WorldWideScience

Sample records for nickel hyperaccumulator alyssum

  1. Interaction of Nickel and Manganese in Accumulation and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    Energy Technology Data Exchange (ETDEWEB)

    Broadhurst, C.; Tappero, R; Maugel, T; Erbe, E; Sparks, D; Chaney, R

    2009-01-01

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve >2.5% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were previously observed to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum grown in soils with nonphytotoxic factorial additions of Ni and Mn salts. Four leaf type subsets based on size and age accumulated Ni and Mn similarly. The greatest Mn accumulation (10 times control) was observed in A. corsicum with 40 mmol Mn kg-1 and 40 mmol Ni kg-1 added to potting soil. Whole leaf Ni concentrations decreased as Mn increased. Synchrotron X-ray fluorescence mapping of whole fresh leaves showed localized in distinct high-concentration Mn spots associated with trichomes, Ni and Mn distributions were strongly spatially correlated. Standard X-ray fluorescence point analysis/mapping of cryofractured and freeze-dried samples found that Ni and Mn were co-located and strongly concentrated only in trichome bases and in cells adjacent to trichomes. Nickel concentration was also strongly spatially correlated with sulfur. Results indicate that maximum Ni phytoextraction by Alyssum may be reduced in soils with higher phytoavailable Mn, and suggest that Ni hyperaccumulation in Alyssum species may have developed from a Mn handling system.

  2. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil

    Directory of Open Access Journals (Sweden)

    Catherine Leigh Broadhurst

    2016-04-01

    Full Text Available The genus Alyssum (Brassicaceae contains Ni hyperaccumulators (50, many of which can achieve 30 g kg-1 Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu and Mn uptake.We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg-1 Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg-1. A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient

  3. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: Evidence of histidine as a measure of phytoextractable nickel

    International Nuclear Information System (INIS)

    Singer, Andrew C.; Bell, Thomas; Heywood, Chloe A.; Smith, J.A.C.; Thompson, Ian P.

    2007-01-01

    In this study we examine the effects of polycyclic aromatic hydrocarbons (PAHs) on the ability of the hyperaccumulator plant Alyssum lesbiacum to phytoextract nickel from co-contaminated soil. Planted and unplanted mesocosms containing the contaminated soils were repeatedly amended with sorbitan trioleate, salicylic acid and histidine in various combinations to enhance the degradation of two PAHs (phenanthrene and chrysene) and increase nickel phytoextraction. Plant growth was negatively affected by PAHs; however, there was no significant effect on the phytoextraction of Ni per unit biomass of shoot. Exogenous histidine did not increase nickel phytoextraction, but the histidine-extractable fraction of soil nickel showed a high correlation with phytoextractable nickel. These results indicate that Alyssum lesbiacum might be effective in phytoextracting nickel from marginally PAH-contaminated soils. In addition, we provide evidence for the broader applicability of histidine for quantifying and predicting Ni phytoavailability in soils. - Alyssum lesbiacum was shown to phytoextract nickel from PAH-contaminated soils from which the pool of nickel accessed for phytoextraction is closely modelled by a histidine-soil extract

  4. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: Evidence of histidine as a measure of phytoextractable nickel

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrew C. [Centre for Ecology and Hydrology-Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom)]. E-mail: acsi@ceh.ac.uk; Bell, Thomas [Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS (United Kingdom); Heywood, Chloe A. [Centre for Ecology and Hydrology-Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom); Smith, J.A.C. [Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB (United Kingdom); Thompson, Ian P. [Centre for Ecology and Hydrology-Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom)

    2007-05-15

    In this study we examine the effects of polycyclic aromatic hydrocarbons (PAHs) on the ability of the hyperaccumulator plant Alyssum lesbiacum to phytoextract nickel from co-contaminated soil. Planted and unplanted mesocosms containing the contaminated soils were repeatedly amended with sorbitan trioleate, salicylic acid and histidine in various combinations to enhance the degradation of two PAHs (phenanthrene and chrysene) and increase nickel phytoextraction. Plant growth was negatively affected by PAHs; however, there was no significant effect on the phytoextraction of Ni per unit biomass of shoot. Exogenous histidine did not increase nickel phytoextraction, but the histidine-extractable fraction of soil nickel showed a high correlation with phytoextractable nickel. These results indicate that Alyssum lesbiacum might be effective in phytoextracting nickel from marginally PAH-contaminated soils. In addition, we provide evidence for the broader applicability of histidine for quantifying and predicting Ni phytoavailability in soils. - Alyssum lesbiacum was shown to phytoextract nickel from PAH-contaminated soils from which the pool of nickel accessed for phytoextraction is closely modelled by a histidine-soil extract.

  5. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran

    International Nuclear Information System (INIS)

    Ghaderian, S.M.; Mohtadi, A.; Rahiminejad, M.R.; Baker, A.J.M.

    2007-01-01

    Some plants growing on serpentine (ultramafic) soils are able to hyperaccumulate nickel in their above-ground parts. The genus Alyssum L. contains the greatest number of Ni-hyperaccumulator plants so far reported. There are substantial areas of serpentine soils at many locations in Iran. This paper presents the analyses for Ni, Cr, Mn, Fe, Mg and Ca in soils and Alyssum species from the ultramafics of west and northwest Iran. Soil analysis for total elements in these areas indicates that typical concentrations of Ni, Cr, Mn, Fe, Mg and Ca are up to about 1240, 365, 800, 51,150, 152,390 and 11,790 μg g -1 , respectively. During this study, seven Alyssum species were collected. Analysis of leaf dry matter shows that Alyssum bracteatum can contain up to 2300 μg Ni g -1 , while the other species contain much lower concentrations of Ni and other elements. A. bracteatum is endemic to Iran and the first Ni hyperaccumulator reported from this species. - Analysis of leaf dry matter shows that Alyssum bracteatum, endemic to Iran, can contain up to 2300 μg Ni g -1 , while other species contain much lower concentrations of Ni and other elements

  6. Cadmium phytoextraction potential of different Alyssum species

    International Nuclear Information System (INIS)

    Barzanti, R.; Colzi, I.; Arnetoli, M.; Gallo, A.; Pignattelli, S.; Gabbrielli, R.; Gonnelli, C.

    2011-01-01

    Highlights: ► The possibility of using serpentine plants for phytoextraction of Cd was investigated. ► Variation in Cd tolerance, accumulation and translocation in three Alyssum plants with different phenotypes were found. ► Alyssum montanum showed higher Cd tolerance and accumulation than the Ni hyperaccumulator Alyssum bertolonii. ► As for the kinetic parameters of the Cd uptake system, A. montanum presented a low apparent K m value. ► The V max values were not significantly different among the plants. - Abstract: This work was planned for providing useful information about the possibility of using serpentine adapted plants for phytoextraction of cadmium, element scarcely represented in such metalliferous environment. To this aim, we investigated variation in cadmium tolerance, accumulation and translocation in three Alyssum plants with different phenotypes: Alyssum bertolonii, that is a serpentine endemic nickel hyperaccumulator, and two populations of Alyssum montanum, one adapted and one not adapted to serpentine soils. Plants were hydroponically cultivated in presence of increasing concentrations of CdSO 4 for two weeks. For the metal concentration used in the experiments, the three different Alyssum populations showed variation in cadmium tolerance, accumulation and content. The serpentine adapted population of A. montanum showed statistically higher cadmium tolerance and accumulation than A. bertolonii and the population of A. montanum not adapted to serpentine soil thus deserving to be investigated for phytoextraction purposes. Furthermore, as for the kinetic parameters of the cadmium uptake system, A. montanum serpentine population presented a low apparent K m value, suggesting a high affinity for this metal of its uptake system, whereas the V max values were not significantly different among the plants. Present data revealed metallicolous plants are also suitable for the phytoremediation of metals underrepresented in the environment of their

  7. Cadmium phytoextraction potential of different Alyssum species

    Energy Technology Data Exchange (ETDEWEB)

    Barzanti, R., E-mail: rbarzanti@supereva.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Colzi, I., E-mail: ilariacolzi@hotmail.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Arnetoli, M., E-mail: miluscia@gmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gallo, A., E-mail: galloalessia@hotmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Pignattelli, S., E-mail: sara.pignattelli@gmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gabbrielli, R., E-mail: gabbrielli@unifi.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gonnelli, C., E-mail: cristina.gonnelli@unifi.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer The possibility of using serpentine plants for phytoextraction of Cd was investigated. Black-Right-Pointing-Pointer Variation in Cd tolerance, accumulation and translocation in three Alyssum plants with different phenotypes were found. Black-Right-Pointing-Pointer Alyssum montanum showed higher Cd tolerance and accumulation than the Ni hyperaccumulator Alyssum bertolonii. Black-Right-Pointing-Pointer As for the kinetic parameters of the Cd uptake system, A. montanum presented a low apparent K{sub m} value. Black-Right-Pointing-Pointer The V{sub max} values were not significantly different among the plants. - Abstract: This work was planned for providing useful information about the possibility of using serpentine adapted plants for phytoextraction of cadmium, element scarcely represented in such metalliferous environment. To this aim, we investigated variation in cadmium tolerance, accumulation and translocation in three Alyssum plants with different phenotypes: Alyssum bertolonii, that is a serpentine endemic nickel hyperaccumulator, and two populations of Alyssum montanum, one adapted and one not adapted to serpentine soils. Plants were hydroponically cultivated in presence of increasing concentrations of CdSO{sub 4} for two weeks. For the metal concentration used in the experiments, the three different Alyssum populations showed variation in cadmium tolerance, accumulation and content. The serpentine adapted population of A. montanum showed statistically higher cadmium tolerance and accumulation than A. bertolonii and the population of A. montanum not adapted to serpentine soil thus deserving to be investigated for phytoextraction purposes. Furthermore, as for the kinetic parameters of the cadmium uptake system, A. montanum serpentine population presented a low apparent K{sub m} value, suggesting a high affinity for this metal of its uptake system, whereas the V{sub max} values were not significantly different among the

  8. Evaluation of plant growth regulators to increase nickel phytoextraction by Alyssum species.

    Science.gov (United States)

    Cabello-Conejo, M I; Centofanti, T; Kidd, P S; Prieto-Fernández, A; Chaney, R L

    2013-01-01

    Recent studies have shown that application of phytohormones to shoots of Alyssum murale increased biomass production but did not increase Ni shoot concentration. Increased biomass and Ni phytoextraction efficiency is useful to achieve economically viable phytomining. The objective of this study was to evaluate the effect of two types of phytohormones on the Ni phytoextraction capacity of four Alyssum species. Two different commercially available phytohormones (Cytokin and Promalin) based on cytokinins and/or gibberellins were applied on shoot biomass of four Ni hyperaccumulating Alyssum species (A. corsicum, A. malacitanum, A. murale, and A. pintodasilvae). Cytokin was applied in two concentrations and promalin in one concentration. The application of phytohormones had no clear positive effect on biomass production, Ni accumulation and Ni phytoextraction efficiency in the studied Alyssum species. A. malacitanum was the only species in which a significantly negative effect of these treatments was observed (in Ni uptake). A slightly positive response to promalin treatment was observed in the biomass production and Ni phytoextraction efficiency of A. corsicum. Although this effect was not significant it does indicate a potential application of these approaches to improve phytoextraction ability. Further studies will be needed to identify the most adequate phytohormone treatment as well as the appropriate concentrations and application times.

  9. The potential use of indigenous nickel hyperaccumulators for small-scale mining in The Philippines

    Directory of Open Access Journals (Sweden)

    E S Fernando

    2013-10-01

    Full Text Available Uptake of nickel and three other heavy metals (copper, cobalt, and chromium was examined in 33 species of the common and rare native vascular plants growing in an ultramafic area currently subjected to mining in Zambales Province, Luzon, Philippines. Leaf tissue samples were initially screened in the field using filter paper impregnated with dimethylglyoxime (1% solution in 70% ethyl alcohol and later analyzed by atomic absorption spectroscopy. One species was found to be a hypernickelophore (>10,000 µg/g, eight species were nickel hyperaccumulators (>1,000 µg/g, nineteen species were hemi-accumulators (>100-1,000 µg/g, and five species were non-accumulators (<100 µg/g. This paper significantly adds to the list of hyperaccumulator species first reported for the Philippines in 1992. The findings will be discussed in context of using indigenous species for post mining ecological restoration and nickel phytoextraction in small-scale mining in the Philippines

  10. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil

    International Nuclear Information System (INIS)

    Wenzel, W.W.; Bunkowski, M.; Puschenreiter, M.; Horak, O.

    2003-01-01

    Field study reinforces that root exudates may contribute to nickel hyperaccumulation in Thlaspi goesingense Halacsy. - The role of rhizosphere processes in metal hyperaccumulation is largely unexplored and a matter of debate, related field data are virtually not available. We conducted a field survey of rhizosphere characteristics beneath the Ni hyperaccumulator Thlaspi goesingense Halacsy and the metal-excluder species Silene vulgaris L. and Rumex acetosella L. growing natively on the same serpentine site. Relative to bulk soil and to the rhizosphere of the excluder species, we found significantly increased DOC and Ni concentrations in water extracts of T. goesingense rhizosphere, whereas exchangeable Ni was depleted due to excessive uptake of Ni. Chemical speciation analysis using the MINTEQA2 software package revealed that enhanced Ni solubility in Thlaspi rhizosphere is driven by the formation of Ni-organic complexes. Moreover, ligand-induced dissolution of Ni-bearing minerals is likely to contribute to enhanced Ni solubility. Increased Mg and Ca concentrations and pH in Thlaspi rhizosphere are consistent with ligand-induced dissolution of orthosilicates such as forsterite (Mg 2 SiO 4 ). Our field data reinforce the hypothesis that exudation of organic ligands may contribute to enhanced solubility and replenishment of metals in the rhizosphere of hyperaccumulating species

  11. Developing Sustainable Agromining Systems in Agricultural Ultramafic Soils for Nickel Recovery

    Directory of Open Access Journals (Sweden)

    Petra Susan Kidd

    2018-06-01

    Full Text Available Ultramafic soils are typically enriched in nickel (Ni, chromium (Cr, and cobalt (Co and deficient in essential nutrients, making them unattractive for traditional agriculture. Implementing agromining systems in ultramafic agricultural soils represent an ecological option for the sustainable management and re-valorisation of these low-productivity landscapes. These novel agroecosystems cultivate Ni-hyperaccumulating plants which are able to bioaccumulate this metal in their aerial plant parts; harvested biomass can be incinerated to produce Ni-enriched ash or “bio-ore” from which Ni metal, Ni ecocatalysts or pure Ni salts can be recovered. Nickel hyperaccumulation has been documented in ~450 species, and in temperate latitudes these mainly belong to the family Brassicaceae and particularly to the genus Odontarrhena (syn. Alyssum pro parte. Agromining allows for sustainable metal recovery without causing the environmental impacts associated with conventional mining activities, and at the same time, can improve soil fertility and quality and provide essential ecosystem services. Parallel reductions in Ni phytotoxicity over time would also permit cultivation of conventional agricultural crops. Field studies in Europe have been restricted to Mediterranean areas and these only evaluated the Ni-hyperaccumulator Odontarrhena muralis s.l. Two recent EU projects (Agronickel and LIFE-Agromine have established a network of agromining field sites in ultramafic regions with different edapho-climatic characteristics across Albania, Austria, Greece and Spain. Soil and crop management practices are being developed so as to optimize the Ni agromining process; field studies are evaluating the potential benefits of fertilization regimes, crop selection and cropping patterns, and bioaugmentation with plant-associated microorganisms. Hydrometallurgical processes are being up-scaled to produce nickel compounds and energy from hyperaccumulator biomass. Exploratory

  12. Facultative hyperaccumulation of heavy metals and metalloids.

    Science.gov (United States)

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Phylogeny and biogeography of Alyssum (Brassicaceae) based on ...

    Indian Academy of Sciences (India)

    The genus Alyssum consists of about 195 species native to Europe, Asia and northern ... In this study, the phylogenetic relationships within the genus Alyssum were studied ... Journal of Genetics, Vol. ...... Academic Press, New York, USA.

  14. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    Science.gov (United States)

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.

  15. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    OpenAIRE

    Brennan, Eric B.

    2013-01-01

    Organic lettuce growers in California typically use insectary strips of alyssum (Lobularia maritima (L.) Desv.) to attract hoverflies (Syrphidae) that provide biological control of aphids. A two year study with transplanted organic romaine lettuce in Salinas, California investigated agronomic aspects of lettuce monoculture and lettuce-alyssum strip intercropping on beds in replacement intercropping treatments where alyssum transplants replaced 2 to 8% of the lettuce transplants, and in additi...

  16. Identification of Glucosinolates in Seeds of Three Brassicaceae Species Known to Hyperaccumulate Heavy Metals.

    Science.gov (United States)

    Montaut, Sabine; Guido, Benjamin S; Grison, Claude; Rollin, Patrick

    2017-03-01

    Plants from the Brassicaceae family are known to contain secondary metabolites called glucosinolates. Our goal was to establish by LC/MS the glucosinolate profile of seeds of three Brassicaceae species known to hyperaccumulate heavy metals. We investigated Alyssum fallacinum auct. non Hausskn., Iberis intermedia Guers., and Noccaea caerulescens (J. Presl & C. Presl) F. K. Mey. Our results indicate that A. fallacinum seeds contain glucoiberin and glucoibervirin, which had not been previously identified in this plant. Furthermore, we report for the first time the presence of glucoiberin, glucoibervirin, glucotropaeolin, and sinigrin in I. intermedia. We have detected for the first time glucoconringiin in N. caerulescens. In addition, glucosinalbin, 4-hydroxyglucobrassicin, and glucomoringin were also detected. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    Energy Technology Data Exchange (ETDEWEB)

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  18. Nickel Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review

    Science.gov (United States)

    1998-04-01

    1986; WHO 1991; USPHS 1993; Stangl and Kirchgessner 1996). Bacteria and Plants Nickel is essential for the active synthesis of urease in plant...urea metabolism and urease synthesis (Kasprzak 1987; Sigel and Sigel 1988). Some terrestrial plants, such as Alyssum spp., accumulate nickel and re...including hypertrophy of respiratory and mucus cells, separation of the epithelial layer from the pillar cell system, cauterization and slough

  19. Hyperaccumulators of metal and metalloid trace elements: facts and fiction.

    NARCIS (Netherlands)

    van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H.

    2012-01-01

    Background: Plants that accumulate metal and metalloid trace elements to extraordinarily high concentrations in their living biomass have inspired much research worldwide during the last decades. Hyperaccumulators have been recorded and experimentally confirmed for elements such as nickel, zinc,

  20. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants; FINAL

    International Nuclear Information System (INIS)

    David E. Salt

    2002-01-01

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants

  1. Allelopathic Effect of Leaf Water Extract of Hoary alyssum (Berteroa incana L. at Rosette Stage on Seed Germination

    Directory of Open Access Journals (Sweden)

    H. Madani

    2012-07-01

    Full Text Available The allelopathic effects of leaves at rosette stage of the hoary alyssum (Berteroa incana L. against some associated grasses like, prairie June grass (Koeleria macrantha, Idaho fescue (Festuca idahoensis, blue-bunch wheatgrass (Pseudoroegneria spicata and cheat grass (Bromus tectorum and its own were investigated. The experiment al materials used were the leaf extracts and its allelopathic effects on seed germination and seedling emergence of the abave mentioned grasses in Petri dishes. According to our study, leaves of hoary alyssum rosettes at stage have the potential to reduce germination rate, root and shoot growth of pasture grasses and hoary alyssum itself due to its allelopathic effect. The leaf leachate solution bioassays also showed that the germination of cheat grass was more susceptible to 4% solution of allelopathic extract of leaves. Hoary alyssum leaf extract also exhibited allelopathic self-inhibition, in both seedling root and shoot growth at 2 and 4% concentrations. Self- inhibitory allelopathic effects of hoary alyssum could also be important in preventing seed germination and seedling establishment of neighboring plant.

  2. Short-term effects of dimethoate on metabolic responses in Chrysolina pardalina (Chrysomelidae) feeding on Berkheya coddii (Asteraceae), a hyper-accumulator of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Augustyniak, M.; Migula, P. [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice (Poland); Mesjasz-Przybylowicz, J. [Materials Research Group, iThemba Laboratory for Accelerator Based Sciences, P.O. Box 722, Somerset West 7129 (South Africa); Tarnawska, M.; Nakonieczny, M. [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice (Poland); Babczynska, A. [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice (Poland)], E-mail: ababczyn@us.edu.pl; Przybylowicz, W. [Materials Research Group, iThemba Laboratory for Accelerator Based Sciences, P.O. Box 722, Somerset West 7129 (South Africa); Augustyniak, M.G. [Faculty of Earth Sciences, University of Silesia, Bedzinska 60, PL 41-200 Sosnowiec (Poland)

    2007-11-15

    Berkheya coddii Roessler (Asteraceae) is a hyper-accumulator of nickel, which can be used in phytomining and phytoremediation. Chrysolina pardalina Fabricius (Chrysomelidae) is a phytophagous leaf beetle, which may be useful in controlling population levels of B. coddii after it has been introduced into a new habitat. The aim of this study was to investigate the response of C. pardalina to topical application of dimethoate. Data recorded included the activity of acetylcholinesterase (AChE), the concentration of glutathione (GSH), and the activity of selected enzymes connected with GSH metabolism. Assays were carried out several times during the first 24 h after exposure to dimethoate. At the dosages used in this study, dimethoate was not as toxic as expected. AChE activity was significantly decreased 14 and 24 h after application. GST activity was significantly decreased 24 h after application. GSTPx activity was significantly decreased 2, 14 and 24 h after application. GR activity was significantly increased 4 h after application. GSH concentration was significantly increased 24 h after application. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable C. pardalina to deal with other stressors, including organophosphate pesticides. - Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable Chrysolina pardalina to deal with other stressors, including organophosphate pesticides.

  3. Short-term effects of dimethoate on metabolic responses in Chrysolina pardalina (Chrysomelidae) feeding on Berkheya coddii (Asteraceae), a hyper-accumulator of nickel

    International Nuclear Information System (INIS)

    Augustyniak, M.; Migula, P.; Mesjasz-Przybylowicz, J.; Tarnawska, M.; Nakonieczny, M.; Babczynska, A.; Przybylowicz, W.; Augustyniak, M.G.

    2007-01-01

    Berkheya coddii Roessler (Asteraceae) is a hyper-accumulator of nickel, which can be used in phytomining and phytoremediation. Chrysolina pardalina Fabricius (Chrysomelidae) is a phytophagous leaf beetle, which may be useful in controlling population levels of B. coddii after it has been introduced into a new habitat. The aim of this study was to investigate the response of C. pardalina to topical application of dimethoate. Data recorded included the activity of acetylcholinesterase (AChE), the concentration of glutathione (GSH), and the activity of selected enzymes connected with GSH metabolism. Assays were carried out several times during the first 24 h after exposure to dimethoate. At the dosages used in this study, dimethoate was not as toxic as expected. AChE activity was significantly decreased 14 and 24 h after application. GST activity was significantly decreased 24 h after application. GSTPx activity was significantly decreased 2, 14 and 24 h after application. GR activity was significantly increased 4 h after application. GSH concentration was significantly increased 24 h after application. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable C. pardalina to deal with other stressors, including organophosphate pesticides. - Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable Chrysolina pardalina to deal with other stressors, including organophosphate pesticides

  4. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, Elzbieta, E-mail: elo@mb.au.dk [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Przybylowicz, Wojciech; Orlowski, Dariusz [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Turnau, Katarzyna [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Mesjasz-Przybylowicz, Jolanta [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa)

    2011-12-15

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: > The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. > Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. > Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. > Mycorrhizal colonization affected concentration and uptake of other elements. > Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  5. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    International Nuclear Information System (INIS)

    Orlowska, Elzbieta; Przybylowicz, Wojciech; Orlowski, Dariusz; Turnau, Katarzyna; Mesjasz-Przybylowicz, Jolanta

    2011-01-01

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: → The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. → Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. → Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. → Mycorrhizal colonization affected concentration and uptake of other elements. → Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  6. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Science.gov (United States)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  7. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  8. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.-M. [Agricultural Biotechnology Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei, Taiwan 11529, Taiwan (China); Lin, T.-H. [Department of Statistics, National Taipei University, Taiwan (China); Chiou, J.-M. [Institute of Statistical Science, Academia Sinica, Taiwan (China); Yeh, K.-C., E-mail: kcyeh@gate.sinica.edu.t [Agricultural Biotechnology Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei, Taiwan 11529, Taiwan (China)

    2009-06-15

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. - A quantitative solution enables the evaluation of Zn/Cd phytoextraction.

  9. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.

    Science.gov (United States)

    Liang, Hong-Ming; Lin, Ting-Hsiang; Chiou, Jeng-Min; Yeh, Kuo-Chen

    2009-06-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup.

  10. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators

    International Nuclear Information System (INIS)

    Liang, H.-M.; Lin, T.-H.; Chiou, J.-M.; Yeh, K.-C.

    2009-01-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. - A quantitative solution enables the evaluation of Zn/Cd phytoextraction.

  11. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thalspi goesingense (Halacsy)

    Energy Technology Data Exchange (ETDEWEB)

    Persans, M.W.; Yan, X.; Patnoe, J.M.M.L.; Kraemer, U.; Salt, D.E.

    1999-12-01

    To understand the role of free histidine (His) in Ni hyperaccumulation in Thlaspi goesingense, the authors investigated the regulation of His biosynthesis at both the molecular and biochemical levels. Three T. goesingense cDNAs encoding the following His biosynthetic enzymes, ATP phosphoribosyltransferase, imidazoleglycerol phosphate dehydratase, and histidinol dehydrogenase, were isolated by functional complementation of Escherichia coli His autotrophs. Northern analysis of THJG1, THD1, and THB1 gene expression revealed that each gene is expressed in both roots and shoots, but at the concentrations and dosage times of Ni treatment used in this study, these genes failed to show any regulation by Ni. The authors were also unable to observe any increases in the concentration of free His in root, shoot, or xylem sap of T. goesingense in response to Ni exposure. X-ray absorption spectroscopy of root and shoot tissue from T. goesingense and the non-accumulator species Thlaspi reverse revealed no major differences in the coordination of Ni by His in these tissues. They therefore conclude that the Ni hyperaccumulation phenotype in T. goesingense is not determined by the overproduction of His in response to Ni.

  12. Phytoremediation and Potency of Hyperaccumulator Plants

    Directory of Open Access Journals (Sweden)

    NURIL HIDAYATI

    2005-03-01

    Full Text Available Phytoremediation is defined as cleaning up of pollutants mediated primarily by plants. It is an emerging technology for environmental remediation that offers a low-cost technique suitable for use against different types of contaminants in a variety of media. Phytoremediation is potentially applicable to a diversity of substances, involving hyperaccumulators heavy metals and radionuclides. It is also applicable to other inorganic contaminants such as arsenic, various salts and nutrients, and a variety of organic contaminants, including explosives, petroleum hydrocarbons and pesticides. At least there are one taxon of plant as hyperaccumulator for Cd, 28 taxa for Co, 37 taxa for Cu, 9 taxa for Mg, 317 taxa for Ni, and 11 taxa for Zn. Extensive progress were done in characterizing physiology of plants which hyperaccumulate or hypertolerate metals. Hypertolerance is fundamental to hyperaccumulator, and high rates of uptake and translocation are observed in hyperaccumulator plants. Hyperaccumulator plants and agronomic technology were undertaken to improve the annual rate of phytoextraction and to allow recycling of soil toxic metals accumulated in plant biomass. These techniques are very likely to support commercial environmental remediation. Most phytoremediation systems are still in development, or in the stage of plant breeding to improve the cultivars for field use. However, application for commercial purposes has already been initiated. Many opportunities have also been identified for research and development to improve the efficiency of phytoremediation

  13. Quantitative elemental localisation in leaves and stems of nickel hyperaccumulating shrub Hybanthusfloribundus subsp. floribundus using micro-PIXE spectroscopy

    International Nuclear Information System (INIS)

    Kachenko, Anthony G; Singh, Balwant; Bhatia, Naveen P; Siegele, Rainer

    2008-01-01

    Hybanthusfloribundus (Lindl.) F.Muell. subsp. floribundus is a native Australian nickel (Ni) hyperaccumulating shrub and a promising species for rehabilitation and phytoremediation of Ni tailings. Spatial localisation and quantification of Ni in leaf and stem tissues of H.floribundus subsp. floribundus was studied using micro-proton-induced X-ray emission (micro-PIXE) spectroscopy. Young plants, grown in a potting mix under controlled glasshouse conditions were exposed to Ni concentrations of 0 and 26 mM kg -1 for 20 weeks. Leaf and stem samples were hand-sectioned and freeze-dried prior to micro-PIXE analysis. Elemental distribution maps of leaves revealed Ni concentration of 7800 mg kg -1 dry weight (DW) in whole leaf sections, which was identical to the bulk tissue analysis. Elemental maps showed that Ni was preferentially localised in the adaxial epidermis (10,000 mg kg -1 DW) and reached a maximum of up to 10,000 mg kg -1 DW in the leaf margin. Freeze-dried stem sections from the same plants contained lower Ni than leaf tissues (1800 mg kg -1 versus 7800 mg kg -1 DW, respectively), however did not resolve a clear pattern of compartmentalisation across different anatomical regions. Our results suggest localisation in epidermal cells is an important physiological mechanism involved in Ni accumulation and tolerance in leaves of H.floribundus subsp. floribundus

  14. Arsenic Hyperaccumulation Strategies: An Overview

    Directory of Open Access Journals (Sweden)

    Zahra Souri

    2017-07-01

    Full Text Available Arsenic (As pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants.

  15. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens.

    Science.gov (United States)

    Visioli, Giovanna; Vamerali, Teofilo; Mattarozzi, Monica; Dramis, Lucia; Sanangelantoni, Anna M

    2015-01-01

    This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants.

  16. Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis.

    Science.gov (United States)

    Alford, Elan R; Pilon-Smits, Elizabeth A H; Fakra, Sirine C; Paschke, Mark W

    2012-12-01

    A survey of the root-nodule symbiosis in Astragalus and its interaction with selenium (Se) has not been conducted before. Such studies can provide insight into how edaphic conditions modify symbiotic interactions and influence partner coevolution. In this paper plant-organ Se concentration ([Se]) was investigated to assess potential Se exposure to endophytes. • Selenium distribution and molecular speciation of root nodules from Se-hyperaccumulators Astragalus bisulcatus, A. praelongus, and A. racemosus was determined by Se K-edge x-ray absorption spectroscopy. A series of greenhouse experiments were conducted to characterize the response of root-nodule symbiosis in Se-hyperaccumulators and nonhyperaccumulators. • Nodules in three Se-hyperaccumulators (Astragalus crotalariae, A. praelongus, and A. preussii) are reported for the first time. Leaves, flowers, and fruits from Se-hyperaccumulators were routinely above the hyperaccumulator threshold (1,000 µg Se g(-1) DW), but root samples rarely contained that amount, and nodules never exceeded 110 µg Se g(-1) DW. Nodules from A. bisulcatus, A. praelongus, and A. racemosus had Se throughout, with a majority stored in C-Se-C form. Finally, an evaluation of nodulation in Se-hyperaccumulators and nonhyperaccumulators indicated that there was no nodulation inhibition because of plant Se tolerance. Rather, we found that in Se-hyperaccumulators higher levels of Se treatment (up to 100 µM Se) corresponded with higher nodule counts, indicating a potential role for dinitrogen fixation in Se-hyperaccumulation. The effect was not found in nonhyperaccumulators. • As the evolution of Se hyperaccumulation in Astragalus developed, root-nodule symbiosis may have played an integral role.

  17. Plant selenium hyperaccumulation- Ecological effects and potential implications for selenium cycling and community structure.

    Science.gov (United States)

    Reynolds, R Jason B; Pilon-Smits, Elizabeth A H

    2018-04-25

    Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms. We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling. Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling. The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity. Copyright © 2018. Published by Elsevier B.V.

  18. Selenium hyperaccumulation offers protection from cell disruptor herbivores

    Directory of Open Access Journals (Sweden)

    Quinn Colin F

    2010-08-01

    Full Text Available Abstract Background Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis and the two-spotted spider mite (Tetranychus urticae. Results Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg-1 were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg-1. Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg-1 dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. Conclusions This is the first reported study investigating the

  19. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth.

    Science.gov (United States)

    Liu, Xue; Feng, Hua-Yuan; Fu, Jing-Wei; Chen, Yanshan; Liu, Yungen; Ma, Lena Q

    2018-05-01

    It is known that arsenic (As) promotes growth of As-hyperaccumulator Pteris vittata (PV), however, the associated mechanisms are unclear. Here we examined As-induced nutrient uptake in P. vittata and their potential role to enhance plant growth in sterile agar by excluding microbial effects. As-hyperaccumulator P. multifida (PM) and non-hyperaccumulator P. ensiformis (PE) belonging to the Pteris genus were used as comparisons. The results showed that, after 40 d of growth, As induced biomass increase in hyperaccumulators PV and PM by 5.2-9.4 fold whereas it caused 63% decline in PE. The data suggested that As played a beneficial role in promoting hyperaccumulator growth. In addition, hyperaccumulators PV and PM accumulated 7.5-13, 1.4-3.6, and 1.8-4.4 fold more As, Fe, and P than the non-hyperaccumulator PE. In addition, nutrient contents such as K and Zn were also increased while Ca, Mg, and Mn decreased or unaffected under As treatment. This study demonstrated that As promoted growth in hyperaccumulators and enhanced Fe, P, K, and Zn uptake. Different plant growth responses to As among hyperaccumulators PV and PM and non-hyperaccumulator PE may help to better understand why hyperaccumulators grow better under As-stress. Published by Elsevier Ltd.

  20. Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions.

    NARCIS (Netherlands)

    Tuomainen, M.H.; Nunan, N.; Lehesranta, S.J.; Tervahauta, A.I.; Hassinen, V.H.; Schat, H.; Koistinen, K.M.; Auriola, S.; McNicol, J.; Karenlampi, S.O.

    2006-01-01

    Thlaspi caerulescens is increasingly acknowledged as one of the best models for studying metal hyperaccumulation in plants. In order to study the mechanisms underlying metal hyper-accumulation, we used proteomic profiling to identify differences in protein intensities among three T caerulescens

  1. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov.

    Science.gov (United States)

    Idris, Rughia; Kuffner, Melanie; Bodrossy, Levente; Puschenreiter, Markus; Monchy, Sebastien; Wenzel, Walter W; Sessitsch, Angela

    2006-12-01

    Various pink-pigmented facultative methylotrophic (PPFM) bacteria (strains iEII3, iEIV1, iEI6, iEII1, iEIII3 iEIII4, iEIII5, iRII1, iRII2, iRIII1, iRIV1 and iRIV2) were obtained from the rhizosphere and endosphere of hyperaccumulating plant Thlaspi goesingense grown in Redschlag, Austria [R. Idris, R. Trifonova, M. Puschenreiter, W.W. Wenzel, A. Sessitsch, Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense, Appl. Environ. Microbiol. 70 (2004) 2667-2677]. Due to their unexpected diversity, abundance and nickel tolerance they were further characterized by detailed 16S rRNA gene analysis, DNA-DNA hybridization, fatty acid analysis, heavy metal tolerance, screening for known Ni resistance genes and phenotypic analysis. These strains were found to exhibit different multiple heavy metal resistance characteristics to Ni, Cd, Co, Zn and Cr. On the basis of their physiological and genotypic properties, strains could be grouped with Methylobacterium extorquens and M. mesophilicum. One endophyte, strain iEII3, was found to belong to a novel species for which the name M. goesingense is proposed.

  2. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  3. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    Science.gov (United States)

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  4. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance

    International Nuclear Information System (INIS)

    Jin Xiaofen; Yang Xiaoe; Islam, Ejazul; Liu Dan; Mahmood, Qaisar

    2008-01-01

    Plant growth, ultrastructural and antioxidant adaptations and glutathione biosynthesis in Cd-hyperaccumulating ecotype Sedum alfredii Hance (HE) countering high Cd environment were investigated and compared with its non Cd-hyperaccumulating ecotype (NHE). Cadmium exposure resulted in significant ultrastructural changes in root meristem and leaf mesophyll cells of S. alfredii, but damage was more pronounced in NHE even when Cd concentrations were one-tenth of those applied to HE. Cadmium stress damaged chloroplasts causing imbalanced lamellae formation coupled with early leaf senescence. Histochemical results revealed that glutathione (GSH) biosynthesis inhibition led to overproduction of hydrogen peroxide (H 2 O 2 ) and superoxide radical (O 2 · - ) in HE but not in NHE. Differences were noted in both HE and NHE for catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) activities under various Cd stress levels. No relationship was found between antioxidative defense capacity including activities of superoxide dismutase (SOD), CAT, GPX, APX and GR as well as ascorbic acid (AsA) contents and Cd tolerance in the two ecotypes of S. alfredii. The GSH biosynthesis induction in root and shoot exposed to elevated Cd conditions may be involved in Cd tolerance and hyperaccumulation in HE of S. alfredii H

  5. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Branquinho, Cristina [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal) and Universidade Atlantica, Antiga Fabrica da Polvora de Barcarena, 2745-615 Barcarena (Portugal)]. E-mail: cmbranquinho@fc.ul.pt; Serrano, Helena Cristina [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Pinto, Manuel Joao [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Martins-Loucao, Maria Amelia [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal); Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal)

    2007-03-15

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species. - Revisiting plant hyperaccumulation criteria.

  6. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements

    International Nuclear Information System (INIS)

    Branquinho, Cristina; Serrano, Helena Cristina; Pinto, Manuel Joao; Martins-Loucao, Maria Amelia

    2007-01-01

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species. - Revisiting plant hyperaccumulation criteria

  7. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, Ignacio I.; Espadas-Gil, Francisco; Talavera-May, Carlos; Fuentes, Gabriela; Santamaría, Jorge M., E-mail: jorgesm@cicy.mx

    2014-10-15

    Highlights: • We document the capacity of an aquatic fern to hyper-accumulate Ni. • Effects of high Ni concentrations uptake on plant performance is documented. • High concentration of Ni in tissues damage photosynthesis. • Damage is related to carboxylation mechanisms than to electron transfer efficiency. • S. minima is a good candidate for remediation of water bodies contaminated with Ni. - Abstract: An experiment was designed to assess the capacity of Salvinia minima Baker to uptake and accumulate nickel in its tissues and to evaluate whether or not this uptake can affect its physiology. Our results suggest that S. minima plants are able to take up high amounts of nickel in its tissues, particularly in roots. In fact, our results support the idea that S. minima might be considered a hyper-accumulator of nickel, as it is able to accumulate 16.3 mg g{sup −1} (whole plant DW basis). Our results also showed a two-steps uptake pattern of nickel, with a fast uptake of nickel at the first 6 to 12 h of being expose to the metal, followed by a slow take up phase until the end of the experiment at 144 h. S. minima thus, may be considered as a fern useful in the phytoremediation of residual water bodies contaminated with this metal. Also from our results, S. minima can tolerate fair concentrations of the metal; however, at concentrations higher than 80 μM Ni (1.5 mg g{sup −1} internal nickel concentration), its physiological performance can be affected. For instance, the integrity of cell membranes was affected as the metal concentration and exposure time increased. The accumulation of high concentrations of internal nickel did also affect photosynthesis, the efficiency of PSII, and the concentration of photosynthetic pigments, although at a lower extent.

  8. A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens

    Directory of Open Access Journals (Sweden)

    YA-FEN eLIN

    2014-06-01

    Full Text Available Noccaea caerulescens is an extremophile plant species belonging to the Brassicaceae family. It has adapted to grow on soils containing high, normally toxic, concentrations of metals such as nickel, zinc and cadmium. Next to being extremely tolerant to these metals, it is one of the few species known to hyperaccumulate these metals to extremely high concentrations in their aboveground biomass. In order to provide additional molecular resources for this model metal hyperaccumulator species to study and understand the mechanism of heavy metal exposure adaptation, we aimed to provide a comprehensive database of transcript sequences for N. caerulescens. In this study, 23830 transcript sequences (isotigs with an average length of 1025 bps were determined for roots, shoots and inflorescences of N. caerulescens accession ‘Ganges’ by Roche GS-FLEX 454 pyrosequencing. These isotigs were grouped into 20,378 isogroups, representing potential genes. This is a large expansion of the existing N. caerulescens transcriptome set consisting of 3705 unigenes. When compared to a Brassicaceae proteome set, 22,232 (93.2% of the N. caerulescens isotigs (corresponding to 19191 isogroups had a significant match and could be annotated accordingly. Of the remaining sequences, 98 isotigs resembled non-plant sequences and 1386 had no significant similarity to any sequence in the GenBank database. Among the annotated set there were many isotigs with similarity to metal homeostasis genes or genes for glucosinolate biosynthesis. Only for transcripts similar to Metallothionein3 (MT3, clear evidence for an additional copy was found. This comprehensive set of transcripts is expected to further contribute to the discovery of mechanisms used by N. caerulescens to adapt to heavy metal exposure.

  9. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time

    Energy Technology Data Exchange (ETDEWEB)

    Dessureault-Rompre, Jacynthe, E-mail: dessureaultromj@agr.gc.c [Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitaetstrasse 16, CH-8092 Zuerich (Switzerland); Luster, Joerg, E-mail: joerg.luster@wsl.c [Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL), Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland); Schulin, Rainer, E-mail: rainer.schulin@env.ethz.c [Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitaetstrasse 16, CH-8092 Zuerich (Switzerland); Tercier-Waeber, Mary-Lou, E-mail: marie-louise.tercier@unige.c [CABE, Department of Inorganic and Analytical Chemistry, Sciences II, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4 (Switzerland); Nowack, Bernd, E-mail: bernd.nowack@empa.c [Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitaetstrasse 16, CH-8092 Zuerich (Switzerland); Empa - Swiss Federal Laboratories for Materials Testing and Research, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland)

    2010-05-15

    By using a rhizobox micro-suction cup technique we studied in-situ mobilization and complexation of Zn and Cd in the rhizosphere of non-hyperaccumulating Thlaspi perfoliatum and two different Thlaspi caerulescens ecotypes, one of them hyperaccumulating Zn, the other Zn and Cd. The dynamic fraction (free metal ions and small labile complexes) of Zn and Cd decreased with time in the rhizosphere solution of the respective hyperaccumulating T. caerulescens ecotypes, and at the end of the experiment, it was significantly smaller than in the other treatments. Furthermore, the rhizosphere solutions of the T. caerulescens ecotypes exhibited a higher UV absorptivity than the solution of the T. perfoliatum rhizosphere and the plant-free soil. Based on our findings we suggest that mobile and labile metal-dissolved soil organic matter complexes play a key role in the rapid replenishment of available metal pools in the rhizosphere of hyperaccumulating T. caerulescens ecotypes, postulated earlier. - A mechanism that explains the rapid replenishment of metal pools accessible by hyperaccumulator plants for phytoextraction is proposed.

  10. Transport and detoxification of cadmium, copper and zinc in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens

    OpenAIRE

    Leitenmaier, Barbara

    2010-01-01

    SummaryIn this thesis, various aspects on heavy metal accumulation by the hyperaccumulator plant Thlaspi caerulescens have been investigated. T. caerulescens belongs to the family of Brassicaceae and hyperaccumulates zinc. Its ecotype Ganges, originating from Southern France, additionally takes up cadmium actively. It is known from previous studies that hyperaccumulators have highly overexpressed metal transporters and that most of them store the metal in the vacuole of large epidermal cells....

  11. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for 'new' Mn hyperaccumulators and potential applications in taxonomy.

    Science.gov (United States)

    Fernando, Denise R; Guymer, Gordon; Reeves, Roger D; Woodrow, Ian E; Baker, Alan J; Batianoff, George N

    2009-04-01

    The analysis of herbarium specimens has previously been used to prospect for 'new' hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). The resulting data demonstrated (a) up to seven 'new' Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these 'new' Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as 'new' Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible 'new' Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible 'new' subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be followed up by field studies.

  12. Subcellular localization of cadmium in hyperaccumulator Populus ...

    African Journals Online (AJOL)

    In this study, subcellular localization of cadmium in hyperaccumulator grey poplar (Populus × canescens) was investigated by the transmission electron microscopy (TEM) method. Young Populus × canescens were grown and hydroponic experiments were conducted under four Cd2+ concentrations (10, 30, 50, and 70 μM) ...

  13. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

    Directory of Open Access Journals (Sweden)

    Giovanna eVisioli

    2015-08-01

    Full Text Available This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest IAA production and ACC-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal and translocation of Ni, together with that of Fe, Co and Cu. Bacteria of both strains densely colonised the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials

  14. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources.

    Science.gov (United States)

    Grison, Claire M; Mazel, Marine; Sellini, Amandine; Escande, Vincent; Biton, Jacques; Grison, Claude

    2015-04-01

    Anthyllis vulneraria was highlighted here as a Zn-hyperaccumulator for the development of a pilot phytoextraction process in the mine site of Les Avinières in the district of Saint-Laurent-Le-Minier. A. vulneraria appeared to hyperaccumulate the highest concentration of Zn in shoots with a better metal selectivity relative to Cd and Pb than the reference Zn-hyperaccumulator Noccea caerulescens. A bigger biomass production associated to a higher Zn concentration conducted A. vulneraria to the highest total zinc gain per hectare per year. As a legume, A. vulneraria was infected by rhizobia symbionts. Inoculation of A. vulneraria seeds showed a positive impact on Zn hyperaccumulation. A large-scale culture process of symbiotic rhizobia of A. vulneraria was investigated and optimized to allow large-scale inoculation process. Contaminated shoots of A. vulneraria were not considered as wastes and were recovered as Eco-Zn catalyst in particular, examples of organic synthesis, electrophilic aromatic substitution. Eco-Zn catalyst was much more efficient than conventional catalysts and allowed greener chemical processes.

  15. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy

    Science.gov (United States)

    Fernando, Denise R.; Guymer, Gordon; Reeves, Roger D.; Woodrow, Ian E.; Baker, Alan J.; Batianoff, George N.

    2009-01-01

    Background and Aims The analysis of herbarium specimens has previously been used to prospect for ‘new’ hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. Methods ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). Key Results The resulting data demonstrated (a) up to seven ‘new’ Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these ‘new’ Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Conclusions Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as ‘new’ Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible ‘new’ Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible ‘new’ subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be

  16. Effect of cadmium hyperaccumulation on antioxidative defense and ...

    African Journals Online (AJOL)

    Changes in cadmium (Cd) accumulation, the activity of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and the concentrations of malondialdehyde (MDA), chlorophyll and free proline in Solanum nigrum, Cd-hyperaccumulator were examined and compared with a ...

