WorldWideScience

Sample records for ni-cr-mo based alloys

  1. Quantitative evaluation of safety use limit for crevice corrosion in Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    The most important problem with corrosion-resistant alloys such as stainless steels is localized corrosion. Crevice corrosion, which is a typical localized corrosion, occurs under the mildest environmental conditions. Consequently, whether crevice corrosion occurs or not is an important issue in structural material selection. This study investigated highly corrosion-resistant Ni-Cr-Mo alloys whose resistance for crevice corrosion is difficult to evaluate with the JIS G 0592 standard for common strainless steels. The optimized procedures for determining the critical potential and temperature for crevice corrosion of the alloys were developed based on the JIS method. The limits of safety usage of various Ni-Cr-Mo alloys were evaluated quantitatively in chloride solution environments. (author)

  2. Crevice Corrosion on Ni-Cr-Mo Alloys

    International Nuclear Information System (INIS)

    P. Jakupi; D. Zagidulin; J.J. Noel; D.W. Shoesmith

    2006-01-01

    Ni-Cr-Mo alloys were developed for their exceptional corrosion resistance in a variety of extreme corrosive environments. An alloy from this series, Alloy-22, has been selected as the reference material for the fabrication of nuclear waste containers in the proposed Yucca Mountain repository located in Nevada (US). A possible localized corrosion process under the anticipated conditions at this location is crevice corrosion. therefore, it is necessary to assess how this process may, or may not, propagate if the use of this alloy is to be justified. Consequently, the primary objective is the development of a crevice corrosion damage function that can be used to assess the evolution of material penetration rates. They have been using various electrochemical methods such as potentiostatic, galvanostatic and galvanic coupling techniques. Corrosion damage patterns have been investigated using surface analysis techniques such as scanning electron microscopy (SEM) and optical microscopy. All crevice corrosion experiments were performed at 120 C in 5M NaCl solution. Initiating crevice corrosion on these alloys has proven to be difficult; therefore, they have forced it to occur under either potentiostatic or galvanostatic conditions

  3. Properties of the passive films on Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Lloyd, A.C.; Noel, J.J.; McIntyre, N.S.; Shoesmith, D.W.

    2003-01-01

    Ni-Cr-Mo alloys are among the most corrosion resistant materials known, showing exceptional localized corrosion resistance under extreme industrial conditions. Accordingly, one such alloy, Alloy-22. is a candidate material for the outer sheathing of nuclear waste packages for the Yucca Mountain repository. Nevada, USA. We briefly report our results on the passive behaviour for a series of Ni-Cr-Mo alloys, with the emphasis on determining if there is a temperature dependence associated with it. The change of passive corrosion rate with temperature is a critical parameter required for long-term performance assessment calculations. The results show that alloy C22 performed better than the other members of the C-series of alloys under acidic conditions. This indicates that its selection as a waste package material is appropriate, and that it possess the potential for long-term containment of radio-nuclides. (author)

  4. KINETICS OF CATHODIC REDUCTION OF OXYGEN ON NI-CR-MO-W ALLOY

    International Nuclear Information System (INIS)

    NA

    2006-01-01

    Ni-Cr-Mo-W alloys (C-group alloys) are well known as materials with very high Corrosion resistance in very aggressive environments, an asset that has motivated the selection of Alloy 22 as a waste package material in the Yucca Mountain Project for the long-term geologic disposal of spent nuclear fuel and other high-level radioactive wastes. The aim of this project is to elucidate the corrosion performance of Alloy 22 under aggressive conditions and to provide a conceptual understanding and parameter data base that could act as a basis for modeling the corrosion performance of waste packages under Yucca Mountain conditions. A key issue in any corrosion process is whether or not the kinetics of the cathodic reactions involved can support a damaging rate of anodic metal (alloy) dissolution. Under Yucca Mountain conditions the primary oxidant available to drive corrosion (most likely in the form of crevice, or under-deposit, corrosion) will be oxygen. Here, we present results on the kinetics of oxygen reduction at the Alloy 22/solution interface

  5. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  6. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho; Lee, Ki-Hyoung; Lee, Chang-Hee

    2011-01-01

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  7. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  8. Corrosion resistance of amorphous NiCrZr and NiCrMoZr alloys

    International Nuclear Information System (INIS)

    Naka, M.; Miyake, M.; Okamoto, I.

    1987-01-01

    One of the authors has reported that the corrosion resistance of chromium containing amorphous alloys is extremely improved by alloying phosphorus among metalloids. Two factors operate for the improvement of corrosion resistance of the amorphous alloys. First, phosphorus serves for the rapid formation of protective passive film. Second, the compositional and structural homogeneity in amorphous state also account for the formation of protective film. The latter factor has been clearly seen in the high corrosion resistance of CoCrMoZr and CoCrWZr alloys without metalloids. In order to clarify the separately two factors in the corrosion resistance of amorphous alloys, the corrosion resistance of amorphous alloys without metalloids has to be further investigated. This paper also deals with the corrosion resistance and electrochemical behavior of NiCrZr and NiCrMoZr alloys in 1N HCl, and compare them with the corrosion behavior of the crystalline alloys containing the same composition as that of the amorphous alloys

  9. Effects of fabrication practices and techniques on the corrosion and mechanical properties of Ni-Cr-Mo nickel based alloys UNS N10276, N06022, N06686, and N06625

    International Nuclear Information System (INIS)

    Hinshaw, E.B.; Crum, J.R.

    1996-01-01

    Ni-Cr-Mo alloys have excellent resistance to both oxidizing and reducing type environments; however, heat treating, surface condition, welding, and type of welding consumable can have a significant affect on the corrosion resistance and mechanical properties of these alloys. It is also important when performing standard ASTM intergranular corrosion tests on welded test coupons to make an accurate comparison of alloys being tested. A standard weld procedure and consistent post-weld sample conditioning method should be incorporated into the comparison test program. An evaluation of the effect of various fabrication practices on the corrosion resistance of the alloy was performed using accelerated corrosion tests ASTM G28B. The fabrication conditions examined were as-welded, welded-pickled, welded-annealed-pickled, welded annealed ground, welded-ground, using over matching filler metals, and various levels of heat input. In addition to fabrication techniques, the effect of ASTM G28B test duration on corrosion rates of UNS N10276, N06022, N06686, and N06625 was evaluated. ASTM G28A intergranular corrosion and mechanical testing using welded coupons of UNS N06625 were also performed to determine the affect of post-weld annealing and aging heat treatments on the corrosion resistance and mechanical properties of UNS N06625

  10. Optimization of the method for determining the corrosion-crevice repassivation potential of Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    In order to quantitatively evaluate the resistance of a candidate overpack material for geological disposal of high-level nuclear waste to the crevice corrosion, the optimized test method for determining the corrosion-crevice repassivation potential, E R,CREV , of a Ni-Cr-Mo alloy (Alloy 22) was developed based on that of stainless steels (JIS G0592). It was found that two restrictions shall be satisfied for determining the valid value of E R,CREV for Alloy 22. Restriction (a) was to avoid transpassive dissolution, and (b) was to obtain a penetration depth of 65 μm or more in creviced areas. The recommended procedure in JIS G 0592 at the corrosion-crevice initiation stage, which involved the potentiodynamic anodic polarization at a scan rate of 30 mV min -1 , could not satisfy the restriction (a). Consequently, we adopted the potentiostatic holding at the potential below the critical potential for transpassive dissolution. The recommended procedure in JIS G 0592 at the corrosion-crevice propagation stage, which involved the galvanostatic holding at an applied current of 200 μA for 2 hours, could not always satisfy the restriction (b), and the applied current of 1600 μA or more could not satisfy the restriction (a). Therefore, we adopted the galvanostatic holding at a current of 800 μA for 2 hours. The limits of safety usage of Alloy 22 were evaluated by values of E R,CREV which were measured with the optimized procedure in 0.1 to 4 mol dm -3 sodium chloride solutions at 90degC. (author)

  11. Successes and failures of Ni-Cr-Mo family alloys in FGD systems of coal-fired power plants

    International Nuclear Information System (INIS)

    Agarwal, D.C.

    1986-01-01

    At first glance, operation of a typical limestone FGD system seems deceptively simple. However, the first generation scrubbers of the early to mid 70's proved to be a financial and operational disaster due to metals corroding in a rather short time period and non-metallic linings failing by blistering, debonding, cracking, flaking and peeling. Extensive research programs at various institutions and utilities to find better construction materials led to higher alloys up the ladder of the Ni-Cr-Mo family, other materials and new non-metallic coatings. This paper describes case histories showing both success and failures of the various alloys in the Ni-Cr-Mo family. This information will not only be useful to the various scrubber system suppliers and A/E's, but should be of value to utility corrosion/scrubber engineers and maintenance personnel who, on a day-to-day basis, are involved in keeping their systems functional in a cost-effective manner

  12. Análisis del comportamiento mecánico de una aleación Ni-Cr-Mo para pilares dentales/Analysis of Mechanical Behavior of Ni-Cr-Mo alloy for Dental Abutments

    Directory of Open Access Journals (Sweden)

    Luis Alberto Laguado Villamizar

    2012-12-01

    Full Text Available El presente estudio caracteriza una aleación aplicable al diseño de pilares para implantes dentales. Se propone un material biocompatible y de alta resistencia mecánica como alternativa a las aleaciones de Titanio, disminuyendo los costos de materia prima y procesamiento. Se realizan pruebas mecánicas de tracción y de compresión a la aleación de Ni-Cr-Mo, posteriormente se realiza modelado 3D y simulación de sus propiedades mecánicas por medio de análisis de elementos finitos. Como resultado se obtiene que el material disminuye su resistencia mecánica después del proceso de fundición empleado. El modelo de simulación es válido para análisis de resistencia en pilares dentales.This study presents the characterization of a dental implant alloy for abutments. It proposes a biocompatible material and high mechanical resistance as an alternative to Titanium alloys, lowering costs of raw materials and processing. Mechanical testing of the Ni-Cr-Mo alloy and subsequently perform simulations of its mechanical properties by means of finite element analysis. As a result is obtained that the material reduces its mechanical strength after the casting for electric induction molding process. The simulation model is valid to make analysis of resistance to this type of dental devices.

  13. Thermal stability and microstructural changes of some Ni-Cr-Mo alloys as detected by corrosion testing

    International Nuclear Information System (INIS)

    Koehler, M.; Agarwal, D.C.

    1998-01-01

    Wrought Ni-Cr-Mo alloys of the C-family show a sensitivity to intercrystalline attack especially after exposure in the temperature range of 650 C to 950 C. Nevertheless, microstructural changes due to precipitation of intermetallic phases can occur up to a temperature level of 1050 C and this can affect the localized corrosion resistance. Thermal stability of wrought Alloy C-276 is a lot lower in comparison to Alloy 59. Sensitized at 870 C for only 1 hour, Alloy C-276 fails in the ASTM-G 28 B test due to rapid intercrystalline penetration and pitting whereas Alloy 59 can be aged up to 3 hours without any increase of the corrosion rate or any pitting attack. The same ranking applies during polythermal cooling cycles. Alloy C-276 requires a cooling rate of 150 C/min. between the solution annealing temperature and 600 C to avoid any sensitization whereas for Alloy 59 a relative slow cooling rate of 25 C/min. is acceptable. The critical pitting temperature of Alloy 59 when tested in the Green Death solution had been determined to be > 125 C. The temperature was not lowered during aging up to 3 hours at 1050 C or if a cooling speed of 25 C/min. was applied. However, cooling rates of 50 C/min. or less reduced the critical pitting temperature of Alloy C-276 from 115 C in the solution annealed and water quenched condition to only 105 C

  14. Fractal study of Ni-Cr-Mo alloy for dental applications: effect of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Ali

    2003-12-30

    Different Ni-based alloys with various compositions were prepared by varying the amounts of beryllium. Effect of the amount of beryllium added to the alloy on its corrosion in an electrolyte solution of artificial saliva was investigated. Fractal dimension was used as a quantitative factor for surface analysis of the alloys before and after storage in the artificial salvia. The fractal dimensions of the electrode surfaces were determined by means of the most reliable method in this context viz. time dependency of the diffusion-limited current for a system involving 'diffusion towards electrode surface'. The results showed that increase of the beryllium amount in the alloy composition significantly increases the alloy corrosion. It is accompanied by increase of the fractal dimension and roughness of the electrode surface, whereas a smooth and shiny surface is required for dentures. From the methodology point of view, the approach utilized for fractal analysis of the alloy surfaces (Au-masking of metallic surfaces) is a novel and efficient method for study of denture surfaces. Generally, this approach is of interest for corrosion studies of different metals and alloys, particularly where changes in surface structure have a significant importance.

  15. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  16. Crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    Hornus, E. C.; Carranza, R. M.; Giordano, C. M.; Rodríguez, M. A.; Rebak, R. B.

    2013-01-01

    The crevice corrosion re passivation potential was determined by the Potentiodynamic- Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloys 625, C-22, C-22HS and HYBRID-BC1 were used. Specimens contained 24 artificially creviced spots formed by a ceramic washer (crevice former) wrapped with a PTFE tape. Crevice corrosion tests were performed in 0,1 mol/L and 1 mol/L NaCl solutions at temperatures between 20 and 90ºC, and CaCl2 5 mol/L solution at temperatures between 20 and 117°C. The crevice corrosion resistance of the alloys increased in the following order: 625 < C-22 < C-22HS < HYBRID-BC1. The repassivation potential (ECO) showed the following relationship with temperature (T) and chloride concentration ([Cl-]) ECO = (A + B T) log [Cl-] + C T + D; where A, B, C and D are constants. At temperatures above 90°C, ECO for alloy 625 stabilized at a minimum value of -0.26 VSCE (author)

  17. Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    Hornus, Edgard C.; Rodríguez, Martin A.

    2011-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly corrosive environments. Alloys 625, C-22, C-22HS and Hybrid-BC1 are considered among candidates as engineered barriers of nuclear repositories. The objective of the present work was to assess the effect of temperature on the crevice corrosion resistance of these alloys. The crevice corrosion re-passivation potential (E CO ) of the tested alloys was determined by the Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloy Hybrid-BC1 was the most resistant to chloride-induced crevice corrosion, followed by alloys C-22HS, C-22 and 625. E CO showed a linear decrease with temperature. There is a temperature above which E CO does not decrease anymore, reaching a minimum value. This E CO value is a strong parameter for assessing the localized corrosion susceptibility of a material in a long term timescale, since it is independent of temperature, chloride concentration and geometrical variables such as crevicing mechanism, crevice gap and type of crevice formers. (author) [es

  18. Comparison of the segregation behavior between tempered martensite and tempered bainite in Ni-Cr-Mo high strength low alloy RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Kim, Min Chul; Kim, Hyung Jun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an superior fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be obtained by adding Ni and Cr. So several were performed on researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and term of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, the resistance of thermal embrittlement in the high temperature range including temper embrittlement is required. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. We have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels were evaluated after a long-term heat treatment. Then, the the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  19. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  20. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    Science.gov (United States)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  1. Residual stress determination by neutron diffraction in a car gear-shaft made of 20NiCrMo2 alloyed case hardening steel

    Czech Academy of Sciences Publication Activity Database

    Rogante, M.; Mazzanti, M.; Mikula, Pavol; Vrána, Miroslav

    2012-01-01

    Roč. 50, č. 4 (2012), s. 213-220 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP204/12/1360 Institutional support: RVO:61389005 Keywords : 20NiCrMo2 steel * gear-shaft * caser hardening * residual stress * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.687, year: 2012

  2. Effect of alloying element on mechanical and oxidation properties of Ni-Cr-Mo-Co alloys at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Jin, E-mail: djink@kaeri.re.kr; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo; Kim, Woo Gon; Hwang, Seong Sik; Kim, Hong Pyo

    2016-12-01

    Graphical abstract: Mo rich carbide was developed leading to significant increase of elongation to rupture and creep rupture time of Ni-Cr-Co-Mo alloy at 950 °C. Al addition improved corrosion resistance caused by enhancement of oxide/matrix interface stability. Abstract: The very-high-temperature reactor (VHTR) is a promising Generation-IV reactor design given its clear advantage regarding the production of massive amounts of hydrogen and in generating highly efficient electricity despite the fact that a material challenge remains at a high temperature of around 950 °C, where hydrogen production is possible under high pressure. In particular, among the many components composing a VHTR, the temperature of the intermediate heat exchanger (IHX) is expected to be the highest, with a coolant environment of up to 950 °C. Therefore, this work focuses on the mechanical and oxidation properties at 950 °C as a function of the alloying elements of Cr, Co, Mo, Al, and Ti constituting nickel-based alloys fabricated in a laboratory. The tensile, creep, and oxidation properties of the alloying elements were analyzed with SEM, TEM-EDS, and by assessing the weight change.

  3. Influence of cold-working and subsequent heat-treatment on young's modulus and strength of Co-Ni-Cr-Mo alloy

    International Nuclear Information System (INIS)

    Otomo, Takuma; Matsumoto, Hiroaki; Chiba, Akihiko; Nomura, Naoyuki

    2009-01-01

    Changes in Young's modulus of the Co-31 mass%Ni-19 mass%Cr-10 mass%Mo alloy (Co-Ni based alloy) with cold-swaging, combined with heat-treatment at temperatures from 673 to 1323 K, was investigated to enhance the Young's modulus of Co-Ni based alloy. After cold-swaging, the Co-Ni based alloy, forming fiber deformation texture, shows the Young's modulus of 220 GPa. Furthermore, after ageing the cold-swaged alloy at temperature from 673 to 1323 K, the Young's modulus increased to 230 GPa, accompanied by a decrease in the internal fiction and an increase in the tensile strength. This suggests that the increment in Young's modulus is caused by a moving of the vacancies to the dislocation cores and a continuous locking of the dislocations along their entire length with solute atoms (trough model). By annealing at 1323 K after cold swaging, Young's modulus slightly increased to 236 GPa. On the other hand, the tensile strength decreases to almost the same value as that before cold swaging due to recrystallization. These results suggest that the Young's modulus and the strength in the present alloy are simultaneously enhanced by the continuous dislocation locking during aging as well as the formation of fiber deformation texture. (author)

  4. The impedance properties of the oxide film on the Ni-Cr-Mo Alloy-22 in neutral concentrated sodium chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Jakupi, P.; Zagidulin, D.; Noel, J.J. [Department of Chemistry, University of Western Ontario, London, Ontario, N6A-3K7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Department of Chemistry, University of Western Ontario, London, Ontario, N6A-3K7 (Canada)

    2011-07-01

    The oxide film properties on Alloy-22 in the applied potential (E) range -600 mV to 600 mV (vs. saturated KCl, Ag/AgCl reference electrode) were characterized by Electrochemical Impedance Spectroscopy (EIS) in near neutral pH, 5 M NaCl solutions, at 30 deg. C. The impedance properties of the film were compared to the chromium content of the film determined by X-ray photoelectron spectroscopy (XPS). The oxide film properties on Alloy-22 may be divided into three applied potential (E) ranges: -600 mV {<=} E < -300 mV, -300 mV {<=} E {<=} 300 mV, and E > 300 mV. For the range -600 mV {<=} E < -300 mV the film resistance (R{sub film}) increases with potential accompanied by an increase in Cr{sub 2}O{sub 3} content; in the range -300 mV {<=} E {<=} 300 mV, R{sub film} values and the Cr{sub 2}O{sub 3} content of the oxide film achieve their maximum values; for E > 300 mV, a decrease in both R{sub film} and Cr{sub 2}O{sub 3} is observed accompanied by a significant increase in Cr(OH){sub 3}. Comparison of the impedance properties for Alloy-22 to those of Ni-Cr alloys indicate that the barrier layer oxide on Alloy-22 contains a lower number of less mobile defects, most likely Cr interstitials. Destruction of the barrier layer for E > 300 mV leads to the formation of a thicker, less protective bilayer, which is high in Mo content.

  5. Effect of Al added to a NiCrMo alloy on the development of the oxide layer of intermetallic coatings

    International Nuclear Information System (INIS)

    D'Oliveira, A.S.C.M.; Cangue, F.J.R.

    2010-01-01

    Components performance in different environment is strongly dependent on oxides that develop on their surfaces. This study analyzed the oxide layer that develops on coatings processed with mixtures of an atomized Hastelloy C alloy with Al powders. Powder mixtures containing 10, 20 and 30wt%Al were deposited on AISI 1020 and AISI304 steel plates. Coatings were subsequently exposed to 850 deg C for two hours in a low PO 2 environment. X-ray diffraction was used to identify the phases that developed in the coating during processing and Raman analysis and Scanning Electron Microscopy were used to characterize the oxide layers. The results showed that coatings processed with the richer Al mixtures, 30wt%Al, which developed NiAl aluminides, reduced the development of α alumina when processing was done on AISI 304. Coatings processed on AISI 1020 with the three powder mixtures tested developed the different allotropic forms of alumina, as predicted for the tested temperature. (author)

  6. Effect of Al added to a NiCrMo alloy on the development of the oxide layer of intermetallic coatings; Efeito do teor de Al adicionado a liga NiCrMo no desenvolvimento dos filmes de oxidos em revestimentos intermetalicos

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, A.S.C.M.; Cangue, F.J.R. [Universidade Federal do Parana (DEM/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica; Clark, E.; Levi, C. [University of California, Santa Barbara, CA (United States)

    2010-07-01

    Components performance in different environment is strongly dependent on oxides that develop on their surfaces. This study analyzed the oxide layer that develops on coatings processed with mixtures of an atomized Hastelloy C alloy with Al powders. Powder mixtures containing 10, 20 and 30wt%Al were deposited on AISI 1020 and AISI304 steel plates. Coatings were subsequently exposed to 850 deg C for two hours in a low PO{sub 2} environment. X-ray diffraction was used to identify the phases that developed in the coating during processing and Raman analysis and Scanning Electron Microscopy were used to characterize the oxide layers. The results showed that coatings processed with the richer Al mixtures, 30wt%Al, which developed NiAl aluminides, reduced the development of {alpha} alumina when processing was done on AISI 304. Coatings processed on AISI 1020 with the three powder mixtures tested developed the different allotropic forms of alumina, as predicted for the tested temperature. (author)

  7. The ''C'' family of Ni-Cr-Mo allloys' partnership with the chemical process industry: the last 70 years

    International Nuclear Information System (INIS)

    Agarwal, D.C.; Herda, W.R.

    1997-01-01

    The ''C'' family of alloys, the original being Hastelloy trademark alloy C (1930's) was an innovative optimization of Ni-Cr alloys having good resistance to oxidizing corrosive media and Ni-Mo alloys with superior resistance to reducing corrosive media. This combination resulted in the most versatile corrosion resistant alloy in the ''Ni-Cr-Mo'' alloy family, with exceptional corrosion resistance in a wide variety of severe corrosive environments typically encountered in CPI and other industries. The alloy also exhibited excellent resistance to pitting and crevice corrosion attack in low pH, high chloride oxidizing environments and had virtual immunity to chloride stress corrosion cracking. These properties allowed this alloy to serve the industrial needs for many years, although it had some limitations. The decades of the 1960's (alloy C-276), 1970's (alloy C-4), 1980's (alloy C-22 and 622) and 1990's (alloy 59, alloy 686 and alloy C-2000) saw newer alloy developments with improvements in corrosion resistance, which not only overcame the limitations of alloy C, but further expanded the horizons of applications as the needs of the CPI became more critical, severe and demanding. Today the originally alloy ''C'' of the 1930's is practically obsolete except for some usage in form of castings. This paper presents a chronology of the various corrosion resistant alloy developments during this century, with special emphasis on the last 70 years evolution in the ''C'' family of Ni-Cr-Mo alloys and their applications. (orig.)

  8. Molybdenum depletion around P-phases Ni-Cr-Mo-W weld metals

    International Nuclear Information System (INIS)

    Silva, Cleiton Carvalho; Miranda, Helio Cordeiro de; Farias, Jesualdo Pereira

    2010-01-01

    This work evaluated the local chemical composition in matrix/precipitate interface in a Ni-Cr-Mo-W alloy weld metals deposited on substrate of C-Mn steel. The microstructural characterization was carried out through optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The results had shown that the presence of secondary phases precipitates in the interdendritic region. Through SEM analysis were observed indications of depletion of Mo around these phases. These precipitates were identified as P-phase by TEM analysis. The Mo depletion indications were confirmed through EDS. The Mo depletion was a result of a reheating due to several welding heat cycles deposited to promote the coating layer. (author)

  9. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  10. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    International Nuclear Information System (INIS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V.

    2015-01-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr 7 C 3 is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr x C y )-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr 3 C 2 and Cr 7 C 3 , the clad layers showed only the presence of Cr 7 C 3 . Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr 7 C 3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr 7 C 3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ 2 ) of the Cr 7 C 3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  11. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, L., E-mail: venkatesh@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India); Department of Metallurgical Engineering & Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Samajdar, I. [Department of Metallurgical Engineering & Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Tak, Manish [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India); Doherty, Roger D. [Department of Materials Engineering, Drexel University, Philadelphia, PA 19104 (United States); Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India)

    2015-12-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr{sub 7}C{sub 3} is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr{sub x}C{sub y})-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr{sub 3}C{sub 2} and Cr{sub 7}C{sub 3}, the clad layers showed only the presence of Cr{sub 7}C{sub 3}. Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr{sub 7}C{sub 3} with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr{sub 7}C{sub 3} is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ{sub 2}) of the Cr{sub 7}C{sub 3} dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  12. Effect of chemical composition on irradiation embrittlement and annealing in Ni-Cr-Mo-V reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Novosad, P [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    Results concerning copper and phosphorus influence on radiation-induced changes in the Ni-Cr-Mo-V steel mechanical properties, are presented. Correlations between different mechanical properties for steels with different chemical composition, are presented. A comparison of transition temperature shifts obtained for static and dynamic fracture toughness tests and Charpy impact tests, is discussed. Recovery of radiation hardening, measured by hardness test after isochronal annealing of steels with different compositions, is also shown. Copper content strongly affects irradiation-induced changes of mechanical properties, but phosphorus content in connection with variable copper content has only a small effect. (author). 4 refs., 4 figs., 4 tabs.

  13. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  14. Effect of Carbide Dissolution on Chlorine Induced High Temperature Corrosion of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings

    Science.gov (United States)

    Fantozzi, D.; Matikainen, V.; Uusitalo, M.; Koivuluoto, H.; Vuoristo, P.

    2018-01-01

    Highly corrosion- and wear-resistant thermally sprayed chromium carbide (Cr3C2)-based cermet coatings are nowadays a potential highly durable solution to allow traditional fluidized bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spray causes carbide dissolution in the metal binder. This results in the formation of carbon saturated metastable phases, which can affect the behavior of the materials during exposure. This study analyses the effect of carbide dissolution in the metal matrix of Cr3C2-50NiCrMoNb coatings and its effect on chlorine-induced high-temperature corrosion. Four coatings were thermally sprayed with HVAF and HVOF techniques in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The coatings were heat-treated in an inert argon atmosphere to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl, and their corrosion resistance was investigated with thermogravimetric analysis (TGA) and ordinary high-temperature corrosion test at 550 °C for 4 and 72 h, respectively. High carbon dissolution in the metal matrix appeared to be detrimental against chlorine-induced high-temperature corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings.

  15. Study on elevated-temperature flow behavior of Ni-Cr-Mo-B ultra-heavy-plate steel via experiment and modelling

    Science.gov (United States)

    Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao

    2018-04-01

    Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.

  16. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    Xu Jiang; Tao Jie; Jiang Shuyun; Xu Zhong

    2008-01-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2 O 3 , MoO 3 , SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  17. Effect of Cooling Rate on Microstructures and Mechanical Properties in SA508 Gr4N High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minchul; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The microstructure of Ni-Cr-Mo low alloy steel is a mixture of tempered martensite and tempered lower bainite and that of Mn-Mo-Ni low alloy steel is predominantly tempered upper bainite. Higher strength and toughness steels are very attractive as an eligible RPV steel, so several researchers have studied to use the Ni-Cr-Mo low alloy steel for the NPP application. Because of the thickness of reactor vessel, there are large differences in austenitizing cooling rates between the surface and the center locations of thickness in RPV. Because the cooling rates after austenitization determine the microstructure, it would affect the mechanical properties in Ni-Cr-Mo low alloy steel, and it may lead to inhomogeneous characteristics when the commercial scale of RPV is fabricated. In order to apply the Ni-Cr-Mo low alloy steel to RPV, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite and bainite fractions on mechanical properties in Ni-Cr-Mo low alloy steel were examined by controlling the cooling rate after austenitization. First of all, continuous cooling transformation(CCT) diagram was established from the dilatometric analyses. Then, the phase fractions at each cooling rate were quantitatively evaluated. Finally, the mechanical properties were correlated with the phase fraction, especially fraction of martensite in Ni-Cr-Mo low alloy steel.

