium nitroprusside (SNP) were assessed in patients with metabolic syndrome, before and after administration of infliximab. Patients had blunted vasodilator responses to ACh and SNP during hyperinsulinemia compared with control subjects; a potentiation of the responsiveness to both ACh and SNP, however, was observed in patients following infliximab. The antioxidant vitamin C improved the vasodilator response to ACh in patients with metabolic syndrome, but its effect was not further enhanced by concurrent administration of infliximab. TNF-alpha neutralization ameliorates vascular reactivity in metabolic syndrome during hyperinsulinemia, likely in relation to decreased oxidative stress, thereby suggesting an involvement of inflammatory cytokines in vascular dysfunction of these patients.

  14. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients.

    Science.gov (United States)

    Perticone, Francesco; Perticone, Maria; Maio, Raffaele; Sciacqua, Angela; Andreucci, Michele; Tripepi, Giovanni; Corrao, Salvatore; Mallamaci, Francesca; Sesti, Giorgio; Zoccali, Carmine

    2015-10-01

    Tissue nonspecific alkaline phosphatase, promoting arterial calcification in experimental models, is a powerful predictor of total and cardiovascular mortality in general population and in patients with renal or cardiovascular diseases. For this study, to evaluate a possible correlation between serum alkaline phosphatase levels and endothelial function, assessed by strain gauge plethysmography, we enrolled 500 naïve hypertensives divided into increasing tertiles of alkaline phosphatase. The maximal response to acetylcholine was inversely related to alkaline phosphatase (r=−0.55; Palkaline phosphatase and serum phosphorus on endothelial function. The steepness of the alkaline phosphatase/vasodilating response to acetylcholine relationship was substantially attenuated (Palkaline phosphatase unit, respectively), and this interaction remained highly significant (Palkaline phosphatase and endothelium-dependent vasodilation, which was attenuated by relatively higher serum phosphorus levels.

  15. Insulin and non-insulin mediated vasodilation and glucose uptake in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Olsen, David Benee; Reving, Danny

    2009-01-01

    AIMS: The objective was to re-examine endothelial function, insulin mediated vasodilation and glucose extraction in the forearm of patients with type 2 diabetes (T2DM) and matched control subjects (CON) to investigate whether blood flow impairments result from diabetes per se or from concurrent...... disease. METHODS: 18 subjects (10 with T2DM, 8 CON) had graded brachial artery infusions of endothelial dependent (acetylcholine: 15, 30, 60mug/min), endothelial independent (sodium nitroprusside: 1, 3, 10mug/min) and partially endothelial mediated (adenosine: 50, 150, 500mug/min) vasodilators...... forearm blood flow were similar in T2DM and CON. However, insulin mediated forearm blood flow responses and glucose extraction were lower in T2DM versus CON. CONCLUSION: The vasodilatory effect of insulin is impaired in T2DM although bulk flow capacity is maintained. Insulin mediated glucose extraction...

  16. Extracardiac Uptake of Thallium-201 during Myocardial Perfusion Imaging with Pharmacologic Vasodilation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chung Il; Kwark, Dong Suk; Chung, Byung Cheon; Park, Moo Keun; Lee, Jae Tae; Lee, Kyu Bo [Kyungpook National University College of Medicine, Daegu (Korea, Republic of)

    1992-03-15

    Myocardial perfusion imaging with {sup 201}T1-chloride following exercise or vasodilator-induced hyperemia has been effective in detecting the presence of coronary artery disease. An increased lung uptake of thallium has been reported as a sensitive marker of severe and extensive coronary artery disease and associated with poor prognosis. Thallium has also been noted to concentrate in a variety of malignant lesions. We report 5 cases of extracardiac uptake of thallium during myocardial perfusion scan with pharmacologic vasodilation. Accumulation of thallium was found in the lesions of a breast cancer, a lung cancer, a Castleman's disease and 2 cases of thymoma. We believe that the presence of focal extracardiac uptake of thallium during myocardial perfusion scan should suggest the need for further clinical evaluation to detect the tumor and must differentiate the increased lung uptake of thallium due to left ventricular dysfunction in coronary artery disease.

  17. Cutaneous vascular and sweating responses to intradermal administration of prostaglandin E1 and E2 in young and older adults: a role for nitric oxide?

    Science.gov (United States)

    Fujii, Naoto; Singh, Maya Sarah; Halili, Lyra; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2016-06-01

    Cyclooxygenase (COX) contributes to cutaneous vasodilation and sweating responses; however, the mechanisms underpinning these responses remain unknown. We hypothesized that prostaglandin E1 (PGE1) and E2 (PGE2) (COX-derived vasodilator products) directly mediate cutaneous vasodilation and sweating through nitric oxide synthase (NOS)-dependent mechanisms in young adults. Furthermore, we hypothesized that this response is diminished in older adults, since aging attenuates COX-dependent cutaneous vasodilation and sweating. In 9 young (22 ± 5 yr) and 10 older (61 ± 6 yr) adults, cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites receiving incremental doses (0.05, 0.5, 5, 50, 500 μM each for 25 min) of PGE1 or PGE2 with and without coadministration of 10 mM N(ω)-nitro-l-arginine, a nonspecific NOS inhibitor. N(ω)-nitro-l-arginine attenuated PGE1-mediated increases in CVC at all concentrations in young adults, whereas it reduced PGE2-mediated increases in CVC at lower concentrations (0.05-0.5 μM) in older adults (all P 0.05). Neither PGE1 nor PGE2 increased sweat rate at any of the administered concentrations for either the young or older adults (all P > 0.05). We show that although cutaneous vascular responsiveness to PGE1 and PGE2 is similar between young and older adults, the cutaneous vasodilator response is partially mediated through NOS albeit via low-to-high concentrations of PGE1 in young adults and low concentrations of PGE2 in older adults, respectively. We also show that in both young and older adults, PGE1 and PGE2 do not increase sweat rate under normothermic conditions. Copyright © 2016 the American Physiological Society.

  18. Effect of hypohydration on postsynaptic cutaneous vasodilation and sweating in healthy men.

    Science.gov (United States)

    Tucker, Matthew A; Six, Ashley; Moyen, Nicole E; Satterfield, Alf Z; Ganio, Matthew S

    2017-05-01

    Hypohydration decreases cutaneous vasodilation and sweating during heat stress, but it is unknown if these decrements are from postsynaptic (i.e., sweat gland/blood vessel) alterations. The purpose of this study was to determine if hypohydration affects postsynaptic cutaneous vasodilation and sweating responses. Twelve healthy men participated in euhydrated (EU) and hypohydrated (HY) trials, with hypohydration induced via fluid restriction and passive heat stress. Changes in cutaneous vascular conductance (CVC; % max ) in response to incremental intradermal infusion of the endothelium-independent vasodilator sodium nitroprusside (SNP) and the endothelium-dependent vasodilator methacholine chloride (MCh) were assessed by laser Doppler flowmetry. Local sweat rate (LSR) was simultaneously assessed at the MCh site via ventilated capsule. At the end of the last dose, maximal CVC was elicited by delivering a maximal dose of SNP (5 × 10 -2 M) for 30 min to both sites with simultaneous local heating (~44°C) at the SNP site. The concentration of drug needed to elicit 50% of the maximal response (log EC 50 ) was compared between hydration conditions. The percent body mass loss was greater with HY vs. EU (-2.2 ± 0.7 vs. -0.1 ± 0.7%, P 0.05). In conclusion, hypohydration attenuated endothelium-dependent CVC but did not affect endothelium-independent CVC or LSR responses. These data suggest that reductions in skin blood flow accompanying hypohydration can be partially attributed to altered postsynaptic function. Copyright © 2017 the American Physiological Society.

  19. Relationship between left ventricular mass and endothelium-dependent vasodilation in never-treated hypertensive patients.

    Science.gov (United States)

    Perticone, F; Maio, R; Ceravolo, R; Cosco, C; Cloro, C; Mattioli, P L

    1999-04-20

    Hypertensive patients are characterized by development of both left ventricular hypertrophy (LVH) and endothelial dysfunction We enrolled 65 never-treated hypertensive patients (36 men and 29 women aged 45.6+/-6.0 years) to assess the possible relationship between echocardiographic left ventricular mass (LVM) and endothelium-dependent vasodilation. Left ventricular measurements were performed at end diastole and end systole according to the recommendations of the American Society of Echocardiography and the Penn Convention. LVM was calculated with the Devereux formula and indexed by body surface area and height raised to the 2.7th power. The endothelial function was tested as responses of forearm vasculature to acetylcholine (ACh), an endothelium-dependent vasodilator (7.5, 15, and 30 microg. mL-1. min-1, each for 5 minutes), and sodium nitroprusside (SNP), an endothelium-independent vasodilator (0.8, 1.6, and 3.2 microg. mL-1. min-1, each for 5 minutes). Drugs were infused into the brachial artery, and forearm blood flow (FBF) was measured by strain-gauge plethysmography. A negative significant relationship between indexed LVM and peak of increase in FBF was found during ACh infusions (r=-0. 554; P<0.0001). In addition, hypertrophic patients had a significantly lower responsive to ACh than patients without LVH (the peak increase in FBF was 9.9+/-3.7 versus 16.1+/-8.1 mL per 100 mL of tissue per minute; P<0.0001). No significant correlation was observed between LVM and FBF during SNP infusion. Our data provide the first evidence that echocardiographic LVM in hypertensive patients is inversely related to FBF responses to the endothelium-dependent vasodilating agent ACh, but it is likely that both endothelium and LVM are damaged by hypertension.

  20. Successful use of continuous vasodilator infusion to treat critical vasospasm threatening a distal bypass

    OpenAIRE

    Gregory A. Magee, MD, MSc; Anastasia Plotkin, MD; Jeniann A. Yi, MD, MS; Kathryn E. Bowser, MD; David P. Kuwayama, MD, MPA

    2018-01-01

    Vasospasm immediately after lower extremity arterial bypass may represent an uncommon cause of early graft failure. We report a successful case of catheter-directed, intra-arterial continuous vasodilator infusion to salvage a bypass graft threatened by severe, refractory vasospasm after incomplete response to nicardipine, verapamil, and nitroglycerin boluses. A continuous nitroglycerin infusion was administered for 24 hours, by which time the vasospasm resolved. At 12 months postoperatively, ...

  1. Nitric Oxide Bioavailability in Obstructive Sleep Apnea: Interplay of Asymmetric Dimethylarginine and Free Radicals

    Directory of Open Access Journals (Sweden)

    Mohammad Badran

    2015-01-01

    Full Text Available Obstructive sleep apnea (OSA occurs in 2% of middle-aged women and 4% of middle-aged men and is considered an independent risk factor for cerebrovascular and cardiovascular diseases. Nitric oxide (NO is an important endothelium derived vasodilating substance that plays a critical role in maintaining vascular homeostasis. Low levels of NO are associated with impaired endothelial function. Asymmetric dimethylarginine (ADMA, an analogue of L-arginine, is a naturally occurring product of metabolism found in the human circulation. Elevated levels of ADMA inhibit NO synthesis while oxidative stress decreases its bioavailability, so impairing endothelial function and promoting atherosclerosis. Several clinical trials report increased oxidative stress and ADMA levels in patients with OSA. This review discusses the role of oxidative stress and increased ADMA levels in cardiovascular disease resulting from OSA.

  2. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals

    DEFF Research Database (Denmark)

    Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E.

    2017-01-01

    in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also...... examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals...... in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken...

  3. Inhibition of nitric oxide synthesis by systemic N(G)-monomethyl-L-arginine administration in humans

    DEFF Research Database (Denmark)

    Frandsen, U; Bangsbo, J; Langberg, Henning

    2000-01-01

    (controls) and with prior N(G)-nitro-L-arginine methyl ester (L-NAME) infusion (4 mg/kg, intravenously). Samples from the interstitial fluid were obtained at rest, during exercise and after exercise with the microdialysis technique. Interstitial adenosine in controls increased (p0.05) to controls. The 6......-keto-prostaglandin F1alpha concentration in controls was 1.17+/-0.20 ng/ml at rest and increased (p0.05) in L-NAME. The interstitial K(+) concentration in controls increased (p......We examined whether the formation or the release of the vasodilators adenosine, prostacyclin (PGI(2)) and potassium (K(+)) increase in skeletal muscle interstitium in response to nitric oxide synthase (NOS) inhibition. Five subjects performed one-legged knee extensor exercise at 30 W without...

  4. Repeated increases in blood flow, independent of exercise, enhance conduit artery vasodilator function in humans.

    Science.gov (United States)

    Naylor, Louise H; Carter, Howard; FitzSimons, Matthew G; Cable, N Timothy; Thijssen, Dick H J; Green, Daniel J

    2011-02-01

    This study aimed to determine the importance of repeated increases in blood flow to conduit artery adaptation, using an exercise-independent repeated episodic stimulus. Recent studies suggest that exercise training improves vasodilator function of conduit arteries via shear stress-mediated mechanisms. However, exercise is a complex stimulus that may induce shear-independent adaptations. Nine healthy men immersed their forearms in water at 42°C for three 30-min sessions/wk across 8 wk. During each session, a pneumatic pressure cuff was inflated around one forearm to unilaterally modulate heating-induced increases in shear. Forearm heating was associated with an increase in brachial artery blood flow (P<0.001) and shear rate (P<0.001) in the uncuffed forearm; this response was attenuated in the cuffed limb (P<0.005). Repeated episodic exposure to bilateral heating induced an increase in endothelium-dependent vasodilation in response to 5-min ischemic (P<0.05) and ischemic handgrip exercise (P<0.005) stimuli in the uncuffed forearm, whereas the 8-wk heating intervention did not influence dilation to either stimulus in the cuffed limb. Endothelium-independent glyceryl trinitrate responses were not altered in either limb. Repeated heating increases blood flow to levels that enhance endothelium-mediated vasodilator function in humans. These findings reinforce the importance of the direct impacts of shear stress on the vascular endothelium in humans.

  5. Detection of human collateral circulation by vasodilation-thallium-201 tomography

    International Nuclear Information System (INIS)

    Nienaber, C.A.; Salge, D.; Spielmann, R.P.; Montz, R.; Bleifeld, W.

    1990-01-01

    Coronary arteriolar vasodilation may provoke redistribution of flow to collateral-dependent jeopardized myocardium. To assess the physiologic significance of collaterals, 80 consecutive post-infarction patients (age 58 +/- 8 years) underwent vasodilation-redistribution thallium-201 tomographic imaging after administration of 0.56 mg of intravenous dipyridamole/kg body weight. Circumferential profile analysis of thallium-201 uptake and redistribution in representative left ventricular tomograms provided quantitative assessment of transient and fixed defects and separation between periinfarctional and distant inducible hypoperfusion. Tomographic perfusion data were correlated to wall motion and collateral circulation between distinct anatomic perfusion territories. Patients were grouped according to presence (59%) or absence (41%) of angiographically visible collateral channels to jeopardized myocardium. In the presence of collaterals, distant reversible defects were larger than in absence of collaterals (p less than 0.05); the extent of combined periinfarctional and distant redistribution was also larger in collateralized patients (p less than 0.025), whereas the size of the persistent perfusion defect was similar in both groups. By prospective analysis the tomographic perfusion pattern of combined periinfarctional and distant redistribution revealed a sensitivity of 85% and a specificity of 78% for the detection of significant collateral circulation in this group of patients. Thus, using the exhausted flow reserve as a diagnostic tool, vasodilation-thallium-201 tomography has the potential to identify and quantitate collateralized myocardium in post-infarction patients and may guide diagnostic and therapeutic decision-making

  6. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    International Nuclear Information System (INIS)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G.

    2016-01-01

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  7. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G., E-mail: bipin@amrita.edu

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  8. Wearing graduated compression stockings augments cutaneous vasodilation but not sweating during exercise in the heat.

    Science.gov (United States)

    Fujii, Naoto; Nikawa, Toshiya; Tsuji, Bun; Kenny, Glen P; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-05-01

    The activation of cutaneous vasodilation and sweating are essential to the regulation of core temperature during exercise in the heat. We assessed the effect of graduated compression induced by wearing stockings on cutaneous vasodilation and sweating during exercise in the heat (30°C). On two separate occasions, nine young males exercised for 45 min or until core temperature reached ~1.5°C above baseline resting while wearing either (1) stockings causing graduated compression (graduate compression stockings, GCS), or (2) loose-fitting stockings without compression (Control). Forearm vascular conductance was evaluated by forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure to estimate cutaneous vasodilation. Sweat rate was estimated using the ventilated capsule technique. Core and skin temperatures were measured continuously. Exercise duration was similar between conditions (Control: 42.2 ± 3.6 min vs. GCS: 42.2 ± 3.6 min, P  = 1.00). Relative to Control, GCS increased forearm vascular conductance during the late stages (≥30 min) of exercise (e.g., at 40 min, 15.6 ± 5.6 vs. 18.0 ± 6.0 units, P  = 0.01). This was paralleled by a greater sensitivity (23.1 ± 9.1 vs. 32.1 ± 15.0 units°C -1 , P  = 0.043) and peak level (14.1 ± 5.1 vs. 16.3 ± 5.7 units, P  = 0.048) of cutaneous vasodilation as evaluated from the relationship between forearm vascular conductance with core temperature. However, the core temperature threshold at which an increase in forearm vascular conductance occurred did not differ between conditions (Control: 36.9 ± 0.2 vs. GCS: 37.0 ± 0.3°C, P  = 0.13). In contrast, no effect of GCS on sweating was measured (all P  > 0.05). We show that the use of GCS during exercise in the heat enhances cutaneous vasodilation and not sweating. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American

  9. Wearing graduated compression stockings augments cutaneous vasodilation in heat-stressed resting humans.

    Science.gov (United States)

    Fujii, Naoto; Nikawa, Toshiya; Tsuji, Bun; Kondo, Narihiko; Kenny, Glen P; Nishiyasu, Takeshi

    2017-05-01

    We investigated whether graduated compression induced by stockings enhances cutaneous vasodilation in passively heated resting humans. Nine habitually active young men were heated at rest using water-perfusable suits, resulting in a 1.0 °C increase in body core temperature. Heating was repeated twice on separate occasions while wearing either (1) stockings that cause graduated compression (pressures of 26.4 ± 5.3, 17.5 ± 4.4, and 6.1 ± 2.0 mmHg at the ankle, calf, and thigh, respectively), or (2) loose-fitting stockings without causing compression (Control). Forearm vascular conductance during heating was evaluated by forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure to estimate heat-induced cutaneous vasodilation. Body core (esophageal), skin, and mean body temperatures were measured continuously. Compared to the Control, forearm vascular conductance during heating was higher with graduated compression stockings (e.g., 23.2 ± 5.5 vs. 28.6 ± 5.8 units at 45 min into heating, P = 0.001). In line with this, graduated compression stockings resulted in a greater sensitivity (27.5 ± 8.3 vs. 34.0 ± 9.4 units °C -1 , P = 0.02) and peak level (25.5 ± 5.8 vs. 29.7 ± 5.8 units, P = 0.004) of cutaneous vasodilation as evaluated from the relationship between forearm vascular conductance with mean body temperature. In contrast, the mean body temperature threshold for increases in forearm vascular conductance did not differ between the Control and graduated compression stockings (36.5 ± 0.1 vs. 36.5 ± 0.2 °C, P = 0.85). Our results show that graduated compression associated with the use of stockings augments cutaneous vasodilation by modulating sensitivity and peak level of cutaneous vasodilation in relation to mean body temperature. However, the effect of these changes on whole-body heat loss remains unclear.

  10. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice.

    Science.gov (United States)

    Danigo, Aurore; Nasser, Mohamad; Bessaguet, Flavien; Javellaud, James; Oudart, Nicole; Achard, Jean-Michel; Demiot, Claire

    2015-02-18

    Angiotensin II type 1 receptor (AT1R) blockers have beneficial effects on neurovascular complications in diabetes and in organ's protection against ischemic episodes. The present study examines whether the AT1R blocker candesartan (1) has a beneficial effect on diabetes-induced alteration of pressure-induced vasodilation (PIV, a cutaneous physiological neurovascular mechanism which could delay the occurrence of tissue ischemia), and (2) could be protective against skin pressure ulcer formation. Male Swiss mice aged 5-6 weeks were randomly assigned to four experimental groups. In two groups, diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 200 mg.kg(-1)). After 6 weeks, control and STZ mice received either no treatment or candesartan (1 mg/kg-daily in drinking water) during 2 weeks. At the end of treatment (8 weeks of diabetes duration), C-fiber mediated nociception threshold, endothelium-dependent vasodilation and PIV were assessed. Pressure ulcers (PUs) were then induced by pinching the dorsal skin between two magnetic plates for three hours. Skin ulcer area development was assessed during three days, and histological examination of the depth of the skin lesion was performed at day three. After 8 weeks of diabetes, the skin neurovascular functions (C-fiber nociception, endothelium-dependent vasodilation and PIV) were markedly altered in STZ-treated mice, but were fully restored by treatment with candesartan. Whereas in diabetes mice exposure of the skin to pressure induced wide and deep necrotic lesions, treatment with candersartan restored their ability to resist to pressure-induced ulceration as efficiently as the control mice. Candesartan decreases the vulnerability to pressure-induced ulceration and restores skin neurovascular functions in mice with STZ-induced established diabetes.

  11. Aldose reductase pathway inhibition improved vascular and C-fiber functions, allowing for pressure-induced vasodilation restoration during severe diabetic neuropathy.

    Science.gov (United States)

    Demiot, Claire; Tartas, Maylis; Fromy, Bérengère; Abraham, Pierre; Saumet, Jean Louis; Sigaudo-Roussel, Dominique

    2006-05-01

    Pressure-induced vasodilation, a neurovascular mechanism relying on the interaction between mechanosensitive C-fibers and vessels, allows skin blood flow to increase in response to locally nonnociceptive applied pressure that in turn may protect against pressure ulcers. We expected that severe neuropathy would dramatically affect pressure-induced vasodilation in diabetic mice, and we aimed to determine whether pressure-induced vasodilation alteration could be reversed in 8-week diabetic mice. Control and diabetic mice received no treatment or sorbinil, an aldose reductase inhibitor, or alagebrium, an advanced glycation end product breaker, the last 2 weeks of diabetes. Laser Doppler flowmetry was used to evaluate pressure-induced vasodilation and endothelium-dependent vasodilation after iontophoretic delivery of acetylcholine (ACh). We assessed the nervous function with measurements of motor nerve conduction velocity (MNCV) as well as the C-fiber-mediated nociception threshold. Pressure-induced vasodilation, endothelial response, C-fiber threshold, and MNCV were all altered in 8-week diabetic mice. None of the treatments had a significant effect on MNCV. Although sorbinil and alagebrium both restored ACh-dependent vasodilation, sorbinil was the sole treatment to restore the C-fiber threshold as well as pressure-induced vasodilation development. Therefore, the inhibition of aldose reductase pathway by sorbinil improved vascular and C-fiber functions that allow pressure-induced vasodilation restoration that could limit neuropathic diabetic cutaneous pressure ulcers.

  12. Lean and obese coronary perivascular adipose tissue impairs vasodilation via differential inhibition of vascular smooth muscle K+ channels

    Science.gov (United States)

    Noblet, Jillian N.; Owen, Meredith K.; Goodwill, Adam G.; Sassoon, Daniel J.; Tune, Johnathan D.

    2015-01-01

    Objective The effects of coronary perivascular adipose tissue (PVAT) on vasomotor tone are influenced by an obese phenotype and are distinct from other adipose tissue depots. The purpose of this investigation was to examine the effects of lean and obese coronary PVAT on end-effector mechanisms of coronary vasodilation and to identify potential factors involved. Approach and Results Hematoxylin and eosin staining revealed similarities in coronary perivascular adipocyte size between lean and obese Ossabaw swine. Isometric tension studies of isolated coronary arteries from Ossabaw swine revealed that factors derived from lean and obese coronary PVAT attenuated vasodilation to adenosine. Lean coronary PVAT inhibited KCa and KV7, but not KATP channel mediated dilation in lean arteries. In the absence of PVAT, vasodilation to KCa and KV7 channel activation was impaired in obese arteries relative to lean arteries. Obese PVAT had no effect on KCa or KV7 channel mediated dilation in obese arteries. In contrast, obese PVAT inhibited KATP channel mediated dilation in both lean and obese arteries. The differential effects of obese versus lean PVAT were not associated with changes in either coronary KV7 or KATP channel expression. Incubation with calpastatin attenuated coronary vasodilation to adenosine in lean but not obese arteries. Conclusions These findings indicate that lean and obese coronary PVAT attenuates vasodilation via inhibitory effects on vascular smooth muscle K+ channels and that alterations in specific factors such as calpastatin are capable of contributing to the initiation and/or progression of smooth muscle dysfunction in obesity. PMID:25838427

  13. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Noboru Toda

    2016-08-01

    Full Text Available Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic nerves and nitric oxide (NO liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS/neuronal NOS (nNOS inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD. Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD.

  14. Nitric Oxide Synthesis Is Increased in Cybrid Cells with m.3243A>G Mutation

    Directory of Open Access Journals (Sweden)

    Juliana Gamba

    2012-12-01

    Full Text Available Nitric oxide (NO is a free radical and a signaling molecule in several pathways, produced by nitric oxide synthase (NOS from the conversion of L-arginine to citrulline. Supplementation of L-arginine has been used to treat MELAS (mitochondrial encephalopathy with lactic acidosis and stroke like syndrome, a mitochondrial disease caused by the m.3243A>G mutation. Low levels of serum arginine and endothelium dysfunction have been reported in MELAS and this treatment may increase NO in endothelial cells and promote vasodilation, decreasing cerebral ischemia and strokes. Although clinical benefits have been reported, little is known about NO synthesis in MELAS. In this study we found that osteosarcoma derived cybrid cells with high levels of m.3243A>G had increased nitrite, an NO metabolite, and increased intracellular NO, demonstrated by an NO fluorescent probe (DAF-FM. Muscle vessels from patients with the same mutation had increased staining in NADPH diaphorase, suggestive of increased NOS. These results indicate increased production of NO in cells harboring the m.3243A>G, however no nitrated protein was detected by Western blotting. Further studies are necessary to clarify the exact mechanisms of L-arginine effect to determine the appropriate clinical use of this drug therapy.

  15. GLP-1 Receptor Agonist Exenatide Increases Capillary Perfusion Independent of Nitric Oxide in Healthy Overweight Men.

    Science.gov (United States)

    Smits, Mark M; Muskiet, Marcel H A; Tonneijck, Lennart; Kramer, Mark H H; Diamant, Michaela; van Raalte, Daniël H; Serné, Erik H

    2015-06-01

    The insulinotropic gut-derived hormone glucagon-like peptide-1 (GLP-1) increases capillary perfusion via a nitric oxide-dependent mechanism in rodents. This improves skeletal muscle glucose use and cardiac function. In humans, the effect of clinically used GLP-1 receptor agonists (GLP-1RAs) on capillary density is unknown. We aimed to assess the effects of the GLP-1RA exenatide on capillary density as well as the involvement of nitric oxide in humans. We included 10 healthy overweight men (age, 20-27 years; body mass index, 26-31 kg/m(2)). Measurements were performed during intravenous infusion of placebo (saline 0.9%), exenatide, and a combination of exenatide and the nonselective nitric oxide-synthase inhibitor L-N(G)-monomethyl arginine. Capillary videomicroscopy was performed, and baseline and postocclusive (peak) capillary densities were counted. Compared with placebo, exenatide increased baseline and peak capillary density by 20.1% and 8.3%, respectively (both P=0.016). Concomitant L-N(G)-monomethyl arginine infusion did not alter the effects of exenatide. Vasomotion was assessed using laser Doppler fluxmetry. Exenatide nonsignificantly reduced the neurogenic domain of vasomotion measurements (R=-5.6%; P=0.092), which was strongly and inversely associated with capillary perfusion (R=-0.928; P=0.036). Glucose levels were reduced during exenatide infusion, whereas levels of insulin were unchanged. Acute exenatide infusion increases capillary perfusion via nitric oxide-independent pathways in healthy overweight men, suggesting direct actions of this GLP-1RA on microvascular perfusion or interaction with vasoactive factors. © 2015 American Heart Association, Inc.

  16. PINOT NOIR: pulmonic insufficiency improvement with nitric oxide inhalational response.

    Science.gov (United States)

    Hart, Stephen A; Devendra, Ganesh P; Kim, Yuli Y; Flamm, Scott D; Kalahasti, Vidyasagar; Arruda, Janine; Walker, Esteban; Boonyasirinant, Thananya; Bolen, Michael; Setser, Randolph; Krasuski, Richard A

    2013-09-04

    Tetralogy of Fallot (TOF) repair and pulmonary valvotomy for pulmonary stenosis (PS) lead to progressive pulmonary insufficiency (PI), right ventricular enlargement and dysfunction. This study assessed whether pulmonary regurgitant fraction measured by cardiovascular magnetic resonance (CMR) could be reduced with inhaled nitric oxide (iNO). Patients with at least moderate PI by echocardiography undergoing clinically indicated CMR were prospectively enrolled. Patients with residual hemodynamic lesions were excluded. Ventricular volume and blood flow sequences were obtained at baseline and during administration of 40 ppm iNO. Sixteen patients (11 with repaired TOF and 5 with repaired PS) completed the protocol with adequate data for analysis. The median age [range] was 35 [19-46] years, BMI was 26 ± 5 kg/m(2) (mean ± SD), 50% were women and 75% were in NYHA class I. Right ventricular end diastolic volume index for the cohort was 157 ± 33 mL/m(2), end systolic volume index was 93 ± 20 mL/m(2) and right ventricular ejection fraction was 40 ± 6%. Baseline pulmonary regurgitant volume was 45 ± 25 mL/beat and regurgitant fraction was 35 ± 16%. During administration of iNO, regurgitant volume was reduced by an average of 6 ± 9% (p=0.01) and regurgitant fraction was reduced by an average of 5 ± 8% (p=0.02). No significant changes were observed in ventricular indices for either the left or right ventricle. iNO was successfully administered during CMR acquisition and appears to reduce regurgitant fraction in patients with at least moderate PI suggesting a potential role for selective pulmonary vasodilator therapy in these patients. ClinicalTrials.gov, NCT00543933.

  17. Sinus Venosus Atrial Septal Defect Complicated by Eisenmenger Syndrome and the Role of Vasodilator Therapy

    Directory of Open Access Journals (Sweden)

    Amornpol Anuwatworn

    2016-01-01

    Full Text Available Sinus venosus atrial septal defect is a rare congenital, interatrial communication defect at the junction of the right atrium and the vena cava. It accounts for 5–10% of cases of all atrial septal defects. Due to the rare prevalence and anatomical complexity, diagnosing sinus venous atrial septal defects poses clinical challenges which may delay diagnosis and treatment. Advanced cardiac imaging studies are useful tools to diagnose this clinical entity and to delineate the anatomy and any associated communications. Surgical correction of the anomaly is the primary treatment. We discuss a 43-year-old Hispanic female patient who presented with dyspnea and hypoxia following a laparoscopic myomectomy. She had been diagnosed with peripartum cardiomyopathy nine years ago at another hospital. Transesophageal echocardiography and computed tomographic angiography of the chest confirmed a diagnosis of sinus venosus atrial septal defect. She was also found to have pulmonary arterial hypertension and Eisenmenger syndrome. During a hemodynamic study, she responded to vasodilator and she was treated with Ambrisentan and Tadalafil. After six months, her symptoms improved and her pulmonary arterial hypertension decreased. We also observed progressive reversal of the right-to-left shunt. This case illustrates the potential benefit of vasodilator therapy in reversing Eisenmenger physiology, which may lead to surgical repair of the atrial septal defect as the primary treatment.

  18. Affinin (Spilanthol, Isolated from Heliopsis longipes, Induces Vasodilation via Activation of Gasotransmitters and Prostacyclin Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jesús Eduardo Castro-Ruiz

    2017-01-01

    Full Text Available Heliopsis longipes roots have been widely used in Mexican traditional medicine to relieve pain, mainly, toothaches. Previous studies have shown that affinin, the major alkamide of these roots, induces potent antinociceptive and anti-inflammatory activities. However, the effect of H. longipes root extracts and affinin on the cardiovascular system have not been investigated so far. In the present study, we demonstrated that the dichloromethane and ethanolic extracts of H. longipes roots, and affinin, isolated from these roots, produce a concentration-dependent vasodilation of rat aorta. Affinin-induced vasorelaxation was partly dependent on the presence of endothelium and was significantly blocked in the presence of inhibitors of NO, H2S, and CO synthesis (NG-nitro-l-arginine methyl ester (l-NAME, dl-propargylglycine (PAG, and chromium mesoporphyrin (CrMP, respectively; K+ channel blockers (glibenclamide (Gli and tetraethyl ammonium (TEA, and guanylate cyclase and cyclooxygenase inhibitors (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ and indomethacin (INDO, respectively. Our results demonstrate, for the first time, that affinin induces vasodilation by mechanisms that involve gasotransmitters, and prostacyclin signaling pathways. These findings indicate that this natural alkamide has therapeutic potential in the treatment of cardiovascular diseases.

  19. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    Science.gov (United States)

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  20. Intradermal administration of endothelin-1 attenuates endothelium-dependent and -independent cutaneous vasodilation via Rho kinase in young adults.

    Science.gov (United States)

    Fujii, Naoto; Amano, Tatsuro; Halili, Lyra; Louie, Jeffrey C; Zhang, Sarah Y; McNeely, Brendan D; Kenny, Glen P

    2017-01-01

    We recently showed that intradermal administration of endothelin-1 diminished endothelium-dependent and -independent cutaneous vasodilation. We evaluated the hypothesis that Rho kinase may be a mediator of this response. We also sought to evaluate if endothelin-1 increases sweating. In 12 adults (25 ± 6 yr), we measured cutaneous vascular conductance (CVC) and sweating during 1) endothelium-dependent vasodilation induced via administration of incremental doses of methacholine (0.25, 5, 100, and 2,000 mM each for 25 min) and 2) endothelium-independent vasodilation induced via administration of 50 mM sodium nitroprusside (20-25 min). Responses were evaluated at four skin sites treated with either 1) lactated Ringer solution (Control), 2) 400 nM endothelin-1, 3) 3 mM HA-1077 (Rho kinase inhibitor), or 4) endothelin-1+HA-1077. Pharmacological agents were intradermally administered via microdialysis. Relative to the Control site, endothelin-1 attenuated endothelium-dependent vasodilation (CVC at 2,000 mM methacholine, 80 ± 10 vs. 56 ± 15%max, P 0.05). Endothelium-independent vasodilation was attenuated by endothelin-1 compared with the Control site (CVC, 92 ± 13 vs. 70 ± 14%max, P 0.05). There was no between-site difference in sweating throughout (P > 0.05). We show that in young adults, Rho kinase is an important mediator of the endothelin-1-mediated attenuation of endothelium-dependent and -independent cutaneous vasodilation, and that endothelin-1 does not increase sweating. Copyright © 2017 the American Physiological Society.

  1. NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001.

    Science.gov (United States)

    Scicinski, Jan; Oronsky, Bryan; Ning, Shoucheng; Knox, Susan; Peehl, Donna; Kim, Michelle M; Langecker, Peter; Fanger, Gary

    2015-12-01

    The endogenous mediator of vasodilation, nitric oxide (NO), has been shown to be a potent radiosensitizer. However, the underlying mode of action for its role as a radiosensitizer - while not entirely understood - is believed to arise from increased tumor blood flow, effects on cellular respiration, on cell signaling, and on the production of reactive oxygen and nitrogen species (RONS), that can act as radiosensitizers in their own right. NO activity is surprisingly long-lived and more potent in comparison to oxygen. Reports of the effects of NO with radiation have often been contradictory leading to confusion about the true radiosensitizing nature of NO. Whether increasing or decreasing tumor blood flow, acting as radiosensitizer or radioprotector, the effects of NO have been controversial. Key to understanding the role of NO as a radiosensitizer is to recognize the importance of biological context. With a very short half-life and potent activity, the local effects of NO need to be carefully considered and understood when using NO as a radiosensitizer. The systemic effects of NO donors can cause extensive side effects, and also affect the local tumor microenvironment, both directly and indirectly. To minimize systemic effects and maximize effects on tumors, agents that deliver NO on demand selectively to tumors using hypoxia as a trigger may be of greater interest as radiosensitizers. Herein we discuss the multiple effects of NO and focus on the clinical molecule RRx-001, a hypoxia-activated NO donor currently being investigated as a radiosensitizer in the clinic. Copyright © 2015. Published by Elsevier B.V.

  2. L-Arginine Supplementation in Type II Diabetic Rats Preserves Renal Function and Improves Insulin Sensitivity by Altering the Nitric Oxide Pathway

    Directory of Open Access Journals (Sweden)

    Taylor Claybaugh

    2014-01-01

    Full Text Available Rat studies demonstrated that type II diabetes mellitus (T2DM decreases both the production and bioavailability of nitric oxide (NO. L-arginine (LA provides the precursor for the production of NO. We hypothesized that LA dietary supplementation will preserve NO production via endothelial nitric oxide synthase (eNOS causing renal microvascular vasodilation and increased glomerular blood flow and thus increasing glomerular filtration rate (GFR. This would impede the formation of reactive oxygen species which contributes to cell damage and death. LA supplementation preserved GFR in the treated diabetic rats compared to untreated diabetic rats. We provide evidence that this effect may be due to increased levels of eNOS and urinary cyclic guanosine monophosphate, which leads to renal microvascular vasodilation. Plasma nitrotyrosine was decreased in the LA treated rats; however, plasma nitrite levels remained unaffected as expected. Marked improvements in glucose tolerance were also observed in the LA treated diabetic rats. These results demonstrate that LA supplementation preserves NO activity and may delay the onset of insulin resistance and renal dysfunction during hyperglycemic stress. These results suggest the importance of the NO pathway in consequent renal dysfunction and in the development of insulin resistance in diabetic rats.

  3. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S) Production in Human Uterine Artery Endothelial Cells.

    Science.gov (United States)

    Zhang, Hong-Hai; Chen, Jennifer C; Sheibani, Lili; Lechuga, Thomas J; Chen, Dong-Bao

    2017-07-01

    Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics. Copyright © 2017 Endocrine Society

  4. l-Citrulline dilates rat retinal arterioles via nitric oxide- and prostaglandin-dependent pathways in vivo

    Directory of Open Access Journals (Sweden)

    Asami Mori

    2015-04-01

    Full Text Available l-Citrulline is an effective precursor of l-arginine produced by the l-citrulline/l-arginine cycle, and it exerts beneficial effects on the cardiovascular system by supporting enhanced nitric oxide (NO production. NO dilates retinal blood vessels via the cyclooxygenase-mediated pathway. The purpose of this study was to examine the effects of l-citrulline on retinal circulation and to investigate the potential involvement of NO and prostaglandins in l-citrulline-induced responses in rats. l-Citrulline (10–300 μg kg−1 min−1, i.v. increased the diameter of retinal arterioles without significantly changing mean blood pressure, heart rate, and fundus blood flow. The vasodilator response of retinal arterioles to l-citrulline was significantly diminished following treatment with NG-nitro-l-arginine methyl ester (30 mg/kg, i.v., an NO synthase inhibitor, or indomethacin (5 mg/kg, i.v., a cyclooxygenase inhibitor. In addition, α-methyl-dl-aspartic acid (147 mg/kg, i.v., an inhibitor of argininosuccinate synthase, the rate-limiting enzyme for the recycling of l-citrulline to l-arginine, diminished the l-citrulline-induced retinal vasodilation. These results suggest that both NO- and prostaglandin-dependent pathways contribute to the l-citrulline-induced vasodilation of rat retinal arterioles. The l-citrulline/l-arginine recycling pathway may have more importance in regulating vascular tone in retinal blood vessels than in peripheral resistance vessels.

  5. Nitric oxide and hypoxia signaling.

    Science.gov (United States)

    Jeffrey Man, H S; Tsui, Albert K Y; Marsden, Philip A

    2014-01-01

    Nitric oxide (NO) production is catalyzed by three distinct enzymes, namely, neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). The production of NO by vascular endothelium relies mainly on eNOS. Curiously, iNOS and nNOS also are relevant for vascular NO production in certain settings. By relaxing vascular smooth muscle, the classical view is that NO participates in O2 homeostasis by increasing local blood flow and O2 delivery. It is now appreciated that NO has an even more fundamental role in cellular oxygen sensing at the cellular and physiological level. A key component of cellular oxygen sensing is the hypoxia-inducible factor (HIF) that activates a transcriptional program to promote cellular survival under conditions of inadequate oxygen supply. Important new insights demonstrate that HIF protein is stabilized by two parallel pathways: (1) a decrease in the O2-dependent prolyl hydroxylation of HIF and (2) NO-dependent S-nitrosylation of HIF pathway components including HIF-α. The need for these two complementary pathways to HIF activation arises because decreased oxygen delivery can occur not only by decreased ambient oxygen but also by decreased blood oxygen-carrying capacity, as with anemia. In turn, NO production is tightly linked to O2 homeostasis. O2 is a key substrate for the generation of NO and impacts the enzymatic activity and expression of the enzymes that catalyze the production of NO, the nitric oxide synthases. These relationships manifest in a variety of clinical settings ranging from the unique situation of humans living in hypoxic environments at high altitudes to the common scenario of anemia and the use of therapeutics that can bind or release NO. © 2014 Elsevier Inc. All rights reserved.

  6. Tobacco Xenobiotics Release Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Lam EWN

    2003-09-01

    Full Text Available Abstract Many xenobiotic compounds exert their actions through the release of free radicals and related oxidants 12, bringing about unwanted biological effects 3. Indeed, oxidative events may play a significant role in tobacco toxicity from cigarette smoke. Here, we demonstrate the direct in vitro release of the free radical nitric oxide (•NO from extracts and components of smokeless tobacco, including nicotine, nitrosonornicotine (NNN and 4-(methyl-N-nitrosamino-1-(3-pyridyl-1-butanone (NNK in phosphate buffered saline and human saliva using electron spin resonance and chemiluminescence detection. Our findings suggest that tobacco xenobiotics represent as yet unrecognized sources of •NO in the body.