  17. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy

    Directory of Open Access Journals (Sweden)

    Giovanna eVisioli

    2015-01-01

    Full Text Available Hyperaccumulators are plants that can extract heavy metal ions from the soil and translocate those ions to the shoots, where they are sequestered and detoxified. Hyperaccumulation depends not only on the availability of mobilized metal ions in the soil, but also on the enhanced activity of metal transporters and metal chelators which may be provided by the plant or its associated microbes. The rhizobiome is captured by plant root exudates from the complex microbial community in the soil, and may colonize the root surface or infiltrate the root cortex. This community can increase the root surface area by inducing hairy root proliferation. It may also increase the solubility of metals in the rhizosphere and promote the uptake of soluble metals by the plant. The bacterial rhizobiome, a subset of specialized microorganisms that colonize the plant rhizosphere and endosphere, makes an important contribution to the hyperaccumulator phenotype. In this review, we discuss classic and more recent tools that are used to study the interactions between hyperaccumulators and the bacterial rhizobiome, and consider future perspectives based on the use of omics analysis and microscopy to study plant metabolism in the context of metal accumulation. Recent data suggest that metal-resistant bacteria isolated from the hyperaccumulator rhizosphere and endosphere could be useful in applications such as phytoextraction and phytoremediation, although more research is required to determine whether such properties can be transferred successfully to non-accumulator species.

  18. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues.

    Science.gov (United States)

    Lima, Leonardo Warzea; Pilon-Smits, Elizabeth A H; Schiavon, Michela

    2018-04-04

    Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications.

    Science.gov (United States)

    Losfeld, Guillaume; L'Huillier, Laurent; Fogliani, Bruno; Mc Coy, Stéphane; Grison, Claude; Jaffré, Tanguy

    2015-04-01

    Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator.

  20. Lead, zinc and cadmium accumulation from two metalliferous soils with contrasting calcium contents in hyperaccumulating and non-hyperaccumulating metallophytes: a comparative study.

    NARCIS (Netherlands)

    Mohtadi, A.; Ghaderian, S.M.; Schat, H.

    2012-01-01

    Aims and background: We previously compared metallicolous (M) and non-metallicolous (NM) populations of Noccaea (=Thlaspi) caerulescens, Silene vulgaris, and Matthiola flavida for their abilities to tolerate and (hyper)-accumulate lead (Pb) in hydroponics. In the present study we aimed 1) to check

  1. Unique Rhizosphere Micro-characteristics Facilitate Phytoextraction of Multiple Metals in Soil by the Hyperaccumulating Plant Sedum alfredii.

    Science.gov (United States)

    Hou, Dandi; Wang, Kai; Liu, Ting; Wang, Haixin; Lin, Zhi; Qian, Jie; Lu, Lingli; Tian, Shengke

    2017-05-16

    Understanding the strategies that the roots of hyperaccumulating plants use to extract heavy metals from soils is important for optimizing phytoremediation. The rhizosphere characteristics of Sedum alfredii, a hyperaccumulator, were investigated 6 months after it had been planted in weathered field soils contaminated with 5.8 μg of Cd g -1 , 1985.1 μg of Zn g -1 , 667.5 μg of Pb g -1 , and 698.8 μg of Cu g -1 . In contrast with the non-hyperaccumulating ecotype (NHE), the hyperaccumulating ecotype (HE) of S. alfredii was more tolerant to the metals, and higher levels of Cd and Zn accumulated. The HE was characterized by a unique rhizosphere, including extensive root systems, a reduced soil pH, a higher metal bioavailability, and increased rhizomicrobial activity. The bioavailability of metals was significantly correlated with the HE's unique bacterial communities (P heavy metal phytoextraction.

  2. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    Science.gov (United States)

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Selenium hyperaccumulation - Astragalus bisulcatus, Cardamine hupingshanensis and Stanleya pinnata - may be useful for agromining selenium-rich soils

    Science.gov (United States)

    Selenium hyperaccumulator plants like Stanleya pinnata, Astragalus bisulcatus and the newly discovered Se-accumulator Cardamine hupingshanensis may play an important role in the Se cycle from soil to plant to human in China. Se-hyperaccumulators can be used for agromining or for phytoremediation of ...

  4. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator

    International Nuclear Information System (INIS)

    Sun Yuebing; Zhou Qixing; Wang Lin; Liu Weitao

    2009-01-01

    Recently, researchers are becoming interested in using hyperaccumulators for decontamination of heavy metal polluted soils, whereas few species that hyperaccumulate cadmium (Cd) has been identified in the plant kingdom. In this study, the physiological mechanisms at the seedling stage and growth responses and Cd uptake and accumulation at flowering and mature stages of Bidens pilosa L. under Cd treatments were investigated. At the seedling stage, when soil Cd was lower than 16 mg kg -1 , the plant did not show obvious symptom of phytoxicity, and the alterations of chlorophyll (CHL), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and soluble protein (SP) did not have significant differences when compared with the control. At the flowering and mature stages, under low Cd treatments (≤16 mg kg -1 ), the application of Cd could facilitate plant growth, resulting in 3.9-11.0% and 5.9-13.8%, respectively, increase in shoots dry biomass compared with the control. The Cd concentrations in stems, leaves and shoots exceeded 100 mg kg -1 when soil Cd was at 8 mg kg -1 , and they were positively correlated with Cd concentration in soils, the bioaccumulation factor (BF) and translocation factor (TF) values were all greater than 1.0. Thus, it is clear that B. pilosa has the basic characteristics of a Cd-hyperaccumulator. All the results elementarily indicated that B. pilosa is a potential Cd-hyperaccumulating plant

  5. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance.

    Directory of Open Access Journals (Sweden)

    Jun Gao

    Full Text Available The Sedum alfredii Hance hyperaccumulating ecotype (HE has the ability to hyperaccumulate cadmium (Cd, as well as zinc (Zn and lead (Pb in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≥ 2.0 and down-regulated (Fold Change hyperaccumulating ecotype (NHE. Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE shoots.

  6. Alyssum homolocarpum seed gum-polyvinyl alcohol biodegradable composite film: Physicochemical, mechanical, thermal and barrier properties.

    Science.gov (United States)

    Monjazeb Marvdashti, Leila; Koocheki, Arash; Yavarmanesh, Masoud

    2017-01-02

    Films made from Alyssum homolocarpum seeds gum (AHSG) have poor mechanical and barrier (to oxygen) properties. In the present study poly vinyl alcohol (PVA) was used to improve the physicochemical properties of AHSG films. Results indicated that the addition of PVA significantly increased the moisture content, solubility, elongation at break (EB) and transparency while it decreased the density, oxygen permeability, chroma, water contact angle and Young modulus of AHSG based films. Films with higher AHSG to PVA ratios had lower water vapor permeability (WVP). The light barrier measurements presented low values of transparency at 600nm for PVA/AHSG films, indicating that films were very transparent while they had excellent barrier properties against UV light. Results for FTIR, DSC and SEM showed a clear interaction between PVA and AHSG, forming a new material. These results indicated that PVA/AHSG blend films had good compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator

    International Nuclear Information System (INIS)

    Wang Lin; Zhou Qixing; Ding Lingling; Sun Yuebing

    2008-01-01

    Hyperaccumulators are ideal plant species used for phytoremediation of soils contaminated by heavy metals. A full understanding of metal tolerance mechanisms of hyperaccumulators will facilitate enhancing their phytoremediation efficiency. However, how Cd affects N metabolism and which role plays the response of N metabolism to Cd toxicity in the tolerance of hyperaccumulators are still unknown. To clarify these questions, this study investigated the effects of various soil Cd levels on the concentrations of N forms and the activity of key enzymes involved in N metabolism in leaves of the Cd hyperaccumulator, Solanum nigrum L. The results showed that its growth and all N metabolism indicators were normal at low Cd exposure (≤12 mg kg -1 ). At 24 mg Cd kg -1 soil, nitrate assimilation indicators (nitrate concentration and activity of nitrate reductase) were reduced significantly, whereas most ammonia assimilation indicators (ammonium concentration and activity of glutamine synthetase) remained normal. However, when exposed to a higher Cd level (48 mg kg -1 ), growth and most N metabolism indicators were reduced significantly. Therefore, N metabolism in leaves of S. nigrum could be tolerant of Cd toxicity to a certain extent (soil Cd concentration ≤12 mg kg -1 ), and this might be involved in the Cd-tolerance of this Cd-hyperaccumulator

  8. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents

    Directory of Open Access Journals (Sweden)

    Lucas Anjos Souza

    2013-08-01

    Full Text Available Soil contamination by heavy metals is a challenge faced by many countries, and engineering technologies to solve this problem are expensive and can cause negative impacts on the environment. One way to minimise the levels of heavy metals in the soil is to use plants that can absorb and accumulate heavy metals into harvestable parts, a process called phytoextraction. Typical plant species used in research involving phytoextraction are heavy metal hyperaccumulators, but plants from this group are not good biomass producers and grow more slowly than most species; thus, they have an important role in helping scientists understand the mechanisms involved in accumulating high amounts of heavy metals without developing symptoms or dying. However, because of their slow growth, it is not practical to use these species for phytoextraction. An alternative approach is to use non-hyperaccumulator plants assisted by chelating agents, which may improve the ability of plants to accumulate more heavy metals than they would naturally. Chelating agents can be synthetic or organic acids, and the advantages and disadvantages of their use in improving the phytoextraction potential of non-hyperaccumulator plants are discussed in this article. We hope to draw attention to ways to improve the phytoextraction potential of non-hyperaccumulator plants that produce a large amount of biomass and to stimulate more research on phytoextraction-inducing substances.

  9. Screening of some biological activities of Alyssum fulvescens var. fulvescens known as ege madwort.

    Science.gov (United States)

    Ozay, Cennet; Mammadov, Ramazan

    2017-09-01

    In this research, the phenolic composition, antioxidant, antibacterial and cytotoxic activities of the methanolic extracts obtained from Alyssum fulvescens var. fulvescens aerial parts known as Ege kuduzotu in western Turkey, were firstly investigated. The antioxidant activity of the extract was determined by DPPH, metal chelating, phosphomolybdenum, β-carotene/linoleic acid and ferric reducing power assays. Moreover, total phenolic and flavonoid contents in the extract were investigated. The brine shrimp (Artemia salina L.) lethality test was used to investigate for the possible cytotoxic activity of the extract. Microdilution broth method was used to study antibacterial potency of extract against Gram-positive and Gram-negative bacteria. The extract exhibited good biological activities. Total phenolic and flavonoid contents in the extract were significantly correlated with antioxidant potentials. HPLC analysis showed that chlorogenic acid was the major phenolic in extract tested. The results indicated that the extract of A. fulvescens var. fulvescens may be considered as a potential source of biological agents and in vivo investigations are needed to test the biological effects of A. fulvescens var. fulvescens.

  10. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L

    International Nuclear Information System (INIS)

    Tu Cong; Ma, Lena Q.

    2005-01-01

    Pteris vittata was the first terrestrial plant known to hyperaccumulate arsenic (As). However, it is unclear how As hyperaccumulation influences nutrient uptake by this plant. P. vittata fern was grown in soil spiked with 0-500 mg As kg -1 in the greenhouse for 24 weeks. The concentrations of essential macro- (P, K, Ca, and Mg) and micro- (Fe, Mn, Cu, Zn, B and Mo) elements in the fronds of different age were examined. Both macro- and micronutrients in the fronds were found to be within the normal concentration ranges for non-hyperaccumulators. However, As hyperaccumulation did influence the elemental distribution among fronds of different age of P. vittata. Arsenic-induced P and K enhancements in the fronds contributed to the As-induced growth stimulation at low As levels. The frond P/As molar ratios of 1.0 can be used as the threshold value for normal growth of P. vittata. Potassium may function as a counter-cation for As in the fronds as shown by the As-induced K increases in the fronds. The present findings not only demonstrate that P. vittata has the ability to maintain adequate concentrations of essential nutrients while hyperaccumulating As from the soil, but also have implications for soil management (fertilization in particular) of P. vittata in As phytoextraction practice

  11. Contrasted zinc hyperaccumulation levels between metallicolous and non-metallicolous populations of Arabidopsis halleri is driven by divergent selection

    Science.gov (United States)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Pauwels, Maxime; Schat, Henk; Bourceaux, Angélique; Saumitou-Laprade, Pierre; Grodzińska, Krystyna; Frérot, Hélène

    2017-04-01

    Approximately 400 species that can survive and reproduce in metalliferous environments have developed "metal hyperaccumulation" capacity, allowing them to allocate large amounts of trace elements to their aerial parts without showing severe toxicity symptoms. The potential of hyperaccumulators to be applied in phytoremediation efforts is of great research and commercial interest. Yet, the genetic basis and evolutionary significance of this trait are to date insufficiently understood. This lack of knowledge limits the efficiency and large-scale use of such plants in reducing soil pollution through "green and clean technologies" (phytoremediation). In this context, the objective of this study was to find some evidence of selection acting on metal hyperaccumulation, thus supporting the existence of genetic adaptation for this trait. Here, we collected six metallicolous and five non-metallicolous populations of the pseudometallophyte model species Arabidopsis halleri in Poland that are genetically and geographically close. We asexually propagated genotypes that were sampled in natural populations to produce several clones of each individual. These were subsequently used in a soil culture experiment with artificially zinc-contaminated compost for accumulation assessment. The zinc content of shoots was determined after five weeks of culture using the colorimetric reagent zincon. The heritability and the genetic differentiation of the zinc accumulation trait were estimated (Qst statistic) and the latter was compared to the differentiation at neutral molecular markers (Fst statistic). Despite significantly (Pzinc concentrations in metallicolous compared to non-metallicolous plants, we observed a rather continuous range of zinc hyperaccumulation capacities with multiple genotypes from both edaphic types in between. Overall, zinc concentrations were high in most plants, with only a few metallicolous individuals not reaching the threshold concentration for zinc

  12. Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress.

    Science.gov (United States)

    Llugany, M; Martin, S R; Barceló, J; Poschenrieder, C

    2013-08-01

    Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling. Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC-ESI(-)-MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.

  13. Successful micropropagation of the cadmium hyperaccumulator Viola baoshanensis (Violaceae).

    Science.gov (United States)

    Li, Jin-Tian; Deng, Dong-Mei; Peng, Guang-Tian; Deng, Jin-Chuan; Zhang, Jun; Liao, Bin

    2010-01-01

    Viola baoshanensis is one of the most rare cadmium (Cd) hyperaccumulators, however, it is hard to propagate. Micropropagation has been applied to solve the problems with propagation of a few heavy metal hyperaccumulators. Therefore there is a high likelihood that micropropagation may offer a suitable method for large-scale propagation of V. baoshanensis To test this hypothesis, three types of explants were used for shoot regeneration and various combinations of four plant growth regulators were used to improve shoot regeneration efficiency from leaflet of V. baoshanensis. Best shoot regeneration efficiency was obtained by incubating leaflet in a 1/2 MS medium supplemented with 2.5 oM BA + 2.5 microM IBA, therein shoot regeneration rate was 70.9% and the number of shoots formation per explant was 22.4. Rooting was achieved from almost all regenerated shoot growing on 1/2 MS medium without plant growth regulator. Micropropagated seedlings were acclimatized under greenhouse conditions and 95% of them survived and showed no visible morphological variation compared to their donor plant. Furthermore, there were no significant differences between regenerated and seed-germinated V. baoshanensis in Cd tolerance and accumulation. These results suggested that an efficient and rapid micropropogation system was successfully developed for V. baoshanensis.

  14. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae)

    International Nuclear Information System (INIS)

    Xue, S.G.; Chen, Y.X.; Reeves, Roger D.; Baker, Alan J.M.; Lin, Q.; Fernando, Denise R.

    2004-01-01

    The perennial herb Phytolacca acinosa Roxb. (Phytolaccaceae), which occurs in Southern China, has been found to be a new manganese hyperaccumulator by means of field surveys on Mn-rich soils and by glasshouse experiments. This species not only has remarkable tolerance to Mn but also has extraordinary uptake and accumulation capacity for this element. The maximum Mn concentration in the leaf dry matter was 19,300 μg/g on Xiangtan Mn tailings wastelands, with a mean of 14,480 μg/g. Under nutrient solution culture conditions, P. acinosa could grow normally with Mn supplied at a concentration of 8000 μmol/l, although with less biomass than in control samples supplied with Mn at 5 μmol/l. Manganese concentration in the shoots increased with increasing external Mn levels, but the total mass of Mn accumulated in the shoots first increased and then decreased. At an Mn concentration of 5000 μmol/l in the culture solution, the Mn accumulation in the shoot dry matter was highest (258 mg/plant). However, the Mn concentration in the leaves reached its highest value (36,380 μg/g) at an Mn supply level of 12,000 μmol/l. These results confirm that P. acinosa is an Mn hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and a broad ecological amplitude. This species provides a new plant resource for exploring the mechanism of Mn hyperaccumulation, and has potential for use in the phytoremediation of Mn-contaminated soils

  15. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils.

    Science.gov (United States)

    Rosenfeld, Carla E; Chaney, Rufus L; Martínez, Carmen E

    2018-03-01

    Cadmium contamination in soil is a substantial global problem, and of significant concern due to high food-chain transfer. Cadmium hyperaccumulators are of particular interest because of their ability to tolerate and take up significant amounts of heavy metal pollution from soils. One particular plant, Noccaea caerulescens (formerly, Thlaspi caerulescens), has been extensively studied in terms of its capacity to accumulate heavy metals (specifically Zn and Cd), though these studies have primarily utilized hydroponic and metal-spiked model soil systems. We studied Cd and nutrient uptake by two N. caerulescens ecotypes, Prayon (Zn-only hyperaccumulator) and Ganges (Zn- and Cd-hyperaccumulator) in four long-term field-contaminated soils. Our data suggest that individual soil properties such as total soil Cd, Zn:Cd molar ratio, or soil pH do not accurately predict Cd uptake by hyperaccumulating plants. Additionally, total Cd uptake by the hyperaccumulating Ganges ecotype was substantially less than its physiological capacity, which is likely due to Cd-containing solid phases (primarily iron oxides) and pH that play an important role in regulating and limiting Cd solubility. Increased P accumulation in the Ganges leaves, and greater plant Fe accumulation from Cd-containing soils suggests that rhizosphere alterations via proton, and potentially organic acid, secretion may also play a role in nutrient and Cd acquisition by the plant roots. The current study highlights the role that soil geochemical factors play in influencing Cd uptake by hyperaccumulating plants. While these plants may have high physiological potential to accumulate metals from contaminated soils, individual soil geochemical factors and the plant-soil interactions in that soil will dictate the actual amount of phytoextractable metal. This underlines the need for site-specific understanding of metal-containing solid phases and geochemical properties of soils before undertaking phytoextraction efforts

  16. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments.

    Science.gov (United States)

    Xiao, Wendan; Li, Dan; Ye, Xuezhu; Xu, Haizhou; Yao, Guihua; Wang, Jingwen; Zhang, Qi; Hu, Jing; Gao, Na

    2017-02-01

    The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg -1 of pig manure compost, 10 g kg -1 of humic acid, or 5 mmol kg -1 of EDTA, and untreated soil without application of any amendment was the control. Two conditions were applied to each treatment: no voltage (without an electrical field) and a direct current (DC) electrical field (1 V cm -1 with switching polarity every day). Results indicated that Cd concentrations in S. alfredii were significantly (p phytoextraction by hyperaccumulator S. alfredii.

  17. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Luo, Yongming; Christie, Peter

    2018-03-01

    Phytoextraction is one of the most promising technologies for the decontamination of metal-polluted agricultural soils. Effects of repeated phytoextraction by the cadmium (Cd)/zinc (Zn) hyperaccumulator Sedum plumbizincicola on metal (Cd, Zn, copper (Cu) and lead (Pb)) mobility were investigated in three contaminated soils with contrasting properties. EDTA kinetic extraction and the two first-order reactions model showed advantages in the assessment of soil metal mobility and clearly discriminated changes in metal fractions induced by phytoextraction. Repeated phytoextraction led to large decreases in readily labile (Q 1 0 ) and less labile (Q 2 0 ) fractions of Cd and Zn in all three soils with the sole exception of an increase in the Q 2 0 of Zn in the highly polluted soil. However, Q 1 0 fractions of soil Cu and Pb showed apparent increases with the sole exception of Pb in the acid polluted soil but showed a higher desorption rate constant (k 1 ). Furthermore, S. plumbizincicola decreased the non-labile fraction (Q 3 0 ) of all metals tested, indicating that the hyperaccumulator can redistribute soil metals from non-labile to labile fractions. This suggests that phytoextraction decreased the mobility of the metals hyperaccumulated by the plant (Cd and Zn) but increased the mobility of the metals not hyperaccumulated (Cu and Pb). Thus, phytoextraction of soils contaminated with mixtures of metals must be performed carefully because of potential increases in the mobility of non-hyperaccumulated metals in the soil and the consequent environmental risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora.

    NARCIS (Netherlands)

    Mengoni, A.; Schat, H.; Vangronsveld, J.

    2010-01-01

    During recent years there has been an increasing interest in the bacterial communities occurring in unusual, often extreme, environments. On serpentine outcrops around the world, a high diversity of plant species showing the peculiar features of metal hyperaccumulation is present. These metal

  19. Nickel extraction from nickel matte

    Science.gov (United States)

    Subagja, R.

    2018-01-01

    In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.

  20. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    Science.gov (United States)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found

  1. Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shengke; Xie, Ruohan; Wang, Haixin; Hu, Yan; Hou, Dandi; Liao, Xingcheng; Brown, Patrick H.; Yang, Hongxia; Lin, Xianyong; Labavitch, John M.; Lu, Lingli

    2017-04-01

    Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cd sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.

  2. Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method.

    Science.gov (United States)

    Lin, Lijin; Jin, Qian; Liu, Yingjie; Ning, Bo; Liao, Ming'an; Luo, Li

    2014-11-01

    A new method, the artificially high soil cadmium (Cd) concentration method, was used to screen for Cd hyperaccumulators among winter farmland weeds. Galinsoga parviflora was the most promising remedial plant among 5 Cd accumulators or hyperaccumulators. In Cd concentration gradient experiments, as soil Cd concentration increased, root and shoot biomass decreased, and their Cd contents increased. In additional concentration gradient experiments, superoxide dismutase and peroxidase activities increased with soil Cd concentrations up to 75 mg kg(-1) , while expression of their isoenzymes strengthened. Catalase (CAT) activity declined and CAT isoenzyme expression weakened at soil Cd concentrations less than 50 mg kg(-1) . The maxima of Cd contents in shoots and roots were 137.63 mg kg(-1) and 105.70 mg kg(-1) , respectively, at 100 mg kg(-1) Cd in soil. The root and shoot bioconcentration factors exceeded 1.0, as did the translocation factor. In a field experiment, total extraction of Cd by shoots was 1.35 mg m(-2) to 1.43 mg m(-2) at soil Cd levels of 2.04 mg kg(-1) to 2.89 mg kg(-1) . Therefore, the artificially high soil Cd concentration method was effective for screening Cd hyperaccumulators. Galinsoga parviflora is a Cd hyperaccumulator that could be used to efficiently remediate Cd-contaminated farmland soil. © 2014 SETAC.

  3. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study.

    Science.gov (United States)

    Bani, Aida; Echevarria, Guillaume; Sulçe, Sulejman; Morel, Jean Louis

    2015-01-01

    Large ultramafic areas exist in Albania, which could be suitable for phytomining with native Alyssum murale. We undertook a five-year field experiment on an ultramafic Vertisol, aimed at optimizing a low-cost Ni-phytoextraction crop of A. murale which is adapted to the Balkans. The following aspects were studied on 18-m2 plots in natural conditions: the effect of (i) plant phenology and element distribution, (ii) plant nutrition and fertilization, (iii) plant cover and weed control and (iv), planting technique (natural cover vs. sown crop). The optimal harvest time was set at the mid-flowering stage when Ni concentration and biomass yield were highest. The application of N, P, and K fertilizers, and especially a split 100-kg ha(-1) N application, increased the density of A. murale against all other species. It significantly increased shoot yield, without reducing Ni concentration. In natural stands, the control of graminaceous weeds required the use of an anti-monocots herbicide. However, after the optimization of fertilization and harvest time, weed control procured little benefit. Finally, cropping sown A. murale was more efficient than enhancing native stands and gave higher biomass and phytoextraction yields; biomass yields progressively improved from 0.3 to 9.0 t ha(-1) and phytoextracted Ni increased from 1.7 to 105 kg ha(-1).

  4. Tissue Fractions of Cadmium in Two Hyperaccumulating Jerusalem Artichoke Genotypes

    Directory of Open Access Journals (Sweden)

    Xiaohua Long

    2014-01-01

    Full Text Available In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L. genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE, deionized water (FW, 1 M NaCl (FNaCl, 2% v/v acetic acid (FAcet, and 0.6 M HCl (FHCl. After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes.

  5. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils.

    Science.gov (United States)

    Lin, Wenjie; Xiao, Tangfu; Wu, Yunying; Ao, Ziqiang; Ning, Zengping

    2012-02-01

    A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest China's Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g(-)(1), respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g(-1), respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g(-1) that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf>stem>root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg(-1)yr(-1) by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  7. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    International Nuclear Information System (INIS)

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake

  8. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Pongrac, Paula [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Kump, Peter [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Necemer, Marijan [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)]. E-mail: marjana.regvar@bf.uni-lj.si

    2006-01-15

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake.

  9. Urine nickel concentrations in nickel-exposed workers.

    Science.gov (United States)

    Bernacki, E J; Parsons, G E; Roy, B R; Mikac-Devic, M; Kennedy, C D; Sunderman, F W

    1978-01-01

    Electrothermal atomic absorption spectrometry was employed for analyses of nickel concentrations in urine samples from nickel-exposed workers in 10 occupational groups and from non-exposed workers in two control groups. Mean concentrations of nickel in urine were greatest in workers who were exposed to inhalation of aerosols of soluble nickel salts (e.g., workers in nickel plating operations and in an electrolytic nickel refinery). Less marked increases in urine nickel concentrations were found in groups of metal sprayers, nickel battery workers, bench mechanics and are welders. No significant increases in mean concentrations of nickel were found in urine samples from workers who performed grinding, buffing and polishing of nickel-containing alloys or workers in a coal gasification plant who employed Raney nickel as a hydrogenation catalyst. Measurements of nickel concentrations in urine are more sensitive and practical than measurements of serum nickel concentrations for evaluation of nickel exposures in industrial workers.

  10. Study on accumulation mechanism for heavy metal in hyper-accumulating plants by synchrotron radiation x-ray analysis

    International Nuclear Information System (INIS)

    Hokura, Akiko; Kitajima, Nobuyuki; Terada, Yasuko; Nakai, Izumi

    2010-01-01

    Some plants accumulate heavy metal elements such as As, Cd, and Pb, etc., and these plants have been focused on from the perspective of their application to phytoremediation. In order to understand the accumulation mechanism, the distribution and the chemical form of heavy metal should be revealed at cellular level. Here, we have introduced the recent works regarding arsenic hyperaccumulating fern (Pteris vittata L.) and cadmium hyperaccumulating plant (Arabidopsis halleri ssp. gemmifera). A combination of μ-XRF and μ-XANES techniques excited by high-energy X-ray microbeam with 1 μm resolution has proved to be an indispensable tool for the study of Cd accumulation in biological samples on a cellular scale. The sample-preparation techniques were also summarized. (author)

  11. Does airborne nickel exposure induce nickel sensitization?

    Science.gov (United States)

    Mann, Eugen; Ranft, Ulrich; Eberwein, Georg; Gladtke, Dieter; Sugiri, Dorothee; Behrendt, Heidrun; Ring, Johannes; Schäfer, Torsten; Begerow, Jutta; Wittsiepe, Jürgen; Krämer, Ursula; Wilhelm, Michael

    2010-06-01

    Nickel is one of the most prevalent causes of contact allergy in the general population. This study focuses on human exposure to airborne nickel and its potential to induce allergic sensitization. The study group consisted of 309 children at school-starter age living in the West of Germany in the vicinity of two industrial sources and in a rural town without nearby point sources of nickel. An exposure assessment of nickel in ambient air was available for children in the Ruhr district using routinely monitored ambient air quality data and dispersion modelling. Internal nickel exposure was assessed by nickel concentrations in morning urine samples of the children. The observed nickel sensitization prevalence rates varied between 12.6% and 30.7%. Statistically significant associations were showed between exposure to nickel in ambient air and urinary nickel concentration as well as between urinary nickel concentration and nickel sensitization. Furthermore, an elevated prevalence of nickel sensitization was associated with exposure to increased nickel concentrations in ambient air. The observed associations support the assumption that inhaled nickel in ambient air might be a risk factor for nickel sensitization; further studies in larger collectives are necessary.

  12. Electroless nickel plating on abs plastics from nickel chloride and nickel sulfate baths

    International Nuclear Information System (INIS)

    Inam-ul-haque; Ahmad, S.; Khan, A.

    2005-01-01

    Aqueous acid nickel chloride and alkaline nickel sulphate bath were studied for electroless nickel planting on acrylonitrile-butadiene-styrene (ABS) plastic. Before electroless nickel plating, specimens were etched, sensitized and activated. Effects of sodium hypophosphite and sodium citrate concentration on the electroless nickel plating thickness were discussed. Aqueous acid nickel chloride bath comprising, nickel chloride 10 g/L, sodium hypophosphite 40 g/L, sodium citrate 40g/L at pH 5.5, temperature 85 deg. C and density of 1 Be/ for thirty minutes gave best coating thickness in micrometer. It was found that acid nickel chloride bath had a greater stability, wide operating range and better coating thickness results than alkaline nickel sulphate bath. Acid nickel chloride bath gave better coating thickness than alkaline nickel sulfate bath

  13. Nickel Dermatitis - Nickel Excretion

    DEFF Research Database (Denmark)

    Menné, T.; Thorboe, A.

    1976-01-01

    Nickel excretion in urine in four females -sensitive to nickel with an intermittent dyshidrotic eruption was measured with flameless atomic absorption. Excretion of nickel was found to be increased in association with outbreaks of vesicles. The results support the idea that the chronic condition ...

  14. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation.

    Science.gov (United States)

    Halimaa, Pauliina; Lin, Ya-Fen; Ahonen, Viivi H; Blande, Daniel; Clemens, Stephan; Gyenesei, Attila; Häikiö, Elina; Kärenlampi, Sirpa O; Laiho, Asta; Aarts, Mark G M; Pursiheimo, Juha-Pekka; Schat, Henk; Schmidt, Holger; Tuomainen, Marjo H; Tervahauta, Arja I

    2014-03-18

    Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.

  15. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Tu Cong; Ma, Lena Q.; Zhang Weihua; Cai Yong; Harris, Willie G

    2003-07-01

    Arsenic was predominantly present as inorganic arsenite in the fronds of the hyperaccumulator Chinese brake. - Arsenic speciation is important not only for understanding the mechanisms of arsenic accumulation and detoxification by hyperaccumulators, but also for designing disposal options of arsenic-rich biomass. The primary objective of this research was to understand the speciation and leachability of arsenic in the fronds of Chinese brake (Pteris vittata L.), an arsenic hyperaccumulator, with an emphasis on the implications for arsenic-rich biomass disposal. Chinese brake was grown for 18 weeks in a soil spiked with 50 mg As kg{sup -1} as arsenate (AsO{sub 4}{sup 3-}), arsenite (AsO{sub 3}{sup 3-}), dimethylarsinic acid (DMA), or methylarsonic acid (MMA). Plant samples were extracted with methanol/water (1:1) and arsenic speciation was performed using high performance liquid chromatography coupled with atomic fluorescence spectrometry. The impacts of air-drying on arsenic species and leachability in the fronds were examined in the laboratory. After 18 weeks, water-soluble arsenic in soil was mainly present as arsenate with little detectable organic species or arsenite regardless of arsenic species added to the soil. However, arsenic in the fronds was primarily present as inorganic arsenite with an average of 94%. Arsenite re-oxidation occurred in the old fronds and the excised dried tissues. Arsenic species in the fronds were slightly influenced by arsenic forms added to the soil. Air-drying of the fronds resulted in leaching of substantial amounts of arsenic. These findings can be of significance when looking at disposal options of arsenic-rich biomass from the point of view of secondary contamination.

  16. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    International Nuclear Information System (INIS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  17. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  18. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Liu, Xue; Fu, Jing-Wei; Tang, Ni; da Silva, E B; Cao, Yue; Turner, Benjamin L; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Phytate is abundant in soils, which is stable and unavailable for plant uptake. However, it occurs in root exudates of As-hyperaccumulator Pteris vittata (PV). To elucidate its effect on As uptake and growth, P. vittata were grown on agar media (63 μM P) containing 50 μM As and/or 50 or 500 μM phytate with non As-hyperaccumulator Pteris ensiformis (PE) as a congeneric control for 60 d. Phytate induced efficient As and P uptake, and enhanced growth in PV, but had little effects on PE. The As concentrations in PV fronds and roots were 157 and 31 mg kg -1 in As 50 +phytate 50 , 2.2- and 3.1-fold that of As 50 treatment. Phosphorus uptake by PV was reduced by 27% in As treatment than the control (P vs. P+As) but increased by 73% comparing phytate 500 to phytate 500 +As, indicating that PV effectively took up P from phytate. Neither As nor phytate affected Fe accumulation in PV, but phytate reduced root Fe concentration in PE (46-56%). As such, the increased As and P and the unsuppressed Fe uptake in PV probably promoted PV growth. Thus, supplying phytate to As-contaminated soils may promote As uptake and growth in PV and its phytoremediation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis

    International Nuclear Information System (INIS)

    Redondo-Gomez, Susana; Mateos-Naranjo, Enrique; Vecino-Bueno, Inmaculada; Feldman, Susana R.

    2011-01-01

    The cordgrass Spartina argentinensis, which occurs in inland marshes of the Chaco-Pampean regions of Argentina, has been found to be a new chromium hyperaccumulator. A glasshouse experiment was designed to investigate the effect of Cr 6+ from 0 to 20 mmol l -1 on growth and photosynthetic apparatus of S. argentinensis by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. Boron, calcium, chromium, copper, iron, manganese, magnesium, potassium and phosphorous concentrations were also determined. S. argentinensis showed phytotoxicity at tiller concentration of 4 mg g -1 Cr, and symptoms of stress at tiller concentration of 1.5 mg g -1 Cr, as well as reductions in leaf gas exchange, in chlorophyll a fluorescence parameters, in photosynthetic pigment contents and in the uptake of essential nutrients. Reductions in net photosynthetic rate could be accounted for by non-stomatal limitations. Moreover, the bioaccumulator factors exceeded greatly the critical value (1.0) for all Cr treatments, and the transport factors indicated that this species has a higher ability to transfer Cr from roots to tillers at higher Cr concentrations. These results confirmed that S. argentinensis is a chromium hyperaccumulator and that it may be useful for restoring Cr-contaminated sites.

  20. Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Gomez, Susana, E-mail: susana@us.es [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain); Mateos-Naranjo, Enrique; Vecino-Bueno, Inmaculada [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain); Feldman, Susana R. [Biologia, Facultad de Ciencias Agrarias y CIUNR, Universidad Nacional de Rosario (Spain)

    2011-01-30

    The cordgrass Spartina argentinensis, which occurs in inland marshes of the Chaco-Pampean regions of Argentina, has been found to be a new chromium hyperaccumulator. A glasshouse experiment was designed to investigate the effect of Cr{sup 6+} from 0 to 20 mmol l{sup -1} on growth and photosynthetic apparatus of S. argentinensis by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. Boron, calcium, chromium, copper, iron, manganese, magnesium, potassium and phosphorous concentrations were also determined. S. argentinensis showed phytotoxicity at tiller concentration of 4 mg g{sup -1} Cr, and symptoms of stress at tiller concentration of 1.5 mg g{sup -1} Cr, as well as reductions in leaf gas exchange, in chlorophyll a fluorescence parameters, in photosynthetic pigment contents and in the uptake of essential nutrients. Reductions in net photosynthetic rate could be accounted for by non-stomatal limitations. Moreover, the bioaccumulator factors exceeded greatly the critical value (1.0) for all Cr treatments, and the transport factors indicated that this species has a higher ability to transfer Cr from roots to tillers at higher Cr concentrations. These results confirmed that S. argentinensis is a chromium hyperaccumulator and that it may be useful for restoring Cr-contaminated sites.

  1. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica Thunb

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhouli [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Jia 19 Yuquan Road, Beijing 100039 (China); He Xingyuan, E-mail: hexy@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang 110016 (China); Chen Wei; Yuan Fenghui [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang 110016 (China); Yan Kun [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Jia 19 Yuquan Road, Beijing 100039 (China); Tao Dali [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang 110016 (China)

    2009-09-30

    Phytoremediation using hyperaccumulators is a promising technique of removing soil pollutants. In the study, growth responses, cadmium (Cd) accumulation capability and physiological mechanisms of Lonicera japonica Thunb. under Cd stress were investigated. Exposed to 5 and 10 mg L{sup -1} Cd, the plants did not show any visual symptoms, furthermore, the height, dry biomass of leaves, roots and total and the chlorophyll (CHL) content were obtained different grade increase. When the concentration of Cd was up to 50 mg L{sup -1}, the height, dry biomass of leaves and roots had not significant differences compared with the control. The indexes of tolerance (IT) were all above 0.8. The maintenance of high superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, suggesting strong internal detoxification mechanisms inside plant cells. After 21 days exposure to 25 mg L{sup -1} Cd, stem and shoot Cd concentrations reached 344.49 {+-} 0.71 and 286.12 {+-} 9.38 {mu}g g{sup -1} DW, respectively and the plant had higher bioaccumulation coefficient (BC) and translocation factor (TF). According to these results, it was shown L. japonica had strong tolerance and accumulation capability to Cd, therefore it is a potential Cd-hyperaccumulator.

  2. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    Science.gov (United States)

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  3. Fertilizer amendment for improving the phytoextraction of cadmium by a hyperaccumulator Rorippa globosa (Turcz.) Thell

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shuhe; Zhou, Qixing X. [Chinese Academy of Sciences, Shenyang (China). Key Laboratory of Pollution Ecology and Environmental Engineering; Zhu, Jiangong [Chinese Academy of Sciences, Shenyang (China). Key Laboratory of Pollution Ecology and Environmental Engineering; Chinese Academy of Sciences, Beijing (China). Graduate School; Zhan, Jie [Institute of Liaoning Basic Medicine, Shenyang (China)

    2011-09-15

    Purpose: Two main pathways of phytoremediation of heavy metal-contaminated soils are phytostabilization and phytoextraction. Some soil amendments can strengthen phytostabilization or phytoextraction through either reducing heavy metal bioavailability in soil or increasing the heavy metal accumulation capacity of the hyperaccumulator (enhancing heavy metal concentration or shoot biomass of the hyperaccumulator). Urea and chicken manure are often used as fertilizers. This research will explore their effects on a newly found hyperaccumulator, Rorippa globosa (Turcz.) Thell., phytoremediating cadmium (Cd). Materials and methods: Pot culture experiment was conducted to study the accumulation characteristics of R. globosa at different Cd contamination concentrations under one fertilizer level (1 g kg{sup -1} for urea and 100 g kg{sup -1} for chicken manure), as well as the same Cd dose (20 mg kg{sup -1}) under different fertilizer doses. Cd was artificially spiked at 2.5, 5, 10, and 20 mg kg{sup -1}. Urea was amended at 0.5, 1, and 2 g kg{sup -1}, while chicken manure was supplemented at 50, 100, and 200 g kg{sup -1}. The heavy metal concentration in soil and plant samples was determined using an atomic absorption spectrophotometer. pH, N, P, K, and so on in soil samples were determined by normal method. Results and discussion: The results showed that urea application did not affect the Cd concentrations in root, stem, leaf, inflorescence, and shoot of R. globosa, but chicken manure significantly decreased (p < 0.05) them by 28.4%, 29.3%, 30.8%, 24.9%, and 28.3%, respectively, owing to decreased extractable Cd in soil. Thus, strengthening the capacity (Cd accumulation in plant shoot, micrograms per pot) of urea was higher than that of chicken manure, though both shoot biomasses increased by one to threefold. Furthermore, the addition of urea and chicken manure increased the organic material, nitrogen, phosphorus and potassium, the microorganism count, urease, and the

  4. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation

    International Nuclear Information System (INIS)

    Caille, N.; Swanwick, S.; Zhao, F.J.; McGrath, S.P.

    2004-01-01

    Pot experiments were carried out to investigate the potential of phytoremediation with the arsenic hyperaccumulator Pteris vittata in a range of soils contaminated with As and other heavy metals, and the influence of phosphate and lime additions on As hyperaccumulation by P. vittata. The fern was grown in 5 soils collected from Cornwall (England) containing 67-4550 mg As kg -1 and different levels of metals. All soils showed a similar distribution pattern of As in different fractions in a sequential extraction, with more than 60% of the total As being associated with the fraction thought to represent amorphous and poorly-crystalline hydrous oxides of Fe and Al. The concentration of As in the fronds ranged from 84 to 3600 mg kg -1 , with 0.9-3.1% of the total soil As being taken up by P. vittata. In one soil which contained 5500 mg Cu kg -1 and 1242 mg Zn kg -1 , P. vittata suffered from phytotoxicity and accumulated little As (0.002% of total). In a separate experiment, neither phosphate addition (50 mg P kg -1 soil) nor liming (4.6 g CaCO 3 kg -1 soil) was found to affect the As concentration in the fronds of P. vittata, even though phosphate addition increased the As concentration in the soil pore water. Between 4 and 7% of the total soil As was taken up by P. vittata in 4 cuttings in this experiment. The results indicate that P. vittata can hyperaccumulate As from naturally contaminated soils, but may be suitable for phytoremediation only in the moderately contaminated soils

  5. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation

    Energy Technology Data Exchange (ETDEWEB)

    Caille, N.; Swanwick, S.; Zhao, F.J.; McGrath, S.P

    2004-11-01

    Pot experiments were carried out to investigate the potential of phytoremediation with the arsenic hyperaccumulator Pteris vittata in a range of soils contaminated with As and other heavy metals, and the influence of phosphate and lime additions on As hyperaccumulation by P. vittata. The fern was grown in 5 soils collected from Cornwall (England) containing 67-4550 mg As kg{sup -1} and different levels of metals. All soils showed a similar distribution pattern of As in different fractions in a sequential extraction, with more than 60% of the total As being associated with the fraction thought to represent amorphous and poorly-crystalline hydrous oxides of Fe and Al. The concentration of As in the fronds ranged from 84 to 3600 mg kg{sup -1}, with 0.9-3.1% of the total soil As being taken up by P. vittata. In one soil which contained 5500 mg Cu kg{sup -1} and 1242 mg Zn kg{sup -1}, P. vittata suffered from phytotoxicity and accumulated little As (0.002% of total). In a separate experiment, neither phosphate addition (50 mg P kg{sup -1} soil) nor liming (4.6 g CaCO{sub 3} kg{sup -1} soil) was found to affect the As concentration in the fronds of P. vittata, even though phosphate addition increased the As concentration in the soil pore water. Between 4 and 7% of the total soil As was taken up by P. vittata in 4 cuttings in this experiment. The results indicate that P. vittata can hyperaccumulate As from naturally contaminated soils, but may be suitable for phytoremediation only in the moderately contaminated soils.

  6. Nickel in nails, hair and plasma from nickel-hypersensitive women

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Veien, Niels

    1990-01-01

    The concentrations of nickel in finger-nails, toe-nails, hair and plasma from 71 nickel-hypersensitive women and 20 non-hypersensitive women were determined. Nickel concentrations in finger-nails were significantly higher than in toe-nails in both the nickel-hypersensitive group and the control...... group. Nickel-sensitive women had significantly higher levels of nickel in toe-nails, hair and plasma than had control subjects, whereas there was no significant difference in nickel concentration in finger-nails between the two groups. No correlation could be demonstrated between nickel levels in any...... combination of nails, hair and plasma in the nickel-hypersensitive or in the control group....

  7. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    Science.gov (United States)

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nickel-induced cytokine production from mononuclear cells in nickel-sensitive individuals and controls. Cytokine profiles in nickel-sensitive individuals with nickel allergy-related hand eczema before and after nickel challenge

    DEFF Research Database (Denmark)

    Borg, L; Christensen, J M; Kristiansen, J

    2000-01-01

    Exposure to nickel is a major cause of allergic contact dermatitis which is considered to be an inflammatory response induced by antigen-specific T cells. Here we describe the in vitro analysis of the nickel-specific T-cell-derived cytokine response of peripheral blood mononuclear cells from 35...... was somewhat of a surprise, since previous studies have suggested a Th1 response in nickel-mediated allergic contact dermatitis. Subsequently, the nickel-allergic individuals were randomized to experimental exposure to nickel or vehicle in a double-blind design. A daily 10-min exposure of one finger to 10 ppm...... nickel solution for 1 week followed by 100 ppm for an additional week evoked a clinical response of hand eczema in the nickel-exposed group. Blood samples were drawn on days 7 and 14 after the start of this exposure to occupationally relevant concentrations of nickel. No statistically significant...

  9. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  10. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-01-01

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola

  11. Remediation and Safe Production of cd Contaminated Soil Via Multiple Cropping Hyperaccumulator Solanum nigrum L. and Low Accumulation Chinese Cabbage.

    Science.gov (United States)

    Niu, Mingfen; Wei, Shuhe; Bai, Jiayi; Wang, Siqi; Ji, Dandan

    2015-01-01

    Multiple crop experiment of hyperaccumulator Solanum nigrum L. with low accumulation Chinese cabbage Fenyuanxin 3 were conducted in a cadmium (Cd) contaminated vegetable field. In the first round, the average removal rate of S. nigrum to Cd was about 10% without assisted phytoextraction reagent addition for the top soil (0-20 cm) with Cd concentration at 0.53-0.97 mg kg(-1) after its grew 90 days. As for assisted phytoextraction reagent added plots, efficiency of Cd remediation might reach at 20%. However, in the second round, Cd concentration in Chinese cabbage was edible, even in the plots with assisted phytoextraction reagent added. Thus, multiple cropping hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit) in one year, which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future.

  12. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part III: pilot-scale pyrolysis of synthetic hyperaccumulator biomass

    International Nuclear Information System (INIS)

    Koppolu, Lakshmi; Prasad, Ramakrishna; Davis Clements, L.

    2004-01-01

    Synthetic hyperaccumulator biomass (SHB) feed impregnated with Ni, Zn or Cu was used to conduct six experiments in a pilot-scale, spouted bed gasifier. Two runs each using corn stover with no metal added (blank runs) were also conducted. The reactor was operated in an entrained mode in an oxygen free (N 2 ) environment at 873 K and 1 atm. The apparent gas residence time in the heated zone of the pilot-scale reactor was 1.4 s at 873 K. The material balance closure for the eight experiments on an N 2 -free basis varied between 79% and 92%. Nearly 99% of the metal recovered in the product stream was concentrated in the char formed by pyrolyzing the SHB in the reactor. The metal concentration in the char varied between 6.6% and 16.6%, depending on the type of metal and whether the char was collected in the cyclone or ashbox. The metal component was concentrated by 3.2-6 times in the char, compared to the feed

  13. Removing nickel from nickel-coated carbon fibers

    Science.gov (United States)

    Hardianto, A.; Hertleer, C.; De Mey, G.; Van Langenhove, L.