  18. Structure and delayed failure behaviour of 0.25C-Ni-Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Kang, C.H.; Maeng, S.C.

    1980-01-01

    Delayed failure behaviour of the different transformation structures of 0.25C-2.5Ni-2.5Cr-0.5Mo-0.1V low alloy steel has been studied. The studied microstructures are martensite, lower bainite, and mixed structure of 50% martensite and 50% lower bainite. All these structures have been tempered at 450 deg C for 40 min to have the same tensile strength level of 143 kg/mm 2 . Delayed failure testing has been carried out with cantilever bend tester, in distilled water at 25 deg C. By comparing K 1 sub(scc) values, lower bainitic structure has shown the highest value, although it is only slightly higher than that of the martensitic structure. Mixed structure has the lowest resistance to delayed failure. The fracture modes of both martensitic and mixed structures have been observed as intergranular. In the martensitic structure, however, it is noticeable that there is a larger amount of ductile tearing between intergranular facets. The fracture mode of lower bainitic structure is the mixed topography of microplastic tearing and microvoid coalescence. The above experimental results are discussed in terms of Oriani's decohesion theory of hydrogen embrittlement. The lowest resistance of the mixed structure to delayed failure may be due to the enhanced decohesion by hydrogen at the phase boundaries of martensite and lower bainite. (author)

  19. Determination of Impurities in Aluminum Alloy by INAA Single Comparator Method (K0-Standardization Method)

    International Nuclear Information System (INIS)

    Sarheel, A.; Khamis, I.; Somel, N.

    2007-01-01

    Multielement determination by the k0 based INAA using k0-IAEA program has been performed at Syrian Atomic Energy Commission using alloys. Concentrations of Cu, Zn, Fe, Ni, Sn and Ti in addition to aluminum element were determined in an aluminum alloy and Ni, Cr, Mo were determined in dental alloys using INAA k0-standardization method. Al-0.1%Au, Ni and Zn certified reference materials were analyzed to assess the suitability and accuracy of the method. Elements were determined in reference materials and samples after short and long irradiations, according to element half-lives.

  20. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

    International Nuclear Information System (INIS)

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-01-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques

  1. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    International Nuclear Information System (INIS)

    Gdowski, G.E.

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H 2 S and CO 2 ) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering

  2. The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings

    Science.gov (United States)

    Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho

    2016-12-01

    Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase ( k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase ( k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients ( k) with the increase of dilution.

  3. Crevice corrosion propagation on alloy 625 and alloy C276 in natural seawater

    International Nuclear Information System (INIS)

    McCafferty, E.; Bogar, F.D.; Thomas, E.D. II; Creegan, C.A.; Lucas, K.E.; Kaznoff, A.I.

    1997-01-01

    Chemical composition of the aqueous solution within crevices on two different Ni-Cr-Mo-Fe alloys immersed in natural seawater was determined using a semiquantitative thin-layer chromatographic method. Active crevices were found to contain concentrated amounts of dissolved Ni 2+ , Cr 3+ , Mo 3+ , and Fe 2+ ions. Propagation of crevice corrosion for the two alloys was determined from anodic polarization curves in model crevice solutions based upon stoichiometric dissolution or selective dissolution of alloy components. Both alloys 625 (UNS N06625) and C276 (UNS N10276) underwent crevice corrosion in the model crevice electrolytes. For the model crevice solution based upon selective dissolution of alloy constituents, the anodic dissolution rate for alloy 625 was higher than that for alloy C276. This trend was reversed for the model crevice solution based upon uniform dissolution of alloy constituents

  4. Stress corrosion cracking in repair-welded 3.5 NiCrMoV steel in an actual turbine environment

    International Nuclear Information System (INIS)

    Hitomi, Itoh; Takashi, Shige; Takashi, Momoo

    2001-01-01

    Temporary welding repairs are sometimes needed when damage occurs at the teeth of blade grooves in a low-pressure turbine rotor operated at the dry/wet boundary region. When repair welding has been performed for the 3,5 NiCrMoV steel used in low-pressure turbines, the soundness of the weld must be confirmed. For this reason, a laboratory investigation of susceptibility for stress corrosion cracking (SCC) was conducted for test specimens taken from simulated welds, and then an exposure test was conducted in an actual turbine environment for approximately 7,000 hours. As no SCC initiation was detected and also the propagation was extremely small, repair welding is deemed to be applicable. (author)

  5. Corrosion resistant alloy uses in the power industry

    International Nuclear Information System (INIS)

    Nickerson, J.L.; Hall, F.A.; Asphahani, A.I.

    1989-01-01

    Nickel-base alloys have been used as cost-effective measures in a variety of severely corrosive situations in pollution control units for coal-fired power plants. Cost effectiveness and practical answers to corrosion problems are illustrated (specifically the wallpaper concept/metallic lining technique). Numerous cases of successful use of HASTELLOY alloys in Flue Gas Desulfurization (FGD) systems and hazardous waste treatment incineration scrubber systems are listed. In this paper developments in nickel-base alloys and their use in FGD and other segments of the power industry are discussed. In the Ni-Cr-Mo-W alloy family, the C-22 alloy has the best resistance to localized corrosion in halide environments (chloride/fluoride-containing solutions). This alloy is also used effectively as a universal filler metal to weld less-resistant alloys were weld corrosion may be a problem. Field performance of this alloy in the power industry is described

  6. Stress corrosion cracking in 3,5 NiCrMoV steel in a 403 K potential-PH diagram

    International Nuclear Information System (INIS)

    Hitomi, Itoh; Takashi, Momoo

    2001-01-01

    3,5 NiCrMoV steel is used in low-pressure turbine rotors and discs. It has been pointed out that intergranular stress corrosion cracking may occur in this material in the wet region at temperatures of about 400 K. Accordingly, the authors focused on the environmental conditions under which stress corrosion cracking (SCC) occurs. A potential-pH diagram was used to investigate the region in which SCC occurs in the high strength materials that are particularly susceptible to SCC. The investigation found that SCC is initiated in this material not only in the high caustic region but in the neutral region as well. The investigation also found that initiation and propagation were accelerated in dissolved oxygen environments with increased chemical potential in the neutral region. Since careful observation of the starting point of cracks has shown that corrosion pits trigger SCC, subsequent immersion tests under constant potential were conducted. The results showed that corrosion pits are generated at the high potential range. These results led to the development of an acceleration test environment for laboratory to determine the susceptibility of SCC in field turbine disc and rotor materials. (author)

  7. Effect of Austempering Time on the Microstructure and Carbon Partitioning of Ultrahigh Strength Steel 56NiCrMoV7

    Directory of Open Access Journals (Sweden)

    Quanshun Luo

    2017-07-01

    Full Text Available Ultrahigh strength steel 56NiCrMoV7 was austempered at 270 °C for different durations in order to investigate the microstructure evolution, carbon partitioning behaviour and hardness property. Detailed microstructure has been characterised using optical microscopy and field emission gun scanning electron microscopy. A newly developed X-ray diffraction method has been employed to dissolve the bainitic/martensitic ferrite phase as two sub-phases of different tetragonal ratios, which provides quantitative analyses of the carbon partitioning between the resultant ferrites and the retained austenite. The results show that, a short-term austempering treatment was in the incubation period of the bainite transformation, which resulted in maximum hardness being equivalent to the oil-quenching treatment. The associated microstructure comprises fine carbide-free martensitic and bainitic ferrites of supersaturated carbon contents as well as carbon-rich retained austenite. In particular, the short-term austempering treatment helped prevent the formation of lengthy martensitic laths as those being found in the microstructure of oil-quenched sample. When the austempering time was increased from 20 to 80 min, progressive decrease of the hardness was associated with the evolution of the microstructure, including progressive coarsening of bainitic ferrite, carbide precipitating inside high-carbon bainitic ferrite and its subsequent decarbonisation.

  8. New results on long term aging tests for rad-waste container alloy selection

    International Nuclear Information System (INIS)

    Alves, H.; Wahl, V.; Ibas, O.; Stenner, F.

    2004-01-01

    The current design of containers for high level nuclear waste proceeds on using an outer barrier of corrosion resistant Ni-based super alloy. The current alloy of choice is alloy 22 (UNS N06022). It is a quaternary Ni-Cr- Mo-W alloy system. The new but well established alloy 59 (UNS N06059) is an excellent equal or even a superior alternative to alloy 22 for the 10,000 years reliability being sought. Alloy 59 is a pure ternary alloy in the Ni-Cr-Mo alloy system. Objective of this paper is to present data comparing these two alloys. Therefore the behaviour of alloy 59 and alloy 22 was characterised after aging in air for 10,000 h and 20,000 h at different temperatures (200, 300 and 427 deg. C). Since the performance of weldments is of great concern, both welded and unwelded specimens were studied. Mechanical properties of the air aged alloys were measured at room temperature by tensile and notch impact-bending test. Thermal stability and aqueous corrosion are considered to be the key issues in the long-term performance of container materials proposed for the geological disposal of high level nuclear waste. The long-term thermal stability and corrosion resistance of the alloy 59 compared to alloy 22 is discussed. Corrosion resistance was evaluated in ASTM G28 A and 'green death' solution laboratory tests; hereby corrosion rates and depth of attack were determined. Metallo-graphical studies were performed in mill annealed and air aged conditions. The results of the aging tests at 10,000 h and 20,000 h show that alloy 59 is an equal or better candidate material due to its superior localised corrosion resistance behaviour (pitting and crevice corrosion resistance) and better thermal stability needed especially in multi-pass welding of thick sections. Therefore alloy 59 seems to be the most promising alternative to alloy 22. (authors)

  9. New results on long term aging tests for rad-waste container alloy selection

    Energy Technology Data Exchange (ETDEWEB)

    Alves, H.; Wahl, V.; Ibas, O.; Stenner, F. [ThyssenKrupp VDM GmbH, Altena (Germany)

    2004-07-01

    The current design of containers for high level nuclear waste proceeds on using an outer barrier of corrosion resistant Ni-based super alloy. The current alloy of choice is alloy 22 (UNS N06022). It is a quaternary Ni-Cr- Mo-W alloy system. The new but well established alloy 59 (UNS N06059) is an excellent equal or even a superior alternative to alloy 22 for the 10,000 years reliability being sought. Alloy 59 is a pure ternary alloy in the Ni-Cr-Mo alloy system. Objective of this paper is to present data comparing these two alloys. Therefore the behaviour of alloy 59 and alloy 22 was characterised after aging in air for 10,000 h and 20,000 h at different temperatures (200, 300 and 427 deg. C). Since the performance of weldments is of great concern, both welded and unwelded specimens were studied. Mechanical properties of the air aged alloys were measured at room temperature by tensile and notch impact-bending test. Thermal stability and aqueous corrosion are considered to be the key issues in the long-term performance of container materials proposed for the geological disposal of high level nuclear waste. The long-term thermal stability and corrosion resistance of the alloy 59 compared to alloy 22 is discussed. Corrosion resistance was evaluated in ASTM G28 A and 'green death' solution laboratory tests; hereby corrosion rates and depth of attack were determined. Metallo-graphical studies were performed in mill annealed and air aged conditions. The results of the aging tests at 10,000 h and 20,000 h show that alloy 59 is an equal or better candidate material due to its superior localised corrosion resistance behaviour (pitting and crevice corrosion resistance) and better thermal stability needed especially in multi-pass welding of thick sections. Therefore alloy 59 seems to be the most promising alternative to alloy 22. (authors)

  10. Boron Steel: An Alternative for Costlier Nickel and Molybdenum Alloyed Steel for Transmission Gears

    Directory of Open Access Journals (Sweden)

    A. Verma

    2010-06-01

    Full Text Available Case Carburized (CC low carbon steels containing Ni, Cr and Mo alloying elements are widely used for transmission gears in automobile, as it possesses desired mechanical properties. In order to cut cost and save scarce materials like Ni and Mo for strategic applications, steel alloyed with Boron has been developed, which gives properties comparable to Ni-Cr-Mo alloyed steel. In the process of steel development, care was taken to ensure precipitation of boron which results in precipitation hardening. The characterization of the developed boron steel had exhibited properties comparable to Ni-Cr-Mo alloyed steel and superior to conventional boron steel.

  11. Effects of the phase fractions on the carbide morphologies, Charpy and tensile properties in SA508 Gr.4N High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    To improve the strength and toughness of RPV (reactor pressure vessel) steels for nuclear power plants, an effective way is the change of material specification from tempered bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel into tempered martensitic/bainitic SA508 Gr.4N Ni-Cr-Mo low alloy steel. It is known that the phase fractions of martensitic/bainitic steels are very sensitive to the austenitizing cooling rates. Kim reported that there are large differences of austenitizing cooling rates between the surface and the center locations in RPV due to its thickness of 250mm. Hence, the martensite/bainite fractions would be changed in different locations, and it would affect the microstructure and mechanical properties in Ni-Cr-Mo low alloy steel. These results may lead to inhomogeneous characteristics after austenitizing. Therefore, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite/bainite fractions on microstructure and mechanical properties in Ni-Cr-Mo low alloy steel were examined. The changes in phase fractions of Ni-Cr-Mo low alloy steel with different cooling rates were analyzed, and then the phase fractions were correlated with its microstructural observation and mechanical properties

  12. Evaluation of intergranular corrosion techniques to determine phosphorus segregation in NiCrMoV rotor steel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Thomas, M.T.; Arey, B.W.

    1985-01-01

    Several chemical and electrochemical etching techniques have been evaluated for the indirect measurement of grain boundary phosphorus segregation. A picric acid based solution was found to promote intergranular attack proportional to the grain boundary phosphorus composition measured by Auger Electron Spectroscopy. Preliminary results indicate this solution may enable the nondestructive evaluation of a rotor steel's susceptibility to temper embrittlement and IGSCC

  13. Effect of irradiation damage and helium on the swelling and structure of vanadium-base alloys

    International Nuclear Information System (INIS)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1993-12-01

    Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420--600C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti 5 Si 3 promotes good resistance to swelling of the Ti-containing alloys and it was concluded that Ti of >3 wt.% and 400--1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. V-20Ti doped with B exhibited somewhat higher swelling because of He generation. Lithium atoms, generated from transmutation of 10 B, formed γ-LiV 2 O 5 precipitates and did not seem to produce undesirable effects on mechanical properties

  14. Corrosion of nickel-base heat resistant alloys in simulated VHTR coolant helium at very high temperatures

    International Nuclear Information System (INIS)

    Shindo, Masami; Kondo, Tatsuo

    1976-01-01

    A comparative evaluation was made on three commercial nickel-base heat resistant alloys exposed to helium-base atmosphere at 1000 0 C, which contained several impurities in simulating the helium cooled very high temperature nuclear reactor (VHTR) environment. The choice of alloys was made so that the effect of elements commonly found in commercial alloys were typically examined. The corrosion in helium at 1000 0 C was characterized by the sharp selection of thermodynamically unstable elements in the oxidizing process and the resultant intergranular penetration and internal oxidation. Ni-Cr-Mo-W type solution hardened alloy such as Hastelloy-X showed comparatively good resistance. The alloy containing Al and Ti such as Inconel-617 suffered adverse effect in contrast to its good resistance to air oxidation. The alloy nominally composed only of noble elements, Ni, Fe and Mo, such as Hastelloy-B showed least apparent corrosion, while suffered internal oxidation due to small amount of active impurities commonly existing in commercial heats. The results were discussed in terms of selection and improvement of alloys for uses in VHTR and the similar systems. (auth.)

  15. Technical aspects of casting and their effect on the quality of Remanium CSe dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka-Tatar

    2016-03-01

    Full Text Available The study concerns on investigation of Remanium CSE alloy, one of the dental alloys used in metal-ceramic connection preparation. The alloys based on Ni-Cr-Mo are widely used in dental engineering because of their high mechanical, tribological properties as well as high corrosion resistance. The tested alloy has been processed in three ways – it has been remelted and then casted using three technologiescommonly used in dental laboratories, i.e. with: oxy-acetylene burner (1, induction furnace (2 and Volts arc (3. The aim of the study was to evaluate the effect of the melting and casting techniques on the mechanical strength and stereometric surface properties. The results revealed that the quality of Remanium CSe dental alloys significantly depend on the method of the material processing.

  16. Effect of ETA treatment on corrosion fatigue in rotors and blades and stress corrosion cracking in 3.5 NiCrMoV steel low-pressure turbine discs

    International Nuclear Information System (INIS)

    Hitomi, Itoh; Takashi, Momoo; Takayuki, Shiomi

    2001-01-01

    In recent years, to increase the reliability and reduce the amount of feed water iron to prevent of fouling of steam generator tubes, ethanolamine (ETA) treatment has been adopted into the secondary system. In this investigation, the authors verified that ethanolamine treatment does not adversely affect the susceptibility of either stress corrosion cracking (SCC) in the turbine discs that are the principal units in the secondary system or corrosion fatigue (CF) in rotors and blades. In the first stage, a laboratory investigation was made of (1) SCC initiation and propagation in 3,5 NiCrMoV steel and (2) CF in 3,5 NiCrMoV steel and blade steels, in both cases using deaerated water to which had been added ethanolamine with few organic acids that is 10 times the estimated concentration. It was confirmed that the ethanolamine treatment had almost no effect. In the second stage, test pieces (removed from the disc steel inserted into the turbine extraction chamber before the ethanolamine treatment was started) were used to observe the initiation and propagation of SCC. Even after long-term observation, ethanolamine treatment into the secondary system was found to have almost no effect on the susceptibility of SCC in discs. (author)

  17. Chromium depletion on the surface of nickel based alloys

    International Nuclear Information System (INIS)

    Dille, E.R.; McDonald, J.L.; Berry, P.

    1988-01-01

    Successful selection of corrosion resistant materials for flue gas desuflurization applications is tricky business at best. Most simulated, accelerated, concentrated corrosion tests try to rank materials to known corrosive condition. If you check the actual data, occasionally you find anomalies such as highly corrosion resistant materials performing below what was expected, while the rest of the group is performing normally. In the field the authors have observed similar results with few acceptable explanations. Recently the authors have found numerous cases of Ni/Cr/Mo alloys with a surface analysis below the ASTM specified range for the element chromium. These surface analysis have been done with a portable X-ray Fluorescent Instrument with the initial results confirmed by an independent laboratory

  18. Effects of Rare Earth Elements on Properties of Ni-Base Superalloy Powders and Coatings

    Directory of Open Access Journals (Sweden)

    Chunlian Hu

    2017-02-01

    Full Text Available NiCrMoY alloy powders were prepared using inert gas atomization by incorporation of rare earth elements, such as Mo, Nb, and Y into Ni60A powders, the coatings were sprayed by oxy-acetylene flame spray and then remelted with high-frequency induction. The morphologies, hollow particle ratio, particle-size distribution, apparent density, flowability, and the oxygen content of the NiCrMoY alloy powders were investigated, and the microstructure and hardness of the coatings were evaluated by optical microscopy (OM. Due to incorporation of the rare earth elements of Mo, Nb, or Y, the majority of the NiCrMoY alloy particles are near-spherical, the minority of which have small satellites, the surface of the particles is smoother and hollow particles are fewer, the particles exhibit larger apparent density and lower flowability than those of particles without incorporation, i.e., Ni60A powders, and particle-size distribution exhibits a single peak and fits normal distribution. The microstructure of the NiCrMoY alloy coatings exhibits finer structure and Rockwell hardness HRC of 60–63 in which the bulk- and needle-like hard phases are formed.

  19. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  20. Degradation modes of nickel-base alternate waste package overpack materials

    International Nuclear Information System (INIS)

    Pitman, S.G.

    1988-07-01

    The suitability of Ti Grade 12 for waste package overpacks has been questioned because of its observed susceptibility to crevice corrosion and hydrogen-assisted crack growth. For this reason, materials have been selected for evaluation as alternatives to Ti Grade 12 for use as waste package overpacks. These alternative materials, which are based on the nickel-chromium-molybdenum (Ni-Cr-Mo) alloy system, are Inconel 625, Hastelloy C-276, and Hastelloy C-22. The degradation modes of the Ni-base alternate materials have been examined at Pacific Northwest Laboratory to determine the suitability of these materials for waste package overpack applications in a salt repository. Degradation modes investigated included general corrosion, crevice corrosion, pitting, stress-corrosion cracking, and hydrogen embrittlement

  1. Electrochemical and corrosion behavior of two chromium dental alloys in artificial bioenvironments

    Directory of Open Access Journals (Sweden)

    Banu Alexandra

    2017-01-01

    Full Text Available The purpose of this study is to compare the corrosion and tarnish behavior of NiCrMo and CoCrMo cast dental alloys in artificial bio environments. The cobalt chromium alloys are known and used in dentistry for many years, but its difficult machinability because of the strength and hardness, is an argument for scientists to study alternative materials with comparable biocompatibility. On the other hand, for dentistry devices beside corrosion behavior is important the aesthetic so, the used alloys have to preserve their shining and do not stain. The corrosion resistance has been evaluated using the Atomic mass spectroscopy method for ion release determination, the anodic polarization curves and the open circuit potential – time monitoring for corrosion behavior evaluation and optical microscopy for the structure analysis. The tarnish tendency of alloys was estimated using the method of cyclic immersion with frequency of 10 seconds for each minute during 72 hours in Na2S containing solution. The most important conclusion is that the alloys are comparable from corrosion and tarnish point of view, but we recommend to use the nickel base alloy only for orthodontic devices implanted for short periods of time, because of higher quantity of released ions.

  2. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Koval'chuk, L.A.

    1986-01-01

    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  3. Nickel-based gadolinium alloy for neutron adsorption application in ram packages

    International Nuclear Information System (INIS)

    Robino, C.; McConnell, P.; Mizia, R.

    2004-01-01

    This paper will outline the results of a metallurgical development program that is investigating the alloying of gadolinium into a nickel-chromium-molybdenum alloy matrix. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section and low solubility in the expected U.S. repository environment. The nickel-chromium-molybdenum alloy family was chosen for its known corrosion performance, mechanical properties, and weldability. The workflow of this program includes chemical composition definition, primary and secondary melting studies, ingot conversion processes, properties testing, and national consensus codes and standards work. The microstructural investigation of these alloys shows that the gadolinium addition is not soluble in the primary austenite metallurgical phase and is present in the alloy as gadolinium-rich second phase. This is similar to what is observed in a stainless steel alloyed with boron. The mechanical strength values are similar to those expected for commercial Ni-Cr-Mo alloys. The alloys have been corrosion tested in simulated Yucca Mountain aqueous chemistries with acceptable results. The initial results of weldability tests have also been acceptable. Neutronic testing in a moderated critical array has generated favorable results. An American Society for Testing and Materials material specification has been issued for the alloy and a Code Case has been submitted to the American Society of Mechanical Engineers for code qualification. The ultimate goal is acceptance of the alloy for use at the Yucca Mountain repository

  4. Manufacture and qualification of hot roll-clad composites with nickel base cladding material for use in flue gas desulphurization plants. Final report; Herstellung und Qualifizierung warmwalzplattierter Verbundwerkstoffe mit Nickelbasisauflagen fuer den Einsatz in Rauchgasentschwefelungsanlagen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kirchheiner, R.; Stenner, F.

    1992-03-16

    Flue gas desulphurization plants (FGD), which have been required by law since 1983, mainly apply wet scrubbing techniques. The chemical reactions taking place in those plants lead to extremely corrosive situations. Unprotected carbon steel surfaces or organic based anticorrosive systems are extremely affected after being in operation for only a few years. NiCrM alloys applied by the chemical industry in comparable situations have proved their efficiency for decades. When such massive components are newly built in FDGs, economic aspects require the use of those NiCrMo alloys in clad form. Within the frame of this project tests included the manufacture of hot roll-clad composites comprising cladding materials of the type NiMo16Cr15W (2.4819) and NiCr21Mo14W (2.4602) on the base steel RST 37-2. Large-sized sheets (10000 x 2000 x 10+2 mm) were made by means of an optimized cladding technique. The behaviour of the cladding material in case of uniform and local corrosion exposure was examined in standard laboratory tests. An increased susceptibility to intercrystalline corrosion was not detected, according to the excellent microstructure. Further laboratory tests under simulated FGD conditions and exposure tests in FGDs in operation permitted the transfer of those positive test results to practical work. The same applies without limitation to the joint-welded state with similar filler material of clad a comparable chemical composition. With respect to their technological behaviour the new hot roll-clad composites correspond to that of solid sheets of NiCrMo alloys; therefore they are qualified for use in flue gas desulphurization plants. (orig./BBR) With 32 refs., 13 tabs., 29 figs. [Deutsch] In den seit 1983 gesetzlich vorgeschriebenen Anlagen zur Rauchgasentschwefelung (REA) werden ueberwiegend nasse Waschverfahren eingesetzt. Die in diesen Anlagen ablaufenden chemischen Reaktionen fuehren zu extrem korrosiven Bedingungen. Ungeschuetzte C-Stahl-Oberflaechen bzw

  5. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    R.B. Rebak; J.H. Payer

    2006-01-01

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  6. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  7. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    Science.gov (United States)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  8. Carbonitriding of low alloy steels: Mechanical and metallurgical responses

    Energy Technology Data Exchange (ETDEWEB)

    Dal' Maz Silva, W., E-mail: waltermateriais@me.com [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Institut de Recherche Technologique M2P, Metz 57070 (France); Dulcy, J., E-mail: jacky.dulcy@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Ghanbaja, J., E-mail: jaafar.ghanbaja@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Redjaïmia, A., E-mail: abdelkrim.redjaimia@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Michel, G., E-mail: gregory.michel@irt-m2p.fr [Institut de Recherche Technologique M2P, Metz 57070 (France); Thibault, S., E-mail: simon.thibault@safran.fr [Safran Tech, Magny les Hameaux (France); Belmonte, T., E-mail: thierry.belmonte@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France)

    2017-05-02

    Metallurgical and mechanical responses of alloys 16NiCrMo13 and 23MnCrMo5 to the addition of carbon and/or nitrogen were investigated. Diffusion profiles of these interstitial elements were established by atmospheric pressure carburizing, austenitic nitriding, and a sequence of carburizing and nitriding – the carbonitriding. All treatments were performed at 1173 K under CO-H{sub 2} and/or NH{sub 3} based atmospheres. After enrichment, each sample was (i) room-temperature oil-quenched and (ii) immersed in boiling nitrogen prior to (iii) the stress relief treatment. Cross-section hardness profiles were evaluated after each of these steps. Electron probe microanalysis (EPMA) allowed for the determination of both carbon and nitrogen diffusion profiles after quenching. In order to estimate the fraction of nitrides formed during the enrichment of the alloys, these measured profiles were employed in the simulation of local equilibrium at each evaluated position. This allowed for the computation of total solid solution interstitial content, which was expressed in atomic fraction. Plots of as-quenched hardness against the square root of the computed interstitial content, i.e. the sum of solution carbon and the remaining nitrogen, show the complementary character of these elements in determining the mechanical properties of the materials prior to stress relief treatment. Tempering of carbon-nitrogen martensite resulted in hardness drop to a lesser degree than the one measured on carbon martensite with equivalent interstitial content. In order to investigate this behavior, transmission electron microscopy (TEM) analyses were performed. Results showed the precipitation of two morphologies of Fe{sub 16}N{sub 2} in the nitrogen-rich case and image analysis confirmed the simulated fraction of nitrides.