  7. Acute supplementation of L-arginine affects neither strength performance nor nitric oxide production.

    Science.gov (United States)

    Meirelles, Claudia M; Matsuura, Cristiane

    2018-03-01

    L-arginine is a semi-essential amino acid involved in nitric oxide production. As nitric oxide is an important vasodilator, L-arginine supplementation would increase blood perfusion and, subsequently, muscle performance during exercises. The aim of this study was to determine the acute effect of L-arginine supplementation on strength performance and nitric oxide levels in healthy trained individuals. In a double-blind, placebo-controlled, cross-over study, 12 men were randomly assigned to L-arginine or placebo supplementation. Subjects received 6 g of L-arginine or placebo 60 minutes before strength test (maximum number of repetitions, 3 sets at 70% of one repetition maximum on bench press and at 80% of one repetition maximum on knee extensions, 2 minutes of rest between sets and exercises). Blood samples were collected before supplementation and 6 min after exercise. Plasma nitrite levels did not significantly change after L-arginine or placebo supplementation and strength-training exercise (placebo, from 13.01±1.18 to 11.83±2.81 mM; L-arginine, from 10.95±4.09 to 11.99±2.5 mM). There was a significant reduction in the number of repetitions performed from set 1 to set 3 in each set of both bench press and knee extension, but no significant interactions were observed between placebo and L-arginine. These results do not support the use of L-arginine as an ergogenic aid for strength performance, at least in context of acute use immediately before resistance exercise performance.

  8. [Nitric oxide and human aging].

    Science.gov (United States)

    Barbararsh, N A; Kuvshinov, D Iu; Chichilenko, M V; Kolesnikov, A O

    2011-01-01

    More than in 500 17-21-year-old medical students stress reactivity (SR), biological age (BA), arterial pressure (AP) and nitric oxide (NO) metabolites excretion to the alveolar air [nitrates and nitrites concentration (NNC) in alveolar condensate] were determined in rest and before examinations during 1995-2204. AP, BA and NNC were measured in various trimesters of individual year (IY, the period from one person's birthday to another). During this period girls' AP changes insignificantly. The AP of youths is higher than in girls and increases during IV-IY trimester (10-12 months after birthday). The youths NNC decreases from the II to the IV-IY trimesters, but in girls there is a tendency to NNC increase during the IV-IY trimester their NNC negatively correlates (r = -0,34) with their systolic AP Among youths and girls with equal AP, NNC is significantly higher in girls. NNC decreases with the SR rise; this decrease develops during the examination stress too, but in girls NNC decrease is less. BA in youths is higher than in girls and increases during the IV-IY trimester. In youths BA negatively correlates (r = -0,60) with NNC. Taking into mind the "stress theory" of aging (P. Parsons, 1995) our data may be a basis to assumption that nitric oxide is a "molecule of anti-aging".

  9. Relationship between endothelial nitric oxide synthase gene ...

    African Journals Online (AJOL)

    Introduction: Endothelial nitric oxide synthase (eNOS), the enzyme in charge of nitric oxide production, plays a crucial role in vascular biology. However, the impact of single nucleotide polymorphisms (SNPs) affecting the gene encoding for eNOS (eNOS) on coronary artery diseases remains under debate and no data were ...

  10. Trans monounsaturated fatty acids and saturated fatty acids have similar effects on postprandial flow-mediated vasodilation

    NARCIS (Netherlands)

    Roos, de N.M.; Siebelink, E.; Bots, M.L.; Tol, van A.; Schouten, E.G.; Katan, M.B.

    2002-01-01

    Objective: Several studies suggest that a fatty meal impairs flow-mediated vasodilation (FMD), a measur9e of endothelial function. We tested whether the impairment was greater for trans fats than for saturated fats. We did this because we previously showed that replacement of saturated fats by trans

  11. Combined statistical analysis of vasodilation and flow curves in brachial ultrasonography: technique and its connection to cardiovascular risk factors

    Science.gov (United States)

    Boisrobert, Loic; Laclaustra, Martin; Bossa, Matias; Frangi, Andres G.; Frangi, Alejandro F.

    2005-04-01

    Clinical studies report that impaired endothelial function is associated with Cardio-Vascular Diseases (CVD) and their risk factors. One commonly used mean for assessing endothelial function is Flow-Mediated Dilation (FMD). Classically, FMD is quantified using local indexes e.g. maximum peak dilation. Although such parameters have been successfully linked to CVD risk factors and other clinical variables, this description does not consider all the information contained in the complete vasodilation curve. Moreover, the relation between flow impulse and the vessel vasodilation response to this stimulus, although not clearly known, seems to be important and is not taken into account in the majority of studies. In this paper we propose a novel global parameterization for the vasodilation and the flow curves of a FMD test. This parameterization uses Principal Component Analysis (PCA) to describe independently and jointly the variability of flow and FMD curves. These curves are obtained using computerized techniques (based on edge detection and image registration, respectively) to analyze the ultrasound image sequences. The global description obtained through PCA yields a detailed characterization of the morphology of such curves allowing the extraction of intuitive quantitative information of the vasodilation process and its interplay with flow changes. This parameterization is consistent with traditional measurements and, in a database of 177 subjects, seems to correlate more strongly (and with more clinical parameters) than classical measures to CVD risk factors and clinical parameters such as LDL- and HDL-Cholesterol.

  12. Brain natriuretic peptide is a potent vasodilator in aged human microcirculation and shows a blunted response in heart failure patients

    DEFF Research Database (Denmark)

    Edvinsson, Marie-Louise; Uddman, Erik; Edvinsson, Lars

    2014-01-01

    BACKGROUND: Brain natriuretic peptide (BNP) is normally present in low levels in the circulation, but it is elevated in parallel with the degree of congestion in heart failure subjects (CHF). BNP has natriuretic effects and is a potent vasodilator. It is suggested that BNP could be a therapeutic...

  13. PACAP-38 infusion causes sustained vasodilation of the middle meningeal artery in the rat

    DEFF Research Database (Denmark)

    Bhatt, Deepak K; Gupta, Saurabh; Olesen, Jes

    2014-01-01

    BACKGROUND: In healthy human volunteers and in migraineurs, pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) infusion caused sustained vasodilation of the middle meningeal artery (MMA) and an immediate as well as a delayed headache. All the study subjects experienced facial flushing....... Mast cells (MCs) might have a role in the long-lasting effect of PACAP-38 infusion. We hypothesized that in mast cell-depleted (MCD) rats the vascular responses to PACAP-38 would be lesser than in control rats because of a lack of vasodilatory products released during MC degranulation. METHODS: MCs...... were depleted by chronic treatment with compound 48/80. The effect of 20 minutes' intravenous (i.v.) infusion of calcitonin gene-related peptide (CGRP), PACAP-38, PACAP(6-38) (PAC-1 receptor antagonist) and PACAP-27 on the diameter of the MMA and on mean arterial blood pressure (MABP) in control...

  14. A Rare Case of Intermittent Claudication Associated with Impaired Arterial Vasodilation

    Directory of Open Access Journals (Sweden)

    J. J. Posthuma

    2017-01-01

    Full Text Available Exercise-related intermittent claudication is marked by reduced blood flow to extremities caused by either stenosis or impaired vascular function. Although intermittent claudication is common in the elderly, it rarely occurs in the young and middle-aged individuals. Here, we report a case of exercise-related claudication in a 41-year-old woman, in the absence of overt vascular pathology. Using a series of imaging and functional tests, we established that her complaints were due to impaired arterial vasodilation, possibly due to a defect in nitrous oxide-mediated dilation. The symptoms were reversible upon administration of a calcium antagonist, showing reversibility of the vascular impairment. Identification of reversible vascular “stiffness” merits consideration in young and otherwise healthy subjects with claudication of unknown origin.

  15. Long-term estradiol treatment improves VIP-mediated vasodilation in atherosclerotic proximal coronary arteries

    DEFF Research Database (Denmark)

    Dalsgaard, T.; Mortensen, Alicja; Larsen, C. R.

    2003-01-01

    arteries. Female ovariectomized homozygous Watanabe heritable hyperlipidemic rabbits were randomized to 16 weeks treatment with 17beta-estradiol or placebo. The diet was semisynthetic, thereby avoiding the influence of phytoestrogens. Artery ring segments were mounted for isometric tension recordings...... in myographs. Following precontraction, the dose-response relationships for VIP and PACAP were evaluated. Treatment with 17beta-estradiol significantly improved the maximum VIP-mediated vasodilation (E-max, percentage of precontraction) in proximal coronary arteries (45.8 +/- 9.6% vs. 24.1 +/- 3.7%, p ....05). In the same artery segment, 17β-estradiol induced a significant decrease in the relative ratio between the repeated contractile response to potassium 30 and 120 mM (100 +/- 7% vs. 132 +/- 11%, p

  16. Mast cell degranulation and de novo histamine formation contribute to sustained postexercise vasodilation in humans.

    Science.gov (United States)

    Romero, Steven A; McCord, Jennifer L; Ely, Matthew R; Sieck, Dylan C; Buck, Tahisha M; Luttrell, Meredith J; MacLean, David A; Halliwill, John R

    2017-03-01

    In humans, acute aerobic exercise elicits a sustained postexercise vasodilation within previously active skeletal muscle. This response is dependent on activation of histamine H 1 and H 2 receptors, but the source of intramuscular histamine remains unclear. We tested the hypothesis that interstitial histamine in skeletal muscle would be increased with exercise and would be dependent on de novo formation via the inducible enzyme histidine decarboxylase and/or mast cell degranulation. Subjects performed 1 h of unilateral dynamic knee-extension exercise or sham (seated rest). We measured the interstitial histamine concentration and local blood flow (ethanol washout) via skeletal muscle microdialysis of the vastus lateralis. In some probes, we infused either α-fluoromethylhistidine hydrochloride (α-FMH), a potent inhibitor of histidine decarboxylase, or histamine H 1 /H 2 -receptor blockers. We also measured interstitial tryptase concentrations, a biomarker of mast cell degranulation. Compared with preexercise, histamine was increased after exercise by a change (Δ) of 4.2 ± 1.8 ng/ml ( P histamine in skeletal muscle increases with exercise and results from both de novo formation and mast cell degranulation. This suggests that exercise produces an anaphylactoid signal, which affects recovery, and may influence skeletal muscle blood flow during exercise. NEW & NOTEWORTHY Blood flow to previously active skeletal muscle remains elevated following an acute bout of aerobic exercise and is dependent on activation of histamine H 1 and H 2 receptors. The intramuscular source of histamine that drives this response to exercise has not been identified. Using intramuscular microdialysis in exercising humans, we show both mast cell degranulation and formation of histamine by histidine decarboxylase contributes to the histamine-mediated vasodilation that occurs following a bout of aerobic exercise. Copyright © 2017 the American Physiological Society.

  17. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels.

    Science.gov (United States)

    Zhao, T; Zhang, H; Jin, C; Qiu, F; Wu, Y; Shi, L

    2017-10-01

    Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca 2+ -activated K + (BK Ca ) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BK Ca channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of N ω -nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC 50 The effect of melatonin was significantly attenuated in the presence of BK Ca channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC 50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BK Ca channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BK Ca channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BK Ca channels on mesenteric arterial myocytes. © 2017 Society for Endocrinology.

  18. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    Energy Technology Data Exchange (ETDEWEB)

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L. (Cardiovascular Diseases Research, Upjohn Laboratories, Upjohn Company, Kalamazoo, MI (United States))

    1991-09-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to (35S) MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either (3H)MNXS (label on the piperidine ring of MNXS) or (3H)minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with (35S)MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in (35S) MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by (35S)MNXS in intact RMA were components of smooth muscle cells.

  19. Intensive short-term vasodilation effect in the pain area of sciatica patients--case study.

    Science.gov (United States)

    Skorupska, Elżbieta; Rychlik, Michał; Pawelec, Wiktoria; Bednarek, Agata; Samborski, Włodzimierz

    2014-09-09

    Varied and complicated etiology of low back pain radiating distally to the extremities is still causing disagreement and controversy around the issue of its diagnosis and treatment. Most clinicians believe that the source of that pain is generally radicular. While some of them postulate the clinical significance of the sacroiliac joint syndrome, others demonstrate that almost one in five people with back pain experience symptoms indicative of the neuropathic pain component. To date, neuropathic involvement has not been completely understood, and different mechanisms are thought to play an important role. It has been established that muscle pain (myofascial pain) e.g. active trigger points from the gluteus minimus, can mimic pain similar to sciatica, especially in the chronic stage. This paper describes patients presenting with radicular sciatica (case one and two) and sciatica-like symptoms (case three). For the first time, intensive short-term vasodilation in the pain area following needle infiltration of the gluteus minimus trigger point was recorded. Three Caucasian, European women suffering from radicular sciatica (case one and two) and sciatica-like symptoms (case three) at the age of 57, 49 and 47 respectively underwent infrared camera observation during needle infiltration of the gluteus minimus trigger point. The patients were diagnosed by a neurologist; they underwent magnetic resonance imaging, electromyography, neurography and blood test analysis. Apart from that, the patients were diagnosed by a clinician specializing in myofascial pain diagnosis. In the examined cases, trigger points-related short-term vasodilation was recorded. Confirmation of these findings in a controlled, blinded study would indicate the existence of a link between the pain of sciatica patients (radicular or sciatica-like pain) and the activity of the autonomic nervous system. Further studies on a bigger group of patients are still needed.

  20. Skeletal muscle beta-receptors and isoproterenol-stimulated vasodilation in canine heart failure

    International Nuclear Information System (INIS)

    Frey, M.J.; Lanoce, V.; Molinoff, P.B.; Wilson, J.R.

    1989-01-01

    To investigate whether heart failure alters beta-adrenergic receptors on skeletal muscle and its associated vasculature, the density of beta-adrenergic receptors, isoproterenol-stimulated adenylate cyclase activity, and coupling of the guanine nucleotide-binding regulatory protein were compared in 18 control dogs and 16 dogs with heart failure induced by 5-8 wk of ventricular pacing at 260 beats/min. Hindlimb vascular responses to isoproterenol were compared in eight controls and eight of the dogs with heart failure. In dogs with heart failure, the density of beta-receptors on skeletal muscle was reduced in both gastrocnemius (control: 50 +/- 5; heart failure: 33 +/- 8 fmol/mg of protein) and semitendinosus muscle (control: 43 +/- 9; heart failure: 27 +/- 9 fmol/mg of protein, both P less than 0.05). Receptor coupling to the ternary complex, as determined by isoproterenol competition curves with and without guanosine 5'-triphosphate (GTP), was unchanged. Isoproterenol-stimulated adenylate cyclase activity was significantly decreased in semitendinosus muscle (control: 52.4 +/- 4.6; heart failure: 36.5 +/- 9.5 pmol.mg-1.min-1; P less than 0.05) and tended to be decreased in gastrocnemius muscle (control: 40.1 +/- 8.5; heart failure: 33.5 +/- 4.5 pmol.mg-1.min-1; P = NS). Isoproterenol-induced hindlimb vasodilation was not significantly different in controls and in dogs with heart failure. These findings suggest that heart failure causes downregulation of skeletal muscle beta-adrenergic receptors, probably due to receptor exposure to elevated catecholamine levels, but does not reduce beta-receptor-mediated vasodilation in muscle

  1. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  2. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.

    Science.gov (United States)

    Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M

    2015-07-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension. Copyright © 2015, American Association for the Advancement of Science.

  3. Inducible nitric oxide synthase expression is upregulated in oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    Rajendran R

    2007-01-01

    Full Text Available Objective: We tested the hypothesis that inducible nitric oxide synthase (iNOS modulates angiogenesis in human models and this information could be extrapolated in elucidating the pathophysiology of oral submucous fibrosis (OSF. A hypothesis which looks inadequate, but is deep rooted in literature is the epithelial alteration ("atrophy" seen in OSF and the events that lead to its causation. This aspect was tried to be addressed and an alternative pathogenetic pathway for the disease is proposed. Materials and Methods: This immunohistochemical study sought to investigate the expression of iNOS in OSF samples (n= 30 a using monospecific antibody (SC- 2050, Santa Cruz Biotechnology, Inc to the protein and also to correlate it with different grades of epithelial dysplasia associated with the disease. Twenty (20 healthy adults acted as controls. Results: iNOS staining was not demonstrated in normal oral epithelium. In oral epithelial dysplasia, staining was seen in all cases (100% in the basal layers of the epithelium and in 30% of cases it extended into the parabasal compartments as well. iNOS staining was uniformly positive in moderate dysplasia with an increase in intensity and distribution noted as the severity of dysplasia progressed. There were highly significant differences in overall positivity for iNOS in epithelium between cases and controls (Mann-Whitney U = 11.000, Wilcoxon W = 221.00, P = 0.000. Significant comparisons were made of mild Vs moderate dysplasia (Mann-Whitney U = 48.000, P = 0.014 Conclusions: This study supports our earlier morphological assessment (image analysis of the nature of vascularity in OSF mucosa. The significant vasodilation noticed in these cases argues against the concept of ischemic atrophy of the epithelium. This observation of vascularity and iNOS expression helped to explain the vasodilation noticed (sinusoids in this disease; NO being a net vasodilator. The mechanism of activation of iNOS in dysplasia is

  4. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  5. Analytical Chemistry of Nitric Oxide

    Science.gov (United States)

    Hetrick, Evan M.

    2013-01-01

    Nitric oxide (NO) is the focus of intense research, owing primarily to its wide-ranging biological and physiological actions. A requirement for understanding its origin, activity, and regulation is the need for accurate and precise measurement techniques. Unfortunately, analytical assays for monitoring NO are challenged by NO’s unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span pM to µM in physiological milieu, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with special focus on the fundamentals behind each technique and approaches that have been coupled with modern analytical measurement tools or exploited to create novel NO sensors. PMID:20636069

  6. Nitric oxide and chronic colitis

    Directory of Open Access Journals (Sweden)

    Matthew B Grisham

    1996-01-01

    Full Text Available Nitric oxide (NO is thought to play an important role in modulating the inflammatory response by virtue of its ability to affect bloodflow, leukocyte function and cell viability. The objective of this study was to assess the role that NO may play in mediating the mucosal injury and inflammation in a model of chronic granulomatous colitis using two pharmacologically different inhibitors of nitric oxide synthase (NOS. Chronic granulomatous colitis with liver and spleen inflammation was induced in female Lewis rats via the subserosal (intramural injection of peptidoglycan/polysaccharide (PG/PS derived from group A streptococci. Chronic NOS inhibition by oral administration of NG-nitro-L-arginine methyl ester (L-NAME (15 µmol/kg/day or amino-guanidine (AG (15 µmol/ kg/day was found to attenuate the PG/PS-induced increases in macroscopic colonic inflammation scores and colonic myeloperoxidase activity. Only AG -- not L-NAME – attenuated the PG/PS-induced increases in colon dry weight. Both L-NAME and AG significantly attenuated the PG/PS-induced increases in spleen weight whereas neither was effective at significantly attenuating the PG/PS-induced increases in liver weight. Although both L-NAME and AG inhibited NO production in vivo, as measured by decreases in plasma nitrite and nitrate levels, only AG produced significantly lower values (38±3 versus 83±8 µM, respectively, P<0.05. Finally, L-NAME, but not AG, administration significantly increased mean arterial pressure from 83 mmHg in colitic animals to 105 mmHg in the PG/PS+ L-NAME-treated animals (P<0.05. It is concluded that NO may play an important role in mediating some of the pathophysiology associated with this model of chronic granulomatous colitis.

  7. In vivo comparative study of ocular vasodilation, a relative indicator of hyperemia, in guinea pigs following treatment with bimatoprost ophthalmic solutions 0.01% and 0.03%

    Directory of Open Access Journals (Sweden)

    Abayomi B Ogundele

    2010-06-01

    Full Text Available Abayomi B Ogundele, David Earnest, Marsha A McLaughlinAlcon Research, Limited, Fort Worth, TX, USAObjective: The objective of this in vivo study was to compare the incidence of vasodilation in guinea pigs following topical administration of bimatoprost ophthalmic solutions 0.01% and 0.03%.Methods: The study comprised 20 guinea pigs assigned to 2 treatment groups (10 per treatment group to receive either bimatoprost 0.01% or bimatoprost 0.03%. Animals were hand-held under 2.75 × magnification to score ocular vasodilation (a measure of hyperemia, using a scoring system developed at Alcon Research, Ltd. Following baseline ocular scoring, each animal received a 30 μL dose to the left eye of either bimatoprost 0.01% (3 μg or bimatoprost 0.03% (9 μg. Vasodilation was again scored at 1, 2, 3, 4, 5 and 6 hours after dosing. Incidence of vasodilation was calculated as the percent of total eyes in each 2-hour time interval with scores ≥2.Results: The incidence of vasodilation was higher in the bimatoprost 0.01% treatment group (range, 45.0% to 60.0% than the bimatoprost 0.03% treatment group (range, 30.0% to 52.2% at all post-dosing time points.Conclusion: The 2 bimatoprost formulations elicited ocular vasodilation of long duration (>6 hours in the guinea pig model, with the bimatoprost 0.01% treatment group showing a higher incidence of ocular vasodilation than the bimatoprost 0.03% treatment group. Further clinical studies would be needed to determine whether the higher incidence of vasodilation may also be attributed to the increased BAK concentration in the bimatoprost 0.01% formulation.Keywords: bitamoprost, ocular vasodilation, hyperemia

  8. Nitric Oxide Gene Therapy for Prostate Cancer

    National Research Council Canada - National Science Library

    Armour, Elwood

    1999-01-01

    .... One approach to therapy is over-production of inducible nitric oxide synthase (iNOS) within the tumor by injecting replication defective adenovirus containing the DNA sequences for iNOS into prostate tumors...

  9. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  10. Our experience in the treatment of idiopathic sensorineural hearing loss (ISNHL): Effect of combination therapy with HBO2 and vasodilator infusion therapy

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, B.; Profant, Oliver; Astl, J.; Holý, R.

    2016-01-01

    Roč. 43, č. 7 (2016), s. 771-780 ISSN 1066-2936 Institutional support: RVO:68378041 Keywords : idiopathic sensorineural hearing logs * vasodilator infusion * hyperbaric oxygen therapy Subject RIV: FH - Neurology Impact factor: 0.895, year: 2016

  11. Nitric oxide in cancer metastasis.

    Science.gov (United States)

    Cheng, Huiwen; Wang, Lei; Mollica, Molly; Re, Anthony T; Wu, Shiyong; Zuo, Li

    2014-10-10

    Cancer metastasis is the spread and growth of tumor cells from the original neoplasm to further organs. This review analyzes the role of nitric oxide (NO), a signaling molecule, in the regulation of cancer formation, progression, and metastasis. The action of NO on cancer relies on multiple factors including cell type, metastasis stage, and organs involved. Various chemotherapy drugs cause cells to release NO, which in turn induces cytotoxic death of breast, liver, and skin tumors. However, NO has also been clinically connected to a poor cancer prognosis because of its role in angiogenesis and intravasation. This supports the claim that NO can be characterized as both pro-metastatic and anti-metastatic, depending on specific factors. The inhibition of cell proliferation and anti-apoptosis pathways by NO donors has been proposed as a novel therapy to various cancers. Studies suggest that NO-releasing non-steroidal anti-inflammatory drugs act on cancer cells in several ways that may make them ideal for cancer therapy. This review summarizes the biological significance of NO in each step of cancer metastasis, its controversial effects for cancer progression, and its therapeutic potential. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats.

    Directory of Open Access Journals (Sweden)

    Mariam El Assar

    Full Text Available Insulin resistance (IR is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD. On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR and insulin resistant (IRR rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD or the NADPH oxidase inhibitor (VAS2870. By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide

  13. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome.

    Science.gov (United States)

    Barona, Jacqueline; Aristizabal, Juan C; Blesso, Christopher N; Volek, Jeff S; Fernandez, Maria Luz

    2012-09-01

    We evaluated the effects of grape polyphenols in individuals classified with metabolic syndrome (MetS). Men (n = 24) aged 30-70 y were randomly assigned to consume either a freeze-dried grape polyphenol powder (GRAPE) or a placebo for 30 d in a double-blind, crossover design, separated by a 3-wk washout period. Participants were asked to maintain their usual diet and physical activity during the study and abstain from consuming polyphenol-rich foods. MetS criteria including blood pressure (BP) and markers of vascular endothelial function including brachial artery flow-mediated vasodilation (FMD), plasma total nitrite + nitrate (NOx) to estimate NO production, plasma soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1) were measured at the end of each dietary period. Systolic BP (P GRAPE compared with the placebo period. In addition, changes in sVCAM-1 concentrations between periods were positively correlated with changes in systolic BP (r = 0.45; P GRAPE and placebo periods. These results suggest that GRAPE polyphenols may potentiate vasorelaxation and reduce BP and circulating cell adhesion molecules, resulting in improvements in vascular function.

  14. Impaired Skeletal Muscle Vasodilation during Exercise in Heart Failure with Preserved Ejection Fraction

    Science.gov (United States)

    Lee, Joshua F.; Barrett-O’Keefe, Zachary; Nelson, Ashley D.; Garten, Ryan S.; Ryan, John J.; Nativi-Nicolau, Jose N.; Richardson, Russell S.; Wray, D. Walter

    2016-01-01

    Background Exercise intolerance is a hallmark symptom of heart failure patients with preserved ejection fraction (HFpEF), which may be related to an impaired ability to appropriately increase blood flow to the exercising muscle. Methods We evaluated leg blood flow (LBF, ultrasound Doppler), heart rate (HR), stroke volume (SV), cardiac output (CO), and mean arterial blood pressure (MAP, photoplethysmography) during dynamic, single leg knee-extensor (KE) exercise in HFpEF patients (n = 21; 68 ± 2 yrs) and healthy controls (n = 20; 71 ± 2 yrs). Results HFpEF patients exhibited a marked attrition during KE exercise, with only 60% able to complete the exercise protocol. In participants who completed all exercise intensities (0-5-10-15W; HFpEF, n = 13; Controls, n = 16), LBF was not different at 0W and 5W, but was 15-25% lower in HFpEF compared to controls at 10W and 15W (P exercise-induced changes in central variables (HR, SV, CO), as well as MAP, were similar between groups. Conclusions These data reveal a marked reduction in LBF and LVC in HFpEF patients during exercise that cannot be attributed to a disease-related alteration in central hemodynamics, suggesting that impaired vasodilation in the exercising skeletal muscle vasculature may play a key role in the exercise intolerance associated with this patient population. PMID:26970959

  15. Jabuticaba-Induced Endothelium-Independent Vasodilating Effect on Isolated Arteries

    Directory of Open Access Journals (Sweden)

    Daniela Medeiros Lobo de Andrade

    2016-01-01

    Full Text Available Abstract Background: Despite the important biological effects of jabuticaba, its actions on the cardiovascular system have not been clarified. Objectives: To determine the effects of jabuticaba hydroalcoholic extract (JHE on vascular smooth muscle (VSM of isolated arteries. Methods: Endothelium-denuded aortic rings of rats were mounted in isolated organ bath to record isometric tension. The relaxant effect of JHE and the influence of K+ channels and Ca2+ intra- and extracellular sources on JHE-stimulated response were assessed. Results: Arteries pre-contracted with phenylephrine showed concentration-dependent relaxation (0.380 to 1.92 mg/mL. Treatment with K+ channel blockers (tetraethyl-ammonium, glibenclamide, 4-aminopyridine hindered relaxation due to JHE. In addition, phenylephrine-stimulated contraction was hindered by previous treatment with JHE. Inhibition of sarcoplasmic reticulum Ca2+ ATPase did not change relaxation due to JHE. In addition, JHE inhibited the contraction caused by Ca2+ influx stimulated by phenylephrine and KCl (75 mM. Conclusion: JHE induces endothelium-independent vasodilation. Activation of K+ channels and inhibition of Ca2+ influx through the membrane are involved in the JHE relaxant effect.

  16. Vasodilator effects of ibudilast on retinal blood vessels in anesthetized rats.

    Science.gov (United States)

    Noguchi, Masahiro; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2009-11-01

    Ibudilast (3-isobutyryl-2-isopropylpyrazolo[1,5-alpha]pyridine) is clinically used as a cerebral vasodilator in Japan. However, the effects of ibudilast on retinal blood vessels have not been fully examined. The aim of this study, therefore, was to examine the effects of ibudilast on retinal blood vessels in rats in vivo. Male Wistar rats (8 to 10 weeks old) were anesthetized with thiobutabarbital (120 mg/kg, intraperitoneally (i.p.)). Retinal vascular images were captured with a fundus camera system for small animals, and the diameter of retinal blood vessels was measured. Ibudilast (0.1 and 1 mg/kg, intravenously (i.v.)) elicited a sustained increase in the diameter of retinal blood vessels and heart rate without altering systemic blood pressure. The effects of ibudilast were significantly reduced by treatment with the nonselective cyclooxygenase inhibitor indomethacin (5 mg/kg, i.p.). These results suggest that ibudilast dilates retinal blood vessels through cyclooxygenase-dependent mechanisms in rats in vivo.

  17. Phosphorylation of vasodilator-stimulated phosphoprotein (VASP dampens hepatic ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    David Köhler

    Full Text Available Recent work has demonstrated that the formation of platelet neutrophil complexes (PNCs affects inflammatory tissue injury. Vasodilator-stimulated phosphoprotein (VASP is crucially involved into the control of PNC formation and myocardial reperfusion injury. Given the clinical importance of hepatic IR injury we pursued the role of VASP during hepatic ischemia followed by reperfusion. We report here that VASP(-/- animals demonstrate reduced hepatic IR injury compared to wildtype (WT controls. This correlated with serum levels of lactate dehydrogenase (LDH, aspartate (AST and alanine (ALT aminotransferase and the presence of PNCs within ischemic hepatic tissue and could be confirmed using repression of VASP through siRNA. In studies employing bone marrow chimeric mice we identified hematopoietic VASP to be of crucial importance for the extent of hepatic injury. Phosphorylation of VASP on Ser(153 through Prostaglandin E1 or on Ser(235 through atrial natriuretic peptide resulted in a significant reduction of hepatic IR injury. This was associated with a reduced presence of PNCs in ischemic hepatic tissue. Taken together, these studies identified VASP and VASP phosphorylation as crucial target for future hepatoprotective strategies.

  18. Bradykinin or acetylcholine as vasodilators to test endothelial venous function in healthy subjects

    Directory of Open Access Journals (Sweden)

    Eneida R. Rabelo

    2008-01-01

    Full Text Available INTRODUCTION: The evaluation of endothelial function has been performed in the arterial bed, but recently evaluation within the venous system has also been explored. Endothelial function studies employ different drugs that act as endothelium-dependent vasodilatory response inductors. OBJECTIVES: The aim of this study is to compare the endothelium-dependent venous vasodilator response mediated by either acetylcholine or bradykinin in healthy volunteers. METHODS AND RESULTS: Changes in vein diameter after phenylephrine-induced venoconstriction were measured to compare venodilation induced by acetylcholine or bradykinin (linear variable differential transformer dorsal hand vein technique. We studied 23 healthy volunteers; 31% were male, and the subject had a mean age of 33 ± 8 years and a mean body mass index of 23 ± 2 kg/m². The maximum endothelium-dependent venodilation was similar for both drugs (p = 0.13, as well as the mean responses for each dose of both drugs (r = 0.96. The maximum responses to acetylcholine and bradykinin also had good agreement. CONCLUSION: There were no differences between acetylcholine and bradykinin as venodilators in this endothelial venous function investigation.

  19. Does PGE₁ vasodilator prevent orthopaedic implant-related infection in diabetes? Preliminary results in a mouse model.

    Science.gov (United States)

    Lovati, Arianna B; Romanò, Carlo L; Monti, Lorenzo; Vassena, Christian; Previdi, Sara; Drago, Lorenzo

    2014-01-01

    Implant-related infections are characterized by bacterial colonization and biofilm formation on the prosthesis. Diabetes represents one of the risk factors that increase the chances of prosthetic infections because of related severe peripheral vascular disease. Vasodilatation can be a therapeutic option to overcome diabetic vascular damages and increase the local blood supply. In this study, the effect of a PGE₁ vasodilator on the incidence of surgical infections in diabetic mice was investigated. A S. aureus implant-related infection was induced in femurs of diabetic mice, then differently treated with a third generation cephalosporin alone or associated with a PGE₁ vasodilator. Variations in mouse body weight were evaluated as index of animal welfare. The femurs were harvested after 28 days and underwent both qualitative and quantitative analysis as micro-CT, histological and microbiological analyses. The analysis performed in this study demonstrated the increased host response to implant-related infection in diabetic mice treated with the combination of a PGE₁ and antibiotic. In this group, restrained signs of infections were identified by micro-CT and histological analysis. On the other hand, the diabetic mice treated with the antibiotic alone showed a severe infection and inability to successfully respond to the standard antimicrobial treatment. The present study revealed interesting preliminary results in the use of a drug combination of antibiotic and vasodilator to prevent implant-related Staphylococcus aureus infections in a diabetic mouse model.

  20. Does PGE1 Vasodilator Prevent Orthopaedic Implant-Related Infection in Diabetes? Preliminary Results in a Mouse Model

    Science.gov (United States)

    Lovati, Arianna B.; Romanò, Carlo L.; Monti, Lorenzo; Vassena, Christian; Previdi, Sara; Drago, Lorenzo

    2014-01-01

    Background Implant-related infections are characterized by bacterial colonization and biofilm formation on the prosthesis. Diabetes represents one of the risk factors that increase the chances of prosthetic infections because of related severe peripheral vascular disease. Vasodilatation can be a therapeutic option to overcome diabetic vascular damages and increase the local blood supply. In this study, the effect of a PGE1 vasodilator on the incidence of surgical infections in diabetic mice was investigated. Methodology A S. aureus implant-related infection was induced in femurs of diabetic mice, then differently treated with a third generation cephalosporin alone or associated with a PGE1 vasodilator. Variations in mouse body weight were evaluated as index of animal welfare. The femurs were harvested after 28 days and underwent both qualitative and quantitative analysis as micro-CT, histological and microbiological analyses. Results The analysis performed in this study demonstrated the increased host response to implant-related infection in diabetic mice treated with the combination of a PGE1 and antibiotic. In this group, restrained signs of infections were identified by micro-CT and histological analysis. On the other hand, the diabetic mice treated with the antibiotic alone showed a severe infection and inability to successfully respond to the standard antimicrobial treatment. Conclusions The present study revealed interesting preliminary results in the use of a drug combination of antibiotic and vasodilator to prevent implant-related Staphylococcus aureus infections in a diabetic mouse model. PMID:24718359

  1. Does PGE₁ vasodilator prevent orthopaedic implant-related infection in diabetes? Preliminary results in a mouse model.

    Directory of Open Access Journals (Sweden)

    Arianna B Lovati

    Full Text Available BACKGROUND: Implant-related infections are characterized by bacterial colonization and biofilm formation on the prosthesis. Diabetes represents one of the risk factors that increase the chances of prosthetic infections because of related severe peripheral vascular disease. Vasodilatation can be a therapeutic option to overcome diabetic vascular damages and increase the local blood supply. In this study, the effect of a PGE₁ vasodilator on the incidence of surgical infections in diabetic mice was investigated. METHODOLOGY: A S. aureus implant-related infection was induced in femurs of diabetic mice, then differently treated with a third generation cephalosporin alone or associated with a PGE₁ vasodilator. Variations in mouse body weight were evaluated as index of animal welfare. The femurs were harvested after 28 days and underwent both qualitative and quantitative analysis as micro-CT, histological and microbiological analyses. RESULTS: The analysis performed in this study demonstrated the increased host response to implant-related infection in diabetic mice treated with the combination of a PGE₁ and antibiotic. In this group, restrained signs of infections were identified by micro-CT and histological analysis. On the other hand, the diabetic mice treated with the antibiotic alone showed a severe infection and inability to successfully respond to the standard antimicrobial treatment. CONCLUSIONS: The present study revealed interesting preliminary results in the use of a drug combination of antibiotic and vasodilator to prevent implant-related Staphylococcus aureus infections in a diabetic mouse model.

  2. Increased brachial artery retrograde shear rate at exercise onset is abolished during prolonged cycling: role of thermoregulatory vasodilation.

    Science.gov (United States)

    Simmons, Grant H; Padilla, Jaume; Young, Colin N; Wong, Brett J; Lang, James A; Davis, Michael J; Laughlin, M Harold; Fadel, Paul J

    2011-02-01

    Acute leg exercise increases brachial artery retrograde shear rate (SR), while chronic exercise improves vasomotor function. These combined observations are perplexing given the proatherogenic impacts of retrograde shear stress on the vascular endothelium and may be the result of brief protocols used to study acute exercise responses. Therefore, we hypothesized that brachial artery retrograde SR increases initially but subsequently decreases in magnitude during prolonged leg cycling. Additionally, we tested the role of cutaneous vasodilation in the elimination of increased retrograde SR during prolonged exercise. Brachial artery diameter and velocity profiles and forearm skin blood flow and temperature were measured at rest and during 50 min of steady-state, semirecumbent leg cycling (120 W) in 14 males. Exercise decreased forearm vascular conductance (FVC) and increased retrograde SR at 5 min (both P minutes 30 and 40 to blunt cutaneous vasodilation attending exercise, FVC was reduced and the magnitude of retrograde SR was increased from -49.7 ± 13.6 to -78.4 ± 16.5 s(-1) (P cycling subsequently returns toward baseline values due in part to thermoregulatory cutaneous vasodilation during prolonged exercise.

  3. Vasodilator effects of fasudil, a Rho-kinase inhibitor, on retinal arterioles in stroke-prone spontaneously hypertensive rats.

    Science.gov (United States)

    Okamura, Nami; Saito, Maki; Mori, Asami; Sakamoto, Kenji; Kametaka, Sokichi; Nakahara, Tsutomu; Ishii, Kunio

    2007-06-01

    The aim of this study was to examine the vasodilator effect of fasudil, a Rho-kinase inhibitor, on retinal arterioles in stroke-prone spontaneously hypertensive rats (SHRSPs) and in age-matched normotensive Wistar-Kyoto rats (WKYs). Rats (12-14 weeks-old) were anesthetized with thiobutabarbital (120 mg/kg, intraperitoneal). Fundus images were captured with a digital camera that was equipped with a special objective lens. The vasodilator responses of retinal arterioles were assessed by measuring changes in the diameters of the vessels. The baseline diameter of the retinal arteriole was significantly smaller in SHRSPs than in WKYs. Fasudil (50-200 microg/kg/min, intravenous) dose-dependently increased the diameter of the retinal arteriole and decreased the systemic blood pressure in both groups. The vasodilator effect of fasudil on the retinal arteriole in SHRSPs was greater than in WKYs. These results suggest that fasudil has beneficial effects on retinal vascular complications associated with chronic hypertension.

  4. Flicker light-induced retinal vasodilation is unaffected by inhibition of epoxyeicosatrienoic acids and prostaglandins in humans.

    Science.gov (United States)

    Noonan, Jonathan E; Dusting, Gregory J; Nguyen, Thanh T; Jenkins, Alicia J; Man, Ryan E K; Best, William J; Dias, Daniel A; Jayasinghe, Nirupama S; Roessner, Ute; Lamoureux, Ecosse L

    2014-10-08

    To investigate the role of epoxyeicosatrienoic acids (EETs) and prostaglandins (PGs) in retinal blood vessel calibers and vasodilation during flicker light stimulation in humans. Twelve healthy nonsmokers participated in a balanced crossover study. Oral fluconazole 400 mg and dispersible aspirin 600 mg were used to inhibit production of EETs and PGs, respectively. Retinal imaging was performed 1 hour after drug ingestion with the Dynamic Vessel Analyzer. Resting calibers of selected vessel segments were recorded in measurement units (MU). Maximum percentage dilations during flicker stimulation were calculated from baseline calibers. We then studied six participants each after fluconazole and aspirin ingestions at 30-minute intervals for 2 hours. Within-subject differences were assessed by ANOVA and Dunnett-adjusted pairwise comparisons with significance taken at P flicker stimulation. Mean (SD) resting arteriole and venule calibers on no-drug visits were 119.6 (10.6) MU and 145.7 (17.0) MU, respectively. Fluconazole reduced mean (±95% CI) resting venule calibers by 5.1 (4.3) MU. In repeated measures participants, neither drug affected vasodilations, but fluconazole reduced resting venule calibers over 2 hours (P flicker light-induced retinal vasodilation in humans. However, EETs may play a role in the regulation of retinal vascular tone and blood flow under resting physiological conditions. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  5. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta

    Science.gov (United States)

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca2+]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca2+]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF. PMID:26664257

  6. Characterisation and vascular expression of nitric oxide synthase 3 in amphibians.

    Science.gov (United States)

    Cameron, Melissa S; Trajanovska, Sofie; Forgan, Leonard G; Donald, John A

    2016-12-01

    In mammals, nitric oxide (NO) produced by nitric oxide synthase 3 (NOS3) localised in vascular endothelial cells is an important vasodilator but the presence of NOS3 in the endothelium of amphibians has been concluded to be absent, based on physiological studies. In this study, a nos3 cDNA was sequenced from the toad, Rhinella marina. The open reading frame of R. marina nos3 encoded an 1170 amino acid protein that showed 81 % sequence identity to the recently cloned Xenopus tropicalis nos3. Rhinella marina nos3 mRNA was expressed in a range of tissues and in the dorsal aorta and pulmonary, mesenteric, iliac and gastrocnemius arteries. Furthermore, nos3 mRNA was expressed in the aorta of Xenopus laevis and X. tropicalis. Quantitative real-time PCR showed that removal of the endothelium of the lateral aorta of R. marina significantly reduced the expression of nos3 mRNA compared to control aorta with the endothelium intact. However, in situ hybridisation was not able to detect any nos3 mRNA in the dorsal aorta of R. marina. Immunohistochemistry using a homologous R. marina NOS3 antibody showed immunoreactivity (IR) within the basal region of many endothelial cells of the dorsal aorta and iliac artery. NOS3-IR was also observed in the proximal tubules and collecting ducts of the kidney but not within the capillaries of the glomeruli. This is the first study to demonstrate that vascular endothelial cells of an amphibian express NOS3.