    2017-10-01

    Conductive fibers/yarns are one of the most important materials for smart textiles because of their electrically conductive functionality combined with flexibility and light weight. They can be applied in many fields such as the medical sector, electronics, sensors and even as thermoelectric generators. Temperature sensors, for example, can be made using the thermocouple or thermopile principle which usually uses two different metal wires that can produce a temperature-dependent voltage. However, if metal wires are inserted into a textile structure, they will decrease the flexibility properties of the textile product. Nickel-coated Carbon Fiber (NiCF), a conductive textile yarn, has a potential use as a textile-based thermopile if we can create an alternating region of carbon and nickel along the fiber which in turn it can be used for substituting the metallic thermopile. The idea was to remove nickel from NiCF in order to obtain a yarn that contains alternating zones of carbon and nickel. Due to no literature reporting on how to remove nickel from NiCF, in this paper we investigated some chemicals to remove nickel from NiCF.

  14. Behavioral interventions to reduce nickel exposure in a nickel processing plant.

    Science.gov (United States)

    Rumchev, Krassi; Brown, Helen; Wheeler, Amanda; Pereira, Gavin; Spickett, Jeff

    2017-10-01

    Nickel is a widely-used material in many industries. Although there is enough evidence that occupational exposure to nickel may cause respiratory illnesses, allergies, and even cancer, it is not possible to stop the use of nickel in occupational settings. Nickel exposure, however, can be controlled and reduced significantly in workplaces. The main objective of this study was to assess if educational intervention of hygiene behavior could reduce nickel exposure among Indonesian nickel smelter workers. Participants were randomly assigned to three intervention groups (n = 99). Group one (n = 35) received only an educational booklet about nickel, related potential health effects and preventive measures, group two (n = 35) attended a presentation in addition to the booklet, and group three (n = 29) received personal feedback on their biomarker results in addition to the booklet and presentations. Pre- and post-intervention air sampling was conducted to measure concentrations of dust and nickel in air along with worker's blood and urine nickel concentrations. The study did not measure significant differences in particles and nickel concentrations in the air between pre- and post-interventions. However, we achieved significant reductions in the post intervention urine and blood nickel concentrations which can be attributed to changes in personal hygiene behavior. The median urinary nickel concentration in the pre-intervention period for group one was 52.3 µg/L, for group two 57.4 µg/L, and group three 43.2 µg/L which were significantly higher (pnickel with significantly (p nickel levels of 0.1 µg/L for all groups. The study showed that educational interventions can significantly reduce personal exposure levels to nickel among Indonesian nickel smelter workers.

  15. Nickel hydrogen/nickel cadmium battery trade studies

    Science.gov (United States)

    Stadnick, S. J.

    1983-01-01

    Nickel Hydrogen cell and battery technology has matured to the point where a real choice exists between Nickel Hydrogen and Nickel Cadmium batteries for each new spacecraft application. During the past few years, a number of spacecraft programs have been evaluated at Hughes with respect to this choice, with the results being split about fifty-fifty. The following paragraphs contain criteria which were used in making the battery selection.

  16. NICKEL PLATING PROCESS

    Science.gov (United States)

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  17. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress.

    Science.gov (United States)

    Xie, Qingqing; Li, Zhenji; Yang, Limin; Lv, Jing; Jobe, Timothy O; Wang, Qiuquan

    2015-01-01

    Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification.

  18. Responses of Landoltia punctata to cobalt and nickel: Removal, growth, photosynthesis, antioxidant system and starch metabolism.

    Science.gov (United States)

    Guo, Ling; Ding, Yanqiang; Xu, Yaliang; Li, Zhidan; Jin, Yanling; He, Kaize; Fang, Yang; Zhao, Hai

    2017-09-01

    Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co 2+ and Ni 2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co 2+ and Ni 2+ (≤0.5mgL -1 ) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL -1 ), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co 2+ and Ni 2+ . In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co 2+ and Ni 2+ contents (2012.9±18.8 and 1997.7±29.2mgkg -1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co 2+ - and Ni 2+ -polluted water and high-quality biomass production. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant.

    Directory of Open Access Journals (Sweden)

    Takashi Negishi

    Full Text Available Hydrangea (Hydrangea macrophylla is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT and plasma membrane Al transporter 1 (PALT1, respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively.

  20. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  1. The EU Nickel Directive revisited--future steps towards better protection against nickel allergy

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Uter, Wolfgang; McFadden, John

    2011-01-01

    In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive and the D......In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive...... and the Danish nickel regulation, consumer items intended to be in direct and prolonged contact with the skin were not allowed to release more than 0.5 µg nickel/cm2/week. It was considered unlikely that nickel allergy would disappear altogether as a proportion of individuals reacted below the level defined...

  2. Electrolytic Recovery of Nickel from Spent Electroless Nickel Bath Solution

    Directory of Open Access Journals (Sweden)

    R. Idhayachander

    2010-01-01

    Full Text Available Plating industry is one of the largest polluting small scale industries and nickel plating is among the important surface finishing process in this industry. The waste generated during this operation contains toxic nickel. Nickel removal and recovery is of great interest from spent bath for environmental and economic reasons. Spent electroless nickel solution from a reed relay switch manufacturing industry situated in Chennai was taken for electrolytic recovery of nickel. Electrolytic experiment was carried out with mild steel and gold coated mild steel as cathode and the different parameters such as current density, time, mixing and pH of the solution were varied and recovery and current efficiency was studied. It was noticed that there was an increase in current efficiency up to 5 A/dm2 and after that it declines. There is no significant improvement with mixing but with modified cathode there was some improvement. Removal of nickel from the spent electroless nickel bath was 81.81% at 5 A/dm2 and pH 4.23. Under this condition, the content of nickel was reduced to 0.94 g/L from 5.16 g/L. with 62.97% current efficiency.

  3. Human exposure to nickel

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, P

    1984-01-01

    In order of abundance in the earth's crust, nickel ranks as the 24th element and has been detected in different media in all parts of the biosphere. Thus, humans are constantly exposed to this ubiquitous element, though in variable amounts. Occupational exposures may lead to the retention of 100 micrograms of nickel per day. Environmental nickel levels depend particularly on natural sources, pollution from nickel-manufacturing industries and airborne particles from combustion of fossil fuels. Absorption from atmospheric nickel pollution is of minor concern. Vegetables usually contain more nickel than do other food items. Certain products, such as baking powder and cocoa powder, have been found to contain excessive amounts of nickel, perhaps related to nickel leaching during the manufacturing process. Soft drinking-water and acid beverages may dissolve nickel from pipes and containers. Scattered studies indicate a highly variable dietary intake of nickel, but most averages are about 200-300 micrograms/day. In addition, skin contact to a multitude of metal objects may be of significance to the large number of individuals suffering from contact dermatitis and nickel allergy. Finally, nickel alloys are often used in nails and prostheses for orthopaedic surgery, and various sources may contaminate intravenous fluids. Thus, human nickel exposure originates from a variety of sources and is highly variable. Occupational nickel exposure is of major significance, and leaching of nickel may add to dietary intakes and to cutaneous exposures. 79 references.

  4. Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2014-01-01

    Full Text Available Nickel nanopowders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at pH ~12.5. Sonication of the solutions created a temperature of 54–65°C to activate the reduction reaction of nickel nanoparticles. The solution pH affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (pH~10 of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  5. Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens

    Czech Academy of Sciences Publication Activity Database

    Mishra, S.; Mishra, Archana; Küpper, Hendrik

    2017-01-01

    Roč. 8, May 22 (2017), č. článku 835. ISSN 1664-462X R&D Projects: GA MŠk EF15_003/0000336 Institutional support: RVO:60077344 Keywords : cellular compartmentation * zinc homeostasis * cadmium * metal hyperaccumulator plants Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.298, year: 2016

  6. The EU Nickel Directive revisited--future steps towards better protection against nickel allergy

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Uter, Wolfgang; McFadden, John

    2011-01-01

    In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive...... by the EU Nickel Directive. Despite this, the EU Nickel Directive part 2 was expected to work as an operational limit that would sufficiently protect European consumers against nickel allergy and dermatitis. This review presents the accumulation of epidemiological studies that evaluated the possible effect...... and the Danish nickel regulation, consumer items intended to be in direct and prolonged contact with the skin were not allowed to release more than 0.5 µg nickel/cm2/week. It was considered unlikely that nickel allergy would disappear altogether as a proportion of individuals reacted below the level defined...

  7. Oral nickel exposure may induce Type I hypersensitivity reaction in nickel-sensitized subjects.

    Science.gov (United States)

    Büyüköztürk, Suna; Gelincik, Aslı; Ünal, Derya; Demirtürk, Mustafa; Çelik, Dolay Damla; Erden, Sacide; Çolakoğlu, Bahattin; Erdem Kuruca, Serap

    2015-05-01

    Little is known about the clinical and immunological changes in the nickel allergic patients with systemic symptoms. We aimed to evaluate T helper cell responses of patients with different clinical presentations due to nickel. Patients having various allergic symptoms and positive patch test results to nickel and 20 controls underwent skin prick tests with nickel. IL-10, IL-4, IL-5 and IFN-gamma were measured in the culture supernatants of PBMC stimulated by nickel during lymphocyte proliferation test (LTT). 69 patients (56 female, mean age: 49.2 ± 13.1), 97% having nickel containing dental devices and 20 controls (8 female, mean age 34.9 ± 12.06) were evaluated. Skin prick tests with nickel were positive in 70% of the patients (pnickel. Nickel containing dental alloys and oral nickel intake seem to trigger systemic symptoms in previously nickel sensitized patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Excessive nickel release from mobile phones--a persistent cause of nickel allergy and dermatitis.

    Science.gov (United States)

    Jensen, Peter; Johansen, Jeanne D; Zachariae, Claus; Menné, Torkil; Thyssen, Jacob P

    2011-12-01

    Despite the political intention to limit nickel allergy and dermatitis in Europeans, nickel allergy remains frequent. There are several explanations for the persistence of nickel allergy and dermatitis, including the increasing use of mobile phones. Before regulation of nickel release from mobile phones, we showed that eight (19.5%) of 41 mobile phones marketed in Denmark between 2003 and 2007 released nickel in concentrations that may result in nickel allergy and dermatitis. In 2009, the EU Nickel Directive was revised to include nickel-releasing mobile phones. To investigate the proportion of mobile phones sold in Denmark that release nickel after regulation. Metallic parts from 50 randomly selected mobile phones currently for sale in Denmark were tested for nickel release by use of the dimethylglyoxime (DMG)-nickel spot test. Nine (18%) phones showed at least one positive DMG test reaction and two phones had more than one DMG test-positive spot. Apparently, the proportion of mobile phones with significant nickel release remains unchanged, despite the 2009 revision of the EU Nickel Directive. We encourage manufacturers to measure nickel release from metallic components used in the assembly of mobile phones to ensure safe products. © 2011 John Wiley & Sons A/S.

  9. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress.

    Directory of Open Access Journals (Sweden)

    Qingqing Xie

    Full Text Available Manganese (Mn is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification.

  10. Excessive nickel release from mobile phones--a persistent cause of nickel allergy and dermatitis

    DEFF Research Database (Denmark)

    Jensen, Peter; Johansen, Jeanne D; Zachariae, Claus

    2011-01-01

    Despite the political intention to limit nickel allergy and dermatitis in Europeans, nickel allergy remains frequent. There are several explanations for the persistence of nickel allergy and dermatitis, including the increasing use of mobile phones. Before regulation of nickel release from mobile...... phones, we showed that eight (19.5%) of 41 mobile phones marketed in Denmark between 2003 and 2007 released nickel in concentrations that may result in nickel allergy and dermatitis. In 2009, the EU Nickel Directive was revised to include nickel-releasing mobile phones....

  11. Excessive nickel release from mobile phones--a persistent cause of nickel allergy and dermatitis

    DEFF Research Database (Denmark)

    Jensen, Peter; Johansen, Jeanne D; Zachariae, Claus

    2011-01-01

    phones, we showed that eight (19.5%) of 41 mobile phones marketed in Denmark between 2003 and 2007 released nickel in concentrations that may result in nickel allergy and dermatitis. In 2009, the EU Nickel Directive was revised to include nickel-releasing mobile phones.......Despite the political intention to limit nickel allergy and dermatitis in Europeans, nickel allergy remains frequent. There are several explanations for the persistence of nickel allergy and dermatitis, including the increasing use of mobile phones. Before regulation of nickel release from mobile...

  12. Synthesis of Nickel and Nickel Hydroxide Nano powders by Simplified Chemical Reduction

    International Nuclear Information System (INIS)

    Tientong, J.; Garcia, S.; Thurber, C.R.; Golden, T.D.

    2014-01-01

    Nickel nano powders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at ph ∼ 12.5. Sonication of the solutions created a temperature of 54-65 °C to activate the reduction reaction of nickel nanoparticles. The solution ph affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (ph ∼10) of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  13. Nickel concentrations in fingernails as a measure of occupational exposure to nickel

    DEFF Research Database (Denmark)

    Peters, K; Gammelgaard, Bente; Menné, T

    1991-01-01

    in nails (p less than 0.001). The difference between the 2 levels was also significant (p less than 0.001). No correlation between the nickel concentration in fingernails and the duration of exposure could be demonstrated. It was concluded that the higher the nickel level in the fingernails, the greater...... is the possibility that the person is occupationally exposed to nickel. Nail analysis is suggested as a measure of occupational exposure to nickel.......The nickel concentration in fingernails from 2 groups of people occupationally exposed to nickel was determined. In one group, comprising 83 persons moderately exposed to nickel, the mean +/- standard deviation (SD) was 29.2 micrograms/g +/- 56.7 micrograms/g and the median 13.8 micrograms/g (range...

  14. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.

    Science.gov (United States)

    Hughson, G W; Galea, K S; Heim, K E

    2010-01-01

    The aim of this study was to measure the levels of nickel in the skin contaminant layer of workers involved in specific processes and tasks within the primary nickel production and primary nickel user industries. Dermal exposure samples were collected using moist wipes to recover surface contamination from defined areas of skin. These were analysed for soluble and insoluble nickel species. Personal samples of inhalable dust were also collected to determine the corresponding inhalable nickel exposures. The air samples were analysed for total inhalable dust and then for soluble, sulfidic, metallic, and oxidic nickel species. The workplace surveys were carried out in five different workplaces, including three nickel refineries, a stainless steel plant, and a powder metallurgy plant, all of which were located in Europe. Nickel refinery workers involved with electrolytic nickel recovery processes had soluble dermal nickel exposure of 0.34 microg cm(-2) [geometric mean (GM)] to the hands and forearms. The GM of soluble dermal nickel exposure for workers involved in packing nickel salts (nickel chloride hexahydrate, nickel sulphate hexahydrate, and nickel hydroxycarbonate) was 0.61 microg cm(-2). Refinery workers involved in packing nickel metal powders and end-user powder operatives in magnet production had the highest dermal exposure (GM = 2.59 microg cm(-2) soluble nickel). The hands, forearms, face, and neck of these workers all received greater dermal nickel exposure compared with the other jobs included in this study. The soluble nickel dermal exposures for stainless steel production workers were at or slightly above the limit of detection (0.02 microg cm(-2) soluble nickel). The highest inhalable nickel concentrations were observed for the workers involved in nickel powder packing (GM = 0.77 mg m(-3)), although the soluble component comprised only 2% of the total nickel content. The highest airborne soluble nickel exposures were associated with refineries using

  15. Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell

    Science.gov (United States)

    Britton, Doris L.

    1996-01-01

    The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.

  16. Biological role of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Thauer, R K; Diekert, G; Schoenheit, P

    1980-01-01

    Several enzymes and one cofactor have recently been shown to contain nickel. For example, urease of jack beans has been found to be a nickel protein and factor F/sub 430/ from methanogenic bacteria to be a nickel tetrapyrrole. The biological role of nickel in several organisms is discussed.

  17. Contaminated nickel scrap processing

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include 234 Th, 234 Pa, 137 Cs, 239 Pu (trace), 60 Co, U, 99 Tc, and 237 Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs

  18. Prevalence of nickel allergy in Europe following the EU Nickel Directive - a review

    DEFF Research Database (Denmark)

    Ahlström, Malin G; Thyssen, Jacob P; Menné, Torkil

    2017-01-01

    .4% versus 19.8%) (p = 0.02), in female dermatitis patients aged ≤17 years (14.3% versus 29.2%) (p women: 20.2% versus 36.6%) (p men: 4.9% versus 6.6%) (p ..., and generally remained high, affecting 8-18% of the general population. A consistent pattern of decreasing prevalence of nickel allergy in some EU countries was observed, although the prevalence among young women remains high. Steps should be taken for better prevention of nickel allergy in EU countries.......Nickel contact allergy remains a problem in EU countries, despite the EU Nickel Directive. To study the prevalence of nickel allergy in EU countries following the implementation of the EU Nickel Directive, we performed a systematic search in PubMed for studies that examined the prevalence of nickel...

  19. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach.

    Science.gov (United States)

    Chen, Yanshan; Xu, Wenzhong; Shen, Hongling; Yan, Huili; Xu, Wenxiu; He, Zhenyan; Ma, Mi

    2013-08-20

    Arsenic (As) pollution is a global problem, and the plant-based cleanup of contaminated soils, called phytoremediation, is therefore of great interest. Recently, transgenic approaches have been designed to develop As phytoremediation technologies. Here, we used a one-gene transgenic approach for As tolerance and accumulation in Arabidopsis thaliana . PvACR3, a key arsenite [As(III)] antiporter in the As hyperaccumulator fern Pteris vittata , was expressed in Arabidopsis , driven by the CaMV 35S promoter. In response to As treatment, PvACR3 transgenic plants showed greatly enhanced tolerance. PvACR3 transgenic seeds could even germinate and grow in the presence of 80 μM As(III) or 1200 μM arsenate [As(V)] treatments that were lethal to wild-type seeds. PvACR3 localizes to the plasma membrane in Arabidopsis and increases arsenite efflux into external medium in short-term experiments. Arsenic determination showed that PvACR3 substantially reduced As concentrations in roots and simultaneously increased shoot As under 150 μM As(V). When cultivated in As(V)-containing soil (10 ppm As), transgenic plants accumulated approximately 7.5-fold more As in above-ground tissues than wild-type plants. This study provides important insights into the behavior of PvACR3 and the physiology of As metabolism in plants. Our work also provides a simple and practical PvACR3 transgenic approach for engineering As-tolerant and -hyperaccumulating plants for phytoremediation.

  20. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals?

    Science.gov (United States)

    January, Mary C; Cutright, Teresa J; Van Keulen, Harry; Wei, Robert

    2008-01-01

    Sundance sunflowers were subjected to contaminated solutions containing 3, 4, or 5 heavy metals, with and without EDTA. The sunflowers exhibited a metal uptake preference of Cd=Cr>Ni, Cr>Cd>Ni>As and Fe>As>Cd>Ni>Cr without EDTA and Cr>Cd>Ni, Fe>As>Cd>Cr>Ni with EDTA. As uptake was not affected by other metals, but it decreased Cd and Ni concentration in the stems. The presence of Fe improved the translocation of the other metals regardless of whether EDTA was present. In general, EDTA served as a hindrance to metal uptake. For the experiment with all five heavy metals, EDTA decreased Cd in the roots and stems from 2.11 to 1.36 and from 2.83 to 2.3 2mg g(-1) biomass, respectively. For the same conditions, Ni in the stems decreased from 1.98 to 0.94 mg g(-1) total metal uptake decreased from 14.95 mg to 13.89 mg, and total biomass decreased from 2.38 g to 1.99 g. These results showed an overall negative effect in addition of EDTA. However it is unknown whether the negative effect was due to toxicity posed by EDTA or the breaking of phytochelatin-metal bonds. The most important finding was the ability of Sundance sunflowers to achieve hyperaccumulator status for both As and Cd under all conditions studied. Ni hyperaccumulator status was only achieved in the presence of three metals without EDTA.

  1. Contaminated nickel scrap processing

    Energy Technology Data Exchange (ETDEWEB)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  2. Nickel ferrule applicators: a source of nickel exposure in children.

    Science.gov (United States)

    Jacob, Sharon E; Silverberg, Jonathan I; Rizk, Christopher; Silverberg, Nanette

    2015-01-01

    Eye makeup has been investigated for nickel content and found to have no direct association with nickel allergy and cosmetic dermatitis. However, the tools used (e.g., eyelash curlers, hairdressing scissors, hair curlers, and eye shadow and makeup applicators) may be sources. Nickel is ubiquitous and a wide range of sources have been reported, and makeup applicators (ferrules) now join the list. © 2015 Wiley Periodicals, Inc.

  3. Nickel allergy in a Danish population 25 years after the first nickel regulation

    DEFF Research Database (Denmark)

    Ahlström, Malin G; Menné, Torkil; Thyssen, Jacob P

    2017-01-01

    BACKGROUND: Nickel in metallic items has been regulated in Denmark since 1990; however, 10% of young Danish women are still sensitized to nickel. There is a need for continuous surveillance of the effect of regulation. OBJECTIVES: To identify current self-reported metallic exposures leading...... reactions within 30 min of contact were reported by 30.7% of patients. CONCLUSIONS: Nickel exposures that led to the implementation of a nickel regulation seem to persist. The durations of contact with metallic items to fall under the current REACH regulation of nickel correspond well with the results...... to dermatitis in nickel-allergic patients, and the minimum contact time needed for dermatitis to occur. METHODS: A questionnaire was sent to all patients who reacted positively to nickel sulfate 5% pet. within the last 5 years at the Department of Dermatology and Allergy, Gentofte Hospital. RESULTS...

  4. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass

    International Nuclear Information System (INIS)

    Koppolu, Lakshmi; Agblevor, F.A.; Clements, L.D.

    2003-01-01

    Synthetic hyperaccumulator biomass (SHB) impregnated with Ni, Zn, Cu, Co or Cr was used to conduct 11 experiments in a lab-scale fluidized bed reactor. Two runs with blank corn stover, with no metal added, were also conducted. The reactor was operated in an entrained mode in a oxygen-free (N 2 ) environment at 873 K and 1 atm. The apparent gas residence time through the lab-scale reactor was 0.6 s at 873 K. The material balance for the lab-scale experiments on N 2 -free basis varied between 81% and 98%. The presence of a heavy metal in the SHB decreased the char yield and increased the tar yield, compared to the blank. The char and gas yields appeared to depend on the form of the metal salt used to prepare the SHB. However, the metal distribution in the product streams did not seem to be influenced by the chemical form of the metal salt used to prepare the SHB. Greater than 98.5% of the metal in the product stream was concentrated in the char formed by pyrolyzing and gasifying the SHB in the reactor. The metal concentration in the char varied between 0.7 and 15.3% depending on the type of metal in the SHB. However, the metal concentration was increased 4 to 6 times in the char compared to the feed

  5. Relationship between nickel allergy and diet

    Directory of Open Access Journals (Sweden)

    Sharma Ashimav

    2007-01-01

    Full Text Available Nickel is a ubiquitous trace element and it occurs in soil, water, air and of the biosphere. It is mostly used to manufacture stainless steel. Nickel is the commonest cause of metal allergy. Nickel allergy is a chronic and recurring skin problem; females are affected more commonly than males. Nickel allergy may develop at any age. Once developed, it tends to persist life-long. Nickel is present in most of the dietary items and food is considered to be a major source of nickel exposure for the general population. Nickel content in food may vary considerably from place to place due to the difference in nickel content of the soil. However, certain foods are routinely high in nickel content. Nickel in the diet of a nickel-sensitive person can provoke dermatitis. Careful selection of food with relatively low nickel concentration can bring a reduction in the total dietary intake of nickel per day. This can influence the outcome of the disease and can benefit the nickel sensitive patient.

  6. Nickel exposure and plasma levels of biomarkers for assessing oxidative stress in nickel electroplating workers.

    Science.gov (United States)

    Tsao, Yu-Chung; Gu, Po-Wen; Liu, Su-Hsun; Tzeng, I-Shiang; Chen, Jau-Yuan; Luo, Jiin-Chyuan John

    2017-07-01

    The mechanism of nickel-induced pathogenesis remains elusive. To examine effects of nickel exposure on plasma oxidative and anti-oxidative biomarkers. Biomarker data were collected from 154 workers with various levels of nickel exposure and from 73 controls. Correlations between nickel exposure and oxidative and anti-oxidative biomarkers were determined using linear regression models. Workers with a exposure to high nickel levels had significantly lower levels of anti-oxidants (glutathione and catalase) than those with a lower exposure to nickel; however, only glutathione showed an independent association after multivariable adjustment. Exposure to high levels of nickel may reduce serum anti-oxidative capacity.

  7. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    International Nuclear Information System (INIS)

    Liu, Xuguang; Xu, Lei; Zhang, Baoquan

    2014-01-01

    Preparation of supported nickel phosphide (Ni 2 P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni 2 P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni 2 P structure, verified by XRD characterization results. The alumina (namely, γ-Al 2 O 3 , θ-Al 2 O 3 , or α-Al 2 O 3 ) with distinct physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni 2 P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N 2 -sorption isotherm. The uniform surface energy of α-Al 2 O 3 results only in the nickel phosphosate precursor and thus the Ni 2 P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al 2 O 3 , θ-Al 2 O 3 , and γ-Al 2 O 3 ) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni 3 P, Ni 12 P 5 , Ni 2 P). - Highlights: • Preparing pure Ni 2 P. • Elucidating nickel phosphate precursor. • Associating with surface energy

  8. Evaluation of hyperaccumulator plant species grown in metalliferous sites in Albania

    Science.gov (United States)

    Babani, F.; Civici, N.; Mullaj, A.; Kongjika, E.; Ylli, A.

    2007-04-01

    Heavy metal contamination of soils causes serious problems to our society. A small number of interesting plant species have been identified that can grow in soils containing high levels of heavy metals, and can also accumulate these metals to high concentrations in the shoot. The heavy metal contents in root, shoot, leaves and flowers of spontaneous plants grown in metalliferous sites in Albania together with the elemental composition of the native soils were determined by X-ray fluorescence spectrometry. Efficiency of photosynthetic apparatus of analyzed ecotypes was evaluated via chlorophyll fluorescence imaging during induction kinetics. Response of plant root system to the presence of metals, the available pools of metals to plants, effect of plant biomass to phytoextraction, photosynthetic pigment metabolism and chlorophyll fluorescence signature of leaves allowed to characterize hyperaccumulator properties and to detect the variation between selected ecotypes to heavy metal accumulation.

  9. Mechanisms of nickel toxicity in microorganisms

    Science.gov (United States)

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  10. Effect on growth and nickel content of cabbage plants watered with nickel solutions

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, O B

    1979-01-01

    Chinese cabbage plants were watered with different concentrations of NiCl/sub 2/ solutions and the effect on growth and uptake of nickel in the plants were studied. No toxic effect on plant growth was observed. A higher content of nickel was found in the plants exposed to more concentrated nickel solutions. Nickel contamination and its clinical consequences are discussed. 29 references, 1 figure, 1 table.

  11. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    Science.gov (United States)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  12. Environmental and human toxicology of nickel - a review; Umwelt- und Humantoxikologie von Nickel - eine aktuelle Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Beyersmann, D. [Fachbereich Biologie und Chemie, Univ. Bremen (Germany)

    2006-07-01

    Nickel is a relatively rare element, and its concentrations in ambient air, soils and waters are very low. Higher burdens of nickel are found in nickel industries and their proximity. The human uptake of nickel from the ambient air is neglectably low, except in industrial exposures. The main fraction of human nickel uptake is from food, nearly 50% stems from vegetables. Only about 2% of the oral uptake of nickel are resorbed and distributed over all organs investigated. The uptake of nickel compounds through the skin generally is very low. However, chronic skin contact with nickel and nickel compounds causes a specific contact allergy. This disease was observed after occupational exposure but also frequently in the general population. The number of new cases has dropped considerably due to reinforced prevention. Epidemiological studies with workers of nickel smelting and refining plants have demonstrated increased risks of nose and lung cancer. Human data are supported by results from animal experiments which have shown that inhalation of various nickel compounds caused lung cancer. Furthermore, animal experiments have yielded evidence that oral and inhalative exposure to nickel compounds impair reproduction. National and international agencies have classified various nickel compounds as carcinogenic to humans. The unit cancer risk attributed to life-long inhalation of 1 {mu}g Ni/m{sup 3} air is estimated to be between 2 x 10{sup -4} and 7 x 10{sup -4}. Occupational exposure limits in Germany have been the Technical Guidance Values of 0.5 mg/m{sup 3} for nickel and weakly soluble nickel compounds and of 0.05 mg/m{sup 3} for inhalable droplets of soluble nickel salts. The German limit value for ambient immission is 0.015 mg Ni/m{sup 2}. d, and for emission 0,5 mg Ni/m{sup 3}. Limit values for nickel in air are to be taken not as safe thresholds but as guidance values for the delimitation of the cancer risk. (orig.)

  13. Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca Americana L

    Energy Technology Data Exchange (ETDEWEB)

    Peng Kejian [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Hunan Research Academy of Environmental Sciences Changsha 410004 (China); Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); You Wuxin [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lian Chunlan [Asian Natural Environmental Science Center, University of Tokyo, 1-1-8 Midori-cho, Nishitokyo, Tokyo 188-0002 (Japan); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Shen Zhenguo [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: zgshen@njau.edu.cn

    2008-06-15

    In the present study, the accumulation of Mn and other metals by Phytolacca Americana L. from contaminated soils in Hunan Province, South China, was investigated. Results showed that the average concentrations of Mn in the leaves and roots reached 2198 and 80.4 mg kg{sup -1} (dry weight), respectively, with a maximum 13,400 mg kg{sup -1} in the leaves. A significant correlation was found between Mn concentrations in the plant leaves and those in the corresponding soils. Hydroponic experiments were also conducted to study the Cd uptake ability and interactions between Mn and Cd in the plant. It was found that P. americana hyperaccumulated not only Mn, but also Cd in the leaves. In the presence of Cd, adding Mn to the solution significantly improved the plant growth and reduced the concentrations of Cd in all organs of the plant.

  14. Progress in the Development of Lightweight Nickel Electrode for Nickel-Hydrogen Cell

    Science.gov (United States)

    Britton, Doris L.

    1999-01-01

    Development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (Ni-H2) program at the NASA Glenn Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a lighter weight electrode for the nickel-hydrogen cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active material. Initial tests include activation and capacity measurements at five different discharge levels, C/2, 1.0 C, 1.37 C, 2.0 C, and 2.74 C. The electrodes are life cycle tested using a half-cell configuration at 40 and 80% depths-of-discharge (DOD) in a low-Earth-orbit regime. The electrodes that pass the initial tests are life cycle-tested in a boiler plate nickel-hydrogen cell before flight weight design are built and tested.

  15. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern)

    International Nuclear Information System (INIS)

    Zhang Weihua; Cai Yong; Downum, Kelsey R.; Ma, Lena Q.

    2004-01-01

    Pteris vittata (Chinese brake fern) has potential for phytoremediation of As-contaminated sites. In this study, the synthesis of total thiols and acid-soluble thiols in P. vittata was investigated under arsenic exposure. The strong and positive correlation between As concentration and acid-soluble thiols in plant leaflets suggests that acid-soluble thiols may play a role in As detoxification. A major As-induced thiol was purified and characterized. A molecular ion (M+1) of 540 m/z suggests that the thiol was a phytochelatin (PC) with two base units (PC 2 ). However, the ratios of acid-soluble thiols to As in leaflets exposed to As ranged from 0.012 to 0.026, suggesting that only a very small part of As is complexed by PC 2 . PCs could play a minor detoxification role in this hyperaccumulator. A PC-independent mechanism appears to be mainly involved in As tolerance, while PC-dependent detoxification seems to be a supplement

  16. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weihua; Cai Yong; Downum, Kelsey R.; Ma, Lena Q

    2004-10-01

    Pteris vittata (Chinese brake fern) has potential for phytoremediation of As-contaminated sites. In this study, the synthesis of total thiols and acid-soluble thiols in P. vittata was investigated under arsenic exposure. The strong and positive correlation between As concentration and acid-soluble thiols in plant leaflets suggests that acid-soluble thiols may play a role in As detoxification. A major As-induced thiol was purified and characterized. A molecular ion (M+1) of 540 m/z suggests that the thiol was a phytochelatin (PC) with two base units (PC{sub 2}). However, the ratios of acid-soluble thiols to As in leaflets exposed to As ranged from 0.012 to 0.026, suggesting that only a very small part of As is complexed by PC{sub 2}. PCs could play a minor detoxification role in this hyperaccumulator. A PC-independent mechanism appears to be mainly involved in As tolerance, while PC-dependent detoxification seems to be a supplement.

  17. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity.

    Science.gov (United States)

    Nielsen, G D; Søderberg, U; Jørgensen, P J; Templeton, D M; Rasmussen, S N; Andersen, K E; Grandjean, P

    1999-01-01

    Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water. In the second experiment, a stable nickel isotope, 61Ni, was given in drinking water to 20 nickel-sensitized women and 20 age-matched controls, both groups having vesicular hand eczema of the pompholyx type. Nine of 20 nickel allergic eczema patients experienced aggravation of hand eczema after nickel administration, and three also developed a maculopapular exanthema. No exacerbation was seen in the control group. The course of nickel absorption and excretion in the allergic groups did not differ and was similar to the pattern seen in the first study, although the absorption in the women was less. A sex-related difference in gastric emptying rates may play a role. Thus, food intake and gastric emptying are of substantial significance for the bioavailability of nickel from aqueous solutions

  18. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-01-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl_2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl_2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. - Highlights: • Metal availability, desorption, and speciation were tested during phytoextraction. • Metal availability showed an initial sharp decline then a slight change in acid soils. • Metal availability changed little during

  19. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site.

    Science.gov (United States)

    Jeong, Seulki; Moon, Hee Sun; Nam, Kyoungphile

    2015-03-01

    Ecological risk due to the hyperaccumulation of As in Pteris cretica during phytoremediation was evaluated at an abandoned As-contaminated site. Five receptor groups representing terrestrial invertebrates, avian insectivores, small mammals, herbivores, and omnivores were selected as potentially affected ecological receptors. Soil and food ingestion were considered as major exposure pathways. Phytoremediation was performed with P.cretica only and with both P.cretica and siderophores to enhance plant uptake of As. Ecological hazard index (EHI) values for the small mammal greatly exceeded 1.0 even after three weeks of growth regardless of siderophore application, probably due to its limited home range. For the mammalian herbivore, which mainly consumes plant foliage, the EHI values were greater than 5.73 after seven weeks without siderophore application, but the value increased sharply to 29.3 at seven weeks when siderophores were applied. This increased risk could be attributed to the facilitated translocation of As from roots to stems and leaves in P.cretica. Our results suggest that, when a phytoremediation strategy is considered for metals remediation, its ecological consequences should be taken into account to prevent the spread of hyperaccumulated heavy metals throughout the food chain of ecological receptors. Uncertainties involved in the ecological risk assessment process were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The cost of nickel allergy

    DEFF Research Database (Denmark)

    Hamann, Carsten R; Hamann, Dathan; Hamann, Curtis

    2013-01-01

    %), followed by aluminium-bronze (62, 17%). In total, 239 denominations released nickel (28%). Coins from Bolivia, Brazil and Costa Rica did not release nickel. Fewer than one-third of the denominations or issues from China, India, the euro area and Indonesia released nickel. In the United States, the Russian...... Federation, Japan, and Mexico, one-third or more of the denominations released nickel. Conclusions. This worldwide selection of circulating coins covered countries with 75% of the world population, and shows that the majority of the world population lives in countries where coins release nickel. Pertinently...

  1. Biosorption of nickel with barley straw.

    Science.gov (United States)

    Thevannan, Ayyasamy; Mungroo, Rubeena; Niu, Catherine Hui

    2010-03-01

    Wastewater containing nickel sulphate generated from a nickel plating industry is of great concern. In the present work, biosorption of nickel by barley straw from nickel sulphate solution was investigated. Nickel uptake at room temperature (23+/-0.5 degrees C) was very sensitive to solution pH, showing a better uptake value at a pH of 4.85+/-0.10 among the tested values. The nickel biosorption isotherm fitted well the Langmuir equation. When the ionic strength (IS) of the solution was increased from less than 0.02-0.6M, nickel uptake was reduced to 12% of that obtained at IS of less than 0.02 M. Barley straw showed a higher nickel uptake (0.61 mmol/g) than acid washed crab shells (0.04 mmol/g), demonstrating its potential as an adsorbent for removal of nickel. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Nickel accumulation by Hybanthus floribundus

    Energy Technology Data Exchange (ETDEWEB)

    Severne, B C

    1974-04-26

    Several ecotypes of Hybanthus floribundus are found across the southern part of Australia. However, the three nickel accumulating ecotypes are restricted to a broad belt in Western Australia. Nickel concentrations in this shrub were observed to decrease southwards (from 8000 to 1000 p.p.m.) as the annual rainfall increased from 7 inches to more than 30 inches. Studies have shown that nickel concentrations increase from the roots through the rootstock, into the stems and reach maximum towards the leaf tips. High nickel concentrations are also seen in seed capsules (1500 p.p.m.), seeds (2000 p.p.m.) and flowers. The maximum nickel concentration recorded is 1.6% (26% nickel in ash) in mature leaf tissue. 16 references, 2 tables.

  3. Corrosion properties of plasma deposited nickel and nickel-based alloys

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Had, J.; Neufuss, Karel

    2003-01-01

    Roč. 48, č. 3 (2003), s. 215-226 ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, nickel, nickel-based alloys Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  4. EPIDEMIOLOGICAL AND PATHOGENETIC ASPECTS OF NICKEL POISONING

    Directory of Open Access Journals (Sweden)

    Vladmila Bojanic

    2007-04-01

    Full Text Available Nickel is widely distributed in the environment. High consumption of nickel containing products inevitably leads to environmental pollution by nickel and its derivatives at all stages of production, utilization, and disposal.Human exposure to nickel occurs primarily via inhalation and ingestion and is particularly high among nickel metallurgy workers. In addition, implantation of nickel-containing endoprostheses and iatrogenic administration of nickel-contaminated medica-tions leads to significant parenteral exposures. Exposure to nickel compounds can produce a variety of adverse effects on human health. Nickel allergy in the form of contact dermatitis is the most common reaction.A frontal headache, vertigo, nausea, vomiting, insomnia, and irritability are the most common signs of acute poisoning with nickel compounds. The respiratory tract, kidneys and liver suffer the most significant changes like nickel pneumoconiosis, chronic rhinitis and sinonasal tumors and transitory nephropathy. Although the accumulation of nickel in the body through chronic exposure can lead to lung fibrosis, cardiovascular and kidney diseases, the most serious concerns relate to nickel’s carcinogenic activity. Nickel compounds are carcinogenic to humans and metallic nickel is possibly carcinogenic to humans.

  5. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  6. Manganese (Mn) stress toward hyperaccumulators plants combination (HPC) using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition on soybean (Glycine max) seedling stage

    Science.gov (United States)

    Darmawan, Tania Sylviana; Zahroh, Tata Taqiyyatuz; Merindasya, Mirza; Masfaridah, Ririn; Hartanti, Dyah Ayu Sri; Arum, Sekar; Nurhatika, Sri; Muhibuddin, Anton; Surtiningsih, Tini; Arifiyanto, Achmad

    2017-06-01

    Heavy metals were a metal bracket which had a specific gravity greater than 5 g / cm3. Manganese was one of them because it has a specific gravity of 7.4 g / cm3. Together with widespread cases of soil contamination caused by heavy metals as well as increased development of the science of breeding ground rapidly, then the alternative rehabilitation techniques were relatively cheap and effective it needs to be developed and even some cases of contaminated management soil using a combination of plants with microorganisms to be more effective. Thus it was necessary to develop research on plants that were able to accumulate heavy metals and other toxic materials, such as Mn so that the land becomes safe for health and the environment. Based on above reason this research aimed to see the influence of hyperaccumulators combination of plants using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition to stressed by manganese (Mn) on soybean (Glycine max). Observations of growth, chlorophyll content and heavy metals analysis performed on nine treatments (P1-P9) and one control (P0). The results showed a combination of hyperaccumulators under mychorrizal helped overcome the stress of manganese (Mn) in the leaves of soybean (G. max). It gave an influence on the number of leaves and chlorophyll content of soybean (G. max), but no effect performed on the height and the roots of soybean (G. max). The use of plants in small amounts hyperaccumulators (P1;1 jatropha and 1 lamtoro) was sufficient to cope with stress of Mn in the leaves of soybean (G. max).

  7. EPIDEMIOLOGICAL AND PATHOGENETIC ASPECTS OF NICKEL POISONING

    OpenAIRE

    Vladmila Bojanic; Vladimir Ilic; Biljana Jovic

    2007-01-01

    Nickel is widely distributed in the environment. High consumption of nickel containing products inevitably leads to environmental pollution by nickel and its derivatives at all stages of production, utilization, and disposal.Human exposure to nickel occurs primarily via inhalation and ingestion and is particularly high among nickel metallurgy workers. In addition, implantation of nickel-containing endoprostheses and iatrogenic administration of nickel-contaminated medica-tions leads to signif...

  8. Relationship between nickel allergy and diet

    OpenAIRE

    Sharma Ashimav

    2007-01-01

    Nickel is a ubiquitous trace element and it occurs in soil, water, air and of the biosphere. It is mostly used to manufacture stainless steel. Nickel is the commonest cause of metal allergy. Nickel allergy is a chronic and recurring skin problem; females are affected more commonly than males. Nickel allergy may develop at any age. Once developed, it tends to persist life-long. Nickel is present in most of the dietary items and food is considered to be a major source of nickel exposure for the...

  9. Characterization and Growth Mechanism of Nickel Nanowires Resulting from Reduction of Nickel Formate in Polyol Medium

    Directory of Open Access Journals (Sweden)

    Olga A. Logutenko

    2016-01-01

    Full Text Available Nickel linear nanostructures were synthesized by reduction of nickel formate with hydrazine hydrate in ethylene glycol medium in the absence of any surfactants or capping agents for direction of the particles growth. The effect of the synthesis conditions such as temperature, reduction time, type of polyol, and nickel formate concentration on the reduction products was studied. The size and morphology of the nickel nanowires were characterized by X-ray diffraction, scanning, and transmission electron microscopy. It was shown that the nickel nanocrystallites were wire-shaped with a face-center-cubic phase. Ethylene glycol was found to play a crucial role in the formation of the nickel nanowires. The possible growth processes of the wire-shaped particles taking place at 110 and 130°C are discussed. It was shown that, under certain synthesis conditions, nickel nanowires grow on the surface of the crystals of the solid intermediate of nickel with hydrazine hydrate.

  10. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity

    DEFF Research Database (Denmark)

    Nielsen, G D; Søderberg, U; Jørgensen, Poul Jørgen

    1999-01-01

    nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher...... than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded...... to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water...

  11. Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil.

    Science.gov (United States)

    Leung, H M; Leung, A O W; Ye, Z H; Cheung, K C; Yung, K K L

    2013-08-01

    A greenhouse pot experiment was conducted to study the effects of three types of single inoculum [indigenous mycorrhizas (IM) isolated from As mine, Glomus mosseae (GM) and Glomus intraradices (GI)] and two types of mixed inoculum (mixed with IM and either GM or GI) on the growth response of Pteris vittata (hyperaccumulator) and Cynodon dactylon (non-hyperaccumulator) at three levels of As concentrations (0, 100 and 200mgkg(-1)). Both mycorrhizal plants exhibited significantly higher biomass, and N and P accumulation in its tissue than the control. Among the mycorrhizal inoculum, the mixed inoculum IM/GM promoted substantially higher mycorrhizal colonization and arsenate reductase activity in P. vittata than C. dactylon, among all As levels. The portion of Paris arbuscular mycorrhizal structure (observed in colonized roots) together with the highest As translocation factor of 10.2 in P. vittata inoculated with IM/GM was also noted. It was deduced that IM/GM inoculum may be the best choice for field inoculation at any contaminated lands as the inoculum exhibited better adaptation to variable environmental conditions and hence benefited the host plants. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Bioavailability of nickel in man: effects of foods and chemically-defined dietary constituents on the absorption of inorganic nickel.

    Science.gov (United States)

    Solomons, N W; Viteri, F; Shuler, T R; Nielsen, F H

    1982-01-01

    By serial determination of the change in plasma nickel concentration following a standard dose of 22.4 mg of nickel sulfate hexahydrate containing 5 mg of elemental nickel, the bioavailability of nickel was estimated in human subjects. Plasma nickel concentration was stable in the fasting state and after an unlabeled test meal, but after the standard dose of nickel in water was elevated 48.8, 73.0, 80.0, and 53.3 microgram/1, respectively, at hours 1, 2, 3, and 4. Plasma nickel did not rise above fasting levels when 5 mg of nickel was added to two standard meals: a typical Guatemalan meal and a North American breakfast. When 5 mg of nickel was added to five beverages-whole cow milk, coffee, tea, orange juice, and Coca Cola-the rise in plasma nickel was significantly suppressed with all but Coca Cola. Response to nickel also was suppressed in the presence of 1 g of ascorbic acid. Phytic acid in a 2:1 molar ratio with nickel, however, did not affect the rise in plasma nickel. The chelate of iron and ethylenediaminetetraacetate, NaFeEDTA, an iron-fortifying agent suggested for application in Central America, slightly but not significantly depressed plasma nickel rise at 2 hours, whereas disodium EDTA depressed plasma nickel levels significantly below the fasting nickel curve at 3 and 4 hours postdose. These studies suggest that the differential responses of inorganic nickel to distinct foods, beverages, and chemically-defined dietary constituents could be important to human nutrition.

  13. Nickel allergy

    DEFF Research Database (Denmark)

    Fischer, L A; Johansen, J D; Menné, T

    2007-01-01

    BACKGROUND: The frequency of nickel allergy varies between different population groups. Exposure regulation has proven effective in decreasing the frequency. Experimental studies with other allergens have shown a significant relation between patch test reactivity and repeated open application test...... in a patch test and a dilution series of three concentrations in a ROAT, with duration of up to 21 days. Eighteen persons with no nickel allergy were included as control group for the ROAT. RESULTS: The predicted dose which will elicit a reaction in 10% of allergic individuals was calculated to be 0......-response; indeed, there was no statistically significant difference. CONCLUSIONS: For elicitation of nickel allergy the elicitation threshold for the patch test is higher than the elicitation threshold (per application) for the ROAT, but is approximately the same as the accumulated elicitation threshold...

  14. Effect of organic fertilizers on quality and quantity characteristics of blond psyllium (Plantago ovata Forssk. clasping peperweed (Lepidium perfoilatum L., qodumeh Shirazi (Alyssum homolocarpum L. and dragon's head (Lalementia iberica L.