  9. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium on energy research in its 3rd year (Research and development of mezoscopic composite phase material based on heat-/wear-resistant metal); 1999 nendo mezoscopic fukuso soshiki seigyo tainetsu taimamosei kinzokuki fukugo zairyo no kenkyu kaihatsu seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Using an in-situ method, three kinds of Fe-C-Ni-Cr-Mo-Nb-based alloys are developed, whose strength is not less than 800MPa at 1073K. They exhibit, in a high-temperature erosion wear test, a wear resistance which is 2-3 times higher than that of conventional materials. When they are cast, wear-causing graphite precipitation is suppressed thanks to the cast iron coagulating in gaps in the ceramic formed into a net shape. It is also found that in this process the precipitation of cementites etc., which improves on the abrasion and wear characteristics, is accelerated and that the cementites etc. are finely dispersed for improvement on the brake (brake block) characteristics. Tentatively produced brake blocks are tested for performance at the Railway Technical Research Institute. The new materials are found to exhibit a wear resistance which is 2.2 times higher, and a braking capability 1.6 times better, than those of conventional materials. In the case of an Fe-50Cr-4.8C alloy produced by an MA (mechanical alloying) method, {alpha}-Fe is dispersed into M{sub 23}C{sub 6} for a remarkable improvement on the wear-resisting feature. A 10%TiC cermet exhibits a remarkably high wear resistance, that is, a transverse rupture strength of 1270MPa which is higher than that of a cast high-speed steel. (NEDO)

  10. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  11. [The bonding mechanisms of base metals for metal-ceramic crown microstructure analysis of bonding agent and gold bond between porcelain and base metals].

    Science.gov (United States)

    Wang, C C; Hsu, C S

    1996-06-01

    The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized

  12. Neutron irradiation effects on mechanical properties in SA508 Gr4N high strength low alloy steel

    International Nuclear Information System (INIS)

    Kim, Minchul; Lee, Kihyoung; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang

    2012-01-01

    The Reactor Pressure Vessel (RPV) is the key component in determining the lifetime of nuclear power plants because it is subject to the significant aging degradation by irradiation and thermal aging, and there is no practical method for replacing that component. Advanced reactors with much larger capacity than current reactor require the usage of higher strength materials inevitably. The SA508 Gr.4N Ni Cr Mo low alloy steel, in which Ni and Cr contents are larger than in conventional RPV steels, could be a promising RPV material offering improved strength and toughness from its tempered martensitic microstructure. For a structural integrity of RPV, the effect of neutron irradiation on the material property is one of the key issues. The RPV materials suffer from the significant degradation of transition properties by the irradiation embrittlement when its strength is increased by a hardening mechanism. Therefore, the potential for application of SA508 Gr.4N steel as the structural components for nuclear power reactors depends on its ability to maintain adequate transition properties against the operating neutron does. However, it is not easy to fine the data on the irradiation effect on the mechanical properties of SA508 Gr.4N steel. In this study, the irradiation embrittlement of SA508 Gr.4N Ni Cr Mo low alloy steel was evaluated by using specimens irradiated in research reactor. For comparison, the variations of mechanical properties by neutron irradiation for commercial SA508 Gr.3 Mn Mo Ni low alloy steel were also evaluated

  13. Stress corrosion cracking of nickel alloys in bicarbonate and chloride solutions

    International Nuclear Information System (INIS)

    Ares, A. E.; Carranza, R. M.; Giordano, C. M.; Zadorozne, N. S.; Rebak, R.B.

    2013-01-01

    Alloy 22 is one of the candidates for the manufacture of high level radioactive waste containers. These containers provide services in natural environments characterized by multi-ionics solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate at temperatures above 60°C and applied potentials around +400 mVSCE are necessary in order to produce cracking, . This susceptibility may be associated to the instability of the passive film formed and to the formation of an anodic current peak in the polarization curves in these media. Until now, it is unclear the role played by each alloying element (Ni, Cr or Mo) in the SCC susceptibility of Alloy 22 in these media The aim of this work is to evaluate the SCC susceptibility of nickel-based alloys in media containing bicarbonate and chloride ions, at high temperature. Slow Strain Rate Testing (SSRT) was conducted to samples of different alloys: 22 (Ni-Cr-Mo), 600 (Ni-Cr-Fe), 800H (Ni-Fe-Cr) y 201 (99.5% Ni).This tests were conducted in 1.1 mol/L NaHCO 3 +1.5 mol/L NaCl a 90°C and different applied potentials (+200mVSCE,+300 mVSCE, +400 mVSCE). These results were complemented with those obtained in a previous work, where we studied the anodic electrochemical behavior of nickel base alloys under the same conditions. It was found that alloy 22 showed a current peak in a potential range between +200 mVSCE and +300 mVSCE when immersed in bicarbonate ions containing solutions. This peak was attributed to the presence of chromium in the alloys. The SSRT showed that only alloy 22 has a clear indication of stress corrosion cracking. The current results suggested that the presence of an anodic peak in the polarization curves was not a sufficient condition for cracking. (author)

  14. Development of welding technology for improving the metallurgical and mechanical properties of 21st century nickel based superalloy 686

    Energy Technology Data Exchange (ETDEWEB)

    Arulmurugan, B. [School of Mechanical Engineering, VIT University, Vellore 632014 (India); KPR Institute of Engineering and Technology, Coimbatore (India); Manikandan, M., E-mail: mano.manikandan@gmail.com [School of Mechanical Engineering, VIT University, Vellore 632014 (India)

    2017-04-13

    Alloy 686 is a highly corrosion resistant 21st-Century Nickel based superalloy derived from Ni-Cr-Mo ternary system. The alloying elements chromium (Cr) and molybdenum (Mo) are added to improve the resistance to corrosion in the broad range of service environment. The presence of a higher percentage of alloying elements Cr and Mo lead to microsegregation and end up with hot cracking in the fusion zone of Nickel-based superalloys. However, there is scanty of information regarding the welding of alloy 686 with respect to the microsegregation of alloying elements. The present study investigates the possibility of bringing down the microsegregation to cut down the formation of secondary phases in the fusion zone. The weld joints were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed current gas tungsten arc welding (PCGTAW) with ERNiCrMo-10 filler and without filler wire (autogenous) mode. The microstructural properties of the weld joints were studied with optical and Scanning Electron Microscope (SEM). The joints fabricated by pulsed current (PC) technique shows refined microstructure, narrower weld bead and practically no heat affected zone (HAZ). Scanning Electron Microscope demonstrates the presence of secondary phases in the interdendritic regions of GTAW case. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying element. The results show that the segregation of Mo noticed in the interdendritic zone of GTAW both autogenous and filler wire. Tensile and Impact tests were done to evaluate the strength, ductility, and toughness of the weld joints. The results show that the PCGTA helps to obtain improved strength, ductility and toughness of the weld joints compared to their respective GTAW. Bend test did not lead to cracking irrespective of the type of welding adopted in the present study.

  15. Formation of nano sized ODS clusters in mechanically alloyed NiAl-(Y,Ti,O) alloys

    International Nuclear Information System (INIS)

    Kim, Yong Deog; Bae Seong Man; Wirth, Brian D.

    2012-01-01

    The Reactor Pressure Vessel (RPV) is the key component in determining the lifetime of nuclear power plants because it is subject to the significant aging degradation by irradiation and thermal aging, and there is no practical method for replacing that component. Advanced reactors with much larger capacity than current reactor require the usage of higher strength materials inevitably. The SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are larger than in conventional RPV steels, could be a promising RPV material offering improved strength and toughness from its tempered martensitic microstructure. For a structural integrity of RPV, the effect of neutron irradiation on the material property is one of the key issues. The RPV materials suffer from the significant degradation of transition properties by the irradiation embrittlement when its strength is increased by a hardening mechanism. Therefore, the potential for application of SA508 Gr.4N steel as the structural components for nuclear power reactors depends on its ability to maintain adequate transition properties against the operating neutron does. However, it is not easy to fine the data on the irradiation effect on the mechanical properties of SA508 Gr.4N steel. In this study, the irradiation embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel was evaluated by using specimens irradiated in research reactor. For comparison, the variations of mechanical properties by neutron irradiation for commercial SA508 Gr.3 Mn-Mo-Ni low alloy steel were also evaluated

  16. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  17. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  18. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    The specified alloys consist of Ni, Cr and Fe as main constituents, and Mo, Nb, Si, Zr, Ti, Al, C and B as minor constituents. They are said to exhibit high weldability and long-time structural stability, as well as low swelling under nuclear radiation conditions, making them especially suitable for use as a duct material and control element cladding for sodium-cooled nuclear reactors. (U.K.)

  19. Intergranular corrosion in unserviced austenitic stainless steel pipes made of alloy 904L; Kornzerfall in nicht betriebsbeanspruchten rostfreien austenitischen Rohren aus Alloy 904L

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Cagliyan, Erhan; Fischer, Boromir; Giller, Madeleine; Riesenbeck, Susanne [Siemens AG, Energy Sector, Berlin (Germany). Gasturbinenwerk Berlin

    2017-09-01

    Seamless tubes of the highly corrosion resistant austenitic steel 1.4539, X1NiCrMoCu25-20-5 (Alloy 904L) were observed to exhibit signs of inter-crystalline damage to a depth of several layers of grains and in particular on their internal surface. The material had been stored and had not been put into service. A number of hypotheses had been discussed to explain the predominant cause of the damage. Using optical light and scanning electron microscopy investigation techniques, clear evidence was obtained indicating it to be inter-crystalline corrosion due to the sensitisation of the grain boundaries. The most probable cause of this was determined to be the presence of residual deposits from the rolling process, which due to poor cleaning, had not been completely removed prior to the final solution annealing treatment. This explaining why predominantly the internal surface of the tubes was affected.

  20. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    Science.gov (United States)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  1. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  2. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  3. Theoretical analysis of the alloying element effect on decarburization

    International Nuclear Information System (INIS)

    Elanskij, G.N.; Kudrin, V.A.; Akinfiev, S.I.

    1978-01-01

    On the basis of the laws of physical chemistry the alloying element (Ni, Cr, Mo, W, Co, Mn) effect on the kinetics and degree of decarburizing in iron melt with low carbon concentrations has been determined. The calculation of alloying element effect on the value of carbon diffusion coefficient and on the velocity changes in carbon oxidation rate has been carried out. It is shown that carbon diffusion coefficient and decarburization rate are detemined by two factors: thermodynamic, carbon activity change in the presence of alloying elements being accounted for and structural, dependending on the liquid metal structure and being determined by the viscosity activity of impurity. Experimental data are given, testifying that the introduction in the melt of such elements as Ni, Co, Cu, promotes a decrease in carbon content, as well as accelerates the decarburization process. W and Mo produce a poor effect, and Cr and Mn abruptly increase the value of minimum carbon content. Mo, Cr and W reduce the decarburization rate in the melt

  4. Engineering data bases for refractory alloys

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Harms, W.O.

    1985-01-01

    Refractory alloys based on niobium, molybdenum, tantalum, and tungsten are required for the multi-100kW(e) space nuclear reactor power concepts that have been assessed in the SP-100 Program because of the extremely high temperatures involved. A review is presented of the technology efforts on the candidate refractory alloys in the areas of availability/fabricability, mechanical properties, irradiation effects, and compatibility. Of the niobium-base alloys, only Nb-1Zr has a data base that is sufficiently comprehensive for the high level of confidence required in the reference-alloy selection process for the reactor concept to be tested in the Ground Engineering System (GES) Phase of the SP-100 Program. Based on relatively short-term tests, the alloy PWC-11 (Nb-1Zr-0.1C) appears to have significantly greater creep strength than Nb-1Zr; however, concerns as to whether this precipitation-hardened alloy will remain thermally stable during seven years of full-power reactor operation need to be resolved. Additional information on the reference GES alloy will be needed for the detailed engineering design of a space power system and the fabrication of prototypical GES test components. Expedient development and demonstration of an adequate total manufacturing capability will be required if a high risk of significant schedule slippages and cost overruns is to be avoided. 4 refs., 1 fig., 3 tabs

  5. Study of Fe-Ni-Cr-Mo-Si-B metallic glasses after neutron irradiation

    International Nuclear Information System (INIS)

    Sitek, J.; Miglierini, M.; Lipka, J.; Toth, I.

    1992-01-01

    Chromium containing metallic glasses are studied by transmission 57 Fe Moessbauer spectroscopy after neutron irradiation. Increasing number of non-magnetic chromium atoms causes a compositional dependence of Curie temperature. The unirradiated samples are fully paramagnetic for x≥10 at.% Cr at room temperature. Radiation induced changes in the magnetic structure imply a decrease of the Curie temperature. Ferromagnetic-to-paramagnetic transition is observed at room temperature for 8 at.% Cr after the exposure with 10 19 n/cm 2 . Using low temperature measurements, the Curie temperature for the sample containing 10 at.% Cr is estimated to be about 270 K. (orig.)

  6. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz , M.; Pelletier , J.; Vannes , A.; Bignonnet , A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  7. Processing and properties of Nb-Ti-based alloys

    International Nuclear Information System (INIS)

    Sikka, V.K.; Viswanathan, S.

    1992-01-01

    The processing characteristics, tensile properties, and oxidation response of two Nb-Ti-Al-Cr alloys were investigated. One creep test at 650 C and 172 MPa was conducted on the base alloy which contained 40Nb-40Ti-10Al-10Cr. A second alloy was modified with 0.11 at. % carbon and 0.07 at. % yttrium. Alloys were arc melted in a chamber backfilled with argon, drop cast into a water-cooled copper mold, and cold rolled to obtain a 0.8-mm sheet. The sheet was annealed at 1,100 C for 0.5 h. Longitudinal tensile specimens and oxidation specimens were obtained for both the base alloy and the modified alloy. Tensile properties were obtained for the base alloy at room temperature, 400, 600, 700, 800, 900, and 1,000 C, and for the modified alloy at room temperature, 400, 600, 700, and 800 C. Oxidation tests on the base alloy and modified alloy, as measured by weight change, were carried out at 600, 700, 800, and 900 C. Both the base alloy and the modified alloy were extremely ductile and were cold rolled to the final sheet thickness of 0.8 mm without an intermediate anneal. The modified alloy exhibited some edge cracking during cold during cold rolling. Both alloys recrystallized at the end of a 0.5-h annealing treatment. The alloys exhibited moderate strength and oxidation resistance below 600 C, similar to the results of alloys reported in the literature

  8. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  9. A sulfidation-resistant nickel-base alloy

    International Nuclear Information System (INIS)

    Lai, G.Y.

    1989-01-01

    For applications in mildly to moderately sulfidizing environments, stainless steels, Fe-Ni-Cr alloys (e.g., alloys 800 and 330), and more recently Fe-Ni-Cr-Co alloys (e.g., alloy 556) are frequently used for construction of process equipment. However, for many highly sulfidizing environments, few existing commercial alloys have adequate performance. Thus, a new nickel-based alloy containing 27 wt.% Co, 28 wt.% Cr, 4 wt.% Fe, 2.75 wt.% Si, 0.5 wt.% Mn and 0.05 wt.% C (Haynes alloy HR-160) was developed

  10. Effect of thermal aging on corrosion resistance of C-22 alloy in chloride solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.

    2007-01-01

    Alloy 22 (N06022) belongs to the Ni-Cr-Mo family and it is highly resistant to localized corrosion. The anodic behavior of mill annealed (MA) and thermally aged (10 hours at 760 C degrees) Alloy 22 was studied in chloride solutions with different pH values at 90 C degrees. Thermal aging leads to a microstructure of full grain boundary precipitation of topologically closed packed (TCP) phases. Electrochemical tests included monitoring of open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy. Assessment of general and localized (crevice) corrosion was performed. Re passivation potentials were obtained from cyclic potentiodynamic polarization tests. Results indicate that MA and TCP material show similar general corrosion rates and crevice corrosion resistance in the tested environments. MA and TCP specimens suffered general corrosion in an active state when tested in low pH chloride solutions. The grain structure of the alloy was revealed for MA material, while TCP material suffered a preferential attack at grain boundaries. (author)

  11. Repassivation potentials determination of crevice corrosion of alloy in Chloride solutions

    International Nuclear Information System (INIS)

    Rincon Ortiz, Mauricio

    2009-01-01

    Alloy 22 (UNS N06022) belongs to the Ni-Cr-Mo family and it is highly resistant to general and localized corrosion, but it may suffer crevice corrosion in aggressive environmental conditions, such as high chloride concentration, high applied potential and high temperature. Alloy 22 is one of the candidates to be considered for the outer corrosion-resistant shell of high-level nuclear waste containers. It is assumed that localized corrosion will only occur when the corrosion potential (E CORR ) is equal or higher than the crevice corrosion repassivation potential (E R,CREV ). This parameter is obtained by different electrochemical techniques using artificially creviced specimens. These techniques include cyclic potentiodynamic polarization (CPP) curves, Tsujikawa-Hisamatsu electrochemical (THE) method or other non-standardized methods. Recently, as a variation of THE method, the PD-GS-PD technique was introduced. The aim of the present work was to determine reliable critical potentials for crevice corrosion of Alloy 22 in pure chloride solutions at 90 C degrees. Conservative methodologies (which include extended potentiostatic steps) were applied for determining protection potentials below which crevice corrosion cannot initiate and propagate. Results from PD-GS-PD technique were compared with those from these methodologies in order to assess their reliability. Results from the CPP and the THE methods were also considered for comparison. The repassivation potentials from the PD-GS-PD technique were conservative and reproducible, and they did not depend on the amount of previous crevice corrosion propagation in the studied conditions. (author)

  12. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J. Van der

    1984-01-01

    The electron density of states of solid solutions of vanadium based transition metal alloys V 90 X 10 is computed with the aim of calculating the superconducting transition temperature using the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table, one obtains an increase of Tc while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. Another important conclusion is that for alloys which are in the split-band limit like VAu, VPd and VPt, the agreement with experimental data can be obtained only by assuming that these alloys have a short-range order favouring clusters of pure vanadium. (Author) [pt

  13. Segregation in welded nickel-base alloys

    International Nuclear Information System (INIS)

    Akhtar, J.I.; Shoaib, K.A.; Ahmad, M.; Shaikh, M.A.

    1990-05-01

    Segregation effects have been investigated in nickel-base alloys monel 400, inconel 625, hastelloy C-276 and incoloy 825, test welded under controlled conditions. Deviations from the normal composition have been observed to varying extents in the welded zone of these alloys. Least effect of this type occurred in Monel 400 where the content of Cu increased in some of the areas. Enhancement of Al and Ti has been found over large areas in the other alloys which has been attributed to the formation of low melting slag. Another common feature is the segregation of Cr, Fe or Ti, most likely in the form of carbides. Enrichment of Al, Ti, Nb, Mb, Mo, etc., to different amounts in some of the areas of these materials is in- terpretted in terms of the formation of gamma prime precipitates or of Laves phases. (author)

  14. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is ...

  15. Neutronographic Texture Analysis of Zirconium Based Alloys

    International Nuclear Information System (INIS)

    Kruz'elová, M; Vratislav, S; Kalvoda, L; Dlouhá, M

    2012-01-01

    Neutron diffraction is a very powerful tool in texture analysis of zirconium based alloys used in nuclear technique. Textures of five samples (two rolled sheets and three tubes) were investigated by using basal pole figures, inversion pole figures, and ODF distribution function. The texture measurement was performed at diffractometer KSN2 on the Laboratory of Neutron Diffraction, Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. Procedures for studying textures with thermal neutrons and procedures for obtaining texture parameters (direct and inverse pole figures, three dimensional orientation distribution function) are also described. Observed data were processed by software packages HEXAL and GSAS. Our results can be summarized as follows: i) All samples of zirconium alloys show the distribution of middle area into two maxima in basal pole figures. This is caused by alloying elements. A characteristic split of the basal pole maxima tilted from the normal direction toward the transverse direction can be observed for all samples, ii) Sheet samples prefer orientation of planes (100) and (110) perpendicular to rolling direction and orientation of planes (002) perpendicular to normal direction, iii) Basal planes of tubes are oriented parallel to tube axis, meanwhile (100) planes are oriented perpendicular to tube axis. Level of resulting texture and maxima position is different for tubes and for sheets. The obtained results are characteristic for zirconium based alloys.

  16. Lead and lead-based alloys as waste matrix materials

    International Nuclear Information System (INIS)

    Arustamov, A.E.; Ojovan, M.I.; Kachalov, M.B.

    1999-01-01

    Metals and alloys with relatively low melting temperatures such as lead and lead-based alloys are considered in Russia as prospective matrices for encapsulation of spent nuclear fuel in containers in preparation for final disposal in underground repositories. Now lead and lead-based alloys are being used for conditioning spent sealed radioactive sources at radioactive waste disposal facilities

  17. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  18. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  19. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  20. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J.V. der

    1985-01-01

    We have computed the electron density of States of solid solutions of vanadium based transition metal alloys V 90 X 10 by using the tight-binding recursion method for degenerate d-bands in order to calculte the alloy superconducting transition temperature with the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table one obtains an increase of T c while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. (author) [pt

  1. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  2. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  3. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels

    Science.gov (United States)

    Tomita, Yoshiyuki

    1990-09-01

    Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.

  4. The Production of Nickel-Chromium-Molybdenum Alloy with Open Pore Structure as an Implant and the Investigation of Its Biocompatibility In Vivo

    Directory of Open Access Journals (Sweden)

    Yusuf Er

    2013-01-01

    Full Text Available A dental crown material, Nickel-Chrome-Molybdenum alloy, is manufactured using precision casting method from a polyurethane foam model in a regular and open-pore form, as a hard tissue implant for orthopedic applications. The samples produced have 10, 20, and 30 (±3 pores per inch of pore densities and 0.0008, 0.0017, and 0.0027 g/mm3 densities, respectively. Samples were implanted in six dogs and observed for a period of two, four, and six months for the histopathological examinations. The dogs were examined radiologically in 15-day intervals and clinically in certain intervals. The implants were taken out with surrounding tissue at the end of these periods. Implants and surrounding tissues were examined histopathologically in terms of biocompatibility. As a result, it is seen that new bone tissue was formed, in pores of the porous implant at the head of the tibia in dogs implanted. Any pathology, inflammation, and reaction in old and new tissues were not observed. It was concluded that a dental alloy (Ni-Cr-Mo alloy could also be used as a biocompatible hard tissue implant material for orthopedics.

  5. Ti-Ni-based shape memory alloys as smart materials

    International Nuclear Information System (INIS)

    Otsuka, K.; Xu, Y.; Ren, X.

    2003-01-01

    Smart materials consist of three principal materials, ferroelectrics, shape memory alloys (SMA) and electro-active polymers (EAP). Among these SMAs, especially Ti-Ni-based alloys are important, since only they can provide large recoverable strains and high recovery stress. In the present paper the unique characteristics of Ti-Ni-based shape memory alloys are reviewed on an up-to-date basis with the aim of their applications to smart materials and structures. (orig.)

  6. The Structural Evolution and Segregation in a Dual Alloy Ingot Processed by Electroslag Remelting

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2016-12-01

    Full Text Available The structural evolution and segregation in a dual alloy made by electroslag remelting (ESR was investigated by various analytical techniques. The results show that the macrostructure of the ingot consists of two crystallization structures: one is a quite narrow, fine, equiaxed grain region at the edge and the other is a columnar grain region, which plays a leading role. The typical columnar structure shows no discontinuity between the CrMoV, NiCrMoV, and transition zones. The average secondary arm-spacing is coarsened from 35.3 to 49.2 μm and 61.5 μm from the bottom to the top of the ingot. The distinctive features of the structure are attributed to the different cooling conditions during the ESR process. The Ni, Cr, and C contents markedly increase in the transition zone (TZ and show a slight increase from the bottom to the top and from the surface to the center of the ESR ingot due to the partition ratios, gravity segregation, the thermal buoyancy flow, the solutal buoyancy flow, and the inward Lorentz force. Less dendrite segregation exists in the CrMoV zone and the transition zone due to a stronger cooling rate (11.1 and 4.5 °C/s and lower Cr and C contents. The precipitation of carbides was observed in the ingot due to a lower solid solubility of the carbon element in the α phase.

  7. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels

    Science.gov (United States)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1985-01-01

    In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify

  8. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  9. Corrosion behaviour of cladded nickel base alloys

    International Nuclear Information System (INIS)

    Brandl, W.; Ruczinski, D.; Nolde, M.; Blum, J.

    1995-01-01

    As a consequence of the high cost of nickel base alloys their use as surface layers is convenient. In this paper the properties of SA-as well as RES-cladded NiMo 16Cr16Ti and NiCr21Mo14W being produced in single and multi-layer technique are compared and discussed with respect to their corrosion behaviour. Decisive criteria describing the qualities of the claddings are the mass loss, the susceptibility against intergranular corrosion and the pitting corrosion resistance. The results prove that RES cladding is the most suitable technique to produce corrosion resistant nickel base coatings. The corrosion behaviour of a two-layer RES deposition shows a better resistance against pitting than a three layer SAW cladding. 7 refs

  10. Corrosion and oxidation of vanadium-base alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Wiggins, G.

    1983-10-01

    The corrosion of several V-base alloys on exposure at elevated temperatures to helium environments containing hydrogen and/or water vapor are presented. These results are utilized to discuss the consequences of the selection of certain radiation-damage resistant, V-base alloys for structural materials applications in a fusion reactor

  11. Assessment of risk associated with long-term corrosion of alloy 22 and Ti-7 in the potential yucca mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Ahn, T.M.; Pensado, O.; Dunn, D.

    2004-01-01

    Full text of publication follows: The potential high-level nuclear waste (HLW) repository at Yucca Mountain (YM) may rely on the robustness of the outer container of the waste package (WP) as one of many barriers for waste isolation. The container is proposed to be constructed of Alloy 22, a Ni-Cr-Mo alloy known to be resistant to localized corrosion and stress corrosion cracking. Additionally, drip shields (DS) will be emplaced above the WP to minimize the groundwater contact, in the form of seepage, with the WP. The candidate alloy to construct the drip shields is a titanium based alloy (Ti-7) with some small amounts of Pd and is also known for resistance to localized corrosion. To enhance confidence of long-term WP and DS lifetimes, it is necessary to assess the conditions under which loss of passivity or localized degradation processes could occur. The accelerated degradation processes may include uniform passivity breakdown, localized corrosion, and stress corrosion cracking. This paper evaluates how such processes may occur under the long-term YM repository conditions. In the uniform passivity breakdown, three potential concerns are evaluated. The first is anodic sulphur segregation at the interface between the passive film and the bare metal. This paper models the cyclic behavior of free transient fast dissolution (induced by sulfur segregation) and re-passivation. The second is the potential accumulation of corrosion products on the WP surface, which may act as cathode of large surface area leading to fast corrosion. The effective ratio of the corrosion product area to the bare metal area is evaluated. The third is the ion selectivity in the corrosion products to alter the aqueous chemistry, which may accelerate or inhibit the corrosion. Thermodynamics of ionic sorption in the corrosion products is reviewed. In the localized corrosion, the groundwater chemistry on the WP surface is evaluated at the temperatures of the WP above 100 deg. C during the early

  12. Corrosion of alloy 22 in phosphate ions effect and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.

    2009-01-01

    Alloy 22 belongs to Ni-Cr-Mo family. This alloy resists the most aggressive environments for industrial applications, in oxidizing as well as reducing conditions, because exhibits an excellent uniform and localized corrosion resistance in aqueous solution. Because of its outstanding corrosion resistant, this alloy is one of the candidate to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes in a geological repository. The aim of this work is to study ion phosphate influence over Alloy 22 corrosion behavior under aggressive conditions, such as high temperature and high ion chloride concentration, where this material might be susceptible to crevice corrosion. Two different types of samples were used: cylinder specimens for uniform corrosion behavior studies and Prismatic Crevice Assembly (PCA) specimens for localized corrosion studies. Electrochemical tests were performed in deaerated aqueous solution of 1 M NaCl and 1 M NaCl with different phosphate additions at 90 C degrees and pH near neutral. The anodic film and corrosion products obtained were studied by SEM/EDS. Cyclic Potentiodynamic Polarization (CPP) curves obtained for uniform corrosion studies, showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm 2 approximately in all the tests. PCA electrochemical tests, that combined a CPP with a potentiostatic polarization step for 2 hours in between the forward and reverse scan, showed crevice corrosion development in some cases. The repassivation potential value, determined by the intersection of the forward and the reverse scan, increased with phosphate addition. A complete crevice corrosion inhibition effect was found for phosphate concentration higher than 0.3 M. These results indicate that the passivity potential range depend on phosphate presence and might be related with the incorporation of the anion in the passive film. Results of the tests

  13. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  14. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  15. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  16. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  17. Electron beam and laser surface alloying of Al-Si base alloys

    International Nuclear Information System (INIS)

    Vanhille, P.; Tosto, S.; Pelletier, J.M.; Issa, A.; Vannes, A.B.; Criqui, B.