  7. Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands

    Science.gov (United States)

    Gazos-Lopes, Felipe; Mesquita, Rafael Dias; Silva-Cardoso, Lívia; Senna, Raquel; Silveira, Alan Barbosa; Jablonka, Willy; Cudischevitch, Cecília Oliveira; Carneiro, Alan Brito; Machado, Ednildo Alcantara; Lima, Luize G.; Monteiro, Robson Queiroz; Nussenzveig, Roberto Henrique; Folly, Evelize; Romeiro, Alexandre; Vanbeselaere, Jorick; Mendonça-Previato, Lucia; Previato, José Osvaldo; Valenzuela, Jesus G.; Ribeiro, José Marcos Chaves; Atella, Georgia Correa; Silva-Neto, Mário Alberto Cardoso

    2012-01-01

    Background Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. Methodology/Principal Findings Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. Conclusions/Significance Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission

  8. Changes in the level of cytosolic calcium, nitric oxide and nitric oxide ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    and its prolongation by aspirin; Blood 34 204–215. Moncada S, Palmer R M and Higgs E A 1991 Nitric oxide: physiology, pathophysiology and pharmacology; Pharmacol. Rev. 43 109–142. Ni Z, Wang X Q and Vaziri N D 1998 Nitric oxide metabolism in erythropoietin-induced hypertension: effect of calcium channel.

  9. Nitric oxide and mitochondrial respiration.

    Science.gov (United States)

    Brown, G C

    1999-05-05

    Nitric oxide (NO) and its derivative peroxynitrite (ONOO-) inhibit mitochondrial respiration by distinct mechanisms. Low (nanomolar) concentrations of NO specifically inhibit cytochrome oxidase in competition with oxygen, and this inhibition is fully reversible when NO is removed. Higher concentrations of NO can inhibit the other respiratory chain complexes, probably by nitrosylating or oxidising protein thiols and removing iron from the iron-sulphur centres. Peroxynitrite causes irreversible inhibition of mitochondrial respiration and damage to a variety of mitochondrial components via oxidising reactions. Thus peroxynitrite inhibits or damages mitochondrial complexes I, II, IV and V, aconitase, creatine kinase, the mitochondrial membrane, mitochondrial DNA, superoxide dismutase, and induces mitochondrial swelling, depolarisation, calcium release and permeability transition. The NO inhibition of cytochrome oxidase may be involved in the physiological regulation of respiration rate, as indicated by the finding that isolated cells producing NO can regulate cellular respiration by this means, and the finding that inhibition of NO synthase in vivo causes a stimulation of tissue and whole body oxygen consumption. The recent finding that mitochondria may contain a NO synthase and can produce significant amounts of NO to regulate their own respiration also suggests this regulation may be important for physiological regulation of energy metabolism. However, definitive evidence that NO regulation of mitochondrial respiration occurs in vivo is still missing, and interpretation is complicated by the fact that NO appears to affect tissue respiration by cGMP-dependent mechanisms. The NO inhibition of cytochrome oxidase may also be involved in the cytotoxicity of NO, and may cause increased oxygen radical production by mitochondria, which may in turn lead to the generation of peroxynitrite. Mitochondrial damage by peroxynitrite may mediate the cytotoxicity of NO, and may be

  10. Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles.

    Science.gov (United States)

    Tan, Xiangling; Qi, Wen-Ning; Gu, Xiaosong; Urbaniak, James R; Chen, Long-En

    2006-01-01

    This study investigated the effects of intermittent pneumatic compression (IPC) on expression of nitric oxide synthase (NOS) isoforms in compressed (anterior tibialis, AT) and uncompressed (cremaster muscles, CM) skeletal muscles. Following IPC application of 0.5, 1, and 5h on both legs of rats, the endothelial NOS (eNOS) mRNA expression was significantly up-regulated to 1.2-, 1.8, and 2.7-fold from normal, respectively, in both AT and CM, and protein expression increased more than 1.5-fold of normal at each time point. Similarly, neuronal NOS expression was up-regulated, but to a lesser degree. In contrast, inducible NOS expression was significantly and time-dependently down-regulated in both muscles. After IPC cessation, eNOS levels returned to normal in both AT and CM. The results confirm our hypothesis that IPC-induced vasodilation is mediated by regulating expression of NOS isoforms, in particular eNOS, in both compressed and uncompressed skeletal muscles. The results also suggest the importance of precisely characterizing expression of each NOS isoform in tissue pathophysiology.

  11. Genistein attenuates hypoxic pulmonary hypertension via enhanced nitric oxide signaling and the erythropoietin system.

    Science.gov (United States)

    Kuriyama, Sachiko; Morio, Yoshiteru; Toba, Michie; Nagaoka, Tetsutaro; Takahashi, Fumiyuki; Iwakami, Shin-Ichiro; Seyama, Kuniaki; Takahashi, Kazuhisa

    2014-06-01

    Upregulation of the erythropoietin (EPO)/EPO receptor (EPOR) system plays a protective role against chronic hypoxia-induced pulmonary hypertension (hypoxic PH) through enhancement of endothelial nitric oxide (NO)-mediated signaling. Genistein (Gen), a phytoestrogen, is considered to ameliorate NO-mediated signaling. We hypothesized that Gen attenuates and prevents hypoxic PH. In vivo, Sprague-Dawley rats raised in a hypobaric chamber were treated with Gen (60 mkg/kg) for 21 days. Pulmonary hemodynamics and vascular remodeling were ameliorated in Gen-treated hypoxic PH rats. Gen also restored cGMP levels and phosphorylated endothelial NO synthase (p-eNOS) at Ser(1177) and p-Akt at Ser(473) expression in the lungs. Additionally, Gen potentiated plasma EPO concentration and EPOR-positive endothelial cell counts. In experiments with hypoxic PH rats' isolated perfused lungs, Gen caused NO- and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent vasodilation that reversed abnormal vasoconstriction. In vitro, a combination of EPO and Gen increased the p-eNOS and the EPOR expression in human umbilical vein endothelial cells under a hypoxic environment. Moreover, Gen potentiated the hypoxic increase in EPO production from human hepatoma cells. We conclude that Gen may be effective for the prevention of hypoxic PH through the improvement of PI3K/Akt-dependent, NO-mediated signaling in association with enhancement of the EPO/EPOR system. Copyright © 2014 the American Physiological Society.

  12. Impaired endothelial nitric oxide bioavailability: a common link between aging, hypertension, and atherogenesis?

    LENUS (Irish Health Repository)

    Walsh, Thomas

    2012-01-31

    Endothelial-derived nitric oxide (NO) is responsible for maintaining continuous vasodilator tone and for regulating local perfusion and systemic blood pressure. It also has significant antiproliferative effects on vascular smooth muscle and platelet anti-aggregatory effects. Impaired endothelial-dependent (NO mediated) vasorelaxation is observed in most animal and human models of healthy aging. It also occurs in age-associated conditions such as atherosclerosis and hypertension. Such "endotheliopathy" increases vascular risk in older adults. Studies have indicated that pharmacotherapeutic intervention with angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methyl-glutaryl coenzyme-A reductase inhibitors may improve NO-mediated vasomotor function. This review, evaluates the association between impaired endothelial NO bioavailability, accelerated vascular aging, and the age-associated conditions hypertension and atherogenesis. This is important, because pharmacotherapy aimed at improving endothelial NO bioavailability could modify age-related vascular disease and transform age into a potentially modifiable vascular risk factor, at least in a subpopulation of older adults.

  13. Beyond the inhaled nitric oxide in persistent pulmonary hypertension of the newborn

    Directory of Open Access Journals (Sweden)

    Mei-Yin Lai

    2018-02-01

    Full Text Available Persistent pulmonary hypertension (PPHN is a consequence of failed pulmonary vascular transition at birth and leads to pulmonary hypertension with shunting of deoxygenated blood across the ductus arteriosus (DA and foramen ovale (FO resulting in severe hypoxemia, and it may eventually lead to life-threatening circulatory failure. PPHN is a serious event affecting both term and preterm infants in the neonatal intensive care unit. It is often associated with diseases such as congenital diaphragmatic hernia, meconium aspiration, sepsis, congenital pneumonia, birth asphyxia and respiratory distress syndrome. The diagnosis of PPHN should include echocardiographic evidence of increased pulmonary pressure, with demonstrable right-to-left shunt across the DA or FO, and the absence of cyanotic heart diseases. The mainstay therapy of PPHN includes treatment of underlying causes, maintenance of adequate systemic blood pressure, optimized ventilator support for lung recruitment and alveolar ventilation, and pharmacologic measures to increase pulmonary vasodilation and decrease pulmonary vascular resistance. Inhaled nitric oxide has been proved to treat PPHN successfully with improved oxygenation in 60–70% of patients and to significantly reduce the need for extracorporeal membrane oxygenation (ECMO. About 14%–46% of the survivors develop long-term impairments such as hearing deficits, chronic lung disease, cerebral palsy and other neurodevelopmental disabilities.

  14. Effect of subchronic exposure to mainstream cigarette smoke on endothelium-dependent vasodilation in rat arteries

    Directory of Open Access Journals (Sweden)

    Helena Lenasi

    2005-07-01

    Full Text Available Background: Cigarette smoking is reported to impair endothelium-dependent vasodilation. The aim of the present study was to assess the effect of 30-day exposure to mainstream cigarette smoke on vascular reactivity of rat abdominal aorta, carotid, renal and mesenteric artery. Separately, the NO-mediated and the EDHF-mediated, endothelium-dependent vascular relaxations were determined.Methods: Two groups of »Whistar Kyoto« rats were exposed to mainstream cigarette smoke (2 hours/day, 5 days/week for 30 days and to fresh conditioned air, respectively. Rats were sacrificed on the second day after the last exposition to cigarette smoke. Vascular reactivity studies were performed on isolated, endothelium-intact, phenylephrine-preconstricted rat artery rings. Cumulative concentration-relaxation curves to acetylcholine (ACh were obtained in the absence and presence of the endothelial NO synthase (eNOS inhibitor N ω nitro L-arginine (L-NA and the cyclo-oxygenase (COX inhibitor diclofenac, respectively. After washing period of 1 hour, vessels were exposed either to the intracellular superoxide scavenger tiron, to the cytochrome P450 (CYP inhibitor miconazole or the Na-K-ATPase inhibitor ouabain before being preconstricted with phenylephrine and determining the concentration-response curve to ACh.Results: ACh induced concentration-dependent relaxations. In none of the vessels investigated did we observe a significant difference in the relaxations obtained in arteries from control rats and rats exposed to cigarettee smoke. Although smoking is known to cause an increase in oxidative stress, treatment of the vessels with tiron did not affect the NOmediated relaxations. To evaluate the contribution of EDHF to endothelium-dependent vasodilation rings were preincubated with L-NA. The EDHF-mediated relaxations were significantly attenuated compared to the NO-mediated relaxations in renal and mesenteric artery and almost completely abolished in aorta and

  15. Effect of a topical vasodilator on tumor hypoxia and tumor oxygen guided radiotherapy using EPR oximetry.

    Science.gov (United States)

    Hou, Huagang; Abramovic, Zrinka; Lariviere, Jean P; Sentjurc, Marjeta; Swartz, Harold; Khan, Nadeem

    2010-05-01

    We sought to reduce tumor hypoxia by topical application of a vasodilator, benzyl nicotinate (BN), and investigated its effect on the growth of tumors irradiated at times when tumor pO(2) increased. EPR oximetry was used to follow the changes in the tissue pO(2) of subcutaneous radiation-induced fibrosarcoma (RIF-1) tumors during topical applications of 1.25-8% BN formulations for 5 consecutive days. The RIF-1 tumors were hypoxic with a tissue pO(2) of 4.6-7.0 mmHg. A significant increase in tumor pO(2) occurred 10-30 min after BN application. The formulation with the minimal BN concentration that produced a significant increase in tumor pO(2) was used for the radiation study. The tumors were irradiated (4 Gy x 5) at the time of the maximum increase in pO(2) observed with the 2.5% BN formulation. The tumors with an increase in pO(2) of greater than 2 mmHg from the baseline after application of BN on day 1 had a significant growth inhibition compared to the tumors with an increase in pO(2) of less than 2 mmHg. The results indicate that the irradiation of tumors at the time of an increase in pO(2) after the topical application of the 2.5% BN formulation led to a significant growth inhibition. EPR oximetry provided dynamic information on the changes in tumor pO(2), which could be used to identify responders and non-responders and schedule therapy during the experiments.

  16. Modulation of tumor hypoxia by topical formulations with vasodilators for enhancing therapy.

    Science.gov (United States)

    Abramovic, Zrinka; Hou, Huagang; Julijana, Kristl; Sentjurc, Marjeta; Lariviere, Jean P; Swartz, Harold M; Khan, Nadeem

    2011-01-01

    Tumor hypoxia is a well known therapeutic problem which contributes to radioresistance and aggressive tumor characteristics. Lack of techniques for repeated measurements of tumor oxygenation (pO(2), partial pressure of oxygen) has restricted the optimization of hypoxia modifying methods and their efficacious application with radiotherapy. We have investigated a non-invasive method to enhance tissue pO(2) of peripheral tumors using topical application of formulations with BN (Benzyl Nicotinate), a vasodilator, and have used EPR (Electron Paramagnetic Resonance) oximetry to follow its effect on tumor oxygenation.We incorporated 2.5% BN in both hydrogel and microemulsions and investigated the effects on pO(2) of subcutaneous RIF-1 (Radiation Induced Fibrosarcoma) tumors in C3H mice. The experiments were repeated for five consecutive days. The topical application of BN in hydrogel led to a significant increase from a pre-treatment pO(2) of 9.3 mmHg to 11 - 16 mmHg at 30 - 50 min on day 1. However, the magnitude and the time of significant increase in pO(2) decreased with repeated topical applications. The BN in a microemulsion resulted in a significant increase from a baseline pO(2) of 8.8 mmHg to 13 - 18 mmHg at 10 - 50 min on day 1. Experiments repeated on subsequent days showed a decline in the magnitude of pO(2) increase on repeated applications. No significant change in tumor pO(2) was observed in experiments with formulations without BN (vehicle only).EPR oximetry was successfully used to follow the temporal changes in tumor pO(2) during repeated applications for five consecutive days. This approach can be potentially used to enhance radiotherapeutic outcome by scheduling radiation doses when an increase in tumor pO(2) is observed after topical applications of BN formulations.

  17. Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Punsiri M Colonne

    2016-10-01

    Full Text Available Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV. C. burnetii manipulates host cAMP-dependent protein kinase (PKA signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E mutant protein prevented optimal PV formation, whereas VASP (S157E mutant expression had no effect. VASP (S239E expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA

  18. Relationship between upper and lower limb conduit artery vasodilator function in humans.

    Science.gov (United States)

    Thijssen, Dick H J; Rowley, Nicola; Padilla, Jaume; Simmons, Grant H; Laughlin, M Harold; Whyte, Greg; Cable, N Timothy; Green, Daniel J

    2011-07-01

    Brachial artery flow-mediated dilation (FMD) is a strong predictor of future cardiovascular disease and is believed to represent a "barometer" of systemic endothelial health. Although a recent study [Padilla et al. Exp Biol Med (Maywood) 235: 1287-1291, 2010] in pigs confirmed a strong correlation between brachial and femoral artery endothelial function, it is unclear to what extent brachial artery FMD represents a systemic index of endothelial function in humans. We conducted a retrospective analysis of data from our laboratory to evaluate relationships between the upper (i.e., brachial artery) vs. lower limb (superficial femoral n = 75; popliteal artery n = 32) endothelium-dependent FMD and endothelium-independent glyceryl trinitrate (GTN)-mediated dilation in young, healthy individuals. We also examined the relationship between FMD assessed in both brachial arteries (n = 42). There was no correlation between brachial and superficial femoral artery FMD (r(2) = 0.008; P = 0.46) or between brachial and popliteal artery FMD (r(2) = 0.003; P = 0.78). However, a correlation was observed in FMD between both brachial arteries (r(2) = 0.34; P < 0.001). Brachial and superficial femoral artery GTN were modestly correlated (r(2) = 0.13; P = 0.007), but brachial and popliteal artery GTN responses were not (r(2) = 0.08; P = 0.11). Collectively, these data indicate that conduit artery vasodilator function in the upper limbs (of healthy humans) is not predictive of that in the lower limbs, whereas measurement of FMD in one arm appears to be predictive of FMD in the other. These data do not support the hypothesis that brachial artery FMD in healthy humans represents a systemic index of endothelial function.

  19. Vasodilator responses and endothelin-dependent vasoconstriction in metabolically healthy obesity and the metabolic syndrome.

    Science.gov (United States)

    Schinzari, Francesca; Iantorno, Micaela; Campia, Umberto; Mores, Nadia; Rovella, Valentina; Tesauro, Manfredi; Di Daniele, Nicola; Cardillo, Carmine

    2015-11-01

    Patients with metabolically healthy obesity (MHO) do not present the cluster of metabolic abnormalities that define the metabolic syndrome (MetS). Whether MHO is associated with lower impairment of vasoreactivity than the MetS is unknown. For this purpose, forearm blood flow (FBF) responses were measured by strain-gauge plethysmography during the intra-arterial infusion of acetylcholine (ACh), sodium nitroprusside (SNP), and/or the selective endothelin type A (ETA) receptor blocker BQ-123 in 119 obese individuals with MHO (n = 34) or with the MetS (n = 85) and in healthy lean controls (n = 56). ACh and SNP caused a significant vasodilation in both obese and lean participants (all P < 0.001). However, the response to both agents was significantly lower in the obese than in the control group (both P < 0.001). Among the obese participants, the reactivity to ACh was higher in MHO than in MetS patients, whereas the responsiveness to SNP was equally impaired in both groups (P = 0.45). Infusion of BQ-123 significantly increased FBF in obese patients (P < 0001), but not in the lean participants; hence, FBF following ETA receptor blockade was higher in both obese groups than in controls (both P < 0.001). FBF response to BQ-123 was significantly higher in patients with the MetS than in those with MHO (P = 0.007). In conclusion, patients with MHO have abnormal vascular reactivity, although their endothelial dysfunction is less pronounced than in patients with the MetS. These findings indicate that obesity is associated with vascular damage independent of those metabolic abnormalities underlying the MetS. Copyright © 2015 the American Physiological Society.

  20. alpha-adrenergic Blockade Unmasks a Greater Compensatory Vasodilation in Hypoperfused Contracting Muscle

    Directory of Open Access Journals (Sweden)

    Darren P. Casey

    2012-07-01

    Full Text Available We previously demonstrated that acute hypoperfusion in exercising human muscle causes an immediate increase in vascular resistance that is followed by a partial restoration (less than 100% recovery of flow. In the current study we examined the contribution of alpha-adrenergic vasoconstriction in the initial changes in vascular resistance at the onset of hypoperfusion as well as in the recovery of flow over time. Nine healthy male subjects (29 ± 2 performed rhythmic forearm exercise (20% of maximum during hypoperfusion evoked by intra-arterial balloon inflation. Each trial included; baseline, exercise prior to inflation, exercise with inflation, and exercise after deflation (3 min each. Forearm blood flow (FBF; ultrasound, local (brachial artery, and systemic arterial pressure (MAP; Finometer were measured. The trial was repeated during phentolamine infusion (alpha-adrenergic receptor blockade. Forearm vascular conductance (FVC; ml min-1 100 mmHg-1 and resistance (mmHg ml min-1 was calculated from BF (ml min-1 and local MAP (mmHg. Recovery of FBF and FVC (steady state inflation plus exercise value – nadir/ [steady state exercise (control value-nadir] with phentolamine was enhanced compared with the respective control (no drug trial (FBF = 97 ± 5% vs. 81 ± 6%, P < 0.05; FVC = 126 ± 9% vs. 91 ± 5%, P < 0.01. However, the absolute (0.05 ± 0.01 vs. 0.06 ± 0.01 mmHg ml min-1; P = 0.17 and relative (35 ± 5% vs. 31 ± 2%; P = 0.41 increase in vascular resistance at the onset of balloon inflation was not different between the alpha-adrenergic receptor inhibition and control (no drug trials. Therefore, our data indicate that alpha-adrenergic mediated vasoconstriction restricts compensatory vasodilation during forearm exercise with hypoperfusion, but is not responsible for the initial increase in vascular resistance at the onset of hypoperfusion.

  1. Robust brain hyperglycemia during general anesthesia: relationships with metabolic brain inhibition and vasodilation

    Directory of Open Access Journals (Sweden)

    R. Aaron eBola

    2016-02-01

    Full Text Available Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital that is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r=0.99 between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain

  2. Acanthopanax divaricatus var. chiisanensis reduces blood pressure via the endothelial nitric oxide synthase pathway in the spontaneously hypertensive rat model.

    Science.gov (United States)

    Park, Soo-Yeon; Do, Gyeong-Min; Lee, Sena; Lim, Yeni; Shin, Jae-Ho; Kwon, Oran

    2014-09-01

    In this study, we investigated the antihypertensive effects of Acanthopanax divaricatus var. chiisanensis extract (AE) and its active compound, acanthoside D (AD), on arterial blood pressure (BP) in vivo and endothelial function in vitro. We hypothesized that AE has antihypertensive effects, which is attributed to enhancement of endothelial function via the improvement of nitric oxide synthesis or the angiotensin II (Ang II) response. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly divided into 7 groups and then fed the following diets for 14 weeks: WKY fed a normal diet (WN); SHR fed a normal diet (SN); SHR fed a high-cholesterol (HC) diet (SH); SHR fed a HC diet with AE of 150, 300, 600 mg/kg body weight (SH-L, SH-M, SH-H); and SHR fed an HC diet with AD of 600 μg/kg body weight (SH-D). Blood pressure was significantly reduced in the SH-H compared with the SH from week 10 until week 14; BP was also significantly decreased in the SHR fed a HC diet with AE of 300 at week 14. Aortic wall thickness showed a tendency to decrease by AE and AD treatment. The SH-H showed increased endothelial nitric oxide synthase (eNOS) expression in the intima and media, compared with the SH. Furthermore, a significant increase in intracellular nitric oxide production was induced by AE and AD treatment in human umbilical vein endothelial cells. A significant increase of phospho-eNOS was found with a high dose of AE in human umbilical vein endothelial cells but not with AD. These results suggest that AE can regulate BP and improve endothelial function via eNOS-dependent vasodilation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Roles of Nitric Oxide and Prostaglandins in the Sustained Antihypertensive Effects of Acanthospermum hispidum DC. on Ovariectomized Rats with Renovascular Hypertension

    Directory of Open Access Journals (Sweden)

    Rhanany Alan Calloi Palozi

    2017-01-01

    Full Text Available Although Acanthospermum hispidum is used in Brazilian folk medicine as an antihypertensive, no study evaluated its effects on a renovascular hypertension and ovariectomy model. So, this study investigated the mechanisms involved in the antihypertensive effects of an ethanol-soluble fraction obtained from A. hispidum (ESAH using two-kidney-one-clip hypertension in ovariectomized rats (2K1C plus OVT. ESAH was orally administered at doses of 30, 100, and 300 mg/kg, daily, for 28 days, after 5 weeks of surgery. Enalapril (15 mg/kg and hydrochlorothiazide (25 mg/kg were used as standard drugs. Diuretic activity was evaluated on days 1, 7, 14, 21, and 28. Systolic, diastolic, and mean blood pressure and heart rate were recorded. Serum creatinine, urea, thiobarbituric acid reactive substances, nitrosamine, nitrite, aldosterone, vasopressin levels, and ACE activity were measured. The vascular reactivity and the role of nitric oxide (NO and prostaglandins (PG in the vasodilator response of ESAH on the mesenteric vascular bed (MVB were also investigated. ESAH treatment induced an important saluretic and antihypertensive response, therefore recovering vascular reactivity in 2K1C plus OVT-rats. This effect was associated with a reduction of oxidative and nitrosative stress with a possible increase in the NO bioavailability. Additionally, a NO and PG-dependent vasodilator effect was observed on the MEV.

  4. Nitric Oxide in Mammary Tumor Progression

    Science.gov (United States)

    1998-07-01

    vance. Ann Surg 221: 339-349, 1995 38. Edwards P, Cendan JC, Topping DB, Moldawer LL, Mackay 24. Albina JE: On the expression of nitric oxide synthase...Carcinogen 16: 20-31, 68. Kibbey MC, Grant DS, Kleinman HK: Role of SIKVAV site 1996 of laminin in promotion of angiogenesis and tumor growth: 55. Albina ...therapy on the development and progression of 77. Albina JE, Abate JA, Henry WL Jr.: Nitric oxide production spontaneous mammary tumors in C3H/HCJ mice

  5. Development of a portable mini-generator to safely produce nitric oxide for the treatment of infants with pulmonary hypertension.

    Science.gov (United States)

    Yu, Binglan; Ferrari, Michele; Schleifer, Grigorij; Blaesi, Aron H; Wepler, Martin; Zapol, Warren M; Bloch, Donald B

    2018-05-01

    To test the safety of a novel miniaturized device that produces nitric oxide (NO) from air by pulsed electrical discharge, and to demonstrate that the generated NO can be used to vasodilate the pulmonary vasculature in rabbits with chemically-induced pulmonary hypertension. A miniature NO (mini-NO) generator was tested for its ability to produce therapeutic levels (20-80 parts per million (ppm)) of NO, while removing potentially toxic gases and metal particles. We studied healthy 6-month-old New Zealand rabbits weighing 3.4 ± 0.4 kg (mean ± SD, n = 8). Pulmonary hypertension was induced by chemically increasing right ventricular systolic pressure to 28-30 mmHg. The mini-NO generator was placed near the endotracheal tube. Production of NO was triggered by a pediatric airway flowmeter during the first 0.5 s of inspiration. In rabbits with acute pulmonary hypertension, the mini-NO generator produced sufficient NO to induce pulmonary vasodilation. Potentially toxic nitrogen dioxide (NO 2 ) and ozone (O 3 ) were removed by the Ca(OH) 2 scavenger. Metallic particles, released from the electrodes by the electric plasma, were removed by a 0.22 μm filter. While producing 40 ppm NO, the mini-NO generator was cooled by a flow of air (70 ml/min) and the external temperature of the housing did not exceed 31 °C. The mini-NO generator safely produced therapeutic levels of NO from air. The mini-NO generator is an effective and economical approach to producing NO for treating neonatal pulmonary hypertension and will increase the accessibility and therapeutic uses of life-saving NO therapy worldwide. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effects of GLP-1 on forearm vasodilator function and glucose disposal during hyperinsulinemia in the metabolic syndrome.

    Science.gov (United States)

    Tesauro, Manfredi; Schinzari, Francesca; Adamo, Angelo; Rovella, Valentina; Martini, Francesca; Mores, Nadia; Barini, Angela; Pitocco, Dario; Ghirlanda, Giovanni; Lauro, Davide; Campia, Umberto; Cardillo, Carmine

    2013-03-01

    Patients with the metabolic syndrome (MetS) have impaired insulin-induced enhancement of vasodilator responses. The incretin hormone glucagon-like peptide 1 (GLP-1), beyond its effects on blood glucose, has beneficial actions on vascular function. This study, therefore, aimed to assess whether GLP-1 affects insulin-stimulated vasodilator reactivity in patients with the MetS. Forearm blood flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were assessed in MetS patients before and after the addition of GLP-1 to an intra-arterial infusion of saline (n = 5) or insulin (n = 5). The possible involvement of oxidative stress in the vascular effects of GLP-1 in this setting was investigated by infusion of vitamin C (n = 5). The receptor specificity of GLP-1 effect during hyperinsulinemia was assessed by infusing its metabolite GLP-1(9-36) (n = 5). The metabolic actions of GLP-1 were also tested by analyzing forearm glucose disposal during hyperinsulinemia (n = 5). In MetS patients, GLP-1 enhanced endothelium-dependent and -independent responses to ACh and SNP, respectively, during hyperinsulinemia (P 0.05 for both). No changes in vasodilator reactivity to ACh and SNP were seen after GLP-1 was added to insulin and vitamin C (P > 0.05 for both) and after GLP-1(9-36) was given during hyperinsulinemia (P > 0.05 for both). Also, GLP-1 did not affect forearm glucose extraction and uptake during hyperinsulinemia (P > 0.05 for both). In patients with the MetS, GLP-1 improves insulin-mediated enhancement of endothelium-dependent and -independent vascular reactivity. This effect may be influenced by vascular oxidative stress and is possibly exerted through a receptor-mediated mechanism.

  7. Intra-arterial vasodilators to prevent radial artery spasm: a systematic review and pooled analysis of clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Chun Shing, E-mail: shingkwok@doctors.org.uk [Keele Cardiovascular Research Group, Keele University, Stoke-on-Trent (United Kingdom); Rashid, Muhammad [St. Helens & Knowsley Teaching Hospital (NHS) Trust, Whiston Hospital, Prescot (United Kingdom); Fraser, Doug [Manchester Heart Centre, Manchester Royal Infirmary (United Kingdom); Nolan, James [University Hospital of North Midlands, Stoke-on-Trent (United Kingdom); Mamas, Mamas [Keele Cardiovascular Research Group, Keele University, Stoke-on-Trent (United Kingdom); Farr Institute, Institute of Population Health, University of Manchester, Manchester (United Kingdom)

    2015-12-15

    Objectives: The aim of this study is to review the available literature on the efficacy and safety of agents used for prevention of RAS. Background: Different vasodilator agents have been used to prevent radial artery spasm (RAS) in patients undergoing transradial cardiac catheterization. Methods: We included studies that evaluated any intra-arterial drug administered in the setting cardiac catheterization that was undertaken through the transradial access site (TRA). We also compared studies for secondary outcomes of major bleeding, procedure time, and procedure failure rate in setting of RAS prevention, patent hemostasis and radial artery occlusion. Results: 22 clinical studies met the inclusion criteria. For placebo, RAS rate was 12% (4 studies, 638 participants), which was similar to 2.5 mg of verapamil 12% (3 studies, 768 participants) but greater than 5 mg of verapamil (4%, 2 studies, 497 participants). For nicorandil, there was a much higher RAS rate compared to placebo (16%, 3 studies, 447 participants). The lowest rates of RAS was found for nitroglycerin at both 100 μg (4%) and 200 μg (2%) doses, isosorbide mononitrate (4%) and nicardipine (3%). We found no information regarding the procedure failure rates, patent hemostasis, and radial artery occlusion in these studies. Conclusions: In this largest and up-to-date review on intra-arterial vasodilators use to reduce RAS, we have found that the verapamil at a dose of 5 mg or verapamil in combination with nitroglycerine are the best combinations to reduce RAS. - Highlights: • Radial artery spasm (RAS) causes procedural failure in transradial catheterization. • RAS may complicate 10–15% procedures undertaken through the radial approach. • We reviewed the efficacy of vasodilators that have been used to minimize RAS. • The pooled RAS rate was lowest with 5 mg of verapamil (4%) compared to placebo (12%). • The best combination of drugs to minimize RAS is nitroglycerine and verapamil.

  8. Endotoxin-induced and vaccine-induced systemic inflammation both impair endothelium-dependent vasodilation, but not pulse wave reflection

    Directory of Open Access Journals (Sweden)

    Lind L

    2012-07-01

    Full Text Available Lars Lind,1 Johannes Hulthe,2,3 Annika Johansson,3 Ewa Hedner31Department of Medicine, University Hospital, Uppsala, 2Sahlgrenska Hospital, Gothenburg, 3AstraZeneca Research and Development, Mölndal, SwedenBackground: Inflammation induced by either endotoxin or vaccination has previously been shown to impair endothelium-dependent vasodilation (EDV in healthy young individuals. However, the vascular effects of these two mechanisms of inducing inflammation have not been compared in the same individuals.Methods: Twelve young healthy males were studied at the same time of the day on three occasions in a random order; on one occasion 4 hours following an endotoxin injection (Escherichia coli endotoxin, 20 IU/kg, on another occasion 8 hours following vaccination against Salmonella typhi, and on a third occasion 4 hours following a saline control injection. EDV and endothelium-independent vasodilation (EIDV were evaluated by local infusions of acetylcholine and sodium nitroprusside in the brachial artery, and forearm blood flow was measured with venous occlusion plethysmography. The augmentation index was determined by pulse wave analysis as an index of pulse wave reflection.Results: Both endotoxin and vaccination impaired EDV to a similar degree compared with the saline control (P = 0.005 and P = 0.014, respectively. EIDV was not significantly affected by inflammation. Endotoxin, but not vaccination, increased body temperature and circulating levels of intracellular adhesion molecule-1 and interleukin-6. Augmentation index was not affected by the interventions.Conclusion: Despite the fact that endotoxin induced a more pronounced degree of inflammation than vaccination, both inflammatory challenges impaired EDV to a similar degree, supporting the view that different inflammatory stimuli could induce harmful effects on the vasculature.Keywords: endothelium, endotoxin, vaccination, vasodilation, inflammation

  9. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    Science.gov (United States)

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  10. Attenuated vasodilator effectiveness of protease-activated receptor 2 agonist in heterozygous par2 knockout mice.

    Directory of Open Access Journals (Sweden)

    John C Hennessey

    Full Text Available Studies of homozygous PAR2 gene knockout mice have described a mix of phenotypic effects in vitro and in vivo. However, there have been few studies of PAR2 heterozygous (wild-type/knockout; PAR2-HET mice. The phenotypes of many hemi and heterozygous transgenic mice have been described as intermediates between those of wild-type and knockout animals. In our study we aimed to determine the effects of intermediary par2 gene zygosity on vascular tissue responses to PAR2 activation. Specifically, we compared the vasodilator effectiveness of the PAR2 activating peptide 2-furoyl-LIGRLO-amide in aortas of wild-type PAR2 homozygous (PAR2-WT and PAR2-HET mice. In myographs under isometric tension conditions, isolated aortic rings were contracted by alpha 1-adrenoeceptor agonist (phenylephrine, and thromboxane receptor agonist (U46619 and then relaxation responses by the additions of 2-furoyl-LIGRLO-amide, acetylcholine, and nitroprusside were recorded. A Schild regression analysis of the inhibition by a PAR2 antagonist (GB-83 of PAR2 agonist-induced aortic ring relaxations was used to compare receptor expression in PAR2-WT to PAR2-HET. PAR2 mRNA in aortas was measured by quantitative real-time PCR. In aortas contracted by either phenylephrine or U46619, the maximum relaxations induced by 2-furoyl-LIGRLO-amide were less in PAR2-HET than in the gender-matched PAR2-WT. GB-83 was 3- to 4-fold more potent for inhibition of 2fly in PAR2-HET than in PAR2-WT. PAR2 mRNA content of aortas from PAR2-HET was not significantly different than in PAR2-WT. Acetylcholine- and nitroprusside-induced relaxations of aortas from PAR2-HET were not significantly different than in PAR2-WT and PAR2 knockout. An interesting secondary finding was that relaxations induced by agonists of PAR2 and muscarinic receptors were larger in females than in males. We conclude that the lower PAR2-mediated responses in PAR2-HET aortas are consistent with evidence of a lower quantity of functional

  11. Containment of Nitric Acid Solutions of Plutonium-238

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Silver, G.L.; Pansoy-Hjelvik, L.; Ramsey, K.

    1999-01-01

    The corrosion of various metals that could be used to contain nitric acid solutions of Pu-238 has been studied. Tantalum and tantalum/2.5% tungsten resisted the test solvent better than 304L stainless steel and several INCONEL alloys. The solvent used to imitate nitric acid solutions of Pu-238 contained 70% nitric acid, hydrofluoric acid, and ammonium hexanitratocerate

  12. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  13. Targeting nitric oxide in the gastrointestinal tract

    NARCIS (Netherlands)

    Dijkstra, Gerard; van Goor, Harm; Jansen, Peter L M; Moshage, Han

    This review discusses the contributions of the three nitric oxide (NO) synthase (NOS) isozymes neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS) to the function and diseases of the gastrointestinal tract. Small (nanomolar) quantities of NO produced by calcium-dependent nNOS play a

  14. Targeting nitric oxide in the gastrointestinal tract

    NARCIS (Netherlands)

    Dijkstra, Gerard; van Goor, Harry; Jansen, Peter L. M.; Moshage, Han

    2004-01-01

    This review discusses the contributions of the three nitric oxide (NO) synthase (NOS) isozymes neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS) to the function and diseases of the gastrointestinal tract. Small (nanomolar) quantities of NO produced by calcium-dependent nNOS play a

  15. ORIGINAL ARTICLE Relationship between endothelial nitric oxide ...

    African Journals Online (AJOL)

    salah

    and limits the oxidation of low-density lipoproteins, all these mechanisms be- ing strongly involved in the atherogenic process5. Moreover, as a potent vasodi- latator, NO is deeply engaged in the regulation of blood pressure. In vascular endothelium, NO is con- stitutively produced from L-arginine by endothelial nitric oxide ...

  16. Reduced arginine availability and nitric oxide production

    NARCIS (Netherlands)

    Hallemeesch, M. M.; Lamers, W. H.; Deutz, N. E. P.

    2002-01-01

    The precursor for nitric oxide (NO) synthesis is the amino acid arginine. Reduced arginine availability may limit NO production. Arginine availability for NO synthesis may be regulated by de novo arginine production from citrulline, arginine transport across the cell membrane, and arginine breakdown

  17. Nitric oxide flow tagging in unseeded air

    NARCIS (Netherlands)

    Dam, N; Klein-Douwel, RJH; Sijtsema, NM; ter Meulen, JJ

    2001-01-01

    A scheme for molecular tagging velocimetry is presented that can be used in air flows without any kind of seeding. The method is based on the local and instantaneous creation of nitric oxide (NO) molecules from Nz and O-2 in the waist region of a focused ArF excimer laser beam. This NO distribution

  18. Nitric oxide enhances osmoregulation of tobacco ( Nicotiana ...

    African Journals Online (AJOL)

    This study was carried out to investigate the effect of the intracellular signaling molecule nitric oxide (NO) on osmoregulation of tobacco cells under osmotic stress caused by phenylethanoid glycosides 6000 (PEG 6000). The results show that the PEG stress induced a specific pattern of endogenous NO production with two ...

  19. Inhibition of inducible nitric oxide synthase expression and nitric oxide production in plateau pika (Ochotona curzoniae) at high altitude on Qinghai-Tibet Plateau.

    Science.gov (United States)

    Xie, Ling; Zhang, Xuze; Qi, Delin; Guo, Xinyi; Pang, Bo; Du, Yurong; Zou, Xiaoyan; Guo, Songchang; Zhao, Xinquan

    2014-04-30

    Nitric oxide (NO), a potent vasodilator, plays an important role in preventing hypoxia induced pulmonary hypertension. Endogenous NO is synthesized by nitric oxide synthases (NOSs) from l-arginine. In mammals, three different NOSs have been identified, including neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). Plateau pika (Ochotona curzoniae) is a typical hypoxia tolerant mammal that lives at 3000-5000 m above sea level on the Qinghai-Tibet Plateau. The aim of this study was to investigate whether NOS expression and NO production are regulated by chronic hypoxia in plateau pika. Quantitative real-time PCR and western blot analyses were conducted to quantify relative abundances of iNOS and eNOS transcripts and proteins in the lung tissues of plateau pikas at different altitudes (4550, 3950 and 3200 m). Plasma NO metabolites, nitrite/nitrate (NO(x)⁻) levels were also examined by Ion chromatography to determine the correlation between NO production and altitude level. The results revealed that iNOS transcript levels were significantly lower in animals at high altitudes (decreased by 53% and 57% at altitude of 3950 and 4550 m compared with that at 3200 m). Similar trends in iNOS protein abundances were observed (26% and 41% at 3950 and 4550 m comparing with at 3200 m). There were no significant differences in eNOS mRNA and protein levels in the pika lungs among different altitudes. The plasma NO(x)⁻ levels of the plateau pikas at high altitudes significantly decreased (1.65±0.19 μg/mL at 3200 m to 0.44±0.03 μg/mL at 3950 m and 0.24±0.01 μg/mL at 4550 m). This is the first evidence describing the effects of chronic hypoxia on NOS expression and NO levels in the plateau pika in high altitude adaptation. We conclude that iNOS expression and NO production are suppressed at high altitudes, and the lower NO concentration at high altitudes may serve crucial roles for helping the plateau pika to survive at hypoxic environment. Copyright © 2014

  20. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  1. Uso do óxido nítrico em pediatria Inhaled nitric oxide in pediatrics

    Directory of Open Access Journals (Sweden)

    José R. Fioretto

    2003-11-01

    persistent pulmonary hypertension and hypoxia of the newborn, acute respiratory distress syndrome, primary pulmonary hypertension, heart surgery, chronic obstructive pulmonary disease, sickle cell anemia, and bronchospastic disease. CONCLUSIONS: Inhaled nitric oxide is a therapeutic approach with wide clinical applications in pediatrics. Its use is safe when administered in pediatric intensive care units under strict monitoring. As a pulmonary vasodilator, nitric oxide has beneficial effects on gas exchange and ventilation. Controlled trials, focusing on early gas administration should be performed under many clinical conditions, especially acute respiratory distress syndrome.