    Directory of Open Access Journals (Sweden)

    A. Koocheki

    2016-05-01

    Full Text Available This experiment was carried out in experimental farm of Agricultural Faculty of Ferdowsi University of Mashhad, Iran during 2010. The design was split plot with three replications. Main plots were the medicinal plant species consist of: blond psyllium (Plantago ovate Forssk., clasping peperweed (Lepidium perfoilatum L., qodumeh Shirazi (Alyssum homolocarpum L. dragon's head (Lalementia iberica L. and subplots were various organic fertilizer consist of cow manure, vermicompost (based on cow manure, coffee compost and spent mushroom compost. Results showed that medicinal plants had significant difference for number of seeds per plant, shoot dry matter, seed yield, plant height and mucilage percentage. Effect of various organic matter on all traits except for 1000-seed weight was significant. Interaction of organic fertilizers and plant was significant for dry matter. Lalementia had the most mucilage percentage (27.75% and cow manure was the best fertilizer because it had the highest amounts of dry matter (1816 kg.ha-1, seed yield (467.5 kg.ha-1, number seed per plant (550 seeds.plant-1, plant height (23.17 cm and mucilage percentage (20.75%.

  15. Evaluation of specimen preparation techniques for micro-PIXE localisation of elements in hyperaccumulating plants

    International Nuclear Information System (INIS)

    Kachenko, Anthony G.; Siegele, Rainer; Bhatia, Naveen P.; Singh, Balwant; Ionescu, Mihail

    2008-01-01

    Hybanthus floribundus subsp. floribundus, a rare Australian Ni-hyperaccumulating shrub and Pityrogramma calomelanos var. austroamericana, an Australian naturalized As-hyperaccumulating fern are promising species for use in phytoremediation of contaminated sites. Micro-proton-induced X-ray emission (μ-PIXE) spectroscopy was used to map the elemental distribution of the accumulated metal(loid)s, Ca and K in leaf or pinnule tissues of the two plant species. Samples were prepared by two contrasting specimen preparation techniques: freeze-substitution in tetrahydrofuran (THF) and freeze-drying. The specimens were analysed to compare the suitability of each technique in preserving (i) the spatial elemental distribution and (ii) the tissue structure of the specimens. Further, the μ-PIXE results were compared with concentration of elements in the bulk tissue obtained by ICP-AES analysis. In H. floribundus subsp. floribundus, μ-PIXE analysis revealed Ni, Ca and K concentrations in freeze-dried leaf tissues were at par with bulk tissue concentrations. Elemental distribution maps illustrated that Ni was preferentially localised in the adaxial epidermal tissues (1% DW) and least concentration was found in spongy mesophyll tissues (0.53% DW). Conversely, elemental distribution maps of THF freeze-substituted tissues indicated significantly lower Ni, Ca and K concentrations than freeze-dried specimens and bulk tissue concentrations. Moreover, Ni concentrations were uniform across the whole specimen and no localisation was observed. In P. calomelanos var. austroamericana freeze-dried pinnule tissues, μ-PIXE revealed statistically similar As, Ca and K concentrations as compared to bulk tissue concentrations. Elemental distribution maps showed that As localisation was relatively uniform across the whole specimen. Once again, THF freeze-substituted tissues revealed a significant loss of As compared to freeze-dried specimens and the concentrations obtained by bulk tissue analysis

  16. [Nickel levels in female dermatological patients].

    Science.gov (United States)

    Schwegler, U; Twardella, D; Fedorov, M; Darsow, U; Schaller, K-H; Habernegg, R; Behrendt, H; Fromme, H

    2009-07-01

    Nickel levels in urine were determined among 163 female dermatological patients aged 18 to 46 years. Data on life-style factors were collected in parallel via a questionnaire. Urinary nickel excretion was in the normal range of the German female population (0.2-46.1 microg Ni/g creatinine). The 95th percentile (3.9 microg Ni/l urine) exceeded the German reference value (3.0 microg Ni/l urine). In the multivariate regression analyses we found a statistically significant increase of ln-transformed nickel levels with increase in age and in women using dietary supplements. The following variables were not associated with Nickel urine levels: suffering from nickel eczema, smoking, drinking stagnated water, eating foods with high nickel contents and using nickel-containing kitchen utensils as, for example, an electric kettle with an open heater coil. We conclude that personal urinary levels should be assessed with simultaneous consideration of habits and life-style factors. A German national survery would be useful. Those patients who experience the exacerbation of their eczema in cases of oral provocation, for example, by a high nickel diet should be aware of potential sources of nickel, such as supplements.

  17. Characterization and Growth Mechanism of Nickel Nano wires Resulting from Reduction of Nickel Formate in Polyol Medium

    International Nuclear Information System (INIS)

    Logutenko, O.A.; Titkov, A.I.; Vorobyov, A.M.; Yukhin, Y.M.; Lyakhov, N.Z.

    2016-01-01

    Nickel linear nano structures were synthesized by reduction of nickel formate with hydrazine hydrate in ethylene glycol medium in the absence of any surfactants or capping agents for direction of the particles growth. The effect of the synthesis conditions such as temperature, reduction time, type of polyol, and nickel formate concentration on the reduction products was studied. The size and morphology of the nickel nano wires were characterized by X-ray diffraction, scanning, and transmission electron microscopy. It was shown that the nickel nano crystallites were wire-shaped with a face-center-cubic phase. Ethylene glycol was found to play a crucial role in the formation of the nickel nano wires. The possible growth processes of the wire-shaped particles taking place at 110 and 130 degree are discussed. It was shown that, under certain synthesis conditions, nickel nano wires grow on the surface of the crystals of the solid intermediate of nickel with hydrazine hydrate.

  18. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  19. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  20. Mechanisms of nickel toxicity in microorganisms

    OpenAIRE

    Macomber, Lee; Hausinger, Robert P.

    2011-01-01

    Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological co...

  1. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries

    International Nuclear Information System (INIS)

    Song, Q.S.; Aravindaraj, G.K.; Sultana, H.; Chan, S.L.I.

    2007-01-01

    Carbon nanotubes (CNTs) were employed as a functional additive to improve the electrochemical performance of pasted nickel-foam electrodes for rechargeable nickel-based batteries. The nickel electrodes were prepared with spherical β-Ni(OH) 2 powder as the active material and various amounts of CNTs as additives. Galvanostatic charge/discharge cycling tests showed that in comparison with the electrode without CNTs, the pasted nickel electrode with added CNTs exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage, high-rate capability and cycling stability. Meanwhile, the CNT addition also lowered the packing density of Ni(OH) 2 particles in the three-dimensional porous nickel-foam substrate, which could lead to the decrease in the active material loading and discharge capacity of the electrode. Hence, the amount of CNTs added to Ni(OH) 2 should be optimized to obtain a high-performance nickel electrode, and an optimum amount of CNT addition was found to be 3 wt.%. The superior electrochemical performance of the nickel electrode with CNTs could be attributed to lower electrochemical impedance and less γ-NiOOH formed during charge/discharge cycling, as indicated by electrochemical impedance spectroscopy and X-ray diffraction analyses. Thus, it was an effective method to improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of CNTs to spherical Ni(OH) 2 as the active material

  2. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  3. Epicutaneous exposure to nickel induces nickel allergy in mice via a MyD88-dependent and interleukin-1-dependent pathway.

    Science.gov (United States)

    Vennegaard, Marie T; Dyring-Andersen, Beatrice; Skov, Lone; Nielsen, Morten M; Schmidt, Jonas D; Bzorek, Michael; Poulsen, Steen S; Thomsen, Allan R; Woetmann, Anders; Thyssen, Jacob P; Johansen, Jeanne D; Odum, Niels; Menné, Torkil; Geisler, Carsten; Bonefeld, Charlotte M

    2014-10-01

    Several attempts to establish a model in mice that reflects nickel allergy in humans have been made. Most models use intradermal injection of nickel in combination with adjuvant to induce nickel allergy. However, such models poorly reflect induction of nickel allergy following long-lasting epicutaneous exposure to nickel. To develop a mouse model reflecting nickel allergy in humans induced by epicutaneous exposure to nickel, and to investigate the mechanisms involved in such allergic responses. Mice were exposed to NiCl2 on the dorsal side of the ears. Inflammation was evaluated by the swelling and cell infiltration of the ears. T cell responses were determined as numbers of CD4+ and CD8+ T cells in the draining lymph nodes. Localization of nickel was examined by dimethylglyoxime staining. Epicutaneous exposure to nickel results in prolonged localization of nickel in the epidermis, and induces nickel allergy in mice. The allergic response to nickel following epicutaneous exposure is MyD88-dependent and interleukin (IL)-1 receptor-dependent, but independent of toll-like receptor (TLR)-4. This new model for nickel allergy that reflects epicutaneous exposure to nickel in humans shows that nickel allergy is dependent on MyD88 and IL-1 receptor signalling, but independent of TLR4. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Nickel-hydrogen bipolar battery system

    Science.gov (United States)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  5. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Nazmul [Environmental Science and Engineering PhD Program, University of Texas at El Paso, El Paso, TX 79968 (United States); Peralta-Videa, Jose R. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Jones, Gary L. [Phelps Dodge Miami Inc, P.O. Box 4444, Claypool, AZ 85532 (United States); Gill, Thomas E. [Department of Geological Science, University of Texas at El Paso, El Paso, TX 79968 (United States); Gardea-Torresdey, Jorge L. [Environmental Science and Engineering PhD Program, University of Texas at El Paso, El Paso, TX 79968 (United States); Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States)], E-mail: jgardea@utep.edu

    2008-05-15

    The metal concentrations in a copper mine tailings and desert broom (Baccharis sarothroides Gray) plants were investigated. The metal concentrations in plants, soil cover, and tailings were determined using ICP-OES. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in tailings was 526.4, 207.4, 89.1, 84.5, 51.7, 49.6, 39.7, and 35.6 mg kg{sup -1}, respectively. The concentration of all elements in soil cover was 10-15% higher than that of the tailings, except for molybdenum. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in roots was 818.3, 151.9, 73.9, 57.1, 40.1, 44.6, 96.8, and 26.7 mg kg{sup -1} and 1214.1, 107.3, 105.8, 105.5, 55.2, 36.9, 30.9, and 10.9 mg kg{sup -1} for shoots, respectively. Considering the translocation factor, enrichment coefficient, and the accumulation factor, desert broom could be a potential hyperaccumulator of Cu, Pb, Cr, Zn, As, and Ni. - Desert broom, a potential hyperaccumulating plant to clean up Cu, Pb, Cr, Zn, As, Ni and Co from the mine tailings in AZ, USA.

  6. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA

    International Nuclear Information System (INIS)

    Haque, Nazmul; Peralta-Videa, Jose R.; Jones, Gary L.; Gill, Thomas E.; Gardea-Torresdey, Jorge L.

    2008-01-01

    The metal concentrations in a copper mine tailings and desert broom (Baccharis sarothroides Gray) plants were investigated. The metal concentrations in plants, soil cover, and tailings were determined using ICP-OES. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in tailings was 526.4, 207.4, 89.1, 84.5, 51.7, 49.6, 39.7, and 35.6 mg kg -1 , respectively. The concentration of all elements in soil cover was 10-15% higher than that of the tailings, except for molybdenum. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in roots was 818.3, 151.9, 73.9, 57.1, 40.1, 44.6, 96.8, and 26.7 mg kg -1 and 1214.1, 107.3, 105.8, 105.5, 55.2, 36.9, 30.9, and 10.9 mg kg -1 for shoots, respectively. Considering the translocation factor, enrichment coefficient, and the accumulation factor, desert broom could be a potential hyperaccumulator of Cu, Pb, Cr, Zn, As, and Ni. - Desert broom, a potential hyperaccumulating plant to clean up Cu, Pb, Cr, Zn, As, Ni and Co from the mine tailings in AZ, USA

  7. The accumulation of nickel in human lungs.

    OpenAIRE

    Edelman, D A; Roggli, V L

    1989-01-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predic...

  8. Carbon formation on nickel and nickel-copper alloy catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alstrup, I.; Soerensen, O.; Rostrup-Nielsen, J.R. [Haldor Topsoe Research Labs., Lyngby (Denmark); Tavares, M.T.; Bernardo, C.A.

    1998-05-01

    Equilibrium, kinetic and morphological studies of carbon formation in CH{sub 4} + H{sub 2}, CO, and CO + H{sub 2} gases on silica supported nickel and nickel-copper catalysts are reviewed. The equilibrium deviates in all cases from graphite equilibrium and more so in CO + CO{sub 2} than in CH{sub 4} + H{sub 2}. A kinetic model based on information from surface science results with chemisorption of CH{sub 4} and possibly also the first dehydrogenation step as rate controlling describes carbon formation on nickel catalyst in CH{sub 4} + H{sub 2} well. The kinetics of carbon formation in CO and CO + H{sub 2} gases are in agreement with CO disproportionation as rate determining step. The presence of hydrogen influences strongly the chemisorption of CO. Carbon filaments are formed when hydrogen is present in the gas while encapsulating carbon dominates in pure CO. Small amounts of Cu alloying promotes while larger amounts (Cu : Ni {>=} 0.1) inhibits carbon formation and changes the morphology of the filaments (``octopus`` carbon formation). Adsorption induced nickel segregation changes the kinetics of the alloy catalysts at high carbon activities. Modifications suggested in some very recent papers on the basis of new results are also briefly discussed. (orig.) 31 refs.

  9. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  10. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q.

    2004-01-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  11. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant

    Science.gov (United States)

    Afton, Scott E.; Catron, Brittany; Caruso, Joseph A.

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant. PMID:19273464

  12. First principles nickel-cadmium and nickel hydrogen spacecraft battery models

    Energy Technology Data Exchange (ETDEWEB)

    Timmerman, P.; Ratnakumar, B.V.; Distefano, S.

    1996-02-01

    The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.

  13. Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction

    Science.gov (United States)

    Kidd, Petra; Kuffner, Melanie; Prieto-Fernández, Ángeles; Hann, Stephan; Monterroso, Carmela; Sessitsch, Angela; Wenzel, Walter; Puschenreiter, Markus

    2013-01-01

    The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants. PMID:23793627

  14. Characterization and Growth Mechanism of Nickel Nanowires Resulting from Reduction of Nickel Formate in Polyol Medium

    OpenAIRE

    Logutenko, Olga A.; Titkov, Alexander I.; Vorob’yov, Alexander M.; Yukhin, Yriy M.; Lyakhov, Nikolay Z.

    2016-01-01

    Nickel linear nanostructures were synthesized by reduction of nickel formate with hydrazine hydrate in ethylene glycol medium in the absence of any surfactants or capping agents for direction of the particles growth. The effect of the synthesis conditions such as temperature, reduction time, type of polyol, and nickel formate concentration on the reduction products was studied. The size and morphology of the nickel nanowires were characterized by X-ray diffraction, scanning, and transmission ...

  15. Structural Basis of Low-Affinity Nickel Binding to the Nickel-Responsive Transcription Factor NikR from Escherichia coli

    International Nuclear Information System (INIS)

    Phillips, C.; Schreiter, E.; Stultz, C.; Drennan, C.

    2010-01-01

    Escherichia coli NikR regulates cellular nickel uptake by binding to the nik operon in the presence of nickel and blocking transcription of genes encoding the nickel uptake transporter. NikR has two binding affinities for the nik operon: a nanomolar dissociation constant with stoichiometric nickel and a picomolar dissociation constant with excess nickel (Bloom, S. L., and Zamble, D. B. (2004) Biochemistry 43, 10029-10038; Chivers, P. T., and Sauer, R. T. (2002) Chem. Biol. 9, 1141-1148). While it is known that the stoichiometric nickel ions bind at the NikR tetrameric interface (Schreiter, E. R., et al. (2003) Nat. Struct. Biol. 10, 794-799; Schreiter, E. R., et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13676-13681), the binding sites for excess nickel ions have not been fully described. Here we have determined the crystal structure of NikR in the presence of excess nickel to 2.6 (angstrom) resolution and have obtained nickel anomalous data (1.4845 (angstrom)) in the presence of excess nickel for both NikR alone and NikR cocrystallized with a 30-nucleotide piece of double-stranded DNA containing the nik operon. These anomalous data show that excess nickel ions do not bind to a single location on NikR but instead reveal a total of 22 possible low-affinity nickel sites on the NikR tetramer. These sites, for which there are six different types, are all on the surface of NikR, and most are found in both the NikR alone and NikR-DNA structures. Using a combination of crystallographic data and molecular dynamics simulations, the nickel sites can be described as preferring octahedral geometry, utilizing one to three protein ligands (typically histidine) and at least two water molecules.

  16. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    Science.gov (United States)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  17. Recovery Of Nickel From Spent Nickel-Cadmium Batteries Using A Direct Reduction Process

    Directory of Open Access Journals (Sweden)

    Shin D.J.

    2015-06-01

    Full Text Available Most nickel is produced as Ferro-Nickel through a smelting process from Ni-bearing ore. However, these days, there have been some problems in nickel production due to exhaustion and the low-grade of Ni-bearing ore. Moreover, the smelting process results in a large amount of wastewater, slag and environmental risk. Therefore, in this research, spent Ni-Cd batteries were used as a base material instead of Ni-bearing ore for the recovery of Fe-Ni alloy through a direct reduction process. Spent Ni-Cd batteries contain 24wt% Ni, 18.5wt% Cd, 12.1% C and 27.5wt% polymers such as KOH. For pre-treatment, Cd was vaporized at 1024K. In order to evaluate the reduction conditions of nickel oxide and iron oxide, pre-treated spent Ni-Cd batteries were experimented on under various temperatures, gas-atmospheres and crucible materials. By a series of process, alloys containing 75 wt% Ni and 20 wt% Fe were produced. From the results, the reduction mechanism of nickel oxide and iron oxide were investigated.

  18. Respiratory carcinogenicity assessment of soluble nickel compounds.

    OpenAIRE

    Oller, Adriana R

    2002-01-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear...

  19. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter.

    Science.gov (United States)

    Pümpel, Thomas; Macaskie, Lynne E; Finlay, John A; Diels, Ludo; Tsezos, Marios

    2003-12-01

    Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.

  20. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  1. Epicutaneous exposure to nickel induces nickel allergy in mice via a MyD88-dependent and interleukin-1-dependent pathway

    DEFF Research Database (Denmark)

    Vennegaard, Marie T; Dyring-Andersen, Beatrice; Skov, Lone

    2014-01-01

    -lasting epicutaneous exposure to nickel. OBJECTIVE: To develop a mouse model reflecting nickel allergy in humans induced by epicutaneous exposure to nickel, and to investigate the mechanisms involved in such allergic responses. METHODS: Mice were exposed to NiCl2 on the dorsal side of the ears. Inflammation...... was evaluated by the swelling and cell infiltration of the ears. T cell responses were determined as numbers of CD4(+) and CD8(+) T cells in the draining lymph nodes. Localization of nickel was examined by dimethylglyoxime staining. RESULTS: Epicutaneous exposure to nickel results in prolonged localization...... of nickel in the epidermis, and induces nickel allergy in mice. The allergic response to nickel following epicutaneous exposure is MyD88-dependent and interleukin (IL)-1 receptor-dependent, but independent of toll-like receptor (TLR)-4. CONCLUSION: This new model for nickel allergy that reflects...

  2. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    International Nuclear Information System (INIS)

    Lai, Teh-Long; Lai, Yuan-Lung; Yu, Jen-Wei; Shu, Youn-Yuen; Wang, Chen-Bin

    2009-01-01

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  3. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Teh-Long [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Lai, Yuan-Lung [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Yu, Jen-Wei [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Shu, Youn-Yuen, E-mail: shuyy@nknucc.nknu.edu.tw [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Wang, Chen-Bin, E-mail: chenbin@ccit.edu.tw [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China)

    2009-10-15

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  4. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Science.gov (United States)

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  5. Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Adekunle, Abolanle S.; Ozoemena, Kenneth I. [Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)

    2008-08-01

    The electron transfer behaviour of nickel film-decorated single-walled carbon nanotubes (SWCNTs-Ni) at edge plane pyrolytic graphite electrodes (EPPGEs) was investigated. The impact of SWCNTs on the redox properties of the nickel film was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). From EIS data, obtained using ferrocyanide/ferricyanide as a redox probe, we show that the electrodes based on nickel and nickel oxide films follow electrical equivalent circuit models typical of partial charge transfer or adsorption-controlled kinetics, resembling the 'electrolyte-insulator-semiconductor sensors (EIS)'. From the models, we prove that EPPGE-SWCNT-Ni exhibits the least resistance to charge transport compared to other electrodes (approximately 30 times faster than the EPPGE-SWCNT-NiO, 25 times faster than EPPGE-SWCNT, and over 300 times faster than the bare EPPGE) suggesting the ability of the SWCNTs to act as efficient conducting species that facilitate electron transport of the integrated nickel and nickel oxide particles. (author)

  6. Spectrochemical analysis of impurities in nickel and in nickel oxide

    International Nuclear Information System (INIS)

    Goldbart, Z.; Lorber, A.; Harel, A.

    1981-11-01

    Various spectrochemical methods are described for the quantitative determination of 23 impurities in metallic nickel and in nickel oxide. The average limit of detection is from 1 to 5 ppm and the dynamic range lies over 2.5 orders of magnitude. The elements that were determined are: Al,B,Ba,Bi,Ca,Cd,Co,Cu,Fe,Ga,Ge,In,Mg,Mn,Mo,Nb,Si,Sn,Sr,Ti,Cr,V. (author)

  7. Controlled synthesis of size-tunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions

    International Nuclear Information System (INIS)

    Kumar, Ajeet; Saxena, Amit; Shankar, Ravi; Mozumdar, Subho; De, Arnab

    2013-01-01

    Industrial demands have generated a growing need to synthesize pure metal and metal–oxide nanoparticles of a desired size. We report a novel and convenient method for the synthesis of spherical, size tunable, well dispersed, stable nickel and nickel oxide nanoparticles by reduction of nickel nitrate at room temperature in a TX-100/n-hexanol/cyclohexane/water system by a reverse microemulsion route. We determined that reduction with alkaline sodium borohydrate in nitrogen atmosphere leads to the formation of nickel nanoparticles, while the use of hydrazine hydrate in aerobic conditions leads to the formation of nickel oxide nanoparticles. The influence of several reaction parameters on the size of nickel and nickel oxide nanoparticles were evaluated in detail. It was found that the size can be easily controlled either by changing the molar ratio of water to surfactant or by simply altering the concentration of the reducing agent. The morphology and structure of the nanoparticles were characterized by quasi-elastic light scattering (QELS), transmission electron microscopy (TEM), x-ray diffraction (XRD), electron diffraction analysis (EDA) and energy dispersive x-ray (EDX) spectroscopy. The results show that synthesized nanoparticles are of high purity and have an average size distribution of 5–100 nm. The nanoparticles prepared by our simple methodology have been successfully used for catalyzing various chemical reactions. (paper)

  8. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  9. Nickel Excretion in Urine after Oral Administration

    DEFF Research Database (Denmark)

    Menne, T.; Mikkelsen, H. I.; Solgaard, Per Bent

    1978-01-01

    In recent years the importance of internal exposure to nickel in patients with recurrent hand eczema and nickel allergy has become evident. The present study was performed in order to investigate the value of urinary nickel determinations as an index of oral nickel intake. After oral administration...

  10. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt

    International Nuclear Information System (INIS)

    Gou Shiping; Sun, I.-W.

    2008-01-01

    The electrodeposition of nickel and nickel-zinc alloys was investigated at polycrystalline tungsten electrode in the zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Although nickel(II) chloride dissolved easily into the pure chloride-rich 1-ethyl-3-methylimidazolium chloride ionic melt, metallic nickel could not be obtained by electrochemical reduction of this solution. The addition of zinc chloride to this solution shifted the reduction of nickel(II) to more positive potential making the electrodeposition of nickel possible. The electrodeposition of nickel, however, requires an overpotential driven nucleation process. Dense and compact nickel deposits with good adherence could be prepared by controlling the deposition potential. X-ray powder diffraction measurements indicated the presence of crystalline nickel deposits. Non-anomalous electrodeposition of nickel-zinc alloys was achieved through the underpotential deposition of zinc on the deposited nickel at a potential more negative than that of the deposition of nickel. X-ray powder diffraction and energy-dispersive spectrometry measurements of the electrodeposits indicated that the composition and the phase types of the nickel-zinc alloys are dependent on the deposition potential. For the Ni-Zn alloy deposits prepared by underpotential deposition of Zn on Ni, the Zn content in the Ni-Zn was always less than 50 atom%

  11. Assaying environmental nickel toxicity using model nematodes

    Science.gov (United States)

    Rudel, David; Douglas, Chandler; Huffnagle, Ian; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegansand P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  12. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    Science.gov (United States)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  13. Nickel Nanowire@Porous NiCo2O4 Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Directory of Open Access Journals (Sweden)

    Houzhao Wan

    2017-12-01

    Full Text Available A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo2O4 nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo2O4 nanorods and construct the well-defined NiCo2O4 nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo2O4/Ni foam electrode shows a high areal specific capacitance (7.4 F cm−2 at 5 mA cm−2, excellent rate capability (88.04% retained at 100 mA cm−2, and good cycling stability (74.08% retained after 1,500 cycles. The superior electrochemical properties made it promising as electrode for supercapacitors.

  14. Analytical approaches for the characterization of nickel proteome.

    Science.gov (United States)

    Jiménez-Lamana, Javier; Szpunar, Joanna

    2017-08-16

    The use of nickel in modern industry and in consumer products implies some health problems for the human being. Nickel allergy and nickel carcinogenicity are well-known health effects related to human exposure to nickel, either during production of nickel-containing products or by direct contact with the final item. In this context, the study of nickel toxicity and nickel carcinogenicity involves the understanding of their molecular mechanisms and hence the characterization of the nickel-binding proteins in different biological samples. During the last 50 years, a broad range of analytical techniques, covering from the first chromatographic columns to the last generation mass spectrometers, have been used in order to fully characterize the nickel proteome. The aim of this review is to present a critical view of the different analytical approaches that have been applied for the purification, isolation, detection and identification of nickel-binding proteins. The different analytical techniques used are discussed from a critical point of view, highlighting advantages and limitations.

  15. Nickel allergy in patch-tested female hairdressers and assessment of nickel release from hairdressers' scissors and crochet hooks

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Milting, Kristina; Bregnhøj, Anne

    2009-01-01

    the proportion of hairdressers' scissors and crochet hooks that released an excessive amount of nickel and to determine the prevalence of nickel allergy among patch-tested female hairdressers. MATERIALS: Random hairdressers' stores in Copenhagen were visited. The dimethylglyoxime (DMG) test was used to assess...... excessive nickel release. The prevalence of nickel allergy among female hairdressers from the database at Gentofte Hospital was compared with the prevalence of nickel allergy among other consecutively patch-tested dermatitis patients. RESULTS: DMG testing showed that 1 (0.5%; 95% CI = 0 - 2.0) of 200 pairs...

  16. Mechanical Properties of Electrolyte Jet Electrodeposited Nickel Foam

    Directory of Open Access Journals (Sweden)

    Jinsong Chen

    2013-07-01

    Full Text Available Principles of the preparation of nickel foam by electrolyte jet electrodeposition were introduced, Nickel foam samples with different porosity were fabricated. Effect of different porosity on microhardness and uniaxial tensile properties of nickel foam was discussed. The results show that the microhardness of nickel foam is 320~400 HV, lower than entitative metal clearly. The lower the porosity of nickel foam, the higher the microhardness is. During the process of uniaxial tensile, nickel foam is characterized by three distinct regions, e.g. elastic deforming region, plastic plateau region and densification region. The higher the porosity of nickel foam, the lower the plastic plateau and the poorer the strength of nickel foam, accordingly

  17. Repeated patch testing to nickel during childhood do not induce nickel sensitization

    DEFF Research Database (Denmark)

    Søgaard Christiansen, Elisabeth

    2014-01-01

    Background: Previously, patch test reactivity to nickel sulphate in a cohort of unselected infants tested repeatedly at 3-72 months of age has been reported. A reproducible positive reaction at 12 and 18 months was selected as a sign of nickel sensitivity, provided a patch test with an empty Finn...

  18. Systemic contact dermatitis due to nickel

    Directory of Open Access Journals (Sweden)

    Taruli Olivia

    2015-08-01

    Full Text Available Introduction: Systemic contact dermatitis (SCD is a systemic reactivation of a previous allergic contact dermatitis. The initial exposure may usually be topical, followed by oral, intravenous or inhalation exposure leading to a systemic hypersensitivity reaction. A case of a 27 year-old male with SCD due to nickel is reported Case Report: A 27 year-old male presented with recurrent pruritic eruption consist of deep seated vesicles on both palmar and left plantar since 6 months before admission. This complaint began after patient consumed excessive amounts of chocolate, canned food, and beans. The patient worked as a technician in a food factory. History of allergy due to nickel was acknowledged since childhood. The clinical presentation was diffuse deep seated vesicles, and multiple erythematous macules to plaques, with collarette scale. Patch test using the European standard showed a +3 result to nickel. The patient was diagnosed as systemic contact dermatitis due to nickel. The treatments were topical corticosteroid and patient education of avoidance of both contact and systemic exposure to nickel. The patient showed clinical improvement after 2 weeks. Discussion: SCD was diagnosed due to the history of massive consumption of food containing nickel in a patient who had initial sensitization to nickel, with clinical features and the patch test result. Advice to be aware of nickel and its avoidance is important in SCD management.

  19. Assaying environmental nickel toxicity using model nematodes.

    Directory of Open Access Journals (Sweden)

    David Rudel

    Full Text Available Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water, we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  20. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L

    International Nuclear Information System (INIS)

    Wei Shuhe; Ma, Lena Q.; Saha, Uttam; Mathews, Shiny; Sundaram, Sabarinath; Rathinasabapathi, Bala; Zhou Qixing

    2010-01-01

    This experiment examined the effects of sulfate (S) and reduced glutathione (GSH) on arsenic uptake by arsenic hyperaccumulator Pteris vittata after exposing to arsenate (0, 15 or 30 mg As L -1 ) with sulfate (6.4, 12.8 or 25.6 mg S L -1 ) or GSH (0, 0.4 or 0.8 mM) for 2-wk. Total arsenic, S and GSH concentrations in plant biomass and arsenic speciation in the growth media and plant biomass were determined. While both S (18-85%) and GSH (77-89%) significantly increased arsenic uptake in P. vittata, GSH also increased arsenic translocation by 61-85% at 0.4 mM (p < 0.05). Sulfate and GSH did not impact plant biomass or arsenic speciation in the media and biomass. The S-induced arsenic accumulation by P. vittata was partially attributed to increased plant GSH (21-31%), an important non-enzymatic antioxidant countering oxidative stress. This experiment demonstrated that S and GSH can effectively enhance arsenic uptake and translocation by P. vittata. - Sulfate and glutathione increased arsenic uptake and translocation in Pteris vittata.

  1. Arsenic removal from As-hyperaccumulator Pteris vittata biomass: Coupling extraction with precipitation.

    Science.gov (United States)

    da Silva, Evandro B; de Oliveira, Letuzia M; Wilkie, Ann C; Liu, Yungen; Ma, Lena Q

    2018-02-01

    Proper disposal of As-hyperaccumulator Pteris vittata biomass (Chinese brake fern) enhances its application in phytoremediation. The goal of this study was to optimize As removal from P. vittata (PV) biomass by testing different particle sizes, extractants, extraction times and solid-to-liquid ratios. PV biomass was extracted using different extractants followed by different Mg-salts to recover soluble As via precipitation. Water-soluble As in PV biomass varied from 6.8% to 61% of total As depending on extraction time, with 99% of As being arsenate (AsV). Extraction with 2.1% HCl, 2.1% H 3 PO 4 , 1 M NaOH and 50% ethanol recovered 81, 78, 47 and 14% of As from PV biomass. A follow-up extraction using HCl recovered 27-32% with ethanol recovering only 5%. Though ethanol showed the lowest extractable As, residual As in the biomass was also the lowest. Among the extractants, 35% ethanol was the best to remove As from PV biomass. Approximately 90% As was removed from PV biomass using particle size phytoremediation more feasible. Published by Elsevier Ltd.

  2. Producing bio-filter for absorbing and separating stable nickel and feasibility study to separate radioactive nickel by microorganisms

    International Nuclear Information System (INIS)

    Ghafourian, H.; Rabbani, M.; Naseri, Y.; Sadeghi, S.

    2004-01-01

    In this research work, bio absorption of nickel has been investigated by new 16 various bacterial strains isolated from Ramsar warm springs. As the obtained results show a strain of gram negative cocobacilluse bacteria is highly capable to take up nickel in optimum pH about 6. The effect of nickel solution concentrations in 20-200 ppm have been studied. Uptake capacity of bacterial biomass regarding to concentrations below 150 ppm is most highly and nearly constant, but it will be decreased over 150 ppm, and in 200 ppm absorption of nickel reaches to near zero. No nickel was taken up by bacterial biomass. Further studies showed that after 60 minutes of contact time, Nickel uptake reaches maximum by 53%. Considering the uptake mechanism revealed that bio sorption was very limited and the uptake mainly occurs through a accumulation dependent on metabolic activities. Also the results show that the presence of the other cations such as Zn 2+ , Cu 2+ and Pb 2+ is ineffective to biological uptake of nickel. Nickel taken up by biomass can be easily recovered by HNO 3 with the concentration of 0.1 M

  3. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...

  4. Nickel release from inexpensive jewelry and hair clasps purchased in an EU country - Are consumers sufficiently protected from nickel exposure?

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menné, Torkil; Johansen, Jeanne Duus

    2009-01-01

    BACKGROUND: Nickel allergic subjects are at risk factor of acquiring hand eczema. In 1990 and 1994, respectively, Denmark and member states in the EU regulated nickel release from selected consumer products. The intention was that the nickel epidemic could be controlled and prevented if the general...... population was protected from high cutaneous nickel concentrations. Despite a decrease, the prevalence of nickel allergy remains high as nearly 10% of young women are nickel allergic. OBJECTIVE: This study aimed to perform dimethylglyoxime (DMG) testing of inexpensive jewelry and hair clasps purchased from...

  5. Nickel acts as an adjuvant during cobalt sensitization

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menne; Nielsen, Morten Milek; Vennegaard, Marie T.

    2015-01-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We...... investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found...... that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses...

  6. Electroless nickel-plating for the PWSCC mitigation of nickel-base alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Hwang, Il Soon

    2008-01-01

    The feasibility study has been performed as an effort to apply the electroless nickel-plating method for a proposed countermeasure to mitigate primary water stress corrosion cracking (PWSCC) of nickel-base alloys in nuclear power plants. In order to understand the corrosion behavior of nickel-plating at high temperature water, the electrochemical properties of electroless nickel-plated alloy 600 specimens exposed to simulated pressurized water reactor (PWR) primary water were experimentally characterized in high temperature and high pressure water condition. And, the resistance to the flow accelerated corrosion (FAC) test was investigated to check the durability of plated layers in high-velocity water-flowing environment at high temperature. The plated surfaces were examined by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after exposures to the condition. From this study, it is found that the corrosion resistance of electroless nickel-plated Alloy 600 is higher than that of electrolytic plating in 290 deg. C water

  7. Exposure of nickel and the relevance of nickel sensitivity among hospital cleaners

    Energy Technology Data Exchange (ETDEWEB)

    Clemmensen, O J; Menne, T; Kaaber, K; Solgaard, P

    1981-01-01

    The nickel content of water specimens from consecutive stages during the cleaning process in a Danish hospital was analyzed. Statistically significant increases of the nickel concentrations were found from step to step of the cleaning, eventually exceeding the theoretical sensitizing safety limit. The relevance of the findings in relation to hand eczema is discussed.

  8. Nickel recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of nickel from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2004. This materials flow study includes a description of nickel supply and demand for the United States to illustrate the extent of nickel recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the old scrap recycling efficiency for nickel was estimated to be 56.2 percent. In 2004, nickel scrap consumption in the United States was as follows: new scrap containing 13,000 metric tons (t) of nickel (produced during the manufacture of products), 12 percent; and old scrap containing 95,000 t of nickel (articles discarded after serving a useful purpose), 88 percent. The recycling rate for nickel in 2004 was 40.9 percent, and the percentage of nickel in products attributed to nickel recovered from nickel-containing scrap was 51.6 percent. Furthermore, U.S. nickel scrap theoretically generated in 2004 had the following distribution: scrap to landfills, 24 percent; recovered and used scrap, 50 percent; and unaccounted for scrap, 26 percent. Of the 50 percent of old scrap generated in the United States that was recovered and then used in 2004, about one-third was exported and two-thirds was consumed in the domestic production of nickel-containing products.

  9. Systemic contact dermatitis after oral exposure to nickel

    DEFF Research Database (Denmark)

    Jensen, Christian Stab; Menné, Torkil; Johansen, Jeanne Duus

    2006-01-01

    Systemic contact dermatitis can be elicited experimentally in nickel-sensitive individuals by oral nickel exposure. A crucial point interpreting such experiments has been the relevance of nickel exposure from drinking water and diet. The aim of this meta-analysis study on former nickel......-exposure investigations was to provide the best possible estimation of threshold values of nickel doses that may cause systemic contact dermatitis in nickel-sensitive patients. 17 relevant investigations were identified, and statistical analyses were performed in a stepwise procedure. 9 studies were included in the final...... of the doses that, theoretically, would cause systemic contact dermatitis in exposed nickel-sensitive patients. The results from the 2 most sensitive groups show that 1% of these individuals may react with systemic contact dermatitis at normal daily nickel exposure from drinking water and diet, i.e. 0...

  10. The GENIALL process for generation of nickel-iron alloys from nickel ores or mattes

    International Nuclear Information System (INIS)

    Diaz, G.; Frias, C.; Palma, J.

    2001-01-01

    A new process, called GENIALL (acronym of Generation of Nickel Alloys), for nickel recovery as ferronickel alloys from ores or mattes without previous smelting is presented in this paper. Its core technology is a new electrolytic concept, the ROSEL cell, for electrowinning of nickel-iron alloys from concentrated chloride solutions. In the GENIALL Process the substitution of iron-based solid wastes as jarosite, goethite or hematite, by saleable ferronickel plates provides both economic and environmental attractiveness. Another advantage is that no associated sulfuric acid plant is required. The process starts with leaching of the raw material (ores or mattes) with a solution of ferric chloride. The leachate liquor is purified by conventional methods like cementation or solvent extraction, to remove impurities or separate by-products like copper and cobalt. The purified solution, that contains a mixture of ferrous and nickel chlorides is fed to the cathodic compartment of the electrowinning cell, where nickel and ferrous ions are reduced together to form an alloy. Simultaneously, ferrous chloride is oxidized to ferric chloride in the anodic compartment, from where it is recycled to the leaching stage. The new electrolytic equipment has been developed and scaled up from laboratory to pilot prototypes with commercial size electrodes of 1 m 2 . Process operating conditions have been established in continuous runs at bench and pilot plant scale. The technology has shown a remarkable capacity to produce nickel-iron alloys of a wide range of compositions, from 10% to 80% nickel, just by adjusting the operating parameters. This emerging technology could be implemented in many processes in which iron and other non-ferrous metals are harmful impurities to be removed, or valuable metals to be recovered as a marketable iron alloy. Other potential applications of this technology are regeneration of spent etching liquors, and iron removal from aqueous effluents. (author)

  11. NICKEL – ENVIRONMENTAL ALLERGEN

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-06-01

    Full Text Available Nickel (Ni is ubiquitus in our biosphere because of its emission from natural and anthropogenic sources. Its toxic and carcinogenic properties are well recognised only in workers exposed to high Ni concentrations. Nickel allergy is the most common form of cutaneus hypersensitivity in general population and also in occupationally exposed groups. As sensitizing agent Ni has a high prevalence of allergic contact dermatitis. The most important known risk factor associated with nickel allergy is ear piercing and use of other jewelry in females. In general population 17 % adults and 8 % children have Ni allergy symptoms. Permanently growing Ni allergy is regarded as serious risk for public health.

  12. Gold, nickel and copper mining and processing.

    Science.gov (United States)

    Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley

    2010-01-01

    Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors.

  13. Nickel exposure from keys: a Brazilian issue.

    Science.gov (United States)

    Suzuki, Nathalie Mie; Duarte, Ida Alzira Gomes; Hafner, Mariana de Figueiredo Silva; Lazzarini, Rosana

    2017-01-01

    Keys are a significant source of exposure to metal allergens and can be a relevant problem for nickel-allergic individuals. This study aimed to perform nickel and cobalt spot testing among the 5 most common Brazilian brands of keys. Among the tested keys, 100% showed positive result to nickel spot test, 83,3% presented strong positive reaction. 50% exhibited cobalt release as well. Nickel release from keys is very common in our country and may cause a negative impact on sensitized individual's quality of life. Study's results highlight the importance of establishing directives to regulate nickel release in Brazil.

  14. Nickel exposure from keys: alternatives for protection and prevention.

    Science.gov (United States)

    Hamann, Dathan; Scheman, Andrew J; Jacob, Sharon E

    2013-01-01

    Keys are an important exposure source of metal allergens to consumers and confer a significant problem for nickel-allergic individuals because of repeated daily use. The aims of this study were to investigate the frequency of nickel and cobalt release in keys and to consider the effectiveness of coatings for preventing metallic allergen release from common metal allergen-releasing keys. Keys from a variety of common stores were nickel and cobalt spot tested. Nickel-releasing keys were coated with enamel sprays, subjected to a use test, and retested to assess for metal allergen release. Of 55 tested keys, 80% showed a strong positive result to the nickel spot test. None of the tested keys exhibited cobalt release. No keys initially released nickel after enamel coatings. Key coatings chipped at the portion inserted into a lock after 30 insertions, and keys were found to release nickel. The handle of the key was not found to release nickel after 60 insertions. Nickel release from keys is very common; nickel-allergic consumers should consider purchasing keys that do not release nickel (eg, brass, anodized). Enamel coating may be useful in protecting nickel-sensitive individuals from their keys but cannot consistently prevent nickel-release from portions used frequently.

  15. Phase transformation in nickel during tribotesting

    Energy Technology Data Exchange (ETDEWEB)

    Hershberger, J. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: jhersh@anl.gov; Ajayi, O.O. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Fenske, G.R. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States)

    2005-12-15

    Commercially pure nickel was subjected to a polyalphaolefin-lubricated reciprocating tribotest with increasing load. A friction transition was observed and X-ray diffraction was performed on low-friction and high-friction areas. Hexagonal nickel or nickel carbide was formed at high friction. Broadening of the face-centered cubic peaks did not show dislocation structures characteristic of scuffing.

  16. Phase transformation in nickel during tribotesting

    International Nuclear Information System (INIS)

    Hershberger, J.; Ajayi, O.O.; Fenske, G.R.

    2005-01-01

    Commercially pure nickel was subjected to a polyalphaolefin-lubricated reciprocating tribotest with increasing load. A friction transition was observed and X-ray diffraction was performed on low-friction and high-friction areas. Hexagonal nickel or nickel carbide was formed at high friction. Broadening of the face-centered cubic peaks did not show dislocation structures characteristic of scuffing

  17. Development of nickel-hydrogen battery for electric vehicle; Denki jidoshayo nickel-suiso denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of battery, a main part of electric vehicle, have been promoted. Various batteries, such as lead battery, nickel-cadmium battery, nickel-hydrogen battery, lithium ion battery and so on, have been investigated for electric vehicles. Among these, nickel-hydrogen battery is superior to the others from the points of energy density, lifetime, low-temperature properties, and safety. It is one of the most prospective batteries for electric vehicle. Research and development of the nickel-hydrogen battery with higher energy density and longer lifetime have been promoted for the practical application by Tohoku Electric Power Co., Inc. This article shows main performance of the developed nickel-hydrogen battery for electric vehicle. The nominal voltage is 12 V, the rated capacity is 125 Ah, the outside dimension is L302{times}W170{times}H245 mm, the weight is 25.5 kg, the energy density is 60 Wh/kg, the output density is 180 W/kg, and the available environment temperature is between -20 and 60 {degree}C. 1 fig., 1 tab.

  18. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa.

    Science.gov (United States)

    Zhang, Xuemei; Yang, Xiaoyan; Wang, Hongbin; Li, Qinchun; Wang, Haijuan; Li, Yanyan

    2017-04-01

    A pot experiment was conducted to compare the content of endogenous trans-zeatin (Z), plant arsenic (As) uptake and physiological indices in the fronds of As-hyperaccumulator (Pteris cretica var. nervosa) and non-hyperaccumulator (Pteris ensiformis). Furthermore, a stepwise regression method was used to study the relationship among determined indices, and the time-course effect of main indices was also investigated under 100mg/kg As stress with time extension. In the 100-200mg/kg As treatments, plant height showed no significant difference and endogenous Z content significantly increased in P. cretica var. nervosa compared to the control, but a significant decrease of height and endogenous Z was observed in P. ensiformis. The concentrations of As (III) and As (V) increased significantly in the fronds of two plants, but this increase was much higher in P. cretica var. nervosa. Compared to the control, the contents of chlorophyll and soluble protein were significantly increased in P. cretica var. nervosa but decreased in P. ensiformis in the 200mg/kg As treatment, respectively. A significant positive correlation was found between the contents of endogenous Z and total As in P. cretica var. nervosa, but such a correlation was not found in P. ensiformis. Additionally, in the time-course effect experiment, a peak value of each index was appeared in the 43rd day in two plants, except for chlorophyll in P. ensiformis, but this value was significantly higher in P. cretica var. nervosa than that in P. ensiformis. In conclusion, a higher endogenous Z content contributed to As accumulation of P. cretica var. nervosa under As stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Occupational exposure to nickel salts in electrolytic plating.

    Science.gov (United States)

    Kiilunen, M; Aitio, A; Tossavainen, A

    1997-04-01

    An occupational hygiene survey was made in 38 nickel plating shops in Finland and exposure to nickel was studied by means of biological measurements and, in three shops, by using air measurements. The average after-shift urinary nickel concentration of 163 workers was 0.16 mumol l.-1 (range 0.001-4.99 mumol l.-1). After the 1-5 week vacation the urinary nickel concentration was higher than the upper reference limit of non-exposed Finns indicating that a part of water-soluble nickel salts is accumulated in the body. Urinary nickel concentrations in the shops considered clean in the industrial hygiene walk-through were not different from those observed in the shops considered dirty. The correlation between the concentrations of nickel in the air and in the urine was low, and the amount of nickel excreted in the urine exceeded the calculated inhaled amounts, indicating exposure by other routes such as ingestion.

  20. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  1. Nickel-accumulating plant from Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Severne, B C; Brooks, R R

    1972-01-01

    A small shrub Hybanthus floribundus (Lindl.) F. Muell. Violaceae growing in Western Australia accumulates nickel and cobalt to a very high degree. Values of up to 23% nickel in leaf ash may represent the highest relative accumulation of a metal on record. The high accumulation of nickel poses interesting problems in plant physiology and plant biochemistry. 9 references, 2 figures, 1 table.

  2. Risk assessment of nickel carcinogenicity and occupational lung cancer.

    OpenAIRE

    Shen, H M; Zhang, Q F

    1994-01-01

    Recent progress in risk assessment of nickel carcinogenicity and its correlation with occupational lung cancer in nickel-exposed workers is reviewed. Epidemiological investigations provide reliable data indicating the close relation between nickel exposure and high lung cancer risk, especially in nickel refineries. The nickel species-specific effects and the dose-response relationship between nickel exposure and lung cancer are among the main questions that are explored extensively. It is als...