    1992-01-01

    Surface alloying on aluminium-base alloys is achieved either by using an electron beam or a laser beam, in order to improve the mechanical properties of the near-surface region. A predeposit of nickel is first realized by plasma spraying. Melting of both the coating and part of the substrate produces a surface alloy with a fine, dendritic microstructure with a high hardness. Enhancement of this property requires an increase in the nickel content. Various problems occur during the formation of nickel-rich surface layers: incomplete homogenization owing to a progressive increase of the liquidus temperature, cracks owing to the brittleness of this hard suface alloy, formation of a plasma when experiments are carried out in a gaseous environment (laser surface alloying). Nevertheless, various kinds of surface layers may be achieved; for example very hard surface alloys (HV 0.2 =900), with a thickness of about 500-600 μm, or very thick surface alloys (e>2 mm), with a fairly good hardness (greater than 350 HV 0.2 ). Thus, it is possible to obtain a large variety of new materials by using high energy beams on aluminium substrates. (orig.)

  18. Anodic behavior of nickel alloys in media containing bicarbonate ions

    International Nuclear Information System (INIS)

    Zadorozne, N.S; Carranza, R. M.; Giordano, C.M.

    2011-01-01

    Alloy 22 has been designed to resist corrosion in oxidizing and reducing conditions. Thanks to these properties it is considered a possible candidate for the fabrication of containers of high-level radioactive waste. Since the containers provide services in natural environments characterized by multi-ionic solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is required in order to produce cracking. It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media potentials below trans-passivity. The aim of this work is to study the anodic behavior of Alloy 22 in different media containing bicarbonate and chloride ions in various concentrations and temperatures and compare the results with other alloys containing nickel, and relate them to the susceptibility to stress corrosion cracking in a future job. Polarization curves were made on alloy 22 (Ni-Cr-Mo), 600 (Ni- Cr-Fe), 800h (Ni-Fe- Cr) and 201 (Ni commercially pure) in the following environments: 1.148 mol/L NaHCO 3 , 1.148 mol/L NaHCO 3 + 1 mol/L NaCl, 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl. The tests were performed at the following temperatures: 90°C, 75°C, 60°C and 25°C. It was found that alloy 22 has a current peak in the anodic domain at potentials below trans-passivity between 200 and 300 m VECS, when the test temperature was 90°C. The potential, at which this peak occurred, increased with decreasing temperature. Also there was a variation of the peak with the composition of the solution. When bicarbonate ions were added to a solution containing chloride ions, the peak potential shifted to higher current densities, depending on the concentration of added chloride ions. It was found that diminishing the content of

  19. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...... and wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  20. Effects of alloying elements on nodular and uniform corrosion resistance of zirconium-based alloys

    International Nuclear Information System (INIS)

    Abe, Katsuhiro

    1992-01-01

    The effects of alloying and impurity elements (tin, iron, chromium, nickel, niobium, tantalum, oxygen, aluminum, carbon, nitrogen, silicon, and phosphorus) on the nodular and uniform corrosion resistance of zirconium-based alloys were studied. The improving effect of iron, nickel and niobium in nodular corrosion resistance were observed. The uniform corrosion resistance was also improved by nickel, niobium and tantalum. The effects of impurity elements, nitrogen, aluminum and phosphorus were negligibly small but increasing the silicon content seemed to improve slightly the uniform corrosion resistance. Hydrogen pick-up fraction were not changed by alloying and impurity elements except nickel. Nickel addition increased remarkably hydrogen pick-up fraction. Although the composition of secondary precipitates changed with contents of alloying elements, the correlation of composition of secondary precipitates to corrosion resistance was not observed. (author)

  1. Precipitation hardened nickel-base alloys for sour gas environments

    International Nuclear Information System (INIS)

    Igarashi, M.; Mukai, S.; Kudo, T.; Okada, Y.; Ikeda, A.

    1987-01-01

    SCC (Stress Corrosion Cracking) in sour gas environments of γ'(gamma prime: Ni/sub 3/(Ti and/or Al)) and γ''(gamma double prime: Ni/sub 3/Nb) precipitation hardened nickel-base alloys has been studied using the SSRT (Slow Strain Rate Tensile) test, anodic polarization measurement and transmission electron microscopy (TEM). The γ'-type alloy containing Ti was more susceptible to SCC in the SSRT tests up to 350 0 F(450 K) than the γ''-type alloy containing Nb. The susceptibility to SCC was related to their deformation structures in terms of stress localization and sensitivity to pitting corrosion in H/sub 2/S solutions. TEM observation showed the γ'-type alloy deformed by the superlattice dislocations in coplanar structures. This mode of deformation induced the stress localization to some boundaries such as grain boundary and as a result the susceptibility to SCC of the γ'-type alloy was increased. On the other hand, the γ''-type alloy deformed by the massive dislocation not in coplanar structures so that it was less susceptible to SCC in terms of the stress localization. The anodic polarization measurement suggested the γ'-type alloy was more susceptible to pitting corrosion compared with the γ''-type alloy

  2. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  3. Corrosion resistance of tantalum base alloys

    International Nuclear Information System (INIS)

    Gypen, L.A.; Brabers, M.; Deruyttre, A.

    1984-01-01

    The corrosion behaviour of substitutional Ta-Mo, Ta-W, Ta-Nb, Ta-Hf, Ta-Zr, Ta-Re, Ta-Ni, Ta-V, Ta-W-Mo, Ta-W-Nb, Ta-W-Hf and Ta-W-Re alloys has been investigated in various corrosive media, i.e. (1) concentrated sulfuric acid at 250 0 C and 200 0 C, (2) boiling hydrochloric acid of azeotropic composition, (3) concentrated hydrochloric acid at 150 0 C under pressure, (4) HF-Containing solutions and (5) 0.5% H 2 SO 4 at room temperature (anodisation). In highly corrosive media such as concentrated H 2 SO 4 at 250 0 C and concentrated HCl at 150 0 C tantalum is hydrogen embrittled, probably by stress induced precipitation of β-hydride. Both corrosion rate and hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C are strongly influenced by alloying elements. Small alloying additions of either Mo or Re decrease the corrosion rate and the hydrogen embrittlement, while Hf has the opposite effect. Hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C is completely eliminated by alloying Ta with 1 to 3 at % Mo (0.5 to 1.5 wt % Mo). These results can be explained in terms of oxygen deficiency of the Ta 2 O 5 film and the electronic structure of these alloys. (orig.) [de

  4. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  5. Galvanic corrosion resistance of welded dissimilar nickel-base alloys

    International Nuclear Information System (INIS)

    Corbett, R.A.; Morrison, W.S.; Snyder, R.J.

    1986-01-01

    A program for evaluating the corrosion resistance of various dissimilar welded nickel-base alloy combinations is outlined. Alloy combinations included ALLCORR, Hastelloy C-276, Inconel 72 and Inconel 690. The GTAW welding process involved both high and minimum heat in-put conditions. Samples were evaluated in the as-welded condition, as well as after having been aged at various condtions of time and temperature. These were judged to be most representative of process upset conditions which might be expected. Corrosion testing evaluated resistance to an oxidizing acid and a severe service environment in which the alloy combinations might be used. Mechanical properties are also discussed

  6. The development of cobalt-base alloy ball bearing

    International Nuclear Information System (INIS)

    Yu Xinshui; Chen Jianting; Wang Zaishu; Wang Ximei; Huang Chongming.

    1986-01-01

    The main technologies and experiences in developing a Cobalt-base alloy ball bearing are described. In the hardfacing of bearing races, a lower-hardness alloy of type St-6 is used rather than an alloy with hardness similar to that of the ball and finally the hardness of race is increased to match that of the ball by heat treatment. This improvement has certain advantages. The experience of whole developing technology indicates that strict control of the technology in the bearing-race hardfacing is the key problem in the quality assurance of bearings

  7. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  8. Indentation creep behaviors of amorphous Cu-based composite alloys

    Science.gov (United States)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  9. Cerium Titanate Nano dispersoids in Ni-base ODS Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Chun, Young-Bum; Rhee, Chang-Kyu; Jang, Jinsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Hee-Suk [Korea Basic Science Institute, Jeonju (Korea, Republic of)

    2016-10-15

    Oxide-dispersion-strengthened (ODS) nickel-base alloys have potential for use in rather demanding elevated-temperature environments, such as aircraft turbine engines, heat exchanger of nuclear reactor. For improved high temperature performance, several ODS alloys were developed which possess good elevated temperature strength and over-temperature capacity plus excellent static oxidation resistance. The high temperature strength of ODS alloys is due to the presence of a uniform dispersion of fine, inert particles. Ceria mixed oxides have been studied because of their application potential in the formation of nanoclusters. By first principle study, it was estimated that the formation energy of the Ce-O dimer with voids in the nickel base alloy is lower than other candidates. The result suggests that the dispersion of the Ceria mixed oxides can suppress the voiding or swelling behavior of nickel base alloy during neutron irradiation. In this study, the evolution of cerium titanate nano particles was investigated using in-situ TEM. It was found that the Ce{sub 2}Ti{sub 3}O{sub 9} phase was easily formed rather than remain as CeO{sub 2} during annealing; Ti was effective to form the finer oxide particles. Ce{sub 2}Ti{sub 3}O{sub 9} is expected to do the great roll as dispersoids in Ni-base alloy, contribute to achieve the better high temperature property, high swelling resistance during neutron radiation.

  10. EXAFS investigation on microstructure of La-based alloy deuteride

    CERN Document Server

    Chen Bo Fei; Xie Chao Mei; Chen Xi Ping; Liu Li Juan; Xie Ya Ning; Hu Tian Dou; Zhang Jing

    2002-01-01

    Extended X-ray absorption fine structure (EXAFS) spectra were measured to investigate the microstructure of La-based alloy deuteride. The radial structural functions of LaNi sub 4 sub . sub 2 sub 5 Al sub 0 sub . sub 7 sub 5 D sub x samples were obtained and the comparisons among different samples were performed. The results show that removal of deuterium is fast in La-Ni-Al hydrogen storage alloys under non-airtight condition

  11. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  12. Mechanical properties of soldered joints of niobium base alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.

    1980-01-01

    Mechanical properties of soldered joints of niobium alloys widely distributed in industry: VN3, VN4, VN5A, VN5AE, VN5AEP etc., 0.6-1.2 mm thick are investigated. It is found out that the usage of zirconium-vanadium, titanium-tantalum solders for welding niobium base alloys permits to obtain soldered joints with satisfactory mechanical properties at elevated temperatures

  13. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  14. Corrosion of candidate container materials by Yucca Mountain bacteria

    International Nuclear Information System (INIS)

    Horn, J; Jones, D; Lian, T; Martin, S; Rivera, A

    1999-01-01

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5-6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS NO4400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS NO6022 Ni-Cr- MO-W alloy, UN's NO6625 Ni-Cr-Mo alloy, and UNS S30400 stainless steel were measured below 0.05 umyr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni. Key words: MIC, container materials, YM bacteria, de-alloying, Ni-depletion, Cr-depletion, polarization resistance, anodic polarization,

  15. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  16. Reliability of copper based alloys for electric resistance spot welding

    International Nuclear Information System (INIS)

    Jovanovicj, M.; Mihajlovicj, A.; Sherbedzhija, B.

    1977-01-01

    Durability of copper based alloys (B-5 and B-6) for electric resistance spot-welding was examined. The total amount of Be, Ni and Zr was up to 2 and 1 wt.% respectively. Good durability and satisfactory quality of welded spots were obtained in previous laboratory experiments carried out on the fixed spot-welding machine of an industrial type (only B-5 alloy was examined). Electrodes made of both B-5 and B-6 alloy were tested on spot-welding grips and fixed spot-welding machines in Tvornica automobila Sarajevo (TAS). The obtained results suggest that the durability of electrodes made of B-5 and B-6 alloys is more than twice better than of that used in TAS

  17. Production and properties of light-metal base amorphous alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  18. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  19. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-06-01

    The cast products Mg–Sn based alloys are promising candidates for automobile industries, since they provide a cheap yet thermally stable alternative to existing alloys. One drawback of the Mg–Sn based alloys is their insufficient hardness. The hardenability can be improved by engineering the microstructure through additions of Zn to the base alloy and selective aging conditions. Therefore, detailed knowledge about the microstructural characteristics and the role of Zn to promote precipitation hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT was employed to obtain precise chemical information on the distribution of Zn in the microstructure. It was found from microstructural studies that different precipitates with varying sizes and phases were present; lath-shaped precipitates of the Mg2Sn phase have an incoherent interface with the matrix, unlike the lath-shaped MgZn2 precipitates. Furthermore, nano-sized precipitates dispersed in the microstructure with short-lath morphology can either be enriched with Sn or Zn. On the other hand, APT analysis revealed the strong repulsion between Sn and Zn atoms in a portion of the analysis volume. However, larger reconstruction volume required to identify the role of Zn is still limited to the optimization of specimen preparation.

  20. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  1. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takanobu [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)]. E-mail: siraisi@nagasaki-u.ac.jp; Takuma, Yasuko [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Miura, Eri [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Fujita, Takeshi [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Hisatsune, Kunihiro [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)

    2007-06-15

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys.

  2. Poor glass-forming ability of Fe-based alloys

    DEFF Research Database (Denmark)

    Zheng, H.J.; Hu, L.N.; Zhao, X.

    2017-01-01

    processes. By using the concept of fluid cluster and supercooled liquid fragility in metallic liquids, it has been found that this dynamic transition makes the Fe-based supercooled liquids become more unstable, which leads to the poor GFA of Fe-based alloys. Further, it has been found that the degree...

  3. Hot Corrosion of Cobalt-Base Alloys

    Science.gov (United States)

    1975-06-01

    Alloys 20. ABSTRACT (Continue on revet -se tside lf necessary and identify by block number) ~ lThe sodium sulfate-induced hot corrosion of cobalt and...Figures 12 and 13. The Na2 SO 4 was observed to form puddles on the oxide-covered specimen surface. An oxide slag was usually suspended in the... slag (black arrows) were suspended (30 sees at 1000°C in air). b) After washing the Na2SO 4 from the specimen, the exposed oxide surface was highly

  4. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  5. Corrosive and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy.

    Science.gov (United States)

    Ristic, Ljubisa; Vucevic, Dragana; Radovic, Ljubica; Djordjevic, Snezana; Nikacevic, Milutin; Colic, Miodrag

    2014-04-01

    Nickel-chromium (Ni-Cr) dental alloys have been widely used in prosthodontic practice, but there is a permanent concern about their biocompatibility due to the release of metal ions. This is especially important when Ni-Cr metal microparticles are incorporated into gingival tissue during prosthodontic procedures. Therefore, the aim of this study was to examine and compare the corrosion and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy. Ni-Cr alloy, Remanium CSe bars (4 mm diameter), were made by the standard casting method and then cut into 0.5-mm-thick disks. Metal particles were obtained by scraping the bars using a diamond instrument for crown preparation. The microstructure was observed by an optical microscope. Quantitative determination and morphological and dimensional characterization of metal particles were carried out by a scanning electron microscope and Leica Application Suite software for image analysis. Corrosion was studied by conditioning the alloy specimens in the RPMI 1640 medium, containing 10% fetal calf serum in an incubator with 5% CO2 for 72 hours at 37°C. Inductively coupled plasma-optical emission spectrometry was used to assess metal ion release. The cytotoxity of conditioning medium (CM) was investigated on L929 cells using an MTT test. One-way ANOVA was used for statistical analysis. After casting, the microstructure of the Remanium CSe compact specimen composed of Ni, Cr, Mo, Si, Fe, Al, and Co had a typical dendritic structure. Alloy microparticles had an irregular shape with a wide size range: from less than 1 μm to more than 100 μm. The release of metal ions, especially Ni and Mo from microparticles, was significantly higher, compared to the compact alloy specimen. The CM prepared from compact alloy was not cytotoxic at any tested dilutions, whereas CM from alloy microparticles showed dose-dependent cytotoxicity (90% CM and 45% CM versus control; p alloy. This could affect health on long

  6. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  7. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  8. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals

    International Nuclear Information System (INIS)

    Lee, Tae Hyun; Hwang, Il Soon; Kim, Hong Deok; Kim, Ji Hyun

    2015-01-01

    A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

  9. Plate-shaped transformation products in zirconium-base alloys

    International Nuclear Information System (INIS)

    Banerjee, S.; Dey, G.K.; Srivastava, D.

    1997-01-01

    Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent β (bcc) and the product α (hcp) or γ-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables

  10. Lave phase precipitation in Nb- and Ti-based alloys

    International Nuclear Information System (INIS)

    Tewari, R.; Vishwanadh, B.; Dey, G.K.

    2010-01-01

    In multicomponent Nb-based alloys system, which are potential candidate materials for high temperature applications, the presence of Laves phase was noticed along with the silicides in equilibrium with the soft β-matrix. In Ti-Cr alloys, which show a tendency for inverse melting, the formation of the phase was noticed in the β matrix upon aging. The Laves phase being topologically closed pack structure appears to have strong tendency for the formation provided the criterion of atomic size factor is met

  11. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  12. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  13. Improved Mg-based alloys for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Stetson, N.T.; Evans, J. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a sample having a higher plateau pressure.

  14. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-01-01

    hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT

  15. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  16. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)

  17. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  18. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  19. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  20. Corrosion resistance of Fe-based amorphous alloys

    International Nuclear Information System (INIS)

    Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nogueira, R.P.; Bolfarini, C.

    2014-01-01

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe 66 B 30 Nb 4 , [(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , [(Fe 0.7 Co 0.3 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , Fe 56 Cr 23 Ni 5.7 B 16 , Fe 53 Cr 22 Ni 5.6 B 19 and Fe 50 Cr 22 Ni 5.4 B 23 . The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau

  1. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  2. Glass formation and crystallization in Zr based alloys

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Metallic glasses have come in to prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. Though these have been produced for the last four decades, the necessity of rapid solidification at cooling rates of 10 5 K/sec or higher for their production, have restricted their geometry to thin ribbons and prevented their application to many areas despite their excellent properties. It has been shown in recent investigations that, many Zr base multicomponent alloys can be obtained in glassy state by cooling at much lower rate typically 10 2 to 10 3 K/sec. This has enabled production of these alloys in the glassy stat in bulk. By now, bulk metallic glasses have been produced in Mg, Ln, Zr, Fe, Pd-Cu, Pd-Fe, Ti and Ni- based alloys. Production of these glasses in bulk has opened avenue for their application in many areas where their excellent mechanical properties an corrosion resistance can be exploited. The transformation of the amorphous phase in these alloys to one or more crystalline phases, is an interesting phase transformation and can lead to formation of crystals in a variety of morphologies and a wide range of crystal sizes, including nanometer size crystals or nanocrystals. The bulk amorphous alloys exhibit higher fracture stress, combined with higher hardness and lower young's modulus than those of any crystalline alloy. The Zr- and Ti-based bulk amorphous alloy exhibit high bending and flexural strength values which are typically 2.0 to 2.5 time higher than those for crystalline counterparts. The composites of bulk metallic glass containing crystalline phases have been found to have special properties. This has been demonstrated in the case of composites of bulk metallic glass and tungsten wires wit the glass forming the matrix. Such a composite has a very high impact strength and is especially suitable for application as an armour penetrator in various types of shells used

  3. Oxide characterization and hydrogen behaviors of Zr-based alloys

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kim, D. J.; Kwon, S. H.; Lee, H. S.; Oh, S. J.; Yim, B. J.; Son, S. B.; Yun, S. P.

    2006-03-01

    The work scope and contents of the research are as follows : basic properties of zirconium alloys, hydrogen pick-up mechanism of zirconium alloy, effects of hydride on the corrosion behaviors of zirconium alloys, estimation on stress of oxide layer in the zirconium alloy, microstructure and characteristic of oxide in pre-hydrided zirconium alloys

  4. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  5. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  6. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    Science.gov (United States)

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (Palloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  7. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  8. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  9. Aqueous electrochemistry of precipitation-hardened nickel base alloys

    International Nuclear Information System (INIS)

    Hosoya, K.; Ballinger, R.; Prybylowski, J.; Hwang, I.S.

    1990-11-01

    An investigation has been conducted to explore the importance of local crack tip electrochemical processes in precipitation-hardened Ni-Cr-Fe alloys driven by galvanic couples between grain boundary precipitates and the local matrix. The electrochemical behavior of γ' [Ni 3 (Al,Ti)] has been determined as a function of titanium concentration, temperature, and solution pH. The electrochemical behavior of Ni-Cr-Fe solid solution alloys has been investigated as a function of chromium content for a series of 10 Fe-variable Cr (6--18%)-balance Ni alloys, temperature, and pH. The investigation was conducted in neutral and pH3 solutions over the temperature range 25--300 degree C. The results of the investigation show that the electrochemical behavior of these systems is a strong function of temperature and composition. This is especially true for the γ' [Ni 3 (Al,Ti)] system where a transition from active/passive behavior to purely active behavior and back again occurs over a narrow temperature range near 100 degree C. Behavior of this system was also found to be a strong function of titanium concentration. In all cases, the Ni 3 (Al,Ti) phase was active with respect to the matrix. The peak in activity near 100 degree C correlates well with accelerated crack growth in this temperature range, observed in nickel-base alloy X-750 heat treated to precipitate γ' on the grain boundaries. 20 refs., 23 figs., 3 tabs

  10. Tungsten wire-nickel base alloy composite development

    Science.gov (United States)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  11. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  12. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  13. Diffusion of hydrogen interstitials in Zr based AB2 and mischmetal based AB5 alloys

    International Nuclear Information System (INIS)

    Mani, N; Ravi, N; Ramaprabhu, S

    2005-01-01

    The Zr based AB 2 alloys ZrMnFe 0.5 Ni 0.5 , ZrMnFe 0.5 Co 0.5 and mischmetal (Mm) based AB 5 alloy MmNi 3.5 Al 0.5 Fe 0.5 Co 0.5 have been prepared and characterized by means of powder x-ray diffractograms. The hydrogen absorption kinetics of these alloys have been studied in the temperature and pressure ranges 450-650 0 C and 10-100 mbar respectively with a maximum H to host alloy formula unit ratio of 0.01, using a pressure reduction technique. The diffusion coefficient of the hydrogen interstitials has been determined from hydrogen absorption kinetics experiments. The dependence of the diffusion coefficient on the alloy content has been discussed. For Mm based MmNi 3.5 Al 0.5 Fe 0.5 Co 0.5 alloy, the diffusion coefficient is about an order of magnitude higher than that of the Zr based alloys

  14. Magnetic properties of fcc Ni-based transition metal alloy

    Czech Academy of Sciences Publication Activity Database

    Kudrnovský, Josef; Drchal, Václav

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1193-1196 ISSN 1862-5282 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616 Institutional research plan: CEZ:AV0Z10100520 Keywords : transition metal alloys * Ni-based * pair exchange interactions * Curie temperatures * renormalized RPA Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  15. Combined thermodynamic study of nickel-base alloys. Progress report

    International Nuclear Information System (INIS)

    Brooks, C.R.; Meschter, P.J.

    1981-01-01

    Achievements during this period are the following: (1) initiation of a high-temperature study of the Ni-Ta system using the galvanic cell technique, (2) emf study of high-temperature thermodynamics in the Ni-Mo system, (3) measured heat capacity data on ordered and disordered Ni 4 Mo, (4) heat capacities of Ni and disordered Ni 3 Fe, and (5) computer correlation of thermodynamic and phase diagram data in binary Ni-base alloys

  16. Thermal behaviour in dynamic recrystallisation. Application for iron base alloys

    International Nuclear Information System (INIS)

    Belkebir, A.; Kobylanski, A.

    1995-01-01

    A constitutive relationship for predicting the flow stress with dynamic recrystallization were proposed. The approach is based on a phenomenological formalism of the law θ-ε where θ correspond to the work-hardening rate at constant strain rate and temperature. The equations proposed were justified by the experimental data collected by hot compression test of low-alloy steels. The model can be used to estimate the critical strain for the onset of dynamic recrystallization. (orig.)

  17. Magnetic properties of fcc Ni-based transition metal alloy

    Czech Academy of Sciences Publication Activity Database

    Kudrnovský, Josef; Drchal, Václav; Bruno, P.

    2008-01-01

    Roč. 77, č. 22 (2008), 224422/1-224422/8 ISSN 1098-0121 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616; GA ČR GA202/07/0456 Institutional research plan: CEZ:AV0Z10100520 Keywords : Ni-based alloys * magnetic properties * Curie temperatures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  18. The prospects of biodegradable magnesium-based alloys in osteosynthesis

    Directory of Open Access Journals (Sweden)

    V. N. Chorny

    2013-12-01

    various types of implants for osteosynthesis in traumatology and orthopedics. As the analysis of scientific papers over the past decade, the number of scientific articles devoted to the study of the properties of magnesium alloys and their effect on bone formation, as well as their use in osteosynthesis has grown significantly. Implants which are based on magnesium, may have several advantages over bioinert metal alloys, polymers, and bioceramics. They are not toxic, not carcinogenic, the mechanical properties of a structure close to the cortical bone, and may have osteoinductive and anti-bacterial action. Also, there is no need for a second surgical intervention. The main problems to be addressed, in our view, are as follows. 1. Need to examine the nature of -bone formation in the fracture in the presence of the implant based on magnesium alloy. 2. To examine the impact of products of magnesium degradation on the surrounding tissue and the body as a whole. 3. Loss of rigidity of the implant magnesium based alloy in the process of biodegradation.

  19. Effect of alloying elements on the stability of Ni2M in Alloy690 based upon thermodynamic calculation

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Kuwano, Kazuhiro; Satoh, Naohiro

    2012-01-01

    Some researchers recently point out that Ni based alloys used in nuclear power plants have the ordering tendency, which is a potential to decrease mechanical properties within the expected lifetime of the plants. In the present study, authors evaluated the effect of 8 alloying elements on the ordering tendency in Alloy690 based upon thermodynamic calculation by Thermo-Calc. It is clarified that the additive amount of Fe, Cr, Ti and Si, particularly Fe and Cr, was influential for the stability of Ni 2 M, while that of Mn, Cu, B and C had almost no effect for that. Authors therefore designed the Ni 2 M stabilized alloy by no addition of Fe in Alloy690. Ni 2 M is estimated to be stable even at 773 K in the Ni 2 M stabilized alloy. The influence by long range ordering or precipitating of Ni 2 M in Alloy690 for mechanical properties or SCC susceptibility is expected to be clarified by the sample obtained in the present study. (author)

  20. Corrosion of iron-base alloys by lithium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1976-01-01

    A review of corrosion mechanisms operating in lithium-iron-base alloy systems is presented along with data obtained with thermal-convection loops of niobium-stabilized 2 1 / 4 percent Cr-1 percent Mo steel and types 304L and 321 stainless steels. A corrosion rate of 2.3 μm/year (0.09 mil/year) was obtained on the 2 1 / 4 percent Cr-1 percent Mo steel at 600 0 C. Considerably more mass transport of alloying constituents and a maximum corrosion rate of about 14 μm/year (0.55 mil/year) was obtained with the austenitic stainless steels. Results of metallography, x-ray fluorescence analysis, scanning electron microscopy, and weight-change data are presented and discussed

  1. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  2. Aluminium base amorphous and crystalline alloys with Fe impurity

    International Nuclear Information System (INIS)

    Sitek, J.; Degmova, J.

    2006-01-01

    Aluminium base alloys show remarkable mechanical properties, however their low thermal stability still limits the technological applications. Further improvement of mechanical properties can be reached by partial crystallization of amorphous alloys, which gives rise to nanostructured composites. Our work was focused on aluminium based alloys with Fe, Nb and V additions. Samples of nominal composition Al 90 Fe 7 Nb 3 and Al 94 Fe 2 V 4 were studied in amorphous state and after annealing up to 873 K. From Moessbauer spectra taken on the samples in amorphous state the value of f-factor was determined as well as corresponding Debye temperatures were calculated. Annealing at higher temperatures induced nano and microcrystalline crystallization. Moessbauer spectra of samples annealed up to 573 K are fitted only by distribution of quadrupole doublets corresponding to the amorphous state. An increase of annealing temperature leads to the structural transformation, which consists in growth of nanometer sized aluminium nuclei. This is partly reflected in Moessbauer parameters. After annealing at 673 K intermetallic phase Al 3 Fe and other Al-Fe phases are created. In this case Moessbauer spectra are fitted by quadrupole doublets. During annealing up to 873 K large grains of Fe-Al phases are created. (authors)

  3. Technical assessment of vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Gold, R.E.; Harrod, D.L.; Ammon, R.L.; Buckman, R.W. Jr.; Svedberg, R.C.