  2. Reduced adenosine A2a receptor-mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration.

    Science.gov (United States)

    Persson, Patrik; Hansell, Peter; Palm, Fredrik

    2015-01-01

    Diabetes is associated with increased risk for development of kidney disease, and an increased glomerular filtration rate is an early indication of altered kidney function. Here we determine whether reduced adenosine A2a receptor-mediated vasodilation of the efferent arteriole contributes to the increased glomerular filtration rate in diabetes. The glomerular filtration rate, renal blood flow, and proximal tubular stop flow pressure were investigated in control and streptozotocin-diabetic rats during baseline and after administration of the adenosine A2a receptor antagonist ZM241385 or the adenosine A2a receptor agonist CGS21680. The diabetes-induced glomerular hyperfiltration was reduced by 24% following A2a receptor stimulation but was unaffected by A2a receptor inhibition. Contrarily, glomerular filtration rate in controls increased by 22% after A2a receptor inhibition and was unaffected by A2a stimulation. The increased glomerular filtration rate after A2a receptor inhibition in controls and decreased glomerular filtration rate after A2a receptor activation in diabetics were caused by increased and decreased stop flow pressure, respectively. None of the interventions affected renal blood flow. Thus, the normal adenosine A2a receptor-mediated tonic vasodilation of efferent arterioles is abolished in the diabetic kidney. This causes increased efferent arteriolar resistance resulting in increased filtration fraction and hyperfiltration.

  3. Correlation between postischemic vasodilation of the arteria brachialis and of the postischemic hyperemia in the adjacent microvascular bed.

    Science.gov (United States)

    Jung, F; Leithäuser, B; Sternitzky, R; Mrowietz, C; Pindur, G

    2011-01-01

    Endothelial cells secrete different mediators depending on biochemical and/or biophysical conditions, which can lead to vasodilation or vasoconstriction, respectively. Impaired endothelial responsiveness to specific vasodilator stimuli has been used as a surrogate marker of cardiovascular risk. Multiple methods allow testing endothelial responses in both microvessels and conduit arteries, but it is still unclear whether there is a relationship in endothelial function between these two different vascular beds. In order to examine, whether such macrocirculatory data might correlate with data obtained in the supplied microvessels, a parallel investigation in the brachial artery (BA) and the supplied nailfold capillaries was performed. The duration and amplitude of the postischemic hyperemia (stasis in the vasculature of the left arm using a blood pressure cuff for 3 minutes) were measured (ultrasound technique) and simultaneously the amplitude and duration of the postischemic hyperemia in ipsilateral nailfold capillaries (intravital capillaroscopy). There was absolutely no correlation between the duration (n = 153, r = 0.076, p = 0.3493) of the diameter increase in the BA and in ipsilateral nailfold capillaries. The regulation of the cutaneous microcirculation did not follow diameter changes of the conduit artery (BA) but seems to be dominated by the precapillary arterioles.

  4. Sympathetic nervous system activation reduces contraction-induced rapid vasodilation in the leg of humans independent of age.

    Science.gov (United States)

    Hughes, William E; Kruse, Nicholas T; Casey, Darren P

    2017-07-01

    Contraction-induced rapid vasodilation is attenuated similarly in the upper and lower limbs of older adults. In the forearm, this attenuation is in part due to a greater sympathetic vasoconstriction. We examined whether the age-related reduction in contraction-induced vasodilation in the leg is also due to a sympathetic vasoconstrictive mechanism. Thirteen young (24 ± 1 yr) and twelve older adults (67 ± 1 yr) performed single-leg knee extension at 20 and 40% of work-rate maximum (WR max ) during control and cold-pressor test (CPT) conditions. Femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC; ml·min -1 ·mmHg -1 ) was calculated using blood flow (ml/min) and mean arterial pressure (mmHg). Peak (ΔVC from baseline) and total VC were blunted in older adults during control conditions across exercise intensities ( P ROV). Within the forearm, this attenuation is partially due to enhanced sympathetic vasoconstriction. In the current study, we found that sympathetic vasoconstriction reduces contraction-induced ROV within the leg of both young and older adults, with the magnitude of change being similar between age groups. Our current results suggest that age-related attenuations in contraction-induced ROV within the leg are not fully explained by a sympathetic vasoconstrictor mechanism. Copyright © 2017 the American Physiological Society.

  5. Aerosolized Vasodilators for the Treatment of Pulmonary Hypertension in Cardiac Surgical Patients: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Elmi-Sarabi, Mahsa; Deschamps, Alain; Delisle, Stéphane; Ased, Hosham; Haddad, François; Lamarche, Yoan; Perrault, Louis P; Lambert, Jean; Turgeon, Alexis F; Denault, André Y

    2017-08-01

    In cardiac surgery, pulmonary hypertension is an important prognostic factor for which several treatments have been suggested over time. In this systematic review and meta-analysis, we compared the efficacy of inhaled aerosolized vasodilators to intravenously administered agents and to placebo in the treatment of pulmonary hypertension during cardiac surgery. We searched MEDLINE, CENTRAL, EMBASE, Web of Science, and clinicaltrials.gov databases from inception to October 2015. The incidence of mortality was assessed as the primary outcome. Secondary outcomes included length of stay in hospital and in the intensive care unit, and evaluation of the hemodynamic profile. Of the 2897 citations identified, 10 studies were included comprising a total of 434 patients. Inhaled aerosolized agents were associated with a significant decrease in pulmonary vascular resistance (-41.36 dyne·s/cm, P= .03) and a significant increase in mean arterial pressure (8.24 mm Hg, P= .02) and right ventricular ejection fraction (7.29%, Pthe intensive care unit was shown with the use of inhaled aerosolized agents (0.66 days, P= .01). No other differences were observed for either comparison. The administration of inhaled aerosolized vasodilators for the treatment of pulmonary hypertension during cardiac surgery is associated with improved right ventricular performance when compared to intravenously administered agents. This review does not support any benefit compared to placebo on major outcomes. Further investigation is warranted in this area of research and should focus on clinically significant outcomes.

  6. Nitric oxide in the rat cerebellum after hypoxia/ischemia.

    Science.gov (United States)

    Rodrigo, José; Fernández, Ana Patricia; Alonso, David; Serrano, Julia; Fernández-Vizarra, Paula; Martínez-Murillo, Ricardo; Bentura, María Luisa; Martinez, Alfredo

    2004-01-01

    Nitric oxide is a regulatory biological substance and an important intracellular messenger that acts as a specific mediator of various neuropathological disorders. In mammals and invertebrates, nitric oxide is synthesized from L-arginine in the central and peripheral neural structures by the endothelial, neuronal and inducible enzymatic isoforms of nitric oxide synthase. Nitric oxide may affect the function of various neurotransmitter-specific systems, and is involved in neuromodulation, reproductive function, immune response, and regulation of the cerebral blood circulation. This makes nitric oxide the main candidate in brain responses to brain ischemia/hypoxia. The cerebellum has been reported to be the area of the brain that has the highest nitric oxide synthase activity and the highest concentration of glutamate and aspartate. By glutamate receptors and physiological action of nitric oxide, cyclic guanisine-5'-monophosphate may be rapidly increased. The cerebellum significantly differs with respect to ischemia and hypoxia, this response being directly related to the duration and intensity of the injury. The cerebellum could cover the eventual need for nitric oxide during the hypoxia, boosting the nitric oxide synthase activity, but overall ischemia would require de novo protein synthesis, activating the inducible nitric oxide synthase to cope with the new situation. The specific inhibitors of nitric oxide synthesis show neuroprotective effects.

  7. Jabuticaba-Induced Endothelium-Independent Vasodilating Effect on Isolated Arteries.

    Science.gov (United States)

    Andrade, Daniela Medeiros Lobo de; Borges, Leonardo Luis; Torres, Ieda Maria Sapateiro; Conceição, Edemilson Cardoso da; Rocha, Matheus Lavorenti

    2016-09-01

    Despite the important biological effects of jabuticaba, its actions on the cardiovascular system have not been clarified. To determine the effects of jabuticaba hydroalcoholic extract (JHE) on vascular smooth muscle (VSM) of isolated arteries. Endothelium-denuded aortic rings of rats were mounted in isolated organ bath to record isometric tension. The relaxant effect of JHE and the influence of K+ channels and Ca2+ intra- and extracellular sources on JHE-stimulated response were assessed. Arteries pre-contracted with phenylephrine showed concentration-dependent relaxation (0.380 to 1.92 mg/mL). Treatment with K+ channel blockers (tetraethyl-ammonium, glibenclamide, 4-aminopyridine) hindered relaxation due to JHE. In addition, phenylephrine-stimulated contraction was hindered by previous treatment with JHE. Inhibition of sarcoplasmic reticulum Ca2+ ATPase did not change relaxation due to JHE. In addition, JHE inhibited the contraction caused by Ca2+ influx stimulated by phenylephrine and KCl (75 mM). JHE induces endothelium-independent vasodilation. Activation of K+ channels and inhibition of Ca2+ influx through the membrane are involved in the JHE relaxant effect. Embora a jabuticaba apresente importantes efeitos biológicos, suas ações sobre o sistema cardiovascular ainda não foram esclarecidas. Determinar os efeitos do extrato de jabuticaba (EHJ) sobre o músculo liso vascular (MLV) em artérias isoladas. Aortas (sem endotélio) de ratos foram montadas em banho de órgãos isolados para registro de tensão isométrica. Foram verificados o efeito relaxante, a influência dos canais de K+ e das fontes de Ca2+ intra- e extracelular sob a resposta estimulada pelo EHJ. Artérias pré-contraídas com fenilefrina apresentaram relaxamento concentração-dependente (0,380 a 1,92 mg/mL). O tratamento com bloqueadores de canais de K+ (tetraetilamônio, glibenclamida, 4-aminopiridina) prejudicaram o relaxamento pelo EHJ. A contração estimulada com fenilefrina tamb

  8. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2017-05-25

    Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.

  9. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  10. A plasma needle generates nitric oxide

    International Nuclear Information System (INIS)

    Stoffels, E; Gonzalvo, Y Aranda; Whitmore, T D; Seymour, D L; Rees, J A

    2006-01-01

    Generation of nitric oxide (NO) by a plasma needle is studied by means of mass spectrometry. The plasma needle is an atmospheric glow generated by a radio-frequency excitation in a mixture of helium and air. This source is used for the treatment of living tissues, and nitric oxide may be one of the most important active agents in plasma therapy. Efficient NO generation is of particular importance in the treatment of cardiovascular diseases. Mass spectrometric measurements have been performed under various plasma conditions; gas composition in the plasma and conversion of feed gases (nitrogen and oxygen) into other species has been studied. Up to 30% of the N 2 and O 2 input is consumed in the discharge, and NO has been identified as the main conversion product

  11. Removal of fluoride from aqueous nitric acid

    International Nuclear Information System (INIS)

    Pruett, D.J.; Howerton, W.B.; Mailen, J.C.

    1981-06-01

    Several methods for removing fluoride from aqueous nitric acid were investigated and compared with the frequently used aluminum nitrate-calcium nitrate (Ca 2+ -Al 3+ ) chemical trap-distillation system. Zirconium oxynitrate solutions were found to be superior in preventing volatilization of fluoride during distillation of the nitric acid, producing decontamination factors (DFs) on the order of 2 x 10 3 (vs approx. 500 for the Ca 2+ -Al 3+ system). Several other metal nitrate systems were tested, but they were less effective. Alumina and zirconia columns proved highly effective in removing HF from HF-HNO 3 vapors distilled through the columns; fluoride DFs on the order of 10 6 and 10 4 , respectively, were obtained. A silica gel column was very effective in adsorbing HF from HF-HNO 3 solutions, producing a fluoride DF of approx. 10 4

  12. Metastable Nitric Acid Trihydrate in Ice Clouds.

    Science.gov (United States)

    Weiss, Fabian; Kubel, Frank; Gálvez, Óscar; Hoelzel, Markus; Parker, Stewart F; Baloh, Philipp; Iannarelli, Riccardo; Rossi, Michel J; Grothe, Hinrich

    2016-03-01

    The composition of high-altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates, but the exact phase composition of clouds and its formation mechanisms are still unknown. In this work, conclusive evidence for a long-predicted phase, alpha-nitric acid trihydrate (alpha-NAT), is presented. This phase was characterized by a combination of X-ray and neutron diffraction experiments, allowing a convincing structure solution. Furthermore, vibrational spectra (infrared and inelastic neutron scattering) were recorded and compared with theoretical calculations. A strong interaction between water ice and alpha-NAT was found, which explains the experimental spectra and the phase-transition kinetics. On the basis of these results, we propose a new three-step mechanism for NAT formation in high-altitude ice clouds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Radiation, nitric oxide and cellular death

    International Nuclear Information System (INIS)

    Dubner, D.; Perez, M.R. Del; Michelin, S.C.; Gisone, P.A.

    1997-01-01

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  14. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  15. Cannula sensor for nitric oxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Glazier, S.A. [National Institute of Standard and Technology, Gaithersburg, MD (United States)

    1995-12-31

    Nitric oxide (NO) has received much attention because of its numerous roles in mammalian systems. It has been found in the brain and nervous system to act as a neurotransmitter, in blood vessels as a blood pressure regulator, in the immune system to act as a bactericide and tumorcide, and in other postulated roles as well. Nitric oxide is produced in mammalian cells by the enzyme nitric oxide synthetase. Once produced, NO is oxidized or reacts rapidly with components in living systems and hence has a short half-life. Only a few sensors have been constructed which can detect NO at nanomolar to micromolar levels found in these systems. We are currently examining the use of a cannula sensor employing oxyhemoglobin for NO detection. This sensor continuously draws in liquid sample at a low rate and immediately reacts it with oxyhemoglobin. The absorbance changes which accompany the reaction are monitored. The sensor has a linear response range from approximately 50 to 1000 nM of NO in aqueous solution. Its utility in monitoring NO produced by stimulated murine macrophage cells (RAW 264.7) in culture is currently being examined. The sensor design is generic in that it can also employ fluorescence and chemiluminescence detection chemistries which may allow lower detection limits to be achieved. Details of the sensor`s performance will be given.

  16. Temporal evolution of vasospasm and clinical outcome after intra-arterial vasodilator therapy in patients with aneurysmal subarachnoid hemorrhage.

    Directory of Open Access Journals (Sweden)

    Laleh Daftari Besheli

    Full Text Available Intra-arterial (IA vasodilator therapy is one of the recommended treatments to minimize the impact of aneurysmal subarachnoid hemorrhage-induced cerebral vasospasm refractory to standard management. However, its usefulness and efficacy is not well established. We evaluated the effect IA vasodilator therapy on middle cerebral artery blood flow and on discharge outcome. We reviewed records for 115 adults admitted to Neurointensive Care Unit to test whether there was a difference in clinical outcome (discharge mRS in those who received IA infusions. In a subset of 19 patients (33 vessels treated using IA therapy, we tested whether therapy was effective in reversing the trends in blood flow. All measures of MCA blood flow increased from day -2 to -1 before infusion (maximum Peak Systolic Velocity (PSV 232.2±9.4 to 262.4±12.5 cm/s [p = 0.02]; average PSV 202.1±8.5 to 229.9±10.9 [p = 0.02]; highest Mean Flow Velocity (MFV 154.3±8.3 to 172.9±10.5 [p = 0.10]; average MFV 125.5±6.3 to 147.8±9.5 cm/s, [p = 0.02] but not post-infusion (maximum PSV 261.2±14.6 cm/s [p = .89]; average PSV 223.4±11.4 [p = 0.56]; highest MFV 182.9±12.4 cm/s [p = 0.38]; average MFV 153.0±10.2 cm/s [p = 0.54]. After IA therapy, flow velocities were consistently reduced (day X infusion interaction p<0.01 for all measures. However, discharge mRS was higher in IA infusion group, even after adjusting for sex, age, and admission grades. Thus, while IA vasodilator therapy was effective in reversing the vasospasm-mediated deterioration in blood flow, clinical outcomes in the treated group were worse than the untreated group. There is need for a prospective randomized controlled trial to avoid potential confounding effect of selection bias.

  17. Distinct Mechanism of Cysteine Oxidation-Dependent Activation and Cold Sensitization of Human Transient Receptor Potential Ankyrin 1 Channel by High and Low Oxaliplatin

    Directory of Open Access Journals (Sweden)

    Takahito Miyake

    2017-11-01

    Full Text Available Oxaliplatin, a third-generation platinum-based chemotherapeutic agent, displays unique acute peripheral neuropathy triggered or enhanced by cold, and accumulating evidence suggests that transient receptor potential ankyrin 1 (TRPA1 is responsible. TRPA1 is activated by oxaliplatin via a glutathione-sensitive mechanism. However, oxaliplatin interrupts hydroxylation of a proline residue located in the N-terminal region of TRPA1 via inhibition of prolyl hydroxylase (PHD, which causes sensitization of TRPA1 to reactive oxygen species (ROS. Furthermore, PHD inhibition endows cold-insensitive human TRPA1 (hTRPA1 with ROS-dependent cold sensitivity. Since cysteine oxidation and proline hydroxylation regulate its activity, their association with oxaliplatin-induced TRPA1 activation and acquirement of cold sensitivity were investigated in the present study. A high concentration of oxaliplatin (1 mM induced outward-rectifier whole-cell currents and increased the intracellular Ca2+ concentration in hTRPA1-expressing HEK293 cells, but did not increase the probability of hTRPA1 channel opening in the inside-out configuration. Oxaliplatin also induced the rapid generation of hydrogen peroxide, and the resultant Ca2+ influx was prevented in the presence of glutathione and in cysteine-mutated hTRPA1 (Cys641Ser-expressing cells, whereas proline-mutated hTRPA1 (Pro394Ala-expressing cells showed similar whole-cell currents and Ca2+ influx. By contrast, a lower concentration of oxaliplatin (100 μM did not increase the intracellular Ca2+ concentration but did confer cold sensitivity on hTRPA1-expressing cells, and this was inhibited by PHD2 co-overexpression. Cold sensitivity was abolished by the mitochondria-targeting ROS scavenger mitoTEMPO and was minimal in cysteine-mutated hTRPA1 (Cys641Ser or Cys665Ser-expressing cells. Thus, high oxaliplatin evokes ROS-mediated cysteine oxidation-dependent hTRPA1 activation independent of PHD activity, while a lower

  18. Effects of 7 days of arginine-alpha-ketoglutarate supplementation on blood flow, plasma L-arginine, nitric oxide metabolites, and asymmetric dimethyl arginine after resistance exercise.

    Science.gov (United States)

    Willoughby, Darryn S; Boucher, Tony; Reid, Jeremy; Skelton, Garson; Clark, Mandy

    2011-08-01

    Arginine-alpha-ketoglutarate (AAKG) supplements are alleged to increase nitric oxide production, thereby resulting in vasodilation during resistance exercise. This study sought to determine the effects of AAKG supplementation on hemodynamics and brachial-artery blood flow and the circulating levels of L-arginine, nitric oxide metabolites (NOx; nitrate/nitrite), asymmetric dimethyl arginine (ADMA), and L-arginine:ADMA ratio after resistance exercise. Twenty-four physically active men underwent 7 days of AAKG supplementation with 12 g/day of either NO(2) Platinum or placebo (PLC). Before and after supplementation, a resistance-exercise session involving the elbow flexors was performed involving 3 sets of 15 repetitions with 70-75% of 1-repetition maximum. Data were collected immediately before, immediately after (PST), and 30 min after (30PST) each exercise session. Data were analyzed with factorial ANOVA (p L-arginine was increased in the NO(2) group (p = .001). NOx was shown to increase in both groups at PST (p = .001) and at 30PST (p = .001) but was not different between groups. ADMA was not affected between tests (p = .26) or time points (p = .31); however, the L-arginine:ADMA ratio was increased in the NO(2) group (p = .03). NO(2) Platinum increased plasma L-arginine levels; however, the effects observed in hemodynamics, brachial-artery blood flow, and NOx can only be attributed to the resistance exercise.

  19. Vasodilator effects of nebivolol in a rat model of hypertension and a rabbit model of congestive heart failure

    NARCIS (Netherlands)

    de Groot, Annemieke A.; Mathy, Marie-Jeanne; van Zwieten, Pieter A.; Peters, Stephan L. M.

    2007-01-01

    Both hypertension and congestive heart failure are characterized by a reduced vasodilatory capacity. In both conditions, the impairment of endothelial function is mainly the result of a reduced nitric oxide availability. The highly beta1-selective third-generation adrenoceptor blocker nebivolol

  20. Influence of K+-channels and gap junctions on endothelium derived hyperpolarization-induced renal vasodilation in rats

    DEFF Research Database (Denmark)

    Rasmussen, Kasper Møller; Brasen, Jens Christian; Salomonsson, Max

    2015-01-01

    arteries was measured using a wire myograph. Renal blood flow was measured in isoflurane and pentobarbital anesthetized rats. The ACh-induced response was measured before and after inhibition of the nitric oxide synthase with L-NAME and cyclooxygenase using indomethacin. Blockade of small conductance Ca2...

  1. Prevalence of endothelial nitric oxide synthase (eNOS) gene exon 7 Glu298Asp variant in North Eastern India

    Science.gov (United States)

    Shankarishan, Priyanka; Borah, Prasanta Kumar; Ahmed, Giasuddin; Mahanta, Jagadish

    2011-01-01

    Background & objectives Endothelial nitric oxide is a potent vasodilator and impairment of its generation brought about by gene polymorphism is considered a major predictor for several diseases. A single nucleotide polymorphism G894T within exon 7 of endothelial nitric oxide synthase (eNOS-7) gene, resulting in a replacement of glutamic acid by aspartic acid, has been studied as a putative candidate gene for cardiovascular diseases. The pattern of eNOS-7 Glu298Asp variant in the Indian population is poorly known. The present study was planned to determine the prevalence of the variant of this gene among tea garden community in Assam, North-East India with high prevalence of hypertension. Methods Study participants of both sex aged ≥18 yr were recruited randomly from temporary field clinics established in tea gardens of Dibrugarh, Assam. Genomic DNA was extracted from 409 subjects by the conventional phenol-chloroform method. The prevalence of the eNOS exon 7 Glu298Asp variant was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Results The study population was in Hardy-Weinberg Equilibrium. The frequency of the eNOS GG, GT and TT genotypes was found to be 75, 22 and 3 per cent respectively and did not show any significant difference in gender wise analysis. Interpretation & conclusions Our results showed that the prevalence of the homozygous GG genotype was high (75%) and the rare mutant genotype (homozygous, TT) was 3 per cent in a population at risk with cardiovascular disease. Such population-based data on various polymorphisms can ultimately be exploited in pharmacogenomics. PMID:21623032

  2. Targeting Pulmonary Endothelial Hemoglobin α Improves Nitric Oxide Signaling and Reverses Pulmonary Artery Endothelial Dysfunction.

    Science.gov (United States)

    Alvarez, Roger A; Miller, Megan P; Hahn, Scott A; Galley, Joseph C; Bauer, Eileen; Bachman, Timothy; Hu, Jian; Sembrat, John; Goncharov, Dmitry; Mora, Ana L; Rojas, Mauricio; Goncharova, Elena; Straub, Adam C

    2017-12-01

    Pulmonary hypertension is characterized by pulmonary endothelial dysfunction. Previous work showed that systemic artery endothelial cells (ECs) express hemoglobin (Hb) α to control nitric oxide (NO) diffusion, but the role of this system in pulmonary circulation has not been evaluated. We hypothesized that up-regulation of Hb α in pulmonary ECs contributes to NO depletion and pulmonary vascular dysfunction in pulmonary hypertension. Primary distal pulmonary arterial vascular smooth muscle cells, lung tissue sections from unused donor (control) and idiopathic pulmonary artery (PA) hypertension lungs, and rat and mouse models of SU5416/hypoxia-induced pulmonary hypertension (PH) were used. Immunohistochemical, immunocytochemical, and immunoblot analyses and transfection, infection, DNA synthesis, apoptosis, migration, cell count, and protein activity assays were performed in this study. Cocultures of human pulmonary microvascular ECs and distal pulmonary arterial vascular smooth muscle cells, lung tissue from control and pulmonary hypertensive lungs, and a mouse model of chronic hypoxia-induced PH were used. Immunohistochemical, immunoblot analyses, spectrophotometry, and blood vessel myography experiments were performed in this study. We find increased expression of Hb α in pulmonary endothelium from humans and mice with PH compared with controls. In addition, we show up-regulation of Hb α in human pulmonary ECs cocultured with PA smooth muscle cells in hypoxia. We treated pulmonary ECs with a Hb α mimetic peptide that disrupts the association of Hb α with endothelial NO synthase, and found that cells treated with the peptide exhibited increased NO signaling compared with a scrambled peptide. Myography experiments using pulmonary arteries from hypoxic mice show that the Hb α mimetic peptide enhanced vasodilation in response to acetylcholine. Our findings reveal that endothelial Hb α functions as an endogenous scavenger of NO in the pulmonary endothelium

  3. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi, E-mail: uehara@pharm.okayama-u.ac.jp

    2015-01-02

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H{sub 2}S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H{sub 2}S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H{sub 2}S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H{sub 2}S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H{sub 2}S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H{sub 2}S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions.

  4. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    International Nuclear Information System (INIS)

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi

    2015-01-01

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H 2 S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H 2 S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H 2 S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H 2 S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H 2 S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H 2 S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions

  5. Wavelet entropy of Doppler ultrasound blood velocity flow waveforms distinguishes nitric oxide-modulated states.

    Science.gov (United States)

    Agnew, Christina E; Hamilton, Paul K; McCann, Aaron J; McGivern, R Canice; McVeigh, Gary E

    2015-05-01

    Wavelet entropy assesses the degree of order or disorder in signals and presents this complex information in a simple metric. Relative wavelet entropy assesses the similarity between the spectral distributions of two signals, again in a simple metric. Wavelet entropy is therefore potentially a very attractive tool for waveform analysis. The ability of this method to track the effects of pharmacologic modulation of vascular function on Doppler blood velocity waveforms was assessed. Waveforms were captured from ophthalmic arteries of 10 healthy subjects at baseline, after the administration of glyceryl trinitrate (GTN) and after two doses of N(G)-nitro-L-arginine-methyl ester (L-NAME) to produce vasodilation and vasoconstriction, respectively. Wavelet entropy had a tendency to decrease from baseline in response to GTN, but significantly increased after the administration of L-NAME (mean: 1.60 ± 0.07 after 0.25 mg/kg and 1.72 ± 0.13 after 0.5 mg/kg vs. 1.50 ± 0.10 at baseline, p wavelet entropy had a spectral distribution from increasing doses of L-NAME comparable to baseline, 0.07 ± 0.04 and 0.08 ± 0.03, respectively, whereas GTN had the most dissimilar spectral distribution compared with baseline (0.17 ± 0.08, p = 0.002). Wavelet entropy can detect subtle changes in Doppler blood velocity waveform structure in response to nitric-oxide-mediated changes in arteriolar smooth muscle tone. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals.

    Science.gov (United States)

    Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B

    2017-03-01

    The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Tempol improves cutaneous thermal hyperemia through increasing nitric oxide bioavailability in young smokers

    Science.gov (United States)

    Fujii, Naoto; Brunt, Vienna E.

    2014-01-01

    We recently found that young cigarette smokers display cutaneous vascular dysfunction relative to nonsmokers, which is partially due to reduced nitric oxide (NO) synthase (NOS)-dependent vasodilation. In this study, we tested the hypothesis that reducing oxidative stress improves NO bioavailability, enhancing cutaneous vascular function in young smokers. Ten healthy young male smokers, who had smoked for 6.3 ± 0.7 yr with an average daily consumption of 9.1 ± 0.7 cigarettes, were tested. Cutaneous vascular conductance (CVC) during local heating to 42°C at a rate of 0.1°C/s was evaluated as laser-Doppler flux divided by mean arterial blood pressure and normalized to maximal CVC, induced by local heating to 44°C plus sodium nitroprusside administration. We evaluated plateau CVC during local heating, which is known to be highly dependent on NO, at four intradermal microdialysis sites with 1) Ringer solution (control); 2) 10 μM 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol), a superoxide dismutase mimetic; 3) 10 mM Nω-nitro-l-arginine (l-NNA), a nonspecific NOS inhibitor; and 4) a combination of 10 μM tempol and 10 mM l-NNA. Tempol increased plateau CVC compared with the Ringer solution site (90.0 ± 2.3 vs. 77.6 ± 3.9%maximum, P = 0.028). Plateau CVC at the combination site (56.8 ± 4.5%maximum) was lower than the Ringer solution site (P tempol effect was exclusively NO dependent. These data suggest that in young smokers, reducing oxidative stress improves cutaneous thermal hyperemia to local heating by enhancing NO production. PMID:24682395

  8. Differences between negative inotropic and vasodilator effects of calcium antagonists acting on extra- and intracellular calcium movements in rat and guinea-pig cardiac preparations

    NARCIS (Netherlands)

    Hugtenburg, J. G.; Mathy, M. J.; Boddeke, H. W.; Beckeringh, J. J.; van Zwieten, P. A.

    1989-01-01

    In order to get more insight into the utilization of calcium in the mammalian heart and the influence of calcium antagonists on this process we have evaluated the negative inotropic and vasodilator effect of nifedipine, diltiazem, verapamil, bepridil and lidoflazine as well as of the intracellularly

  9. Early postmenopausal phase is associated with reduced prostacyclin-induced vasodilation that is reversed by exercise training

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Egelund, Jon; Mandrup Jensen, Camilla Maria

    2016-01-01

    to prostacyclin, the overall balance between vasodilator and vasoconstrictor prostanoids does not seem to be altered. Exercise training can reverse the decline in vascular sensitivity to epoprostenol and acetylcholine, suggesting that beneficial vascular adaptations with exercise training are preserved in recent......The postmenopausal phase is associated with an accelerated rate of rise in the prevalence of vascular dysfunction and hypertension; however, the mechanisms underlying these adverse vascular changes and whether exercise training can reverse the decline in vascular function remains unclear. We...... examined the function of the vascular prostanoid system in matched pre- and postmenopausal women before and after 12 weeks of exercise training. Twenty premenopausal and 16 early postmenopausal (3.1±0.5 [mean±SE] years after final menstrual period) women only separated by 4 (50±0 versus 54±1) years of age...

  10. Contribution of K+ channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro

    DEFF Research Database (Denmark)

    Rasmussen, Kasper Møller Bøje; Braunstein, Thomas Hartig; Salomonsson, Max

    2016-01-01

    We investigated the mechanisms behind the endothelial-derived hyperpolarization (EDH)-induced renal vasodilation in vivo and in vitro in rats. We assessed the role of Ca2+-activated K+ channels and whether K+ released from the endothelial cells activates inward rectifier K+ (Kir) channels and...... response in vitro was strongly attenuated whereas the EDH response in vivo was not significantly reduced. Inhibition of Kir channels and Na+/K+-ATPases (by ouabain and Ba2+, respectively) significantly attenuated renal vasorelaxation in vitro but did not affect the response in vivo. Inhibition of gap...... junctions in vitro using carbenoxolone or 18α-glycyrrhetinic acid significantly reduced the endothelial-derived hyperpolarization-induced vasorelaxation. We conclude that SKCa and IKCa channels are important for EDH-induced renal vasorelaxation in vitro. Activation of Kir channels and Na+/K+-ATPases plays...

  11. Vascular Kinin B1 and B2 Receptors Determine Endothelial Dysfunction through Neuronal Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Luciano Dos Santos A. Capettini

    2017-04-01

    Full Text Available B1- and B2-kinin receptors are G protein-coupled receptors that play an important role in the vascular function. Therefore, the present study was designed to evaluate the participation of kinin receptors in the acetylcholine (ACh-induced vascular relaxation, focusing on the protein-protein interaction involving kinin receptors with endothelial and neuronal nitric oxide synthases (eNOS and nNOS. Vascular reactivity, nitric oxide (NO· and reactive oxygen species (ROS generation, co-immunoprecipitation were assessed in thoracic aorta from male wild-type (WT, B1- (B1R−/−, B2- (B2R−/− knockout mice. Some vascular reactivity experiments were also performed in a double kinin receptors knockout mice (B1B2R−/−. For pharmacological studies, selective B1- and B2-kinin receptors antagonists, NOS inhibitors and superoxide dismutase (SOD mimetic were used. First, we show that B1- and B2-kinin receptors form heteromers with nNOS and eNOS in thoracic aorta. To investigate the functionality of these protein-protein interactions, we took advantage of pharmacological tools and knockout mice. Importantly, our results show that kinin receptors regulate ACh-induced relaxation via nNOS signaling in thoracic aorta with no changes in NO· donor-induced relaxation. Interestingly, B1B2R−/− presented similar level of vascular dysfunction as found in B1R−/− or B2R−/− mice. In accordance, aortic rings from B1R−/− or B2R−/− mice exhibit decreased NO· bioavailability and increased superoxide generation compared to WT mice, suggesting the involvement of excessive ROS generation in the endothelial dysfunction of B1R−/− and B2R−/− mice. Alongside, we show that impaired endothelial vasorelaxation induced by ACh in B1R−/− or B2R−/− mice was rescued by the SOD mimetic compound. Taken together, our findings show that B1- and B2-kinin receptors regulate the endothelium-dependent vasodilation of ACh through nNOS activity and indicate

  12. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin.

    Science.gov (United States)

    Taverne, Yannick J; de Wijs-Meijler, Daphne; Te Lintel Hekkert, Maaike; Moon-Massat, Paula F; Dubé, Gregory P; Duncker, Dirk J; Merkus, Daphne

    2017-05-01

    pressures. HBOC-201-induced vasoconstriction is mediated by scavenging nitric oxide (NO) and by upregulating endothelin (ET) production. Pressor effects can be prevented by adjuvant treatment with NO donors or direct vasodilators, such as nitroglycerin or adenosine, but dosages must be carefully monitored to avoid hypotension. However, hemodynamic normalization is more easily achieved via administration of an ET receptor blocker.

  13. Neuroprotective properties of nitric oxide and S-nitrosoglutathione

    International Nuclear Information System (INIS)

    Rauhala, Pekka; Andoh, Tsugunobu; Chiueh, C.C.

    2005-01-01

    Oxidative stress and apoptosis may play an important role in the neurodegeneration. The present paper outlines antioxidative and antiapototic mechanisms of nitric oxide and S-nitrosothiols, which could mediate neuroprotection. Nitric oxide generated by nitric oxide synthase or released from an endogenous S-nitrosothiol, S-nitrosoglutathione may up-regulate antioxidative thioredoxin system and antiapototic Bcl-2 protein through a cGMP-dependent mechanism. Moreover, nitric oxide radicals have been shown to have direct antioxidant effect through their reaction with free radicals and iron-oxygen complexes. In addition to serving as a stabilizer and carrier of nitric oxide, S-nitrosoglutathione may have protective effect through transnitrosylation reactions. Based on these new findings, a hypothesis arises that the homeostasis of nitric oxide, S-nitrosothiols, glutathione, and thioredoxin systems is important for protection against oxidative stress, apoptosis, and related neurodegenerative disorders

  14. Muscle α-adrenergic responsiveness during exercise and ATP-induced vasodilation in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Iepsen, U W; Munch, G W; Ryrsø, C K; Secher, N H; Lange, P; Thaning, P; Pedersen, B K; Mortensen, S P

    2018-02-01

    Sympathetic vasoconstriction is blunted in exercising muscle (functional sympatholysis) but becomes attenuated with age. We tested the hypothesis that functional sympatholysis is further impaired in chronic obstructive pulmonary disease (COPD) patients. We determined leg blood flow and calculated leg vascular conductance (LVC) during 1) femoral-arterial Tyramine infusion (evokes endogenous norepinephrine release, 1 µmol·min -1 ·kg leg mass -1 ), 2) one-legged knee extensor exercise with and without Tyramine infusion [10 W and 20% of maximal workload (WL max )], 3) ATP (0.05 µmol·min -1 ·kg leg mass -1 ) and Tyramine infusion, and 4) incremental ATP infusions (0.05, 0.3, and 3.0 µmol·min -1 ·kg leg mass -1 ). We included 10 patients with moderate to severe COPD and 8 age-matched healthy control subjects. Overall, leg blood flow and LVC were lower in COPD patients during exercise ( P Incremental ATP infusions induced dose-dependent vasodilation with no difference between groups, and, in addition, the vasoconstrictor response to Tyramine infused together with ATP was not different between groups (COPD: -0.03 ± 0.01 l·min -1 ·kg leg mass -1 vs. -0.04 ± 0.01 l·min -1 ·kg leg mass -1 , P > 0.05). Compared with age-matched healthy control subjects, the vasodilatory response to ATP is intact in COPD patients and their ability to blunt sympathetic vasoconstriction (functional sympatholysis) as evaluated by intra-arterial Tyramine during exercise or ATP infusion is maintained. NEW & NOTEWORTHY The ability to blunt sympathetic vasoconstriction in exercising muscle and ATP-induced dilation in chronic obstructive pulmonary disease patients remains unexplored. Chronic obstructive pulmonary disease patients demonstrated similar sympathetic vasoconstriction in response to intra-arterial Tyramine during exercise and ATP-induced vasodilation compared with age-matched healthy control subjects.

  15. The roles of KCa, KATP, and KV channels in regulating cutaneous vasodilation and sweating during exercise in the heat.

    Science.gov (United States)

    Louie, Jeffrey C; Fujii, Naoto; Meade, Robert D; McNeely, Brendan D; Kenny, Glen P

    2017-05-01

    We recently showed the varying roles of Ca 2+ -activated (K Ca ), ATP-sensitive (K ATP ), and voltage-gated (K V ) K + channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K + channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1 ) lactated Ringer solution (control); 2 ) 50 mM tetraethylammonium (nonspecific K Ca channel blocker); 3 ) 5 mM glybenclamide (selective K ATP channel blocker); or 4 ) 10 mM 4-aminopyridine (nonspecific K V channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. K Ca channel inhibition resulted in greater CVC versus control at end exercise ( P = 0.04) and 10 and 20 min into recovery (both P exercise (all P ≤ 0.04), and 10 min into recovery ( P = 0.02). No differences in CVC were observed with K V channel inhibition during baseline ( P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of K V channel inhibition augmenting sweating during baseline ( P = 0.04), responses were similar to control with all K + channel blockers during each time period (all P ≥ 0.07). We demonstrated that K Ca and K ATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat. Copyright © 2017 the American Physiological Society.

  16. Time course of change in vasodilator function and capacity in response to exercise training in humans.

    Science.gov (United States)

    Tinken, Toni M; Thijssen, Dick H J; Black, Mark A; Cable, N Timothy; Green, Daniel J

    2008-10-15

    Studies of the impact of exercise training on arterial adaptation in healthy subjects have produced disparate results. It is possible that some studies failed to detect changes because functional and structural adaptations follow a different time course and may therefore not be detected at discrete time points. To gain insight into the time course of training-induced changes in artery function and structure, we examined conduit artery flow mediated dilatation (FMD), an index of nitric oxide (NO)-mediated artery function, and conduit dilator capacity (DC), a surrogate marker for arterial remodelling, in the brachial and popliteal arteries of 13 healthy male subjects (21.6 +/- 0.6 years) and seven non-active controls (22.8 +/- 0.2 years) studied at 2-week intervals across an 8-week cycle and treadmill exercise training programme. Brachial and popliteal artery FMD and DC did not change in control subjects at any time point. FMD increased from baseline (5.9 +/- 0.5%) at weeks 2 and 4 (9.1 +/- 0.6, 8.5 +/- 0.6%, respectively, P < 0.01), but returned towards baseline levels again by week 8 (6.9 +/- 0.7%). In contrast, brachial artery DC progressively increased from baseline (8.1 +/- 0.4%) at weeks 2, 4, 6 and 8 (9.2 +/- 0.6, 9.9 +/- 0.6, 10.0 +/- 0.5, 10.5 +/- 0.8%, P < 0.05). Similarly, popliteal artery FMD increased from baseline (6.2 +/- 0.7%) at weeks 2, 4 and 6 (9.1 +/- 0.6, 9.5 +/- 0.6, 7.8 +/- 0.5%, respectively, P < 0.05), but decreased again by week 8 (6.5 +/- 0.6%), whereas popliteal DC progressively increased from baseline (8.9 +/- 0.4%) at week 4 and 8 (10.5 +/- 0.7, 12.2 +/- 0.6%, respectively, P < 0.05). These data suggest that functional changes in conduit arteries occur rapidly and precede arterial remodelling in vivo. These data suggest that complimentary adaptations occur in arterial function and structure and future studies should adopt multiple time point assessments to comprehensively assess arterial adaptations to interventions such as exercise

  17. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta.

    Science.gov (United States)

    Wu, Wen; Perrin-Sarrado, Caroline; Ming, Hui; Lartaud, Isabelle; Maincent, Philippe; Hu, Xian-Ming; Sapin-Minet, Anne; Gaucher, Caroline

    2016-10-01

    Alginate/chitosan nanocomposite particles (GSNO-acNCPs), i.e. S-nitrosoglutathione (GSNO) loaded polymeric nanoparticles incorporated into an alginate and chitosan matrix, were developed to increase the effective GSNO loading capacity, a nitric oxide (NO) donor, and to sustain its release from the intestine following oral administration. Compared with free GSNO and GSNO loaded nanoparticles, GSNO-acNCPs promoted 2.7-fold GSNO permeation through a model of intestinal barrier (Caco-2 cells). After oral administration to Wistar rats, GSNO-acNCPs promoted NO storage into the aorta during at least 17h, as highlighted by (i) a long-lasting hyporeactivity to phenylephrine (decrease in maximum vasoconstrictive effect of aortic rings) and (ii) N-acetylcysteine (a thiol which can displace NO from tissues)-induced vasodilation of aorxxtic rings preconstricted with phenylephrine. In conclusion, GSNO-acNCPs enhance GSNO intestinal absorption and promote the formation of releasable NO stores into the rat aorta. GSNO-acNCPs are promising carriers for chronic oral application devoted to the treatment of cardiovascular diseases. Copyright © 2016. Published by Elsevier Inc.

  18. Critical contribution of Na+-Ca2+ exchanger to the Ca2+-mediated vasodilation activated in endothelial cells of resistance arteries.