  3. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  4. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Systemic nickel hypersensitivity and diet: myth or reality?

    Science.gov (United States)

    Pizzutelli, S

    2011-02-01

    Nickel is a very common metal contained in many everyday objects and is the leading cause of ACD (Allergic Contact Dermatitis). Nickel is present in most of the constituents of a normal diet, but some food groups are usually considered to be richer. However, the nickel content of specific food can vary widely, depending on many factors. Thus, the daily intake of nickel is also highly variable both among different populations and in a single individual, in different seasons and even in different days. Measuring precisely the daily intake of nickel from food and drinks is extremely difficult, if not impossible. The relationship between ACD and contact with nickel is undisputed and widely confirmed in literature. The situation is different for systemic nickel allergy syndrome (SNAS). The SNAS can have cutaneous signs and symptoms (Systemic Contact Dermatitis or SCD) or extracutaneous signs and symptoms (gastrointestinal, respiratory, neurological, etc.).The occurrence of SCD as a systemic reaction to the nickel normally assumed in the daily diet is very controversial. A rigorous demonstration of the relationship between SCD and nickel is extremely difficult. In particular, further and larger studies are needed to assess the reality and the prevalence of nickel urticaria. With respect to nickel-related gastrointestinal symptoms, as well as chronic fatigue syndrome, fibromyalgia, headache, recurring cold sores and recurrent infections in general, the data available in literature are not conclusive and the studies lack the support of clear, first-hand evidence. With respect to respiratory disorders, the role of food nickel and the effectiveness of a dietary treatment have been assumed but not proven. In fact, the usefullness of a therapeutic low-nickel diet is controversial: rare, if not exceptional, and limited to very sporadic cases of SCD. Additionally, the quantitative and qualitative composition of a low-nickel diet presents few certainties and many uncertainties

  6. Nickel aggregates produced by radiolysis

    International Nuclear Information System (INIS)

    Marignier, J.L.; Belloni, J.

    1988-01-01

    Nickel aggregates with subcolloidal size and stable in water have been synthesized by inhibiting the corrosion by the medium. The protective effect of the surfactant is discussed in relation with the characteristics of various types of polyvinyl alcohol studied. The reactivity of aggregates towards oxidizing compounds, nitro blue tetrazolium, methylene blue, silver ions, oxygen, methylviologen, enables an estimation of the redox potential of nickel aggregates (E = - 04 ± 0.05 V). It has been applied to quantitative analysis of the particles in presence of nickel ions. 55 refs [fr

  7. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  8. Nickel Nanowire@Porous NiCo{sub 2}O{sub 4} Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Houzhao; Li, Lang; Zhang, Jun; Liu, Xiang; Wang, Hanbin; Wang, Hao, E-mail: nanoguy@126.com [Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan (China)

    2017-12-13

    A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo{sub 2}O{sub 4} nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo{sub 2}O{sub 4} nanorods and construct the well-defined NiCo{sub 2}O{sub 4} nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo{sub 2}O{sub 4}/Ni foam electrode shows a high areal specific capacitance (7.4 F cm{sup −2} at 5 mA cm{sup −2}), excellent rate capability (88.04% retained at 100 mA cm{sup −2}), and good cycling stability (74.08% retained after 1,500 cycles). The superior electrochemical properties made it promising as electrode for supercapacitors.

  9. Effects of repeated skin exposure to low nickel concentrations

    DEFF Research Database (Denmark)

    Nielsen, N H; Menné, T; Kristiansen, J

    1999-01-01

    and nickel allergy, either on normal or on SLS-treated forearm skin. The present study strongly suggests that the changes observed were specific to nickel exposure. Standardized methods to assess trace to moderate nickel exposure on the hands, and the associated effects in nickel-sensitized subjects......We studied the effects of repeated daily exposure to low nickel concentrations on the hands of patients with hand eczema and nickel allergy. The concentrations used were chosen to represent the range of trace to moderate occupational nickel exposure. The study was double-blinded and placebo...... controlled. Patients immersed a finger for 10 min daily into a 10-p.p.m. nickel concentration in water for the first week, and during the second week into a 100-p.p.m. nickel concentration. This regimen significantly increased (P = 0.05) local vesicle formation and blood flow (P = 0.03) as compared...

  10. Nickel may be released from laptop computers

    DEFF Research Database (Denmark)

    Jensen, Peter; Jellesen, Morten Stendahl; Møller, Per

    2012-01-01

    Consumer nickel sensitization and dermatitis is caused by prolonged or repeated skin exposure to items that release nickel, for example jewellery, belts, buttons, watches, and mobile phones (1–3). We recently described a patient in whom primary nickel contact sensitization and dermatitis develope...

  11. Improved nickel plating of Inconel X-750

    Science.gov (United States)

    Farmer, M. E.; Feeney, J. E.; Kuster, C. A.

    1969-01-01

    Electroplating technique with acid pickling provides a method of applying nickel plating on Inconel X-750 tubing to serve as a wetting agent during brazing. Low-stress nickel-plating bath contains no organic wetting agents that cause the nickel to blister at high temperatures.

  12. On the reflectivity of nickel neutron mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Habib, N. (Atomic Energy Establishment, Cairo (Egypt). Reactor and Neutron Physics Dept.); Kenawy, M.A.; Wahba, M.; Ashry, A.H. (Ain Shams Univ., Cairo (Egypt))

    1991-02-01

    Neutron reflectivities were determined for 300 nm thick films of natural nickel and nickel 58 coated on glass plates. The measurements were performed at glancing angles between 40' and 60'. The incident neutron beam from one of the ET-RR-1 reactor horizontal channels covered neutron wavelengths between 0.55 and 0.80 nm. It was found that nickel 58, because of the high value of its critical glancing angle, is more efficient as a neutron mirror than natural nickel. (orig.).

  13. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  14. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Magnetoelectric Effect in Gallium Arsenide-Nickel-Tin-Nickel Multilayer Structures

    Science.gov (United States)

    Filippov, D. A.; Tikhonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-02-01

    Experimental data have been presented for the magnetoelectric effect in nickel-tin-nickel multilayer structures grown on a GaAs substrate by cathodic electrodeposition. The method of fabricating these structures has been described, and the frequency dependence of the effect has been demonstrated. It has been shown that tin used as an intermediate layer reduces mechanical stresses due to the phase mismatch at the Ni-GaAs interface and, thus, makes it possible to grow good structures with a 70-μm-thick Ni layer. The grown structures offer good adhesion between layers and a high Q factor.

  16. The role of nickel in urea assimilation by algae.

    Science.gov (United States)

    Rees, T A; Bekheet, I A

    1982-12-01

    Nickel is required for urease synthesis by Phaeodactylum tricornutum and Tetraselmis subcordiformis and for growth on urea by Phaeodactylum. There is no requirement for nickel for urea amidolyase synthesis by Chlorella fusca var. vacuolata. Neither copper nor palladium can substitute for nickel but cobalt partially restored urease activity in Phaeodactylum. The addition of nickel to nickel-deficient cultures of Phaeodactylum or Tetraselmis resulted in a rapid increase of urease activity to 7-30 times the normal level; this increase was not inhibited by cycloheximide. It is concluded that nickel-deficient cells over-produce a non-functional urease protein and that either nickel or the functional urease enzyme participates in the regulation of the production of urease protein.

  17. Dose-response testing with nickel sulphate using the TRUE test in nickel-sensitive individuals. Multiple nickel sulphate patch-test reactions do not cause an 'angry back'

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Lidén, C; Hansen, J

    1993-01-01

    The aim of this study was to employ the TRUE test assay to confirm the presence or absence of the 'angry back' phenomenon, i.e. that a strong positive patch-test reaction heightens adjacent patch-test response. In addition, we wished to establish the dose-response relationship for nickel sulphate...... back' phenomenon was not apparent in this study, as the spill-over effect was not statistically significant. Strong reactions to high concentrations of nickel sulphate did not enhance the response to adjacent lower concentrations of nickel sulphate....

  18. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    Science.gov (United States)

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  19. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  20. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  1. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  2. Electroplated tin-nickel coatings as a replacement for nickel to eliminate nickel dermatitis

    DEFF Research Database (Denmark)

    Møller, Per; Boyce, Jan M.; Nielsen, Lars Pleth

    2013-01-01

    . The main focus will be on the corrosion properties where the following corrosion investigations will be covered; corrosion potential measurements for the different coatings, estimation of corrosion rates for materials in galvanic coupling with tin/nickel coatings, salt spray test, medical tests...

  3. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions

    International Nuclear Information System (INIS)

    Li Tingqiang; Yang Xiaoe; Lu Lingli; Islam, Ejazul; He Zhenli

    2009-01-01

    Effects of zinc (Zn) and cadmium (Cd) interactions on root morphology and metal translocation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under hydroponic conditions. Specific root lengths (SRL), specific root surface areas (SRA) and specific root volumes (SRV) of the HE increased significantly when plant were treated with 500 μM Zn or 100 μM Cd + 500 μM Zn, whereas these root parameters were significantly decreased for the NHE when plant were treated with 100 μM Cd, 500 μM Zn or 100 μM Cd + 500 μM Zn. SRL and SRA of the HE were mainly constituted by roots with diameter between 0.2-0.4 mm (diameter class 3 and 4) which were significantly increased in treatment of 500 μM Zn or 100 μM Cd + 500 μM Zn, whereas in the NHE, metal treatments caused a significant decrease in SRL and SRA of the finest diameter class root (diameter between 0.1-0.3 mm). The HE of S. alfredii could maintain a fine, widely branched root system under contaminated conditions compared with the NHE. Relative root growth, net Cd uptake and translocation rate in the HE were significantly increased by adding 500 μM Zn, as compared with the second growth period, where 100 μM Cd was supplied alone. Cadmium and Zn concentrations in the shoots of the HE were 12-16 times and 22-27 times higher than those of the NHE under 100 μM Cd + 500 μM Zn combined treatment. These results indicate strong positive interactions of Zn and Cd occurred in the HE under 100 μM Cd + 500 μM Zn treatment and Cd uptake and translocation was enhanced by adding 500 μM Zn.

  4. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li Tingqiang, E-mail: litq@zju.edu.cn [Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Yang Xiaoe; Lu Lingli [Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Islam, Ejazul [Nuclear Institute of Agriculture, Tandojam, 48800 Hyderabad (Pakistan); He Zhenli [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida 34945 (United States)

    2009-09-30

    Effects of zinc (Zn) and cadmium (Cd) interactions on root morphology and metal translocation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under hydroponic conditions. Specific root lengths (SRL), specific root surface areas (SRA) and specific root volumes (SRV) of the HE increased significantly when plant were treated with 500 {mu}M Zn or 100 {mu}M Cd + 500 {mu}M Zn, whereas these root parameters were significantly decreased for the NHE when plant were treated with 100 {mu}M Cd, 500 {mu}M Zn or 100 {mu}M Cd + 500 {mu}M Zn. SRL and SRA of the HE were mainly constituted by roots with diameter between 0.2-0.4 mm (diameter class 3 and 4) which were significantly increased in treatment of 500 {mu}M Zn or 100 {mu}M Cd + 500 {mu}M Zn, whereas in the NHE, metal treatments caused a significant decrease in SRL and SRA of the finest diameter class root (diameter between 0.1-0.3 mm). The HE of S. alfredii could maintain a fine, widely branched root system under contaminated conditions compared with the NHE. Relative root growth, net Cd uptake and translocation rate in the HE were significantly increased by adding 500 {mu}M Zn, as compared with the second growth period, where 100 {mu}M Cd was supplied alone. Cadmium and Zn concentrations in the shoots of the HE were 12-16 times and 22-27 times higher than those of the NHE under 100 {mu}M Cd + 500 {mu}M Zn combined treatment. These results indicate strong positive interactions of Zn and Cd occurred in the HE under 100 {mu}M Cd + 500 {mu}M Zn treatment and Cd uptake and translocation was enhanced by adding 500 {mu}M Zn.

  5. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  6. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...... micrograms/l to 77 micrograms/l. Examination of the aluminium and nickel contents of the constituents for the production of one brand showed too low levels to explain the final contamination of the product. By following the aluminium and nickel concentrations of the same brand during the production...... of a batch of albumin solution, filtration was shown to contribute to contamination, although the largest increase in aluminium as well as nickel concentrations appeared during the bulk concentrating process. To avoid health risks to certain patients, regulations should be established requiring aluminium...

  7. Occupational exposure to nickel, uranium and thorium in a nickel mine

    International Nuclear Information System (INIS)

    Azeredo, A.M.; Lipsztein, J.L.; Dias da Cunha, K.; Lourenco, M.C.; Lipsztein, J.L.; Miekeley, N.T.

    2002-01-01

    The workers involved in mining and milling ores are exposed in the workplace to many hazardous agents that can cause a health detriment. In this work, the measurements obtained in a nickel mineral processing facility in the Brazilian Central-West are presented. One of the most important hazardous agents in this facility is the aerosol present in the air that contains nickel, uranium and thorium. The aerosol is inhaled or ingested, metabolised and deposited in the whole body or in specific organs. The surveillance of internal contamination of workers was performed by analysis of urine, fecal and hair samples. The ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) method was used to analytically determine nickel, uranium and thorium in these biological samples. Additional data were obtained by the collection of air samples in the workplace. A cascade impactor with six stages was used to collect mineral dust particles with an aerodynamic diameter in the range of 0.64 to 19.4 μm. The particles impacted in each stage of the cascade impactor were analysed by PIXE (Particle Induced X ray Emission), which permits the determination of elemental mass air concentration and the MMAD (Mass Median Aerodynamic Diameter). The concentrations of nickel, uranium and thorium were determined in the aerosol samples. All the results were analysed using statistical methods and biokinetical modelling was applied to evaluate the internal contamination and to make a risk estimation. (author)

  8. Annealing texture of rolled nickel alloys

    International Nuclear Information System (INIS)

    Meshchaninov, I.V.; Khayutin, S.G.

    1976-01-01

    A texture of pure nickel and binary alloys after the 95% rolling and annealing has been studied. Insoluble additives (Mg, Zr) slacken the cubic texture in nickel and neral slackening of the texture (Zr). In the case of alloying with silicium (up to 2%) the texture practically coinsides with that of a technical-grade nickel. The remaining soluble additives either do not change the texture of pure nickel (C, Nb) or enhance the sharpness and intensity of the cubic compontnt (Al, Cu, Mn, Cr, Mo, W, Co -at their content 0.5 to 2.0%). A model is proposed by which variation of the annealing texture upon alloying is caused by dissimilar effect of the alloying elements on the mobility of high- and low-angle grain boundaries

  9. Chemoorganotrophic Bioleaching of Olivine for Nickel Recovery

    Directory of Open Access Journals (Sweden)

    Yi Wai Chiang

    2014-06-01

    Full Text Available Bioleaching of olivine, a natural nickel-containing magnesium-iron-silicate, was conducted by applying chemoorganotrophic bacteria and fungi. The tested fungus, Aspergillus niger, leached substantially more nickel from olivine than the tested bacterium, Paenibacillus mucilaginosus. Aspergillus niger also outperformed two other fungal species: Humicola grisae and Penicillium chrysogenum. Contrary to traditional acid leaching, the microorganisms leached nickel preferentially over magnesium and iron. An average selectivity factor of 2.2 was achieved for nickel compared to iron. The impact of ultrasonic conditioning on bioleaching was also tested, and it was found to substantially increase nickel extraction by A. niger. This is credited to an enhancement in the fungal growth rate, to the promotion of particle degradation, and to the detachment of the stagnant biofilm around the particles. Furthermore, ultrasonic conditioning enhanced the selectivity of A. niger for nickel over iron to a value of 3.5. Pre-carbonating the olivine mineral, to enhance mineral liberation and change metal speciation, was also attempted, but did not result in improvement as a consequence of the mild pH of chemoorganotrophic bioleaching.

  10. Use of radioactive tracers in chemical reactions. the displacement of zinc-nickel complexes with quantitative determination of nickel

    International Nuclear Information System (INIS)

    Mazzilli, B.; Saiki, M.

    1983-01-01

    The present paper presents a method for the determination of small quantities of nickel radioactive tracers. An analytical application of the displacement reaction between nickel and zinc ethylenediaminetetraacetate labeled with zinc-65 is pursued. This method is based on the extraction of radioactive zinc displaced by nickel from the zinc chelate into a dithizone-carbon tetrachloride solution and the subsequent measurement of the activity of an aliquot of the extract. The method is very sensitive and nickel can be measured in concentrations as small as 0.1 μg/ml or even less, depending on the specific activity of the radioreagent used. The precision and the accuracy of the method are determined. The problem of interferences is also investigated and an attempt is made in order to eliminate them by using masking agents or by means of a previous separation between nickel and other interfering metals. (Author) [pt

  11. Nickel elution properties of contemporary interatrial shunt closure devices.

    Science.gov (United States)

    Verma, Divya Ratan; Khan, Muhammad F; Tandar, Anwar; Rajasekaran, Namakkal S; Neuharth, Renée; Patel, Amit N; Muhlestein, Joseph B; Badger, Rodney S

    2015-02-01

    We sought to compare nickel elution properties of contemporary interatrial shunt closure devices in vitro. There are two United States Food and Drug Administration (FDA)-approved devices for percutaneous closure of secundum atrial septal defect: the Amplatzer septal occluder (ASO; St Jude Medical Corporation) and Gore Helex septal occluder (HSO; W.L. Gore & Associates). The new Gore septal occluder (GSO) device is in clinical trials. These are also used off-label for patent foramen ovale closure in highly selected patients. These devices have high nickel content. Nickel allergy is the most common reason for surgical device explantation. Nickel elution properties of contemporary devices remain unknown. We compared nickel elution properties of 4 devices - ASO, GSO, HSO, and sternal wire (SW) - while Dulbecco's phosphate-buffered saline (DPBS) served as control. Three samples of each device were submerged in DPBS. Nickel content was measured at 14 intervals over 90 days. Nickel elution at 24 hours, compared to control (0.005 ± 0.0 mg/L), was significantly higher for ASO (2.98 ± 1.65 mg/L; P=.04) and SW (0.03 ± 0.014 mg/L; P=.03). Nickel levels at 90 days, compared to control (0.005 ± 0.0 mg/L) and adjusting for multiple comparisons, were significantly higher for ASO (19.80 ± 2.30 mg/L; P=.01) and similar for HSO (P=.34), GSO (P=.34), and SW (P=.34). ASO had significantly higher nickel elution compared to HSO, GSO, and SW (P=.01). There is substantial variability in nickel elution; devices with less exposed nickel (HSO and GSO) have minimal elution. The safety of low nickel elution devices in patients with nickel allergy needs to be evaluated in prospective trials.

  12. Risk assessment for nickel and nickel compounds in the ambient air from exposure by inhalation. Review of the European situation

    Energy Technology Data Exchange (ETDEWEB)

    Lepicard, S; Schneider, T [Centre d` Etude sur l` Evaluation de la Protection dans le Domaine Nucleaire, 92 - Fontenay-aux-Roses (France); Fritsch, P; Maximilien, R [Commissariat a l` Energie Atomique, Brussels (Belgium). Dept. des Sciences du Vivant; Deloraine, A [Centre Rhone-Alpes d` Epidemiologie et de Prevention Sanitaire (France)

    1997-12-01

    The objective of this report is to evaluate the risk associated with exposure to nickel in the ambient air, for the general public. The document is divided into three parts, comprising: A review of the regulatory context, a description of the physical and chemical characteristics of nickel and certain nickel compounds, a description of certain industrial processes involving nickel, and the characterization of human exposure (emissions, immissions, transport in the atmosphere); a risk assessment on the basis of human (occupational exposure) and animal data related to the presumed risk of lung cancer; an assessment of the risk associated with exposure to nickel in the ambient air for the general public. (R.P.) 55 refs.

  13. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; O`Donnell, P.M. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-12-31

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (>30,000 cycles), the current cycle life of 4,000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft.

  14. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  15. Relationship between nickel and cobalt sensitization in hard metal workers

    Energy Technology Data Exchange (ETDEWEB)

    Rystedt, I; Fischer, T

    1983-05-01

    Eight hundred fifty-three hard metal workers were examined and patch tested with 20 substances from their environment, including nickel and cobalt. Nickel sensitivity was found in 2 men and 38 women. 88% of the nickel-sensitive individuals had developed a jewelry dermatitis prior to employment in the hard metal industry or before the appearance of hand eczema. 29% of the hard metal workers gave a history of slight irritant dermatitis. In the nickel sensitized group, 40% had had severe hand eczema which generally appeared 6-12 months after starting employment. In 25% of the cases, nickel sensitive individuals developed cobalt allergy, compared with 5% in the total population investigated. Most facts indicate that nickel sensitivity and irritant hand eczema precede cobalt sensitization. Hard metal workers with simultaneous nickel and cobalt sensitivity had a more severe hand eczema than those with isolated cobalt or nickel sensitivity or only irritant dermatitis. 64% of the female population had pierced ear lobes. Among the nickel allergic women, 95% had pierced ear lobes. The use of earrings containing nickel after piercing is strongly suspected of being the major cause of nickel sensitivity. Piercing at an early age seems to increase the risk of incurring nickel sensitivity.

  16. Nickel in tap water

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K E; Nielsen, G D; Flyvholm, M A; Fregert, S; Gruvberge, B

    1983-03-01

    Nickel analyses of tap water from several sources in Copenhagen gave up to 490 X 10(-6) g X 1(-1) in the first 250 ml portions. Hot water gave higher values than cold water. After flushing for 5 min, low values were found. Considerable variation from time to time and from tap to tap was found. Drinking of only the first portion in the morning might have an influence on nickel hand eczema.

  17. Effect of Ni +-ION bombardment on nickel and binary nickel alloys

    Science.gov (United States)

    Roarty, K. B.; Sprague, J. A.; Johnson, R. A.; Smidt, F. A.

    1981-03-01

    Pure nickel and four binary nickel alloys have been subjected to high energy Ni ion bombardment at 675, 625 and 525°C. After irradiation, each specimen was studied by transmission electron microscopy. The pure nickel control was found to swell appreciably (1 to 5%) and the Ni-Al and the Ni-Ti samples were found to swell at all temperatures, but to a lesser degree (0.01 to 0.35%). The Ni-Mo contained a significant density of voids only at 525° C, while swelling was suppressed at all temperatures in the Ni-Si alloy. The dislocation structure progressed from loops to tangles as temperature increased in all materials except the Ni-Ti, in which there was an absence of loops at all temperatures. Dislocation densities decreased as temperature increased in all samples. These results do not correlate well with the relative behavior of the same alloys observed after neutron irradiation at 455°C. The differences between these two sets of data appear to be caused by different mechanisms controlling void nucleation in ion and neutron irradiation of these alloys.

  18. Effect of tetraethylthiuramdisulphide and diethyldithiocarbamate on nickel toxicokinetics in mice

    International Nuclear Information System (INIS)

    Dalsgaard, G.; Andersen, O.

    1994-01-01

    A new experimental pharmacokinetic model using the γ-emitting isotope 57 Ni for studying nickel toxicokinetics was employed in a recent investigation in order to quantitatively study, for the first time, the effect of tetraethylthiuram disulphide (disulfiram, Antabuse, TTD) and sodium diethyldithiocarbamate (DDC) on whole-body retention and organ distribution of nickel in mice. TTD or its decomposition product DDC given orally by stomach tube shortly after oral administration of a low dose of nickel chloride labelled with 57 Ni resulted in an approximately ten times higher whole-body retention of nickel compared to the retention in a control group exposed to nickel only. These chelators increased the whole-body retention of nickel also when given by intraperitoneal injection shortly after oral or intraperitoneal administration of nickel. Oral administration of a single dose of TTD or DDC rapidly after an oral dose of nickel chloride also resulted in extensive changes in the organ distribution of nickel, thus the nickel content in the brain was at least 700 times higher than in a control group given the same dose of nickel only. If DDC was given intraperitoneally after nickel given orally, the relative organ distribution of nickel to most organs was the same as if the chelator was given orally, though the contents of the liver and lungs were lower. That TTD and DDC resulted in a transport of nickel to the brain, is underlined by the fact that after 20 hr, approximately 15% and after 45-50 hr, 30% of the total body burden of Ni was found in the brain. Stating the nickel content as concentrations, we found after 19 hr to 23 hr the highest nickel concentration in the brain, kidneys, lungs and liver, in order of decreasing concentration. From 68 hr to 122 hr the order was brain, lungs, kidneys and liver. TTD and DDC are widely used clinically. These results indicate, that long-term simultaneous administration of nickel and TTD or DDC to humans should be avoided, as

  19. Drinking water pollution with nickel from water boilers; Nickel-Eintrag aus Wasserkochern ins Trinkwasser

    Energy Technology Data Exchange (ETDEWEB)

    Helmers, E. [Amt fuer Umweltschutz, Stuttgart (Germany). Chemisches Inst.

    1998-07-01

    The EU is planning to drop the threshold value for nickel in drinking water down to 20 {mu}g/l (present German threshold value: 50 {mu}g/l). Since ICP-MS-screenings of spot checks of water cookers were striking with respect to nickel, emissions of electrical water cookers have been investigated systematically within this study. As a result, water cookers with open heating coils are emitting relevant amounts of nickel into the water while it is brought to the boil. Investigation of eight preused water cookers with open heating coils revealed that the boiled water contained more than 50 {mu}g Ni/l in one case, more than 20 {mu}g Ni/l in two cases and, between 10 and 20 {mu}g Ni/l in two more cases, respectively. Removing of the lime by the aid of citric acid is increasing the nickel concentrations by a factor of up to 50 (max. 640 {mu}g/l). A new device was checked in a long-term test. During standard use with tapwater, Ni concentrations fall below the detection limit of 5 {mu}g Ni/l (120 cooking events). However, after removing of the lime, 5 times of cooking were necessary in order to diminish the Ni concentrations below the limit of 20 {mu}g/l. In the case of dionized water Ni concentrations below the limit of 20 {mu}g/l. In the case of deionized water Ni concentrations remained between 94 und 190 {mu}g/l. Health risk assessment: The intake of nickel with beverages made from hot water out of these cookers is in the range of 26 {mu}g/day. Considering an alltogether dietary nickel intake of 130-170 (900) {mu}g/day, this is not beyond the scope. However, according to the fact that nickel allergies (dermatitis) are very frequent (up to 13% of the population), this source should be limited or closed. (orig.) [Deutsch] Aus Anlass der geplanten Absenkung des Trinkwassergrenzwertes fuer Nickel auf 20 {mu}g/l sowie aufgrund von Auffaelligkeiten bei Stichprobenuntersuchungen wurde das Nickel-Emissionsverhalten von elektrischen Wassererhitzern betrachtet. Hierbei erwies sich

  20. Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution

    International Nuclear Information System (INIS)

    Munoz, A. Igual; Anton, J. Garcia; Guin-tilde on, J.L.; Herranz, V. Perez

    2004-01-01

    The electrochemical behavior of copper, nickel and two copper-nickel (Cu90/Ni10 and Cu70/Ni30) alloys in 850 g/L LiBr solution in the absence and presence of three different inorganic inhibitors (chromate CrO 4 2- , molybdate MoO 4 2- , and tetraborate B 4 O 7 2- ) has been studied. Differences in inhibition efficiency are discussed in terms of potentiodynamic and cyclic measurements. The best protection is obtained by adding chromate to the 850 g/L LiBr solution while the inhibition efficiencies of molybdate and tetraborate ions were not markedly high. Very aggressive anions, such as bromides, in the present experimental conditions, notably reduce the action of the less efficient molecules (molybdate and tetraborate), but not that of the most efficient ones (chromate). The results of the investigation show that the inhibiting properties depend on the nickel content in the alloy; this element improves the general corrosion resistance of the material in the sense that it shifts free corrosion potential towards more noble values and density corrosion currents towards lower levels. The nickel content in the alloy also enlarges the passivating region of the materials in chromate and molybdate-containing solution; furthermore it decreases the current passivating values to lower values. Nickel addition improves the localized corrosion resistance in the bromide media

  1. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    OpenAIRE

    Lota, Katarzyna; Sierczynska, Agnieszka; Lota, Grzegorz

    2011-01-01

    In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD). The morphology of the composite...

  2. Residual Strain Characteristics of Nickel-coated FBG Sensors

    International Nuclear Information System (INIS)

    Cho, Won-Jae; Hwang, A-Reum; Kim, Sang-Woo

    2017-01-01

    A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately 43 μm of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

  3. Residual Strain Characteristics of Nickel-coated FBG Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won-Jae; Hwang, A-Reum; Kim, Sang-Woo [Hankyong National Univ., Ansung (Korea, Republic of)

    2017-07-15

    A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately 43 μm of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

  4. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic

    International Nuclear Information System (INIS)

    Shelmerdine, Paula A.; Black, Colin R.; McGrath, Steve P.; Young, Scott D.

    2009-01-01

    Pteris vittata plants were grown on twenty-one UK soils contaminated with arsenic (As) from a wide range of natural and anthropogenic sources. Arsenic concentration was measured in fern fronds, soil and soil pore water collected with Rhizon samplers. Isotopically exchangeable soil arsenate was determined by equilibration with 73 As V . Removal of As from the 21 soils by three sequential crops of P. vittata ranged between 0.1 and 13% of total soil As. Ferns grown on a soil subjected to long-term sewage sludge application showed reduced uptake of As because of high available phosphate concentrations. A combined solubility-uptake model was parameterised to enable prediction of phytoremediation success from estimates of soil As, 'As-lability' and soil pH. The model was used to demonstrate the remediation potential of P. vittata under different soil conditions and with contrasting assumptions regarding re-supply of the labile As pool from unavailable forms. - This paper presents a predictive model for phytoremediation of soils, historically contaminated with arsenic, by the hyperaccumulator P. vittata.

  5. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Shelmerdine, Paula A.; Black, Colin R. [School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD (United Kingdom); McGrath, Steve P. [Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Young, Scott D., E-mail: scott.young@nottingham.ac.u [School of Biosciences, Biology Building, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2009-05-15

    Pteris vittata plants were grown on twenty-one UK soils contaminated with arsenic (As) from a wide range of natural and anthropogenic sources. Arsenic concentration was measured in fern fronds, soil and soil pore water collected with Rhizon samplers. Isotopically exchangeable soil arsenate was determined by equilibration with {sup 73}As{sup V}. Removal of As from the 21 soils by three sequential crops of P. vittata ranged between 0.1 and 13% of total soil As. Ferns grown on a soil subjected to long-term sewage sludge application showed reduced uptake of As because of high available phosphate concentrations. A combined solubility-uptake model was parameterised to enable prediction of phytoremediation success from estimates of soil As, 'As-lability' and soil pH. The model was used to demonstrate the remediation potential of P. vittata under different soil conditions and with contrasting assumptions regarding re-supply of the labile As pool from unavailable forms. - This paper presents a predictive model for phytoremediation of soils, historically contaminated with arsenic, by the hyperaccumulator P. vittata.

  6. Phytoremediation of cadmium and nickel by Spirodela polyrhiza

    International Nuclear Information System (INIS)

    Chaudhuri, Devaleena; Goswami, Chandrima; Chatterjee, Sumon; Majumder, Arunabha; Mishra, A.K.; Bandyopadhyay, Kaushik

    2011-01-01

    Heavy metal pollution in surface and groundwater has considerably increased in the last few years. It is essential to have an effective removal mechanism of these toxic metals. Current research includes the need to develop environment friendly and cost effective technologies for removing heavy metals from water. In several studies cadmium and nickel have been considerably removed using phytoremediation. The removal efficiency of cadmium and nickel by Spirodela polyrhiza, common duckweed has been examined in the present study for 3 different concentrations of cadmium (1, 2 and 3 mg/L) and nickel (4, 5 and 6 mg/L). Two sets of experiments for cadmium and nickel were conducted separately. Effect of metal toxicity on Spirodela polyrhiza was evaluated in terms of relative growth factor and cadmium was found to be more toxic than nickel. Under experimental condition BCF value for cadmium removal was more than >1000 in all the 3 concentrations of cadmium. But the BCF value was found to be more than > 1000 only when input nickel concentration was 4 mg/L during phytoremediation process. Experimental results suggest that Spirodela polyrhiza has the potential of accumulating cadmium and nickel from aqueous solution at lower metal concentration. (author)

  7. Determination of nickel-63

    International Nuclear Information System (INIS)

    Poletiko, C.

    1988-01-01

    The research of activation products in the environment is often centered on cobalt-60 or other gamma emitters, since pure beta emitters require time consuming separations to be counted. However, some beta emitters must be checked because they have a build up in the environment, leading to potential hazards. Among these nuclides, there is nickel-63 which is a pure, soft beta emitter (67 keV) with a long half-life (100 years). A chemical separation, providing good results, was developed. Such a separation is based upon nickel carrier addition in the sample than DMG complex formation and isolation; after elimination of solvent. DMG complex is destroyed. Chemical yield is determined by flame atomic absorption measurement and nickel-63 counted by liquid scintillation. The described procedure allows the determination of low-level activities in different samples (soils, effluents, etc.). Detection limits are close to 0.1 Bq per sample

  8. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  9. Fluctuations of nickel concentrations in urine of electroplating workers

    International Nuclear Information System (INIS)

    Bernacki, E.J.; Zygowicz, E.; Sunderman, F.W. Jr.

    1980-01-01

    Nickel analyses were performed by electrothermal atomic absorption spectrometry upon urine specimens obtained from electroplating workers at the beginning, middle and end of the work-shift. The means (+- S.D.) for nickel concentrations in urine specimens from seven electroplating workers on three regular workdays were: 34 +- 32 μg/L (pre-shift); 64 +- μg/L (mid-shift) and 46 +- μg/L (end-shift), compared to 2.7 +- 1.6 μg/L (pre-shift) in 19 controls (hospital workers). Nickel concentrations in urine specimens from six electroplating workers on the first workday after a two-week vacation averaged: 5 +- 3 μg/L (pre-shift); 9 +- 6 μg/L (mid-shift), and 12 +- 6 μg/L (end-shift). Nickel concentrations in personal air samples (seven hours) collected from the breathing zones of five electroplating workers on three regular workdays averaged 9.3 +- 4.4 μg/m 3 . Nickel concentrations in the air samples were correlated with nickel concentrations in end-shift urine specimens (corr. coef. = 0.70; P < 0.05), but were not correlated with nickel concentrations in pre-shift or mid-shift urine specimens. In view of the fluctuations of urine nickel concentrations that occur during the work-shift, the authors recommend that nickel analyses of eight hour urine specimens be used routinely to monitor occupational exposures to nickel. In situations where timed urine collections are impractical, analyses of end-shift urine specimens are the best alternative

  10. Nickel accumulation and storage in bradyrhizobium japonicum

    International Nuclear Information System (INIS)

    Maier, R.J.; Pihl, T.D.; Stults, L.; Sray, W.

    1990-01-01

    Hydrogenase-depressed (chemolithotrophic growth conditions) and heterotrophically grown cultures of Bradyrhizobium japonicum accumulated nickel about equally over a 3-h period. Both types of cultures accumulated nickel primarily in a form that was not exchangeable with NiCl 2 , and they accumulated much more Ni than would be needed for the Ni-containing hydrogenase. The nickel accumulated by heterotrophically incubated cultures could later be mobilized to allow active hydrogenase synthesis during derepression in the absence of nickel, while cells both grown with Ni and the derepressed without nickel had low hydrogenase activities. The level of activity in cells grown with Ni and then derepressed without nickel was about the same as that in cultures derepressed in the presence of nickel. The Ni accumulated by heterotrophically grown cultures was associated principally with soluble proteins rather than particulate material, and this Ni was not lost upon dialyzing an extract containing the soluble proteins against either Ni-containing or EDTA-containing buffer. However, this Ni was lost upon pronase or low pH treatments. The soluble Ni-binding proteins were partially purified by gel filtration and DEAE chromatography. They were not antigenically related to hydrogenase peptides. Much of the 63 Ni eluted as a single peak of 48 kilodaltons. Experiments involving immunuprecipitation of 63 Ni-containing hydrogenase suggested that the stored source of Ni in heterotrophic cultures that could later be mobilized into hydrogenase resided in the nonexchangeable Ni-containing fraction rather than in loosely bound or ionic forms

  11. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils

    International Nuclear Information System (INIS)

    Leung, H.M.; Ye, Z.H.; Wong, M.H.

    2006-01-01

    A greenhouse trial was conducted to investigate the role of arbuscular mycorrhizas (AM) in aiding arsenic (As) uptake and tolerance by Pteris vittata (As hyperaccumulator) and Cynodon dactylon (a multi-metal root accumulator). Plants inoculated with lived and killed native mycorrhizas isolated from an As mine site were grown in a sterile and slightly acidic soil. The infectious percentage of mycorrhizas (0 mg/kg As: 26.4%, 50 mg/kg As: 30.3%, 100 mg/kg As: 40.6%) and the average biomass of shoots in infected P. vittata increased (0 mg/kg As: 2.45 g/pot, 50 mg/kg As: 2.48 g/pot, 100 mg/kg As: 10.9 g/pot) according to the increase of As levels when compared to control. The indigenous mycorrhizas enhanced As accumulation (0 mg/kg As: 3.70 mg/kg, 50 mg/kg As: 58.3 mg/kg; 100 mg/kg As: 88.1 mg/kg) in the As mine populations of P. vittata and also sustained its growth by aiding P absorption. For C. dactylon, As was mainly accumulated in mycorrhizal roots and translocation to shoots was inhibited. - Indigenous mycorrhizal fungi play an important role in As tolerance

  12. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Leung, H.M. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Ye, Z.H. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); School of Life Sciences, Zhongshan University, Guangzhou 510275 (China); Wong, M.H. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-01-15

    A greenhouse trial was conducted to investigate the role of arbuscular mycorrhizas (AM) in aiding arsenic (As) uptake and tolerance by Pteris vittata (As hyperaccumulator) and Cynodon dactylon (a multi-metal root accumulator). Plants inoculated with lived and killed native mycorrhizas isolated from an As mine site were grown in a sterile and slightly acidic soil. The infectious percentage of mycorrhizas (0 mg/kg As: 26.4%, 50 mg/kg As: 30.3%, 100 mg/kg As: 40.6%) and the average biomass of shoots in infected P. vittata increased (0 mg/kg As: 2.45 g/pot, 50 mg/kg As: 2.48 g/pot, 100 mg/kg As: 10.9 g/pot) according to the increase of As levels when compared to control. The indigenous mycorrhizas enhanced As accumulation (0 mg/kg As: 3.70 mg/kg, 50 mg/kg As: 58.3 mg/kg; 100 mg/kg As: 88.1 mg/kg) in the As mine populations of P. vittata and also sustained its growth by aiding P absorption. For C. dactylon, As was mainly accumulated in mycorrhizal roots and translocation to shoots was inhibited. - Indigenous mycorrhizal fungi play an important role in As tolerance.

  13. Nickel allergy from adolescence to adulthood in the TOACS cohort

    DEFF Research Database (Denmark)

    Mortz, Charlotte G; Bindslev-Jensen, Carsten; Andersen, Klaus Ejner

    2013-01-01

    Background In 1995, we established a cohort of 1501 unselected eighth-grade schoolchildren to investigate the course of nickel allergy into adult life. Objectives To follow the course of nickel allergy and clinically relevant nickel dermatitis over 15 years from adolescence to adulthood, and the ......Background In 1995, we established a cohort of 1501 unselected eighth-grade schoolchildren to investigate the course of nickel allergy into adult life. Objectives To follow the course of nickel allergy and clinically relevant nickel dermatitis over 15 years from adolescence to adulthood...

  14. Nanoparticles of nickel hexacyanoferrate

    International Nuclear Information System (INIS)

    Bicalho, U.O.; Santos, D.C.; Silvestrini, D.R.; Trama, B.; Carmo, D.R. do

    2014-01-01

    Nanoparticles of nickel hexacyanoferrate (NHNi) were prepared in three medium (aqueous, formamide and aqueous/formamide). The materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), electronica spectroscopy in the ultraviolet-visible (UV-Vis) region and also by cyclic voltammetry (CV). By spectroscopic analysis of X-ray diffraction was possible to estimate the size of the particles obtained by the Scherrer equation. The graphite paste electrodes containing nanoparticles of nickel hexacyanoferrate means formamide was sensitive to different concentrations of Dipyrone. (author)

  15. Evolution of the nickel/zirconia interface

    International Nuclear Information System (INIS)

    Shinde, S.L.; Olson, D.A.; De Jonghe, L.C.; Miller, R.A.

    1986-01-01

    The changes taking place at the nickel zirconia interface during oxidation in air at 900 0 C were studied using analytical electron microscopy (AEM). The nickel oxide layer growing at the interface and the stabilizers used in zirconia interact, giving different interface morphologies

  16. Coin exposure may cause allergic nickel dermatitis: a review.

    Science.gov (United States)

    Thyssen, Jacob P; Gawkrodger, David J; White, Ian R; Julander, Anneli; Menné, Torkil; Lidén, Carola

    2013-01-01

    Nickel is used in coins because the metal has beneficial properties, including price, colour, weight, and corrosion resistance, and also because it is easy to stamp. It has often been claimed that the duration of skin contact with coins is too short to cause nickel release and dermatitis. However, it is well known by dermatologists specialized in occupational skin diseases, and by their nickel-allergic patients, that hand eczema in cashiers and other professionals who handle coins may be caused or aggravated by nickel release from coins. In this review, we present evidence from past studies showing that nickel-containing coins can indeed pose a risk for those who handle them. For protection of the health of consumers, cashiers, and other workers who handle coins, it is suggested that coins without nickel release should be used as a substitute for the high nickel-releasing coins currently in widespread use. The key risk factor in this situation is the ability of metal alloys in coins to release nickel and contaminate the skin after repeated contact from coin handling. © 2012 John Wiley & Sons A/S.

  17. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L

    International Nuclear Information System (INIS)

    Wei Shuhe; Li Yunmeng; Zhou Qixing; Srivastava, Mrittunjai; Chiu Siuwai; Zhan Jie; Wu Zhijie; Sun Tieheng

    2010-01-01

    Phytoremediation is a cost-effective, simple and sustainable beneficiary technique to purify the polluted environment. Solanum nigrum L., a newly found cadmium (Cd) hyperaccumulator, has shown the potential to remediate Cd-contaminated soils. Present study investigated the effects of fertilizer amendments on the Cd uptake by S. nigrum. Chicken manure and urea are usual agricultural fertilizers and more environmental friendly. The results showed that Cd concentrations in shoots of S. nigrum were significantly decreased (p -1 ) in shoot biomass of S. nigrum were significantly increased (p < 0.05) due to increased shoot biomass. In addition, available Cd concentration in soil significantly decreased due to addition of chicken manure. Thus, urea might be a better fertilizer for strengthening phytoextraction rate of S. nigrum to Cd, and chicken manure may be a better fertilizer for phytostabilization.

  18. Ball bearings comprising nickel-titanium and methods of manufacture thereof

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2012-01-01

    Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.

  19. Surfactant-free synthesis of nickel nanoparticles in near-critical water

    International Nuclear Information System (INIS)

    Hald, Peter; Bremholm, Martin; Iversen, Steen Brummerstedt; Iversen, Bo Brummerstedt

    2008-01-01

    Nickel nanoparticles have been produced by combining two well-tested methods: (i) the continuous flow supercritical reactor and (ii) the reduction of a nickel salt with hydrazine. The normal precipitation of a nickel-hydrazine complex, which would complicate pumping and mixing of the precursor, was controlled by the addition of ammonia to the precursor solution, and production of nickel nanoparticles with average sizes from 40 to 60 nm were demonstrated. The method therefore provides some size control and enables the production of nickel nanoparticles without the use of surfactants. The pure nickel nanoparticles can be easily isolated using a magnet. - Graphical abstract: A surfactant-free synthesis route to nickel nanoparticles has been successfully transferred to near-critical water conditions reducing synthesis times from hours to seconds. Nickel nanoparticles in the 40-60 nm range have been synthesised from an ammonia stabilised hydrazine complex with the average size controlled by reaction temperature

  20. Nickel sensitization in patients with gastro-esophageal reflux disease.

    Science.gov (United States)

    Stanghellini, Vincenzo; Tosetti, Cesare; Benedetto, Edoardo; Condoluci, Mario; De Bastiani, Rudi; Cogliandro, Rosanna; Mastronuzzi, Tecla; De Polo, Manuela; Di Mita, Francesco; Napoli, Luigi; Ubaldi, Enzo; Nebiacolombo, Cristina; Cottone, Carmelo; Grattagliano, Ignazio; Zamparella, Maria; Baldi, Elisabetta; Sanna, Guido

    2016-04-01

    Gastro-esophageal reflux disease (GERD) leads to frequent medical visits, and available therapies fail in up to 40% of patients. Food allergies may be involved in GERD pathogenesis; however, allergens other than food have received little attention. Nickel allergy is common in the general population and some high-nickel foods are associated with GERD. However, the potential relationship between nickel allergy and GERD remains unaddressed. This study aimed to evaluate the prevalence of nickel sensitization in patients with and without GERD and to compare clinical and demographic features. This prospective, multicenter study included 210 adult GERD patients and 140 patients without GERD who presented at the general practitioner. All GERD patients had undergone treatment with proton pump inhibitors and upper digestive endoscopy within the previous five years. Demographic and clinical data were collected by questionnaire and patients underwent a nickel patch allergy test. Patients with and without GERD presented similar characteristics, with the exception of nickel sensitization, which was significantly more prevalent among GERD patients than controls (39.5% vs. 16.4%; p = 0.001). Nickel-positive GERD patients were more frequently female (90.4% vs. 65.4%, p = 0.003) and asthmatic (18.1% vs. 4.7%; p = 0.038), compared to nickel-negative GERD patients. At six-month follow-up, most of the patients, with or without nickel sensitization, reported improved symptoms without differences in drug prescription. Nickel sensitization is particularly prevalent in GERD patients seen in general practice. Whether allergies other than food allergy play a role in GERD remains to be elucidated.

  1. Texture Formation of Electroplated Nickel and Nickel Alloy on Cu Substrate

    International Nuclear Information System (INIS)

    Lee, Hee Gyoun; Hong, Gye Won; Kim, Jae Geun; Lee, Sun Wang; Kim, Ho Jin

    2006-01-01

    Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at 400-800 degrees C. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above 900 degrees C. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was 9.9 degree and 13.4 degree, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was 8.6 degree, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above 900 degrees C by electroplated nickel.

  2. Extended solubility and martensitic hcp nickel formation in antimony implanted nickel

    International Nuclear Information System (INIS)

    Johnson, E.; Sarholt-Kristensen, L.; Johansen, A.