    1978-01-01

    A large data base has been compiled on vanadium-base alloys but the data base on any one alloy is quite limited. Great flexibility exists in the composition-microstructure-property relationship and this facilitates alloy optimization to meet diverse property requirements. Tensile properties and creep properties of existing alloys exceed likely requirements. Fatigue strength, including crack growth rate, is probably the most critical material property but no data exists for vanadium alloys. Swelling and irradiated ductility behavior look promising but require further evaluation. Vanadium alloy-liquid metal compatibility, particularly interstitial mass transfer, may be equally as critical as fatigue behavior; viability cannot be established with the existing data base. Fabricability must be given early consideration in alloys selection to guard against potentially serious problems in subsequent scale-up and production

  4. Analysis of iron-base alloys by low-wattage glow discharge emission spectrometry

    International Nuclear Information System (INIS)

    Wagatsuma, K.; Hirokawa, K.

    1984-01-01

    Several iron-base alloys were investigated by low-wattage glow discharge emission spectrometry. The emission intensity principally depended on the sputtering parameters of constituent elements in the alloy. However, in the case of chromium, stable and firm oxides formed on the surface influencing the yield of ejected atoms. This paper discusses the relation between the sputtering parameters in Fe-Ni, Fe-Cr, and Fe-Co alloys and their relative emission intensities. Additionally, quantitative analysis was performed for some ternary iron-base alloys and commercial stainless steels with the calibration factors of binary alloy systems

  5. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  6. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  7. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  8. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  9. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    International Nuclear Information System (INIS)

    Rebak, R B

    2005-01-01

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale--The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo

  10. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    International Nuclear Information System (INIS)

    Yu, J.; Jiang, C.; Zhang, Y.

    2017-01-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  11. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  12. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  13. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  14. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  15. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-01-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary

  16. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  17. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  18. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  19. High chromium nickel base alloys hot cracking susceptibility

    International Nuclear Information System (INIS)

    Tirand, G.; Primault, C.; Robin, V.

    2014-01-01

    High Chromium nickel based alloys (FM52) have a higher ductility dip cracking sensitivity. New filler material with higher niobium and molybdenum content are developed to decrease the hot crack formation. The behavior of these materials is studied by coupling microstructural analyses and hot cracking test, PVR test. The metallurgical analyses illustrate an Nb and Mo enrichment of the inter-dendritic spaces of the new materials. A niobium high content (FM52MSS) induces the formation of primary carbide at the end of solidification. The PVR test reveal a solidification crack sensitivity of the new materials, and a lowest ductility dip cracking sensitivity for the filler material 52MSS. (authors)

  20. Study of internal oxidation kinetics of molybdenum base alloys

    International Nuclear Information System (INIS)

    Krushinskij, Yu.Yu.; Belyakov, B.G.; Belomyttsev, M.Yu.

    1989-01-01

    Metallographic and microdurometric method as well as new technique were used to study kinetics of internal oxidation (IO). It is shown that study of IO kinetics on the base of metallographic measurements of layers depth is not correct because it is related with insufficient sensitivity of the method. IO kinetics under conditions of formation of molybdenum oxide layer on saturated material surface as well as IO of alloy with high carbon content were investigated. Oxide film formation does not affect the IO kinetics; decarburization observed along with oxidation increases the apparent activation energy and K exponent on time dependence of diffusion layer depth

  1. Study on Corrosion of Materials by Fluoric Acid and Silicofluoric Acid

    International Nuclear Information System (INIS)

    Park, Kun You; Kwon, Yeong Soo; Kuk, Myung Ho; Kim, Myun Sup

    1986-01-01

    The corrosion properties of 304 Stainless steel, Cupro-nickel, NiCrMo alloy in hydrofluoric acid and silicofluoric acid has been studied. The corrosion resistance of NiCrMo alloy and Cupro-nickel in hydrofluoric acid or mixed acid of hydrofluoric and sulfuric acid is excellent. Because of lower corrosion resistance of 304 Stainless steel, it would not be used for these corrosion resistant materials. The corrosion activation energy of 304 Stainless steel, Cupro-nickel and NiCrMo alloy in 40% HF solution are 42.7, 58.9 and 89.7 kJ/mol, respectively. By these values, it is assumed that the corrosion rate determining step is the chemical reaction on surface of metals. In the plastics, Teflon and polychloro tetrafluoroethylene are most excellent for corrosion resistance in hydrofluoric acid

  2. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    International Nuclear Information System (INIS)

    Han, Jeong Ho; Nyo, Kye Ho; Lee, Deok Hyun; Lim, Deok Jae; Ahn, Jin Keun; Kim, Sun Jin

    1996-01-01

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author)

  3. The development of additive manufacturing technique for nickel-base alloys: A review

    Science.gov (United States)

    Zadi-Maad, Ahmad; Basuki, Arif

    2018-04-01

    Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.

  4. A Study on Development of High Strength Al-Zn Based alloy for Die Casting Ⅲ

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang-Soo; Park, Ik-Min [Pusan National University, Busan (Korea, Republic of); Yeom, Gil-Young; Lim, Kyoung-Mook [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Son, Hyun-Jin [Oh-Sung Co. Ltd., Siheung (Korea, Republic of)

    2015-09-15

    In this study, the microstructural evolution and various characteristics of Al-20⁓45wt%Zn alloys were investigated. In terms of microstructure, as the amount of Zn addition to the alloys increased, the α-phase size decreased and the α+η non-equilibrium solidification phase fraction increased. Also, increasing Zn content improved the wear resistance of the alloys, but reduced the damping capacity and toughness of the alloys. Their physical properties of the Al-Zn alloy with high Zn content, specifically the wear resistance and toughness, were superior to those of commercial ALDC12 alloys for die-casting. Based on these results, we considered the possibility of application of the developed Al-Zn alloy as a structural material.

  5. A Study on Development of High Strength Al-Zn Based alloy for Die Casting Ⅲ

    International Nuclear Information System (INIS)

    Shin, Sang-Soo; Park, Ik-Min; Yeom, Gil-Young; Lim, Kyoung-Mook; Son, Hyun-Jin

    2015-01-01

    In this study, the microstructural evolution and various characteristics of Al-20⁓45wt%Zn alloys were investigated. In terms of microstructure, as the amount of Zn addition to the alloys increased, the α-phase size decreased and the α+η non-equilibrium solidification phase fraction increased. Also, increasing Zn content improved the wear resistance of the alloys, but reduced the damping capacity and toughness of the alloys. Their physical properties of the Al-Zn alloy with high Zn content, specifically the wear resistance and toughness, were superior to those of commercial ALDC12 alloys for die-casting. Based on these results, we considered the possibility of application of the developed Al-Zn alloy as a structural material.

  6. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, Abdul; Yamabe-Mitarai, Yoko; Hosoda, Hideki

    2014-01-01

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  7. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  8. The development of platinum-based alloys and their thermodynamic database

    Directory of Open Access Journals (Sweden)

    Cornish L.A.

    2002-01-01

    Full Text Available A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr alloys, and further work will be done to enhance the mechanical and oxidation properties of the alloys by adding small amounts of other elements to the base composition of Pt84:Al11:Ru2:Cr3.

  9. Corrosion behaviour of powder metallurgical and cast Al-Zn-Mg base alloys

    International Nuclear Information System (INIS)

    Sameljuk, A.V.; Neikov, O.D.; Krajnikov, A.V.; Milman, Yu.V.; Thompson, G.E.

    2004-01-01

    The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion

  10. γ' Precipitation Study of a Co-Ni-Based Alloy

    Science.gov (United States)

    Locq, D.; Martin, M.; Ramusat, C.; Fossard, F.; Perrut, M.

    2018-05-01

    A Co-Ni-based alloy strengthened by γ'-(L12) precipitates was utilized to investigate the precipitation evolution after various cooling rates and several aging conditions. In this study, the precipitate size and volume fraction have been studied via scanning electron microscopy and transmission electron microscopy. The influence of the precipitation evolution was measured via microhardness tests. The cooling rate study shows a more sluggish γ' precipitation reaction compared to that observed in a Ni-based superalloy. Following a rapid cooling rate, the application of appropriate double aging treatments allows for the increase of the γ' volume fraction as well as the control of the size and distribution of the precipitates. The highest hardness values reach those measured on supersolvus cast and wrought Ni-based superalloys. The observed γ' precipitation behavior should have implications for the production, the heat treatment, the welding, or the additive manufacturing of this new class of high-temperature materials.

  11. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  12. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  13. Thermodynamic properties of uranium in gallium–aluminium based alloys

    International Nuclear Information System (INIS)

    Volkovich, V.A.; Maltsev, D.S.; Yamshchikov, L.F.; Chukin, A.V.; Smolenski, V.V.; Novoselova, A.V.; Osipenko, A.G.

    2015-01-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  14. Thermodynamic properties of uranium in gallium–aluminium based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volkovich, V.A., E-mail: v.a.volkovich@urfu.ru [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maltsev, D.S.; Yamshchikov, L.F. [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Smolenski, V.V.; Novoselova, A.V. [Institute of High-Temperature Electrochemistry UD RAS, Ekaterinburg, 620137 (Russian Federation); Osipenko, A.G. [JSC “State Scientific Centre - Research Institute of Atomic Reactors”, Dimitrovgrad, 433510 (Russian Federation)

    2015-10-15

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  15. Self Passivating W-based Alloys as Plasma Facing Material

    International Nuclear Information System (INIS)

    Koch, F.; Koeppl, S.; Bolt, H.

    2007-01-01

    Full text of publication follows: Tungsten (W) is presently the main candidate material for the plasma-facing protection of future fusion power reactors due to the low sputter erosion under bombardment by energetic D, T and He ions. Thus a W-based protection material may provide a wall erosion lifetime of the order of five years which is a pre-requisite for economic fusion reactor operation. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO 3 compounds and their potential release under accidental conditions. A loss-of-coolant event in a He-cooled reactor would lead to a temperature rise to 1100 deg. C after approx. 10 to 30 days due to the nuclear decay heat of the in-vessel components. In such a situation additional accidental intense air ingress into the reactor vessel would lead to the formation of WO 3 and subsequent evaporation of radioactive (WO 3 ) x -clusters. The use of self passivating W alloys either as bulk material or as thick coating on the steel wall may be a passively safe alternative for the plasma-facing protection. The use of this material would eliminate the above mentioned concern related to pure W. To enable the formation of a protective film in oxidizing atmosphere which seals the tungsten surface from further oxidation, different elements have been investigated as corrosion protection additives. Therefore binary and ternary tungsten alloys were synthesised using magnetron sputtering. The oxidation behaviour of films deposited on inert substrates was measured with a thermo-balance set up under synthetic air at temperatures up to 1000 deg. C. Binary alloys of W-Si showed good self passivation properties by forming a SiO 2 film at the surface. The oxidation rate of a compound containing 11 wt.% Si was reduced by a factor of 10 2 compared to pure tungsten between 800 deg. C and 1000 deg. C. Using ternary alloys the oxidation behaviour could be further improved. A compound of W

  16. The development of platinum-based alloys and their thermodynamic database

    OpenAIRE

    Cornish L.A.; Hohls J.; Hill P.J.; Prins S.; Süss R.; Compton D.N.

    2002-01-01

    A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr ...

  17. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

    International Nuclear Information System (INIS)

    Payet, Mickaël; Marchetti, Loïc; Tabarant, Michel; Chevalier, Jean-Pierre

    2015-01-01

    Highlights: • The dissolution of Ni and Fe cations occurs during corrosion of Ni-based alloys in SCW. • The nature of the oxide layer depends locally on the alloy microstructure. • The corrosion mechanism changes when cold-work increases leading to internal oxidation. - Abstract: Ni–Fe–Cr alloys are expected to be a candidate material for the generation IV nuclear reactors that use supercritical water at temperatures up to 600 °C and pressures of 25 MPa. The corrosion resistance of Alloy 690 in these extreme conditions was studied considering the surface finish of the alloy. The oxide scale could suffer from dissolution or from internal oxidation. The presence of a work-hardened zone reveals the competition between the selective oxidation of chromium with respect to the oxidation of nickel and iron. Finally, corrosion mechanisms for Ni based alloys are proposed considering the effects of plastically deformed surfaces and the dissolution.

  18. Mechanical and microstructural characterization of the nickel base alloy (Alloy 600) after heat treatment

    International Nuclear Information System (INIS)

    Fernandes, Stela Maria de Carvalho

    1993-01-01

    The characterization of microstructural and mechanical properties of cold rolled and heat treated alloys 600 made in Brazil were investigated. The recovery and recrystallization behavior as well as solubilization and aging have been studied using optical, scanning electron and transmission electron microscopy. Microhardness and tensile testing have been carried out. The recovery process of the cold rolled alloy 600 occurred until 600 deg C and the recrystallization stage was situated between 600 and 850 deg C. The primary recrystallization temperature was obtained at 850 deg C after 1 hour (isochronal heat treatments). The aged alloy 600 shows carbide precipitation on grains bu with ductility maintenance. (author)

  19. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  20. Evaluation of different finish line designs in base metal alloys

    Directory of Open Access Journals (Sweden)

    Aghandeh R

    1999-06-01

    Full Text Available This investigation was performed according to the widespread application of base metal alloys"nand few articles published about the marginal integrity of restorations fabricated by these metals."nThree standard dies of a maxillary first premolar were prepared with a flat shoulder finish line in buccal"naspect and chamfer in palatal. One of them left with no change. On the buccal aspect of the second and"nthird dies 135?and 1607 bevel were added respectively"nUsing dual wax technique, nine wax patterns were formed on each die and casting procedure of selected"nnon precious alloy was performed by centrifugal method. Marginal gaps of each copping seated on dies"nwere measured by scanning electron microscope (SEM with X500 magnification. Measurements were"ndone on three areas of marked dies on buccal aspect. Measurement son palatal aspect was done on"nmarked midpalatal point as control."nResults and statistical analysis showed no significant difference among marginal gaps in lingual aspect."nBut on the buccal aspect there were statistically significant differences among the groups (P<0.001. Flat"nshoulder had the best marginal integrity (mean 4 micron. Shoulder with 160' bevel had the most marginal"ngap (mean 26.5 micron and shoulder with 1357 bevel was between two other groups (mean 15.7 micron.

  1. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    International Nuclear Information System (INIS)

    Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed

  2. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  3. Irradiation induced precipitation in tungsten based, W-Re alloys

    Science.gov (United States)

    Williams, R. K.; Wiffen, F. W.; Bentley, J.; Stiegler, J. O.

    1983-03-01

    Tungsten-base alloys containing 5, 11, and 25 pct Re were irradiated in the EBR-II reactor. Irradiation temperatures ranged from 600 to 1500 °C. All compositions were irradiated to fluences in the range 4.3 to 6.1 X 1025 n/m2 (E > 0.1 MeV), and three 25 pct Re samples were also irradiated to 3.7 X 1026 n/m2 at temperatures 700 to 900 °C. Postirradiation examination included measurement of electrical resistivity at room temperature and lower temperatures, X-ray diffraction, optical metallography, microprobe analysis, and transmission electron microscopy. Irradiation induced resistivity decreases observed in most of the samples suggested second-phase precipitation. Complete results confirmed the precipitate formation in all samples, in disagreement with existing phase diagrams for the W-Re system. Electron diffraction showed the precipitates to be consistent with the cubic, Re-rich X-phase and inconsistent with the σ-phase. Large variations in precipitate morphology and distribution were observed between the different compositions and irradiation conditions. For the 5 and 11 pct Re-alloys, spherically symmetric strain fields surrounded the equiaxed precipitate particles, and were observed even where no particles were visible. These strain fields are believed to arise from local Re enrichment. Thermoelectric data show that the precipitation can lead to decalibration of W/Re thermocouples.

  4. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

    Science.gov (United States)

    Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

    2018-04-20

    A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

  5. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  6. New technique for producing the alloys based on transition metals

    International Nuclear Information System (INIS)

    Dolukhanyan, S.K.; Aleksanyan, A.G.; Shekhtman, V.Sh.; Mantashyan, A.A.; Mayilyan, D.G.; Ter-Galstyan, O.P.

    2007-01-01

    In principle new technique was elaborated for obtaining the alloys of refractory metals by their hydrides compacting and following dehydrogenation. The elaborated technique is described. The conditions of alloys formation from different hydrides of appropriate metals was investigated in detail. The influence of the process parameters such as: chemical peculiarities, composition of source hydrides, phase transformation during dehydrogenation, etc. on the alloys formation were established. The binary and tertiary alloys of α and ω phases: Ti 0 .8Zr 0 .8; Ti 0 .66Zr 0 .33; Ti 0 .3Zr 0 .8; Ti 0 .2Zr 0 .8; Ti 0 .8Hf 0 .2; Ti 0 .6Hf 0 .4Ti 0 .66Zr 0 .23Hf 0 .11; etc were recieved. Using elaborated special hydride cycle, an earlier unknown effective process for formation of alloys of transition metals was realized. The dependence of final alloy structure on the composition of initial mixture and hydrogen content in source hydrides was established

  7. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    Science.gov (United States)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  8. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    Quang, K.V.; Da Cunha Belo, M.; Benabed, M.S.; Bourelier, F.; Jallerat, N.; Pari, F.L.

    1985-01-01

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 20 0 C and 90 0 C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 90 0 C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  9. Phases stability of shape memory alloys Cu based under irradiation

    International Nuclear Information System (INIS)

    Zelaya, Maria Eugenia

    2006-01-01

    The effects of irradiation on the relative phase stability of phases related by a martensitic transformation in copper based shape memory alloys were studied in this work.Different kind of particles and energies were employed in the irradiation experiments.The first kind of irradiation was performed with 2,6 MeV electrons, the second one with 170 keV and 300 keV Cu ions and the third one with swift heavy ions (Kr, Xe, Au) with energies between 200 and 600 MeV.Stabilization of the 18 R martensite in Cu-Zn-Al-Ni induced by electron irradiation was studied.The results were compared to those of the stabilization induced by quenching and ageing in the same alloy, and the ones obtained by irradiation in 18 R-Cu-Zn-Al alloys.The effects of Cu irradiation over b phase were analyzed with several electron microscopy techniques including: scanning electron microscopy (S E M), high resolution electron microscopy (H R E M), micro diffraction and X-ray energy dispersive spectroscopy (E D S). Structural changes in Cu-Zn-Al b phase into a closed packed structure were induced by Cu ion implantation.The closed packed structures depend on the irradiation fluence.Based on these results, the interface between these structures (closed packed and b) and the stability of disordered phases were analyzed. It was also compared the evolution of long range order in the Cu-Zn-Al and in the Cu-Zn-Al-Ni b phase as a function of fluence.The evolution of the g phase was also compared. Both results were discussed in terms of the mobility of irradiation induced point defects.Finally, the effects induced by swift heavy ions in b phase and 18 R martensite were studied. The results of the irradiation in b phase were qualitatively similar to those produced by irradiation with lower energies. On the contrary, nano metric defects were found in the irradiated 18 R martensite.These defects were characterized by H R E M.The characteristic contrast of the defects was associated to a local change in the

  10. Technical assessment of niobium alloys data base for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Pionke, L J; Davis, J W

    1979-08-01

    Refractory metals are one class of material to be developed in the Alloy Development For Irradiation Performance (ADIP) program recently initiated. A principal purpose of the assessment reported herein is to establish the existing data base for niobium alloys in order to help guide the work to be performed in the ADIP program. Major ADIP decisions include alloy selection/modification and irradiated/unirradiated material testing. This Assessment addressed the topics of: (1) niobium alloy development history and niobium metallurgy, (2) unirradiated mechanical properties, (3) irradiated properties, (4) corrosion, and (5) environmental effects.

  11. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    International Nuclear Information System (INIS)

    Peterson, D.T.; Hull, A.B.; Loomis, B.A.

    1991-01-01

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations is some corrosion- tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed

  12. Low in reactor creep Zr-base alloy tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Holt, R.A.

    1984-01-01

    This invention relates to zirconium alloy tubes especially for use in nuclear power reactors. More particularly it relates to quaternary 3.5 percent Sn, 1 percent Mo, 1 percent Nb, balance Zr alloy tubes which have been extruded, cold worked and heat treated to lower their dislocation density. In one embodiment the alloys are cold worked less than 5 percent and stress relieved to produce a low dislocation density and in another embodiment the alloys are cold worked up to about 50 percent and annealed to produce a very low dislocation density and also small equiaxed β grains

  13. Shape Memory Alloy-Based Periodic Cellular Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  14. Corrosion performance of new Zircaloy-2-based alloys

    International Nuclear Information System (INIS)

    Rudling, P.; Mikes-Lindbaeck, M.; Lethinen, B.; Andren, H.O.; Stiller, K.

    1994-01-01

    A material development project was initiated to develop a new zirconium alloy, outside the ASTM specifications for Zircaloy-2 and Zircaloy-4, with optimized hydriding and corrosion properties for both boiling water reactors and pressurized water reactors. A number of different alloys were manufactured. These alloys were long-term corrosion tested in autoclaves at 400 C in steam. Also, a 520 C/24 h steam test was carried out. The zirconium metal microstructure and the chemistry of precipitates were characterized by analytical electron microscopy. The metal matrix chemistry was determined by atom probe analysis. The paper describes the correlations between corrosion material performance and zirconium alloy microstructure

  15. Stress corrosion cracking of nickel base alloys characterization and prediction

    International Nuclear Information System (INIS)

    Santarini, G.; Pinard-Legry, G.

    1988-01-01

    For many years, studies have been carried out in several laboratories to characterize the IGSCC (Intergranular Stress Corrosion Cracking) behaviour of nickel base alloys in aqueous environments. For their relative shortness, CERTs (Constant Extension Rate Tests) have been extensively used, especially at the Corrosion Department of the CEA. However, up to recently, the results obtained with this method remained qualitative. This paper presents a first approach to a quantitative interpretation of CERT results. The basic datum used is the crack trace depth distribution determined on a specimen section at the end of a CERT. It is shown that this information can be used for the calculation of initiation and growth parameters which quantitatively characterize IGSCC phenomenon. Moreover, the rationale proposed should lead to the determination of intrinsic cracking parameters, and so, to in-service behaviour prediction

  16. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    International Nuclear Information System (INIS)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  17. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Chung, C.Y.; Lam, C.W.H.

    1999-01-01

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >A f =80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  18. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  19. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  20. An experimental study of the magnetic ordering in Pd-based Fe and Mn alloys

    International Nuclear Information System (INIS)

    Verbeek, B.H.

    1979-01-01

    This thesis presents the results of an investigation on the magnetic ordering phenomena in some Pd based alloys with small concentrations of magnetic impurities. It has been the object to explore the ordering mechanisms in these alloys which lead to various types of magnetism at low temperature. The experimental techniques used are described. (Auth.)

  1. Improvement of the performance of Mg-based alloy electrodes at ambient temperatures

    International Nuclear Information System (INIS)

    Liu, H.K.; Chen, J.; Sun, L.; Bradhurst, D.H.; Dou, S.X.

    1998-01-01

    Full text: Rechargeable batteries are finding increased application in modern communications, computers, and electric vehicles. The Nickel-Metal Hydride (Ni-MH) battery has the best comprehensive properties. It is known that the important step to increase the energy density of Ni-MH battery is to improve the negative (metal hydride) electrode properties. Of all the hydrogen storage alloys studied previously, (the best know alloys are LaNi 5 , Mg 2 Ni, Ti 2 Ni , TiNi and Zr 2 Ni), the intermetallic compound Mg 2 Ni has the highest theoretical hydrogen storage capacity. The Mg 2 Ni-based hydrogen storage alloy is a promising material for increasing the negative electrode capacity of Ni-MH batteries because this alloy is superior to the LaNi 5 -system or the Zr-based alloys in materials cost and hydrogen absorption capacity. A serious disadvantage, however, is that the reactions of most magnesium based alloys with hydrogen require relatively high temperature (>300 deg C) and pressure (up to 10 atm) due to the slowness of the hydriding/dehydriding reactions. In this paper it is shown that with a combination of modifications to the alloy composition and methods of electrode preparation, magnesium-based alloys can be made into electrodes which will not only be useful at ambient temperatures but will have a useful cycle life and extremely high capacity

  2. Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base

    International Nuclear Information System (INIS)

    Belov, N.A.; Naumova, E.S.

    1996-01-01

    The phase diagram of Al-Ce-Ni system is built for an aluminium corner at component concentration up to 16 mass %Ce and 8 mass%Ni. A ternary eutectic reaction is established at 12%Ce, 5%Ni and 626 deg C. The ternary eutectic alloy is similar in structure to rapidly cooled Al base alloys with transition metals. The possibility to design new cast alloys based on three-phase (Al)+NiAl 3 +CeAl 4 eutectics is under consideration. Al-Zn-Mg-Cu, Al-Sc and Al-Zr base alloys can be used as (Al) constituent of the eutectics. The new alloys may be considered as heat resistant ones due to the fact that no structural changes are observed in castings on heating up to 350 deg C. 18 refs.; 4 figs.; 2 tabs

  3. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  4. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    Akashi, Masatsune

    1995-01-01

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  5. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  6. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    International Nuclear Information System (INIS)

    Wang, Boyi; Zhu, Yong; Chen, Youping; Song, Han; Huang, Pengcheng; Dao, Dzung Viet

    2017-01-01

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  7. The corrosion behaviour of Zr3Al-based alloys

    International Nuclear Information System (INIS)

    Murphy, E.V.; Wieler, R.

    1977-07-01

    The corrosion resistance of several zirconium-aluminum alloys with aluminum contents ranging from 7.6 to 9.6 wt% was examined in 300 deg C and 325 deg C water, 350 deg C and 400 deg C steam and in air and wet CO 2 at 325 deg C and 400 deg C. In the transformed alloys there are three phases present, αZr, Zr 2 Al and Zr 3 Al of which the αZr phase is the least corrosion resistant. The most important factor controlling the corrosion behaviour of these alloys was found to be the size, distribution and amount of the αZr phase in the transformed alloys, which in turn was dependent upon the microstructural scale of the untransformed alloys

  8. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  9. Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    Science.gov (United States)

    Pompa, Luis Enrique

    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.

  10. Research into Oil-based Colloidal-Graphite Lubricants for Forging of Al-based Alloys

    International Nuclear Information System (INIS)

    Petrov, A.; Petrov, P.; Petrov, M.

    2011-01-01

    The presented paper describes the topical problem in metal forging production. It deals with the choice of an optimal lubricant for forging of Al-based alloys. Within the scope of the paper, the properties of several oil-based colloidal-graphite lubricants were investigated. The physicochemical and technological properties of these lubricants are presented. It was found that physicochemical properties of lubricant compositions have an influence on friction coefficient value and quality of forgings.The ring compression method was used to estimate the friction coefficient value. Hydraulic press was used for the test. The comparative analysis of the investigated lubricants was carried out. The forging quality was estimated on the basis of production test. The practical recommendations were given to choose an optimal oil-based colloidal-graphite lubricant for isothermal forging of Al-based alloy.

  11. Ductile-phase toughening and fatigue crack growth in Nb3Al base alloys

    International Nuclear Information System (INIS)

    Gnanamoorthy, R.; Hanada, S.