    Science.gov (United States)

    Lillo, Mauricio A; Gaete, Pablo S; Puebla, Mariela; Ardiles, Nicolás M; Poblete, Inés; Becerra, Alvaro; Simon, Felipe; Figueroa, Xavier F

    2018-04-01

    Na + -Ca 2+ exchanger (NCX) contributes to control the intracellular free Ca 2+ concentration ([Ca 2+ ] i ), but the functional activation of NCX reverse mode (NCXrm) in endothelial cells is controversial. We evaluated the participation of NCXrm-mediated Ca 2+ uptake in the endothelium-dependent vasodilation of rat isolated mesenteric arterial beds. In phenylephrine-contracted mesenteries, the acetylcholine (ACh)-induced vasodilation was abolished by treatment with the NCXrm blockers SEA0400, KB-R7943, or SN-6. Consistent with that, the ACh-induced hyperpolarization observed in primary cultures of mesenteric endothelial cells and in smooth muscle of isolated mesenteric resistance arteries was attenuated by KB-R7943 and SEA0400, respectively. In addition, both blockers abolished the NO production activated by ACh in intact mesenteric arteries. In contrast, the inhibition of NCXrm did not affect the vasodilator responses induced by the Ca 2+ ionophore, ionomycin, and the NO donor, S-nitroso- N-acetylpenicillamine. Furthermore, SEA0400, KB-R7943, and a small interference RNA directed against NCX1 blunted the increase in [Ca 2+ ] i induced by ACh or ATP in cultured endothelial cells. The analysis by proximity ligation assay showed that the NO-synthesizing enzyme, eNOS, and NCX1 were associated in endothelial cell caveolae of intact mesenteric resistance arteries. These results indicate that the activation of NCXrm has a central role in Ca 2+ -mediated vasodilation initiated by ACh in endothelial cells of resistance arteries.-Lillo, M. A., Gaete, P. S., Puebla, M., Ardiles, N. M., Poblete, I., Becerra, A., Simon, F., Figueroa, X. F. Critical contribution of Na + -Ca 2+ exchanger to the Ca 2+ -mediated vasodilation activated in endothelial cells of resistance arteries.

  19. Salivary contribution to exhaled nitric oxide.

    Science.gov (United States)

    Zetterquist, W; Pedroletti, C; Lundberg, J O; Alving, K

    1999-02-01

    Dietary and metabolic nitrate is distributed from the blood to the saliva by active uptake in the salivary glands, and is reduced to nitrite in the oral cavity by the action of certain bacteria. Since it has been reported that nitric oxide may be formed nonenzymatically from nitrite this study aimed to determine whether salivary nitrite could influence measurements of exhaled NO. Ten healthy subjects fasted overnight and ingested 400 mg potassium nitrate, equivalent to approximately 200 g spinach. Exhaled NO and nasal NO were regularly measured with a chemiluminescence technique up to 3 h after the ingestion. Measurements of exhaled NO were performed with a single-breath procedure, standardized to a 20-s exhalation, at a flow of 0.15 L x s(-1), and oral pressure of 8-10 cmH2O. Values of NO were registered as NO release rate (pmol x s(-1)) during the plateau of exhalation. Exhaled NO increased steadily over time after nitrate load and a maximum was seen at 120 min (77.0+/-15.2 versus 31.2+/-3.0 pmol x s(-1), pnitrite concentrations increased in parallel; at 120 min there was a four-fold increase compared with baseline (1.56+/-0.44 versus 0.37+/-0.09 mM, pnitrite-reducing conditions in the oral cavity were also manipulated by the use of different mouthwash procedures. The antibacterial agent chlorhexidine acetate (0.2%) decreased NO release by almost 50% (pnitrate loading and reduced the preload control levels by close to 30% (pnitric oxide formation contributes to nitric oxide in exhaled air and a large intake of nitrate-rich foods before the investigation might be misinterpreted as an elevated inflammatory activity in the airways. This potential source of error and the means for avoiding it should be considered in the development of a future standardized method for measurements of exhaled nitric oxide.

  20. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  1. Hypoxia tolerance, nitric oxide, and nitrite

    DEFF Research Database (Denmark)

    Fago, Angela; Jensen, Frank Bo

    2015-01-01

    survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and – in air breathing animals - redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite...... nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in diving marine mammals. The emerging picture underscores the importance...

  2. Tetrahydrobiopterin, l-Arginine and Vitamin C Act Synergistically to Decrease Oxidative Stress, Increase Nitric Oxide and Improve Blood Flow after Induction of Hindlimb Ischemia in the Rat

    Science.gov (United States)

    Yan, Jinglian; Tie, Guodong; Messina, Louis M

    2012-01-01

    Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays an essential role in vascular remodeling of collateral arteries and perfusion recovery in response to hindlimb ischemia. In ischemic conditions, decreased NO bioavailability was observed because of increased oxidative stress, decreased l-arginine and tetrahy-drobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine, and vitamin C acts synergistically to decrease oxidative stress, increase nitric oxide and improve blood flow in response to acute hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of unilateral hindlimb ischemia. Cosupplementation with BH4 + l-arginine resulted in greater eNOS expression, Ca2+-dependent NOS activity and NO concentration in gastrocnemius from the is-chemic hindlimb, as well as greater recovery of foot perfusion and more collateral artery enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen did further increase these dependent variables, although only the increase in eNOS expression reached statistical significances. In addition, rats given all three supplements demonstrated significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione:glutathione disulfide (GSH:GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, cosupplementation with BH4 + l-arginine + vitamin C significantly increased vascular perfusion after hindlimb ischemia by increasing eNOS activity and reducing oxidative stress and tissue necrosis. Oral cosupplementation of l-arginine, BH4 and vitamin C holds promise as a biological therapy to induce collateral artery enlargement. PMID

  3. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  4. EFFECTS OF NITRIC ACID ON CRITICALITY SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, B.

    2011-08-18

    As nitric acid molarity is increased, there are two competing phenomena affecting the reactivity of the system. First, there is interaction between each of the 10 wells in the basket-like insert. As the molarity of the nitric acid solution is increased (it moves from 100% water to 100% HNO{sub 3}), the hydrogen atom density decreases by about 80%. However, it remains a relatively efficient moderator. The moderating ratio of nitric acid is about 90% that of water. As the media between the wells is changed from 100% water to 100% nitric acid, the density of the media increases by 50%. A higher density typically leads to a better reflector. However, when the macroscopic scattering cross sections are considered, nitric acid is a much worse reflector than water. The effectiveness of nitric acid as a reflector is about 40% that of water. Since the media between the wells become a worse reflector and still remains an effective moderator, interaction between the wells increases. This phenomenon will cause reactivity to increase as nitric acid molarity increases. The seond phenomenon is due to the moderating ratio changing in the high concentration fissile-nitric acid solution in the 10 wells. Since the wells contain relatively small volumes of high concentration solutions, a small decrease in moderating power has a large effect on reactivity. This is due to the fact that neutrons are more likely to escape the high concentration fissile solution before causing another fission event. The result of this phenomenon is that as nitric acid molarity increases, reactivity decreases. Recent studies have shown that the second phenomenon is indeed the dominating force in determining reactivity changes in relation to nitric acid molarity changes. When considering the system as a whole, as nitric acid molarity increases, reactivity decreases.

  5. Inhaled nitric oxide improves systemic microcirculation in infants with hypoxemic respiratory failure

    NARCIS (Netherlands)

    Top, Anke P. C.; Ince, Can; Schouwenberg, Patrick H. M.; Tibboel, Dick

    2011-01-01

    To investigate the effect of inhaled nitric oxide on the systemic microcirculation. We hypothesized that inhaled nitric oxide improves the systemic microcirculation. Inhaled nitric oxide improves outcome in infants with persistent pulmonary hypertension of the newborn diagnosed by improving

  6. Semen leukocytes and oxidative-dependent DNA damage of spermatozoa in male partners of subfertile couples with no symptoms of genital tract infection.

    Science.gov (United States)

    Micillo, A; Vassallo, M R C; Cordeschi, G; D'Andrea, S; Necozione, S; Francavilla, F; Francavilla, S; Barbonetti, A

    2016-09-01

    The influence of seminal leukocytes on generation of oxidative damage to sperm DNA was here investigated on male partners of subfertile couples asymptomatic for a genital tract infection. The study included 111 ejaculates from men attending the Andrology Centre at University of L'Aquila. Semen leukocytes subset included round cells expressing pan-leukocyte CD45 antigen, monocyte/macrophage lineage antigen CD14, and activated macrophages HLA-DR antigen. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) expression identified spermatozoa with DNA oxidative adducts while terminal deoxynucleotidyl transferase (TdT)-mediated fluorescein-dUTP nick end labeling (TUNEL) assay detected spermatozoa with DNA fragmentation. Flow cytometry and immunocytochemistry was used for determinations. Main outcome measure was the association of semen leukocyte subpopulations with spermatozoa showing oxidative-related DNA damage and with routine semen parameters. Leukocyte subpopulations were strictly correlated (p spermatozoa. The percentage of 8-OHdG-positive spermatozoa was positively correlated with the percentage of TUNEL-positive spermatozoa (r = 0.48; p spermatozoa independently contributed (β = -0.25, p = 0.008; β = 0.23, p = 0.05, respectively) to the variation in percentage of 8-OHdG-positive spermatozoa after adjusting for age, abstinence time, and smoking. In conclusion, oxidative-dependent DNA damage in spermatozoa was associated to poor semen quality but not to different leukocyte subpopulations in ejaculates of men asymptomatic for a genital tract infection. © 2016 American Society of Andrology and European Academy of Andrology.

  7. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  8. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 and Lipid Peroxidation by Methanol Extract of Pericarpium Zanthoxyli. ... Production of iNOS induced by LPS was significantly (p < 0.05) inhibited by the extract, suggesting that the extract inhibits nitric oxide (NO) production by suppressing iNOS expression.

  9. Effect of nitric oxide scavengers, carboxy-PTIO on endotoxin ...

    African Journals Online (AJOL)

    values of the cardiovascular parameters considered in this study. This indicates that carboxy-PTIO is an efficient nitric oxide scavenger chemical of trapping nitric oxide immediately after its synthesis. Therefore, based on the current result, carboxy-PTIO can be used as one possible treatment agent against septic shock.

  10. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina

    2000-01-01

    We investigated the cellular regulation of nitric oxide synthase (NOS) activity in isolated acinar cells from rat parotid and human labial salivary glands, using the newly developed fluorescent nitric oxide (NO) indicator, DAF-2. We found that sympathetic stimulation with norepinephrine (NE) caused...

  11. Influence of nitric oxide on histamine and carbachol – induced ...

    African Journals Online (AJOL)

    The study aimed to determine the influence of nitric oxide (NO) on the action of histamine and carbachol on acid secretion in the common African toad – Bufo regularis. Gastric acidity was determined by titration method. The acid secretion was determined when nitric oxide was absent following administration of NO synthase ...

  12. Propolis Ameliorates Tumor Nerosis Factor-α, Nitric Oxide levels ...

    African Journals Online (AJOL)

    Background: Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor ...

  13. Amiodarona causa vasodilatação dependente do endotélio em artérias coronárias caninas Amiodarone causes endothelium-dependent vasodilation in canine coronary arteries

    Directory of Open Access Journals (Sweden)

    Alfredo José Rodrigues

    2005-03-01

    polysorbate 80, amiodarone dissolved in water, amiodarone dissolved in polysorbate 80, and a commercial presentation of amiodarone (Cordarone. The experiments were conducted in the presence of the following enzymatic blockers: only indomethacin, Nw-nitro-L-arginine associated with indomethacin, and only Nw-nitro-L-arginine. RESULTS: Polysorbate 80 caused a small degree of nonendothelium-dependent relaxation. Cordarone, amiodarone dissolved in water, and amiodarone dissolved in polysorbate 80 caused endothelium-dependent relaxation, which was greater for amiodarone dissolved in polysorbate and for Cordarone. Only the association of indomethacin and Nw-nitro-L-arginine could eliminate the endothelium-dependent relaxation caused by amiodarone dissolved in polysorbate 80. CONCLUSION: The results obtained indicate that vasodilation promoted by amiodarone in canine coronary arteries is mainly caused by stimulation of the release of nitric oxide and cyclooxygenase-dependent relaxing endothelial factors.

  14. Nitric Oxide Metabolites and Asymmetric Dimethylarginine Concentrations in Breast Milk

    Directory of Open Access Journals (Sweden)

    Hakan Öztürk

    2017-04-01

    Full Text Available Objective: Nitric oxide plays a preventive role in the development of necrotizing enterocolitis. Oral nitrite and nitrate intake has gained importance with the discovery of the conversion of nitrite to nitric oxide in acidic medium out of the synthesis of nitric oxide from L-arginine. Objective of this study was to examine the breast milk concentrations of nitric oxide and asymmetric dimethylarginine which is a competitive inhibitor of nitric oxide and to compare these concentrations in terms of gestational age and maturity of breast milk. Study Design: Forty-one women were included in the study. Milk samples were collected from 3 groups of mothers as term, late preterm and preterm on the postpartum days 3, 7 and 28. Results: When breast milk concentrations of nitric oxide were compared according to the postnatal day of the milk independently from gestational age; nitric oxide concentration was higher in the colostrum than in the transition milk and mature milk (p=0,035; p=0,001; respectively. For the comparison of asymmetric dimethylarginine concentrations among these groups and days; no statistically significant difference was observed in terms of gestational age and maturity of the milk (p=0.865, p=0.115; respectively. Conclusion: The highest nitric oxide concentration was found in the colostrum, suggesting that colostrum is a valuable food for newborns. Plasma concentrations of asymmetric dimethylarginine were negatively correlated with nitric oxide and did not show a correlation with breast milk, suggesting that asymmetric dimethylargininedoesn’t make nitric oxide inhibition in breast milk.

  15. New Modalities for the Administration of Inhaled Nitric Oxide in Intensive Care Units After Cardiac Surgery or for Neonatal Indications: A Prospective Observational Study.

    Science.gov (United States)

    Gaudard, Philippe; Barbanti, Claudio; Rozec, Bertrand; Mauriat, Philippe; M'rini, Mimoun; Cambonie, Gilles; Liet, Jean Michel; Girard, Claude; Leger, Pierre Louis; Assaf, Ziad; Damas, Pierre; Loron, Gauthier; Lecourt, Laurent; Amour, Julien; Pouard, Philippe

    2018-04-01

    Nitric oxide (NO) has a well-known efficacy in pulmonary hypertension (PH), with wide use for 20 years in many countries. The objective of this study was to describe the current use of NO in real life and the gap with the guidelines. This is a multicenter, prospective, observational study on inhaled NO administered through an integrated delivery and monitoring device and indicated for PH according to the market authorizations. The characteristics of NO therapy and ventilation modes were observed. Concomitant pulmonary vasodilator treatments, safety data, and outcome were also collected. Quantitative data are expressed as median (25th, 75th percentile). Over 1 year, 236 patients were included from 14 equipped and trained centers: 117 adults and 81 children with PH associated with cardiac surgery and 38 neonates with persistent PH of the newborn. Inhaled NO was initiated before intensive care unit (ICU) admission in 57%, 12.7%, and 38.9% with an initial dose of 10 (10, 15) ppm, 20 (18, 20) ppm, and 17 (11, 20) ppm, and a median duration of administration of 3.9 (1.9, 6.1) days, 3.8 (1.8, 6.8) days, and 3.1 (1.0, 5.7) days, respectively, for the adult population, pediatric cardiac group, and newborns. The treatment was performed using administration synchronized to the mechanical ventilation. The dose was gradually decreased before withdrawal in 86% of the cases according to the usual procedure of each center. Adverse events included rebound effect for 3.4% (95% confidence interval [CI], 0.9%-8.5%) of adults, 1.2% (95% CI, 0.0%-6.7%) of children, and 2.6% (95% CI, 0.1%-13.8%) of neonates and methemoglobinemia exceeded 2.5% for 5 of 62 monitored patients. Other pulmonary vasodilators were associated with NO in 23% of adults, 95% of children, and 23.7% of neonates. ICU stay was respectively 10 (6, 22) days, 7.5 (5.5, 15) days, and 9 (8, 15) days and ICU mortality was 22.2%, 6.2%, and 7.9% for adults, children, and neonates, respectively. This study confirms the safety

  16. Derivatives of 1,3-disubstituted 2,4(1H,3H)-quinazolinediones as possible peripheral vasodilators or antihypertensive agents.

    Science.gov (United States)

    Havera, H J; Vidrio, H

    1979-12-01

    A series of 1,3-disubstituted 2,4(1H,3H)-quinazolinediones was prepared from the 3-substituted 2,4(1H,3H)-quinazolinediones by treatment with sodium hydride and the desired alkyl halide in xylene. These compounds showed varying degrees of vasodilation and antihypertensive activity without significant blockade of alpha-adrenergic receptors. 1-[3-(N,N-Dimethylamino)propyl]-3-[3-(4-phenyl1-piperazinyl)propyl]-2,4(1H,3H)-quinazolinedione, which was selected for further studies, was more potent than papaverine in inducing vasodilation and induced a prolonged decrease in systolic blood pressure of hypertensive rats upon oral administration.

  17. Mechanistic electronic model to simulate and predict the effect of heat stress on the functional genomics of HO-1 system: Vasodilation.

    Science.gov (United States)

    Aggarwal, Yogender; Karan, Bhuwan Mohan; Das, Barda Nand; Sinha, Rakesh Kumar

    2010-05-01

    The present work is concerned to model the molecular signalling pathway for vasodilation and to predict the resting young human forearm blood flow under heat stress. The mechanistic electronic modelling technique has been designed and implemented using MULTISIM 8.0 and an assumption of 1V/ degrees C for prediction of forearm blood flow and the digital logic has been used to design the molecular signalling pathway for vasodilation. The minimum forearm blood flow has been observed at 35 degrees C (0 ml 100 ml(-1)min(-1)) and the maximum at 42 degrees C (18.7 ml 100 ml(-1)min(-1)) environmental temperature with respect to the base value of 2 ml 100 ml(-1)min(-1). This model may also enable to identify many therapeutic targets that can be used in the treatment of inflammations and disorders due to heat-related illnesses. 2010 Elsevier Ltd. All rights reserved.

  18. Black tea and maintenance of normal endotheliumdependent vasodilation: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2018-01-01

    on the scientific substantiation of a health claim related to black tea and maintenance of normal endotheliumdependent vasodilation. The scope of the application was proposed to fall under a health claim based on newly developed scientific evidence. The food proposed by the applicant as the subject of the health...... claim is black tea beverages, either freshly prepared or reconstituted from water extract powders of black tea, characterised by the content of flavanols (expressed as catechins plus theaflavins) of at least 30 mg per 200 mL serving. The Panel considers that black tea characterised by the content....... Of the five human intervention studies provided on the chronic effect of black tea consumption on endothelium-dependent vasodilation, two investigated the effect after regular consumption of black tea for a sufficiently long time period (i.e. at least 4 weeks). These two studies did not allow an effect...

  19. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity

    OpenAIRE

    Gladwin, Mark T.; Schechter, Alan N.; Shelhamer, James H.; Pannell, Lewis K.; Conway, Deirdre A.; Hrinczenko, Borys W.; Nichols, James S.; Pease-Fye, Margaret E.; Noguchi, Constance T.; Rodgers, Griffin P.; Ognibene, Frederick P.

    1999-01-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of β-chain cysteine 93, raise the possibilty of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P50, did not respo...

  20. Citric Acid Alternative to Nitric Acid Passivation

    Science.gov (United States)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  1. Nitric oxide and mitochondria in metabolic syndrome

    Science.gov (United States)

    Litvinova, Larisa; Atochin, Dmitriy N.; Fattakhov, Nikolai; Vasilenko, Mariia; Zatolokin, Pavel; Kirienkova, Elena

    2015-01-01

    Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS. PMID:25741283

  2. Nitric Oxide Synthase Inhibitors as Antidepressants

    Directory of Open Access Journals (Sweden)

    Vallo Volke

    2010-01-01

    Full Text Available Affective and anxiety disorders are widely distributed disorders with severe social and economic effects. Evidence is emphatic that effective treatment helps to restore function and quality of life. Due to the action of most modern antidepressant drugs, serotonergic mechanisms have traditionally been suggested to play major roles in the pathophysiology of mood and stress-related disorders. However, a few clinical and several pre-clinical studies, strongly suggest involvement of the nitric oxide (NO signaling pathway in these disorders. Moreover, several of the conventional neurotransmitters, including serotonin, glutamate and GABA, are intimately regulated by NO, and distinct classes of antidepressants have been found to modulate the hippocampal NO level in vivo. The NO system is therefore a potential target for antidepressant and anxiolytic drug action in acute therapy as well as in prophylaxis. This paper reviews the effect of drugs modulating NO synthesis in anxiety and depression.

  3. The role of nitric oxide in melanoma.

    Science.gov (United States)

    Yarlagadda, Keerthi; Hassani, John; Foote, Isaac P; Markowitz, Joseph

    2017-12-01

    Nitric oxide (NO) is a small gaseous signaling molecule that mediates its effects in melanoma through free radical formation and enzymatic processes. Investigations have demonstrated multiple roles for NO in melanoma pathology via immune surveillance, apoptosis, angiogenesis, melanogenesis, and on the melanoma cell itself. In general, elevated levels of NO prognosticate a poor outcome for melanoma patients. However, there are processes where the relative concentration of NO in different environments may also serve to limit melanoma proliferation. This review serves to outline the roles of NO in melanoma development and proliferation. As demonstrated by multiple in vivo murine models and observations from human tissue, NO may promote melanoma formation and proliferation through its interaction via inhibitory immune cells, inhibition of apoptosis, stimulation of pro-tumorigenic cytokines, activation of tumor associated macrophages, alteration of angiogenic processes, and stimulation of melanoma formation itself. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The role of nitric oxide in stroke

    Directory of Open Access Journals (Sweden)

    Zhou-qing Chen

    2017-01-01

    Full Text Available Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO, a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.

  5. Biological nitric oxide signalling: chemistry and terminology

    Science.gov (United States)

    Heinrich, Tassiele A; da Silva, Roberto S; Miranda, Katrina M; Switzer, Christopher H; Wink, David A; Fukuto, Jon M

    2013-01-01

    Biological nitrogen oxide signalling and stress is an area of extreme clinical, pharmacological, toxicological, biochemical and chemical research interest. The utility of nitric oxide and derived species as signalling agents is due to their novel and vast chemical interactions with a variety of biological targets. Herein, the chemistry associated with the interaction of the biologically relevant nitrogen oxide species with fundamental biochemical targets is discussed. Specifically, the chemical interactions of nitrogen oxides with nucleophiles (e.g. thiols), metals (e.g. hemeproteins) and paramagnetic species (e.g. dioxygen and superoxide) are addressed. Importantly, the terms associated with the mechanisms by which NO (and derived species) react with their respective biological targets have been defined by numerous past chemical studies. Thus, in order to assist researchers in referring to chemical processes associated with nitrogen oxide biology, the vernacular associated with these chemical interactions is addressed. PMID:23617570

  6. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    Science.gov (United States)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  7. Effect of nipradilol, a beta-adrenergic blocker with vasodilating activity, on oxotremorine-induced tremor in mice.

    Science.gov (United States)

    Iwata, S; Nomoto, M; Fukuda, T

    1996-10-01

    The effect of nipradilol, a nonselective beta-adrenergic receptor blocker with nitroglycerin-like vasodilating activity, on oxotremorine-induced tremor was studied in mice. General tremor in mice was elicited by 0.5 mg/kg oxotremorine. The tremor was quantified using a capacitance transducer, then analyzed by a signal processor. The strength of the tremor was expressed in "points". The point values of the tremor (mean +/- SE) in control mice for 5 mg/kg (+/-)-propranolol, 2.5 mg/kg arotinolol, 0.5 mg/kg nipradilol, 1.0 mg/kg nipradilol and 2.5 mg/kg nipradilol were 87 +/- 16, 42 +/- 6, 38 +/- 6, 99 +/- 28, 28 +/- 6 and 31 +/- 7, respectively. The strength of the tremor was reduced by all beta-blockers. Although 1.0 mg/kg nipradilol significantly reduced the tremor, further inhibition of the tremor was not obtained with dosages up to 2.5 mg/kg of the drug. In conclusion, nipradilol was effective for suppressing oxotremorine-induced tremor, as were other beta-blockers.

  8. Nebivolol Ameliorates Nitric Oxide–Deficient Hypertension

    Directory of Open Access Journals (Sweden)

    L.A. Fortepiani

    2002-01-01

    Full Text Available Nebivolol is a new selective beta 1-adrenoceptor antagonist with nitric oxide (NO–releasing properties. In the present study we have analyzed whether nebivolol affects the development of the arterial hypertension that follows the chronic inhibition of nitric oxide synthesis. Nebivolol (1 mg/kg/day, 14 days was given concurrently with the NO synthesis inhibitor Nw-nitro-L-arginine methyl ester (L-NAME, 0.1, 1, and 10 mg/kg/day, 14 days to several groups of rats. Blood pressure, renal function, plasma renin activity (PRA, and NO activity and metabolites were measured at the end of the treatment period. L-NAME treatment alone increased mean arterial pressure dose dependently (103.5 ± 2.4, 110.9 ± 2.0, and 125.8 ± 2.2 mmHg, respectively. Nebivolol completely prevented the development of arterial hypertension in the groups treated with L-NAME at the doses of 0.1 and 1 mg/kg/day and reduced the increase achieved with the L-NAME dose of 10 mg/kg/day (110.3 ± 2.7. There were no differences in glomerular filtration rate or natriuresis between nebivolol-treated and -untreated rats. Plasma nitrates+nitrites and calcium-dependent NO synthase activity in the kidney also decreased dose dependently with L-NAME treatment and nebivolol did not significantly modify it. However, PRA was lower in all groups treated with nebivolol and L-NAME as compared to the rats receiving only L-NAME. These data indicate that nebivolol prevents the development of the arterial hypertension associated with chronic NO deficit and this effect seems to be dependent on the inhibition of renin-angiotensin system.

  9. Selective venous vasodilator properties of the analgesic metamizole (dipyrone) in a human ex vivo model-implications for postoperative pain management.

    Science.gov (United States)

    Hoenicka, Markus; Gorki, Hagen; Traeger, Karl; Liebold, Andreas

    2017-05-01

    Metamizole (dipyrone) is a first-line, non-opioid analgesic used for postoperative pain management. Clinical data and animal experiments indicate a possible vasodilator action of this drug. We investigated the effects of metamizole on human artery and vein tone in an ex vivo model to assess potential contributions to venous pooling. Excess segments of bypass grafts were harvested during coronary artery bypass grafting procedures. Tensions were measured in an organ bath for 120 min after adding metamizole to the preconstricted vessels. Contribution of endothelium was assessed in endothelium-denuded vessels, and indometacin was used to identify cyclooxygenase-mediated effects. Internal mammary arteries (n = 6) constricted after addition of 1, 3, and 10 μM metamizole and remained constricted at the lower doses. Transient constrictions also occurred in saphenous veins (n = 20), but veins relaxed below solvent controls after 20 min at all concentrations. Endothelium removal (n = 12) and cyclooxygenase inhibition (n = 12) suppressed the vasoconstrictor effect but not the vasodilator effect. Metamizole and its metabolites display counteracting effects on blood vessel tone ex vivo. The vasoconstrictor effect is mediated by cyclooxygenase-derived products. The net effect is site-specific, resulting in a selective venous vasodilator action. This may exacerbate unwanted venous pooling during postoperative pain therapy.

  10. Nitric oxide in the psychobiology of mental disorders

    Directory of Open Access Journals (Sweden)

    Altan Eşsizoğlu

    2009-03-01

    Full Text Available Nitric oxide is in a gaseous form and is widespread in the human body. It functions by acting as a secondary messenger in the modulatory activities of neuronal functions of the central nervous system. Nitric oxide is the first identified neurotransmitter of the nontraditional neurotransmitter family.Studies conducted on experimental animals demonstrate that nitric oxide has a neuromodulatory efficacy on the secretions of other neurotransmitters and that it has an effect on learning and memory functions, and on various neuronal mechanisms. Many studies have been conducted to investigate the location of nitric oxide in the central nervous system, its effect on anxiety and depression, its relationship with other neurotransmitters, and also about its role on neurotoxicity. There are clinical studies concerning the level of nitrate, a product of nitric oxide metabolism, and also experimental studies concerning its rewarding effect of alcohol and substance use, in patients with depression and schizophrenia. However, limited studies have been conducted to investigate its relationship with stress, which is an important factor in the etiology of psychiatric disorders. These studies demonstrate that nitric oxide is closely related with stress physiology.Nitric oxide is a neuromodulator, which is frequently being mentioned about nowadays in psychiatry. Clinical and experimental studies play an important role in the psychobiology of psychiatric disorders.

  11. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  12. Alternative control techniques document: Nitric and adipic acid manufacturing plants

    International Nuclear Information System (INIS)

    Lazzo, D.W.

    1991-12-01

    The Alternative Control Techniques document describes available control techniques for reducing NOx emission levels from nitric and adipic acid manufacturing plants. The document contains information on the formation of NOx and uncontrolled NOx emissions from nitric and adipic acid plants. The following NOx control techniques for nitric acid plants are discussed: extended absorption, nonselective catalytic reduction (NSCR), and selective catalytic reduction (SCR). The following NOx control techniques for adipic acid plants are discussed: extended absorption and thermal reduction. For each control technique, achievable controlled NOx emission levels, capital and annual costs, cost effectiveness, and environmental and energy impacts are presented

  13. Alternative control techniques document: Nitric and adipic acid manufacturing plants

    Energy Technology Data Exchange (ETDEWEB)

    Lazzo, D.W.

    1991-12-01

    The Alternative Control Techniques document describes available control techniques for reducing NOx emission levels from nitric and adipic acid manufacturing plants. The document contains information on the formation of NOx and uncontrolled NOx emissions from nitric and adipic acid plants. The following NOx control techniques for nitric acid plants are discussed: extended absorption, nonselective catalytic reduction (NSCR), and selective catalytic reduction (SCR). The following NOx control techniques for adipic acid plants are discussed: extended absorption and thermal reduction. For each control technique, achievable controlled NOx emission levels, capital and annual costs, cost effectiveness, and environmental and energy impacts are presented.

  14. Leaching of sodium carbonate cakes by nitric acid

    International Nuclear Information System (INIS)

    Troyanker, L.S.; Nikonov, V.N.

    1977-01-01

    The interaction has been studied of soda cakes of fluorite-rare-earth concentrate with nitric acid. The effect of a number of factors on extraction of REE into a nitric solution has been considered: the final acidity of the pulp, the duration of leaching, and the ratio between solid and liquid phases. The effect of adding aluminium nitrate into the pulp has also been studied. It has been shown that three-stage counterflow leaching of soda cakes with nitric acid increases REE extraction approximately by 10%

  15. Nitric oxide synthase and nitric oxide alterations in chronically stressed rats: a model for nitric oxide in major depressive disorder.

    Science.gov (United States)

    Gao, Shang-Feng; Lu, Yun-Rong; Shi, Li-Gen; Wu, Xue-Yan; Sun, Bo; Fu, Xin-Yan; Luo, Jian-Hong; Bao, Ai-Min

    2014-09-01

    Nitric oxide (NO) and NO synthase-1 (NOS1) are involved in the stress response and in depression. We compared NOS-NO alterations in rats exposed to chronic unpredictable stress (CUS) with alterations in major depressive disorder (MDD) in humans. In the hypothalamus of male CUS rats we determined NOS activity, and in the paraventricular nucleus (PVN) we determined NOS1-immunoreactive (ir) cell densities and co-localization of NOS1 with stress-related neuropeptides corticotropin-releasing hormone (CRH), vasopressin (AVP) or oxytocin (OXT). We measured plasma NO levels and cortisol in male medicine-naïve MDD patients and plasma NO and corticosterone (CORT) in CUS rats. In the CUS rat total NOS activity in the hypothalamus (P=0.018) and NOS1-ir cell density in the PVN were both significantly decreased (P=0.018), while NOS1 staining was mainly expressed in OXT-ir neurons in this nucleus. Interestingly, plasma NO levels were significantly increased both in male CUS rats (P=0.001) and in male MDD patients (Pdepression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes

    NARCIS (Netherlands)

    Sprangers, F.; Sauerwein, H. P.; Romijn, J. A.; van Woerkom, G. M.; Meijer, A. J.

    1998-01-01

    There is increasing evidence for the existence of intrahepatic regulation of glucose metabolism by Kupffer cell products. Nitric oxide (NO) is known to inhibit gluconeogenic flux through pyruvate carboxylase and phosphoenolpyruvate carboxykinase. However, NO may also influence glucose metabolism at

  17. Ginsenoside Rb1 Reduces Nitric Oxide Production via Inhibition of ...

    African Journals Online (AJOL)

    Ginsenoside Rb1 Reduces Nitric Oxide Production via Inhibition of Nuclear Factor-κB Activation in Interleukin-1β- Stimulated SW1353 Chondrosarcoma Cells. P Jia, G Chen, R Li, X Rong, G Zhou, Y Zhong ...

  18. Acute Respiratory Distress Syndrome (ARDS After Nitric Acid Inhalation

    Directory of Open Access Journals (Sweden)

    Gülay Kır

    2014-12-01

    Full Text Available Lung injury resulting from inhalation of chemical products continues to be associated with high morbidity and mortality. Concentrated nitric acids are also extremely corrosive fuming chemical liquids. Fumes of nitric acid (HNO3 and various oxides of nitrogen such as nitric oxide (NO and nitrogen dioxide (NO2 may cause fatal illnesses such as severe pulmonary edema and acute respiratory distress syndrome (ARDS when inhaled. Intensive respiratory management including mechanical ventilation with positive end expiratory pressure (PEEP, inverse ratio ventilation, replacement of surfactant and extracorporeal membrane oxygenation (ECMO, steroids and n-acetylcysteine (NAC may improve survival. In this case report we present the diagnosis and successful treatment of a 57 years old male patient who developed ARDS following pulmonary edema due to nitric acid fumes inhalation.

  19. Studies on the reaction of nitric acid and sugar

    International Nuclear Information System (INIS)

    MacDougall, C.S.; Bayne, C.K.; Roberson, R.B.

    1982-01-01

    The design of vessels and off-gas systems for denitrating acidic radioactive process solutions by reacting nitric acid with sugar requires a fairly accurate determination of the rate of the controlling step. Therefore, the reaction of sugar with concentrated nitric acid was closely examined at temperatures of 100 and 110 0 C and in the presence of low levels of iron )0 to 0.2 M Fe(III)). Efficiencies of the sugar destruction by nitric acid ranged from 2.56 to 2.93 mol of acid consumed per mole of carbon added. Product off-gases were examined throughout the reaction. Release of CO was fairly constant throughout the reaction, but amounts of CO 2 increased as the nitric acid began to attack the terminal carboxylic acids produced from the consumption of sucrose. Voluminous quantities of NO 2 were released at the beginning of the reaction, but larger relative concentrations of NO were observed toward the end

  20. The levosimendan metabolite OR-1896 elicits vasodilation by activating the KATP and BKCa channels in rat isolated arterioles

    Science.gov (United States)

    Erdei, Nóra; Papp, Zoltán; Pollesello, Piero; Édes, István; Bagi, Zsolt

    2006-01-01

    We characterized the vasoactive effects of OR-1896, the long-lived metabolite of the inodilator levosimendan, in coronary and skeletal muscle microvessels. The effect of OR-1896 on isolated, pressurized (80 mmHg) rat coronary and gracilis muscle arteriole (∼150 μm) diameters was investigated by videomicroscopy. OR-1896 elicited concentration-dependent (1 nM–10 μM) dilations in coronary (maximal dilation: 66±6%, relative to that in Ca2+-free solutions; pD2: 7.16±0.42) and gracilis muscle arterioles (maximal dilation: 73±4%; pD2: 6.71±0.42), these dilations proving comparable to those induced by levosimendan (1 nM–10 μM) in coronary (maximal dilation: 83±6%; pD2: 7.06±0.14) and gracilis muscle arterioles (maximal dilation: 73±12%; pD2: 7.05±0.1). The maximal dilations in response to OR-1896 were significantly (P<0.05) attenuated by the nonselective K+ channel inhibitor tetraethylammonium (1 mM) in coronary (to 34±9%) and gracilis muscle arterioles (to 28±6%). Glibenclamide (5 or 10 μM), a selective ATP-sensitive K+ channel (KATP) blocker, elicited a greater reduction of OR-1896-induced dilations in skeletal muscle arterioles than in coronary microvessels. Conversely, the selective inhibition of the large conductance Ca2+-activated K+ channels (BKCa) with iberiotoxin (100 nM) significantly reduced the OR-1896-induced maximal dilation in coronary arterioles (to 21±6%), but was ineffective in skeletal muscle arterioles (72±8%). Accordingly, OR-1896 elicits a substantial vasodilation in coronary and skeletal muscle arterioles, by activating primarily BKCa and KATP channels, respectively, and it is suggested that OR-1896 contributes to the long-term hemodynamic effects of levosimendan. PMID:16715115

  1. Wave speed in human coronary arteries is not influenced by microvascular vasodilation: implications for wave intensity analysis.

    Science.gov (United States)

    Rolandi, M Cristina; De Silva, Kalpa; Lumley, Matthew; Lockie, Timothy P E; Clapp, Brian; Spaan, Jos A E; Perera, Divaka; Siebes, Maria

    2014-03-01

    Wave intensity analysis and wave separation are powerful tools for interrogating coronary, myocardial and microvascular physiology. Wave speed is integral to these calculations and is usually estimated by the single-point technique (SPc), a feasible but as yet unvalidated approach in coronary vessels. We aimed to directly measure wave speed in human coronary arteries and assess the impact of adenosine and nitrate administration. In 14 patients, the transit time Δt between two pressure signals was measured in angiographically normal coronary arteries using a microcatheter equipped with two high-fidelity pressure sensors located Δs = 5 cm apart. Simultaneously, intracoronary pressure and flow velocity were measured with a dual-sensor wire to derive SPc. Actual wave speed was calculated as DNc = Δs/Δt. Hemodynamic signals were recorded at baseline and during adenosine-induced hyperemia, before and after nitroglycerin administration. The energy of separated wave intensity components was assessed using SPc and DNc. At baseline, DNc equaled SPc (15.9 ± 1.8 vs. 16.6 ± 1.5 m/s). Adenosine-induced hyperemia lowered SPc by 40 % (p DNc remained unchanged, leading to marked differences in respective separated wave energies. Nitroglycerin did not affect DNc, whereas SPc transiently fell to 12.0 ± 1.2 m/s (p < 0.02). Human coronary wave speed is reliably estimated by SPc under resting conditions but not during adenosine-induced vasodilation. Since coronary wave speed is unaffected by microvascular dilation, the SPc estimate at rest can serve as surrogate for separating wave intensity signals obtained during hyperemia, thus greatly extending the scope of WIA to study coronary physiology in humans.

  2. Intra-arterial AICA-riboside administration induces NO-dependent vasodilation in vivo in human skeletal muscle.

    Science.gov (United States)

    Bosselaar, Marlies; Boon, Hanneke; van Loon, Luc J C; van den Broek, Petra H H; Smits, Paul; Tack, Cees J

    2009-09-01

    In animal models, administration of the adenosine analog AICA-riboside has shown beneficial effects on ischemia-reperfusion injury and glucose homeostasis. The vascular and/or metabolic effects of AICA-riboside administration in humans remain to be established. AICA-riboside was infused intra-arterially in four different dosages up to 8 mg x min(-1) x dl(-1) in 24 healthy subjects. Forearm blood flow (FBF) and glucose uptake and plasma glucose, free fatty acid, and AICA-riboside concentrations were assessed. We also combined AICA-riboside infusion (2 mg x min(-1) x dl(-1)) with the intra-arterial administration of the adenosine receptor antagonist caffeine (90 microg x min(-1) x dl(-1); n = 6) and with the endothelial NO synthase inhibitor l-NMMA (0.4 mg x min(-1) x dl(-1); n = 6). Additional in vitro experiments were performed to explain our in vivo effects of AICA-riboside in humans. AICA-riboside increased FBF dose dependently from 2.0 +/- 0.2 to 13.2 +/- 1.9 ml x min(-1) x dl(-1) maximally (P AICA-riboside concentrations, forearm glucose uptake did not change. In vitro experiments showed rapid uptake of AICA-riboside by the equilibrative nucleoside transporter in erythrocytes and subsequent phosphorylation to AICA-ribotide. We conclude that AICA-riboside induces a potent vasodilator response in humans that is mediated by NO. Despite high local plasma concentrations, AICA-riboside does not increase skeletal muscle glucose uptake.

  3. Flow-mediated vasodilation as a predictor of therapeutic response to midodrine hydrochloride in children with postural orthostatic tachycardia syndrome.