    1982-01-01

    Radiation damage microstructure and associated disorder have been investigated in antimony implanted nickel crystals using combined RBS and TEM analyses. In crystals implanted at and below room temperature with 80 keV Sb + ions to a fluence of 5x10 20 m -2 , the retained antimony concentration in the implantation zone is approaching 15 at.%, with nearly all the antimony located substitutionally. The associated disorder as seen in the RBS analysis is insignificant. Annealing up to 600 0 C has little influence on the antimony distribution, whilst the dechanneling level is reduced. TEM and diffraction analysis of room temperature implanted samples show that the radiation damage consists of dense distributions of dislocation clusters and tangles, superimposed on a rather homogeneous background of new phase particles, identified as hcp nickel. The particles have a size 0.1-0.2 μm. The high substitutional antimony concentration at and below room temperature, which exceeds the solubility limit, indicates that its formation is thermally diffusionless and rather an effect of radiation enhanced solubility. The diffusionless nature of the microstructure is also indicated from the presence of martensitic hcp nickel, believed to form due to relief of radiation induced internal stress. (Auth.)

  3. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    Directory of Open Access Journals (Sweden)

    Katarzyna Lota

    2011-01-01

    Full Text Available In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD. The morphology of the composites was observed by SEM. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied in addition to the properties of electrode consisting of separate active carbon and nickel oxide only. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. The composites were tested in 6 M KOH aqueous electrolyte using two- and three-electrode Swagelok systems. The results showed that adding only a few percent of nickel oxide to active carbon provided the highest value of capacity. It is the confirmation of the fact that such an amount of nickel oxide is optimal to take advantage of both components of the composite, which additionally can be a good solution as a negative electrode in asymmetric configuration of electrode materials in an electrochemical capacitor.

  4. Absolute determination by X-ray diffraction of a binary or ternary mixture: nickel oxide and fluoride in a nickel powder (1960); Dosage absolu par diffraction X d'un melange binaire ou ternaire: oxyde et fluorure de nickel dans une poudre de nickel (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Charpin, P; Hauptman, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The method employed is based upon the comparison between computed and measured intensities for conveniently selected X-Ray diffraction lines of each component of the powder. Care must be taken to allow for absorption, both inside each grain and in overall sample. This method has been applied to the determination of nickel oxide and fluoride in a nickel powder. (author) [French] La methode utilisee, dite 'absolue' est basee sur le calcul des intensites theoriques de raies de diffraction convenablement choisies. Elle n'est applicable que si l'absorption est negligeable a travers chaque grain constituant l'echantillon et a travers l'echantillon total. Elle a ete employee pour doser, ensemble ou separement, de l'oxyde et du fluorure de nickel dans une poudre de nickel. (auteur)

  5. Contribution to the study of the electrodeposition of iron-nickel alloys; Contribution a l'etude du depot electrolytique des alliages fer-nickel

    Energy Technology Data Exchange (ETDEWEB)

    Valignat, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    Using a coulometric technique based upon the anodic intentiostatic dissolution, we studied the potentiostatic, deposition of nickel, iron and nickel iron alloys. We have shown that the minimum of the curve I = f (t) (deposition current versus time) is probably due to the transitory blocking of the surface by hydrogen and that the syn-crystallisation of nickel and iron is responsible for the anomalous co-deposition of these two elements. (author) [French] En employant une methode coulometrique par dissolution anodique intensipstatique, nous avons etudie le depot potentiostatique du nickel, du fer et des alliages fer-nickel. Nous avons pu montrer que le minimum de la courbe I = f (t) enregistree au cours du depot est du probablement au blocage momentane de la surface par l'hydrogene et que la syncristallisation du fer et du nickel est responsable de l'anomalie du depot simultane de ces deux elements. (auteur)

  6. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... FACILITIES Pt. 266, App. XII Appendix XII to Part 266—Nickel or Chromium-Bearing Materials that may be...

  7. NASA Lewis advanced IPV nickel-hydrogen technology

    Science.gov (United States)

    Smithrick, John J.; Britton, Doris L.

    1993-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80

  8. Nickel hydrogen bipolar battery electrode design

    Science.gov (United States)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  9. Identification of metallic items that caused nickel dermatitis in Danish patients.

    Science.gov (United States)

    Thyssen, Jacob P; Menné, Torkil; Johansen, Jeanne D

    2010-09-01

    Nickel allergy is prevalent as assessed by epidemiological studies. In an attempt to further identify and characterize sources that may result in nickel allergy and dermatitis, we analysed items identified by nickel-allergic dermatitis patients as causative of nickel dermatitis by using the dimethylglyoxime (DMG) test. Dermatitis patients with nickel allergy of current relevance were identified over a 2-year period in a tertiary referral patch test centre. When possible, their work tools and personal items were examined with the DMG test. Among 95 nickel-allergic dermatitis patients, 70 (73.7%) had metallic items investigated for nickel release. A total of 151 items were investigated, and 66 (43.7%) gave positive DMG test reactions. Objects were nearly all purchased or acquired after the introduction of the EU Nickel Directive. Only one object had been inherited, and only two objects had been purchased outside of Denmark. DMG testing is valuable as a screening test for nickel release and should be used to identify relevant exposures in nickel-allergic patients. Mainly consumer items, but also work tools used in an occupational setting, released nickel in dermatitis patients. This study confirmed 'risk items' from previous studies, including mobile phones.

  10. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  11. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries

    Science.gov (United States)

    Rodrigues, Luiz Eduardo Oliveira Carmo; Mansur, Marcelo Borges

    The separation of rare earth elements, cobalt and nickel from NiMH battery residues is evaluated in this paper. Analysis of the internal content of the NiMH batteries shows that nickel is the main metal present in the residue (around 50% in weight), as well as potassium (2.2-10.9%), cobalt (5.1-5.5%), rare earth elements (15.3-29.0%) and cadmium (2.8%). The presence of cadmium reveals that some Ni-Cd batteries are possibly labeled as NiMH ones. The leaching of nickel and cobalt from the NiMH battery powder with sulfuric acid is efficient; operating variables temperature and concentration of H 2O 2 has no significant effect for the conditions studied. A mixture of rare earth elements is separated by precipitation with NaOH. Finally, solvent extraction with D2EHPA (di-2-ethylhexyl phosphoric acid) followed by Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) can separate cadmium, cobalt and nickel from the leach liquor. The effect of the main operating variables of both leaching and solvent extraction steps are discussed aiming to maximize metal separation for recycling purposes.

  12. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George

    2011-08-17

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well.

  14. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles

    International Nuclear Information System (INIS)

    Zhou, C.; Vitiello, V.; Casals, E.; Puntes, V.F.; Iamunno, F.; Pellegrini, D.; Changwen, W.; Benvenuto, G.; Buttino, I.

    2016-01-01

    Highlights: • Acartia tonsa copepod is more sensitive to NiCl_2 than to nickel nanoparticles. • At the tested concentration egg production was not affected by both form of nickel. • Egg viability is the most sensitive end-point for both form of nickel. • Nickel dissolved in seawater increased with nanoparticle concentration. • Acartia tonsa adults were able to ingest nanoparticles. - Abstract: Nickel compounds are widely used in industries and have been massively introduced in the environment in different chemical forms. Here we report the effect of two different chemical forms of nickel, NiCl_2 and nickel nanoparticles (NiNPs), on the reproduction of the marine calanoid copepod Acartia tonsa. The behavior of nickel nanoparticles was analyzed with different techniques and with two protocols. In the “sonicated experiment” (SON) NiNP solution was sonicated while in the “non-sonicated experiment” (NON-SON) the solution was vigorously shaken by hand. Final nominal concentrations of 5, 10 and 50 mg L"−"1 and 1, 5 and 10 mg L"−"1 NiNPs were used for the acute and semichronic tests, respectively. Nanoparticle size did not change over time except for the highest concentration of 50 mg L"−"1 NiNPs, in which the diameter increased up to 843 nm after 48 h. The concentration of Ni dissolved in the water increased with NP concentration and was similar for SON and NON-SON solutions. Our results indicate that sonication does not modify toxicity for the copepod A. tonsa. Mean EC_5_0 values were similar for NON-SON (20.2 mg L"−"1) and SON experiments (22.14 mg L"−"1) in the acute test. Similarly, no differences occurred between the two different protocols in the semichronic test, with an EC_5_0 of 7.45 mg L"−"1 and 6.97 mg L"−"1 for NON-SON and SON experiments, respectively. Acute and semichronic tests, conducted exposing A. tonsa embryos to NiCl_2 concentrations from 0.025 to 0.63 mg L"−"1, showed EC_5_0 of 0.164 and 0.039 mg L"−"1, respectively

  15. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  16. Flare up of Nickel Contact Dermatits Following Oral Challenge

    Directory of Open Access Journals (Sweden)

    C R Srinivas

    1988-01-01

    Full Text Available A patient having contact dermatitis due to nickel on the wrist, sides of neck, thighs and legs, confirmed by patch tests with nickel sulphate, showed aggravation of the dermatitis following oral provocation with 25 mg nickel sulphate.

  17. Prototype nickel component demonstration. Final report

    International Nuclear Information System (INIS)

    Boss, D.E.

    1994-01-01

    We have been developing a process to produce high-purity nickel structures from nickel carbonyl using chemical vapor deposition (CVD). The prototype demonstration effort had been separated into a number of independent tasks to allow Los Alamos National Laboratory (LANL) the greatest flexibility in tailoring the project to their needs. LANL selected three of the proposed tasks to be performed--Task 1- system modification and demonstration, Task 2-stainless steel mandrel trials, and Task 4-manufacturing study. Task 1 focused on converting the CVD system from a hot-wall to a cold-wall configuration and demonstrating the improved efficiency of the reactor type by depositing a 0.01-inch-thick nickel coating on a cylindrical substrate. Since stainless steel substrates were preferred because of their low α-emitter levels, Task 2 evaluated mandrel configurations which would allow removal of the nickel tube from the substrate. The manufacturing study was performed to develop strategies and system designs for manufacturing large quantities of the components needed for the Sudbury Nuetrino Observatory (SNO) program. Each of these tasks was successfully completed. During these efforts, BIRL successfully produced short lengths of 2-inch-diameter tubing and 6-inch-wide foil with levels of α-radiation emitting contaminants lower than either conventional nickel alloys or electroplated materials. We have produced both the tubing and foil using hot-substrate, cold-wall reactors and clearly demonstrated the advantages of higher precursor efficiency and deposition rate associated with this configuration. We also demonstrated a novel mandrel design which allowed easy removal of the nickel tubing and should dramatically simplify the production of 1.5-meter-long tubes in the production phase of the program

  18. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  19. Nickel Hydrogen Battery Expert System

    Science.gov (United States)

    Johnson, Yvette B.; Mccall, Kurt E.

    1992-01-01

    The Nickel Cadmium Battery Expert System-2, or 'NICBES-2', which was used by the NASA HST six-battery testbed, was subsequently converted into the Nickel Hydrogen Battery Expert System, or 'NICHES'. Accounts are presently given of this conversion process and future uses being contemplated for NICHES. NICHES will calculate orbital summary data at the end of each orbit, and store these files for trend analyses and rules-generation.

  20. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Science.gov (United States)

    Mondon, A.; Wang, D.; Zuschlag, A.; Bartsch, J.; Glatthaar, M.; Glunz, S. W.

    2014-12-01

    In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel-silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide a continuous nickel silicide of greater depth, polycrystalline modification and expected phase according to thermal budget is formed. Information about the nature of silicide growth on typical solar cell surfaces could be obtained from silicide phase and geometric observations, which were supported by FIB tomography. The theory of isotropic NiSi growth and orientation dependent NiSi2 growth was derived. By this, a very well performing low-cost metallization for silicon solar cells has been brought an important step closer to industrial introduction.

  1. Identification of up-regulated genes from the metal-hyperaccumulator aquatic fern Salvinia minima Baker, in response to lead exposure.

    Science.gov (United States)

    Leal-Alvarado, Daniel A; Martínez-Hernández, A; Calderón-Vázquez, C L; Uh-Ramos, D; Fuentes, G; Ramírez-Prado, J H; Sáenz-Carbonell, L; Santamaría, J M

    2017-12-01

    Lead (Pb) is one of the most serious environmental pollutants. The aquatic fern Salvinia minima Baker is capable to hyper-accumulate Pb in their tissues. However, the molecular mechanisms involved in its Pb accumulation and tolerance capacity are not fully understood. In order to investigate the molecular mechanisms that are activated by S. minima in response to Pb, we constructed a suppression subtractive hybridization library (SSH) in response to an exposure to 40μM of Pb(NO 3 ) 2 for 12h. 365 lead-related differentially expressed sequences tags (ESTs) were isolated and sequenced. Among these ESTs, 143 unique cDNA (97 were registered at the GenBank and 46 ESTs were not registered, because they did not meet the GenBank conditions). Those ESTs were identified and classified into 3 groups according to Blast2GO. In terms of metabolic pathways, they were grouped into 29 KEGG pathways. Among the ESTs, we identified some that might be part of the mechanism that this fern may have to deal with this metal, including abiotic-stress-related transcription factors, some that might be involved in tolerance mechanisms such as ROS scavenging, membrane protection, and those of cell homeostasis recovery. To validate the SSH library, 4 genes were randomly selected from the library and analyzed by qRT-PCR. These 4 genes were transcriptionally up-regulated in response to lead in at least one of the two tested tissues (roots and leaves). The present library is one of the few genomics approaches to study the response to metal stress in an aquatic fern, representing novel molecular information and tools to understand the molecular physiology of its Pb tolerance and hyperaccumulation capacity. Further research is required to elucidate the functions of the lead-induced genes that remain classified as unknown, to perhaps reveal novel molecular mechanisms of Pb tolerance and accumulation capacity in aquatic plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    Science.gov (United States)

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM

  3. Method for regeneration of electroless nickel plating solution

    Science.gov (United States)

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  4. Method for regeneration of electroless nickel plating solution

    Science.gov (United States)

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  5. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  6. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis.

    Directory of Open Access Journals (Sweden)

    Qing Luo

    Full Text Available Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd. S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress.

  7. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    International Nuclear Information System (INIS)

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-01-01

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis

  8. Adverse effects of nickel in transosseous wires and surgical implants: literature review.

    Science.gov (United States)

    Nwashindi, A; Dim, E M

    2014-01-01

    Transosseous wires used in the management of fractures are stainless steel alloys which contain nickel 14.5%, chromium 17.6%, iron 62.5% and molybdenum 2.8%. Gradual disintegration of the transosseous wires release nickel into the blood leading to increase nickel concentration in the blood. Nickel has been found to have some adverse systemic effects on the body. The aim of this paper is to discuss the sources of Nickel in the body as well as the systemic adverse effects of Nickel as a degradation product of stainless steel surgical implants. A study of pertinent literature on nickel as a content of stainless steel alloy used in implant surgery was done, taking note also of other sources of nickel in the body, the toxicokinetics of nickel and the related adverse effects of this metal and its compound in humans. As outcome,the sources of human exposure to nickel,distribution and metabolism of nickel in the body, host responseto stainless steel wires and the adverse effects of nickel in the body are presented. It may be necessary to discourage the use of wires or implants containing nickel in the management of fractures.The need for removal of these implants after they have served their purposes is emphasized.

  9. Nickel films: Nonselective and selective photochemical deposition and properties

    International Nuclear Information System (INIS)

    Smirnova, N.V.; Boitsova, T.B.; Gorbunova, V.V.; Alekseeva, L.V.; Pronin, V.P.; Kon'uhov, G.S.

    2006-01-01

    Nickel films deposited on quartz surfaces by the photochemical reduction of a chemical nickel plating solution were studied. It was found that the deposition of the films occurs after an induction period, the length of which depends on the composition of the photolyte and the light intensity. Ni particles with a mean diameter of 20-30 nm were detected initially by transmission electron microscopy. The particles then increased in size (50 nm) upon irradiation and grouped into rings consisting of 4-5 particles. Irradiation with high-intensity light produces three-dimensional films. The calculated extinction coefficient of the nickel film was found to be 4800 L mol -1 cm -1 . Electron diffraction revealed that the prepared amorphous nickel films crystallize after one day of storage. It was determined that the films exhibit catalytic activity in the process of nickel deposition from nickel plating solution. The catalytic action remains for about 5-7 min after exposure of the films to air. The processes of selective and nonselective deposition of the nickel films are discussed. The use of poly(butoxy titanium) in the process of selective photochemical deposition enables negative and positive images to be prepared on quartz surfaces

  10. Preparation of fine Ni powders from nickel hydrazine complex

    International Nuclear Information System (INIS)

    Park, Jung Woo; Chae, Eun H.; Kim, Sang H.; Lee, Jong Ho; Kim, Jeong Wook; Yoon, Seon Mi; Choi, Jae-Young

    2006-01-01

    Fine nickel powders with narrow size distribution have been prepared from the reduction of nickel hydrazine complexes in aqueous solution. The pure nickel hydrazine complexes, [Ni(N 2 H 4 ) 3 ]Cl 2 were prepared with the molar ratio of N 2 H 4 /Ni 2+ = 4.5, while a mixture of complexes, such as Ni(N 2 H 4 ) 2 Cl 2 , [Ni(N 2 H 4 ) 3 ]Cl 2 , and [Ni(NH 3 ) 6 ]Cl 2 were formed with N 2 H 4 /Ni 2+ 2+ to metallic Ni powder proceeded via the formation of nickel hydroxide which was reduced by hydrazine liberated from the ligand exchange reaction between the nickel hydrazine complex and NaOH. The standard deviation of the particle size decreased with the decreasing molar concentration of nickel hydrazine complex while the mean particle size increased. As the amount of hydrazine increased, the surface roughness of the particles was improved significantly due to the catalytic decomposition of the excess hydrazine at the surface of the nickel particle. It was found that average particle size could be controlled from 150 to 380 nm by adjusting the reaction molar ratio and temperature

  11. Evaluation and Countermeasures on sustainable development of nickel resources in China

    Science.gov (United States)

    Lin, Zhifeng

    2017-08-01

    Nickel is an important strategic resource in China. With the gradual reduction of nickel re-sources and the increasing competition of the global mineral resources market, the safety of nickel resources in China has been seriously threatened. Therefore, it is very important to evaluate the sustainable develop-ment of nickel resources in China and put forward the corresponding countermeasures. In this paper, the concept and research situation of sustainable development are analyzed. Based on the specific development of nickel resources in China, this paper uses AHP to evaluate the safety of nickel resources in china. Finally, it puts forward the concrete measures to implement the sustainable development strategy of nickel resources in China.

  12. Cryoforming evaluation using high-purity nickel

    International Nuclear Information System (INIS)

    Lord, D.E.; Meisner, L.F.

    1976-01-01

    The cryogenic forming process was evaluated using nickel 270 to see if it had significant advantages over room-temperature (RT) forming. Typically, the procedure involved fast-strain-rate forming a set of nickel samples at cryogenic temperatures and another set at RT. Both sets were measured at RT for failure strength and their strength-preparation elongation curves compared at equal strains. Two more sets were formed, this time at slow strain rates (one at cryogenic temperatures, the other at RT). Both sets were measured at RT for failure strength and their strength-preparation elongation curves of these sets compared with the previous two at equal temperatures and strains. Cryoforming produced a 30 percent higher-strength nickel than that produced at room temperature at equal strains and strain rates. Forming rate effects disappeared as working temperature decreased. Rate-insensitive cryoforming produced a considerably stronger room-temperature material than room-temperature forming at high strain rates. Transmission electron microscopy indicated apparent structural differences between cryoformed and room-temperature-formed nickel. 14 fig

  13. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Science.gov (United States)

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol. Copyright © 2014. Published by Elsevier B.V.

  14. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  15. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    International Nuclear Information System (INIS)

    Redondo-Gomez, Susana; Mateos-Naranjo, Enrique; Andrades-Moreno, Luis

    2010-01-01

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l -1 on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg -1 . The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l -1 Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P N ). Reductions in P N could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  16. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Gomez, Susana, E-mail: susana@us.es [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain); Mateos-Naranjo, Enrique; Andrades-Moreno, Luis [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain)

    2010-12-15

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l{sup -1} on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg{sup -1}. The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l{sup -1} Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P{sub N}). Reductions in P{sub N} could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  17. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  18. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K.R.; Smith, C.J.E. [Defence Research Agency, Farnborough (United Kingdom). Structural Materials Centre; Robinson, M.J. [Cranfield Univ. (United Kingdom). School of Industrial and Manufacturing Science

    1995-12-01

    The ability of electrodeposited zinc-nickel alloy coatings to cathodically protect steel was studied in dilute chloride solutions. The potential distribution along steel strips partly electroplated with zinc-nickel alloys was determined, and the length of exposed steel that was held below the minimum protection potential (E{sub prot}) was taken as a measure of the level of cathodic protection (CP) provided by the alloy coatings. The level of CP afforded by zinc alloy coatings was found to decrease with increasing nickel content. When nickel content was increased to {approx} {ge} 21 wt%, no CP was obtained. Surface analysis of uncoupled zinc-nickel alloys that were immersed in sodium chloride (NaCl) solutions showed the concentration of zinc decreased in the surface layers while the concentration of nickel increased, indicating that the alloys were susceptible to dezincification. The analysis of zinc-nickel alloy coatings on partly electroplated steel strips that were immersed in chloride solution showed a significantly higher level of dezincification than that found for uncoupled alloy coatings. This effect accounted for the rapid loss of CP afforded to steel by some zinc alloy coatings, particularly those with high initial nickel levels.

  19. New views on the hypothesis of respiratory cancer risk from soluble nickel exposure; and reconsideration of this risk's historical sources in nickel refineries

    Directory of Open Access Journals (Sweden)

    Heller James G

    2009-08-01

    Full Text Available Abstract Introduction While epidemiological methods have grown in sophistication during the 20th century, their application in historical occupational (and environmental health research has also led to a corresponding growth in uncertainty in the validity and reliability of the attribution of risk in the resulting studies, particularly where study periods extend back in time to the immediate postwar era (1945–70 when exposure measurements were sporadic, unsystematically collected and primitive in technique; and, more so, to the pre-WWII era (when exposure data were essentially non-existent. These uncertainties propagate with animal studies that are designed to confirm the carcinogenicity by inhalation exposure of a chemical putatively responsible for historical workplace cancers since exact exposure conditions were never well characterized. In this report, we present a weight of scientific evidence examination of the human and toxicological evidence to show that soluble nickel is not carcinogenic; and, furthermore, that the carcinogenic potencies previously assigned by regulators to sulphidic and oxidic nickel compounds for the purposes of developing occupational exposure limits have likely been overestimated. Methods Published, file and archival evidence covering the pertinent epidemiology, biostatistics, confounding factors, toxicology, industrial hygiene and exposure factors, and other risky exposures were examined to evaluate the soluble nickel carcinogenicity hypothesis; and the likely contribution of a competing workplace carcinogen (arsenic on sulphidic and oxidic nickel risk estimates. Findings Sharp contrasts in available land area and topography, and consequent intensity of production and refinery process layouts, likely account for differences in nickel species exposures in the Kristiansand (KNR and Port Colborne (PCNR refineries. These differences indicate mixed sulphidic and oxidic nickel and arsenic exposures in KNR's historical

  20. Nickel and ocean warming affect scleractinian coral growth.

    Science.gov (United States)

    Biscéré, T; Lorrain, A; Rodolfo-Metalpa, R; Gilbert, A; Wright, A; Devissi, C; Peignon, C; Farman, R; Duvieilbourg, E; Payri, C; Houlbrèque, F

    2017-07-15

    The sensitivity of corals and their Symbiodinium to warming has been extensively documented; however very few studies considered that anthropogenic inputs such as metal pollution have already an impact on many fringing reefs. Thus, today, nickel releases are common in coastal ecosystems. In this study, two major reef-building species Acropora muricata and Pocillopora damicornis were exposed in situ to ambient and moderate nickel concentrations on a short-term period (1h) using benthic chamber experiments. Simultaneously, we tested in laboratory conditions the combined effects of a chronic exposure (8weeks) to moderate nickel concentrations and ocean warming on A. muricata. The in situ experiment highlighted that nickel enrichment, at ambient temperature, stimulated by 27 to 47% the calcification rates of both species but not their photosynthetic performances. In contrast, an exposure to higher nickel concentration, in combination with elevated temperature simulated in aquaria, severely depressed by 30% the growth of A. muricata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    Sewage sludges as well as ashes from waste incineration plants are known accumulation sinks of many elements that are either important nutrients for biological organisms (phosphorus, potassium, magnesium, etc.) or valuable metals when considered on their own in pure form (nickel, chrome, zinc, etc.); they are also serious pollutants when they occur in wild mixtures at localized anthropogenic end- of-stream points. Austria and many other countries have to import up to 90% of the material inputs of metals from abroad. These primary resources are becoming more expensive as they become more scarce and remaining deposits more difficult to mine, which is a serious concern for industrialized nations. Basic economic and strategic reasoning demands an increase in recycling activities and waste minimization. Technologies to recover metals in a reasonable and economically relevant manner from very diffuse sources are practically non-existent or require large amounts of energy and chemicals, which pose environmental risks. On the other hand agriculture uses large volumes of mineral fertilizers, which are often sourced from mines as well, and thus are also subject to the same principle of finiteness and potential shortage in supply. These converted biological nutrients are taken up by crops and through the food chain and human consumption end up in sewage systems and in wastewater treatment plants in great quantities. The metabolized nutrients mostly do not return to agriculture, but due to contamination with heavy metals are diverted to be used as construction aggregates or are thermally treated and end up rather uselessly in landfills. The project BIO-ORE aimed to explore new pathways to concentrate metals from diluted sources such as sewage sludge and wastewater by using highly efficient biological absorption and transport mechanisms. These enzymatic systems from plants work with very little energy input. The process is called bioaccumulation and can be most effectively

  2. High emittance black nickel coating on copper substrate for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Soniya, E-mail: jrf0013@isac.gov.in; Pillai, Anju M., E-mail: anjum@isac.gov.in; Rajendra, A., E-mail: rajendra@isac.gov.in; Sharma, A.K., E-mail: aks@isac.gov.in

    2015-09-15

    Highlights: • High emittance black nickel coating is obtained on copper substrate. • The effect of various process parameters on IR emittance is studied systematically. • Process parameters are optimized to develop a high emittance black nickel coating. • Coating obtained using the finalized parameters exhibited an emittance of 0.83. • SEM and EDAX are used for coating characterization. - Abstract: Black nickel, an alloy coating of zinc and nickel, is obtained on copper substrate by pulse electrodeposition from a modified Fishlock bath containing nickel sulphate, nickel ammonium sulphate, zinc sulphate and ammonium thiocyanate. A nickel undercoat of 4–5 μm thickness is obtained using Watts bath to increase the corrosion resistance and adhesion of the black nickel coating. The effect of bath composition, temperature, solution pH, current density and plating time on the coating appearance and corresponding infra-red emittance of the coating is investigated systematically. Process parameters are optimized to develop a high emittance space worthy black nickel coating to improve the heat radiation characteristics. The effect of the chemistry of the plating bath on the coating composition was studied using energy dispersive X-ray analysis (EDAX) of the coatings. The 5–6 μm thick uniform jet black zinc–nickel alloy coating obtained with optimized process exhibited an emittance of 0.83 and an absorbance of 0.92. The zinc to nickel ratio of black nickel coatings showing high emittance and appealing appearance was found to be in the range 2.3–2.4.

  3. Spectroscopic and thermogravimetric study of nickel sulfaquinoxaline complex

    International Nuclear Information System (INIS)

    Tailor, Sanjay M.; Patel, Urmila H.

    2016-01-01

    The ability of sulfaquinoxaline (4-Amino-N-2-quinoxalinylbenzenesulfonamide) to form metal complexes are investigated. The nickel complex of sulfaquinoxaline is prepared by reflux method and characterized by CHN analysis and IR spectra. The results of IR spectral data suggest that the binding of nickel atom to the sulfonamidic nitrogen are in good agreement. The thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential thermogravimetric (DTG) analysis of nickel sulfaquinoxaline are carried out from ambient temperature to 750°C in inert nitrogen atmosphere. The activation energy, enthalpy, entropy and Gibbs free energy of nickel sulfaquinoxaline complex is determined from the thermal curves using Broido method. The results are reported in this paper.

  4. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    Science.gov (United States)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel

  5. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    Science.gov (United States)

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor

    OpenAIRE

    Grimshaw, Pengpeng; Calo, Joseph M.; Shirvanian, Pezhman A.; Hradil, George

    2011-01-01

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, ther...

  7. Nickel sensitisation in mice: a critical appraisal.

    Science.gov (United States)

    Johansen, Pål; Wäckerle-Men, Ying; Senti, Gabriela; Kündig, Thomas M

    2010-06-01

    The market release of new domestic and industrial chemical and metal products requires certain safety certification, including testing for skin sensitisation. Although various official guidelines have described how such testing is to be done, the validity of the available test models are in part dubious, for which reason regulatory agencies and research aim to further improve and generalise the models for testing of skin sensitisation. We applied a recently published murine model of nickel allergy as to test its applicability in a regulatory setting and to study and better understand the events leading to type-IV hypersensitivity. Nickel was chosen as model hapten since it induces allergic contact dermatitis with high incidence in the general population. Typically, C57BL/6 mice were sensitised and challenged by intradermal applications of nickel, and cutaneous inflammation was analysed by the mouse ear-swelling test, by histology, and by lymphocyte reactivity in vitro. Surprisingly, the study suggested that the skin reactions observed were results of irritant reactions rather than of adaptive immune responses. Non-sensitised mice responded with cutaneous inflammation and in vitro lymphocyte reactivity which were comparable with nickel-sensitised mice. Furthermore, histological examinations as well as experiments in T-cell deficient mice demonstrated that lymphocytes were not involved and that nickel caused an irritant contact dermatitis rather a true allergic type-IV contact dermatitis. The authors question the validity of the described murine model of nickel allergy. Copyright 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Impact of nickel (Ni) on hematological parameters and behavioral ...

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... The effect of nickel on hematological parameters and behaviour in Cyprinus carpio after a 96 h exposure to nickel test was investigated. .... important food item in human diet. Nickel is a natural element in the earth's makeup. This must be a factor in assessing its ability to harm the environment. Although,.

  9. Investigation of interdiffusion in copper-nickel bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Lettif, Ahmed M. [Physics Department, College of Science, Babylon University, Hilla (Iraq)]. E-mail: abdullettif@yahoo.com

    2007-01-15

    Auger depth profiling technique and X-ray diffraction analysis have been employed to study the interdiffusion in vacuum-deposited copper-nickel bilayer thin films. An adaptation of the Whipple model was used to determine the diffusion coefficients of both nickel in copper and copper in nickel. The calculated diffusion coefficient is (2.0x10{sup -7} cm{sup 2}/s)exp(-1.0 eV/kT) for nickel in copper, and (6x10{sup -8} cm{sup 2}/s)exp(-0.98 eV/kT) for copper in nickel. The difference between the diffusion parameters obtained in the present work and those extracted by other investigators is attributed essentially to the difference in the films microstructure and to the annealing ambient. It is concluded that interdiffusion in the investigated films is described by type-B kinetics in which rapid grain-boundary diffusion is coupled to defect-enhanced diffusion into the grain interior. The present data raise a question about the effectiveness of nickel as a diffusion barrier between copper and the silicon substrate.

  10. Method of nickel-plating large components

    International Nuclear Information System (INIS)

    Wilbuer, K.

    1997-01-01

    The invention concerns a method of nickel-plating components, according to which even large components can be provided with an adequate layer of nickel which is pore- and stress-free and such that water is not lost. According to the invention, the component is heated and, after heating, is pickled, rinsed, scoured, plated in an electrolysis process, and rinsed again. (author)

  11. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    Science.gov (United States)

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  12. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    International Nuclear Information System (INIS)

    Engelhaupt, D. E.

    1981-01-01

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readilycorrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature

  13. Cancer Stem-Like Cells Accumulated in Nickel-Induced Malignant Transformation

    Science.gov (United States)

    Wang, Lei; Fan, Jia; Hitron, John Andrew; Son, Young-Ok; Wise, James T.F.; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Nickel compounds are known as human carcinogens. Chronic environmental exposure to nickel is a worldwide health concern. Although the mechanisms of nickel-induced carcinogenesis are not well understood, recent studies suggest that stem cells/cancer stem cells are likely important targets. This study examines the role of cancer stem cells in nickel-induced cell transformation. The nontransformed human bronchial epithelial cell line (Beas-2B) was chronically exposed to nickel chloride for 12 months to induce cell transformation. Nickel induced Beas-2B cell transformation, and cancer stem-like cells were enriched in nickel-transformed cell (BNiT) population. The BNiT cancer stem-like cells demonstrated enhanced self-renewal and distinctive differentiation properties. In vivo tumorigenesis studies show that BNiT cancer stem-like cells possess a high tumor-initiating capability. It was also demonstrated that superoxide dismutase 1 was involved in the accumulation of cancer stem-like cells; the regulation of superoxide dismutase 1 expression was different in transformed stem-like cells and nontransformed. Overall, the accumulation of stem-like cells and their enhanced stemness functions contribute to nickel-induced tumorigenesis. Our study provides additional insight into the mechanisms by which metals or other chemicals can induce carcinogenesis. PMID:26962057

  14. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  15. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  16. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C. [Istituto per la Protezione e Ricerca Ambientale ISPRA-STS Livorno, Piazzale dei marmi 12, 57123 Livorno (Italy); Academic Centre for Innovation and Development in the Food Industry (CAISIAL), Università degli Studi di Napoli Federico II, 80055 Portici (Italy); Vitiello, V. [Istituto per la Protezione e Ricerca Ambientale ISPRA-STS Livorno, Piazzale dei marmi 12, 57123 Livorno (Italy); Casals, E. [Institut Català de Nanotecnologia, Campus de la Universitat Autònoma de Barcelone, 08193 Bellaterra (Spain); Puntes, V.F. [Institut Català de Nanotecnologia, Campus de la Universitat Autònoma de Barcelone, 08193 Bellaterra (Spain); Institut Català de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona (Spain); Iamunno, F. [Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli (Italy); Pellegrini, D. [Istituto per la Protezione e Ricerca Ambientale ISPRA-STS Livorno, Piazzale dei marmi 12, 57123 Livorno (Italy); Changwen, W. [Zhejiang Ocean University, 1 Rd. South Haida, Lincheng New Area, Dinghai District Zhoushan City, 316022 (China); Benvenuto, G. [Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli (Italy); Buttino, I., E-mail: isabella.buttino@isprambiente.it [Istituto per la Protezione e Ricerca Ambientale ISPRA-STS Livorno, Piazzale dei marmi 12, 57123 Livorno (Italy)

    2016-01-15

    Highlights: • Acartia tonsa copepod is more sensitive to NiCl{sub 2} than to nickel nanoparticles. • At the tested concentration egg production was not affected by both form of nickel. • Egg viability is the most sensitive end-point for both form of nickel. • Nickel dissolved in seawater increased with nanoparticle concentration. • Acartia tonsa adults were able to ingest nanoparticles. - Abstract: Nickel compounds are widely used in industries and have been massively introduced in the environment in different chemical forms. Here we report the effect of two different chemical forms of nickel, NiCl{sub 2} and nickel nanoparticles (NiNPs), on the reproduction of the marine calanoid copepod Acartia tonsa. The behavior of nickel nanoparticles was analyzed with different techniques and with two protocols. In the “sonicated experiment” (SON) NiNP solution was sonicated while in the “non-sonicated experiment” (NON-SON) the solution was vigorously shaken by hand. Final nominal concentrations of 5, 10 and 50 mg L{sup −1} and 1, 5 and 10 mg L{sup −1} NiNPs were used for the acute and semichronic tests, respectively. Nanoparticle size did not change over time except for the highest concentration of 50 mg L{sup −1} NiNPs, in which the diameter increased up to 843 nm after 48 h. The concentration of Ni dissolved in the water increased with NP concentration and was similar for SON and NON-SON solutions. Our results indicate that sonication does not modify toxicity for the copepod A. tonsa. Mean EC{sub 50} values were similar for NON-SON (20.2 mg L{sup −1}) and SON experiments (22.14 mg L{sup −1}) in the acute test. Similarly, no differences occurred between the two different protocols in the semichronic test, with an EC{sub 50} of 7.45 mg L{sup −1} and 6.97 mg L{sup −1} for NON-SON and SON experiments, respectively. Acute and semichronic tests, conducted exposing A. tonsa embryos to NiCl{sub 2} concentrations from 0.025 to 0.63 mg L{sup −1

  17. A comparison of the dietary arsenic exposures from ingestion of contaminated soil and hyperaccumulating Pteris ferns used in a residential phytoremediation project.

    Science.gov (United States)

    Ebbs, Stephen; Hatfield, Sarah; Nagarajan, Vinay; Blaylock, Michael

    2010-01-01

    Arsenic (As) hyperaccumulating ferns are used to phytoremediate As-contaminated soils, including soils in residential areas. This use may pose a health risk if children were to ingest these plants. Spider brake (Pteris cretica L.) plants were grown in sand spiked with arsenate, to produce tissue As concentrations (2000-4500 mg kg DW(-1)) typical of those observed in plants deployed for As phytoremediation. The fronds were subjected to a physiologically-based extraction test to estimate As bioaccessibility, which ranged from 3.4-20.5%. A scenario for human dietary exposure to As in an urban setting was then estimated for a child consuming 0.25 g DW of tissue. The calculation of dietary exposure took into account the As concentration in the fern pinnae, the bioaccessibility of As in the tissue, and the typical absorption of inorganic As by the gastrointestinal tract. The pinnae As concentrations and the calculated dietary exposures were used to create a non-linear regression model relating tissue As concentration to dietary exposure. Data from a phytoremediation project in a residential area using Pteris cretica and Pteris vittata (L.) were input into this model to project dietary As exposure in a residential phytoremediation setting. These exposures were compared to estimates of dietary As exposure from the consumption of soil. The results showed that dietary exposures to As from consumption of soil or pinnae tissue were similar and that estimates of dietary exposure were below the LOAEL value of 14 microg As kg(-1) d(-1). The results suggest that the hyperaccumulation of As in Pteris ferns during growth in moderately contaminated residential soils (e.g., < or = 100 mg As kg DW(-1)) does not represent an inherent risk or a risk substantially different from that posed by accidental ingestion of contaminated soil.

  18. Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft

    Science.gov (United States)

    Mccoy, D. A.; Lackner, J. L.

    1986-01-01

    The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented.

  19. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  20. Ecological Considerations on Nickel Dermatitis

    Science.gov (United States)

    Marcussen, Poul V.

    1960-01-01

    The incidence of nickel dermatoses has shifted from the plating industry to other occupations and particularly to non-occupational causes. A Danish survey of 621 cases shows that 4% are due to nickel plating, 9·5% to other occupations, and 86·5% were not due to occupation. A primary eruption not due to occupation had occurred in 14% of the occupational cases. The importance of preventive measures for the community more than for the adequately controlled industry is underlined. PMID:14420983

  1. Protective effects of zinc acetate toward the toxicity of nickelous acetate in rats

    International Nuclear Information System (INIS)

    Waalkes, M.P.; Kasprzak, K.S.; Ohshima, M.; Poirier, L.A.

    1985-01-01

    This study was designed to determine the effects of zinc pretreatment on the acute toxicity of nickel. Male Fischer rats received either nickel alone (i.p.), zinc alone (s.c.), zinc plus nickel, or saline (i.p. and s.c.; controls). Zinc pretreatment significantly increased the 14-day survival of nickel-related rats. Zinc did not, however, prevent the reduction in weight gain over 2 weeks seen with nickel treatment. Histopathologically, at 120 h following nickel exposure, kidneys in the group receiving nickel alone generally showed moderate nephropathy (multifocal proximal tubule degeneration with necrosis) while in the zinc plus nickel group the nephropathy was generally mild. Zinc pretreatment had no apparent effect on the pharmacokinetics of nickel over 24 h as assessed by urinary excretion, blood levels or organ distribution. Zinc pretreatment also did not alter the subcellular distribution of renal nickel 6 h after nickel exposure. Enhanced synthesis of metallothionein did not appear to play a critical role in the reduction of nickel toxicity, since renal concentrations of this metalbuilding protein, although elevated compared to control, were not different in rats receiving zinc and nickel or zinc alone. Zinc pretreatment did, however, have marked effect on nickel-induced hyperglycemia, reducing both the duration and severity of elevated blood glucose levels. Results of the study show that zinc can prevent some of the toxic effects of nickel and that the mechanism of this action does not appear to involve either metalothionein or alterations in the pharmacokinetics of nickel. (author)

  2. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    Science.gov (United States)

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  3. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  4. Exposure to nickel by hair mineral analysis.

    Science.gov (United States)

    Michalak, Izabela; Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina; Saeid, Agnieszka; Górecki, Henryk

    2012-11-01

    The aim of the present work was to investigate the exposure to nickel from various sources by investigation of mineral composition of human scalp hair. The research was carried out on hair sampled from subjects, including 87 males and 178 females (22 ± 2 years). The samples of hair were analyzed by ICP-OES. The effect of several factors on nickel content in hair was examined: lifestyle habits (e.g. hair coloring, hair spray, hair straighteners, hair drier, drugs); dietary factors (e.g. yoghurts, blue cheese, lettuce, lemon, mushroom, egg, butter); other (e.g. solarium, cigarette smoking, tap water pipes, tinned food, PVC foil, photocopier, amalgam filling). These outcomes were reached by linking the results of nickel level in hair with the results of questionnaire survey. Basing on the results it can be concluded that exposure to nickel ions can occur from different sources: lifestyle, eating habits and environmental exposure. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Nickel nanostructured materials from liquid phase photodeposition

    International Nuclear Information System (INIS)

    Giuffrida, Salvatore; Condorelli, Guglielmo G.; Costanzo, Lucia L.; Ventimiglia, Giorgio; Nigro, Raffaella Lo; Favazza, Maria; Votrico, Enrico; Bongiorno, Corrado; Fragala, Ignazio L.

    2007-01-01

    Liquid Phase Photo-Deposition (LPPD) technique has been used to obtain both colloidal particles and thin films of metallic and chloride nickel from solutions of only precursor Ni(acac) 2 (acac=2,4-pentandionato). Metallic nickel was obtained from ethanol solutions by direct nickel(II) photoreduction at 254 nm and by acetone sensitised reaction at 300 nm. In this latter process the rate was higher than in the first one. NiCl 2 was formed from CCl 4 solution by a solvent-initiated reaction. TEM analysis, performed on colloidal particles of nickel, showed that their dimensions are in the range 2-4 nm. The films did not present carbon contamination and were characterized by AFM, XPS and GIXRD. Metallic films consisted of particles of 20-40 nm that are the result of the aggregation of smaller crystallites (4-5 nm). Larger agglomerations (around 200 nm) have been observed for NiCl 2 films

  6. Nickel nanostructured materials from liquid phase photodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Giuffrida, Salvatore, E-mail: sgiuffrida@unict.it; Condorelli, Guglielmo G.; Costanzo, Lucia L.; Ventimiglia, Giorgio [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy); Nigro, Raffaella Lo [IMM-CNR (Italy); Favazza, Maria; Votrico, Enrico [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy); Bongiorno, Corrado [IMM-CNR (Italy); Fragala, Ignazio L. [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy)

    2007-08-15

    Liquid Phase Photo-Deposition (LPPD) technique has been used to obtain both colloidal particles and thin films of metallic and chloride nickel from solutions of only precursor Ni(acac){sub 2} (acac=2,4-pentandionato). Metallic nickel was obtained from ethanol solutions by direct nickel(II) photoreduction at 254 nm and by acetone sensitised reaction at 300 nm. In this latter process the rate was higher than in the first one. NiCl{sub 2} was formed from CCl{sub 4} solution by a solvent-initiated reaction. TEM analysis, performed on colloidal particles of nickel, showed that their dimensions are in the range 2-4 nm. The films did not present carbon contamination and were characterized by AFM, XPS and GIXRD. Metallic films consisted of particles of 20-40 nm that are the result of the aggregation of smaller crystallites (4-5 nm). Larger agglomerations (around 200 nm) have been observed for NiCl{sub 2} films.

  7. Interdependent action of nickel sulphate and X-rays on human lymphoblastoid leukeamic cells

    International Nuclear Information System (INIS)

    Bensimon, Jacques

    1977-01-01

    In a first experiment, cells were cultured in media supplemented by nickel sulphate, irradiated in same media and cultured in same media after irradiation. In a second experiment, cells were cultured during 18hrs. in media supplemented by nickel sulphate, and then cells were washed and cultured in normal media where they were irradiated. The nickel sulphate toxicity appears as a creasing function of the nickel sulphate concentration and the nickel sulphate action endurance. The nickel sulphate toxic effect is amplified by X-rays. This amplification is a time function that depends on the X-ray dose, nickel sulphate concentration and period of time from the outset of culture to the irradiation. The nickel sulphate toxic effect appears faster when nickel works after X-rays [fr

  8. The study on corrosion resistance of decorative satin nickel plating

    OpenAIRE

    LU Wenya; CHENG Xianhua

    2012-01-01

    This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the p...

  9. THE LOCAL LASER-STIMULATED ELECTRODEPOSITION OF THE NICKEL

    Directory of Open Access Journals (Sweden)

    V. A. Zabludovskyi

    2009-12-01

    Full Text Available The mask-free method for obtaining the local nickel coatings using laser radiation is developed. The parameters of local nickel coatings are calculated. The rate of electroplating process is estimated.

  10. Coin exposure may cause allergic nickel dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Gawkrodger, David J; White, Ian R

    2012-01-01

    Nickel is used in coins because the metal has beneficial properties, including price, colour, weight, and corrosion resistance, and also because it is easy to stamp. It has often been claimed that the duration of skin contact with coins is too short to cause nickel release and dermatitis. However...

  11. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  12. Synthesis, characterization and crystal structure of new nickel ...

    Indian Academy of Sciences (India)

    Abstract. A novel nickel molybdenum complex with the 2,6-pyridine dicarboxylic acid ligand was success- ... made for preparing nanoparticles with controllable size and shape. 2. ... Formula weight ..... talline nickel molybdates J. Alloys Compd.

  13. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri

    International Nuclear Information System (INIS)

    McGrath, S.P.; Lombi, E.; Gray, C.W.; Caille, N.; Dunham, S.J.; Zhao, F.J.

    2006-01-01

    Field trials were undertaken to investigate the effect of the application of metal mobilizing agents, different sowing strategies and length of growing season on the extraction of Cd and Zn from soils by Thlaspi caerulescens and Arabidopsis halleri. None of the mobilizing agents used enhanced metal accumulation by T. caerulescens. Between 1998 and 2000, on average across plots where Cd or Zn exceeded allowable limits, T. caerulescens removed 1.3 and 0.3% of the total soil Cd and Zn. In one season when T. caerulescens was grown for 14 months, 21.7 and 4.4% of the total soil Cd and Zn was removed. This was larger than values found when T. caerulescens was grown for 4 months. A. halleri accumulated similar concentrations of Zn, but lower Cd concentrations than T. caerulescens. The results indicate that metal phytoextraction using T. caerulescens can be used to clean up soils moderately contaminated by Cd. - The hyperaccumulator Thlaspi caerulescens (the Ganges ecotype) is more efficient at phytoextracting Cd than Zn from contaminated soil

  14. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L].