    1996-01-01

    Niobium aluminide (Nb 3 Al) base intermetallic compounds exhibit good high-temperature strength and creep properties and potential for applications above 1,200 C provided their inadequately low room-temperature ductility, fracture toughness and fatigue crack growth behavior are improved. Addition of tantalum to Nb 3 Al base materials improves the high-temperature strength significantly and seems to be a potential alloying element. In the present study, room temperature fracture toughness and fatigue crack growth behavior of tantalum alloyed Nb 3 Al base alloy prepared by ingot metallurgy are investigated

  12. Influence of alkali metal hydroxides on corrosion of Zr-base alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan

    1996-01-01

    The influence of group-1 alkali hydroxides on different Zr-based alloys have been carried out in static autoclaves at 350 deg C in pressurized water, conditioned in low(0.32 mmol), medium(4.3 mmol) and high(31.5 mmol) equimolar concentration of Li-, Na-, K-, Rb- and Cs-hydroxide. Two types of alloys have been investigated: Zr-Sn-(TRM, Transition metal) and Zr-Sn-Nb-(TRM, Transition metal). From the experiments the cation could be identified as the responsible species for corrosion of Zr alloy in alkalized water. The radius of the cation governs the accelerated corrosion in the pre-transition region of Zr alloy. Incorporation of alkali cation into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significant lower effect for the other bases. Nb containing alloys showed lower corrosion resistance than Zr-Sn-TRM alloys in all alkali solutions. Both types of alloys were corroded significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behavior in the different alkali environments and taking into account the tendency to accelerate the corrosion of Zr alloys, CsOH and KOH are possible alternate alkali for PWR (Pressurized Water Reactor) application. (author)

  13. Amorphization of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Pană, O. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-11-01

    Amorphization of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) alloy has been attempted both by wet and dry mechanical alloying starting from a mixture of elemental powders. Powder amorphization was not achieved even after 140 hours of dry mechanical alloying. Using the same milling parameters, when wet mechanical alloying was used, the powder amorphization was achieved after 40 h of milling. Our assumption regarding the powder amorphization capability enhancement by contamination with carbon was proved by X-ray Photoelectron Spectroscopy (XPS) measurements which revealed the presence of carbon in the chemical composition of the wet mechanically alloyed sample. Using shorter milling times and several process control agents (PCA) (ethanol, oleic acid and benzene) with different carbon content it was proved that the milling duration required for powder amorphization is linked to the carbon content of the PCA. Differential Scanning Calorimetry (DSC), thermomagnetic (TG) and X-ray Diffraction (XRD) measurements performed to the heated samples revealed the fact that, the crystallisation occurs at 488 °C, thus leading to the formation of Fe{sub 3}Si and Fe{sub 2}B. Thermogravimetry measurements performed under H{sub 2} atmosphere, showed the same amount of contamination with C, which is about 2.3 wt%, for the amorphous samples regardless of the type of PCA. Saturation magnetisation of the wet milled samples decreases upon increasing milling time. In the case of the amorphous samples wet milled with benzene up to 20 h and with oleic acid up to 30 h, the saturation magnetisation has roughly the same value, indicating the same degree of contamination. The XRD performed on the samples milled using the same parameters, revealed that powder amorphization can be achieved even via dry milling, just by adding the equivalent amount of elemental C calculated from the TG plots. This proves that in this system by considering the atomic species which can contaminate the powder, they can be

  14. Review of lithium iron-base alloy corrosion studies

    International Nuclear Information System (INIS)

    DeVan, J.H.; Selle, J.E.; Morris, A.E.

    1976-01-01

    An extensive literature search was conducted on the compatibility of ferrous alloys with lithium, with the emphasis on austenitic stainless steels. The information is summarized and is divided into two sections. The first section gives a brief summary and the second is an annotated bibliography. Comparisons of results are complicated by differences in lithium purity, alloy composition, alloy treatment, flow rates, and lithium handling procedures. For long-term application, austenitic stainless steels appear to be limited to about 500 0 C. While corrosion can probably not be decreased to zero, a considerable reduction to tolerable and predictable amounts appears possible

  15. Transmission electron microscopy characterization of laser-clad iron-based alloy on Al-Si alloy

    International Nuclear Information System (INIS)

    Mei, Z.; Wang, W.Y.; Wang, A.H.

    2006-01-01

    Microstructure characterization is important for controlling the quality of laser cladding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the iron-based alloy laser-clad on Al-Si alloy and an unambiguous identification of phases in the coating was accomplished. It was found that there is austenite, Cr 7 C 3 and Cr 23 C 6 in the clad region; α-Al, NiAl 3 , Fe 2 Al 5 and FeAl 2 in the interface region; and α-Al and silicon in the heat-affected region. A brief discussion was given for their existence based on both kinetic and thermodynamic principles

  16. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg

  17. Self-positioned thin Pb-alloy base electrode Josephson junction

    International Nuclear Information System (INIS)

    Kuroda, K.; Sato, K.

    1986-01-01

    A self-positioned thin (SPOT) Pb-alloy base electrode Josephson junction is developed. In this junction, a 50-nm thick Pb-alloy base electrode is restricted within the junction region on an Nb underlayer using a self-alignment technique. The grain size reduction and the base electrode area restriction greatly improve thermal cycling stability, where the thermal cycling tests of 4000 proposed junctions (5 x 5 μm 2 ) showed no failures after 4000 cycles. In addition, the elimination of insulator layer stress on the Pb-alloy base electrode rectifies the problem of size effect on current density. The Nb underlayers also serve to isolate the Pb-alloy base electrodes from the resistors

  18. Alloy catalysts for fuel cell-based alcohol sensors

    Science.gov (United States)

    Ghavidel, Mohammadreza Zamanzad

    Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate

  19. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-01-01

    A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation

  20. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  1. Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Banu, P. S. Noori; Rani, S. Devaki [Dept. of Metallurgical Engineering, Jawaharlal Nehru Technological University, HyderabadI (India)

    2016-08-15

    In view of emerging applications of alpha+beta titanium alloys in aerospace and defense, we have aimed to develop a Back propagation neural network (BPNN) model capable of predicting the properties of these alloys as functions of alloy composition and/or thermomechanical processing parameters. The optimized BPNN model architecture was based on the sigmoid transfer function and has one hidden layer with ten nodes. The BPNN model showed excellent predictability of five properties: Tensile strength (r: 0.96), yield strength (r: 0.93), beta transus (r: 0.96), specific heat capacity (r: 1.00) and density (r: 0.99). The developed BPNN model was in agreement with the experimental data in demonstrating the individual effects of alloying elements in modulating the above properties. This model can serve as the platform for the design and development of new alpha+beta titanium alloys in order to attain desired strength, density and specific heat capacity.

  2. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel

    International Nuclear Information System (INIS)

    Shibuya, Masachika; Nakamura, Jin; Akiba, Etsuo

    2008-01-01

    Ti-Mn-based AB 2 -type alloys which are suitable for a hybrid hydrogen storage vessel have been synthesized and evaluated hydrogenation properties. As the third element V was added to Ti-Mn binary alloys. All the alloys synthesized in this work mainly consist of the C14 Laves and BCC phase. In the case of Ti0.5V0.5Mn alloy, the amounts of hydrogen absorption was 1.8 wt.% at 243 K under the atmosphere of 7 MPa H 2 , and the hydrogen desorption pressure was in the range of 0.2-0.4 MPa at 243 K. The hydrogen capacity of this alloy did not saturate under 7 MPa H 2 and seems to increase with hydrogen pressure up to 35 MPa that is estimated working pressure of the hybrid hydrogen storage vessel

  3. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    International Nuclear Information System (INIS)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-01-01

    The aim of this study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. According to our study, the salient features for the ternary alloy are a negative SRO parameter between Ni–Cr and a positive between Cr–Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni–Cr and Ni–Fe pairs and positive for Cr–Cr and Fe–Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. The predicted SRO has an impact on point-defect energetics, electron–phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys

  4. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Science.gov (United States)

    Yamakawa, K.; Shimomura, Y.

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.

  5. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, K.; Shimomura, Y. [Hiroshima Univ. (Japan). Faculty of Engineering

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT, dislocation lines and voids are discussed. (orig.) 8 refs.

  6. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  7. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    International Nuclear Information System (INIS)

    Pol'dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret'yakov, B.N.

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit σsub(0.01) and yield limit σsub(0.2)) of three amorphous alloys on iron base Fe 80 B 20 , Fe 70 Cr 10 B 20 and Fe 70 Cr 5 Ni 5 B 20 are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials

  8. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    Energy Technology Data Exchange (ETDEWEB)

    Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.

  9. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  10. Liquid alkali metals and alkali-based alloys as electron-ion plasmas

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1981-06-01

    The article reviews the theory of thermodynamic and structural properties of liquid alkali metals and alkali-based alloys, within the framework of linear screening theory for the electron-ion interactions. (author)

  11. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  12. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  13. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  14. Oxidation influence on crystallisation in iron-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gloriant, T.; Surinach, S.; Munoz, J.S.; Baro, M.D. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica; Inoue, A. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2001-07-01

    The partially crystalline iron-based nanophase composites elaborated by rapid solidification techniques are very attractive for their excellent soft magnetic properties and their potential for industrial applications. In these nanocomposite materials a control of both the structure (size, shape and distribution of the nanoparticles in the amorphous matrix) and the kinetic behaviour (nucleation and growth mechanism) is essential in order to obtain the best properties and to be able to produce them at the industrial scale. Our group has been working in this research area for a long time and the investigation presented here is the result of an international collaboration. This study deals with the effect of cobalt addition in Fe-Nb-B melt-spun amorphous alloys on the devitrification/crystallisation processes induced by thermal treatments and characterised by X-ray diffraction analysis (XRD), thermomagnetic analysis (TMG) and transmission electron microscopy observations (TEM). The transformation sequences, from the initial amorphous phase to the fully crystallised final state, were carried out using different annealing experiments (under vacuum and in air) and have revealed a strong influence of the environmental atmosphere during devitrification. It is shown that oxidation can greatly affect the crystallisation behaviour as a result of the high metastable state of the initial amorphous phase. The results and observations of this phenomenon will be presented. (orig.)

  15. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  16. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  17. Effect of Al and Y2O3 on Mechanical Properties in Mechanically Alloyed Nanograin Ni-Based Alloys.

    Science.gov (United States)

    Kim, Chung Seok; Kim, Il-Ho

    2015-08-01

    The effects of aluminum and Y2O3 on the mechanical properties in nano grain Ni-based alloys have been investigated. The test specimens are prepared by mechanical alloying at an Ar atmosphere. The addition of Y2O3 and Al may cause an increase in the tensile strength at room temperature, 400 °C and 600 °C. However, it was confirmed that the increase of tensile strength at room temperature and 400 °C was predominantly caused by addition of Y2O3, while that at 600 °C was mainly due to addition of Al. These results can be attributed to the dispersion strengthening of Y2O3, preventing the formation of Cr2O3 and the change of fracture mode at 600 °C by the addition of Al.

  18. The role of Si and Ca on new wrought Mg-Zn-Mn based alloy

    International Nuclear Information System (INIS)

    Ben-Hamu, G.; Eliezer, D.; Shin, K.S.

    2007-01-01

    The development of new wrought magnesium alloys for automotive industry has increased in recent years due to their high potential as structural materials for low density and high strength/weight ratio demands. However, the poor mechanical properties of the magnesium alloys have led to search a new kind of magnesium alloys for better strength and ductility. Magnesium alloys show strong susceptibility to localized corrosion in chlorides solutions due to their inhomogeneous microstructure. The existence of intermetallics in the microstructure of magnesium alloys might represent initiation sites for localized corrosion. This is due to the formation of galvanic couples between the intermetallics and the surrounding matrix. The main objective of this research is to investigate the corrosion behavior of new magnesium alloys; Mg-Zn-Mn-Si-Ca (ZSMX) alloys. The ZSM6X1 + YCa alloys were prepared by using hot extrusion method. AC and DC polarization tests were carried out on the extruded rods, which contain different amounts of silicon or calcium. The potential difference in air between different phases and the matrix was examined using scanning Kelvin probe force microscopy (SKPFM). The phases present in the alloys have been identified by optical microscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy. Four different phases were found, i.e. intermetallics containing Si-Mn, Mg-Si, Mg-Zn and Mg-Si-Ca phase. All phases exhibited higher potential differences relative to magnesium matrix indicating a cathodic behavior. The potential difference revealed significant dependence on the chemical composition of the phases. Based on the results obtained from the scanning Kelvin probe force microscopy, the cathodic phases are effective sites for the initiation of localized corrosion in Mg-Zn-Mn-Si-Ca alloys

  19. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    International Nuclear Information System (INIS)

    Long-Chao, Zhuo; Shu-Jie, Pang; Hui, Wang; Tao, Zhang

    2009-01-01

    Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al 86 Si 0.5 Ni 4.06 Co 2.94 Y 6 Sc 0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod. The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 GPa and maximum strength of 1.27 GPa as well as an obvious plastic strain of about 2.4% during compressive deformation. This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability. (condensed matter: structure, mechanical and thermal properties)

  20. Hydrogen storage in binary and ternary Mg-based alloys. A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Miltin, D. [Alberta Univ., Edmonton (Canada); Poirier, E.; Fritzsche, H. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2010-07-01

    This study focuses on hydrogen sorption properties of cosputtered 1.5 micrometer thick Mg-based films with Al, Fe and Ti as alloying elements. We show that ternary Mg-Al-Ti and Mg-Fe-Ti alloys in particular display remarkable sorption behavior: at 200 C, the films are capable of absorbing 4-6 wt.% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable for over 100 ab- and desorption cycles for Mg-Al-Ti and Mg-Fe-Ti alloys. No degradation in capacity or kinetics is observed. Based on these observations, some general design principles for Mg-based hydrogen storage alloys are suggested. For Mg-Fe-Ti, encouraging preliminary results on multilayered systems are also presented. (orig.)

  1. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  2. Shape memory alloy wire-based smart natural rubber bearing

    International Nuclear Information System (INIS)

    Hedayati Dezfuli, F; Shahria Alam, M

    2013-01-01

    In this study, two types of smart elastomeric bearings are presented using shape memory alloy (SMA) wires. Due to the unique characteristics of SMAs, such as the superelastic effect and the recentering capability, the residual deformation in SMA-based natural rubber bearings (SMA-NRBs) is significantly reduced whereas the energy dissipation capacity is increased. Two different configurations of SMA wires incorporated in elastomeric bearings are considered. The effect of several parameters, including the shear strain amplitude, the type of SMA, the aspect ratio of the base isolator, the thickness of SMA wire, and the amount of pre-strain in the wires on the performance of SMA-NRBs is investigated. Rubber bearings are composed of natural rubber layers bonded to steel shims as reinforcement. Results show that ferrous SMA wire, FeNiCuAlTaB, with 13.5% superelastic strain and a very low austenite finish temperature (−62 °C), is the best candidate to be used in SMA-NRBs subjected to high shear strain amplitudes. In terms of the lateral flexibility and wire strain level, the smart rubber bearing with a cross configuration of SMA wires is more efficient. Moreover, the cross configuration can be implemented in high-aspect-ratio elastomeric bearings since the strain induced in the wire does not exceed the superelastic range. When cross SMA wires with 2% pre-strain are used in a smart NRB, the dissipated energy is increased by 74% and the residual deformation is decreased by 15%. (paper)

  3. Thermodynamic properties of some gallium-based binary alloys

    International Nuclear Information System (INIS)

    Awe, O.E.; Odusote, Y.A.; Akinlade, O.; Hussain, L.A.

    2008-01-01

    We have studied the concentration dependence of the free energy of mixing, concentration-concentration fluctuations in the long-wavelength limit, the chemical short-range order parameter, the enthalpy and entropy of mixing of Ga-Zn, Ga-Mg and Al-Ga binary alloys at different temperatures using a quasi-chemical approximation for compound forming binary alloys and that for simple regular alloys. From the study of the thermodynamic quantities, we observed that thermodynamic properties of Ga-Zn and Al-Ga exhibit positive deviations from Raoultian behaviour, while Ga-Mg exhibits negative deviation. Hence, this study reveals that both Ga-Zn and Al-Ga are segregating systems, while chemical order exists in Ga-Mg alloy in the whole concentration range. Furthermore, our investigation indicate that Al-Ga binary alloy have a tendency to exhibit ideal mixture behaviour in the concentration range 0≤c Al ≤0.30 and 0.7≤c Al ≤1

  4. Hot corrosion studies on nickel-based alloys containing silicon

    International Nuclear Information System (INIS)

    Kerr, T.W.; Simkovich, G.

    1976-01-01

    Alloys of Ni--Cr, Ni--Si and Ni--Cr--Si were oxidized and ''hot corroded'' in pure oxygen at 1000 0 C. In the oxidation experiments it was found that small amounts of either chromium or silicon in nickel increased the oxidation rates in comparison to pure nickel in accord with Wagner's parabolic oxidation theory. At high concentrations of the alloying elements the oxidation rates decreased due to the formation of oxide phases other than nickel oxide in the scale. Hot corrosion experiments were conducted on both binary and ternary alloys by oxidizing samples coated with 1.0 mg/cm 2 of Na 2 SO 4 in oxygen at 1000 0 C. In general it was found that high chromium and high silicon alloys displayed excellent resistance to the hot corrosion process gaining or losing less than 0.5 mg/cm 2 in 1800 min at temperature. Microprobe and x-ray diffraction studies of the alloy and the scale indicate that amorphous SiO 2 probably formed to aid in retarding both the oxidation and the hot corrosion process

  5. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  6. Shape memory and pseudoelastic properties of Fe-Mn-Si and Ti-Ni based alloys

    International Nuclear Information System (INIS)

    Guenin, G.

    1997-01-01

    The aim of this presentation is to analyse and discuss some recent advances in shape memory and pseudoelastic properties of different alloys. Experimental work in connection with theoretical ones will be reviewed. The first part is devoted to the microstructural origin of shape memory properties of Fe-Mn-Si based alloys (γ-ε transformation); the second part is a synthetic analysis of the effects of thermomechanical treatments on shape memory and pseudoelastic effects in Ti-Ni alloys, with some focus on the behaviour of the R phase introduced. (orig.)

  7. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    Schulten, R.; Bongartz, K.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1989-11-01

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.) [de

  8. Vanadium-based alloy hydrides for heat pumps, compressors, and isotope separation

    International Nuclear Information System (INIS)

    Libowitz, G.G.

    1988-01-01

    A series of body-centered cubic (b.c.c.) solid solution alloys have been developed which appears to be unusually suitable for several applications involving metal hydrides. It is normally very difficult to induce the body-centered cubic metals, Nb, V, and Ta, to react with hydrogen; in bulk form the reaction will simply not occur at room temperature. Alloys containing Nb exhibited very large hysteresis effects on hydride formation and thus are not suitable for most applications. However, the V-Ti based alloys showed relatively little hysteresis, and because of their unusual thermodynamic properties offer significant advantages for the specific applications discussed below. (orig./HB)

  9. Long-life fatigue test results for two nickel-base structural alloys

    International Nuclear Information System (INIS)

    Mowbray, D.F.; Giaquinto, E.V.; Mehringer, F.J.

    1978-11-01

    The results are reported of fatigue tests on two nickel--base alloys, hot-cold-worked and stress-relieved nickel--chrome--iron Alloy 600 and mill-annealed nickel--chrome--moly--iron Alloy 625 in which S-N data were obtained in the life range of 10 6 to 10 10 cycles. The tests were conducted in air at 600 0 F, in the reversed membrane loading mode, at a frequency of approx. 1850 Hz. An electromagnetic, closed loop servo-controlled machine was built to perform the tests. A description of the machine is given

  10. Interstitial-phase precipitation in iron-base alloys: a comparative study

    International Nuclear Information System (INIS)

    Pelton, A.R.

    1982-06-01

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy

  11. An overview of advanced high-strength nickel-base alloys for LWR applications

    International Nuclear Information System (INIS)

    Prybylowski, J.; Ballinger, R.G.

    1989-01-01

    This paper reviews our current understanding of the behavior of high strength nickel base alloys used in light water reactor (LWR) applications. Emphasis is placed on understanding the fundamental mechanisms controlling crack propagation in these environments. To provide a foundation for this survey, general mechanisms of stress corrosion cracking and hydrogen embrittlement are first reviewed. The behavior of high strength nickel base alloys in LWR environments, as well as in other relevant environments is then reviewed. Suggested mechanisms of crack propagation are discussed. Alternate alloys and microstructural modifications that may result in improved behavior are presented. It is now clear that, at temperatures near 100C, alloy X-750, the predominant high strength nickel base alloy used today in LWR applications, is susceptible to hydrogen embrittlement. A review of published data from hydrogen embrittlement studies of nickel base superalloys during electrolytic charging and in hydrogen sulfide/brine solutions suggests that other nickel base superalloys are available possessing resistance to hydrogen embrittlement superior to that of alloy X-750. Available results of tests in gaseous hydrogen suggest that reduced grain boundary precipitation and a fine distribution of intragranular precipitates that act as irreversible hydrogen traps is the optimum microstructure for hydrogen embrittlement resistance. 42 refs., 2 figs., 5 tabs

  12. Knowledge and method base for shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Welp, E.G.; Breidert, J. [Ruhr-University Bochum, Institute of Engineering Design, 44780 Bochum (Germany)

    2004-05-01

    It is often impossible for design engineers to decide whether it is possible to use shape memory alloys (SMA) for a particular task. In case of a decision to use SMA for product development, design engineers normally do not know in detail how to proceed in a correct and beneficial way. In order to support design engineers who have no previous knowledge about SMA and to assist in the transfer of results from basic research to industrial practice, an essential knowledge and method base has been developed. Through carefully conducted literature studies and patent analysis material and design information could be collected. All information is implemented into a computer supported knowledge and method base that provides design information with a particular focus on the conceptual and embodiment design phase. The knowledge and method base contains solution principles and data about effects, material and manufacturing as well as design guidelines and calculation methods for dimensioning and optimization. A browser-based user interface ensures that design engineers have immediate access to the latest version of the knowledge and method base. In order to ensure a user friendly application, an evaluation with several test users has been carried out. Reactions of design engineers from the industrial sector underline the need for support related to knowledge on SMA. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Fuer Konstrukteure ist es haeufig schwierig zu entscheiden, ob sich der Einsatz von Formgedaechtnislegierungen (FGL) fuer eine bestimmte Aufgabe eignet. Fuer den Fall, dass FGL fuer die Produktentwicklung genutzt werden sollen, besitzen Ingenieure zumeist nur unzureichende Detailkenntnisse, um Formgedaechtnislegierungen richtig und in vorteilhafter Weise anwenden zu koennen. Zur Unterstuetzung von Konstrukteuren, die ueber kein Vorwissen und keine Erfahrungen zu FGL verfuegen und zum Transfer von Forschungsergebnissen in die industrielle Praxis, ist eine

  13. Heat treatment effect on ductility of nickel-base alloys

    International Nuclear Information System (INIS)

    Burnakov, K.K.; Khasin, G.A.; Danilov, V.F.; Oshchepkov, B.V.; Listkova, A.I.

    1979-01-01

    Causes of low ductility of the KhN75MBTYu and KhN78T alloys were studied along with the heat treatment effects. Samples were tested at 20, 900, 1100, 1200 deg C. Large amount of inclusions was found in intercrystalline fractures of the above low-ductile alloys. The inclusions of two types took place: (α-Al 2 O 3 , FeO(Cr 2 O 3 xAl 2 O 3 )) dendrite-like ones and large-size laminated SiO 2 , FeO,(CrFe) 2 O 3 inclusions situated as separate colonies. Heat treatment of the alloys does not increase high-temperature impact strength and steel ductility. The heating above 1000 deg C leads to a partial dissolution and coagulation of film inclusions which results in an impact strength increase at room temperature

  14. Superconducting pinning in BCC niobium-base alloys

    International Nuclear Information System (INIS)

    Hu, S.

    1981-01-01

    The structure dependence of critical current density J/sub c/ in superconducting alloys Nb--Zr and Nb--Ti was studied by means of x-ray analysis and tensile test. Experimental results indicate that, in the absence of second phase particles, annealing increases J/sub c/ in deformed alloys due to rearrangement of dislocations into cell structure and the cell walls are effective pinning centers for magnetic flux. In the precipitation process of second phase particles, new dislocations are formed due to the relaxation of coherent stress field. These new dislocations increases the dislocation density and the flux pinning ability of the cell walls, which in turn lead to a further increase of J/sub c/. The mechanism that causes precipitates to increase the current-carrying ability in Nb--Zr and Nb--Ti alloys is therefore the same as that of cold-work deformation

  15. Wetting of refractory metals with copper base alloys

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Kostikov, V.I.; Chepelenko, V.N.; Batov, V.M.

    1978-01-01

    The effect is studied of phosphorus upon the wetting of molybdenum, niobium and tantalum by an alloy of the system copper-silver (10%) as a function of contact time and phosphorus concentration. Experiments have been conducted in vacuum of 5x10 -4 mm Hg at 900 deg C. It is established that the introduction of phosphorus into a copper-silver alloy improves the wetting of molybdenum, niobium and tantalum. Formation of intermetallic compounds on the alloy-refractory metal interface can be avoided by adjusting the time of contact of the solder with molybdenum, niobium and tantalum. As a solder with 2.9% phosphorus spreads well over copper, it is suggested to use said solder for brazing copper and the investigated refractory metals in items intended for service at temperatures of up to 600 deg C

  16. Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys.

    Science.gov (United States)

    1986-01-01

    1.5m wide by injecting the molten alloy onto a rotating copper ’. disk through the orifice at the bottom of the copper crucible under inert gas...icrocrystalline forms [10, 271. 7his technique adopts the combination of a water-cooled cold copper crucible with an arc heating scheme that uses non-consumable...are malted in the cold copper crucible and spun in an inert gas atmosphere. he ribbon produced has a uniform thickness of 20 to SOgm. 5’ -7 -. -F -i

  17. Swelling in neutron irradiated nickel-base alloys

    International Nuclear Information System (INIS)

    Brager, H.R.; Bell, W.L.

    1972-01-01

    Inconel 625, Incoloy 800 and Hastelloy X were neutron irradiated at 500 to 700 0 C. It was found that of the three alloys investigated, Inconel 625 offers the greatest swelling resistance. The superior swelling resistance of Inconel 625 relative to that of Hastelloy-X is probably related to differences in the concentrations of the minor rather than major alloy constituents, and can involve (a) enhanced recombination of defects in the Inconel 625 and (b) preferential attraction of vacancies to incoherent precipitates. (U.S.)

  18. Martensitic transformation in Co-based ferromagnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Yokaichiya, F.; Laufek, F.; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Sedláková-Ignácová, Silvia; Molnár, Peter; Heczko, Oleg

    2012-01-01

    Roč. 122, č. 3 (2012), s. 475-477 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : microstructure * shape memory alloys * neutron diffraction * cobalt alloys Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  19. Mechanical strenght and niobium and niobium-base alloys substructures

    International Nuclear Information System (INIS)

    Monteiro, W.A.; Andrade, A.H.P. de

    1986-01-01

    Niobium and some of its alloys have been used in several fields of technological applications such as the aerospace, chemical and nuclear industries. This is due to its excelent mechanical stringth at high temperatures and reasonable ductility at low temperatures. In this work, we review the main features of the relationship mechanical strength - substructure in niobium and its alloys, taking into account the presence of impurities, the influence of initial thermal and thermo - mechanical treatments as well as the irradiation by energetic particles. (Author) [pt

  20. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  1. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  2. Determination of trace impurities in iron-based alloy using neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Waheed, S.; Ahmad, S.

    2000-01-01

    A radiochemical neutron activation analysis procedure has been developed and applied to investigate 40 major, minor, and trace impurities in iron-based alloy. A comparison of RNAA and INAA indicated a significant improvement in the detection limits. The extensive use of these alloys in the heavy mechanical industry, manufacturing of aircraft engines, nuclear applications, medical devices and chemical equipment requires their precise characterization. The concentration of iron in the iron-based alloy was found to be 86.7%, whereas Ca, Cr, K, Mg, Mn, V and W were the other constituents of the alloy, which constituted to around 12.89%. The rest of the elements were present in minor or trace levels. Most of the rare earth elements were also present in trace amounts. (orig.)

  3. Advanced Class of FML on the Base Al-Li Alloy 1441 with Lower Density

    Science.gov (United States)

    Antipov, V. V.; Senatorova, O. G.; Lukina, N. F.

    Structure, composition, properties combination of specimens and components, a number of technological parameters for production of advanced FML based on high-modulus Al-Li 1441 alloy (E 79 GPa) with reduced density (d 2.6 g/m3) and optimized adhesive prepreg reinforced with high-strength high-modulus VMP glass fibres are described. Service life 1441 alloy provides the possibility of manufacture of thin sheets (up to 0.3 mm), clad and unclad. Moreover, some experience on the usage of 1441 T1, T11 sheets and shapes in Be 200 and Be 103 aircraft was accumulated. The class of FML materials based on Al-Li alloy provide an 5% improvement in weight efficiency and stiffness of skin structures as compared with those made from FML with conventional Al-Cu-Mg (2024T3 a.o.) and Al-Zn-Mg-Cu (7475T76 a.o.) alloys.