    Science.gov (United States)

    Liao, Ying; Yang, Jinyan; Zhang, Fengwen; Chen, Stella; Liu, Xueqin; Zhang, Qingyou; Ai, Yi; Wang, Yuli; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2013-09-15

    This study was designed to explore the value of flow-mediated vasodilation (FMD) as a predictor of therapeutic response to midodrine hydrochloride (MD) in children with postural orthostatic tachycardia syndrome (POTS). One hundred and eight children diagnosed with POTS and 20 healthy control children were enrolled. All children with POTS received MD and were followed up for 3 months. FMD of brachial artery for each participant was measured by vascular ultrasound. Symptom scores, FMD values, and head-up test (HUT)/head-up tilt test (HUTT) outcomes were investigated before and after treatment. A receiver operating characteristic curve was used to explore the value of FMD as a predictor. Baseline FMD (%) and increased heart rate (beats per minute) during HUT/HUTT were significantly greater in children with POTS compared with control children (FMD: 11 ± 3% vs 6 ± 2%, p <0.001; increased heart rate: 38 ± 9 vs 7 ± 7 beats/min, p <0.001, respectively). Before treatment, MD responders had greater FMD values than MD nonresponders (p <0.05). Symptom scores, excessive increases in heart rate during HUT, and increased FMD values were all reduced significantly after treatment (all p <0.05). The receiver operating characteristic curve for the predictive value of FMD showed the area under the curve to be 0.790 (95% confidence interval: 0.679 to 0.902; p <0.001) at 1-month and 0.803 (95% confidence interval: 0.669 to 0.936; p <0.01) at 3-month therapy. FMD of 9.85% had a high sensitivity (1-month therapy: 71.6%; 3-month therapy: 74.4%) and specificity (1-month therapy 77.8%; 3-month therapy: 80%). In conclusion, FMD is a predictor of the efficacy of MD for treating children with POTS. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Organic mononitrites of 1,2-propanediol act as an effective NO-releasing vasodilator in pulmonary hypertension and exhibit no cross-tolerance with nitroglycerin in anesthetized pigs

    Directory of Open Access Journals (Sweden)

    Nilsson KF

    2018-03-01

    pressures and resistances, but only PDNO reduced the ratio between pulmonary and systemic vascular resistances significantly. After the 5 h GTN infusion, the hemodynamic response to GTN infusions (n=6 was significantly suppressed, whereas PDNO (n=6 produced similar hemodynamic effects to those observed before the GTN infusion.Conclusion: PDNO is a vasodilator with selectivity for pulmonary circulation exhibiting no cross-tolerance to GTN, but GTN causes non selective vasodilatation with substantial tolerance development in the pulmonary and systemic circulations. Inorganic nitrite has no vasodilatory properties at relevant doses. Keywords: nitrites, nitrates, nitric oxide donors, tachyphylaxis, PDNO

  5. Acute chemical pneumonitis caused by nitric acid inhalation: case report

    International Nuclear Information System (INIS)

    Choe, Hyung Shim; Lee, In Jae; Ko, Eun Young; Lee, Jae Young; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Bae, Sang Hoon

    2003-01-01

    Chemical pneumonitis induced by nitric acid inhalation is a rare clinical condition. The previously reported radiologic findings of this disease include acute permeability pulmonary edema, delayed bronchiolitis obliterans, and bronchiectasis. In very few published rare radiologic reports has this disease manifested as acute alveolar injury; we report a case of acute chemical pneumonitis induced by nitric acid inhalation which at radiography manifested as bilateral perihilar consolidation and ground-glass attenuation, suggesting acute alveolar injury

  6. NITRIC OXIDE INTERFERES WITH HYPOXIA SIGNALING DURING COLONIC INFLAMMATION

    OpenAIRE

    CARIA,Cintia Rabelo e Paiva; MOSCATO,Camila Henrique; TOMÉ,Renata Bortolin Guerra; PEDRAZZOLI Jr,José; RIBEIRO,Marcelo Lima; GAMBERO,Alessandra

    2014-01-01

    Context Intestinal inflammation can induce a local reduction in oxygen levels that triggers an adaptive response centered on the expression of hypoxia-inducible factors (HIFs). Nitric oxide, a well-described inflammatory mediator, may interfere with hypoxia signaling. Objectives We aimed to evaluate the role of nitric oxide in hypoxia signaling during colonic inflammation. Methods Colitis was induced by single (acute) or repeated (reactivated colitis) trinitrobenzenosulfonic acid administ...

  7. Formation of nitric acid hydrates - A chemical equilibrium approach

    Science.gov (United States)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  8. Acute chemical pneumonitis caused by nitric acid inhalation: case report

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Hyung Shim; Lee, In Jae; Ko, Eun Young; Lee, Jae Young; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Bae, Sang Hoon [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2003-06-01

    Chemical pneumonitis induced by nitric acid inhalation is a rare clinical condition. The previously reported radiologic findings of this disease include acute permeability pulmonary edema, delayed bronchiolitis obliterans, and bronchiectasis. In very few published rare radiologic reports has this disease manifested as acute alveolar injury; we report a case of acute chemical pneumonitis induced by nitric acid inhalation which at radiography manifested as bilateral perihilar consolidation and ground-glass attenuation, suggesting acute alveolar injury.

  9. Nitric acid recycling and copper nitrate recovery from effluent.

    Science.gov (United States)

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  10. Nitric oxide synthase in ferret brain: localization and characterization.

    Science.gov (United States)

    Matsumoto, T.; Mitchell, J. A.; Schmidt, H. H.; Kohlhaas, K. L.; Warner, T. D.; Förstermann, U.; Murad, F.

    1992-01-01

    1. In the present study, we have investigated the distribution of nitric oxide synthase in the ferret brain. Nitric oxide synthase was determined biochemically and immunochemically. 2. In the rat brain, the highest nitric oxide synthase activity has been detected in the cerebellum. However, in the ferret brain, the highest activity was found in the striatum and the lowest in the cerebellum and cerebral cortex. The enzymatic activity was localized predominantly in the cytosolic fractions, it was dependent on NADPH and Ca2+, and inhibited by NG-nitro-L-arginine or NG-methyl-L-arginine. 3. Western blot analysis revealed that all regions of the ferret brain contained a 160 kD protein crossreacting with an antibody to nitric oxide synthase purified from the rat cerebellum, and the levels of relative intensity of staining by the antibody correlated with the distribution of nitric oxide synthase activity. 4. These results indicate that the ferret brain contains a nitric oxide synthase similar to the rat brain, but the distribution of enzymatic activity in the ferret brain differs markedly from the rat brain. Images Figure 1 PMID:1282076

  11. Nitric oxide negatively regulates mammalian adult neurogenesis

    Science.gov (United States)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  12. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension.

    Science.gov (United States)

    Afolayan, Adeleye J; Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G

    2016-01-01

    Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2 , partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen. Copyright © 2016 the American Physiological Society.

  13. Tetrahydrobiopterin, l-Arginine and Vitamin C Act Synergistically to Decrease Oxidant Stress and Increase Nitric Oxide That Increases Blood Flow Recovery after Hindlimb Ischemia in the Rat

    Science.gov (United States)

    Yan, Jinglian; Tie, Guodong; Messina, Louis M

    2012-01-01

    Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays essential roles in neovascularization. During limb ischemia, decreased NO bioavailability occurs secondary to increased oxidant stress, decreased l-arginine and tetrahydrobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine and vitamin C acts synergistically to decrease oxidant stress, increase NO and thereby increase blood flow recovery after hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of hindlimb ischemia. In the is-chemic hindlimb, cosupplementation with BH4 + l-arginine resulted in greater eNOS and phospho-eNOS (P-eNOS) expression, Ca2+-dependent NOS activity and NO concentration in the ischemic calf region (gastrocnemius), as well as greater NO concentration in the region of collateral arteries (gracilis). Rats receiving cosupplementation of BH4 + l-arginine led to greater recovery of foot perfusion and greater collateral enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen further increased these dependent variables. In addition, rats given all three supplements showed significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione (GSH)–to–glutathione disulfide (GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, co-supplementation with BH4 + l-arginine + vitamin C significantly increased blood flow recovery after hindlimb ischemia by reducing oxidant stress, increasing NO bioavailability, enlarging collateral arteries and reducing muscle necrosis. Oral cosupplementation of BH4, l-arginine and vitamin C holds promise as a biological therapy to induce

  14. Inhaled nitric oxide and arterial oxygen tension in patients with chronic obstructive pulmonary disease and severe pulmonary hypertension

    Science.gov (United States)

    Katayama, Y.; Higenbottam, T. W.; d Diaz; Cremona, G.; Akamine, S.; Barbera, J. A.; Rodriguez-Roisin, R.

    1997-01-01

    BACKGROUND: Inhaled nitric oxide (NO) is a selective pulmonary vasodilator which can improve gas exchange in acute lung injury. However, it is uncertain that this effect on arterial oxygenation can be generalised to all lung diseases. METHODS: The effects of inhaled NO on gas exchange were studied in nine patients with chronic obstructive pulmonary disease (COPD), 11 patients with severe pulmonary hypertension, and 14 healthy volunteers. A randomized sequence of 40 ppm of NO or air was inhaled for 20 minutes through an orofacial mask. RESULTS: Inhaled NO reduced mean (SE) transcutaneous arterial oxygen tension (TcPO2) from 9.6 (0.3) to 8.9 (0.4) kPa in healthy volunteers and from 7.4 (0.6) to 7.0 (0.5) kPa in patients with COPD. There was no change in TcPO2 in patients with severe pulmonary hypertension. During inhalation of NO and air no change occurred in transcutaneous arterial carbon dioxide tension (TcPCO2), arterial oxygen saturation (SaO2) measured by pulse oximeter, or cardiac output determined by the transthoracic impedance method. CONCLUSIONS: Inhaled NO does not improve TcPO2 nor increase cardiac output in normal subjects and patients with COPD, suggesting that inhaled NO worsens gas exchange. This could represent inhaled NO overriding hypoxic pulmonary vasoconstriction in COPD. The finding that TcPO2 also fell when normal subjects inhaled NO suggests that a similar mechanism normally contributes to optimal gas exchange. Whilst inhaled NO can improve oxygenation, this effect should not be considered to be a general response but is dependent on the type of lung disease. 


 PMID:9059470

  15. Mechanism of endothelial nitric oxide synthase phosphorylation and activation by tentacle extract from the jellyfishCyanea capillata.

    Science.gov (United States)

    Wang, Beilei; Liu, Dan; Wang, Chao; Wang, Qianqian; Zhang, Hui; Liu, Guoyan; Tao, Xia; Zhang, Liming

    2017-01-01

    Our previous study demonstrated that tentacle extract (TE) from the jellyfish Cyanea capillata ( C. capillata ) could cause a weak relaxation response mediated by nitric oxide (NO) using isolated aorta rings. However, the intracellular mechanisms of TE-induced vasodilation remain unclear. Thus, this study was conducted to examine the role of TE on Akt/eNOS/NO and Ca 2+ signaling pathways in human umbilical vein endothelial cells (HUVECs). Our results showed that TE induced dose- and time-dependent increases of eNOS activity and NO production. And TE also induced Akt and eNOS phosphorylation in HUVECs. However, treatment with specific PI3-kinase inhibitor (Wortmannin) significantly inhibited the increases in NO production and Akt/eNOS phosphorylation. In addition, TE also stimulated an increase in the intracellular Ca 2+ concentration ([Ca 2+ ] i ), which was significantly attenuated by either IP 3 receptor blocker (Heparin) or PKC inhibitor (PKC 412). In contrast, extracellular Ca 2+ -free, L-type calcium channel blocker (Nifedipine), or PKA inhibitor (H89) had no influence on the [Ca 2+ ] i elevation. Since calcium ions also play a critical role in stimulating eNOS activity, we next explored the role of Ca 2+ in TE-induced Akt/eNOS activation. In consistent with the attenuation of [Ca 2+ ] i elevation, we found that Akt/eNOS phosphorylation was also dramatically decreased by Heparin or PKC 412, but not affected by Nifedipine or H89. However, the phosphorylation level could also be decreased by the removal of extracellular calcium. Taken together, our findings indicated that TE-induced eNOS phosphorylation and activation were mainly through PI3K/Akt-dependent, PKC/IP 3 R-sensitive and Ca 2+ -dependent pathways.

  16. Mechanism of endothelial nitric oxide synthase phosphorylation and activation by tentacle extract from the jellyfish Cyanea capillata

    Directory of Open Access Journals (Sweden)

    Beilei Wang

    2017-04-01

    Full Text Available Our previous study demonstrated that tentacle extract (TE from the jellyfish Cyanea capillata (C. capillata could cause a weak relaxation response mediated by nitric oxide (NO using isolated aorta rings. However, the intracellular mechanisms of TE-induced vasodilation remain unclear. Thus, this study was conducted to examine the role of TE on Akt/eNOS/NO and Ca2+ signaling pathways in human umbilical vein endothelial cells (HUVECs. Our results showed that TE induced dose- and time-dependent increases of eNOS activity and NO production. And TE also induced Akt and eNOS phosphorylation in HUVECs. However, treatment with specific PI3-kinase inhibitor (Wortmannin significantly inhibited the increases in NO production and Akt/eNOS phosphorylation. In addition, TE also stimulated an increase in the intracellular Ca2+ concentration ([Ca2+]i, which was significantly attenuated by either IP3 receptor blocker (Heparin or PKC inhibitor (PKC 412. In contrast, extracellular Ca2+-free, L-type calcium channel blocker (Nifedipine, or PKA inhibitor (H89 had no influence on the [Ca2+]i elevation. Since calcium ions also play a critical role in stimulating eNOS activity, we next explored the role of Ca2+ in TE-induced Akt/eNOS activation. In consistent with the attenuation of [Ca2+]i elevation, we found that Akt/eNOS phosphorylation was also dramatically decreased by Heparin or PKC 412, but not affected by Nifedipine or H89. However, the phosphorylation level could also be decreased by the removal of extracellular calcium. Taken together, our findings indicated that TE-induced eNOS phosphorylation and activation were mainly through PI3K/Akt-dependent, PKC/IP3R-sensitive and Ca2+-dependent pathways.

  17. Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated {sup 82}rubidium myocardial perfusion PET

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Tracy L.Y.; Merrill, Jennifer; Bengel, Frank M. [Johns Hopkins University, Department of Radiology and Radiological Sciences, Division of Nuclear Medicine, Baltimore, MD (United States); Volokh, Lana [GE Healthcare, Haifa (Israel)

    2008-02-15

    Myocardial perfusion imaging with {sup 82}Rb PET allows for ECG-gated studies to be obtained early after radiotracer injection, capturing ventricular function close to peak pharmacologic action of dipyridamole. This is different from gated SPECT and may potentially provide additional diagnostic information. We sought to identify potential correlates of the PET-derived ejection fraction response to vasodilator stress. One hundred ten consecutive patients undergoing {sup 82}Rb PET myocardial perfusion imaging during evaluation for coronary artery disease were included. Using a GE Discovery STRx PET-CT scanner, ECG-gated images (eight bins) were obtained at rest and 4 min after dipyridamole infusion, 90 s after infusion of 1,480-2,220 MBq of {sup 82}Rb. Summed rest, stress, and difference scores (SRS, SSS, and SDS) were determined using a five-point scoring system and 20-segment model. Ejection fraction was calculated using automated QGS software. Significant reversibility (SDS {>=} 4) was found in 23 patients (21%). Mean LVEF in all patients was 47 {+-} 13% at rest and 53 {+-} 13% during dipyridamole. LVEF increased in 89 patients, and decreased in 17 patients during vasodilation. The change in LVEF was inversely correlated with SDS (r = -0.26; p = 0.007). Additionally, it was inversely correlated with resting LVEF (r = -0.20; p = 0.03) and SSS (r = -0.25; p = 0.009). No significant correlations were observed with SRS, heart rate, blood pressure, age, hypertension, hypercholesterolemia, or pretest likelihood of disease. At multivariate regression analysis, SDS was an independent predictor of the change in LVEF. Gated {sup 82}Rb PET during pharmacologic stress allows for assessment of the functional response to vasodilation. The magnitude of LVEF increase is determined by stress perfusion/reversible perfusion defects. Functional response to hyperemia may thus be incorporated in future evaluations of diagnostic and prognostic algorithms based on {sup 82}Rb PET. (orig.)

  18. The prognostic value of heart rate response during vasodilator stress myocardial perfusion imaging in patients with end-stage renal disease undergoing renal transplantation.

    Science.gov (United States)

    AlJaroudi, Wael; Anokwute, Chiedozie; Fughhi, Ibtihaj; Campagnoli, Tania; Wassouf, Marwan; Vij, Aviral; Kharouta, Michael; Appis, Andrew; Ali, Amjad; Doukky, Rami

    2017-09-18

    In asymptomatic end-stage renal disease (ESRD) patients undergoing vasodilator stress myocardial perfusion imaging (MPI) prior to renal transplantation (RT), the impact of pre-transplant heart rate response (HRR) to vasodilator stress on post-RT outcomes is unknown. We analyzed a retrospective cohort of asymptomatic patients with ESRD who underwent a vasodilator stress SPECT-MPI and subsequently received RT. Blunted HRR was defined as HRR stress and stress. The primary endpoint was major adverse cardiac events (MACE), defined as cardiac death or myocardial infarction. Clinical risk was assessed using the sum of risk factors set forth by the AHA/ACCF consensus statement on the assessment of RT candidates. Among 352 subjects, 140 had an abnormal pre-transplant HRR. During a mean follow-up of 3.2 ± 2.0 years, 85 (24%) MACEs were observed. Blunted HRR was associated with increased MACE risk (hazard ratio 1.72; 95% confidence interval 1.12-2.63, P = 0.013), and remained significant after adjustment for gender, sum of AHA/ACCF risk factors, summed stress score, baseline heart rate, and β-blocker use. HRR was predictive of MACE in patients with normal MPI and irrespective of clinical risk. Blunted HRR was associated with a significant increase in post-operative (30-day) MACE risk (17.9% vs 8.5%; P = 0.009). In asymptomatic ESRD patients being evaluated for RT, a blunted pre-transplant HRR was predictive of post-RT MACE. HRR may be a valuable tool in the risk assessment of RT candidates.

  19. Chronotropic response to vasodilator-stress in patients submitted to myocardial perfusion imaging: impact on the accuracy in detecting coronary stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Coceani, Michele; Quaranta, Angela; Emdin, Michele [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Liga, Riccardo [University Hospital of Pisa, Cardio-Thoracic and Vascular Department, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2015-11-15

    A lower heart rate response (HRR) during vasodilator MPI has been shown to have a relevant adverse prognostic impact. We sought to evaluate the interaction among individual HRR to vasodilator stress and myocardial perfusion imaging (MPI) accuracy in patients with suspected ischemic heart disease (IHD). One hundred and sixty-five consecutive patients were submitted to vasodilator-stress MPI on a cardiac camera equipped with cadmium-zinc-thelluride detectors and coronary angiography. A coronary stenosis >70 % was considered significant. In every patient, the summed difference score (SDS) was computed from MPI images. Patients were categorized according to the tertiles of the distribution of individual HRR during dipyridamole: ''Group 1'' (HRR < 8 bpm; lowest tertile); ''Group 2'' (8 ≤ HRR ≤ 12 bpm; middle tertile); ''Group 3'' (HRR >12 bpm; highest tertile). Significant coronary artery disease (CAD) was present in 102 (62 %) patients. In the overall population, MPI showed a significant accuracy (AUC: 0.81, 95 % CI 0.74-0.86; p < 0.001) in unmasking the presence of significant coronary stenosis. Interestingly, in patients with a blunted HRR during dipyridamole (''Group 1'') MPI showed a significantly lower sensitivity (68 %) in detecting CAD than in those with a higher HRR (''Group 3'') (91 %, p = 0.007), despite a preserved specificity (76 % vs 77 %, P=NS). Similarly, the correlation among CAD extent and post-stress LV functional stunning was limited to ''Group 3'' patients, while it disappeared in those with blunted HRR. In patients with suspected IHD, MPI sensitivity is strongly influenced by the magnitude of patient heart rate increase to the pharmacologic stressor, suggesting an interaction among blunted HRR and lower accuracy in unmasking CAD. (orig.)

  20. Genetic responses against nitric oxide toxicity

    Directory of Open Access Journals (Sweden)

    B. Demple

    1999-11-01

    Full Text Available The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1 synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.

  1. Renal dysfunction is associated with a reduced contribution of nitric oxide and enhanced vasoconstriction after a congenital renal mass reduction in sheep.

    Science.gov (United States)

    Lankadeva, Yugeesh R; Singh, Reetu R; Moritz, Karen M; Parkington, Helena C; Denton, Kate M; Tare, Marianne

    2015-01-20

    Children born with reduced congenital renal mass have an increased risk of hypertension and chronic kidney disease in adulthood, although the mechanisms are poorly understood. Similar sequelae occur after fetal uninephrectomy (uni-x) in sheep, leading to a 30% nephron deficit. We hypothesized that renal dysfunction is underpinned by a reduced contribution of nitric oxide (NO) and vascular dysfunction in uni-x sheep. In 5-year-old female uni-x and sham sheep, mean arterial pressure, glomerular filtration rate, and renal blood flow were measured before and during NO inhibition (N(ω)-nitro-l-arginine methyl ester [L-NAME]). Reactivity was assessed in resistance arteries, including renal lobar and arcuate arteries. Basal mean arterial pressure was 15 mm Hg higher and glomerular filtration rate and renal blood flow were ≈30% lower (Ppressure by ≈17 mm Hg in both groups, whereas glomerular filtration rate and renal blood flow were decreased less in uni-x sheep (PInteractionsheep (Psheep had enhanced responsiveness to phenylephrine and nitrotyrosine staining and reduced sensitivity to endothelial stimulation. Vasodilator prostanoid contribution to endothelium-dependent relaxation was reduced in lobar arteries of uni-x sheep, accompanied by reduced cyclooxygenase-1 and -2 gene expression (Psheep (Pblood flow and glomerular filtration rate are underpinned by impaired basal NO contribution, endothelial dysfunction, and enhanced vascular responsiveness to sympathetic nerve stimulation. © 2014 American Heart Association, Inc.

  2. Nitric oxide inhibits the bradykinin B2 receptor-mediated adrenomedullary catecholamine release but has no effect on adrenal blood flow response in vivo.

    Science.gov (United States)

    Bouallegue, Ali; Yamaguchi, Nobuharu

    2005-06-01

    The role of nitric oxide (NO) in bradykinin (BK)-induced adrenal catecholamine secretion still remains obscure. The present study was to investigate whether an inhibition of NO synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME) would modulate BK-induced adrenal catecholamine secretion (ACS) and adrenal vasodilating response (AVR) in anesthetized dogs. Plasma catecholamine concentrations were determined with an HPLC coupled with an electrochemical detector. All drugs were locally administered to the left adrenal gland via intra-arterial infusion. BK dose-dependently increased both ACS and AVR. Hoe-140, a selective B(2) antagonist, significantly blocked the BK-induced increases in both ACS and AVR. In the presence of L-NAME, the BK-induced ACS was significantly enhanced, while the simultaneous AVR remained unaffected. These results suggest that the both BK-induced ACS and AVR are primarily mediated by B(2) receptors in the canine adrenal gland. Our results also suggest that the enhanced ACS in response to BK in the presence of L-NAME may have resulted from a specific inhibition of NO formation in the adrenal gland. It is concluded that the BK-induced NO may play an inhibitory role in the B(2)-receptor-mediated mechanisms regulating ACS, while it may not be implicated in the B(2)-receptor-mediated AVR under in vivo conditions.

  3. Leptin stimulates both endothelin-1 and nitric oxide activity in lean subjects but not in patients with obesity-related metabolic syndrome.

    Science.gov (United States)

    Schinzari, Francesca; Tesauro, Manfredi; Rovella, Valentina; Di Daniele, Nicola; Mores, Nadia; Veneziani, Augusto; Cardillo, Carmine

    2013-03-01

    Leptin has nitric oxide (NO)-dependent vasodilator actions, but hyperleptinemia is an independent risk factor for cardiovascular disease. The objective of the study was to investigate whether, in the human circulation, properties of leptin to release NO are opposed by stimulation of vasculotoxic substances, such as endothelin (ET)-1, and whether this mechanism might contribute to vascular damage in hyperleptinemic states like obesity. Forearm blood flow responses (plethysmography) to ETA receptor antagonism (BQ-123, 10 nmol/min) and NO synthase inhibition [N(G)-monomethyl L-arginine (L-NMMA), 4 μmol/min] were assessed before and after intraarterial administration of leptin (2 μg/min) in lean controls (n = 8) and patients with obesity-related metabolic syndrome (MetS; n = 8). Baseline plasma leptin was higher in patients than in controls (P .05 vs before). These findings indicate that, under physiological conditions, leptin stimulates both ET-1 and NO activity in the human circulation. This effect is absent in hyperleptinemic patients with the MetS who are unresponsive to additional leptin. In these patients, therefore, hyperleptinemia may be a biomarker of vascular dysfunction, rather than a mediator of vascular damage.

  4. Impairment by hypoxia or hypoxia/reoxygenation of nitric oxide-mediated relaxation in isolated monkey coronary artery: the role of intracellular superoxide.

    Science.gov (United States)

    Tawa, Masashi; Yamamizu, Kohei; Geddawy, Ayman; Shimosato, Takashi; Imamura, Takeshi; Ayajiki, Kazuhide; Okamura, Tomio

    2011-01-01

    To investigate the effect of hypoxia or hypoxia/reoxygenation on vascular smooth muscle function, mechanical response of monkey coronary artery without endothelium was studied under normoxia, hypoxia, and hypoxia/reoxygenation. Hypoxia or hypoxia/reoxygenation impaired the relaxation by nitroglycerin or isosorbide dinitrate but not that by 8-bromoguanosine-3',5'-cyclic monophosphate or isoproterenol. Tempol restored the impaired relaxation by nitroglycerin or isosorbide dinitrate, but superoxide dismutase had no effect. Apocynin, an NADPH oxidase inhibitor, improved the nitroglycerin-induced relaxation under hypoxia, but not under reoxygenation. Under combined treatment of apocynin with oxypurinol (xanthine oxidase inhibitor), rotenone (mitochondria electron transport inhibitor), or both, hypoxic impairment of vasorelaxation was restored more effectively. Similarly, impairment of the nitroglycerin-induced vasorelaxation under hypoxia/reoxygenation was restored by combined treatment with three inhibitors, apocynin, oxypurinol, and rotenone. Increase in superoxide production under hypoxia tended to be inhibited by apocynin and that under hypoxia/reoxygenation was abolished by combined treatment with three inhibitors. These findings suggest that increased intracellular superoxide production under hypoxia or hypoxia/reoxygenation attenuates vasodilation mediated with a nitric oxide/soluble guanylyl cyclase, but not adenylyl cyclase, signaling pathway. The main source of superoxide production under hypoxia seems to be different from that under reoxygenation: superoxide is produced by NADPH oxidase during hypoxia, whereas it is produced by xanthine oxidase, mitochondria, or both during reoxygenation.[Supplementary Figure: available only at http://dx.doi.org/10.1254/jphs.11031FP].

  5. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1

    Directory of Open Access Journals (Sweden)

    Carolina Emilia Storniolo

    2014-01-01

    Full Text Available Epidemiological and clinical studies have reported that olive oil reduces the incidence of cardiovascular disease. However, the mechanisms involved in this beneficial effect have not been delineated. The endothelium plays an important role in blood pressure regulation through the release of potent vasodilator and vasoconstrictor agents such as nitric oxide (NO and endothelin-1 (ET-1, respectively, events that are disrupted in type 2 diabetes. Extra virgin olive oil contains polyphenols, compounds that exert a biological action on endothelial function. This study analyzes the effects of olive oil polyphenols on endothelial dysfunction using an in vitro model that simulates the conditions of type 2 diabetes. Our findings show that high glucose and linoleic and oleic acids decrease endothelial NO synthase phosphorylation, and consequently intracellular NO levels, and increase ET-1 synthesis by ECV304 cells. These effects may be related to the stimulation of reactive oxygen species production in these experimental conditions. Hydroxytyrosol and the polyphenol extract from extra virgin olive oil partially reversed the above events. Moreover, we observed that high glucose and free fatty acids reduced NO and increased ET-1 levels induced by acetylcholine through the modulation of intracellular calcium concentrations and endothelial NO synthase phosphorylation, events also reverted by hydroxytyrosol and polyphenol extract. Thus, our results suggest a protective effect of olive oil polyphenols on endothelial dysfunction induced by hyperglycemia and free fatty acids.

  6. Araguspongines B, C, D, E, F, G, H, and J, new vasodilative bis-1-oxaquinolizidine alkaloids from an okinawan marine sponge, Xestospongia sp.

    Science.gov (United States)

    Kobayashi, M; Kawazoe, K; Kitagawa, I

    1989-06-01

    Nine new vasodilative alkaloids, araguspongines A, B (1), C (2), D (3), E (4), F (5), G (6), H (7), and J (8), were isolated from an Okinawan marine sponge, Xestospongia sp. On the basis of chemical and physicochemical evidence, the absolute stereostructures of araguspongines B, D, E, F, G, H, and J were determined respectively as 1, 3, 4, 5, 6, 7, 8, and the relative stereostructure of araguspongine C was determined as 2 having two 1-oxaquinolizidine moieties. Araguspongines B, D, and E each comprised a pair of the enantiomers, 1a and 1b, 3a and 3b, and 4a and 4b, respectively.

  7. Data on a single oral dose of camu camu (Myrciaria dubia pericarp extract on flow-mediated vasodilation and blood pressure in young adult humans

    Directory of Open Access Journals (Sweden)

    Tadayoshi Miyashita

    2018-02-01

    Full Text Available This data article describes the flow-mediated vasodilation (FMD responses, represented by changes in arterial diameter, and blood pressure changes in young adults after a single oral dose of camu camu (Myrciaria dubia pericarp extract or placebo (cross-over design. Ten healthy men and 10 healthy women participated in this study. Ultrasonic diagnostic equipment was used to monitor arterial diameter changes, indicative of FMD, for 110 s after the administration of the camu camu extract or placebo. In addition, the systolic and diastolic blood pressure values were recorded.

  8. Assessment of endothelium: Dependent vasodilation with a non-invasive method in patients with preeclampsia compared to normotensive pregnant women

    Directory of Open Access Journals (Sweden)

    Seyedeh Zahra Allameh

    2014-01-01

    Full Text Available Background: To assess the endothelial function via noninvasive method, in pregnant women with preeclampsia compared to to normotensive pregnant women. Materials and Methods: Brachial artery diameter was measured via ultrasound, in 28 women with preeclampcia in case group and normotensive pregnant women in control group, at rest, after inflation of sphygmomanometer cuff up to 250-300 mmHg, immediately after deflation of the cuff, 60-90 minutes later and 5 min after administration of sublingual trinitroglycerin (TNG. Results of these measurements as well as demographic characteristics of participants in both groups were recorded in special forms. Data were analyzed via Statistical Package for Social Sciences (SPSS version 16, using t-test and repeated measures analysis of variance (ANOVA. P-value < 0.05 was considered statistically significant. The results were presented as mean ± standard deviation (SD. Results: The mean of brachial artery diameter at rest in the case and control groups was 4.49 ± 0.39 and 4.08 ± 0.38 mm, respectively (P = 0.1. Also the results showed that the brachial artery diameter, immediately after deflation of the cuff, was 4.84 ± 0.4 and 4.37 ± 0.30 mm in the case and control groups (P < 0.001, respectively. The mean brachial artery diameter, 60-90 s after deflation of the cuff, was 4.82 ± 0.41 and 4.42 ± 0.38 mm in the case and control groups (P < 0.00, respectively. The brachial artery diameter, 5 min after sublingual NO administration, was 4.95 ± 0.6 and 4.40 ± 0.45 mm in case and control groups (P < 0.001, respectively. Applying of repeated measures ANOVA showed that the mean difference between case and control groups was statistically significant (P < 0.001. Conclusion: Current study concluded that there is no difference in endothelium-dependent vasodilation between women with preeclampsia and pregnant women with normal blood pressure.

  9. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    Science.gov (United States)

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nianzhen [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca2+ elevations in response to neurotransmitters. A Ca2+ elevation can propagate to adjacent astrocytes as a Ca2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca2+ signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca2+-dependent NO production. To test the roles of NO in astrocytic Ca2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca2+, possibly through store-operated Ca2+ channels. The NO-induced Ca2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca2+ change. The consequence of this NO-induced Ca2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca2+ using fluorescent Ca2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca2+ elevation in the stimulated astrocyte and a subsequent Ca2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by

  11. Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury.

    Science.gov (United States)

    Benzing, A; Loop, T; Mols, G; Geiger, K

    1999-10-01

    Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the

  12. Pain modulation by nitric oxide in the spinal cord.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2009-09-01

    Full Text Available Nitric oxide (NO is a versatile messenger molecule first associated with endothelial relaxing effects. In the central nervous system (CNS, NO synthesis is primarily triggered by activation of N-methyl-D-aspartate (NMDA receptors and has a Janus face, with both beneficial and harmful properties, depending on concentration and the identity of its synthetic enzyme isoform. There are three isoforms of the NO synthesizing enzyme nitric oxide synthase (NOS: neuronal (nNOS, endothelial (eNOS, and inducible nitric oxide synthase (iNOS, each one involved with specific events in the brain. In CNS, nNOS is involved with modulation of synaptic transmission through long-term potentiation in several regions, including nociceptive circuits in the spinal cord. Here, we review the role played by NO on central pain sensitization.

  13. Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water solutions

    International Nuclear Information System (INIS)

    Maimoni, A.

    1980-01-01

    The liquid-vapor equilibrium data for nitric acid and nitric acid-plutnonium nitrate-water solutions were examined to develop correlations covering the range of conditions encountered in nuclear fuel reprocessing. The scanty available data for plutonium nitrate solutions are of poor quality but allow an order of magnitude estimate to be made. A formal thermodynamic analysis was attempted initially but was not successful due to the poor quality of the data as well as the complex chemical equilibria involved in the nitric acid and in the plutonium nitrate solutions. Thus, while there was no difficulty in correlating activity coefficients for nitric acid solutions over relatively narrow temperature ranges, attempts to extend the correlations over the range 25 0 C to the boiling point were not successful. The available data were then analyzed using empirical correlations from which normal boiling points and relative volatilities can be obtained over the concentration ranges 0 to 700 g/l Pu, 0 to 13 M nitric acid. Activity coefficients are required, however, if estimates of individual component vapor pressures are needed. The required ternary activity coefficients can be approximated from the correlations

  14. Polar compounds isolated from the leaves of Calea prunifolia H.B.K. and their anti-adrenergic related vasodilator activity

    Energy Technology Data Exchange (ETDEWEB)

    Puebla, Pilar; San Feliciano, Arturo [Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Campus Miguel de Unamuno, Salamanca University (Spain); Aranguren, Nataly; Rincon, Javier; Rojas, Maritza; Guerrero, Mario, E-mail: mfguerrerop@unal.edu.co [Pharmacy Department, School of Sciences, National University of Colombia, Bogota D.C. (Colombia)

    2011-09-15

    The leaves of Calea prunifolia H.B.K., medicinal specie used in Colombian folk medicine for hypertension have been analysed for their chemical constituents, resulting in the isolation of one flavonoid glycoside, one quinic acid derivative and one kaurane diterpenoid glycoside. Their chemical structures were elucidated on the basis of spectral analysis, including HRMS, 1D- and 2D-NMR data. The vasodilator effect related to anti adrenergic activity of the three compounds was evaluated in isolated aortic rings from Wistar rats contracted cumulatively with phenylephrine (from 1 x 10{sup -9} to 5 x 10{sup -5} mol L{sup -1}). Although these compounds were devoid of significant vasodilator activity when they were tested alone (1 {mu}g mL-1), mixtures of them (1:1:1) and the own EtOH extract exerted preventive anti-adrenergic activity increasing the phenylephrine CE{sub 50} from 2.3 x 10{sup -8} to 1.3 x 10{sup -7} and 8.0 x 10{sup -7} mol L{sup -1}, respectively. (author)

  15. Vasodilation effect of volatile oil from Allium macrostemon Bunge are mediated by PKA/NO pathway and its constituent dimethyl disulfide in isolated rat pulmonary arterials.

    Science.gov (United States)

    Han, Chenghua; Qi, Jing; Gao, Sainan; Li, Chunxiang; Ma, Ying; Wang, Jing; Bai, Yuhua; Zheng, Xiaodong

    2017-07-01

    The present study aimed to investigate the vasodilation effects of Allium macrostemon Bunge (AMB) on isolated rat pulmonary arterials (PAs) and to assess the underling mechanisms. The volatile oil was extracted by steam distillation from the bulbs of AMB. Then the volatile oil from AMB was studied on isolated rat PA, removal of endothelium, or pretreatment with nitro oxide (NO) synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME), or with protein kinase A (PKA) inhibitor PKI but not cyclooxygenase inhibitor indomethacin significantly blocked the AMB induced relaxation on PE-contracted PA rings. AMB increased the phosphorylation level of NOS in a dose and time-dependent manner, which was through PKA activation. AMB dose-dependently increased the [Ca 2+ ] i through Ca 2+ influx in cultured pulmonary artery endothelial cells. A total of 18 components from the volatile oil of AMB were identified. The principle constituents of AMB, Dimethyl Disulfide (DMDS) but not Dimethyltrisulfide displayed dilation effects in PAs. Our results suggest that AMB induces relaxation in rat PAs via an endothelium-dependent mechanism involving Ca 2+ entry, PKA dependent NOS phosphorylation and NO signaling. The vasodilator activities of AMB may through its constituent DMDS. The present study indicates therapeutic potentials of AMB on pulmonary hypertension. Copyright © 2017. Published by Elsevier B.V.

  16. Neurodevelopmental outcomes of premature infants treated with inhaled nitric oxide.

    Science.gov (United States)

    Mestan, Karen K L; Marks, Jeremy D; Hecox, Kurt; Huo, Dezheng; Schreiber, Michael D

    2005-07-07

    Chronic lung disease and severe intraventricular hemorrhage or periventricular leukomalacia in premature infants are associated with abnormal neurodevelopmental outcomes. In a previous randomized, controlled, single-center trial of premature infants with the respiratory distress syndrome, inhaled nitric oxide decreased the risk of death or chronic lung disease as well as severe intraventricular hemorrhage and periventricular leukomalacia. We hypothesized that infants treated with inhaled nitric oxide would also have improved neurodevelopmental outcomes. We conducted a prospective, longitudinal follow-up study of premature infants who had received inhaled nitric oxide or placebo to investigate neurodevelopmental outcomes at two years of corrected age. Neurologic examination, neurodevelopmental assessment, and anthropometric measurements were made by examiners who were unaware of the children's original treatment assignment. A total of 138 children (82 percent of survivors) were evaluated. In the group given inhaled nitric oxide, 17 of 70 children (24 percent) had abnormal neurodevelopmental outcomes, defined as either disability (cerebral palsy, bilateral blindness, or bilateral hearing loss) or delay (no disability, but one score of less than 70 on the Bayley Scales of Infant Development II), as compared with 31 of 68 children (46 percent) in the placebo group (relative risk, 0.53; 95 percent confidence interval, 0.33 to 0.87; P=0.01). This effect persisted after adjustment for birth weight and sex, as well as for the presence or absence of chronic lung disease and severe intraventricular hemorrhage or periventricular leukomalacia. The improvement in neurodevelopmental outcome in the group given inhaled nitric oxide was primarily due to a 47 percent decrease in the risk of cognitive impairment (defined by a score of less than 70 on the Bayley Mental Developmental Index) (P=0.03). Premature infants treated with inhaled nitric oxide have improved neurodevelopmental

  17. Unsymmetrical phosphate as extractant for the extraction of nitric acid

    International Nuclear Information System (INIS)

    Gaikwad, R.H.; Jayaram, R.V.

    2016-01-01

    Tri-n-butyl phosphate (TBP) was first used as an extractant in 1944, during Manhattan project for the separation of actinides and further explored by Warf in 1949 for the extraction of Ce(IV) from aqueous nitric acid. TBP was further used as an extractant in the Plutonium Uranium Recovery by Extraction (PUREX) process. To meet the stringent requirements of the nuclear industry TBP has been extensively investigated. In spite of its wide applicability, TBP suffers from various disadvantages such as high aqueous solubility, third phase formation, chemical and radiation degradation leading to the formation of undesired products. It also suffers from incomplete decontamination of the actinides from fission products. Various attempts have been made to overcome the problems associated with TBP by way of using higher homologues of TBP such as Tri-iso amyl phosphate (TiAP), Tri-secondary butyl phosphate (TsBP), Tri amyl phosphate (TAP). It was found that in some cases the results were considerably better than those obtained with TBP for uranium/thorium extraction. The extraction of nitric acid by TBP and its higher homologues which are symmetrical are well documented. However, no solvent has emerged clearly superior than TBP. Here in we report the extraction of nitric acid with neutral unsymmetrical phosphates and study them as extractants for the extraction of nitric acid. Dibutyl secbutyl phosphate, dibutyl pentyl phosphate and dibutyl heptyl phosphate were synthesised for this purpose and the extraction of nitric acid was studied in n-dodecane. The results indicate that the substitution of one of the alkyl groups of the symmetrical phosphate adjacent to the phosphoryl (P=O) group of the phosphate does not have any pronounced effect on the extraction capacity of nitric acid. (author)

  18. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    Science.gov (United States)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  19. Corrosion resistance of zirconium: general mechanisms, behaviour in nitric acid

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1990-01-01

    Corrosion resistance of zirconium results from the strong affinity of this metal for oxygen; as a result a thin protective oxide film is spontaneously formed in air or aqueous media, its thickness and properties depending on the physicochemical conditions at the interface. This film passivates the underlying metal but obviously if the passive film is partially or completely removed, localised or generalised corrosion phenomena will occur. In nitric acid, this depassivation may be chemical (fluorides) or mechanical (straining, creep, fretting). In these cases it is useful to determine the physicochemical conditions (concentration, temperature, potential, stress) which will have to be observed to use safely zirconium and its alloys in nitric acid solutions [fr

  20. Nitric oxide: Orchestrator of endothelium-dependent responses

    DEFF Research Database (Denmark)

    Félétou, Michel; Köhler, Ralf; Vanhoutte, Paul M

    2012-01-01

    Abstract The present review first summarizes the complex chain of events, in endothelial and vascular smooth muscle cells, that leads to endothelium-dependent relaxations (vasodilatations) due to the generation of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) and how therapeutic...... interventions may improve the bioavailability of NO and thus prevent/cure endothelial dysfunction. Then, the role of other endothelium-derived mediators (endothelium-derived hyperpolarizing (EDHF) and contracting (EDCF) factors, endothelin-1) and signals (myoendothelial coupling) is summarized also...

  1. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    The aim of the present study was to investigate the physiological role of nitric oxide (NO) in mediating secretory processes in rat lacrimal acinar cells. In addition, we wanted to determine whether the acinar cells possess endogenous nitric oxide synthase (NOS) activity by measuring NO productio...... using the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2). We initiated investigations by adding NO from an external source by means of the NO-donor, S-nitroso-N-acetyl-penicillamine (SNAP). Cellular concentrations of cyclic guanosine 5'-phosphate (cGMP) ([cGMP]) were measured...

  2. N-acetylcysteine modulates angiogenesis and vasodilation in stomach such as DNA damage in blood of portal hypertensive rats.