    Science.gov (United States)

    Liu, Qiu-xin; Yan, Xiu-lan; Liao, Xiao-yong; Lin, Long-yong; Yang, Jing

    2015-08-01

    A pot experiment was carried out to study the effects of soil moisture on the growth and arsenic uptake of As-hyperaccumulator Pteris vittata L. The results showed that the remediation efficiency of As was the highest when the soil moisture was between 35%-45%. P. vittata grew best under 45% water content, and its aboveground and underground plant dry weights were 2.95 g x plant(-1) and 11.95 g x plant(-1), respectively; the arsenic concentration in aboveground and roots was the highest under 35% water content, and 40% content was the best for accumulation of arsenic in P. vittata. Moreover, controlling the soil moisture to 35%-45% enhanced the conversion of As(V) to As(III) in aboveground plant, and promoted arsenic detoxification in P. vittata. These above results showed that soil moisture played an important role in the absorption and transport of arsenic by P. vittata. The results of this study can provide important guidance for the large-scale planting of P. vittata and the moisture management measures in engineering application.

  15. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, S.P. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)]. E-mail: steve.mcgrath@bbsrc.ac.uk; Lombi, E. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Gray, C.W. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Caille, N. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Dunham, S.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Zhao, F.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)

    2006-05-15

    Field trials were undertaken to investigate the effect of the application of metal mobilizing agents, different sowing strategies and length of growing season on the extraction of Cd and Zn from soils by Thlaspi caerulescens and Arabidopsis halleri. None of the mobilizing agents used enhanced metal accumulation by T. caerulescens. Between 1998 and 2000, on average across plots where Cd or Zn exceeded allowable limits, T. caerulescens removed 1.3 and 0.3% of the total soil Cd and Zn. In one season when T. caerulescens was grown for 14 months, 21.7 and 4.4% of the total soil Cd and Zn was removed. This was larger than values found when T. caerulescens was grown for 4 months. A. halleri accumulated similar concentrations of Zn, but lower Cd concentrations than T. caerulescens. The results indicate that metal phytoextraction using T. caerulescens can be used to clean up soils moderately contaminated by Cd. - The hyperaccumulator Thlaspi caerulescens (the Ganges ecotype) is more efficient at phytoextracting Cd than Zn from contaminated soil.

  16. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: reroy@lsu.edu [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)

    2017-01-05

    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  17. Bioadsorption of nickel Mining Company by residual biomass Phyllanthus Orbicularis

    Directory of Open Access Journals (Sweden)

    Ariel Díaz-Puig

    2017-01-01

    Full Text Available Kinetic parameters for the adsorption of nickel were studied in the waste CalcinationPlant Company Ernesto Che Guevara biomass Phyllanthus orbicularis synthetic and industrial waste Calcination Plant enterprise solutions. The results showed that the major factors influencing the adsorption capacity of the biomass increases with increasing pH and the initial concentration of nickel in the effluent and is reduced by increasing the biomass concentration. Meanwhile, the removal efficiency of residual nickel increases with increasing pH and concentration of biomass and reduced when the initial concentration of nickel in the effluent increases. The adsorption capacity nickel biomass Phyllanthus orbicularis from synthetic solutions and industrial waste Calcination Plant Company Nickel "Comandante Ernesto Che Guevara" was 44,05 and 26,25 mg/g respectively. The adsorption process nickel biomass Phyllanthus orbicularis follows kinetics pseudo-second order and according to the values of free energy of adsorption obtained through model-RadushkevichDubinin was 267,26 kJ/mol, this nature demonstrates that corresponds to a process mediated by chemical adsorption where the formation of stable bonds between the functional groups present in the biomass and the metal ions predominates.

  18. Specification and prediction of nickel mobilization using artificial intelligence methods

    Science.gov (United States)

    Gholami, Raoof; Ziaii, Mansour; Ardejani, Faramarz Doulati; Maleki, Shahoo

    2011-12-01

    Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.

  19. Oxidation mechanism and passive behaviour of nickel in molten carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, J.P.T. (ECN Fossil Fuels, Petten (Netherlands)); Ament, P.C.H.; De Wit, J.H.W. (Div. of Corrosion, Lab. for Maaterials Sceince, Delft Univ. of Technology, Delft (Netherlands))

    1994-07-01

    The oxidation and passivation mechanism and the passive behaviour of nickel in molten carbonate have been investigated with impedance measurements. The oxidation of nickel proceeds according to a dissolution and reprecipitation process. The slowest steps in the reaction sequence are the dissociation reaction of the carbonate and the diffusion of the formed NiO to the metal surface. In the passive range, dissolution of Ni[sup 2+] proceeds after diffusion of Ni[sup 2+] through the oxide layer. The Ni[sup 2+] is formed at the metal/oxide interface. The slowest process is the diffusion of bivalent nickel ions through the passive scale. The formation of trivalent nickel ions probably takes place at the oxide/melt interface. This reaction is accompanied by the incorporation of an oxygen ion and a nickel vacancy in the NiO lattice. The trivalent nickel ions and the nickel vacancy diffuse to the bulk of the oxide scale. The slowest step in this sequence is the dissociation of the carbonate ions and the incorporation of the oxygen ion in the NiO lattice. 9 figs., 2 tabs., 11 refs.

  20. Determination of electroless deposition by chemical nickeling

    Directory of Open Access Journals (Sweden)

    M. Badida

    2013-07-01

    Full Text Available Increasing of technical level and reliability of machine products in compliance with the economical and ecological terms belongs to the main trends of the industrial development. During the utilisation of these products there arise their each other contacts and the interaction with the environment. That is the reason for their surface degradation by wear effect, corrosion and other influences. The chemical nickel-plating allows autocatalytic deposition of nickel from water solutions in the form of coherent, technically very profitable coating without usage of external source of electric current. The research was aimed at evaluating the surface changes after chemical nickel-plating at various changes of technological parameters.

  1. Urinary nickel: measurement of exposure by inductively coupled plasma argon emission spectrometry.

    Science.gov (United States)

    Koizumi, Chisato; Usuda, Kan; Hayashi, Satsuki; Dote, Tomotaro; Kono, Koichi

    2004-09-01

    Nickel is a rare earth metal and is widely used in modern industry. Its overexposure in human beings can provoke significant effects including lung, cardiovascular and kidney diseases. As an index of occupational exposure, urine is widely used for the monitoring of nickel concentration because it is a minimally invasive method. Recent studies have used atomic absorption spectrometry to measure nickel concentration. In this study, we introduced novel inductively coupled plasma argon emission spectrometry (ICPAES) which enables us to measure multiple elements simultaneously with smaller volume and with lower detection limits compared to conventional atomic absorption emission spectrometry, and we established the new measuring method by determining the appropriate wavelengths for nickel concentration. Furthermore, using the established new measuring method, we investigated the correlation between a single oral administration of nickel and urine elimination in rats. As a result, different concentrations of nickel standard solutions were measured by ICPAES, and among five specific wavelengths of nickel, 221.647 and 231.604 nm were chosen because they had the highest inclines of both signal to background ratio and emission intensity in simple linear regression analysis. Next, by using healthy human urine samples that had not been exposed to nickel, 231.604 nm was determined to be the most appropriate wavelength because it did not present abnormal intensity due to obstacle wavelength. Male Wistar rats received an oral administration of nickel ranging from 0.025 to 250 mg/kg, which is equivalent to 0.0015 - 15% of LD50, and during the following 24 h, urine samples were collected and the nickel concentration was measured by ICPAES. With a single oral administration of nickel, there was an increase in urine nickel concentration in a dose-dependent manner and the appropriate equation was developed. Acute renal failure was not observed in this dosage of oral nickel

  2. Environmental nickel exposure from oil refinery emissions: a case study in Ecuador.

    Science.gov (United States)

    Harari, Raúl; Harari, Florencia; Forastiere, Francesco

    2016-01-01

    Nickel is a strong skin and respiratory sensitizer and a recognized carcinogen. Oil refineries are important sources of atmospheric emissions of toxic pollutants, including nickel. Populations residing close to oil refineries are at potential risk. The aim of this study was to evaluate the exposure to nickel in a population living close to the largest oil refinery in Ecuador, located in the city of Esmeraldas. We recruited 47 workers from the oil refinery as well as 195 students from 4 different schools close to the plant and 94 students from another school 25 km far from the industry. Urinary nickel concentrations were used to assess the exposure to nickel. Students from the school next to the oil refinery showed the highest urinary nickel concentrations while workers from the refinery showed the lowest concentrations. Median nickel concentrations were > 2µg/L in all study groups. The populations living close to the oil refineries are potentially exposed to nickel from atmospheric emissions. Further studies investigating nickel-related health effects in the population residing close to the refinery of Esmeralda are needed.

  3. Application of anodizing as a pre-treatment for nickel plating on aluminum

    International Nuclear Information System (INIS)

    Mehmood, M.; Ahmad, J.; Aslam, M.; Iqbal, M.; Akhtar, J.I.

    2003-01-01

    Effect of anodizing on subsequent electroplating of nickel on aluminum was investigated. Electroplated nickel did not exhibit any adhesion with un-anodized aluminum. Formation of a very thin anodized alumina film prior to nickel plating led to an excellent adhesion between the nickel film and the substrate. If the thickness of the alumina film increased, adhesion of electroplated nickel was significantly deteriorated and became similar to that of un-anodized bare aluminum. The study revealed that deposition proceeded through pores and defects in the insulator alumina film. These pores and defects also acted as nucleation and anchor points for nickel deposit. There was larger number of nucleation/ anchor points on thin alumina films. This provided better adhesion of nickel with the substrate as well as excellent coverage in relatively shorter times. On the other hand, very rough and poorly adherent nickel deposits formed on thick anodized films. Therefore, it may be used as precursor for producing nickel powder with controlled particle size as well as a catalyst with high specific surface area for hydrogenation and dehydrogenation reactions. (author)

  4. Assessment of respiratory carcinogenicity associated with exposure to metallic nickel: a review.

    Science.gov (United States)

    Sivulka, Donna J

    2005-11-01

    Human studies prior to 1990 have shown an association between respiratory cancer and exposure to some nickel compounds, but not to metallic nickel. Numerous reviews have examined the nature of the association between nickel compounds and respiratory cancer, but little has been published on metallic nickel. This paper reviews the animal and human cancer-related data on metallic nickel to determine whether the conclusions regarding metallic nickel reached a decade ago still apply. Based upon past and current human studies, metallic nickel appears to show little evidence of carcinogenicity when present at the same or higher concentrations than those seen in current workplace environments. By comparison, animal studies currently available have shown mixed results. A number of studies have shown evidence of carcinogenicity in animals exposed to nickel powders via injection, but other studies have shown no or inconsistent results in animals exposed via inhalation or intratracheal instillation. Further studies in animals via inhalation and humans would be helpful in elucidating the respiratory carcinogenic potential of metallic nickel.

  5. Nickel deposition effects on the growth of carbon nanofibers on carbon paper

    NARCIS (Netherlands)

    Celebi, S.; Schaaf, van der J.; Nijhuis, T.A.; Bruijn, de F.A.; Schouten, J.C.

    2010-01-01

    Carbon nanofiber (CNF) growth has been achieved on carbon paper fibers via two nickel deposition routes: i. nickel nanoparticle-ethanol suspension casting, and ii. homogenous deposition precipitation (HDP) of nickel onto carbon paper. Nickel nanoparticles created regular tubular CNF whereas HDP of

  6. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Starck, B.; Remy, P.

    2008-01-01

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni 2 H compound, as shown by GIXRD.

  7. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    Energy Technology Data Exchange (ETDEWEB)

    El Hajjami, A. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Gigandet, M.P. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: marie-pierre.gigandet@univ-fcomte.fr; De Petris-Wery, M. [Institut Universitaire de Technologie d' Orsay, Universite Paris XI, Plateau de Moulon, 91400 Orsay (France); Catonne, J.C. [Professeur Honoraire du Conservatoire national des arts et metiers (CNAM), Paris (France); Duprat, J.J.; Thiery, L.; Raulin, F. [Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Starck, B.; Remy, P. [Lisi Automotive, 28 faubourg de Belfort, BP 19, 90101 Delle Cedex (France)

    2008-12-30

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni{sub 2}H compound, as shown by GIXRD.

  8. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  9. Electrolytic nickel deposits upon uranium; Depot electrolytique de nickel sur l'uraniun

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G; Chauvin, G; Coriou, H; Hure, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The authors present a new possibility to protect uranium by very adherent nickel deposits got by aqueous medium electrolysis. Surface treatment of uranium is based upon the chemical etching method from Lietazke. After thermal treatments at 600, 700 and 800 deg. C, under vacuum, a good intermetallic U-Ni diffusion is observed for each case. (author) [French] Les auteurs mettent en evidence une possibilite nouvelle de protection de l'uranium par des depots tres adherents de nickel realises par electrolyse en milieu aqueux. La preparation de surface de l'uranium est basee sur la methode du decapage chimique de Lietazke. Apres des traitements thermiques a 600, 700 et 800 deg. C, sous vide, on constate dans tous les cas une bonne diffusion intermetallique U-Ni. (auteur)

  10. Alloys of nickel-iron and nickel-silicon do not swell under fast neutron irradiation

    International Nuclear Information System (INIS)

    Silvestre, G.; Silvent, A.; Regnard, C.; Sainfort, G.

    1975-01-01

    This research is concerned with the effect of fast-neutron irradiation on the swelling of nickel and nickel alloys. Ni-Fe (0-60at%Fe) and Ni-Si (0-8at%Si) were studied, and the fluences were in the range 10 20 -4.3x10 22 n/cm 2 . In dilute alloys, the added elements are dissolved and reduce swelling, silicon being particularly effective. In more concentrated alloys, irradiation of Ni-Fe and Ni-Si alloys brings about the formation of plate-shaped precipitates of Ni 3 X and these alloys do not swell. (Auth.)

  11. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Energy Technology Data Exchange (ETDEWEB)

    Mondon, A., E-mail: andrew.mondon@ise.fraunhofer.de [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany); Wang, D. [Karlsruhe Nano Micro Facility (KNMF), H.-von-Helmholz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Zuschlag, A. [Universität Konstanz FB Physik, Jacob-Burckhardt-Str. 27, D-78464 Konstanz (Germany); Bartsch, J.; Glatthaar, M.; Glunz, S.W. [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany)

    2014-12-30

    Highlights: • Adhesion of metallization of fully plated nickel–copper contacts on silicon solar cells can be achieved by formation of nickel silicide at the cost of degraded cell performance. • Understanding of silicide growth mechanisms and controlled growth may lead to high performance together with excellent adhesion. • Silicide formation is well known from CMOS production from PVD-Ni on flat surfaces. Yet the deposition methods and therefore layer characteristics and the surface topography are different for plated metallization. • TEM analysis is performed for differently processed samples. • A nickel silicide growth model is created for plated Ni on textured silicon solar cells. - Abstract: In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel–silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide

  12. Exploring the Molecular Mechanisms of Nickel-Induced Genotoxicity and Carcinogenicity: A Literature Review

    Science.gov (United States)

    Cameron, Keyuna S.; Buchner, Virginia; Tchounwou, Paul B.

    2011-01-01

    Nickel, a naturally occurring element that exists in various mineral forms, is mainly found in soil and sediment, and its mobilization is influenced by the physicochemical properties of the soil. Industrial sources of nickel include metallurgical processes such as electroplating, alloy production, stainless steel, and nickel-cadmium batteries. Nickel industries, oil- and coal-burning power plants, and trash incinerators have been implicated in its release into the environment. In humans, nickel toxicity is influenced by the route of exposure, dose, and solubility of the nickel compound. Lung inhalation is the major route of exposure for nickel-induced toxicity. Nickel may also be ingested or absorbed through the skin. The primary target organs are the kidneys and lungs. Other organs such as the liver, spleen, heart and testes may also be affected to a lesser extent. Although the most common health effect is an allergic reaction, research has also demonstrated that nickel is carcinogenic to humans. The focus of the present review is on recent research concerning the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity. We first present a background on the occurrence of nickel in the environment, human exposure, and human health effects. PMID:21905451

  13. The study on corrosion resistance of decorative satin nickel plating

    Directory of Open Access Journals (Sweden)

    LU Wenya

    2012-10-01

    Full Text Available This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the plating becomes rough,and the corrosion resistance is followed by decrease.

  14. Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Jao, Chi-Yu; Chuang, Farn-Yih; Chen, Fang-Yi

    2017-01-01

    Highlights: • Electrochemical process can purify the urea-rich wastewater, producing hydrogen gas. • Carbon-encapsulated nickel iron nanoparticles (CE-NiFe) are prepared by pyrolysis. • An ultra-thin layer of CE-NiFe nanoparticles is attached to the 3D Ni foam. • CE-NiFe nanoparticles escalate both the urea electrolysis and hydrogen evolution. - Abstract: A cyanide-bridged bimetallic coordination polymer, nickel hexacyanoferrate, could be pyrolyzed to form carbon-encapsulated nickel-iron (CE-NiFe) nanoparticles. The formation of nitrogen-doped spherical carbon shell with ordered mesoporous structure prevented the structural damage of catalyst cores and allowed the migration and diffusion of electrolyte into the hollow carbon spheres. An ultra-thin layer of CE-NiFe nanoparticles could be tightly attached to the three-dimensional macroporous nickel foam (NF) by electrophoretic deposition. The CE-NiFe nanoparticles could lower the onset potential and increase the current density in anodic urea electrolysis and cathodic hydrogen production as compared with bare NF. Macroporous NF substrate was very useful for the urea electrolysis and hydrogen production, which allowed for fast transport of electron, electrolyte, and gas products. The superior electrocatalytic ability of CE-NiFe/NF electrode in urea oxidation and water reduction made it favorable for versatile applications such as water treatment, hydrogen generation, and fuel cells.

  15. Occupational hand eczema caused by nickel and evaluated by quantitative exposure assessment.

    Science.gov (United States)

    Jensen, Peter; Thyssen, Jacob P; Johansen, Jeanne D; Skare, Lizbet; Menné, Torkil; Lidén, Carola

    2011-01-01

    EU legislation has reduced the epidemic of nickel contact allergy affecting the consumer, and shifted the focus towards occupational exposure. The acid wipe sampling technique was developed to quantitatively determine skin exposure to metals. To assess the clinical usefulness of the acid wipe sampling technique as part of the diagnostic investigation for occupational nickel allergy-associated hand dermatitis. Six patients with vesicular dermatitis on the hands were included. Acid wipe sampling of skin and patch testing with a nickel sulfate dilution series were performed. Nickel was detected in all samples from the hands. In all patients, the nickel content on the hands was higher than on the non-exposed control area. Occupational exposure to nickel-releasing items raised the nickel content on exposed skin as compared with a non-exposed control site. Nickel-reducing measures led to complete symptom relief in all cases. In cases of a positive nickel patch test reaction and hand eczema, patients should perform the dimethylglyoxime (DMG) test on metallic items at home and at work. The acid wipe sampling technique is useful for the diagnosis of occupational hand eczema following screening with the inexpensive DMG test. © 2010 John Wiley & Sons A/S.

  16. Removal of Nickel from Aqueous Solution by Hard-Shell Pistachios

    Directory of Open Access Journals (Sweden)

    Shayan Shamohammadi

    2013-08-01

    Full Text Available Nickel is one of the heavy metals which commonly can be found in industrial wastewater. Many studies have been done on agricultural waste for the removal of nickel from aqueous solutions. The purpose of this study is to identify hard-shell pistachios as a local attraction for removal of nickel from aqueous solution. Nickel adsorption isotherm models are studied using shell pistachios. Pistachio shell was chosen which its particle size is between 800-600 microns. The stock solution of nickel ions was prepared mixing nickel nitrate with distilled water. The results showed that the maximum absorption efficiency occurs (73.3% at pH=8. Also, it was shown that with increasing adsorbent dose, equilibrium time decreased within constant concentration. Examination of uptake isotherm models showed that models of Freundlich, BET, Radke-Praunitz, Redlich-Peterson and Sips describe data in 97% level of confidence well,  however Freundlich and Sips isotherm models has the lowest error factor 0.10597 and 0/10598 respectively and the highest correlation coefficient (0.9785. Comparison of adsorbent capacity within removal of nickel from aqueous solution shows that Pistachio shell with special absorbent surface of 1.7 m2/g and uptake capacity of 0.3984 mg/g is proper than adsorbents of Kaolinite, Bagasse, sludge-ash.

  17. The Sino-American belt study: nickel and cobalt exposure, epidemiology, and clinical considerations.

    Science.gov (United States)

    Hamann, Dathan; Hamann, Carsten; Li, Lin-Feng; Xiang, Hailian; Hamann, Kylin; Maibach, Howard; Taylor, James S; Thyssen, Jacob P

    2012-01-01

    Nickel and cobalt are common causes of metal allergy. The objective of this study was to investigate nickel and cobalt exposure in belt buckles by testing 701 belts purchased in China and the United States and to consider the prevalence of nickel allergy and its relevance among Chinese patients. Seven hundred one belt buckles purchased in China and the United States were tested for nickel and cobalt release. Six hundred thirty-one Chinese patients with suspected allergic contact dermatitis were patch tested and interviewed to determine clinical relevance of results. The Chinese and American literature was reviewed to investigate trends in nickel prevalence over the past decades. Sixty percent (n = 219) of belts purchased in China (n = 365) released nickel, and 0.5% (n = 2) released cobalt; 55.7% (n = 187) in the United States (n = 336) released nickel, and 0.9% (n = 3) released cobalt. Belt dermatitis was a significant clinical finding in 34.8% of Chinese nickel-allergic patients. Literature review suggests increasing nickel allergy prevalence in the United States and China. Metallic belt buckles are an important source of nickel exposure to consumers. Belts from lowest socioeconomic vendors were more likely to release nickel. Belts with silver color and dark metallic color were more likely to release nickel and cobalt, respectively. Clinical findings show belt dermatitis in China to be a problem.

  18. Free ionic nickel accumulation and localization in the freshwater zooplankter, Daphnia magna

    International Nuclear Information System (INIS)

    Hall, T.M.

    1982-01-01

    The processes which lead to the accumulation of free ionic nickel (radioactive) from solution by Daphnia magna were studied and incorporated into a model which describes accummulation at different concentrations. Adsorption proved to be a relatively small component of nickel accummulation. The accummulation rate eventually approached zero, which represented an equilibrium between uptake and loss of nickel. However, elimination experiments did reveal a pool of relatively static nickel. The appearance and distribution of nickel within five body parts (body fluid, carapace, gut, filtering appendages, and eggs) of D. magna supported the accummulation data and added to the understanding of the pathways of nickel through the organism

  19. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  20. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h

    Directory of Open Access Journals (Sweden)

    Lamiaa Z. Mohamed

    2017-11-01

    Full Text Available The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10−8 g/cm2 s and 3.4 × 10−8 g/cm2 s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  1. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h.

    Science.gov (United States)

    Mohamed, Lamiaa Z; Ghanem, Wafaa A; El Kady, Omayma A; Lotfy, Mohamed M; Ahmed, Hafiz A; Elrefaie, Fawzi A

    2017-11-01

    The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10 -8  g/cm 2  s and 3.4 × 10 -8  g/cm 2  s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  2. A Study of Testing Different Mandrels for Electroforming Nickel

    Science.gov (United States)

    Murrell, Alex D. G.

    Material failure is a prevalent problem in all engineering industries, particularly aerospace and automotive. The demand high-performance materials is higher than ever. Nickel is a metal that is favoured greatly because of its ability to withstand harsh operating conditions such as corrosive environments and extreme temperatures. Nickel parts can be produced by electroforming, a unique process that requires a removable conductive mandrel. An electroplating apparatus was set up at Tennessee Technological University to deposit nickel onto these mandrels where different methods of removal would be explored. Various different mandrels - conductive and non-conductive - were tested by nickel electroplating in a Watts nickel bath to establish a firm testing procedure. The nickel coatings were retrieved where possible and were analysed with appropriate methods. It was found that tin was the best material to use for a substrate through performance ranking, and a conductive polycarbonate was the worst material choice for a substrate. The substrates that demonstrated the easiest method of removal were tin and wax. Different methods of increasing - and also inhibiting - conductivity were applied to various substrates, where it was found that the use of a conductive graphite paint was particularly beneficial to the plating potential of a substrate.

  3. Nickel deposited on the skin-visualization by DMG test.

    Science.gov (United States)

    Julander, Anneli; Skare, Lizbet; Vahter, Marie; Lidén, Carola

    2011-03-01

    Nickel is the most common cause of contact allergy and an important risk factor for hand eczema. Visualization techniques may be powerful in showing exposures. The dimethylglyoxime (DMG) test might be used to establish skin exposure to nickel. To develop and evaluate methods for visualization of nickel on the skin by the DMG test and hand imprints. Nickel solutions at different concentrations were applied in duplicate on the hands in healthy subjects (n = 5). The DMG test and acid wipe sampling for quantification were then performed. Hand imprints were taken after manipulation of nickel-releasing tools (n = 1), and in workers performing their normal tasks (n = 7). The imprints were developed by the DMG test. The DMG test on hands gave positive results in all subjects. The lowest concentration giving rise to a colour change was set to 0.13 µg/cm(2) for DMG testing on skin. DMG test-developed imprints worked well except when hands were heavily contaminated by other particles/dust. The DMG test may be used as a simple and powerful tool for visualization of nickel on skin. DMG test-developed hand imprints may, in the future, be used for semi-quantitative or quantitative exposure assessment. © 2011 John Wiley & Sons A/S.

  4. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Helvoort, van P.J.; Dar, S.; Dopson, M.; Lens, P.N.L.; Buisman, C.J.N.

    2009-01-01

    Process streams with high concentrations of metals and sulfate are characteristic for the mining and metallurgical industries. This study aims to selectively recover nickel from a nickel-iron-containing solution at pH 5.0 using a single stage bioreactor that simultaneously combines low pH sulfate

  5. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Huang, Huagang; Li, Tingqiang; Yang, Xiaoe [Zhejiang Univ., Hangzhou (China). MOE Key Lab. of Environment Remediation and Ecosystem Health; Zhu, Zhiqiang [Zhejiang Univ., Hangzhou (China). MOE Key Lab. of Environment Remediation and Ecosystem Health; Hainan Univ., Haikou (China). College of Agriculture; He, Zhenli [Florida Univ., Port Pierce, FL (United States). Inst. of Food and Agricultural Sciences; Alva, Ashok [US Department of Agriculture, Prosser, WA (United States). Agricultural Research Service

    2012-04-15

    Purpose: Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil were reported in this study. Materials and methods: Soil slightly contaminated by Cd (0.92 mg kg{sup -1} DW) was collected from a vegetable field in Hangzhou and was spiked with two levels (0 and 6 mg kg{sup -1} DW) of Cd and three levels (0, 25, and 150 mg kg{sup -1} DW) of phenanthrene (PHE) or pyrene (PYR). A pot experiment was conducted in a greenhouse using S. alfredii with unplanted controls for 60 days. Shoot and root biomass of plants, dehydrogenase activity (DHA), and microbial biomass carbon in the soil were measured. Concentrations of Cd and PAHs in the plant and soil were determined. Results and discussion: Elevated Cd level (6.38 mg kg{sup -1} DW) increased S. alfredii growth. The presence of PAHs decreased the stimulatory effects of Cd on plant biomass and Cd concentrations in shoots in Cd spiked soil, thus decreasing Cd phytoextraction efficiency. Cadmium removal by S. alfredii after 60 days of growth varied from 5.8% to 6.7% and from 5.7% to 9.6%, in Cd unspiked and spiked soils, respectively. Removal rate of PAHs in the soil was similar with or without the plants. Removal rate of PYR decreased at the elevated Cd level in the soil. This appears to be due to a decrease in soil microbial activity. This is confirmed by a decrease in DHA, which is a good indicator of soil microbial activity. Conclusions: Our results demonstrate that S. alfredii could effectively extract Cd from Cd-contaminated soils in the presence of PHE or PYR; however, both PAHs exhibited negative effects on phytoextraction of Cd from Cd spiked soil (6.38 mg kg{sup -1} DW). S. alfredii is not suitable for remediation of PAHs. The effects of Cd and PAHs concentrations on the

  6. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Wei Shuhe, E-mail: shuhewei@yahoo.com.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Li Yunmeng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Qixing, E-mail: zhouqx523@yahoo.com.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Srivastava, Mrittunjai [North Florida Research and Education Center, University of Florida, Quincy, FL 32351-5677 (United States); Chiu Siuwai [Department of Biology, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Zhan Jie [Department of Biotechnology, Liaoning University of Traditional Chinese Medicine, Shenyang 110101 (China); Wu Zhijie; Sun Tieheng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-04-15

    Phytoremediation is a cost-effective, simple and sustainable beneficiary technique to purify the polluted environment. Solanum nigrum L., a newly found cadmium (Cd) hyperaccumulator, has shown the potential to remediate Cd-contaminated soils. Present study investigated the effects of fertilizer amendments on the Cd uptake by S. nigrum. Chicken manure and urea are usual agricultural fertilizers and more environmental friendly. The results showed that Cd concentrations in shoots of S. nigrum were significantly decreased (p < 0.05) by 28.2-34.6%, as compared to that of without the addition of chicken manure, but not the case for urea treatment. However, Cd extraction capacities ({mu}g pot{sup -1}) in shoot biomass of S. nigrum were significantly increased (p < 0.05) due to increased shoot biomass. In addition, available Cd concentration in soil significantly decreased due to addition of chicken manure. Thus, urea might be a better fertilizer for strengthening phytoextraction rate of S. nigrum to Cd, and chicken manure may be a better fertilizer for phytostabilization.

  7. Technology development for producing nickel metallic filters

    International Nuclear Information System (INIS)

    Hubler, C.H.

    1990-01-01

    A technology to produce metallic filters by Instituto de Engenharia Nuclear (IEN-Brazilian CNEN) providing the Instituto de Pesquisas Energeticas e Nucleares (IPEN-Brazilian CNEN) in obtaining nickel alloy filters used for filtration process of uranium hexafluoride, was developed. The experiences carried out for producing nickel conical trunk filters from powder metallurgy are related. (M.C.K.)

  8. Mechanisms of c-myc degradation by nickel compounds and hypoxia.

    Directory of Open Access Journals (Sweden)

    Qin Li

    2009-12-01

    Full Text Available Nickel (Ni compounds have been found to cause cancer in humans and animal models and to transform cells in culture. At least part of this effect is mediated by stabilization of hypoxia inducible factor (HIF1a and activating its downstream signaling. Recent studies reported that hypoxia signaling might either antagonize or enhance c-myc activity depending on cell context. We investigated the effect of nickel on c-myc levels, and demonstrated that nickel, hypoxia, and other hypoxia mimetics degraded c-myc protein in a number of cancer cells (A549, MCF-7, MDA-453, and BT-474. The degradation of the c-Myc protein was mediated by the 26S proteosome. Interestingly, knockdown of both HIF-1alpha and HIF-2alpha attenuated c-Myc degradation induced by Nickel and hypoxia, suggesting the functional HIF-1alpha and HIF-2alpha was required for c-myc degradation. Further studies revealed two potential pathways mediated nickel and hypoxia induced c-myc degradation. Phosphorylation of c-myc at T58 was significantly increased in cells exposed to nickel or hypoxia, leading to increased ubiquitination through Fbw7 ubiquitin ligase. In addition, nickel and hypoxia exposure decreased USP28, a c-myc de-ubiquitinating enzyme, contributing to a higher steady state level of c-myc ubiquitination and promoting c-myc degradation. Furthermore, the reduction of USP28 protein by hypoxia signaling is due to both protein degradation and transcriptional repression. Nickel and hypoxia exposure significantly increased the levels of dimethylated H3 lysine 9 at the USP28 promoter and repressed its expression. Our study demonstrated that Nickel and hypoxia exposure increased c-myc T58 phosphorylation and decreased USP28 protein levels in cancer cells, which both lead to enhanced c-myc ubiquitination and proteasomal degradation.

  9. Inhalation carcinogenicity study with nickel metal powder in Wistar rats

    International Nuclear Information System (INIS)

    Oller, Adriana R.; Kirkpatrick, Daniel T.; Radovsky, Ann; Bates, Hudson K.

    2008-01-01

    Epidemiological studies of nickel refinery workers have demonstrated an association between increased respiratory cancer risk and exposure to certain nickel compounds (later confirmed in animal studies). However, the lack of an association found in epidemiological analyses for nickel metal remained unconfirmed for lack of robust animal inhalation studies. In the present study, Wistar rats were exposed by whole-body inhalation to 0, 0.1, 0.4, and 1.0 mg Ni/m 3 nickel metal powder (MMAD = 1.8 μm, GSD = 2.4 μm) for 6 h/day, 5 days/week for up to 24 months. A subsequent six-month period without exposures preceded the final euthanasia. High mortality among rats exposed to 1.0 mg Ni/m 3 nickel metal resulted in the earlier termination of exposures in this group. The exposure level of 0.4 mg Ni/m 3 was established as the MTD for the study. Lung alterations associated with nickel metal exposure included alveolar proteinosis, alveolar histiocytosis, chronic inflammation, and bronchiolar-alveolar hyperplasia. No increased incidence of neoplasm of the respiratory tract was observed. Adrenal gland pheochromocytomas (benign and malignant) in males and combined cortical adenomas/carcinomas in females were induced in a dose-dependent manner by the nickel metal exposure. The incidence of pheochromocytomas was statistically increased in the 0.4 mg Ni/m 3 male group. Pheochromocytomas appear to be secondary to the lung toxicity associated with the exposure rather than being related to a direct nickel effect on the adrenal glands. The incidence of cortical tumors among 0.4 mg Ni/m 3 females, although statistically higher compared to the concurrent controls, falls within the historical control range; therefore, in the present study, this tumor is of uncertain relationship to nickel metal exposure. The lack of respiratory tumors in the present animal study is consistent with the findings of the epidemiological studies

  10. Electroless nickel plating on stainless steels and aluminum

    Science.gov (United States)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  11. Numerous dilemmas surrounding the 1917 nickel coins

    Directory of Open Access Journals (Sweden)

    Pantelić Svetlana

    2017-01-01

    Full Text Available The Law on Extraordinary Loans Amounting to 200 Million Dinars and the Minting of Silver and Nickel Coins in 1916 was the legal basis for minting the 5-, 10-, and 20-para nickel coins of the Kingdom of Serbia featuring the year 1917 as their minting year. Some authors believe that these coins were minted in the Minting House in Paris, whereas the others agree that they were certainly minted in France, but in a still unidentified minting house. There are authors who in recent reference literature underline the possibility of their minting in the USA Gorham Company, in Providence, Rhode Island. These coins had all the characteristics of the nickel coins of the Kingdom of Serbia from 1883, 1884, 1904 and 1912. Although, according to the Law, the Minister of Finance was authorized to mint 10 million dinars of these nickel coins, only 5 million pieces in each denomination were actually minted, in the total nominal value of just 1,750,000 dinars. The general opinion is that after the war only a small amount of these nickel coins reached Serbia, because the ships transporting the Serbian coins from the minting house sank on their way. The only varying aspect in this explanation is the location from which the ships were sailing towards Corfu, i.e. from the USA or from France. These coins stopped being legal tender as of 30 November 1931.

  12. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hajjizadeh, M. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghgoo, S. [Center of Quality Control of Drug, Tehran (Iran, Islamic Republic of)

    2007-12-31

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode.

  13. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    International Nuclear Information System (INIS)

    Hajjizadeh, M.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A.A.; Haghgoo, S.

    2007-01-01

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode

  14. Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Siebecker, Matthew G.; Chaney, Rufus L.; Sparks, Donald L.

    2017-07-01

    Serpentine soils have elevated concentrations of trace metals including nickel, cobalt, and chromium compared to non-serpentine soils. Identifying the nickel bearing minerals allows for prediction of potential mobility of nickel. Synchrotron-based techniques can identify the solid-phase chemical forms of nickel with minimal sample treatment. Element concentrations are known to vary among soil particle sizes in serpentine soils. Sonication is a useful method to physically disperse sand, silt and clay particles in soils. Synchrotron-based techniques and sonication were employed to identify nickel species in discrete particle size fractions in several serpentine (ultramafic) topsoils to better understand solid-phase nickel geochemistry. Nickel commonly resided in primary serpentine parent material such as layered-phyllosilicate and chain-inosilicate minerals and was associated with iron oxides. In the clay fractions, nickel was associated with iron oxides and primary serpentine minerals, such as lizardite. Linear combination fitting (LCF) was used to characterize nickel species. Total metal concentration did not correlate with nickel speciation and is not an indicator of the major nickel species in the soil. Differences in soil texture were related to different nickel speciation for several particle size fractionated samples. A discussion on LCF illustrates the importance of choosing standards based not only on statistical methods such as Target Transformation but also on sample mineralogy and particle size. Results from the F-test (Hamilton test), which is an underutilized tool in the literature for LCF in soils, highlight its usefulness to determine the appropriate number of standards to for LCF. EXAFS shell fitting illustrates that destructive interference commonly found for light and heavy elements in layered double hydroxides and in phyllosilicates also can occur in inosilicate minerals, causing similar structural features and leading to false positive results in

  15. Nitrogen atom transfer mediated by a new PN3P-pincer nickel core via a putative nitrido nickel intermediate

    KAUST Repository

    Yao, Changguang

    2018-02-13

    A 2nd generation PN3P-pincer azido nickel complex (PN3P)Ni(N3) reacts with isocyanides to afford monosubstituted carbodiimides under irradiation, presumably via a transient nitrido intermediate. The resulting species can further generate unsymmetrical carboddimides and the PN3P nickel halide complex, accomplishing a synthetic cycle for a complete nitrogen atom transfer reaction.

  16. Nitrogen atom transfer mediated by a new PN3P-pincer nickel core via a putative nitrido nickel intermediate

    KAUST Repository

    Yao, Changguang; Wang, Xiufang; Huang, Kuo-Wei

    2018-01-01

    A 2nd generation PN3P-pincer azido nickel complex (PN3P)Ni(N3) reacts with isocyanides to afford monosubstituted carbodiimides under irradiation, presumably via a transient nitrido intermediate. The resulting species can further generate unsymmetrical carboddimides and the PN3P nickel halide complex, accomplishing a synthetic cycle for a complete nitrogen atom transfer reaction.

  17. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  18. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1982-01-01

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  19. Nickel coating electroplated characterization with and without carbon nanotubes

    International Nuclear Information System (INIS)

    Lopes, A.C.; Banczek, E.P.; Cunha, M.T.; Rodrigues, P.R.P.; Terada, M.

    2010-01-01

    The metals have great application, but when their properties are not suitable they should be improved through treatments to increase corrosion resistance, mechanical and wear. The metals electrodeposition such as nickel is one of treatment options. This study aims the development a nickel coating with and without (CNT), obtained by electrodeposition on aluminum alloy AA6061. The nickel electrodeposition was performed with cyclic voltammetry and chronoamperometry. Open circuit potential and anodic polarization curves were carried out samples characterization. The microstructure and the chemical composition of the M x O z coating were studied using the scanning electron microscopy, energy dispersion spectroscopy and X-ray diffraction. The results indicated that the nickel coating improve the corrosion resistance of aluminum in the presence of CNT. (author)

  20. Discharge Characteristics of the Nickel Hydroxide Electrode in 30% KOH

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1989-01-01

    The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH at 25 .deg. C. Two voltage plateaus are displayed on the discharge curve of C/20. It is shown that the impedance of the nickel hydroxide electrode increases with decrease of the discharge potential. The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH indicating the reduction of the β-NiOOH to the β-Ni(OH) 2 by proton diffusion process and hence the electronic conductivity change of the nickel hydroxide electrode. Furthermore, the γ-NiOOH, produced by prolonged oxidation of the β-NiOOH in 30% KOH, discharges at a slightly lower potential than the β-Ni(OH) 2 that could result in the life-limiting factor of several alkaline electrolyte storage batteries using the nickel hydroxide electrode as the positive plate

  1. Chemical nickel plating in tartrate solutions with borohydride reducing agent

    International Nuclear Information System (INIS)

    Plokhov, V.A.

    1986-01-01

    The authors investigate the influence of various factors on the rate of chemical nickel plating in strongly alkaline tartrate solutions with a borohydride reducing agent. After 30 min of the process of nickel plating, the final concentration of sodium borohydride decreases to 0.26 g/liter, leading to stoppage of the process. The nickel plating process can be intensified by increasing the concentration of sodium hydroxide in the solution, suppressing hydrolysis of borohydride, and also by introducing additives which suppress hydrolysis of borohydride. For chemical deposition of nickel-boron coatings from tartrate solutions the authors recommend the following composition (g/liter): nickel chloride 15-25, Rochelle salt 450-550, sodium hydroxide 140-160, sodium borohydride 0.8-1.0, thallium nitrate 0.003-0.008. The process temperature is 92-95 C, and the deposition rate is 4-6 um/h

  2. Solidification phenomena in nickel base brazes containing boron and silicon

    International Nuclear Information System (INIS)

    Tung, S.K.; Lim, L.C.; Lai, M.O.

    1996-01-01

    Nickel base brazes containing boron and/or silicon as melting point depressants are used extensively in the repair and joining of aero-engine hot-section components. These melting point depressants form hard and brittle intermetallic compounds with nickel which are detrimental to the mechanical properties of brazed joints. The present investigation studied the microstructural evolution in nickel base brazes containing boron and/or silicon as melting point depressant(s) in simple systems using nickel as the base metal. The basic metallurgical reactions and formation of intermetallic compounds uncovered in these systems will be useful as a guide in predicting the evolution of microstructures in similar brazes in more complex systems involving base metals of nickel base superalloys. The four filler metal systems investigated in this study are: Ni-Cr-Si; Ni-Cr-B; Ni-Si-B and Ni-Cr-Fe-Si-B

  3. REPORT FOR COMMERCIAL GRADE NICKEL CHARACTERIZATION AND BENCHMARKING

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-20

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, has completed the collection, sample analysis, and review of analytical results to benchmark the concentrations of gross alpha-emitting radionuclides, gross beta-emitting radionuclides, and technetium-99 in commercial grade nickel. This report presents methods, change management, observations, and statistical analysis of materials procured from sellers representing nine countries on four continents. The data suggest there is a low probability of detecting alpha- and beta-emitting radionuclides in commercial nickel. Technetium-99 was not detected in any samples, thus suggesting it is not present in commercial nickel.

  4. Austenitic stainless steel alloys with high nickel contents in high temperature liquid metal systems

    International Nuclear Information System (INIS)

    Konvicka, H.R.; Schwarz, N.F.

    1981-01-01

    Fe-Cr-Ni base alloys (nickel content: from 15 to 70 wt%, Chromium content: 15 wt%, iron: balance) together with stainless steel (W.Nr. 1.4981) have been exposed to flowing liquid sodium at 730 0 C in four intervals up to a cumulative exposure time of 1500 hours. Weight change data and the results of post-exposition microcharacterization of specimens are reported. The corrosion rates increase with increasing nickel content and tend to become constant after longer exposure times for each alloy. The corrosion rate of stainless steel is considerably reduced due to the presence of the base alloys. Different kinetics of nickel poor (up to 35% nickel) and nickel rich (> 50% nickel) alloys and nickel transport from nickel rich to nickel poor material is observed. (orig.)

  5. Occupational hand eczema caused by nickel and evaluated by quantitative exposure assessment

    DEFF Research Database (Denmark)

    Jensen, Peter; Thyssen, Jacob Pontoppidan; Johansen, Jeanne D

    2011-01-01

    Background. EU legislation has reduced the epidemic of nickel contact allergy affecting the consumer, and shifted the focus towards occupational exposure. The acid wipe sampling technique was developed to quantitatively determine skin exposure to metals. Objectives. To assess the clinical...... dilution series were performed. Results. Nickel was detected in all samples from the hands. In all patients, the nickel content on the hands was higher than on the non-exposed control area. Conclusions. Occupational exposure to nickel-releasing items raised the nickel content on exposed skin as compared...

  6. Partial filling of d-band of nickel on hydrogen diffusion

    International Nuclear Information System (INIS)

    Kapoor, N.; Nigam, A.N.

    1987-01-01

    It is seen that low-temperature annealing of nickel wires forbids the complete filling in of the d-band of nickel when the latter is subjected to cathodic-hydrogen diffusion. At a certain low-temperature range irreversible changes occur in the orientation of the surface planes of nickel which persist even if the temperature is raised to the room temperature

  7. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-08-15

    The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.

  8. Electrochemical reduction of nickel ions from dilute solutions

    NARCIS (Netherlands)

    Njau, K.N.; Janssen, L.J.J.

    1995-01-01

    Electrochemical reduction of nickel ions in dilute solution using a divided GBC-cell is of interest for purification of waste waters. A typical solution to be treated is the effluent from steel etching processes which contain low quantities of nickel, chromate and chromium ions. Reduction of

  9. Electrochemical removal of nickel ions from industrial wastewater

    NARCIS (Netherlands)

    Njau, K.N.; Woude, van der M.E.; Visser, G.J.; Janssen, L.J.J.

    2000-01-01

    The electrochemical reduction of nickel ions in dilute industrial wastewater from a galvanic nickel plating plant was carried out on a three-dimensional electrode in a gas diffusion electrode packed bed electrode cell (GBC) and also on a rotating disc electrode. To explain the experimental results,

  10. Adsorption of nickel on synthetic hydroxyapatite from aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Pivarciova, L.; Rajec, P.; Caplovicova, M.

    2013-01-01

    The sorption of nickel on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite samples used in experiments were a commercial hydroxyapatite and hydroxyapatite of high crystallinity with Ca/P ratio of 1.563 and 1.688, respectively, prepared by a wet precipitation process. The sorption of nickel on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The adsorption of nickel was rapid and the percentage of Ni sorption on both samples of hydroxyapatite was >98 % during the first 15-30 min of the contact time for initial Ni 2+ concentration of 1 x 10 -4 mol dm -3 . The experimental data for sorption of nickel have been interpreted in the term of Langmuir isotherm and the value of maximum sorption capacity of nickel on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.184 and 0.247 mmol g -1 , respectively. The sorption of Ni 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Co 2+ and Fe 2+ towards Ni 2+ sorption was stronger than that of Ca 2+ ions. NH 4 + ions have no apparent effect on nickel sorption. (author)

  11. Electro-deposition of nickel, on reactor seal discs

    International Nuclear Information System (INIS)

    Vernekar, R.B.; Bhide, G.K.

    1977-01-01

    The effect of plating variables, acidity, current density and temperature on hardness of nickel deposited from purified nickel sulfamate bath has been investigated and optimum conditions for electrodeposition of nickel plating of hardness 160-170 VHN on reactor seal discs are established. Sodium lauryl sulfate was added as a wetting agent to the bath to overcome pitting tendency of the deposit. Factors affecting hydrogen absorption by electrodeposited nickel are also discussed. It is observed that : (1) at a pH 3.5 - 4.0 the decomposition rate of sulfamate salt is almost negligible and is the best value for bath operation, (2) at 15 A/dm 2 the hardness value is consistently around 160-170 VHN, (3) the temperatures less than 50 0 C give harder deposits and the bath is best operated at temperature 50-60 0 C and (4) annealing of the plated discs substantially reduces the hardness. (M.G.B.)