  4. Supercritical water corrosion of high Cr steels and Ni-base alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Han, Chang Hee; Hwang, Seong Sik

    2004-01-01

    High Cr steels (9 to 12% Cr) have been widely used for high temperature high pressure components in fossil power plants. Recently the concept of SCWR (supercritical water-cooled reactor) has aroused a keen interest as one of the next generation (Generation IV) reactors. Consequently Ni-base (or high Ni) alloys as well as high Cr steels that have already many experiences in the field are among the potential candidate alloys for the cladding or reactor internals. Tentative inlet and outlet temperatures of the anticipated SCWR are 280 and 510 .deg. C respectively. Among many candidate alloys there are austenitic stainless steels, Ni base alloys, ODS alloys as well as high Cr steels. In this study the corrosion behavior of the high Cr steels and Ni base (or high Ni) alloys in the supercritical water were investigated. The corrosion behavior of the unirradiated base metals could be used in the near future as a guideline for the out-of-pile or in-pile corrosion evaluation tests

  5. Quality assurance when surface welding nickel-based alloys; Qualitaetssicherung bei der Auftragsschweissung von Nickelbasislackierungen

    Energy Technology Data Exchange (ETDEWEB)

    Metschke, J. [Muellkraftwerk Schwandorf Betriebsgesellschaft mbH (Germany)

    2003-07-01

    The cladding of evaporator heat exchanger surfaces in refuse incineration boilers with alloy 625 can effectively protect against the corrosive wear of the basic tube if the described rules concerning the pre-treatment, processing, quality control and after-care are observed. This statement is supported by the positive experience with this alloy at the Schwandorf refuse-fired power plant over a period of eight years now. Since the maximum service temperature is limited to 420 C, alloy 625 is only suitable for protecting superheater pipes subject to certain conditions. Long-term experience with alternative nickel-based alloys (alloy 622, alloy 686 and others) are not yet available. (orig.) [German] Die Schweissplattierung von Verdampferwaermetauscherflaechen in Muellverbrennungskesseln mit Alloy 625 kann einen wirksamen Schutz gegen den korrosiven Verschleiss des Grundrohres darstellen, wenn die vorstehenden Regeln ueber Vorbehandlung, Verarbeitung, Qualitaetskontrolle und laufende Nachsorgearbeiten beachtet werden. Diese Aussage wird durch die positiven Erfahrungen mit dieser Legierung im Muellkraftwerk Schwandorf ueber einen Zeitraum von nunmehr acht Jahren gestuetzt. (orig.)

  6. Strain ageing and yield plateau phenomena in γ-TiAl based alloys containing boron

    International Nuclear Information System (INIS)

    Cheng, T.T.; Bate, P.S.; Botten, R.R.; Lipsitt, H.A.

    1999-01-01

    There has been considerable interest over the past few years in γ-TiAl based alloys since they offer a combination of low density and useful mechanical properties at temperatures higher than those possible with conventional titanium alloys. However, there are still serious limitations to their use in engineering components due to their limited ductility and fracture toughness. Much of the recent work has been focused on improving the room temperature ductility of these materials, and a significant part of the work has been involved with studying the effects of thermo-mechanical processing (TMP) and alloying. One of the alloying additions which has received much attention is boron. Addition of boron (≥0.5 at.%) leads to refined as-cast grain structures and can increase the strength and ductility of these alloys. If boron does segregate to grain boundaries, it would be expected that segregation would also occur at dislocations, which can result in solute locking and yield point phenomena. Nakano and Umakoshi's results show some signs of this, with regions of distinct upward curvature in stress-strain curves for boron-containing material, although the flow stress was always increasing with strain. Evidence of strain ageing in TiAl alloys containing boron has also been reported by Wheeler et al., and the work reported here also suggests that boron can act to produce solute locking of glide dislocations in a different class of near γ-TiAl alloys

  7. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  8. Localized electrochemical corrosion of nickel-based alloys. Final report

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Oyeleye, O.; Davidson, M.; Dudek, D.; Hatton, T.A.; Tester, J.W.; Helling, R.K.; Erickson, J.C.

    1986-09-01

    The technique of monitoring open-circuit potential over time to study pitting corrosion of Alloy 600 was demonstrated at 95 0 C. Chloride ion and oxygen levels were varied to determine the conditions required for pit initiation and propagation at 25 0 C and 95 0 C. Without applied potential pitting was not observed at 25 0 C in solutions of up to 2.6 M NaCl. At 95 0 C pit initiation occurred above 0.22 M NaCl for a nitrogen sparged system, 0.042 M NaCl for a contaminated air sparged system and 0.059 M for an O 2 sparged system. At 95 0 C initiation followed by propagation was observed at 0.22 M, 0.12 M and 0.11 M NaCl for the N 2 , air and O 2 sparged systems, respectively. A theoretical model, using a hemispherical pit geometry and transport based on the Nernst-Einstein equation, was developed to predict changes in ion concentration, current and pit size. For a pit with an initial radius of 100 A, a fixed potential difference of 0.5 V and constant ionic diffusivities on the order of 10 -5 , cm 2 /sec, the model predicts that the solution within the pit will become saturated with metal chloride within 2 x 10 -7 seconds. The current density increases exponentially with time and reaches a maximum value of 7.2 x 10 4 A/cm 2 at the point of saturation

  9. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E [Tohoku University, Sendai (Japan); Yoshimi, K; Hanada, S [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  10. Progress with alloy 33 (UNS R20033), a new corrosion resistant chromium-based austenitic material

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1996-01-01

    Alloy 33 (UNS R20033), a new chromium-based corrosion resistant austenitic material with nominally (wt. %) 33 Cr, 32 Fe, 31 Ni, 1.6 Mo, 0.6 Cu, 0.4 N has been introduced to the market in 1995. This paper provides new data on this alloy with respect to mechanical properties, formability, weldability, sensitization characteristics and corrosion behavior. Mechanical properties of weldments including ductility have been established, and match well with those of wrought plate material, without any degradation of ISO V-notch impact toughness in the heat affected zone. When aged up to 8 hours between 600 C and 1,000 C the alloy is not sensitized when tested in boiling azeotropic nitric acid (Huey test). Under field test conditions alloy 33 shows excellent resistance to corrosion in flowing 96--98.5% H 2 SO 4 at 135 C--140 C and flowing 99.1% H 2 SO 4 at 150 C. Alloy 33 has also been tested with some success in 96% H 2 SO 4 with nitrosyl additions at 240 C. In nitric acid alloy 33 is corrosion resistant up to 85% HNO 3 and 75 C or even more. Alloy 33 is also corrosion resistant in 1 mol. HCl at 40 C and in NaOH/NaOCl-solutions. In artificial seawater the pitting potential remains unchanged up to 75 C and is still well above the seawater's redox potential at 95 C. Alloy 33 can be easily manufactured into all product forms required. The new data provided support the multipurpose character of alloy 33 to cope successfully with many requirements of the Chemical Process Industry, the Oil and Gas Industry and the Refinery Industry

  11. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  12. Undercooling and demixing of copper-based alloys

    DEFF Research Database (Denmark)

    Kolbe, M.; Brillo, J.; Egry, I.

    2006-01-01

    Since the beginning of materials science research under microgravity conditions immiscible alloys have been an interesting subject. New possibilities to investigate such systems are offered by containerless processing techniques. Of particular interest is the ternary system Cu-Fe-Co, and its...

  13. Fracture behavior of nickel-based alloys in water

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.J.; Brown, C.M.

    1999-08-01

    The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.

  14. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-01-01

    , especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys

  15. Mechanical properties of Fe3Al-based alloys with addition of carbon, niobium and titanium

    International Nuclear Information System (INIS)

    Zhang Zhengrong; Liu Wenxi

    2006-01-01

    Several Fe 3 Al-based iron aluminides with the addition of alloying elements carbon, niobium and titanium were produced by vacuum induction melting (VIM) and hot spinning forging. Analytic techniques including transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used in studying the microstructure and fracture manner of these alloys. The results show that due to the addition of alloying elements, the superlattice dislocations tend towards multiple slipping, leaving behind on their slip plane ribbons of square-shaped slip-induced antiphase boundaries. The elongation of Fe 3 Al in tension at room temperature increased to about 10% by the addition of suitable alloying elements, the usage of thermo-mechanical processing that has the function of refining grains and substructures, and subsequent annealing

  16. Computational design of precipitation-strengthened titanium-nickel-based shape memory alloys

    Science.gov (United States)

    Bender, Matthew D.

    Motivated by performance requirements of future medical stent applications, experimental research addresses the design of novel TiNi-based, superelastic shape-memory alloys employing nanoscale precipitation strengthening to minimize accommodation slip for cyclic stability and to increase output stress capability for smaller devices. Using a thermodynamic database describing the B2 and L21 phases in the Al-Ni-Ti-Zr system, Thermo-Calc software was used to assist modeling the evolution of phase composition during 600°C isothermal evolution of coherent L21 Heusler phase precipitation from supersaturated TiNi-based B2 phase matrix in an alloy experimentally characterized by atomic-scale Local Electrode Atom Probe (LEAP) microanalysis. Based on measured evolution of the alloy hardness (under conditions stable against martensitic transformation) a model for the combined effects of solid solution strengthening and precipitation strengthening was calibrated, and the optimum particle size for efficient strengthening was identified. Thermodynamic modeling of the evolution of measured phase fractions and compositions identified the interfacial capillary energy enabling thermodynamic design of alloy microstructure with the optimal strengthening particle size. Extension of alloy designs to incorporate Pt and Pd for reducing Ni content, enhancing radiopacity, and improving manufacturability were considered using measured Pt and Pd B2/L2 1 partitioning coefficients. After determining that Pt partitioning greatly increases interphase misfit, full attention was devoted to Pd alloy designs. A quantitative approach to radiopacity was employed using mass attenuation as a metric. Radiopacity improvements were also qualitatively observed using x-ray fluoroscopy. Transformation temperatures were experimentally measured as a function of Al and Pd content. Redlich-Kister polynomial modeling was utilized for the dependence of transformation reversion Af temperature on B2 matrix phase

  17. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  18. Effects of composition on the order-disorder transformation in Ni-Cr based alloys

    International Nuclear Information System (INIS)

    Marucco, A.

    1991-01-01

    The Ni-Cr based alloys undergo an ordering transformation, due to the formation of an ordered Ni 2 Cr phase, which causes a lattice contraction and it is responsisble for ''negative creep'' or excessive stresses in constrained components. A short-range ordered (SRO) structure develops in the matrix phase after solution treatment and at early stages of ageing, which can transform to a long-range ordered (LRO) structure, depending on the alloy composition and on time and temperature of ageing, upon prolonged annealing below the critical temperature. In stoichiometric Ni 2 Cr alloy LRO forms in a few hours, but in off-stoichiometric alloys the transformation kinetics are very sluggish and LRO takes several tens of thousands of hours to form, when it forms. The ordering behaviours of stoichiometric Ni 2 Cr and Ni 3 Cr were studied by means of isothermal treatments in the temperature range 450-600degC for different ageing times up to 30 000 h, followed by lattice parameter measurements by X-ray diffraction and electrical resistivity measurements. Similar studies performed on a series of ternary Ni-Cr-Fe alloys revealed the dependence of the degree of order on Cr concentration and a markedly delaying influence of Fe on the ordering kinetics. Finally, long-term microstructural stability of some commercial Ni-Cr based alloys, widely used for high temperature applications, have been studied: the ordering behaviour and associated microstructural changes are discussed in this paper

  19. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Ruhmann, H.; Garzarolli, F.

    1997-01-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs

  20. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  1. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Zhou, Yumei; Ding, Xiangdong; Otsuka, Kazuhiro; Lookman, Turab; Sun, Jun; Ren, Xiaobing

    2015-01-01

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti 50 (Pd 50−x D x ) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q −1 ~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q −1 ~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges

  2. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  3. Magnesium-based hydrogen alloy anodes for a nickel metal hydrides secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luan, B.; Zhao, H.J.; Liu, H.K.; Dou, S.X. [Univ of Wollongong, Wollongong, NSW (Australia). Centre for Superconducting and Electronic Materials

    1996-12-31

    Extensive work has been carried out in our group to try utilizing magnesium-based hydrogen storage alloys as a low cost and high performance anode materials for Ni-MH battery. It was found that the modified Mg{sub 2}Ni alloy anodes were able to be charged-discharged effectively in a KOH aqueous solution at ambient temperature. The discharge capacity and cycle have been substantially improved in four ways: (1) by partial substitution of La, Ti, V, Zr, Ca for Mg and Fe, Co, Cu, Al, Si, Y, Mn for Ni in Mg{sub 2}Ni; (2) by composite of Mg{sub 2}Ni with another hydrogen storage alloys; (3) by room-temperature surface microencapsulation and, (4) by ultrasound treatment of alloy powders. A discharge capacity of 170 mAh/g has been obtained from the modified Mg{sub 2}Ni-type alloy electrode, and the cycle life has exceeded 350 cycles. The high rate dischargeability was also significantly improved by the modification. It was concluded that magnesium-based hydrogen storage alloys would become promising anode materials for Ni- MH secondary battery with further improvement of discharge capacity and cycling performance

  4. Compatibility between vandium-base alloys and flowing lithium: Partitioning of hydrogen at elevated temperatures

    International Nuclear Information System (INIS)

    Hull, A.B.; Chopra, O.K.; Loomis, B.; Smith, D.

    1989-12-01

    A major concern in fusion reactor design is possible hydrogen-isotope-induced embrittlement of structural alloys in the neutron environment expected in these reactors. Hydrogen fractionation occurs between lithium and various refractory metals according to a temperature-dependent distribution coefficient, K H , that is defined as the ration of the hydrogen concentration in the metallic specimen to that in the liquid lithium. In the present work, K H was determined for pure vanadium and several binary and ternary alloys, and the commercial Vanstar 7. Hydrogen distribution studies were performed in an austenitic steel forced-circulation lithium loop. Equilibrium concentrations of hydrogen in vanadium-base alloys exposed to flowing lithium at temperatures of 350 to 550 degree C were measured by inert gas fusion techniques and residual gas analysis. Thermodynamic calculations are consistent with the effect of chromium and titanium in the alloys on the resultant hydrogen fractionation. Experimental and calculated results indicate that K H values are very low; i.e., the hydrogen concentrations in the lithium-equilibrated vanadium-base alloy specimens are about two orders of magnitude lower than those in the lithium. Because of this low distribution coefficient, embrittlement of vanadium alloys by hydrogen in lithium would not be expected. 15 refs., 5 figs., 4 tabs

  5. Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guo J.

    2015-06-01

    Full Text Available Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.

  6. Magnesium-based hydrogen alloy anodes for a nickel metal hydrides secondary battery

    International Nuclear Information System (INIS)

    Cui, N.; Luan, B.; Zhao, H.J.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Extensive work has been carried out in our group to try utilizing magnesium-based hydrogen storage alloys as a low cost and high performance anode materials for Ni-MH battery. It was found that the modified Mg 2 Ni alloy anodes were able to be charged-discharged effectively in a KOH aqueous solution at ambient temperature. The discharge capacity and cycle have been substantially improved in four ways: (1) by partial substitution of La, Ti, V, Zr, Ca for Mg and Fe, Co, Cu, Al, Si, Y, Mn for Ni in Mg 2 Ni; (2) by composite of Mg 2 Ni with another hydrogen storage alloys; (3) by room-temperature surface microencapsulation and, (4) by ultrasound treatment of alloy powders. A discharge capacity of 170 mAh/g has been obtained from the modified Mg 2 Ni-type alloy electrode, and the cycle life has exceeded 350 cycles. The high rate dischargeability was also significantly improved by the modification. It was concluded that magnesium-based hydrogen storage alloys would become promising anode materials for Ni- MH secondary battery with further improvement of discharge capacity and cycling performance

  7. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y H [Korea Atomic Energy Research Inst., Dae Jun (Korea, Republic of); Ruhmann, H; Garzarolli, F [Siemens-KWU, Power Generation Group, Erlangen (Germany)

    1997-02-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs.

  8. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo

    1992-01-01

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na 2 SO 4 +H 2 SO 4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  9. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian

    2006-01-01

    The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)

  10. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, Alejandra, E-mail: aleja311@berkeley.edu [University of California Berkeley, Berkeley, CA 94706 (United States); Kramer, Kevin [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Meier, Wayne; DeMuth, James; Reyes, Susana [TerraPower, Bellevue, WA 98005 (United States); Fratoni, Massimiliano [University of California Berkeley, Berkeley, CA 94706 (United States)

    2016-06-15

    Highlights: • Monte Carlo calculations were performed on numerous lithium ternary alloys. • Elements with high neutron multiplication performed well with low absorbers. • Enriching lithium decreases minimum lithium concentration of alloys by 60% or more. • Alloys that performed well neutronically were selected for activation calculations. • Alloys activated, except LiBaBi, do not pose major environmental or safety concerns. - Abstract: An attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based ternary alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as Pb, Sn, and Sr, perform well with those that have high neutron multiplication such as Pb and Bi. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium with {sup 6}Li significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR

  11. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    Science.gov (United States)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  12. Thermophysical properties of some liquid binary Mg-based alloys

    Directory of Open Access Journals (Sweden)

    Plevachuk Y.

    2017-01-01

    Full Text Available In this study, some structure-sensitive thermophysical properties, namely, electrical conductivity, thermal conductivity and thermoelectric power of liquid binary alloys Al33.3Mg66.7, Mg47.6Zn52.4 and Mg33.3Zn66.7 (all in wt.%, as the most promising cast alloys to fabricate components for cars, aircraft and other complex engineering products, were investigated. The electrical conductivity and thermoelectric power were measured in a wide temperature range by the four-point contact method. The thermal conductivity was measured by the steady-state concentric cylinder method. The obtained results are compared with literature experimental and calculated data.

  13. Fracture of niobium-base silicide coated alloy

    International Nuclear Information System (INIS)

    Davydova, A.D.; Zotov, Yu.P.; Ivashchenko, O.V.; Kushnareva, N.P.; Yarosh, I.P.

    1990-01-01

    Mechanical properties and character of fracture of Nb-W-Mo-Zr-C alloy composition with complex by composition and structure silicide coating under different states of stage-by-stage coating are studied. Structural features, character of fracture from ductile to quasibrittle transcrystalline one and, respectively, the composition plasticity level are defined by interrelation of fracture processes in coating, matrix plastic flow and possibility and way of stress relaxation on their boundary

  14. The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead

    International Nuclear Information System (INIS)

    Hwang, S.S.; Kim, H.P.; Lee, D.H.; Kim, U.C.; Kim, J.S.

    1999-01-01

    The mode of stress corrosion cracking (SCC) in Ni-base alloys in high temperature aqueous solutions containing lead was studied using C-rings and slow strain rate testing (SSRT). The lead concentration, pH and the heat treatment condition of the materials were varied. TEM work was carried out to observe the dislocation behavior in thermally treated (TT) and mill annealed (MA) materials. As a result of the C-ring test in 1M NaOH+5000 ppm lead solution, intergranular stress corrosion cracking (IGSCC) was found in Alloy 600MA, whereas transgranular stress corrosion cracking (TGSCC) was found in Alloy 600TT and Alloy 690TT. In most solutions used, the SCC resistance increased in the sequence Alloy 600MA, Alloy 600TT and Alloy 690TT. The number of cracks that was observed in alloy 690TT was less than in Alloy 600TT. However, the maximum crack length in Alloy 690TT was much longer than in Alloy 600TT. As a result of the SSRT, at a nominal strain rate of 1 x 10 -7 /s, it was found that 100 ppm lead accelerated the SCC in Alloy 600MA (0.01%C) in pH 10 at 340 C. IGSCC was found in a 100 ppm lead condition, and some TGSCC was detected on the fracture surface of Alloy 600MA cracked in the 10000 ppm lead solution. The mode of cracking for Alloy 600 and Alloy 690 changed from IGSCC to TGSCC with increasing grain boundary carbide content in the material and lead concentration in the solution. IGSCC seemed to be retarded by stress relaxation around the grain boundaries, and TGSCC in the TT materials seemed to be a result of the crack blunting at grain boundary carbides and the enhanced Ni dissolution with an increase of the lead concentration. (orig.)

  15. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    Science.gov (United States)

    Zhu, Min; Lu, Yanshan; Ouyang, Liuzhang; Wang, Hui

    2013-01-01

    Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys. PMID:28788353

  16. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  17. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  18. A novel method for producing magnesium based hydrogen storage alloys

    International Nuclear Information System (INIS)

    Walton, A.; Matthews, J.; Barlow, R.; Almamouri, M.M.; Speight, J.D.; Harris, I.R.

    2003-01-01

    Conventional melt casting techniques for producing Mg 2 Ni often result in no stoichiometric compositions due to the excess Mg which is added to the melt in order to counterbalance sublimation during processing. In this work a vapour phase process known as Low Pressure Pack Sublimation (LPPS) has been used to coat Ni substrates with Mg at 460-600 o C producing layers of single phase Mg 2 Ni. Ni substrates coated to date include powder, foils and wire. Using Ni-Fe substrates it has also been demonstrated that Fe can be distributed through the Mg 2 Ni alloy layer which could have a beneficial effect on the hydrogen storage characteristics. The alloy layers formed have been characterised by XRD and SEM equipped with EDX analysis. Hydrogen storage properties have been evaluated using an Intelligent Gravimetric Analyser (IGA). LPPS avoids most of the sintering of powder particles during processing which is observed in other vapour phase techniques while producing a stoichiometric composition of Mg 2 Ni. It is also a simple, low cost technique for producing these alloys. (author)

  19. The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva

    Directory of Open Access Journals (Sweden)

    Mareci D.

    2005-07-01

    Full Text Available Five non-precious Ni-Co based alloys were analyzed with respect to their corrosion behaviour. The correlation between the amount of the elements Cr, Mo, V and the corrosion behaviour, expressed by the PREN (pitting resistance equivalent number index in the case of the allied steels, was extended for Ni-Cr and Co-Cr dental alloys characterization. Open circuit potential, corrosion current densities, as a measure of the corrosion rate, and main parameters of the corrosion process were evaluated from linear and cyclic polarization curves, for five Ni-Cr or Co-Cr alloys in an Afnor type artificial saliva. The maintenance times of the alloy in the corrosive medium influence the corrosion rate; the corrosion current values decrease with the maintenance time due to their passivation in solution. The microscopic analysis of the alloy surfaces shows that this passivation in solution does not modify the corrosion type. The alloys with PREN 32.9 are susceptible of localized corrosion.

  20. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C. E-mail: dejulian@padova.infm.it; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D' Acapito, F

    2001-04-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu{sub 50}Ni{sub 50} nanoparticles are similar to those of the Cu{sub 60}Ni{sub 40} bulk alloy. The crystal structure of Co{sub x}Ni{sub 1-x} (0{<=}x{<=}1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10{sup 16} ions/cm{sup 2} total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy.

  1. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    International Nuclear Information System (INIS)

    De Julian Fernandez, C.; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D'Acapito, F.

    2001-01-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu 50 Ni 50 nanoparticles are similar to those of the Cu 60 Ni 40 bulk alloy. The crystal structure of Co x Ni 1-x (0≤x≤1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10 16 ions/cm 2 total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy

  2. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  3. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  4. Microstructure and mechanical properties of multiphase NiAl-based alloys

    Science.gov (United States)

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1990-01-01

    The effect of the gamma-prime phase on the deformation behavior and fracture resistance of melt-spun ribbons and consolidated bulk specimens of a series of Nial-based alloys with Co and Hf additions has been examined. The morphology, location, and volume fraction of the gamma-prime phase are significant factors in enhancing the fracture resistance of the normally brittle NiAl-based alloys. In particular, the results indicate that a continuous-grain-boundary film of gamma-prime can impart limited room-temperature ductility regardless of whether B2 or L10 NiAl is present. Guidelines for microstructure control in multiphase NiAl-based alloys are also presented.

  5. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  6. Microstructure-based modeling of tensile deformation of a friction stir welded AZ31 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Weijun, E-mail: weijun.he@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Zheng, Li [College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Xin, Renlong, E-mail: rlxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-02-27

    The deformation and fracture behaviors of friction stir welded (FSWed) Mg alloys are topics under investigation. The microstructure and texture of a FSWed Mg alloy were characterized by electron back scattered diffraction. Four characteristic sub-zones with different orientations in the FSWed Mg alloy joint were identified. The texture distribution across the stir zones and transition zone were obviously inhomogeneous. For comparison, four sub-regions in the base material were also characterized. Based on the experimental microstructure and texture, a crystal plasticity finite element model was developed to represent the friction stir welded Mg alloy. Simulations were carried out to study the effect of texture variation on the deformation behaviors during transverse tension. Compared with the base material case, strong macroscopic strain localization was observed for the FSWed joint case after transverse tension. Strain localization may have contributed to the decayed elongation of the FSWed joint in the transverse tension. Texture variation in the thermal-mechanical affected zone did not change the deformation mechanism in the stir zones, while it did decrease the strain localization, thus assuming to improve the elongation of the friction stir welded Mg alloy.

  7. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Mitlin, D. [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, T6G 2V4, Edmonton, Alberta (Canada); Poirier, E.; Fritzsche, H. [National Research Council Canada, SIMS, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2010-03-15

    This study focused on hydrogen sorption properties of 1.5 {mu}m thick Mg-based films with Al, Fe and Ti as alloying elements. The binary alloys are used to establish as baseline case for the ternary Mg-Al-Ti, Mg-Fe-Ti and Mg-Al-Fe compositions. We show that the ternary alloys in particular display remarkable sorption behavior: at 200 C the films are capable of absorbing 4-6 wt% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable over cycling for the Mg-Al-Ti and Mg-Fe-Ti alloys. Even after 100 absorption/desorption cycles, no degradation in capacity or kinetics is observed. For Mg-Al-Fe, the properties are clearly worse compared to the other ternary combinations. These differences are explained by considering the properties of all the different phases present during cycling in terms of their hydrogen affinity and catalytic activity. Based on these considerations, some general design principles for Mg-based hydrogen storage alloys are suggested. (author)

  8. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    International Nuclear Information System (INIS)

    Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin

    2013-01-01

    We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation. (paper)

  9. Microstructure-based modeling of tensile deformation of a friction stir welded AZ31 Mg alloy

    International Nuclear Information System (INIS)

    He, Weijun; Zheng, Li; Xin, Renlong; Liu, Qing

    2017-01-01

    The deformation and fracture behaviors of friction stir welded (FSWed) Mg alloys are topics under investigation. The microstructure and texture of a FSWed Mg alloy were characterized by electron back scattered diffraction. Four characteristic sub-zones with different orientations in the FSWed Mg alloy joint were identified. The texture distribution across the stir zones and transition zone were obviously inhomogeneous. For comparison, four sub-regions in the base material were also characterized. Based on the experimental microstructure and texture, a crystal plasticity finite element model was developed to represent the friction stir welded Mg alloy. Simulations were carried out to study the effect of texture variation on the deformation behaviors during transverse tension. Compared with the base material case, strong macroscopic strain localization was observed for the FSWed joint case after transverse tension. Strain localization may have contributed to the decayed elongation of the FSWed joint in the transverse tension. Texture variation in the thermal-mechanical affected zone did not change the deformation mechanism in the stir zones, while it did decrease the strain localization, thus assuming to improve the elongation of the friction stir welded Mg alloy.

  10. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  11. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    Energy Technology Data Exchange (ETDEWEB)

    Giovedi, Claudia; Martins, Marcelo Ramos, E-mail: claudia.giovedi@labrisco.usp.br, E-mail: mrmartin@usp.br [Laboratorio de Analise, Avaliacao e Gerenciamento de Risco (LabRisco/POLI/USP), São Paulo, SP (Brazil); Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e, E-mail: ayabe@ipen.br, E-mail: dsgomes@ipen.br, E-mail: teixiera@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  12. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Martins, Marcelo Ramos; Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e

    2017-01-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  13. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of aluminium content on the physical, mechanical and sliding wear properties of zinc-based alloys

    International Nuclear Information System (INIS)

    Prasad, B.K.; Patwardhan, A.K.; Yegneswaran, A.H.

    1997-01-01

    Attention has been focussed on the influence of Al content on the physical, mechanical and sliding wear properties of Zn-based alloys. Aspects studied include microstructure, density, electrical conductivity, hardness, tensile strength and elongation as well as sliding wear response of the alloys. Microstructural features of the alloys showed the presence of primary α, eutectic/eutectoid α + η (depending on whether the alloy was hypereutectic/hypereutectoid with regard to the concentration of Al) along with the meta stable ε phase. The study suggests that it is possible to design and develop Zn-based alloys with a wide range of concentration of Al. The alloys in turn attain different combinations of physical, mechanical and wear properties which could suit a variety of engineering applications. Increasing the Al content in the alloy system proves beneficial within limits. In other words, there exists an optimum quantity of Al which could reap its advantage to the maximum extent. This of course varies with reference to a specific property of the alloy(s). The changing response of the alloys has been explained in terms of their microstructural features and the effects produced as a result of the test conditions maintained while characterizing the specimens. (orig.)