    Science.gov (United States)

    Licks, Francielli; Hartmann, Renata Minuzzo; Marques, Camila; Schemitt, Elizângela; Colares, Josieli Raskopf; Soares, Mariana do Couto; Reys, Juliana; Fisher, Camila; da Silva, Juliana; Marroni, Norma Possa

    2015-11-21

    To evaluate the antioxidant effect of N-acetylcysteine (NAC) on the stomach of rats with portal hypertension. Twenty-four male Wistar rats weighing ± 250 g were divided into four experimental groups (n = 6 each): Sham-operated (SO), SO + NAC, partial portal vein ligation (PPVL), and PPVL + NAC. Treatment with NAC in a dose of 10 mg/kg (i.p.) diluted in 0.6 mL of saline solution was administered daily for 7 d starting 8 d after the surgery. Animals from the PPVL and SO group received saline solution (0.6 mL) for the same period of time as the PPVL + NAC and SO + NAC group. On the 15(th) day the animals were anesthetized and we evaluated portal pressure by cannulating mesenteric artery. After, we removed the stomach for further analysis. We performed immunohistochemical analysis for endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), and nitrotirosine (NTT) proteins in stomach. We also evaluated eNOS and VEGF by Western blot analysis and assessed DNA damage in blood samples by the comet assay. The portal hypertension group exhibited increases in portal pressure when compared to SO group (29.8 ± 1.8 vs 12.0 ± 0.3 mmHg) (P stomach from the alterations induced by the PPVL procedure.

  3. The nitric oxide hypothesis of aging.

    Science.gov (United States)

    McCann, S M; Licinio, J; Wong, M L; Yu, W H; Karanth, S; Rettorri, V

    1998-01-01

    Nitric oxide (NO), generated by endothelial (e) NO synthase (NOS) and neuronal (n) NOS, plays a ubiquitous role in the body in controlling the function of almost every, if not every, organ system. Bacterial and viral products, such as bacterial lipopolysaccharide (LPS), induce inducible (i) NOS synthesis that produces massive amounts of NO toxic to the invading viruses and bacteria, but also host cells by inactivation of enzymes leading to cell death. The actions of all forms of NOS are mediated not only by the free radical oxidant properties of this soluble gas, but also by its activation of guanylate cyclase (GC), leading to the production of cyclic guanosine monophosphate (cGMP) that mediates many of its physiological actions. In addition, NO activates cyclooxygenase and lipoxygenase, leading to the production of physiologically relevant quantities of prostaglandin E2 (PGE2) and leukotrienes. In the case of iNOS, the massive release of NO, PGE2, and leukotrienes produces toxic effects. Systemic injection of LPS causes induction of interleukin (IL)-1 beta mRNA followed by IL-beta synthesis that induces iNOS mRNA with a latency of two and four hours, respectively, in the anterior pituitary and pineal glands, meninges, and choroid plexus, regions outside the blood-brain barrier, and shortly thereafter, in hypothalamic regions, such as the temperature-regulating centers, paraventricular nucleus containing releasing and inhibiting hormone neurons, and the arcuate nucleus, a region containing these neurons and axons bound for the median eminence. We are currently determining if LPS similarly activates cytokine and iNOS production in the cardiovascular system and the gonads. Our hypothesis is that recurrent infections over the life span play a significant role in producing aging changes in all systems outside the blood-brain barrier via release of toxic quantities of NO. NO may be a major factor in the development of coronary heart disease (CHD). Considerable evidence

  4. Detection of nitric acid and nitric oxides in the terrestrial atmosphere in the middle-infrared spectral region

    Directory of Open Access Journals (Sweden)

    M. I. Blecka

    1996-11-01

    Full Text Available A proposal for combined space and ground-based observations of the vertical distributions and the column densities of nitric acid and nitric oxide concentrations in the earth's atmosphere is discussed. We focus on the aspects that are particular to the idea of correlative measurements: geometrical considerations, simulations of the solar absorption spectra in the middle-infrared region corresponding to the different observational geometries, and the associated retrieval methods. These studies are done specifically for the Belgian-French experiment MIRAS (MIR Infrared Atmospheric Spectrometer onboard the Russian Space Station MIR and correlative ground-based FTIR measurements in the Tatra mountains.

  5. Nitric oxide donors (nitrates), L-arginine, or nitric oxide synthase inhibitors for acute stroke.

    Science.gov (United States)

    Bath, Philip Mw; Krishnan, Kailash; Appleton, Jason P

    2017-04-21

    Nitric oxide (NO) has multiple effects that may be beneficial in acute stroke, including lowering blood pressure, and promoting reperfusion and cytoprotection. Some forms of nitric oxide synthase inhibition (NOS-I) may also be beneficial. However, high concentrations of NO are likely to be toxic to brain tissue. This is an update of a Cochrane review first published in 1998, and last updated in 2002. To assess the safety and efficacy of NO donors, L-arginine, and NOS-I in people with acute stroke. We searched the Cochrane Stroke Group Trials Register (last searched 6 February 2017), MEDLINE (1966 to June 2016), Embase (1980 to June 2016), ISI Science Citation Indexes (1981 to June 2016), Stroke Trials Registry (searched June 2016), International Standard Randomised Controlled Trial Number (ISRCTN) (searched June 2016), Clinical Trials registry (searched June 2016), and International Clinical Trials Registry Platform (ICTRP) (searched June 2016). Previously, we had contacted drug companies and researchers in the field. Randomised controlled trials comparing nitric oxide donors, L-arginine, or NOS-I versus placebo or open control in people within one week of onset of confirmed stroke. Two review authors independently applied the inclusion criteria, assessed trial quality and risk of bias, and extracted data. The review authors cross-checked data and resolved issues through discussion. We obtained published and unpublished data, as available. Data were reported as mean difference (MD) or odds ratio (OR) with 95% confidence intervals (CI). We included five completed trials, involving 4197 participants; all tested transdermal glyceryl trinitrate (GTN), an NO donor. The assessed risk of bias was low across the included studies; one study was double-blind, one open-label and three were single-blind. All included studies had blinded outcome assessment. Overall, GTN did not improve the primary outcome of death or dependency at the end of trial (modified Rankin Scale (m

  6. Reproducibility of exhaled nitric oxide measurements in overweight and obese adults

    NARCIS (Netherlands)

    Thijs, Willemien; de Mutsert, Renée; le Cessie, Saskia; Hiemstra, Pieter S.; Rosendaal, Frits R.; Middeldorp, Saskia; Rabe, Klaus F.

    2014-01-01

    Exhaled nitric oxide is a noninvasive measure of airway inflammation that can be detected by a handheld device. Obesity may influence the reproducibility of exhaled nitric oxide measurements, by - for instance - decreased expiratory reserve volume. We analyzed triple exhaled nitric oxide

  7. Nitric oxide in health and disease of the respiratory system

    NARCIS (Netherlands)

    Ricciardolo, Fabio L. M.; Sterk, Peter J.; Gaston, Benjamin; Folkerts, Gert

    2004-01-01

    During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO

  8. Effects of nitric oxide modulating activities on development of enteric ...

    Indian Academy of Sciences (India)

    ... the enteric neural crest-derived cells (ENCCs), and many molecules and biochemical processes may be involved in its development. This study examined the effects of modulating embryonic nitric oxide (NO) activity on the intestinal motility induced by ENS. One-hundred-and-twenty fertilized chicken eggs were assigned ...

  9. Evaluation of serum nitric oxide before and after local ...

    African Journals Online (AJOL)

    Hoda Aly Abd-El Moety

    2012-10-06

    Oct 6, 2012 ... Objectives: Evaluation of serum nitric oxide before and after local radiofrequency thermal ablation for hepatocellular carcinoma. Subjects: Twenty patients with proven hepatocellular carcinoma and 15 healthy patients as controls were enrolled in the study. Abbreviations: NO, nitrous oxide; HCC, ...

  10. Aluminium dissolution for spray pulverization with nitric acid

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodrigo Vilaseca, F.; Morales Calvo, G.

    1977-01-01

    A comparative study of the nitric acid dissolution of aluminium, by immersion and spray pulverization has been carried out in laboratory scale. As a result, the optimum operation conditions to control reaction in the plant are fixed. Operation costs are also evaluated. (author) [es

  11. Insecticidal, brine shrimp cytotoxicity, antifungal and nitric oxide free ...

    African Journals Online (AJOL)

    The crude methanolic extract and various fractions derived from the aerial parts of Myrsine africana were screened in vitro for possible insecticidal, antifungal, brine shrimp lethality and nitric oxide free radical scavenging activities. Low insecticidal activity (20 %) was shown by chloroform (CHCl3) and aqueous fractions ...

  12. Does Nitric Acid Dissociate at the Aqueous Solution Surface?

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tanza; Winter, Berndt; Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.; Hemminger, J. C.

    2011-11-03

    Nitric acid is a prevalent component of atmospheric aerosols, and the extent of nitric acid dissociation at aqueous interfaces is relevant to its role in heterogeneous atmospheric chemistry. Several experimental and theoretical studies have suggested that the extent of dissociation of nitric acid near aqueous interfaces is less than in bulk solution. Here, dissociation of HNO3 at the surface of aqueous nitric acid is quantified using X-ray photoelectron spectroscopy of the nitrogen local electronic structure. The relative amounts of undissociated HNO3(aq) and dissociated NO3-(aq) are identified by the distinguishable N1s core-level photoelectron spectra of the two species, and we determine the degree of dissociation, αint, in the interface (the first ~3 layers of solution) as a function of HNO3 concentration. Our measurements show that dissociation is decreased by approximately 20% near the solution interface compared with bulk, and furthermore that dissociation occurs even in the top-most solution layer. The experimental results are supported by first-principles MD simulations, which show that hydrogen-bonds between HNO3 and water molecules at the solution surface stabilize the molecular form at low concentration, in analogy to the stabilization of molecular HNO3 that occurs in bulk solution at high concentration. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  13. Evaluation of Fractioned Nitric Oxide in Chronic Cough Patients

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... Paediatr. Respir Rev 2006;7:9-14. 29. Pedük Y. Evaluation of etiologies of chronic cough in children. 2013; Available from: https://tez.yok.gov.tr. 30. Keskin O. The importance of exhaled nitric oxide in asthma and its correlation with host and environmental factors. 2010;. Available from: https://tez.yok.gov.tr.

  14. Role of nitric oxide and endogenous antioxidants in thyroxine ...

    African Journals Online (AJOL)

    ... blood samples collected for haematological indices through cardiac puncture and their stomachs prepared for gross and microscopic examinations to assess gastric healing. Gastric tissue protein, malondialdehyde (MDA), Superoxide Dismutase (SOD), Catalase (CAT), and Nitric oxide (NO) were assessed as biomarkers ...

  15. Nitric oxide radical scavenging potential of some Elburz medicinal ...

    African Journals Online (AJOL)

    Some plants scavenge nitric oxide (NO) with high affinity. For this purpose, forty extracts from 26 medicinal plants, growing extensively in Elburz mountains, were evaluated for their NO scavenging activity. Total phenolic and flavonoid contents of these extracts were also measured by Folin Ciocalteu and AlCl3 colorimetric ...

  16. Methanol Extract of Codonopsis pilosula Inhibits Inducible Nitric ...

    African Journals Online (AJOL)

    Purpose: To evaluate the mechanism of antioxidant activity of the methanol extract of Codonopsis pilosula. Methods: Anti-oxidative properties were assessed by measuring free radical scavenging activity, nitric oxide (NO) levels, protein oxidation and reducing power, while the mechanism of antioxidative effect of ...

  17. Nitric oxide interferes with hypoxia signaling during colonic inflammation.

    Science.gov (United States)

    Caria, Cintia Rabelo e Paiva; Moscato, Camila Henrique; Tomé, Renata Bortolin Guerra; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2014-01-01

    Intestinal inflammation can induce a local reduction in oxygen levels that triggers an adaptive response centered on the expression of hypoxia-inducible factors (HIFs). Nitric oxide, a well-described inflammatory mediator, may interfere with hypoxia signaling. We aimed to evaluate the role of nitric oxide in hypoxia signaling during colonic inflammation. Colitis was induced by single (acute) or repeated (reactivated colitis) trinitrobenzenosulfonic acid administration in rats. In addition, one group of rats with reactivated colitis was also treated with Nw-Nitro-L-arginine methyl ester hydrochloride to block nitric oxide synthase. Colitis was assessed by macroscopic score and myeloperoxidase activity in the colon samples. Hypoxia was determined using the oxygen-dependent probe, pimonidazole. The expression of HIF-1α and HIF-induced factors (vascular endothelial growth factor - VEGF and apelin) was assessed using Western blotting. The single or repeated administration of trinitrobenzenosulfonic acid to rats induced colitis which was characterized by a high macroscopic score and myeloperoxidase activity. Hypoxia was observed with both protocols. During acute colitis, HIF-1α expression was not increased, but VEGF and apelin were increased. HIF-1α expression was inhibited during reactivated colitis, and VEGF and apelin were not increased. Nw-Nitro-L-arginine methyl ester hydrochloride blockade during reactivated colitis restored HIF-1α, VEGF and apelin expression. Nitric oxide could interfere with hypoxia signaling during reactivated colitis inflammation modifying the expression of proteins regulated by HIF-1α.

  18. The correlation between total antioxidant capacity and nitric oxide ...

    African Journals Online (AJOL)

    Sperm DNA quality is important in male fertility. Oxidative stress increases sperm DNA damages. Antioxidants decrease production of free radicals and scavenge them. Nitric oxide (NO) is a free radical which is produced by most cells and has a dual role on cells. Low concentrations of NO is essential in biology and ...

  19. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    HP

    Purpose: To explore the antioxidant properties of the methanol extract of Pericarpium Zanthoxyli and its effect on inducible nitric oxide synthase (iNOS), cycleooxygenase-2 (COX-2) and lipopolysaccharides (LPS)-induced cell damage in macrophage cells. Methods: Anti-oxidant activities were tested by measuring free ...

  20. The role of nitrite in nitric oxide homeostasis

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulatio...

  1. Modulation of glucose uptake in adipose tissue by nitric oxide ...

    Indian Academy of Sciences (India)

    Madhu

    Karnieli E, Barzilai A, Rafaeloff R and Armoni M 1986 Distribution of glucose transporters in membrane fractions isolated from human adipose cells; relative to cell size; J. Clin. Invest. 78. 1051–1055. Li J, Hu X, Selvakumar P, Russell R R, Cushman S W, Holman. G D and Young L H 2004 Role of the nitric oxide pathway in.

  2. Nitric oxide inhibitory activity of Strychnos spinosa (loganiaceae ...

    African Journals Online (AJOL)

    Background: The study was aimed at determining the anti-inflammatory activity of fractions and extracts obtained from Strychnos spinosa leaves on a mediator of inflammation nitric oxide (NO). Materials and Methods: Leaves were extracted with acetone and separated into fractions with different polarities by solventsolvent ...

  3. Evaluation of Fractioned Nitric Oxide in Chronic Cough Patients ...

    African Journals Online (AJOL)

    Introduction: Cough exceeding 3-8 weeks was defined as chronic cough in various guides. Asthma is the most common cause of chronic-specific cough. Causes other than asthma include prolonged bacterial bronchitis and upper airway cough syndrome (UACS). Nitric oxide (NO) causes vascular smooth muscle relaxation, ...

  4. Endothelial nitric oxide synthase gene Glu298Asp polymorphism ...

    African Journals Online (AJOL)

    Preeclampsia (PE) is the most serious complication of pregnancy that causes maternal and fetal morbidity and mortality. Although the exact pathophysiology of PE is unknown, a large number of studies have shown that abnormalities in nitric oxide (NO) synthesis may contribute to the development of this disorder. There are ...

  5. Role of Endothelial Nitric Oxide Synthase Gene Polymorphisms ...

    African Journals Online (AJOL)

    Background: Previous studies indicated an association between endothelial nitric oxide synthase (eNOS) activity and maintenance of pregnancy, but it is rather controversial whether polymorphisms of the gene encoding for eNOS are associated with recurrent spontaneous abortions (RSAs). Aim: The aim was to investigate ...

  6. Variation of nitric oxide levels in imported Plasmodium falciparum ...

    African Journals Online (AJOL)

    Nitric oxide (NO) has been recognized during the past two decades as one of the most versatile players in the immune system. Even though the molecular mechanisms responsible by the naturally acquired immunity against malaria are still to be clarified, the production of NO seems to play an important role as a marker for ...

  7. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    Science.gov (United States)

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  8. Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions

    DEFF Research Database (Denmark)

    Hansen, Marie N.; Jensen, Frank Bo

    2010-01-01

    Nitric oxide (NO), produced by nitric oxide synthases (NOS enzymes), regulates multiple physiological functions in animals. NO exerts its effects by binding to iron (Fe) of heme groups (exemplified by the activation of soluble guanylyl cyclase) and by S-nitrosylation of proteins – and it is metab......Nitric oxide (NO), produced by nitric oxide synthases (NOS enzymes), regulates multiple physiological functions in animals. NO exerts its effects by binding to iron (Fe) of heme groups (exemplified by the activation of soluble guanylyl cyclase) and by S-nitrosylation of proteins......) in multiple tissues of a non-mammalian vertebrate (goldfish) under normoxic and hypoxic conditions. NO metabolites were measured in blood (plasma and red cells) and heart, brain, gill, liver, kidney and skeletal muscle, using highly sensitive reductive chemiluminescence. The severity of the chosen hypoxia...... levels was assessed from metabolic and respiratory variables. In normoxic goldfish, the concentrations of NO metabolites in plasma and tissues were comparable with values reported in mammals, indicative of similar NOS activity. Exposure to hypoxia [at PO2 (partial pressure of O2) values close...

  9. Original Article Pubertal Development of Penile Nitric Oxide ...

    African Journals Online (AJOL)

    mn

    The discovery of nitric ox- ide (NO) as an intercellular messenger or neurotransmitter has opened a new era for identifying the important mechanisms under- ... le- vels were significantly lower in the 40d- old rats than in the 54d and 65d-old animals. (p<0.05), but there were no statistically signi- ficant differences between the ...

  10. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Conclusion: The data obtained provide insight into the mechanism of cell proliferation action of endogenous NO•, based on p53 status, and indicate manipulation of iNOS may offer exciting opportunities to improve the effectiveness of melanoma treatment. Keywords: Apoptosis, Human melanoma cells, Inducible nitric oxide ...

  11. Variation of nitric oxide levels in imported Plasmodium falciparum ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... ISSN 1684–5315 © 2008 Academic Journals. Full Length Research Paper. Variation of nitric oxide levels in imported Plasmodium falciparum malaria episodes. De Sousa, Karina*, Silva, Marcelo S. and Tavira, Luís T. Instituto de Higiene e Medicina Tropical, Centro de Malária e outras Doenças Tropicais, ...

  12. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed ...

  13. Ginsenoside Rb1 Reduces Nitric Oxide Production via Inhibition of ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect and the potential mechanisms of ginsenoside Rb1 on nitric oxide. (NO) production in chondrocytes. Methods: SW1353 chondrosarcoma cells were stimulated with interleukin-1β (IL-1β) in the presence of. 20, 40, 80 µM ginsenoside Rb1. NO concentration was assessed by the Griess ...

  14. Methodological aspects of exhaled nitric oxide measurements in infants.

    NARCIS (Netherlands)

    Gabriele, C.; Wiel, E.C. van der; Nieuwhof, E.M.; Moll, H.A.; Merkus, P.J.F.M.; Jongste, J.C. de

    2007-01-01

    Guidelines for the measurement of fractional exhaled nitric oxide (FE(NO)) recommend refraining from lung function tests (LFT) and certain foods and beverages before performing FE(NO) measurements, as they may lead to transiently altered FE(NO) levels. Little is known of such factors in infants. The

  15. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  16. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Purpose: To examine the role of endogenous nitric oxide (NO•) and influence of p53 status during apoptosis induced by a ... endogenous NO•, based on p53 status, and indicate manipulation of iNOS may offer exciting opportunities to improve the ..... agents, further research will be required to define more specifically the ...

  17. Expression of Inducible Nitric Oxide Synthase in the Epithelial ...

    African Journals Online (AJOL)

    Conclusion: iNOS was over expressed in OKCs when compared with DC and RC suggesting that iNOS may contribute to the aggressive behavior of OKC. This is yet another evidence to support that OKC is the neoplasm. Keywords: Dentigerous cyst, Immunohistochemistry, Inducible nitric oxide synthase, Odontogenic ...

  18. NITRIC OXIDE INTERFERES WITH HYPOXIA SIGNALING DURING COLONIC INFLAMMATION

    Directory of Open Access Journals (Sweden)

    Cintia Rabelo e Paiva CARIA

    2014-12-01

    Full Text Available Context Intestinal inflammation can induce a local reduction in oxygen levels that triggers an adaptive response centered on the expression of hypoxia-inducible factors (HIFs. Nitric oxide, a well-described inflammatory mediator, may interfere with hypoxia signaling. Objectives We aimed to evaluate the role of nitric oxide in hypoxia signaling during colonic inflammation. Methods Colitis was induced by single (acute or repeated (reactivated colitis trinitrobenzenosulfonic acid administration in rats. In addition, one group of rats with reactivated colitis was also treated with Nw-Nitro-L-arginine methyl ester hydrochloride to block nitric oxide synthase. Colitis was assessed by macroscopic score and myeloperoxidase activity in the colon samples. Hypoxia was determined using the oxygen-dependent probe, pimonidazole. The expression of HIF-1α and HIF-induced factors (vascular endothelial growth factor - VEGF and apelin was assessed using Western blotting. Results The single or repeated administration of trinitrobenzenosulfonic acid to rats induced colitis which was characterized by a high macroscopic score and myeloperoxidase activity. Hypoxia was observed with both protocols. During acute colitis, HIF-1α expression was not increased, but VEGF and apelin were increased. HIF-1α expression was inhibited during reactivated colitis, and VEGF and apelin were not increased. Nw-Nitro-L-arginine methyl ester hydrochloride blockade during reactivated colitis restored HIF-1α, VEGF and apelin expression. Conclusions Nitric oxide could interfere with hypoxia signaling during reactivated colitis inflammation modifying the expression of proteins regulated by HIF-1α.

  19. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes were selected ...

  20. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  1. Regulation and control of nitric oxide (NO) in macrophages

    DEFF Research Database (Denmark)

    Kovacevic, Zaklina; Sahni, Sumit; Lok, K.H.

    2017-01-01

    We recently demonstrated that a novel storage and transport mechanism for nitric oxide (NO) mediated by glutathione-S-transferase P1 (GSTP1) and multidrug resistance protein 1 (MRP1/ABCC1), protects M1-macrophage (M1-MØ) models from large quantities of endogenous NO. This system stores and transp...

  2. Variation of nitric oxide levels in imported Plasmodium falciparum ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Nitric oxide (NO) has been recognized during the past two decades as one of the most versatile players in the immune system. Even though the molecular mechanisms responsible by the naturally acquired immunity against malaria are still to be clarified, the production of NO seems to play an important role.

  3. Restoration Of Glutamine Synthetase Activity, Nitric Oxide Levels ...

    African Journals Online (AJOL)

    Background: Propolis has been proposed to be protective on neurodegenerative disorders. To understand the neuroprotective effects of honeybee propolis, glutamine synthetase (GS) activity, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and total antioxidant status (TAS) were studied in different brain ...

  4. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i...

  5. Deficiency of sex hormones does not affect 17-ß-estradiol-induced coronary vasodilation in the isolated rat heart.

    Science.gov (United States)

    Santos, R L; Lima, J T; Rouver, W N; Moysés, M R

    2016-01-01

    The relaxation of coronary arteries by estrogens in the coronary vascular beds of naive and hypertensive rats has been well described. However, little is known about this action in gonadectomized rats. We investigated the effect of 17-ß-estradiol (E2) in coronary arteries from gonadectomized rats, as well as the contributions of endothelium-derived factors and potassium channels. Eight-week-old female and male Wistar rats weighing 220-300 g were divided into sham-operated and gonadectomized groups (n=9-12 animals per group). The baseline coronary perfusion pressure (CPP) was determined, and the vasoactive effects of 10 μM E2 were assessed by bolus administration before and after endothelium denudation or by perfusion with NG-nitro-L-arginine methyl ester (L-NAME), indomethacin, clotrimazole, L-NAME plus indomethacin, L-NAME plus clotrimazole or tetraethylammonium (TEA). The CPP differed significantly between the female and sham-operated male animals. Gonadectomy reduced the CPP only in female rats. Differences in E2-induced relaxation were observed between the female and male animals, but male castration did not alter this response. For both sexes, the relaxation response to E2 was, at least partly, endothelium-dependent. The response to E2 was reduced only in the sham-operated female rats treated with L-NAME. However, in the presence of indomethacin, clotrimazole, L-NAME plus indomethacin or L-NAME plus clotrimazole, or TEA, the E2 response was significantly reduced in all groups. These results highlight the importance of prostacyclin, endothelium-derived hyperpolarizing factor, and potassium channels in the relaxation response of coronary arteries to E2 in all groups, whereas nitric oxide may have had an important role only in the sham-operated female group.

  6. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds

    Directory of Open Access Journals (Sweden)

    A.C. Pereira

    2011-09-01

    Full Text Available During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP production, which in turn leads to protein kinase G (PKG activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.

  7. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms.

    Science.gov (United States)

    Barouch, Lili A; Harrison, Robert W; Skaf, Michel W; Rosas, Gisele O; Cappola, Thomas P; Kobeissi, Zoulficar A; Hobai, Ion A; Lemmon, Christopher A; Burnett, Arthur L; O'Rourke, Brian; Rodriguez, E Rene; Huang, Paul L; Lima, João A C; Berkowitz, Dan E; Hare, Joshua M

    2002-03-21

    Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling. In the heart, NO inhibits L-type Ca2+ channels but stimulates sarcoplasmic reticulum (SR) Ca2+ release, leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae, where compartmentalization with beta-adrenergic receptors and L-type Ca2+ channels allows NO to inhibit beta-adrenergic-induced inotropy. Neuronal NO synthase (NOS1), however, is targeted to cardiac SR. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro, suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1-/- and NOS3-/- mice develop age-related hypertrophy, although only NOS3-/- mice are hypertensive. NOS1/3-/- double knockout mice have suppressed beta-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.

  8. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates

    NARCIS (Netherlands)

    Opländer, C.; Volkmar, C.M.; Paunel-Görgülü, A.; van Faassen, E.E.H.; Heiss, C.

    2009-01-01

    Rationale: Human skin contains photolabile nitric oxide derivates like nitrite and S-nitroso thiols, which after UVA irradiation, decompose and lead to the formation of vasoactive NO. Objective: Here, we investigated whether whole body UVA irradiation influences the blood pressure of healthy

  9. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both...

  10. Detection of nitric oxide in exhaled air using cavity enhanced absorption spectroscopy

    Science.gov (United States)

    Medrzycki, R.; Wojtas, J.; Rutecka, B.; Bielecki, Z.

    2013-07-01

    The article describes an application one of the most sensitive optoelectronic method - Cavity Enhanced Absorption Spectroscopy in investigation of nitric oxide in exhaled breath. Measurement of nitric oxide concentration in exhaled breath is a quantitative, non-invasive, simple, and safe method of respiratory inflammation and asthma diagnosis. For detection of nitric oxide by developed optoelectronic sensor the vibronic molecular transitions were used. The wavelength ranges of these transitions are situated in the infrared spectral region. A setup consists of the optoelectronic nitric oxide sensor integrated with sampling and sample conditioning unit. The constructed detection system provides to measure nitric oxide in a sample of 0-97% relative humidity.

  11. Enhancing hippocampal blood flow after cerebral ischemia and vasodilating basilar arteries: in vivo and in vitro neuroprotective effect of antihypertensive DDPH

    Directory of Open Access Journals (Sweden)

    Li Sun

    2015-01-01

    Full Text Available 1-(2,6-Dimethylphenoxy-2-(3,4-dimethoxyphenylethylamino-propane hydrochloride (DDPH is a novel antihypertensive agent based on structural characteristics of mexiletine and verapamine. We investigated the effect of DDPH on vasodilatation and neuroprotection in a rat model of cerebral ischemia in vivo, and a rabbit model of isolated basilar arteries in vitro. Our results show that DDPH (10 mg/kg significantly increased hippocampal blood flow in vivo in cerebral ischemic rats, and exerted dose-dependent relaxation of isolated basilar arteries contracted by histamine or KCl in the in vitro rabbit model. DDPH (3 × 10 -5 M also inhibited histamine-stimulated extracellular calcium influx and intracellular calcium release. Our findings suggest that DDPH has a vasodilative effect both in vivo and in vitro, which mediates a neuroprotective effect on ischemic nerve tissue.

  12. Data describing the flow-mediated vasodilation responses and blood pressure in young adult humans after a single dose of oral edible emu oil

    Directory of Open Access Journals (Sweden)

    Tadayoshi Miyashita

    2018-04-01

    Full Text Available The data provided herein include flow-mediated vasodilation responses, represented by changes in arterial diameter, and blood pressure in young adults after a single oral dose of edible emu oil or placebo (cross-over design. Ten healthy men and 10 healthy women participated. Increased blood flow in the antebrachial region was induced by inflating a pressure cuff and subsequently releasing the pressure by deflating the cuff. After the release, the arterial diameter was continuously monitored for 110 sec using ultrasonic diagnostic equipment. The changes in the arterial diameter from 20 to 110 sec post-cuff deflation are described in line graphs and tables. In addition, systolic and diastolic blood pressure data are provided in a table.

  13. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  14. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  15. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: A study with nitrogen-13 ammonia and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Camici, P.; Chiriatti, G.; Lorenzoni, R.; Bellina, R.C.; Gistri, R.; Italiani, G.; Parodi, O.; Salvadori, P.A.; Nista, N.; Papi, L. (C.N.R. Institute of Clinical Physiology, Pisa (Italy))

    1991-03-15

    To assess regional coronary reserve in hypertrophic cardiomyopathy, regional myocardial blood flow was measured in 23 patients with hypertrophic cardiomyopathy and 12 control subjects by means of nitrogen-13 ammonia and dynamic positron emission tomography. In patients with hypertrophic cardiomyopathy at baseline study, regional myocardial blood flow was 1.14 +/- 0.43 ml/min per g in the hypertrophied (20 +/- 3 mm) interventricular septum and 0.90 +/- 0.35 ml/min per g (p less than 0.05 versus septal flow) in the nonhypertrophied (10 +/- 2 mm) left ventricular free wall. These were not statistically different from the corresponding values in control subjects (1.04 +/- 0.25 and 0.91 +/- 0.21 ml/min per g, respectively, p = NS). After pharmacologically induced coronary vasodilation (dipyridamole, 0.56 mg/kg intravenously over 4 min), regional myocardial blood flow in patients with hypertrophic cardiomyopathy increased significantly less than in control subjects both in the septum (1.63 +/- 0.58 versus 2.99 +/- 1.06 ml/min per g, p less than 0.001) and in the free wall (1.47 +/- 0.58 versus 2.44 +/- 0.82 ml/min per g, p less than 0.001). In addition, patients with hypertrophic cardiomyopathy who had a history of chest pain had more pronounced impairment of coronary vasodilator reserve than did those without a history of chest pain. After dipyridamole, coronary resistance in the septum decreased by 38% in patients without a history of chest pain, but decreased by only 14% in those with such a history (p less than 0.05). Coronary resistance in the free wall decreased by 45% in patients without and by 27% in those with a history of chest pain (p = 0.06).

  16. Endothelium depen dent factors of vasoconstriction (thromboxane B2 and vasodilation (6-prostaglandin F1α in children with primary arterial hype rten sion

    Directory of Open Access Journals (Sweden)

    Yu riy V. Marushko

    2015-09-01

    Full Text Available Background: Vasoconstrictor and vasodilator substances imbalance play a major role in the formation of arterial hypertension. But the ratio between thromboxane B2 and 6-prostaglandin F1α in children with various forms of primary arterial hypertension (PAH are insufficiently studied. Aim of the study: to explore the features of the content of thromboxane B2, 6-keto-PGF-1alfa and their correlation in children with different clinical and pathogenetic forms of PAH. Material and methods: The study involved 83 children aged 9 to 17 years. The first group included 32 children with stable PAH, the second – 32 children with labile PAH, the third (control group – 21 children with normal blood pressure. TXB2 and 6-PGF1α serum levels were investigated by ELISA. All children were held ambulatory blood pressure monitoring (ABPM. Results: Average TXB2 levels in boys were 25,05 ±6,43 ng/ml at stable PAH and 27,26 ±11,26 ng/ml at labile PAH, which exceeded their levels in the control group (p < 0,05. Girls’ TXB2 level was elevated at labile PAH (to 11,06 ±1,79 ng/ml, p < 0,05 and did not differ from the control group at stable PAH. Girls’ 6-PGF1α level was up to 3,41 ±0,52 ng/ml at stable PAH and up to 2,63 ±0,25 ng/ml at labile PAH. Conclusions: Violation of the ratio between endothelial vasoconstriction (thromboxane and vasodilatation (prostacyclin factors in boys with PAH is due to increased TXB2 levels compared with children with normal blood pressure (p < 0,05. Girls with PAH have better compensatory vasodilation opportunities compared with boys according to increased prostacyclin production. That prevents the progression of endothelial dysfunction and PAH stabilization in girls.

  17. Exhaled nitric oxide in children after accidental exposure to chlorine gas.

    Science.gov (United States)

    Grasemann, Hartmut; Tschiedel, Eva; Groch, Manuela; Klepper, Jörg; Ratjen, Felix

    2007-08-01

    Chronic exposure to chlorine gas has been shown to cause occupational asthma. Acute inhalation of chlorine is known to cause airway inflammation and induce airway nitric oxide formation. Exhaled nitric oxide may therefore be a marker of airway damage after chlorine gas exposure. After accidental chlorine gas exposure in a swimming pool, exhaled nitric oxide and pulmonary function were repeatedly measured in 18 children over a 1-mo period. Symptomatic children with impaired pulmonary function had higher nitric oxide levels on the day after the exposure compared to day 8 and day 28. Differences in exhaled nitric oxide were more pronounced at a higher exhalation flow compared to lower flow, suggesting peripheral rather than central airway damage. This was in accordance with the observed changes in pulmonary function. No changes in exhaled nitric oxide were seen in asymptomatic children. These data suggest that acute chlorine gas exposure results in a mild increase of exhaled nitric oxide in symptomatic children.

  18. Do tobacco stimulate the production of nitric oxide by up regulation of inducible nitric oxide synthesis in cancer: Immunohistochemical determination of inducible nitric oxide synthesis in oral squamous cell carcinoma - A comparative study in tobacco habituers and non-habituers

    Directory of Open Access Journals (Sweden)

    B Karthik

    2014-01-01

    Conclusions: The results of the present study indicate the enhanced expression in OSCC of tobacco habituers when compared to OSCC of tobacco non-habituers indicating the effect of tobacco on nitric oxide. Carcinogenic chemical compounds in Tobacco induce nitric oxide production by iNOS, by its tumor-promoting effects which may enhance the process of carcinogenesis.

  19. Effects of the vasodilating beta-blocker nebivolol on smoking-induced endothelial dysfunction in young healthy volunteers

    Directory of Open Access Journals (Sweden)

    André C Schmidt

    2008-08-01

    , endothelial dysfunction, nebivolol, nitric oxide (NO, smoking

  20. Endothelial-derived hyperpolarization contributes to acetylcholine-mediated vasodilation in human skin in a dose-dependent manner.

    Science.gov (United States)

    Brunt, Vienna E; Fujii, Naoto; Minson, Christopher T

    2015-11-01

    Cutaneous acetylcholine (ACh)-mediated dilation is commonly used to assess microvascular function, but the mechanisms of dilation are poorly understood. Depending on dose and method of administration, nitric oxide (NO) and prostanoids are involved to varying extents and the roles of endothelial-derived hyperpolarizing factors (EDHFs) are unclear. In the present study, five incremental doses of ACh (0.01-100 mM) were delivered either as a 1-min bolus (protocol 1, n = 12) or as a ≥20-min continuous infusion (protocol 2, n = 10) via microdialysis fibers infused with 1) lactated Ringer, 2) tetraethylammonium (TEA) [a calcium-activated potassium channel (KCa) and EDHF inhibitor], 3) L-NNA+ketorolac [NO synthase (NOS) and cyclooxygenase (COX) inhibitors], and 4) TEA+L-NNA+Ketorolac. The hyperemic response was characterized as peak and area under the curve (AUC) cutaneous vascular conductance (CVC) for bolus infusions or plateau CVC for continuous infusions, and reported as %maximal CVC. In protocol 1, TEA, alone and combined with NOS+COX inhibition, attenuated peak CVC (100 mM Ringer 59 ± 6% vs. TEA 43 ± 5%, P < 0.05; L-NNA+ketorolac 35 ± 4% vs. TEA+L-NNA+ketorolac 25 ± 4%, P < 0.05) and AUC (Ringer 25,414 ± 3,528 vs. TEA 21,403 ± 3,416%·s, P < 0.05; L-NNA+ketorolac 25,628 ± 3,828%(.)s vs. TEA+L-NNA+ketorolac 20,772 ± 3,711%·s, P < 0.05), although these effects were only significant at the highest dose of ACh. At lower doses, TEA lengthened the total time of the hyperemic response (10 mM Ringer 609 ± 78 s vs. TEA 860 ± 67 s, P < 0.05). In protocol 2, TEA alone did not affect plateau CVC, but attenuated plateau in combination with NOS+COX inhibition (100 mM 50.4 ± 6.6% vs. 30.9 ± 6.3%, P < 0.05). Therefore, EDHFs contribute to cutaneous ACh-mediated dilation, but their relative contribution is altered by the dose and infusion procedure. Copyright © 2015 the American Physiological Society.

  1. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  2. Antenatal insults modify newborn olfactory function by nitric oxide produced from neuronal nitric oxide synthase.

    Science.gov (United States)

    Drobyshevsky, Alexander; Yu, Lei; Yang, Yirong; Khalid, Syed; Luo, Kehuan; Jiang, Rugang; Ji, Haitao; Derrick, Matthew; Kay, Leslie; Silverman, Richard B; Tan, Sidhartha

    2012-10-01

    Newborn feeding, maternal, bonding, growth and wellbeing depend upon intact odor recognition in the early postnatal period. Antenatal stress may affect postnatal odor recognition. We investigated the exact role of a neurotransmitter, nitric oxide (NO), in newborn olfactory function. We hypothesized that olfactory neuron activity depended on NO generated by neuronal NO synthase (NOS). Utilizing in vivo functional manganese enhanced MRI (MEMRI) in a rabbit model of cerebral palsy we had shown previously that in utero hypoxia-ischemia (H-I) at E22 (70% gestation) resulted in impaired postnatal response to odorants and poor feeding. With the same antenatal insult, we manipulated NO levels in the olfactory neuron in postnatal day 1 (P1) kits by administration of intranasal NO donors or a highly selective nNOS inhibitor. Olfactory function was quantitatively measured by the response to amyl acetate stimulation by MEMRI. The relevance of nNOS to normal olfactory development was confirmed by the increase of nNOS gene expression from fetal ages to P1 in olfactory epithelium and bulbs. In control kits, nNOS inhibition decreased NO production in the olfactory system and increased MEMRI slope enhancement. In H-I kits the MEMRI slope did not increase, implicating modification of endogenous NO-mediated olfactory function by the antenatal insult. NO donors as a source of exogenous NO did not significantly change function in either group. In conclusion, olfactory epithelium nNOS in newborn rabbits probably modulates olfactory signal transduction. Antenatal H-I injury remote from delivery may affect early functional development of the olfactory system by decreasing NO-dependent signal transduction. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Smoking and gingivitis: focus on inducible nitric oxide synthase, nitric oxide and basic fibroblast growth factor.

    Science.gov (United States)

    Özdemir, B; Özmeric, N; Elgün, S; Barış, E

    2016-10-01

    Periodontal disease pathogenesis has been associated with smoking. Gingivitis is a mild and reversible form of periodontal disease and it tends to progress to periodontitis only in susceptible individuals. In the present study, we aimed to examine the impact of smoking on host responses in gingivitis and to evaluate and compare the inducible nitric oxide synthase (iNOS) activity in gingival tissue and NO and basic fibroblast growth factor (bFGF) levels in the gingival crevicular fluid of patients with gingivitis and healthy individuals. Forty-one participants were assigned to the gingivitis-smoker (n = 13), gingivitis (n = 13), healthy-smoker (n = 7) and healthy groups (n = 8). Clinical indices were recorded; gingival biopsy and gingival crevicular fluid samples were obtained from papillary regions. iNOS expression was evaluated by immunohistochemical staining. The immunoreactive cells were semiquantitatively assessed. For the quantitative determination of nitrite and nitrate in gingival crevicular fluid, the NO assay kit was used. The amount of bFGF in gingival crevicular fluid was determined by enzyme-linked immunosorbent assay. The gingivitis-smoker group demonstrated a stronger iNOS expression than the non-smoker gingivitis group. iNOS expression intensity was lower in the non-smoker healthy group compared to that in healthy-smokers. No significant gingival crevicular fluid NO and bFGF level changes were observed between groups. Among patients with gingivitis, a positive correlation was detected between gingival crevicular fluid NO and bFGF levels (r = 0.806, p = 0.001). Our data suggest that smoking has significant effects on iNOS expression but not on gingival crevicular fluid NO or bFGF levels in healthy and patients with gingivitis. However, our results suggest that bFGF might be involved in the regulation of NO production via iNOS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Characterization of exhaled nitric oxide: introducing a new reproducible method for nasal nitric oxide measurements.