  12. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Science.gov (United States)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  13. STUDIES REGARDING THE CHELATE-INDUCED HYPERACCUMULATION OF CU AND FE USING LOLIUM PERENNE SPECIES IN MINING AREAS

    Directory of Open Access Journals (Sweden)

    ANCA-DIANA PRICOP

    2009-05-01

    Full Text Available The plant capacity to absorb high amounts of metal for a short period of time is the major factor that influences the efficiency of phytoextraction. The hyperaccumulating plants uptake high amounts in their tissues correlated to the metal concentrations in soil. Chelating agents have the capacity to induce the metal accumulation in biomass. They increase metal bioavailability for plants by releasing the metal in accessible forms. The present study emphasizes that in the case of EDTA use, the obtained biomass is smaller compared to the other variants, showing a lower tolerance to this chelating agent of Lolium perenne species. Cu and Fe phytoextraction by Lolium perenne species is higher in the case of EDTA use. Cu bioaccumulation has higher values in variants with compost-sterile mixture ratio of 1:4 in comparison with Fe. In the case of the best compost-sterile mixture ratio of 1:3 the highest biomass is obtained in all the variants, biosolids’ effect being stronger compared to the chelating agent.

  14. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium.

    Science.gov (United States)

    Nongmaithem, Nabakishor; Roy, Ayon; Bhattacharya, Prateek Madhab

    2016-01-01

    Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Initial study of Nickel Electrolyte for EnFACE Process

    Directory of Open Access Journals (Sweden)

    Tri Widayatno

    2015-03-01

    Full Text Available Nickel electrolyte for a micro-pattern transfer process without photolithography, EnFACE, has been developed. Previous work on copper deposition indicated that a conductivity of ~2.7 Sm-1 is required. Electrochemical parameters of electrolyte i.e. current density and overpotential are also crucial to govern a successful pattern replication. Therefore, the investigation focused on the measurement of physicochemical properties and electrochemical behaviour of the electrolyte at different nickel concentrations and complexing agents of chloride and sulfamate. Nickel electrolytes containing sulfamate, chloride and combined sulfamate-chloride with concentrations between 0.14 M and 0.3 M were investigated. Physicochemical properties i.e. pH and conductivity were measured to ensure if they were in the desired value. The electrochemical behaviour of the electrolytes was measured by polarisation experiments in a standard three-electrode cell. The working electrode was a copper disc (surface area of 0.196 cm2 and the counter electrode was platinum mesh. The potential was measured againts a saturated calomel reference electrode (SCE. The experiments were carried out at various scan rate and Rotating Disc Electrode (RDE rotation speed to see the effect of scan rate and agitation. Based on the measured physicochemical properties, the electrolyte of 0.19 M nickel sulfamate was chosen for experimentation. Polarisation curve of agitated solution suggested that overall nickel electrodeposition reaction is controlled by a combination of kinetics and mass transfer.  Reduction potential of nickel was in the range of -0.7 to -1.0 V. The corresponding current densities for nickel deposition were in the range of -0.1 to -1.5 mA cm-2.

  16. Synthesis and growth mechanism of sponge-like nickel using a hydrothermal method

    Science.gov (United States)

    Shao, Bin; Yin, Xueguo; Hua, Weidong; Ma, Yilong; Sun, Jianchun; Li, Chunhong; Chen, Dengming; Guo, Donglin; Li, Kejian

    2018-05-01

    Sponge-like nickel composed of micro-chains with a diameter of 1-5 μm was selectively synthesized by the hydrothermal method, using sodium hydroxide (NaOH) as the alkaline reagent, aqueous hydrazine as reducing agent and citric acid as a coordination agent. The time-dependent samples prepared at different NaOH concentrations were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR). The results showed that the agglomerates of nickel citrate hydrazine complex nanoplates were first precipitated and then reduced to prickly nickel micro-chains at a lower NaOH concentration, which played a role in the further formation of sponge-like nickel. Also, the probable growth mechanism of the sponge-like nickel was proposed. The magnetic properties of sponge-like nickel were studied using a vibrating sample magnetometer. The sponge-like nickel exhibited a ferromagnetic behavior with a saturation magnetization value of 43.8 emu g-1 and a coercivity value of 120.7 Oe.

  17. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    Sathiyamoorthy, P.; Golan-Goldhrish, A.

    2005-01-01

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides ( 137 Cs, 90 Sr, 238 Pu, 226 Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  18. THE EFFECT OF SINGLE NICKEL AND COMBINED NICKEL AND ZINC PERORAL ADMINISTRATION ON HAEMATOLOGICAL PARAMETERS IN RABBITS

    Directory of Open Access Journals (Sweden)

    Jana Emrichová

    2013-06-01

    Full Text Available The aim of this study was to determine the effect of single nickel (NiCl2 and nickel in combination with zinc (ZnCl2 on selected haematological parameters of rabbits: white blood cell, red blood cell, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, platelets, mean platelet volume, red cell distribution width, lymphocytes, monocytes, eosinophils, neutrophils, basophils. Twenty rabbits of broiler line Californian were used in this experiment. The animals were divided into the five groups, four animals in each ones (control group K and experimental groups E1, E2, E3 and E4. Animals were fed ad libitum using KKV1 feeding mixture (FM with or without nickel and zinc addition for 90 days follows: group E1 received 17.5 g of NiCl2.100 kg-1 FM; group E2 35 g NiCl2.100 kg-1 FM; group E3 17.5 g NiCl2 + 30 g ZnCl2.100 kg-1 FM and group E4 35 g NiCl2 + 30 g ZnCl2.100 kg-1 FM. The parameters were analysed using Advia – 120. Blood was collected into tubes containing anticoagulant agents K – EDTA. Statistical analyse showed a significant changes (P 0.05. Nickel has negative effect on some haematological parameters, but zinc can eliminates its influence.

  19. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors

    International Nuclear Information System (INIS)

    Wu, M.-S.; Hsieh, H.-H.

    2008-01-01

    Nickel hydroxide powder prepared by directly chemical precipitation method at room temperature has a nanoplatelet-like morphology and could be converted into nickel oxide at annealing temperature higher than 300 deg. C, confirmed by the thermal gravimetric analysis and X-ray diffraction. Annealing temperature influences significantly both the electrical conductivity and the specific surface area of nickel oxide/hydroxide powder, and consequently determines the capacitor behavior. Electrochemical capacitive behavior of the synthesized nickel hydroxide/oxide film is investigated by cyclic voltammetry and electrochemical impedance spectroscope methods. After 300 deg. C annealing, the highest specific capacitance of 108 F g -1 is obtained at scan rate of 10 mV s -1 . When annealing temperature is lower than 300 deg. C, the electrical conductivity of nickel hydroxide dominates primarily the capacitive behavior. When annealing temperature is higher than 300 deg. C, both electrical conductivity and specific surface area of the nickel oxide dominate the capacitive behavior

  20. Nickel recovery from electric arc furnace slag by magnetic separation

    Directory of Open Access Journals (Sweden)

    Sakaroglou Marianna

    2017-01-01

    Full Text Available During the pyrometallurgical treatment of the nickel-bearing laterite in the plant of G.M.M. S.A. LARCO, slag is produced after treatment in electric-arc furnace (EAF that contains 0.10 to 0.20 % Ni. Taking into account the great quantity of slag produced per year, the recovery of nickel from the EAF slag will add benefits to the entire process. The target of the current work is to investigate the possibility of nickel recovery from EAF slag by magnetic separation. To meet the target, the effect of the following parameters was studied: grain size, magnetic field intensity, thickness of slag layer, moisture content, and re-grinding of the coarser slag particles. The results show that it is possible to obtain a magnetic product with nickel grade close to that of the primary raw material or even better, with sufficient nickel recovery.

  1. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites

    Science.gov (United States)

    Jagannatham, M.; Sankaran, S.; Prathap, Haridoss

    2015-01-01

    Electroless nickel (EN) plating was performed on arc discharge synthesized multiwalled carbon nanotubes for various deposition times. X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Raman spectroscopy characterization techniques are used to identify the presence of nickel deposition on the carbon nanotubes (CNTs) and the degree of graphitization. The results indicate that impurities are less in the purified CNTs as compared to raw carbon soot. Increasing deposition time up to 60 min increases uniform deposition of nickel throughout the length of the CNTs. However, for deposition time longer than 60 min, nickel particles are seen separated from the surface of the CNTs. Uniformly coated nickel CNTs throughout their length are potential candidates for reinforcements in composite materials. Magnetic properties of the nickel coated CNTs, with deposition time of 30 and 60 min were also evaluated. The magnetic saturation of nickel coated CNTs with deposition time of 30 min is less compared to nickel coated CNTs with deposition time of 60 min.

  2. Chemistry of nickel and copper production from sulphide ores | Love ...

    African Journals Online (AJOL)

    Nickel is one of Zimbabwe's principle metallurgical exports. It is processed to a very high level of purity and hence has a high value. The economics of nickel production can be difficult, as the selling value of nickel varies tremendously with time, from a low of US$ 3 900 per ton in late 1998 to US$ 10 100 per ton in May 2000, ...

  3. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Denayer, Jessica [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Bister, Geoffroy [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Simonis, Priscilla [Laboratory LPS, University of Namur, rue de bruxelles 61, 5000 Namur (Belgium); Colson, Pierre; Maho, Anthony [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Aubry, Philippe [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Vertruyen, Bénédicte [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Lardot, Véronique; Cambier, Francis [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Cloots, Rudi [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium)

    2014-12-01

    Highlights: • Surfactant-assisted USP: a novel and low cost process to obtain high quality nickel oxide films, with or without lithium dopant. • Increased uniformity and reduced light scattering thanks to the addition of a surfactant. • Improved electrochromic performance (coloration efficiency and contrast) for lithium-doped films by comparison with the undoped NiO film. - Abstract: Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  4. Effect of nickel and iron co-exposure on human lung cells

    International Nuclear Information System (INIS)

    Salnikow, Konstantin; Li Xiaomei; Lippmann, Morton

    2004-01-01

    Exposure to ambient air particulate matter (PM) is associated with increased mortality and morbidity in susceptible populations. The epidemiological data also suggest a relationship between PM air pollution and impairment of cardiopulmonary function. The mechanisms that may be responsible for these effects are not fully understood and are likely related to perturbations of cellular and molecular functions. One type of PM, residual oil fly ash (ROFA), is of particular interest. ROFA does not contain much organic material, but does contain relatively high quantities of transition metals, predominantly nickel, vanadium, and iron, as well as black carbon and sulfates. In this study, we investigated the effect of two metals (iron and nickel) on the induction of 'hypoxia-like' stress and the production of interleukins (ILs) in minimally transformed human airway epithelial cells (1HAEo - ). We found that exposure to soluble nickel sulfate results in the induction of hypoxia-inducible genes and IL-8 production by the 1HAEo - cells. The simultaneous addition of iron in either ferric or ferrous form and nickel completely inhibited IL-8 production and had no effect on 'hypoxia-like' stress caused by nickel, suggesting the existence of two different pathways for the induction 'hypoxia-like' stress and IL-8 production. The effect of nickel was not related to the blocking of iron entry into cells since the level of intracellular iron was not affected by co-exposure with nickel. The obtained data indicate that nickel can induce different signaling pathways with or without interference with iron metabolism. Our observations suggest that in some cases the excess of iron in PM can cancel the effects of nickel

  5. Farming nickel from non-ore deposits, combined with CO2 sequestration

    NARCIS (Netherlands)

    Schuiling, R.D.

    2013-01-01

    A new way is described to recover nickel from common rock-types, by the use of nickel hy- peraccumulator plants. The idea of phytomining nickel was suggested earlier, but never imple- mented. This situation may soon change, be- cause the mining sector suffers from a poor image on account of the

  6. Nickel affects gill and muscle development in oriental fire-bellied toad (Bombina orientalis) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Jin; Song, Sang Ha; Kim, Dae Han; Gye, Myung Chan, E-mail: mcgye@hanyang.ac.kr

    2017-01-15

    Highlights: • Nickel inhibited the development of external gill in B. orientalis embryos. • The 168 h LC{sub 50} and EC{sub 50} values of nickel were 33.8 and 5.4 μM, respectively, in embryos. • Nickel induced abnormal tail development of embryos. • NF stage 26–31 was the most sensitive window for embryos to nickel exposure. • Nickel affected the calcium-dependent myogenic gene expression in embryos. - Abstract: The developmental toxicity of nickel was examined in the embryos of Bombina orientalis, a common amphibian in Korea. Based on a standard frog embryo teratogenesis assay, the LC{sub 50} and EC{sub 50} for malformation of nickel after 168 h of treatment were 33.8 μM and 5.4 μM, respectively. At a lethal concentration (100 μM), nickel treatment decreased the space between gill filaments and caused epithelial swelling and abnormal fusion of gill filaments. These findings suggest that nickel affects the functional development of gills, leading to embryonic death. At sublethal concentrations (1–10 μM), nickel produced multiple embryonic abnormalities, including bent tail and tail dysplasia. At 10 μM, nickel significantly decreased tail length and tail muscle fiber density in tadpoles, indicating inhibition of myogenic differentiation. Before hatching, the pre-muscular response to muscular response stages (stages 26–31) were the most sensitive period to nickel with respect to tail muscle development. During these stages, MyoD mRNA was upregulated, whereas myogenic regulatory factor 4 mRNA was downregulated by 0.1 μM nickel. Calcium-dependent kinase activities in muscular response stage embryos were significantly decreased by nickel, whereas these activities were restored by exogenous calcium. In tadpoles, 10 μM nickel significantly decreased the expression of the myosin heavy chain and the 12/101 muscle marker protein in the tail. Expression was restored by exogenous calcium. Our results indicate that nickel affects muscle development by

  7. Sensitization to nickel: etiology, epidemiology, immune reactions, prevention, and therapy.

    Science.gov (United States)

    Hostynek, Jurij J

    2006-01-01

    Nickel is a contact allergen causing Type I and Type IV hypersensitivity, mediated by reagins and allergen-specific T lymphocytes, expressing in a wide range of cutaneous eruptions following dermal or systemic exposure. As such, nickel is the most frequent cause of hypersensitivity, occupational as well as among the general population. In synoptic form, the many effects that nickel has on the organism are presented to provide a comprehensive picture of the aspects of that metal with many biologically noxious, but metallurgically indispensable characteristics. This paper reviews the epidemiology, the prognosis for occupational and non-occupational nickel allergic hypersensitivity, the types of exposure and resulting immune responses, the rate of diffusion through the skin, and immunotoxicity. Alternatives toward prevention and remediation, topical and systemic, for this pervasive and increasing form of morbidity are discussed. The merits and limitations of preventive measures in industry and private life are considered, as well as the effectiveness of topical and systemic therapy in treating nickel allergic hypersensitivity.

  8. Microstructure and magnetooptics of silicon oxide with implanted nickel nanoparticles

    International Nuclear Information System (INIS)

    Edel’man, I. S.; Petrov, D. A.; Ivantsov, R. D.; Zharkov, S. M.; Khaibullin, R. I.; Valeev, V. F.; Nuzhdin, V. I.; Stepanov, A. L.

    2011-01-01

    Metallic nickel nanoparticles of various sizes are formed in a thin near-surface layer in an amorphous SiO 2 matrix during 40-keV Ni + ion implantation at a dose of (0.25−1.0) × 10 17 ions/cm 2 . The micro-structure of the irradiated layer and the crystal structure, morphology, and sizes of nickel particles formed at various irradiation doses are studied by transmission electron microscopy and electron diffraction. The magnetooptical Faraday effect and the magnetic circular dichroism in an ensemble of nickel nanoparticles are studied in the optical range. The permittivity ε tensor components are calculated for the implanted samples using an effective medium model with allowance for the results of magnetooptical measurements. The spectral dependences of the tensor ε components are found to be strongly different from those of a continuous metallic nickel film. These differences are related to a disperse structure of the magnetic nickel phase and to a surface plasma resonance in the metal nanoparticles.

  9. Nickel silicide formation in silicon implanted nickel

    Science.gov (United States)

    Rao, Z.; Williams, J. S.; Pogany, A. P.; Sood, D. K.; Collins, G. A.

    1995-04-01

    Nickel silicide formation during the annealing of very high dose (≥4.5×1017 ions/cm2) Si implanted Ni has been investigated, using ion beam analytical techniques, electron microscopy, and x-ray diffraction analysis. An initial amorphous Si-Ni alloy, formed as a result of high dose ion implantation, first crystallized to Ni2Si upon annealing in the temperature region of 200-300 °C. This was followed by the formation of Ni5Si2 in the temperature region of 300-400 °C and then by Ni3Si at 400-600 °C. The Ni3Si layer was found to have an epitaxial relationship with the substrate Ni, which was determined as Ni3Si∥Ni and Ni3Si∥Ni for Ni(100) samples. The minimum channeling yield in the 2 MeV He Rutherford backscattering and channeling spectra of this epitaxial layer improved with higher annealing temperatures up to 600 °C, and reached a best value measured at about 8%. However, the epitaxial Ni3Si dissolved after long time annealing at 600 °C or annealing at higher temperatures to liberate soluble Si into the Ni substrate. The epitaxy is attributed to the excellent lattice match between the Ni3Si and the Ni. The annealing behavior follows the predictions of the Ni-Si phase diagram for this nickel-rich binary system.

  10. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites

    International Nuclear Information System (INIS)

    Jagannatham, M.; Sankaran, S.; Prathap, Haridoss

    2015-01-01

    Highlights: • Electroless Ni coatings have been performed on CNTs for various deposition times. • The deposition of nickel increased with increase in deposition time. • A deposition time of 60 min has been optimum for uniform coating of Ni on CNTs. • The CNTs with uniform coating of Ni are potential for reinforcements in composites. • Electroless nickel coatings are determined to be super paramagnetic behavior. - Abstract: Electroless nickel (EN) plating was performed on arc discharge synthesized multiwalled carbon nanotubes for various deposition times. X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Raman spectroscopy characterization techniques are used to identify the presence of nickel deposition on the carbon nanotubes (CNTs) and the degree of graphitization. The results indicate that impurities are less in the purified CNTs as compared to raw carbon soot. Increasing deposition time up to 60 min increases uniform deposition of nickel throughout the length of the CNTs. However, for deposition time longer than 60 min, nickel particles are seen separated from the surface of the CNTs. Uniformly coated nickel CNTs throughout their length are potential candidates for reinforcements in composite materials. Magnetic properties of the nickel coated CNTs, with deposition time of 30 and 60 min were also evaluated. The magnetic saturation of nickel coated CNTs with deposition time of 30 min is less compared to nickel coated CNTs with deposition time of 60 min

  11. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagannatham, M.; Sankaran, S.; Prathap, Haridoss, E-mail: prathap@iitm.ac.in

    2015-01-01

    Highlights: • Electroless Ni coatings have been performed on CNTs for various deposition times. • The deposition of nickel increased with increase in deposition time. • A deposition time of 60 min has been optimum for uniform coating of Ni on CNTs. • The CNTs with uniform coating of Ni are potential for reinforcements in composites. • Electroless nickel coatings are determined to be super paramagnetic behavior. - Abstract: Electroless nickel (EN) plating was performed on arc discharge synthesized multiwalled carbon nanotubes for various deposition times. X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Raman spectroscopy characterization techniques are used to identify the presence of nickel deposition on the carbon nanotubes (CNTs) and the degree of graphitization. The results indicate that impurities are less in the purified CNTs as compared to raw carbon soot. Increasing deposition time up to 60 min increases uniform deposition of nickel throughout the length of the CNTs. However, for deposition time longer than 60 min, nickel particles are seen separated from the surface of the CNTs. Uniformly coated nickel CNTs throughout their length are potential candidates for reinforcements in composite materials. Magnetic properties of the nickel coated CNTs, with deposition time of 30 and 60 min were also evaluated. The magnetic saturation of nickel coated CNTs with deposition time of 30 min is less compared to nickel coated CNTs with deposition time of 60 min.

  12. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil

    2010-01-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure.......Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure....

  13. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    International Nuclear Information System (INIS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-01-01

    Graphical abstract: NiWO 4 nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: ► NiWO 4 spherical nanoparticles were synthesized via direct precipitation method. ► Taguchi robust design was used for optimization of synthesis reaction parameters. ► Composition and structural properties of NiWO 4 nanoparticles were characterized. ► EDAX, XRD, SEM, FT-IR, UV–vis and photoluminescence techniques were employed. ► Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO 4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO 4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO 4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV–vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  14. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  15. Adverse reactions to orthodontic appliances in nickel-allergic patients.

    Science.gov (United States)

    Volkman, Kristen K; Inda, Michael J; Reichl, Peter G; Zacharisen, Michael C

    2007-01-01

    Nickel allergy (NA) is common and causes more cases of allergic contact dermatitis (ACD) than all other metals combined. Many orthodontic appliances (ODAs) contain nickel but their clinical relevance in nickel-allergic patients is unclear. We aimed to characterize the relationship between NA and ODAs because the medical literature investigating this is controversial. A survey concerning adverse reactions to ODAs in patients with NA was distributed to members of the Wisconsin Society of Orthodontics. Forty-three surveys were analyzed. The surveyed group was experienced, representing a mean of 21.2 years in practice and averaging 242 appliances placed per year per orthodontist. Most new patients with orthodontia were 10-18 years old. Most wires used were nickel-titanium alloy. Although 76% of orthodontists inquired about NA at initial evaluation, 37% still placed nickel-containing ODAs in known nickel-allergic patients. Fifty percent placed a single intraoral appliance, observing for reactions. Three orthodontists applied ODAs to the skin similar to patch testing. Only 8 patients with reactions to ODAs were described in detail, 6 were female patients and 6 were aged 13-14 years. Intraoral and extraoral reactions were mild; diffuse urticaria was reported in one patient. Treatment included removing the appliances or changing to nonnickel alternatives with favorable outcomes. These cases, which included >33,000 patients, suggest a prevalence of 0.03%. Adverse reactions to ODAs in patients with NA have been observed but are uncommon. Using suitable alternatives, patients usually can be accommodated.

  16. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • An etchant-free and moderate surface pre-treatment process was studied. • Citric acid, malic acid and oxalic acid were selected as modification agents. • High adhesive nickel coating on cuprammonium fabric was obtained. • The electromagnetic parameters were evaluated from the experimental data. - Abstract: Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  17. Synthesis and dissolution studies of nickel ferrite in PDCA based formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V.

    2000-01-01

    Nickel ferrite is one of the important corrosion product in the pipeline surfaces of water cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to nature of the chelant, nature of the reductant used in the formulation and the temperature at which the dissolution studies have been performed. The dissolution is dominated by the adsorption of the complexing agent at the oxide surface, but mainly controlled by the reductive dissolution of the ferrite particles. This is due to the in situ release of Fe 2+ ions or the generation of Fe 2+ ions by the reduction of Fe 3+ ions by the reductants in the solution. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid state method. The prepared nickel ferrite samples are characterised by XRD to confirm the ferrite formation. The dissolution studies are performed in PDCA formulations containing organic reductants like ascorbic acid and LOMI reductants like Fe(II)-PDCA. The dissolution rate of nickel ferrite at 85degC increased with the increase of Fe 2+ ion content in the crystal lattice. Fe(II)-PDCA was found to be better reductants in dissolving the nickel ferrite in comparison with ascorbic acid. (author)

  18. Separation and Preconcentration of Trace Amounts of Nickel from Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Reyhaneh Rahnama

    2018-05-01

    Full Text Available In this paper, a new method for preconcentration and measurement of trace amounts of nickel in aqueous samples by magnetic solid phase extraction (MSPE via magnetic carbon nanotubes (Mag-CNTs was developed. In order to increase selectivity, α-Furildioxime was used as chelating agent. In order to do extraction, optimum amount of ligand was added to the nickel sample and pH was set on 9, then 7 ml. of adsorbent was added and stirred for 15 minutes. After that, aqueous phase and adsorbent were separated by a strong magnet. Finally, the absorption was measured via flame atomic absorption spectrometry by analyte elution from the absorbent with an appropriate solution. Parameters affecting the extraction and preconcentration of nickel were investigated and optimized. Under optimum conditions, the calibration curve was linear in concentration range from 2.5 to 375 µg L-1 and the detection limit was 0.8 µg L-1 of nickel. The method was applied for determination of nickel in aqueous samples. The relative efficiency values of nickel measurement in aqueous samples were from 98.7% to 102.1%.  Results indicated that Mag-CNTs can be used as an effective and inexpensive absorbent for preconcentration and extraction of nickel from actual samples.

  19. Sensitivity and specificity of the nickel spot (dimethylglyoxime) test.

    Science.gov (United States)

    Thyssen, Jacob P; Skare, Lizbet; Lundgren, Lennart; Menné, Torkil; Johansen, Jeanne D; Maibach, Howard I; Lidén, Carola

    2010-05-01

    The accuracy of the dimethylglyoxime (DMG) nickel spot test has been questioned because of false negative and positive test reactions. The EN 1811, a European standard reference method developed by the European Committee for Standardization (CEN), is fine-tuned to estimate nickel release around the limit value of the EU Nickel Directive from products intended to come into direct and prolonged skin contact. Because assessments according to EN 1811 are expensive to perform, time consuming, and may destruct the test item, it should be of great value to know the accuracy of the DMG screening test. To evaluate the sensitivity and specificity of the DMG test. DMG spot testing, chemical analysis according to the EN 1811 reference method, and X-ray fluorescence spectroscopy (XRF) were performed concomitantly on 96 metallic components from earrings recently purchased in San Francisco. The sensitivity of the DMG test was 59.3% and the specificity was 97.5% based on DMG-test results and nickel release concentrations determined by the EN 1811 reference method. The DMG test has a high specificity but a modest sensitivity. It may serve well for screening purposes. Past exposure studies may have underestimated nickel release from consumer items.

  20. Reuse of Expired Cefort Drug in Nickel Electrodeposition From Watts Bath

    Directory of Open Access Journals (Sweden)

    Delia-Andrada Duca

    2017-06-01

    Full Text Available This paper demonstrates the possibility to use ceftriaxone (CEFTR active compound from expired Cefort as additive in nickel electrodeposition from Watts baths. Electrochemical behaviour and the influence of CEFTR on nickel electroplating were studied by electrochemical methods. Experimental data recommends CEFTR as additive in nickel electroplating from Watts baths.

  1. Development of nickel hydrogen battery expert system

    Science.gov (United States)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  2. Well-defined mono(η3-allyl)nickel complex MONi(η3-C3H5) (M = Si or Al) grafted onto silica or alumina: A molecularly dispersed nickel precursor for syntheses of supported small size nickel nanoparticles

    KAUST Repository

    Li, Lidong; Abou-Hamad, Edy; Anjum, Dalaver H.; Zhou, Lu; Laveille, Paco; Emsley, Lyndon; Basset, Jean-Marie

    2014-01-01

    Preparing evenly-dispersed small size nickel nanoparticles over inert oxides remains a challenge today. In this context, a versatile method to prepare supported small size nickel nanoparticles (ca. 1-3 nm) with narrow size distribution via a surface organometallic chemistry (SOMC) route is described. The grafted mono(η3-allyl)nickel complexes MONi(η 3-C3H5) (M = Si or Al) as precursors are synthesized and fully characterized by elemental analysis, FTIR spectroscopy and paramagnetic solid-state NMR. © 2014 the Partner Organisations.

  3. An evaluation of two types of nickel-titanium wires in terms of micromorphology and nickel ions' release following oral environment exposure.

    Science.gov (United States)

    Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad

    2015-01-01

    This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.

  4. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  5. Cancer incidence among copper smelting and nickel refining workers in Finland.

    Science.gov (United States)

    Pavela, Markku; Uitti, Jukka; Pukkala, Eero

    2017-01-01

    Among workers employed at a nickel refinery in Harjavalta, Finland an increased risk of lung and sinus cancer has been demonstrated in two previous studies. The current study adds 16 more years of follow-up to these studies. A total of 1,115 persons exposed to nickel and 194 non-exposed workers in the Harjavalta nickel smelter and refinery were followed up for cancer from 1967 to 2011 through the Finnish Cancer Registry. The total number of cancer cases in men was 251 (Standardized incidence ratio (SIR) 1.05) and in women 12 (SIR 1.22). In the most nickel-exposed work site (refinery), there were 14 lung cancers (SIR 2.01) and 3 sinonasal cancers (SIR 26.7, 95%). It is likely that exposure to nickel compounds is the main reason for elevated nasal cancer risk among the nickel refinery employees and may also contribute to the excess risk of lung cancer. Am. J. Ind. Med. 60:87-95, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Nickel contaminated titanium weld wire study

    International Nuclear Information System (INIS)

    Coffin, G.R.; Sumstine, R.L.

    1979-01-01

    Attachment of thermocouples to fuel rod welding problems at Exxon Nuclear Company and INEL prompted an investigation study of the titanium filler wire material. It was found that the titanium filler wire was contaminated with nickel which was jacketed on the wire prior to the drawing process at the manufacturers. A method was developed to 100% inspect all filler wire for future welding application. This method not only indicates the presence of nickel contamination but indicates quantity of contamination. The process is capable of high speed inspection necessary for various high speed manufacturing processes

  7. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    Science.gov (United States)

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  8. Study of the high temperature oxidation of nickel; Contribution a l'etude de l'oxydation du nickel aux temperatures elevees

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-11-01

    The parabolic oxidation of nickel by oxygen and by air at atmospheric pressure has been studied in the temperature range 600 to 1400 C, in particular by thermogravimetric and micrographic techniques. The mechanism of the reaction has been determined; it has been shown in particular that the break in the Arrhenius plot of the kinetics, occurring at about 950 C, is the result of a stimulation of the diffusion across the nickel prot-oxide film above this temperature; this is the result of the presence of excess nickel vacancies in the film. A systematic study has also been made of the influence of the oxygen pressure P{sub O{sub 2}} (10{sup -2} torr {<=} P{sub O{sub 2}} {<=} 760 torr) on the parabolic oxidation of nickel between 800 and 1400 C. In the range 1000 to 1400 C, the activation energy of the process decreases monotonously from 57 to 34 kcal/mole as P{sub O{sub 2}} decreases from 760 to 1 torr. Furthermore, it has been shown that the parabolic oxidation constant is proportional to P{sub O{sub 2}}{sup 1/n} the value of n is not invariant however in the temperature range examined, but decreases from 6 to about 3 when the temperature increases from 900 to 1400 C. Finally, a study has been made of the oxidation of nickel in carbon dioxide at atmospheric pressure between 750 and 1400 C. The main reaction is Ni + CO{sub 2} {yields} NiO + CO, and corresponds, with a good approximation, to the reaction of the metal with the oxygen produced by the thermal dissociation of the CO{sub 2}. (author) [French] L'oxydation parabolique du nickel avec l'oxygene et l'air a la pression atmospherique a ete etudiee dans l'intervalle de temperatures 600-1400 C, surtout par voies thermogravimetrique et micrographique. Le mecanisme de la reaction a ete precise; en particulier, il a ete montre que la brisure de la courbe d'Arrhenius traduisant sa cinetique, qui se produit a 950 C environ, resulte d'une stimulation de la diffusion dans la pellicule de protoxyde de nickel au dessous de

  9. Nickel patch test reactivity and the menstrual cycle

    DEFF Research Database (Denmark)

    Rohold, A E; Halkier-Sørensen, L; Thestrup-Pedersen, K

    1994-01-01

    Premenstrual exacerbation of allergic contact dermatitis and varying allergic patch test responses have been reported at different points of the period. Using a dilution series of nickel sulphate, we studied the variation in patch test reactivity in nickel allergic women in relation to the menstr......Premenstrual exacerbation of allergic contact dermatitis and varying allergic patch test responses have been reported at different points of the period. Using a dilution series of nickel sulphate, we studied the variation in patch test reactivity in nickel allergic women in relation...... were tested first on day 7-10 and the other half first on day 20-24. There was no difference in the degree of patch test reactivity, when the results from day 7-10 and day 20-24 were compared (p > 0.4). However, when we compared the patch test results from the first and second test procedure, we found...... of positive patch tests led to an increased skin reactivity towards the same allergen, when the patients were retested weeks later....

  10. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  11. Common-Pressure-Vessel Nickel-Hydrogen Battery Development

    OpenAIRE

    Otzinger, Burton; Wheeler, James

    1991-01-01

    The dual-cell, common-pressure vessel, nickel-hydrogen configuration has recently emerged as an option for small satellite nickel-hydrogen battery application. An important incentive is that the dual-cell, CPV configured battery presents a 30 percent reduction in volume and nearly 50 percent reduction in mounting footprint, when compared with an equivalent battery of individual pressure- vessel (IPV) cells. In addition energy density and cost benefits are significant. Eagle-Picher Industries ...

  12. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  13. Preparation of one-dimensional nickel nanowires by self-assembly process

    International Nuclear Information System (INIS)

    Wang Dapeng; Sun Dongbai; Yu Hongying; Qiu Zhigang; Meng Huimin

    2009-01-01

    Self-assembly nickel nanowires were prepared by soft template method in ethylene glycol solutions. The structure and micro-morphology of the products were analyzed using X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The results showed that the products were pure nickel powders with face-centered cubic (fcc) structure. A growth model was presented to explain the growth mechanism. The effects of pH value, surfactant, reaction temperature and reaction time on the synthesis of nickel nanowires were discussed. When pH > 11.5, the reaction temperature was between 80 deg. C and 90 deg. C, and the concentration of cetyltrimethyl ammonium bromide (CTAB) was higher than 7.0 x 10 -3 , zigzag nickel nanowires with slenderness ratio about 20 could be synthesized

  14. Toxic effects of lead and nickel nitrate on rat liver chromatin components.

    Science.gov (United States)

    Rabbani-Chadegani Iii, Azra; Fani, Nesa; Abdossamadi, Sayeh; Shahmir, Nosrat

    2011-01-01

    The biological activity of heavy metals is related to their physicochemical interaction with biological receptors. In the present study, the effect of low concentrations of nickel nitrate and lead nitrate (lead nitrate to chromatin compared to nickel nitrate. Also, the binding affinity of lead nitrate to histone proteins free in solution was higher than nickel. On the basis of the results, it is concluded that lead reacts with chromatin components even at very low concentrations and induce chromatin aggregation through histone-DNA cross-links. Whereas, nickel nitrate is less effective on chromatin at low concentrations, suggesting higher toxicity of lead nitrate on chromatin compared to nickel. Copyright © 2010 Wiley Periodicals, Inc.

  15. The solubility and sorption of nickel and niobium under high pH conditions

    International Nuclear Information System (INIS)

    Pilkington, N.J.; Stone, N.S.

    1990-01-01

    The solubilities of nickel and niobium were measured in a range of cement-equilibrated waters. For nickel the effects of cellulose degradation products and of chloride were examined and the dependence of nickel solubility on pH was measured. The sorption of nickel and niobium on to cement representative of the ''near field'' of a radioactive waste repository was also measured. (author)

  16. Nickel and cobalt release from children's toys purchased in Denmark and the United States.

    Science.gov (United States)

    Jensen, Peter; Hamann, Dathan; Hamann, Carsten R; Jellesen, Morten S; Jacob, Sharon E; Thyssen, Jacob P

    2014-01-01

    Nickel is the most common allergen detected by patch testing in children. There is an increasing number of cases in children who have not had exposure to piercing. Although the clinical relevance of nickel patch test reactions in children is sometimes uncertain, continued vigilance to identify new sources of nickel exposure in this age group is important. Recent case reports have described allergic nickel contact dermatitis in children following exposure to toys, but the magnitude of this problem is unknown. The aim of this study was to evaluate nickel and cobalt release from children's toys. We purchased 212 toys in 18 different retail and online stores in the United States and Denmark. Nickel and cobalt release was tested using the dimethylglyoxime and cobalt screening spot tests. A total of 73 toys (34.4%) released nickel, and none released cobalt. Toys are a commonly overlooked source of nickel exposure and sensitization. Therefore, dermatologists, allergists, and pediatricians should consider the role of toys in their evaluation of children with dermatitis, and the parents of children with positive nickel patch test reactions should be told that toys may release nickel and be a potential chemical source in the manifestation of allergic contact dermatitis.

  17. Sensitivity and specificity of the nickel spot (dimethylglyoxime) test

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Skare, Lizbet; Lundgren, Lennart

    2010-01-01

    The accuracy of the dimethylglyoxime (DMG) nickel spot test has been questioned because of false negative and positive test reactions. The EN 1811, a European standard reference method developed by the European Committee for Standardization (CEN), is fine-tuned to estimate nickel release around...

  18. Sensitivity and specificity of the nickel spot (dimethylglyoxime) test

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Skare, Lizbet; Lundgren, Lennart

    2010-01-01

    The accuracy of the dimethylglyoxime (DMG) nickel spot test has been questioned because of false negative and positive test reactions. The EN 1811, a European standard reference method developed by the European Committee for Standardization (CEN), is fine-tuned to estimate nickel release around...... the limit value of the EU Nickel Directive from products intended to come into direct and prolonged skin contact. Because assessments according to EN 1811 are expensive to perform, time consuming, and may destruct the test item, it should be of great value to know the accuracy of the DMG screening test....

  19. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    Science.gov (United States)

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water.

  20. Solution-processed copper-nickel nanowire anodes for organic solar cells

    Science.gov (United States)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  1. Deactivation of nickel hydroxide-gold modified electrodes

    OpenAIRE

    Caram, Bruno; Tucceri, Ricardo

    2013-01-01

    The aim of the present work was to study how the charge-transport process of a nickel hydroxide film electrochemically synthesized on a gold substrate is modified when the electrode is stored for a long time. It was found that nickel hydroxide films are deactivated under storage, that is, films became less conductive than films immediately prepared (nondeactivated). This study was carried out in the context of the rotating disc electrode voltammetry when the modified electrode contacts an ele...

  2. Effect of nickel plating upon tensile tests of uranium--0.75 titanium alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1975-01-01

    Electrolytic-nickel-plated specimens of uranium-0.75 wt percent titanium alloy were tested in air at 20 and 100 percent relative humidities. Tensile-test ductility values were lowered by a high humidity and also by nickel plating alone. Baking the nickel-plated specimens did not eliminate the ductility degradation. Embrittlement because of nickel plating was also evident in tensile tests at -34 0 C. (U.S.)

  3. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  4. Use of zeolite to neutralise nickel in a soil environment.

    Science.gov (United States)

    Boros-Lajszner, Edyta; Wyszkowska, Jadwiga; Kucharski, Jan

    2017-12-30

    Nickel is a heavy metal which is a stable soil pollutant which is difficult to remediate. An attempt to reduce its impact on the environment can be made by changing its solubility. The right level of hydrogen ions and the content of mineral and organic colloids are crucial in this regard. Therefore, methods to neutralise heavy metals in soil are sought. There are no reports in the literature on the possibility of using minerals in the detoxication of a soil environment contaminated with metals. It is important to fill the gap in research on the effect of zeolites on the microbiological, biochemical and physicochemical properties of soils under pressure from heavy metals. Therefore, a pot experiment was conducted on two soils which examined the effect of various levels of contamination of soil with nickel on the activity of soil enzymes, physical and chemical properties and growth and development of plants. An alleviating effect of zeolite Bio.Zeo.S.01 on the negative impact of nickel on the soil and a plant (oats) was examined. The enzyme activity and the oat yield were found to be significantly and negatively affected by an excess of nickel in the soil, regardless of the soil type. The metal was accumulated more in the oat roots than in the above-ground parts. An addition of zeolite decreased the level of accumulation of nickel in oats grown only on sandy-silty loam. Zeolite Bio.Zeo.S.01 used in the study only slightly alleviated the negative effect of nickel on the biochemical properties of soil. Therefore, its usability in the remediation of soil contaminated with nickel is small.

  5. Modeling Correlation Effects in Nickelates with Slave Particles

    Science.gov (United States)

    Georgescu, Alexandru Bogdan; Ismail-Beigi, Sohrab

    Nickelate interfaces display interesting electronic properties including orbital ordering similar to that of cuprate superconductors and thickness dependent metal-insulator transitions. One-particle band theory calculations do not include dynamic localized correlation effects on the nickel sites and thus often incorrectly predict metallic systems or incorrect ARPES spectra. Building on two previous successful slave-particle treatments of local correlations, we present a generalized slave-particle method that includes prior models and allows us to produce new intermediate models. The computational efficiency of these slave-boson methods means that one can readily study correlation effects in complex heterostructures. We show some predictions of these methods for the electronic structure of bulk and thin film nickelates. Work supported by NSF Grant MRSEC DMR-1119826.

  6. Dose per unit area - a study of elicitation of nickel allergy

    DEFF Research Database (Denmark)

    Fischer, Louise Arup; Menné, Torkil; Johansen, Jeanne Duus

    2007-01-01

    BACKGROUND: Experimental sensitization depends upon the amount of allergen per unit skin area and is largely independent of the area size. OBJECTIVES: This study aimed at testing if this also applies for elicitation of nickel allergy. PATIENTS/METHODS: 20 nickel allergic individuals were tested...... with a patch test and a repeated open application test (ROAT). Nickel was applied on small and large areas. The varying parameters were area, total dose and dose per unit area. RESULTS: In the patch test, at a low concentration [15 microg nickel (microg Ni)/cm(2)], there were significantly higher scores...... on the large area with the same dose per area as the small area. At higher concentrations of nickel, no significant differences were found. In the ROAT at low concentration (6.64 microg Ni/cm(2)), it was found that the latency period until a reaction appeared was significantly shorter on the large area...

  7. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  8. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    International Nuclear Information System (INIS)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum; Oliveira, Ione M.F. de; Oliveira, Gilver F. de; Lepretre, Jean-Claude; Bucher, Christophe; Mou tet, Jean-Claude

    2009-01-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  9. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum [Universite Ferhat Abbas, Setif (Algeria). Faculte des Sciences de l' Ingenieur. Dept. du Tronc Commun; Oliveira, Ione M.F. de; Oliveira, Gilver F. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Lepretre, Jean-Claude [UMR-5631 CNRS-INPG-UJF, St. Martin d' Heres Cedex (France). Lab. d' Electrochimie et de Physicochimie des Materiaux et Interfaces; Bucher, Christophe; Mou tet, Jean-Claude [Universite Joseph Fourier Grenoble 1 (France). Dept. de Chimie Moleculaire], e-mail: Jean-Claude.Moutet@ujf-grenoble.fr

    2009-07-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  10. 76 FR 47996 - Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule

    Science.gov (United States)

    2011-08-08

    ... Safety and Health Administration (OSHA) Permissible Exposure Level (PEL) of 0.1 mg/m\\3\\ for nickel. The... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule AGENCY: Environmental... lithium manganese nickel oxide (CAS No. 182442-95-1), which was the subject of premanufacture notice (PMN...

  11. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  12. Standard molar enthalpies of formation of nickel(II) {beta}-diketonates and monothio-{beta}-diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro da Silva, Manuel A.V. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)]. E-mail: risilva@fc.up.pt; Santos, Luis M.N.B.F. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Giera, Edward [Faculty of Chemistry, Wroclaw University, ul. F. Joliot-Curie 14, 50-383 Wroclaw (Poland)

    2007-03-15

    The standard (p{sup o}=0.1MPa) molar enthalpies of formation of the crystalline diaquobis(dibenzoylmethanate)nickel(II), Ni(dbm){sub 2}(H{sub 2}O){sub 2}, diaquobis(thenoyltrifluoroacetonate)nickel(II), Ni(ttfa){sub 2}(H{sub 2}O){sub 2} bis(monothiodibenzoylmethanate)nickel(II), Ni(dbmS){sub 2} and bis(monothiothenoyltrifluoroacetonate)nickel(II), Ni(HttfaS){sub 2} were determined, at T=298.15K, by high precision solution-reaction calorimetry. The standard molar enthalpy of sublimation of the monothiothenoyltrifluoroacetone (HttfaS) complex was measured by high-temperature Calvet microcalorimetry. From the standard molar enthalpies of formation of the complexes in the gaseous state, the mean nickel(II)-ligand molar dissociation enthalpies, (Ni-L), were derived. {delta}{sub f}H{sub m}{sup o}(cr)/(kJ.mol{sup -1})Diaquobis(dibenzoylmethanate)nickel(II), Ni(dbm){sub 2}(H{sub 2}O){sub 2}-993.3+/-3.8Diaquobis(thenoyltrifluoroacetonate)nickel(II), Ni(ttfa){sub 2}(H{sub 2}O){sub 2}-2452.0+/-8.3Bis(monothiodibenzoylmethanate)nickel(II), Ni(dbmS){sub 2}-42.1+/-5.9Bis(monothiothenoyltrifluoroacetonate)nickel(II), Ni(ttfaS){sub 2}-1473.5+/-8.1.

  13. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  14. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  15. Electronic diffraction study of the chlorination of nickel; Etude par diffraction electronique de la chloruration du nickel

    Energy Technology Data Exchange (ETDEWEB)

    Vigner, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A study has been made of the chlorination of the (100), (110) and (111) crystal faces of nickel using high energy electron diffraction and electron microscopy. Two methods have been used: bombardment with chlorine ions having an energy of between 10 and 30 keV, and direct chlorination in a diffractor at pressures of about 10{sup -4} torr. It has thus been possible to show the very special properties of nickel chloride (CdBr{sub 2} type, space group R 3-bar m) which is always formed along the (0001) plane, whatever the orientation of the substrate. It has also been possible to attain the metal-halide interface and to show the existence of two-dimensional chemisorbed films which are ordered or disordered according to the crystal orientation. (author) [French] La chloruration des faces (100) (110) et (111) du nickel a ete etudiee par diffraction des electrons de haute energie et par microscopie electronique. Deux methodes ont ete utilisees: le bombardement avec des ions chlore ayant une energie comprise entre 10 et 30 keV, et la chloruration directe dans un diffracteur pour des pressions de l'ordre de 10{sup -4} torr. Ainsi ont ete mises en evidence les proprietes tres particulieres du chlorure de nickel (type CdBr{sub 2}, groupe spatial R 3-bar m) qui s'accole toujours suivant le plan (0001), quelle que soit l'orientation du substrat. Il a ete egalement possible d'atteindre l'interface metal-halogenure et de montrer l'existence de couches chimisorbees bidimensionnelles, ordonnees ou desordonnees suivant l'orientation cristalline etudiee. (auteur)

  16. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying, E-mail: huang-ying@aist.go.jp [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Tanaka, Mikiya, E-mail: mky-tanaka@aist.go.jp [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

    2009-05-30

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10{sup -3} to 6.7 x 10{sup -3} s{sup -1}, which was close to the value of 3.4 x 10{sup -3} s{sup -1} obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  17. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler

    International Nuclear Information System (INIS)

    Huang, Ying; Tanaka, Mikiya

    2009-01-01

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10 -3 to 6.7 x 10 -3 s -1 , which was close to the value of 3.4 x 10 -3 s -1 obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  18. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler.

    Science.gov (United States)

    Huang, Ying; Tanaka, Mikiya

    2009-05-30

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model