    Science.gov (United States)

    Palm, J P; Graf, P; Lundberg, J O; Alving, K

    2000-08-01

    Nitric oxide (NO) is present in the human nasal airways and has been suggested to originate primarily from the paranasal sinuses. The aim of this study was to establish a new and reproducible method for measurement of nasal NO. Through repeated single-breath measurements the intra- and inter-individual variations of NO levels in nasally (into a tightly fitting mask covering the nose) and orally exhaled air were determined in healthy humans. Variations due to the methods used were investigated. The contribution of oral NO to the nasal exhalations by introducing a mouthwash procedure was also studied. This study shows distinct individual values of NO in nasally and orally exhaled air of healthy humans. Some diurnal variability was also found with a rise in NO in nasally and orally exhaled air over the day, but no, or little, day-to-day variability when comparing the results from separate mornings. There was no correlation between NO levels in nasally and orally exhaled air, whereas there was a strong correlation between NO levels in air exhaled through the left and right nostril. The levels of NO in air exhaled at 0.17 L x s(-1) through either nostril separately were higher than in air exhaled at the same flow rate through both nostrils simultaneously. After the introduction of a mouthwash procedure the level of NO in orally, but not nasally exhaled air was reduced. To conclude the method using nasal exhalation into a nose mask is highly reproducible. It is also suggested that subtracting the level of NO in orally exhaled air, after mouthwash, from that in nasally exhaled air, would adequately reflect nasal NO levels.

  5. Dissolution of unirradiated UO2-pellets in nitric acid

    International Nuclear Information System (INIS)

    Herrmann, B.

    1984-02-01

    Cinetics of dissolution of UO 2 -pellets in nitric acid and the gaseous reaction products, N 2 O, NO, NO 2 are determined for different temperatures and acid concentrations. NO 2 :NO ratio increases with temperature and nitrate concentration. The amount of N 2 O formed increases with temperature and acid concentration. At 90 0 C and dissolution in 12 m nitric acid 1l weight-% of UO 2 are dissolved forming N 2 O. The oxidation of UO 2 takes place on the crystal surface or at the interface UO 2 /HNO 3 . U(IV)-ions cannot be detected in the solution. The nitrous acid resulting from reduction of HNO 3 or the species which is in equilibrium with nitrous acid e.g. the nitrosyl-ion is responsible for UO 2 -oxidation. (orig./PW) [de

  6. Fate of aliphatic compounds in nitric acid processing solutions

    International Nuclear Information System (INIS)

    Clark, W.E.; Howerton, W.B.

    1975-01-01

    The reaction of hyperazeotropic iodic acid-saturated nitric acid with short chain aliphatic iodides, nitrates, and acids was studied in order to determine the conditions for complete removal of organic materials from nitric acid systems. The aliphatic iodides are converted to the nitrates and the nitrates in strong HNO 3 are extensively converted into CO 2 and acids. The aliphatic acids are rather stable; acetic acid was unattacked by boiling in 20M HNO 3 and n-butyric acid was 80 percent unattacked. The dibasic acids oxalic and malonic are extensively attacked, but succinic acid is relatively stable. A wet oxidation method is successful in destroying acetic acid in 5 to 8M HNO 3 . (U.S.)

  7. Nitric oxide-related drug targets in headache

    DEFF Research Database (Denmark)

    Olesen, Jes

    2010-01-01

    SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so-called del......SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so...... another very likely new treatment. It is more unlikely that antagonism of cGMP or its formation will be feasible, but augmenting its breakdown via phosphodiesterase activation is a possibility, as well as other ways of inhibiting the NO-cGMP pathway....

  8. NITRIC OXIDE AND ENDOTHELIN-1 IN CHILDREN WITH DIGESTIVE DISORDERS

    Directory of Open Access Journals (Sweden)

    I. V. Panova

    2012-01-01

    Full Text Available The important part in the group of biological compounds, participating in the regulation of the functions of the gastro-intestinal tract, is assigned to endothelial factors because of their impact on the majority of physiological and pathophysiological processes of the digestive system. The article provides information about physiological role of nitric oxide and endothelin-1 and presents a review of scientific data on the participation of nitric oxide and endothelin-1 in the pathogenesis of many digestive system diseases, emphasizing chronic inflammatory disorders of the upper gastrointestinal tract. The authors accentuate the importance of endothelium endocrine function research in children with esophagogastroduodenal disorders at the beginning of puberty, which is the critical period of ontogenesis.

  9. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  10. Inhibition of Nitric Oxide and Prostaglandin E 2 Expression by ...

    African Journals Online (AJOL)

    Inhibition of Nitric Oxide and Prostaglandin E2 Expression by Methanol Extract of Polyopes affinis in Lipopolysaccharide-stimulated BV2 Microglial Cells through Suppression of Akt-dependent NF-kB Activity and MAPK Pathway. RGPT Jayasooriya, Y-J Jang, C-H Kang, MG Dilshara, D-O Moon, T-J Nam, YH Choi, G-Y Kim ...

  11. Isoxazole derivatives as new nitric oxide elicitors in plants

    Directory of Open Access Journals (Sweden)

    Anca Oancea

    2017-04-01

    Full Text Available Several 3,5-disubstituted isoxazoles were obtained in good yields by regiospecific 1,3-dipolar cycloaddition reactions between aromatic nitrile oxides, generated in situ from the corresponding hydroxyimidoyl chlorides, with non-symmetrical activated alkynes in the presence of catalytic amounts of copper(I iodide. Effects of 3,5-disubstituted isoxazoles on nitric oxide and reactive oxygen species generation in Arabidopsis tissues was studied using specific diaminofluoresceine dyes as fluorescence indicators.

  12. Diazeniumdiolated carbamates: a novel class of nitric oxide donors.

    Science.gov (United States)

    Nandurdikar, Rahul S; Maciag, Anna E; Cao, Zhao; Keefer, Larry K; Saavedra, Joseph E

    2012-03-15

    We report an indirect method for synthesis of previously inaccessible diazeniumdiolated carbamates. Synthesis involves use of previously reported triisopropylsilyloxymethylated isopropylamine diazeniumdiolate (TOM-ylated IPA/NO). These novel diazeniumdiolated carbamate prodrugs upon activation release nitric oxide (NO) similar to their secondary amine counterparts. They are also efficient sources of intracellular NO. These prodrugs may have potential applications as therapeutic NO-donors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and sex showed no such changes. Our data support the hypothesis that NO is a pathogenic factor in MS, and that NOS IR is strongly expressed in brain regions appearing normal by MRI...

  14. Decomposition of N2O in the nitric acid industry

    International Nuclear Information System (INIS)

    Van den Brink, R.W.; Pieterse, J.A.Z.; Melian-Cabrera, I.; Mul, G.; Kapteijn, F.; Moulijn, J.A.

    2005-03-01

    The nitric acid industry is one of the major sources of the greenhouse gas N2O, which is 310 times more effective than CO2 in trapping heat in the atmosphere. One of the most promising techniques is direct decomposition of N2O in the tail gases of nitric acid plants. The state-of-the-art catalysts are only active at temperatures above 400C, which means that they can be used only in a limited number of plants. The aim of this research is to develop a catalyst that lowers the temperature for N2O decomposition to below 350C. This will increase the number of plants that can use the direct decomposition technique for N2O removal and will improve the cost efficiency for plants with a higher temperature. Many researchers have investigated iron-zeolites in recent years. They are active for N2O decomposition, show a high stability in the tail gases of nitric acid plants and are promoted by the presence of NOx in the tail gases (2,3). Noble metal catalysts for N2O decomposition have been studied less thoroughly than iron zeolites. They show high N2O decomposition activity in in diluted N2O streams, but are inhibited by the oxygen, water and NOx present in nitric acid plant tail gases (4). This paper defines relationships between the structure of iron-zeolite and noble metal catalysts and their activity for N2O decomposition. Several parameters of preparation and post-modification were evaluated for their importance in the formation of active species. Based on the knowledge of the structure activity relations, novel catalysts were found with a higher activity for N2O decomposition than the state-of-the-art catalysts

  15. Nitric oxide synthase isoforms in spontaneous and salt hypertension

    Czech Academy of Sciences Publication Activity Database

    Hojná, Silvie; Kuneš, Jaroslav; Zicha, Josef

    2007-01-01

    Roč. 25, Suppl. 2 (2007), S 338-S 338 ISSN 0263-6352. [European Meeting on Hypertension /17./. 15.06.2007-19.06.2007, Milan] R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : nitric oxide synthase isoforms * spontaneous and salt hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  16. Nitric oxide and non-quantal acetylcholine release

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, František

    2003-01-01

    Roč. 7, č. 3 (2003), s. 241-243 ISSN 1211-7579. [Celostátní konference biologické psychiatrie /11./. Luhačovice, 11.06.2003-14.06.2003] R&D Projects: GA ČR GA305/02/1333 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : nitric oxide Subject RIV: ED - Physiology

  17. Inhalation of nitric oxide as a treatment of pulmonary hypertension in congenital diaphragmatic hernia

    DEFF Research Database (Denmark)

    Henneberg, Steen Winther; Jepsen, S; Andersen, P K

    1995-01-01

    Congenital diaphragmatic hernia (CDH) still has a mortality risk of around 40%. The concomitant pulmonary hypoplasia and the persistent pulmonary hypertension are of major prognostic importance. The use of a selective pulmonary vasodilator may revert this vicious circle that is fatal to many...

  18. Nitric oxide-related drug targets in headache

    DEFF Research Database (Denmark)

    Olesen, Jes

    2010-01-01

    SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so-called del......SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so......-called delayed headache that fulfils criteria for migraine without aura in migraine sufferers. Blockade of nitric oxide synthases (NOS) by L-nitromonomethylarginine effectively treats attacks of migraine without aura. Similar results have been obtained for chronic the tension-type headache and cluster headache....... Inhibition of the breakdown of cyclic guanylate phosphate (cGMP) also provokes migraine in sufferers, indicating that cGMP is the effector of NO-induced migraine. Similar evidence suggests an important role of NO in the tension-type headache and cluster headache. These very strong data from human...

  19. Exercise promotes collateral artery growth mediated by monocytic nitric oxide.

    Science.gov (United States)

    Schirmer, Stephan H; Millenaar, Dominic N; Werner, Christian; Schuh, Lisa; Degen, Achim; Bettink, Stephanie I; Lipp, Peter; van Rooijen, Nico; Meyer, Tim; Böhm, Michael; Laufs, Ulrich

    2015-08-01

    Collateral artery growth (arteriogenesis) is an important adaptive response to hampered arterial perfusion. It is unknown whether preventive physical exercise before limb ischemia can improve arteriogenesis and modulate mononuclear cell function. This study aimed at investigating the effects of endurance exercise before arterial occlusion on MNC function and collateral artery growth. After 3 weeks of voluntary treadmill exercise, ligation of the right femoral artery was performed in mice. Hindlimb perfusion immediately after surgery did not differ from sedentary mice. However, previous exercise improved perfusion restoration ≤7 days after femoral artery ligation, also when exercise was stopped at ligation. This was accompanied by an accumulation of peri-collateral macrophages and increased expression of endothelial nitric oxide synthase and inducible nitric oxide synthase (iNOS) in hindlimb collateral and in MNC of blood and spleen. Systemic monocyte and macrophage depletion by liposomal clodronate but not splenectomy attenuated exercise-induced perfusion restoration, collateral artery growth, peri-collateral macrophage accumulation, and upregulation of iNOS. iNOS-deficient mice did not show exercise-induced perfusion restoration. Transplantation of bone marrow-derived MNC from iNOS-deficient mice into wild-type animals inhibited exercise-induced collateral artery growth. In contrast to sedentary controls, thrice weekly aerobic exercise training for 6 months in humans increased peripheral blood MNC iNOS expression. Circulating mononuclear cell-derived inducible nitric oxide is an important mediator of exercise-induced collateral artery growth. © 2015 American Heart Association, Inc.

  20. Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua, E-mail: sunjh@ustc.edu.cn

    2016-08-15

    Highlights: • Heat flows after mixing TBP with nitric acid are of different orders of magnitude. • Thermodynamics and kinetics of tributyl phosphate-nitric acid mixtures are derived. • Tributyl phosphate directly reacts with nitric acid and form organic red oil. • Thermal runaway could occur at 79 °C with a high nitric acid concentration. - Abstract: During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130 °C, a heavy “red oil” layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80 micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature.

  1. Insulin Reverses D-Glucose–Increased Nitric Oxide and Reactive Oxygen Species Generation in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    González, Marcelo; Rojas, Susana; Avila, Pía; Cabrera, Lissette; Villalobos, Roberto; Palma, Carlos; Aguayo, Claudio; Peña, Eduardo; Gallardo, Victoria; Guzmán-Gutiérrez, Enrique; Sáez, Tamara; Salsoso, Rocío; Sanhueza, Carlos; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2015-01-01

    Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose–alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0–1000 μmol/L) was measured in response to 5–25 mmol/L D-glucose (0–36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose–increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose–increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2•–) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2•– generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose–increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose–reduced BH4

  2. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  3. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    Science.gov (United States)

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Influence of nitric acid on the kinetic of complexation of uranyl nitrate extracted by TBP

    International Nuclear Information System (INIS)

    Pushlenkov, M.F.; Zimenkov, V.V.

    1982-02-01

    The effect of nitric acid on the solvatation rate of uranyl nitrate with tributyl phosphate is studied. In the process of mass transfer, it is shown that nitric acid enables the extraction of uranyl nitrate, therefore its concentration in the organic phase exceeds that in equilibrium solution. Subsequently uranyl nitrate ''displaces'' nitric acid. The presence of the acid in aqueous and organic phases affects in a complicated manner the rate of solvatation of uranyl nitrate with tributyl phosphate [fr

  5. L-arginine-induced vasodilation of the renal vasculature is preserved in uremic type 1 diabetic patients after kidney and pancreas but not after kidney-alone transplantation.

    Science.gov (United States)

    De Cobelli, Francesco; Fiorina, Paolo; Perseghin, Gianluca; Magnone, Marta; Venturini, Massimo; Zerbini, Gianpaolo; Zanello, Alessandro; Mazzolari, Gabriella; Monti, Lucilla; Di Carlo, Valerio; Secchi, Antonio; Del Maschio, Alessandro

    2004-04-01

    In uremic type 1 diabetic patients, kidney and pancreas transplantation (KP) and kidney-alone transplantation (KD) provide full restoration of normal renal function; however, only KP, i.e., curing diabetes, is expected to prevent endothelial damages. Our aim was to study L-arginine-induced vasodilation of the renal vasculature in uremic type 1 diabetic patients after KP or KD using magnetic resonance (MR). MR quantitative flow measurements were performed in 15 KP patients (mean age 39.0 +/- 1.7 years, 10 men and 5 women), in 11 KD patients (mean age 47.3 +/- 1.9 years, 7 men and 4 women), and in 8 nondiabetic kidney transplant patients (mean age 44.0 +/- 4.8 years, 7 men and 1 woman), who were used as control subjects, to measure renal blood flow and velocity and renal vascular resistance before and immediately after infusion of L-arginine. Renal blood flow and velocity were not different at baseline in KP, KD, and control subjects. In contrast, during L-arginine administration renal blood flow increased significantly in KP subjects (basal 8.4 +/- 0.6 vs. post 9.6 +/- 0.8 ml/s, Delta 14.3 +/- 4.4%, P < 0.05) and in control subjects (basal 9.3 +/- 0.8 vs. post 9.1 +/- 0.8 ml/s, Delta 17.3 +/- 6.2%, P < 0.01), while it remained unchanged in KD subjects (basal 10.0 +/- 0.8 vs. post 11.6 +/- 0.9 ml/s, Delta -1.36 +/- 6.9%, NS). Parallel results have been achieved for renal blood velocity (KP subjects: 20.1 +/- 4.9%, P < 0.01; control subjects: 23.0 +/- 7.99%, P < 0.01; and KD subjects: -0.3 +/- 6.5%; NS). A reduction in renal vascular resistance in response to L-arginine was evident in KP and control subjects but not in KD patients. L-Arginine vasodilatory response was successfully assessed with MR quantitative flow measurements. KP patients and control subjects, but not those with KD, showed a preserved L-arginine-induced vasodilation of the renal vasculature.

  6. Optimization of conditions to produce nitrous gases by electrochemical reduction of nitric acid

    International Nuclear Information System (INIS)

    Lemaire, M.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be an produced by electrochemical reduction of nitric acid. This could be an interesting alternative to the usual process because no wastes are generated. Voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0.05 V S HE and 0.3 V S HE and O.5 V S HE and 1 V S HE. The highest potential region reduction mechanism was studies by: classical micro-electrolysis methods; macro-electrolysis methods; infra-red spectroscopy couplet to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric acid reduction can also be explained by an other chemical reaction. In the potential value of platinum electrode is above 0.8 V S HE, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  7. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction

    International Nuclear Information System (INIS)

    Lemaire, M.

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V SHE and between 0,5 V SHE and 1 V SHE . The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V SHE , products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  8. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    Science.gov (United States)

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  9. The role of nitric oxide in low level light therapy

    Science.gov (United States)

    Hamblin, Michael R.

    2008-02-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. Firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of choosing amongst a large number of illumination parameters has led to the publication of a number of negative studies as well as many positive ones. This review will focus on the role of nitric oxide in the cellular and tissue effects of LLLT. Red and near-IR light is primarily absorbed by cytochrome c oxidase (unit four in the mitochondrial respiratory chain). Nitric oxide produced in the mitochondria can inhibit respiration by binding to cytochrome c oxidase and competitively displacing oxygen, especially in stressed or hypoxic cells. If light absorption displaced the nitric oxide and thus allowed the cytochrome c oxidase to recover and cellular respiration to resume, this would explain many of the observations made in LLLT. Why the effect is only seen in hypoxic, stressed or damaged cells or tissues? How the effects can keep working for some time (hours or days) postillumination? Why increased NO concentrations are sometimes measured in cell culture or in animals? How blood flow can be increased? Why angiogenesis is sometimes increased after LLLT in vivo?

  10. Mechanisms of neptunium redox reactions in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev; Bryan, Samuel A.; Casella, Amanda J.; Peterson, James M.; Levitskaia, Tatiana G.

    2017-01-01

    First transuranium element neptunium (Np) exhibits complicated behavior in acidic solutions because it can adopt wide range of oxidation states typically from +3 to +6 and coordinate large variety of ligands. In particular, accurate determination of Np redox potentials in nitric acid solutions is challenging due to overlapping chemical and electrochemical reactions leading to significant experimental uncertainties. Furthermore, over past decades spectrophotometry has been extensively applied to identify and characterize Np solution species in different oxidation states. However, relevant spectral database of Np in nitric acid solutions that can serve for the reference purposes has yet to be established due to the experimental difficulty to isolate and stabilize Np species in pure oxidation states without compromising solution optical properties. This work demonstrates that combination of voltammetry and controlled-potential in situ thin-layer spectropotentiometry overcomes these challenges so that Np species in pure +3, +4, +5, or +6 oxidation states were electrochemically generated in the systematically varied 0.1 – 5 M nitric acid solutions, and corresponding vis-NIR spectral signatures were obtained. In situ optical monitoring of the interconversion between adjacent Np oxidation states resulted in elucidation of the mechanisms of the involved redox reactions, in-depth understanding of the relative stability of the Np oxidation states, and allowed benchmarking of the redox potentials of the NpO22+/NpO2+, NpO2+/Np4+ and Np4+/Np3+ couples. Notably, the NpO2+/Np4+ couple was distinguished from the proximal Np4+/Np3+ process overcoming previous concerns and challenges encountered in accurate determination of the respective potentials.

  11. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    Science.gov (United States)

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  12. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  13. Application of nitric oxide measurements in clinical conditions beyond asthma.

    Science.gov (United States)

    Malinovschi, Andrei; Ludviksdottir, Dora; Tufvesson, Ellen; Rolla, Giovanni; Bjermer, Leif; Alving, Kjell; Diamant, Zuzana

    2015-01-01

    Fractional exhaled nitric oxide (FeNO) is a convenient, non-invasive method for the assessment of active, mainly Th2-driven, airway inflammation, which is sensitive to treatment with standard anti-inflammatory therapy. Consequently, FeNO serves as a valued tool to aid diagnosis and monitoring in several asthma phenotypes. More recently, FeNO has been evaluated in several other respiratory, infectious, and/or immunological conditions. In this short review, we provide an overview of several clinical studies and discuss the status of potential applications of NO measurements in clinical conditions beyond asthma.

  14. Redox chemistry of americium in nitric acid media

    International Nuclear Information System (INIS)

    Picart, S.; Jobelin, I.; Armengol, G.; Adnet, JM.

    2004-01-01

    The redox properties of the actinides are very important parameters for speciation studies and spent nuclear fuel reprocessing based on liquid-liquid extraction of actinides at different oxidation states (as in the Purex or Sesame process). They are also very useful for developing analytical tools including coulometry and redox titration. This study addressed the americium(IV)/americium(III) and americium(VI)/americium(V) redox couples, focusing on exhaustive acquisition of the thermodynamic and kinetic parameters of americium oxidation at an electrode in a complexing nitric acid medium. (authors)

  15. Hypoxia tolerance, nitric oxide, and nitrite: Lessons from extreme animals

    DEFF Research Database (Denmark)

    Fago, Angela; B. Jensen, Frank

    2015-01-01

    survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and – in air breathing animals - redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite...... nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in diving marine mammals. The emerging picture underscores the importance...... of NO and nitrite signaling in the adaptive response to hypoxia in vertebrate animals....

  16. Nitric oxide and reactive oxygen species in plant biotic interactions.

    Science.gov (United States)

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nitric Oxide Manipulation: A Therapeutic Target for Peripheral Arterial Disease?

    Directory of Open Access Journals (Sweden)

    Gareth Williams

    2012-01-01

    Full Text Available Peripheral Arterial Disease (PAD is a cause of significant morbidity and mortality in the Western world. Risk factor modification and endovascular and surgical revascularisation are the main treatment options at present. However, a significant number of patients still require major amputation. There is evidence that nitric oxide (NO and its endogenous inhibitor asymmetric dimethylarginine (ADMA play significant roles in the pathophysiology of PAD. This paper reviews experimental work implicating the ADMA-DDAH-NO pathway in PAD, focussing on both the vascular dysfunction and effects within the ischaemic muscle, and examines the potential of manipulating this pathway as a novel adjunct therapy in PAD.

  18. Study of the solubility of molybdenum in nitric solutions

    International Nuclear Information System (INIS)

    Faugeras, P.; Lheureux, C.; Leroy, P.

    1961-01-01

    The use of U-Mo alloys in reactors poses naturally the problem of the chemical treatment of these nuclear fuels. The molybdenum is scarcely soluble in the nitric solutions used during this treatment, and may precipitate during these operations. In order to forestall these incidents, we have made a study of the solubility of molybdenum as a function of temperature, of the acidity, and of the uranium concentration. We have also studied the influence of the presence of ferric ions on this solubility. (author) [fr

  19. Effects of Supplementation with the Fat-Soluble Vitamins E and D on Fasting Flow-Mediated Vasodilation in Adults: A Meta-Analysis of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Peter J. Joris

    2015-03-01

    Full Text Available The effects of fat-soluble vitamin supplementation on cardiovascular disease (CVD risk are not clear. Therefore, we performed a meta-analysis to quantify effects of fat-soluble vitamin supplements on fasting flow-mediated vasodilation (FMD of the brachial artery, a validated marker to assess CVD risk. Randomized placebo-controlled trials (RCTs were identified by a systematic search till July 2014. Seven RCTs studying the effects of vitamin E supplements (range: 300 to 1800 IU per day and nine RCTs examining the effects of vitamin D supplements, that involved, respectively, 303 and 658 adults, were included. No studies with carotenoid or vitamin K supplements were found. Vitamin E supplementation increased FMD vs. control by 2.42% (95% CI: 0.46% to 4.37%; p = 0.015. No effects of vitamin D supplementation were found (0.15%; 95% CI: −0.21% to 0.51%; p = 0.41. These effects did not depend on subject characteristics, treatment characteristics or technical aspects of the FMD measurement. However, no dose-response relationship was evident for vitamin E, statistical significance depended on one study, while the levels of supplement were far above recommended intakes. The current meta-analysis, therefore, does not provide unambiguous evidence to support the use of fat-soluble vitamin supplements to improve fasting FMD in adults.

  20. Effects of supplementation with the fat-soluble vitamins E and D on fasting flow-mediated vasodilation in adults: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Joris, Peter J; Mensink, Ronald P

    2015-03-10

    The effects of fat-soluble vitamin supplementation on cardiovascular disease (CVD) risk are not clear. Therefore, we performed a meta-analysis to quantify effects of fat-soluble vitamin supplements on fasting flow-mediated vasodilation (FMD) of the brachial artery, a validated marker to assess CVD risk. Randomized placebo-controlled trials (RCTs) were identified by a systematic search till July 2014. Seven RCTs studying the effects of vitamin E supplements (range: 300 to 1800 IU per day) and nine RCTs examining the effects of vitamin D supplements, that involved, respectively, 303 and 658 adults, were included. No studies with carotenoid or vitamin K supplements were found. Vitamin E supplementation increased FMD vs. control by 2.42% (95% CI: 0.46% to 4.37%; p = 0.015). No effects of vitamin D supplementation were found (0.15%; 95% CI: -0.21% to 0.51%; p = 0.41). These effects did not depend on subject characteristics, treatment characteristics or technical aspects of the FMD measurement. However, no dose-response relationship was evident for vitamin E, statistical significance depended on one study, while the levels of supplement were far above recommended intakes. The current meta-analysis, therefore, does not provide unambiguous evidence to support the use of fat-soluble vitamin supplements to improve fasting FMD in adults.

  1. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    Science.gov (United States)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  2. Production of medically useful nitric monoxide using AC arc discharge.

    Science.gov (United States)

    Li, S R; Huang, Y F; Liu, Z; Sui, M H; Liu, J M; Yan, K P

    2018-02-28

    Inhaled nitric monoxide (iNO) is increasingly used as a medical treatment for acute respiratory distress syndrome. A course of the existing nitric monoxide (NO) therapy with gas cylinders could cost up to approximately $15,000 for an average of 30.2 h. Moreover, a gas cylinder containing a mixture of N 2 and NO may potentially leak NO. The objective of this study is to develop an efficient and cost-effective on-site iNO generation system. In the present setup, NO was generated by using dry air or mixed oxygen/nitrogen (O 2 /N 2 ) and an AC power source with an output power level of 5-30 W at atmospheric pressure. The simultaneously produced NO 2 was eliminated with an ammonium sulfite ((NH 4 ) 2 SO 3 ) solution. The effects of the O 2 /N 2 ratio, gas flow rate, discharge gap distance, output energy density and electrode structure on NO x concentration and the NO/NO 2 ratio are reported. The concentrations of NO and NO 2 reached 62 ppm and 3 ppm, respectively, after absorption and dilution at a gas flow rate of 6 L/min. With the present setup, the AC arc discharge produced NO x at a stable concentration for at least 6 h using dry air. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Implications of glial nitric oxyde in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jose Enrique eYuste

    2015-08-01

    Full Text Available Nitric oxide (NO is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.

  4. Use of extractive distillation to produce concentrated nitric acid

    International Nuclear Information System (INIS)

    Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

    1981-04-01

    Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140 0 C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO 3 ) 2 / - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140 0 C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work

  5. Exhaled nitric oxide in diagnosis and management of respiratory diseases.

    Science.gov (United States)

    Abba, Abdullah A

    2009-10-01

    The analysis of biomarkers in exhaled breath constituents has recently become of great interest in the diagnosis, treatment and monitoring of many respiratory conditions. Of particular interest is the measurement of fractional exhaled nitric oxide (FENO) in breath. Its measurement is noninvasive, easy and reproducible. The technique has recently been standardized by both American Thoracic Society and European Respiratory Society. The availability of cheap, portable and reliable equipment has made the assay possible in clinics by general physicians and, in the near future, at home by patients. The concentration of exhaled nitric oxide is markedly elevated in bronchial asthma and is positively related to the degree of esinophilic inflammation. Its measurement can be used in the diagnosis of bronchial asthma and titration of dose of steroids as well as to identify steroid responsive patients in chronic obstructive pulmonary disease. In primary ciliary dyskinesia, nasal NO is diagnostically low and of considerable value in diagnosis. Among lung transplant recipients, FENO can be of great value in the early detection of infection, bronchioloitis obliterans syndrome and rejection. This review discusses the biology, factors affecting measurement, and clinical application of FENO in the diagnosis and management of respiratory diseases.

  6. Exhaled nitric oxide in stable chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Beg Mohammed

    2009-01-01

    Full Text Available Study Objective : The objective of the study was to test the hypothesis that fraction of exhaled nitric oxide (FENO is elevated in nonsmoking subjects with stable chronic obstructive pulmonary disease (COPD and compare it with the results in patients with asthma and a control population. Design : Cross-sectional study. Materials and Methods : Pulmonology Clinic at a University Hospital. Twenty five control subjects, 25 steroid naοve asthmatics and 14 COPD patients were studied. All the patients were nonsmokers and stable at the time of the study. All subjects completed a questionnaire and underwent spirometry. Exhaled nitric oxide was measured online by chemiluminescence, using single-breath technique. Results : All the study subjects were males. Subjects with stable COPD had significantly higher values of FENO than controls (56.54±28.01 vs 22.00±6.69; P =0.0001 but lower than the subjects with asthma (56.54±28.01 vs 84.78±39.32 P = 0.0285.The FENO values in COPD subjects were inversely related to the FEV 1 /FVC ratio. There was a significant overlap between the FENO values in COPD and the control subjects. Conclusion : There is a significant elevation in FENO in patients with stable COPD, but the elevation is less than in asthmatic subjects. Its value in clinical practice may be limited by the significant overlap with control subjects.

  7. Exhaled nitric oxide in stable chronic obstructive pulmonary disease

    Science.gov (United States)

    Beg, Mohammed F. S.; Alzoghaibi, Mohammad A.; Abba, Abdullah A.; Habib, Syed S.

    2009-01-01

    STUDY OBJECTIVE: The objective of the study was to test the hypothesis that fraction of exhaled nitric oxide (FENO) is elevated in nonsmoking subjects with stable chronic obstructive pulmonary disease (COPD) and compare it with the results in patients with asthma and a control population. DESIGN: Cross-sectional study. MATERIALS AND METHODS: Pulmonology Clinic at a University Hospital. Twenty five control subjects, 25 steroid naïve asthmatics and 14 COPD patients were studied. All the patients were nonsmokers and stable at the time of the study. All subjects completed a questionnaire and underwent spirometry. Exhaled nitric oxide was measured online by chemiluminescence, using single-breath technique. RESULTS: All the study subjects were males. Subjects with stable COPD had significantly higher values of FENO than controls (56.54±28.01 vs 22.00±6.69; P=0.0001) but lower than the subjects with asthma (56.54±28.01 vs 84.78±39.32 P=0.0285).The FENO values in COPD subjects were inversely related to the FEV1/FVC ratio. There was a significant overlap between the FENO values in COPD and the control subjects. CONCLUSION: There is a significant elevation in FENO in patients with stable COPD, but the elevation is less than in asthmatic subjects. Its value in clinical practice may be limited by the significant overlap with control subjects. PMID:19561927

  8. Nitric-phosphoric acid oxidation of organic waste materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.

    1995-01-01

    A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO x vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180 degrees C; more stable compounds were decomposed at 200 degrees C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time

  9. Exhaled nitric oxide in diagnosis and management of respiratory diseases

    Directory of Open Access Journals (Sweden)

    Abba Abdullah

    2009-01-01

    Full Text Available The analysis of biomarkers in exhaled breath constituents has recently become of great interest in the diagnosis, treatment and monitoring of many respiratory conditions. Of particular interest is the measurement of fractional exhaled nitric oxide (FENO in breath. Its measurement is noninvasive, easy and reproducible. The technique has recently been standardized by both American Thoracic Society and European Respiratory Society. The availability of cheap, portable and reliable equipment has made the assay possible in clinics by general physicians and, in the near future, at home by patients. The concentration of exhaled nitric oxide is markedly elevated in bronchial asthma and is positively related to the degree of esinophilic inflammation. Its measurement can be used in the diagnosis of bronchial asthma and titration of dose of steroids as well as to identify steroid responsive patients in chronic obstructive pulmonary disease. In primary ciliary dyskinesia, nasal NO is diagnostically low and of considerable value in diagnosis. Among lung transplant recipients, FENO can be of great value in the early detection of infection, bronchioloitis obliterans syndrome and rejection. This review discusses the biology, factors affecting measurement, and clinical application of FENO in the diagnosis and management of respiratory diseases.

  10. Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse

    Directory of Open Access Journals (Sweden)

    Sophie A. Bradley

    2016-01-01

    Full Text Available Nitric oxide (NO is an important gasotransmitter molecule that is involved in numerous physiological processes throughout the nervous system. In addition to its involvement in physiological plasticity processes (long-term potentiation, LTP; long-term depression, LTD which can include NMDAR-mediated calcium-dependent activation of neuronal nitric oxide synthase (nNOS, new insights into physiological and pathological consequences of nitrergic signalling have recently emerged. In addition to the canonical cGMP-mediated signalling, NO is also implicated in numerous pathways involving posttranslational modifications. In this review we discuss the multiple effects of S-nitrosylation and 3-nitrotyrosination on proteins with potential modulation of function but limit the analyses to signalling involved in synaptic transmission and vesicular release. Here, crucial proteins which mediate synaptic transmission can undergo posttranslational modifications with either pre- or postsynaptic origin. During normal brain function, both pathways serve as important cellular signalling cascades that modulate a diverse array of physiological processes, including synaptic plasticity, transcriptional activity, and neuronal survival. In contrast, evidence suggests that aging and disease can induce nitrosative stress via excessive NO production. Consequently, uncontrolled S-nitrosylation/3-nitrotyrosination can occur and represent pathological features that contribute to the onset and progression of various neurodegenerative diseases, including Parkinson’s, Alzheimer’s, and Huntington’s.

  11. Nitric oxide in cerebral vasospasm: theories, measurement, and treatment.

    Science.gov (United States)

    Siuta, Michael; Zuckerman, Scott L; Mocco, J

    2013-01-01

    In recent decades, a large body of research has focused on the role of nitric oxide (NO) in the development of cerebral vasospasm (CV) following subarachnoid hemorrhage (SAH). Literature searches were therefore conducted regarding the role of NO in cerebral vasospasm, specifically focusing on NO donors, reactive nitrogen species, and peroxynitrite in manifestation of vasospasm. Based off the assessment of available evidence, two competing theories are reviewed regarding the role of NO in vasospasm. One school of thought describes a deficiency in NO due to scavenging by hemoglobin in the cisternal space, leading to an NO signaling deficit and vasospastic collapse. A second hypothesis focuses on the dysfunction of nitric oxide synthase, an enzyme that synthesizes NO, and subsequent generation of reactive nitrogen species. Both theories have strong experimental evidence behind them and hold promise for translation into clinical practice. Furthermore, NO donors show definitive promise for preventing vasospasm at the angiographic and clinical level. However, NO augmentation may also cause systemic hypotension and worsen vasospasm due to oxidative distress. Recent evidence indicates that targeting NOS dysfunction, for example, through erythropoietin or statin administration, also shows promise at preventing vasospasm and neurotoxicity. Ultimately, the role of NO in neurovascular disease is complex. Neither of these theories is mutually exclusive, and both should be considered for future research directions and treatment strategies.

  12. Nitric Oxide in Cerebral Vasospasm: Theories, Measurement, and Treatment

    Directory of Open Access Journals (Sweden)

    Michael Siuta

    2013-01-01

    Full Text Available In recent decades, a large body of research has focused on the role of nitric oxide (NO in the development of cerebral vasospasm (CV following subarachnoid hemorrhage (SAH. Literature searches were therefore conducted regarding the role of NO in cerebral vasospasm, specifically focusing on NO donors, reactive nitrogen species, and peroxynitrite in manifestation of vasospasm. Based off the assessment of available evidence, two competing theories are reviewed regarding the role of NO in vasospasm. One school of thought describes a deficiency in NO due to scavenging by hemoglobin in the cisternal space, leading to an NO signaling deficit and vasospastic collapse. A second hypothesis focuses on the dysfunction of nitric oxide synthase, an enzyme that synthesizes NO, and subsequent generation of reactive nitrogen species. Both theories have strong experimental evidence behind them and hold promise for translation into clinical practice. Furthermore, NO donors show definitive promise for preventing vasospasm at the angiographic and clinical level. However, NO augmentation may also cause systemic hypotension and worsen vasospasm due to oxidative distress. Recent evidence indicates that targeting NOS dysfunction, for example, through erythropoietin or statin administration, also shows promise at preventing vasospasm and neurotoxicity. Ultimately, the role of NO in neurovascular disease is complex. Neither of these theories is mutually exclusive, and both should be considered for future research directions and treatment strategies.

  13. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Kao Ming-Ching

    2011-02-01

    Full Text Available Abstract Background Hyperbaric oxygen therapy (HBOT is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS, is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs. Results Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model. Conclusions The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.

  14. Exhaled nitric oxide in stable chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Beg Mohammed F S; Alzoghaibi, Mohammad A; Habib, Syed S; Abba, Abdullah A

    2009-01-01

    The objective of the study was to test the hypothesis that fraction of exhaled nitric oxide (FENO) is elevated in nonsmoking subjects with stable chronic obstructive pulmonary disease (COPD) and compare it with the results in patients with asthma and a control population. Pulmonology Clinic at a University Hospital. Twenty five control subjects, 25 steroid naive asthmatics and 14 COPD patients were studied. All the patients were nonsmokers and stable at the time of the study. All subjects completed a questionnaire and underwent spirometry. Exhaled nitric oxide was measured online by chemiluminescence, using single-breath technique. All the study subjects were males. Subjects with stable COPD had significantly higher values of FENO than controls (56.54+ - 28.01 vs 22.00 + -6.69; P =0.0001) but lower than the subjects with asthma (56.54+ - 28.01 vs 84.78+ - 39.32 P 0.0285). The FENO values in COPD subjects were inversely related to the FEV 1 /FVC ratio. There was a significant overlap between the FENO values in COPD and the control subjects. There is a significant elevation in FENO in patients with stable COPD, but the elevation is less than in asthmatic subjects. Its value in clinical practice may be limited by the significant overlap with control subjects. (author)

  15. Fractional exhaled nitric oxide-measuring devices: technology update

    Directory of Open Access Journals (Sweden)

    Maniscalco M

    2016-06-01

    Full Text Available Mauro Maniscalco,1 Carolina Vitale,2 Alessandro Vatrella,2 Antonio Molino,3 Andrea Bianco,4 Gennaro Mazzarella4 1Unit of Respiratory Diseases, Hospital “S Maria della Pietà” of Casoria, Naples, 2Unit of Respiratory Medicine, Department of Medicine and Surgery, University of Salerno, Salerno, 3Department of Respiratory Medicine, University Federico II, 4Department of Cardiothoracic and Respiratory Sciences, Second, University of Naples, Naples, Italy Abstract: The measurement of exhaled nitric oxide (NO has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO. Keywords: asthma, inflammation, nasal nitric oxide

  16. Environmental Effects on Fractional Exhaled Nitric Oxide in Allergic Children

    Directory of Open Access Journals (Sweden)

    Stefania La Grutta

    2012-01-01

    Full Text Available Fractional exhaled nitric oxide (FeNO is a non-invasive marker of airway inflammation in asthma and respiratory allergy. Environmental factors, especially indoor and outdoor air quality, may play an important role in triggering acute exacerbations of respiratory symptoms. The authors have reviewed the literature reporting effects of outdoor and indoor pollutants on FeNO in children. Although the findings are not consistent, urban and industrial pollution—mainly particles (PM2.5 and PM10, nitrogen dioxide (NO2, and sulfur dioxide (SO2—as well as formaldehyde and electric baseboard heating have been shown to increase FeNO, whilst ozone (O3 tends to decrease it. Among children exposed to Environmental Tobacco Smoke (ETS with a genetic polymorphisms in nitric oxide synthase genes (NOS, a higher nicotine exposure was associated with lower FeNO levels. Finally, although more studies are needed in order to better investigate the effect of gene and environment interactions which may affect the interpretation of FeNO values in the management of children with asthma, clinicians are recommended to consider environmental exposures when taking medical histories for asthma and respiratory allergy. Further research is also needed to assess the effects of remedial interventions aimed at reducing/abating environmental exposures in asthmatic/allergic patients.

  17. Estrogen and phytoestrogens: Effect on eNOS expression and in vitro vasodilation in cerebral arteries in ovariectomized Watanabe heritable hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Lund, Claus O.; Mortensen, Alicja; Nilas, Lisbeth

    2007-01-01

    Objectives: To evaluate the effect of estrogen replacement therapy or soy isoflavones supplement on endothelium-dependent relaxation in vitro and gene expression of endothelial nitric oxide synthase (eNOS) in cerebral arteries in a rabbit model of human hypercholesterolemia. Study design: Thirty...... cholesterol was significantly higher at termination in the SoyLife(R) group (P lipoprotein (LDL) cholesterol was comparable in all treatment groups. Neither treatment influenced the endothelium-dependent responses to carbamylcholine chloride or L-NAME or the endothelium...

  18. Differential effects of nitric oxide synthase inhibitors on endotoxin-induced liver damage in rats

    NARCIS (Netherlands)

    Vos, TA; Gouw, ASH; Klok, PA; Havinga, R; vanGoor, H; Roelofsen, H; Kuipers, F; Jansen, PLM; Moshage, H

    1997-01-01

    Background & Aims: During endotoxemia, expression of inducible nitric oxide synthase (iNOS) and nitric oxide production in the liver is increased, NO has been suggested to have a hepatoprotective function. The aim of this study was to investigate the distribution of iNOS and the effect of different

  19. Analysis of Steam Heating of a Two-Layer TBP/N-Paraffin/Nitric Acid Mixtures

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Hassan, N.M.; Rudisill, T.S.; Askew, N.M.

    1998-01-01

    This report presents an analysis of steam heating of a two-layer tri-n-butyl phosphate (TBP)/n-paraffin-nitric acid mixture.The purpose of this study is to determine if the degree of mixing provided by the steam jet or by bubbles generated by the TBP/nitric acid reaction is sufficient to prevent a runaway reaction

  20. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    Science.gov (United States)

    Christian, Jerry D.; Anderson, Philip A.

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.