  15. Hydrogen Induced Intergranular Cracking of Nickel-Base Alloys.

    Science.gov (United States)

    1982-02-01

    alloys are discussed. Experimental The steel used in the present investigation is a fully bainitic 2 1/4 Cr-lMo pressure vessel steel , ASTM A542 Class 3...Appendix A describes recent experiments performed in order to study the influence of plastic deformation on hydrogen transport in a 214 Cr-lMo steel (8...PLASTIC DEFORMATION ON HYDROGEN TRANSPORT IN 2 1/4 Cr-lMo STEEL M. Kurkela, G.S. Frankel, and R.M. Latanision Department of Materials Science and

  16. Preparation and characterization of aluminum based alloy - mica composites

    International Nuclear Information System (INIS)

    Rashid, M.A.; Shamim, A.

    1999-01-01

    In this work, six pallets each of 2.0 cm dia and 0.5 cm thickness were prepared by powder metallurgy; half of them also contained 1% mica-powder to form a composite. Inclusion of mica resulted in a decreased density and an increased porosity of the sample. Brinell hardness was found to be 21% less for the composite than for the pure alloy. Micro-graphs of different areas of the sample show uniform distribution of mica particles and avoids around them. (author)

  17. Using the PSCPCSP computer software for optimization of the composition of industrial alloys and development of new high-temperature nickel-base alloys

    Science.gov (United States)

    Rtishchev, V. V.

    1995-11-01

    Using computer programs some foreign firms have developed new deformable and castable high-temperature nickel-base alloys such as IN, Rene, Mar-M, Udimet, TRW, TM, TMS, TUT, with equiaxial, columnar, and single-crystal structures for manufacturing functional and nozzle blades and other parts of the hot duct of transport and stationary gas-turbine installations (GTI). Similar investigations have been carried out in Russia. This paper presents examples of the use of the PSCPCSP computer software for a quantitative analysis of structural und phase characteristics and properties of industrial alloys with change (within the grade range) in the concentrations of the alloying elements for optimizing the composition of the alloys and regimes of their heat treatment.

  18. A new high-strength iron base austenitic alloy with good toughness and corrosion resistance (GE-EPRI alloy-TTL)

    International Nuclear Information System (INIS)

    Ganesh, S.

    1989-01-01

    A new high strength, iron based, austenitic alloy has been successfully developed by GE-EPRI to satisfy the strength and corrosion resistance requirements of large retaining rings for high capacity generators (>840Mw). This new alloy is a modified version of the EPRI alloy-T developed by the University of California, Berkeley, in an earlier EPRI program. It is age hardenable and has the nominal composition (weight %): 34.5 Ni, 5Cr, 3Ti, 1Nb, 1Ta, 1Mo, .5Al, .3V, .01B. This composition was selected based on detailed metallurgical and processing studies on modified versions of alloy-T. These studies helped establish the optimum processing conditions for the new alloy and enabled the successful scale-up production of three large (50-52 inch dia) test rings from a 5,000 lb VIM-VAR billet. The rings were metallurgically sound and exhibited yield strength capabilities in the range 145 to 220 ksi depending on the extent of hot/cold work induced. The test rings met or exceeded all the property goals. The above alloy can provide a good combination of strength, toughness and corrosion resistance and, through an suitable modification of chemistry or processing conditions, could be a viable candidate for high strength LWR internal applications. 3 figs

  19. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  20. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  1. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of γ-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation γ-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed

  2. Multi-step wrought processing of TiAl-based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1997-04-01

    Wrought processing will likely be needed for fabrication of a variety of TiAl-based alloy structural components. Laboratory and development work has usually relied on one-step forging to produce test material. Attempts to scale-up TiAl-based alloy processing has indicated that multi-step wrought processing is necessary. The purpose of this study was to examine potential multi-step processing routes, such as two-step isothermal forging and extrusion + isothermal forging. The effects of processing (I/M versus P/M), intermediate recrystallization heat treatments and processing route on the tensile and creep properties of Ti-48Al-2Nb-2Cr alloys were examined. The results of the testing were then compared to samples from the same heats of materials processed by one-step routes. Finally, by evaluating the effect of processing on microstructure and properties, optimized and potentially lower cost processing routes could be identified

  3. Fabrication of polymer-alloy based on polytetrafluoroethylene by radiation-crosslinking

    International Nuclear Information System (INIS)

    Oshima, A.; Asano, S.; Hyunga, T.; Ichizuri, S.; Washio, M.

    2003-01-01

    Perfluoropolymer such as polytetrafluoroethylene (PTFE), tetrafluoroethylene co-perfluoroalkylvinylether (PFA) and tetrafluoroethylene-co-hexafluoropropylene (FFP) have been classified to be a typical polymer of radiation-induced degradation. However, we confirmed that the crosslinking of PTFE, PFA and FEP proceed by irradiation under selective condition where oxygen-free and high temperature above the melting temperature of them. In this study, fabrication of polymer-alloy based on PTFE has been demonstrated by radiation-crosslinking techniques. The polymer alloy, which was PTFE fine powder contained with other polymeric materials, was obtained by electron beams irradiation under oxygen-free atmosphere. Characterization of polymer-alloy based on PTFE has been studied by various measurements such as solid state 19F- and 13C-NMR spectroscopy, thermal analysis (DSC, TGA)

  4. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  5. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  6. Phonon structures of GaN-based random semiconductor alloys

    Science.gov (United States)

    Zhou, Mei; Chen, Xiaobin; Li, Gang; Zheng, Fawei; Zhang, Ping

    2017-12-01

    Accurate modeling of thermal properties is strikingly important for developing next-generation electronics with high performance. Many thermal properties are closely related to phonon dispersions, such as sound velocity. However, random substituted semiconductor alloys AxB1-x usually lack translational symmetry, and simulation with periodic boundary conditions often requires large supercells, which makes phonon dispersion highly folded and hardly comparable with experimental results. Here, we adopt a large supercell with randomly distributed A and B atoms to investigate substitution effect on the phonon dispersions of semiconductor alloys systematically by using phonon unfolding method [F. Zheng, P. Zhang, Comput. Mater. Sci. 125, 218 (2016)]. The results reveal the extent to which phonon band characteristics in (In,Ga)N and Ga(N,P) are preserved or lost at different compositions and q points. Generally, most characteristics of phonon dispersions can be preserved with indium substitution of gallium in GaN, while substitution of nitrogen with phosphorus strongly perturbs the phonon dispersion of GaN, showing a rapid disintegration of the Bloch characteristics of optical modes and introducing localized impurity modes. In addition, the sound velocities of both (In,Ga)N and Ga(N,P) display a nearly linear behavior as a function of substitution compositions. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80481-0.

  7. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  8. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    control tool was proved in two foundries. The method can also correctly predict the onset of fading. The corrosion resistance of the grain refined alloys was measured in two solutions having different hydrogen activities, pH 6 and pH8, and compared with the base alloys. Potentiodynamic polarization and long term weight loss experiments were conducted to evaluate the corrosion resistance. Cu-Zn alloys were evaluated for dezincification. In general, the grain refined alloys performed marginally better than the base alloys.

  9. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    Science.gov (United States)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  10. RF plasma nitriding of severely deformed iron-based alloys

    International Nuclear Information System (INIS)

    Ferkel, H.; Glatzer, M.; Estrin, Y.; Valiev, R.Z.; Blawert, C.; Mordike, B.L.

    2003-01-01

    The effect of severe plastic deformation by cold high pressure torsion (HPT) on radio frequency (RF) plasma nitriding of pure iron, as well as St2K50 and X5CrNi1810 steels was investigated. Nitriding was carried out for 3 h in a nitrogen atmosphere at a pressure of 10 -5 bar and temperatures of 350 and 400 deg. C. Nitrided specimens were analysed by scanning electron microscopy (SEM), X-ray diffraction and micro hardness measurements. It was found that HPT enhances the effect of nitriding leading almost to doubling of the thickness of the nitrided layer for pure iron and the high alloyed steel. The largest increase in hardness was observed when HPT was combined with RF plasma nitriding at 350 deg. C. In the case of pure iron, the X-ray diffraction spectra showed the formation of ε and γ' nitrides in the compound layer, with a preferential formation of γ' at the expense of the α-phase at the higher nitriding temperature. The corresponding surface hardness was up to 950 HV0.01. While the HPT-processed St2K50 exhibits both nitride phases after nitriding at 350 deg. C, only the γ'-phase was observed after nitriding at 400 deg. C. A surface hardness of up to 1050 HV0.01 was measured for this steel. The high alloyed steel X5CrNi1810 exhibited the highest increase in surface hardness when HPT was combined with nitriding at 350 deg. C. The surface hardness of this steel was greater than 1400 HV0.025. The XRD analyses indicate the formation of the expanded austenite (S-phase) in the surface layer as a result of RF plasma nitriding. Furthermore, after HPT X5CrNi1810 was transformed completely into deformation martensite which did not transform back to austenite under thermochemical treatment. However, in the case of nitriding of the HPT-processed high alloyed steel at 400 deg. C, the formation of the S-phase was less pronounced. In view of the observed XRD peak broadening, the formation of nitrides, such as e.g. CrN, cannot be ruled out

  11. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  12. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    Science.gov (United States)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  13. Experimental Studies on Al (5.7% Zn) Alloy based Hybrid MMC

    Science.gov (United States)

    Shivaprakash, Y. M.; Ramu, H. C.; Chiranjivee; Kumar, Roushan; Kumar, Deepak

    2018-02-01

    In this investigation, an attempt is made to disperse SiC (20-25 microns) and Gr (15-20 microns) in the aluminium alloy having Zn, Mg and coper as major alloying elements. The composite is further subjected to mechanical testing to determine various properties like hardness, tensile strength and wear resistance. The alloy and composite samples were tested in the un heat treated conditions. All the tests were done at the laboratory conditions as per ASTM standards. The Pin-On-Disc tribometer is used to test the two-body abrasive sliding wear behaviour in dry conditions. The wear pattern is analysed by the optical images of worn surface taken in an inverted metallurgical microscope. The calculated density is found to be reducing as the SiC and Gr quantity is increased in the base alloy. The as cast Al alloy was found to be having highest hardness. The introduction of SiC tend to increase the hardness and UTS, since Gr is also introduced simultaneously which tends to reduce the hardness and UTS of composite. The composite having highest quantity of Gr showed superior wear resistance which is mainly because the Gr particulates provide an inbuilt lubricating properties to composite. The analysis of images of worn surface showed the abrasive and delamination pattern of wear. The composites developed in the present work can be used in the automobile and aerospace parts that are light in weight and require self-lubricating properties to enhance the wear resistance.

  14. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  15. Effect of similar elements on improving glass-forming ability of La-Ce-based alloys

    International Nuclear Information System (INIS)

    Zhang Tao; Li Ran; Pang Shujie

    2009-01-01

    To date the effect of unlike component elements on glass-forming ability (GFA) of alloys have been studied extensively, and it is generally recognized that the main consisting elements of the alloys with high GFA usually have large difference in atomic size and atomic interaction (large negative heat of mixing) among them. In our recent work, a series of rare earth metal-based alloy compositions with superior GFA were found through the approach of coexistence of similar constituent elements. The quinary (La 0.5 Ce 0.5 ) 65 Al 10 (Co 0.6 Cu 0.4 ) 25 bulk metallic glass (BMG) in a rod form with a diameter up to 32 mm was synthesized by tilt-pour casting, for which the glass-forming ability is significantly higher than that for ternary Ln-Al-TM alloys (Ln = La or Ce; TM = Co or Cu) with critical diameters for glass-formation of several millimeters. We suggest that the strong frustration of crystallization by utilizing the coexistence of La-Ce and Co-Cu to complicate competing crystalline phases is helpful to construct BMG component with superior GFA. The results of our present work indicate that similar elements (elements with similar atomic size and chemical properties) have significant effect on GFA of alloys.

  16. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  17. Zr - based alloys as hydride electrodes in Ni-MH batteries

    International Nuclear Information System (INIS)

    Biris, A.R.; Biris, A.S.; Misan, I.; Lupu, D.

    1999-01-01

    Hydrogen storage alloys, MH, are already used in Ni-MH alkaline batteries conquering an important share of the rechargeable nickel-cadmium battery market. This remarkable success is due not only to the replacement of the toxic material, cadmium, by metal hydrides but also to an increased specific energy, which makes them attractive for electric vehicles. Many research groups are concerned in the improvement of the hydride electrode characteristics: hydrogen storage capacity, high-rate discharge ability, increased cycle life. These properties can be modified by substitution of the base components of a given alloy. A comparison of two types of alloys suitable for MH electrodes LaNi 5 able to store 1.36 w/o hydrogen with Zr(Ti)-Ni alloys of the AB 2 Laves phase type structure showed that the latter could absorb higher amounts of hydrogen. We report part of studies on Zr-V-Cr-Ni of the 15 C type Laves phase structure using our original procedure for pasted electrodes. The substitution of Cr for V atoms in ZrV 0.5 Ni 1 . 5 did not increase the discharge capacity. However, it proved to have a remarkable effect on the discharge capacity C at low temperatures. C at - 12 deg. C as compared to 20 deg.C increases up to ∼ 65 % for Cr containing alloys. (authors)

  18. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Science.gov (United States)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  19. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    DEFF Research Database (Denmark)

    Cecchetto, L; Ambat, Rajan; Davenport, A.J.

    2007-01-01

    AA5182 aluminium alloy cold rolled samples were coated by thin Wlms of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very eVective for corrosion protection of aluminium alloys in neutral environment. This study underlines......: • a weak redox activity of the polymer which passivate the metal, • a proton involving self-healing process taking place at the polymer–metal interface, which contributes to delay local acidiWcation in Wrst steps of corrosion on EB coated aluminium surfaces....

  20. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  1. Ultra-precision machining induced phase decomposition at surface of Zn-Al based alloy

    International Nuclear Information System (INIS)

    To, S.; Zhu, Y.H.; Lee, W.B.

    2006-01-01

    The microstructural changes and phase transformation of an ultra-precision machined Zn-Al based alloy were examined using X-ray diffraction and back-scattered electron microscopy techniques. Decomposition of the Zn-rich η phase and the related changes in crystal orientation was detected at the surface of the ultra-precision machined alloy specimen. The effects of the machining parameters, such as cutting speed and depth of cut, on the phase decomposition were discussed in comparison with the tensile and rolling induced microstrucutural changes and phase decomposition

  2. Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys

    Science.gov (United States)

    Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.

    2018-05-01

    Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.

  3. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  4. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Cooper, R.A.

    1976-01-01

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  5. Corrosion and oxidation of vanadium-base alloys in helium environments

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1984-01-01

    The increase in weight of unalloyed V and V-5Ti, V-15Cr and V-15Cr-5Ti alloys at 725, 825 and 925 K was determined for exposure times ranging up to 1000 hours in He containing H 2 and/or H 2 O impurity. The microhardness of the specimens in a transverse section was also determined after exposure for 1000 hours. These results were utilized to discuss the consequences of the selection of certain radiation-damage resistant, V-base alloys for structural materials applications in a fusion reactor

  6. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    International Nuclear Information System (INIS)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-01-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ′(Ni 3 (Al,Ti)) and γ″(Ni 3 Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ′ and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C

  7. New high strength technologically ecological and expedient economically advantageous alloys on Fe-C base

    International Nuclear Information System (INIS)

    Kolev, B.V.

    2003-01-01

    The paper presents framework a part of by now obtained results of the authors studies in the period 1967(68) - 2002 about possibilities for obtaining new high-strength and wear resistant cast alloys on, Fe-C base (complex alloyed steels and cast irons of different systems with different structure, reflected in over 125 articles, 15 inventions (patents) and other scientific studies. The paper includes summarized results and discussion. Key words: new austenite steels and cast irons, mechanical characteristics, wear resistance. (Original)

  8. Anodic solubility and electrochemical machining of hard alloys on the base of chromium and titanium carbides

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A D; Klepikov, A N; Malofeeva, A N; Moroz, I I

    1985-01-01

    The regularities of anodic behaviour and electrochemical machining (ECM) of the samples of three materials with the following compositions: 25% of Cr/sub 3/C/sub 2/, 15% of Ni, 70% of TiC, 25% of Ni, 5% of Cr, 70% of TiC, 15% of Ni, 15% of Mo are investigated. It is shown that the electrochemical method is applicable to hard alloys machining on the base of chromium and titanium carbides, the machining of which mechanically meets serious difficulties. The alloys machining rate by a mobile cathode constitutes about 0.5 mm/min.

  9. Bubble formation upon crystallization of high nitrogen iron base alloys

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Sivka, E.; Skuza, Z.

    2000-01-01

    A study is made into the conditions of nitrogen bubble formation during crystallization of unalloyed iron, alloys of Fe-O, Fe-O-S systems, steels 1Kh13, 0Kh18N9 and a two-phase Fe-11%Cr-1%Mo-0.2%V steel. It is revealed that the amount of bubbles in a high nitrogen steel casting increases with a degree of nitrogen supersaturation and decreases with a cooling rate growth and with a rise of surfactant concentration in the metal. In sound castings a nitrogen content can be increased due to a cooling rate growth, nitrogen dilution with inert gas, an increase of nitrogen pressure during crystallization as well as due to the introduction of such surfactants as sulphur, selenium, tellurium, tin [ru

  10. Hydrogen-plasticity interactions in nickel and nickel base alloys

    International Nuclear Information System (INIS)

    Girardin, G.

    2004-03-01

    We evaluate the different contributions of the hydrogen-dislocation interactions to the plasticity of fcc materials in order to feed predictive models of stress corrosion cracking. Static strain ageing experiments are used to quantify the hardening contribution of solute drag by dislocations to the flow stress. We demonstrate the role of hydrogen transport by dislocations on the fracture mechanism. We model the influence of the screening of the elastic field of dislocations by hydrogen on elementary plasticity mechanisms and we conclude that the decrease of the cross slip ability arises from the combined action of elastic and core effects. The testing of single crystals shows that the major effect is on the cross slip mechanism. Tensile tests on polycrystals enlighten the diversity of macroscopic responses observed in alloys. (author)

  11. Antimony Influence on Shape of Eutectic Silicium in Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2017-12-01

    Full Text Available Liquid AI-Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved properties. For many years, sodium additions to hypoeutectic and eutectic AI-Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic structure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI-Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non-fading refining ability. In this paper, the authors summarize work on antimony treatment of Al-Si based alloys.

  12. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  13. Development of aluminide coatings on vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, D.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3/5 at.% dissolved aluminum in sealed V and V-20 wt.% Ti capsules at temperatures between 775 and 880 degrees C. After each test, the capsules were opened and the samples were examined by optical microscopy and scanning electron microscopy (SEM), and analyzed by electron-energy-dispersive spectroscopy (EDS) and X-ray diffraction. Hardness of the coating layers and bulk alloys was determined by microidentation techniques. The nature of the coatings, i.e., surface coverage, thickness, and composition, varied with exposure time and temperature, solute concentration in lithium, and alloy composition. Solute elements that yielded adherent coatings on various substrates can provide a means of developing in-situ electrical insulator coatings by reaction of the reactive layers with dissolved nitrogen in liquid lithium

  14. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Nezha Ahmad Agha

    Full Text Available Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  15. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    Science.gov (United States)

    Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  16. Influence of ecologically friendly cores on surface quality of castings based on magnesium alloys

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2014-07-01

    Full Text Available Constructional materials as Al - alloys can be replaced by other materials with high strength to low mass density ratio, e.g. Mg-alloys. In order to pre-casting of holes and cavities cores based on pure inorganic salt can be applied due to easy cleaning of even geometrically complex pre-cast holes. This technology is applied mainly for gravity and low-pressure casting technology. This contribution is aimed at studying of mutual interaction of the Mg-alloy and the salt core. Experiments were focused on surface quality; macro- and microstructure of testing casting samples determination. Metallographic analysis and scanning electron microscope (SEM with X-ray energy-dispersion superficial and spot microanalysis (EDAX were employed.

  17. Microstructures and mechanical properties of two-phase alloys based on NbCr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.C.; Kotula, P.G.; Cady, C.M.; Mauro, M.E.; Thoma, D.J.

    1999-07-01

    A two-phase, NbCrTi alloy (bcc + C15 Laves phase) has been developed using several alloy design methodologies. In efforts to understand processing-microstructure-property relationships, different processing routes were employed. The resulting microstructures and mechanical properties are discussed and compared. Plasma arc melted (PAM) samples served to establish baseline, as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  18. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2015-01-01

    Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.

  19. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  20. Stress Corrosion Cracking of Ni-base Alloys in Sulfur Containing Solutions at 340 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hee; Hwang, Seong Sik; Kim, Dong Jin; Kim, Sung Woo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Sulfur has been identified as one of the major impurities introduced into the secondary water of pressurized water-reactors (PWRs). Sulfur can originate from various sources, such as resin sources, feed water, cooling water in-leakage, and condenser leaks. Many authors have investigated effects of reduced sulfur in a wide pH range with or without additives. The presence of reduced sulfur species on the surfaces of pulled tubes having stress corrosion cracking (SCC) was also identified. In present work, SCC tests were conducted to investigate effects of reduced sulfur species on the SCC behavior of Ni-base Alloys. The Alloy 690 TT showed the most SCC resistant, regardless of the sulfur species. The Cr content and heat treatments of alloys appeared the increase in the SCC resistance.

  1. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors

    Science.gov (United States)

    Bettaieb, Mohamed Ben; Van Hoof, Thibaut; Minnebo, Hans; Pardoen, Thomas; Dufour, Philippe; Jacques, Pascal J.; Habraken, Anne Marie

    2015-03-01

    A physics-based, uncoupled damage model is calibrated using cylindrical notched round tensile specimens made of Ti5553 and Ti-6Al-4V alloys. The fracture strain of Ti5553 is lower than for Ti-6Al-4V in the full range of stress triaxiality. This lower ductility originates from a higher volume fraction of damage sites. By proper heat treatment, the fracture strain of Ti5553 increases by almost a factor of two, as a result of a larger damage nucleation stress. This result proves the potential for further optimization of the damage resistance of the Ti5553 alloy. The damage model is combined with an elastoviscoplastic law in order to predict failure in a wide range of loading conditions. In particular, a specific application involving bolted sectors is addressed in order to determine the potential of replacing the Ti-6Al-4V by the Ti5553 alloy.

  2. Creep resistance in a new alloy based on Fe3Al

    International Nuclear Information System (INIS)

    Morris, D.G.

    1994-01-01

    Iron aluminide alloys based on the composition Fe 3 Al are receiving considerable attention as structural materials for applications at high temperatures in view of their excellent resistance to oxidation and corrosion as well as reasonable mechanical properties. Recently, problems associated with poor ductility at room temperature have been alleviated by small additions of Cr and by microstructure control, as well by as the realization that the low ductility is, in part, extrinsic behavior due to environmental attack. These materials suffer also from a loss of their good strength at temperatures above about 600 C, and recent attention has led also to the development of creep resistant alloys. The present report considers a new alloy developed for improved creep resistance which shows also good oxidation and erosion resistance. Effort has been devoted to an examination of the dislocation structures that characterize deformation, both cold and hot, during fast tensile straining as well as during creep testing

  3. Corrosion properties of plasma deposited nickel and nickel-based alloys

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Had, J.; Neufuss, Karel

    2003-01-01

    Roč. 48, č. 3 (2003), s. 215-226 ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, nickel, nickel-based alloys Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  4. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  5. Intragranular nucleation sites of massive gamma grains in a TiAl-based alloy

    DEFF Research Database (Denmark)

    Dey, Suhash Ranjan; Bouzy, E.; Hazotte, A.

    2007-01-01

    Massive gamma grains were generated in a TiAl-based alloy through ice-water quenching from the alpha domain. Apart from those located along alpha(2)/alpha(2) grain boundaries, a few massive gamma grains were detected inside the alpha(2) grains. Some of these intragranular grains were revealed...

  6. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry ...

  7. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    3Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, ... To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of ... process that lead to inflammatory cascades which reduce bio- ... tions regarding their application as protective films on load- ... Experimental.

  8. Performance Comparison of Steam-Based and Chromate Conversion Coatings on Aluminum Alloy 6060

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    In this study, oxide layers generated on aluminum alloy 6060(UNS A96060) using a steam-based process were compared with conventional chromate and chromate-phosphate conversion coatings. Chemical composition and microstructure of the conversion coatings were investigated and their corrosion perfor...

  9. Development of elastic properties of Cu-based shape memory alloys during martensitic transformation

    Czech Academy of Sciences Publication Activity Database

    Novák, Václav; Landa, Michal; Šittner, Petr

    2004-01-01

    Roč. 115, - (2004), s. 363 ISSN 1155-4339 Institutional research plan: CEZ:AV0Z1010914 Keywords : Cu-based shape memory alloy s * elastic properties * elastic constants * modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.294, year: 2004

  10. Tungsten determination in heat resistant nickel-base-alloys by the method of atomic absorption

    International Nuclear Information System (INIS)

    Gregorczyk, S.; Wycislik, A.

    1980-01-01

    A method of atomic absorption was developed. It allows for the tungsten to be determined in heatresistant nickel-base-alloys within the range 0.01 to 7%. It consists in precipitating tungsten acid in the presence of alkaloids with its following decomposition by hydrofluoric acid in the teflon bomb. (author)

  11. Quaternary alloys based on II-VI semiconductors

    CERN Document Server

    Tomashyk, Vasyl

    2014-01-01

    Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystems Based on CdSeSystems Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  12. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  13. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  14. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  15. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    Science.gov (United States)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface, and intergranular corrosion does not take place. In the fuel salt with [U(IV)]/[U(III)] = 4-20 the potentials of uranium

  16. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    International Nuclear Information System (INIS)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  17. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    Science.gov (United States)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  18. Room temperature deformation of in-situ grown quasicrystals embedded in Al-based cast alloy

    Directory of Open Access Journals (Sweden)

    Boštjan Markoli

    2013-12-01

    Full Text Available An Al-based cast alloy containing Mn, Be and Cu has been chosen to investigate the room temperature deformation behavior of QC particles embedded in Al-matrix. Using LOM, SEM (equipped with EDS, conventional TEM with SAED and controlled tensile and compression tests, the deformation response of AlMn2Be2Cu2 cast alloy at room temperature has been examined. Alloy consisted of Al-based matrix, primary particles and eutectic icosahedral quasicrystalline (QC i-phase and traces of Θ-Al2Cu and Al10Mn3. Tensile and compression specimens were used for evaluation of mechanical response and behavior of QC i-phase articles embedded in Al-cast alloy. It has been established that embedded QC i-phase particles undergo plastic deformation along with the Al-based matrix even under severe deformation and have the response resembling that of the metallic materials by formation of typical cup-and-cone feature prior to failure. So, we can conclude that QC i-phase has the ability to undergo plastic deformation along with the Al-matrix to greater extent contrary to e.g. intermetallics such as Θ-Al2Cu for instance.

  19. Multimodal Nanoscale Characterization of Transformation and Deformation Mechanisms in Several Nickel Titanium Based Shape Memory Alloys

    Science.gov (United States)

    Casalena, Lee

    The development of viable high-temperature shape memory alloys (HTSMAs) demands a coordinated multimodal characterization effort linking nanoscale crystal structure to macroscale thermomechanical properties. In this work, several high performance NiTi-based shape memory alloys are comprehensively explored with the goal of gaining insight into the complex transformation and deformation mechanisms responsible for their remarkable behavior. Through precise control of alloying and aging parameters, microstructures are optimized to enhance properties such as high-temperature strength and stability. These are crucial requirements for the development of advanced applications such as actuators and adaptive components that operate in demanding automotive and aerospace environments. An array of NiTiHf and NiTiAu alloys are at the core of this effort, offering the possibility of increased capability over traditional pneumatic and hydraulic systems, while simultaneously reducing weight and energy requirements. NiTi-20Hf alloys exhibit a favorable balance of properties, including high strength, stability, and work output at temperatures in excess of 150 °C. The raw material cost of Hf is also much lower compared with Pt, Pd, and Au containing counterparts. Advanced scanning transmission electron microscopy (STEM) and synchrotron X-ray characterization techniques are used to explore unusual nanoscale effects of precipitate-matrix interactions, coherency strain, and dislocation activity in these alloys. Novel use of the 4D STEM strain mapping technique is used to quantify strain fields associated with precipitates, which are being coupled with new phase field modeling approaches to particle/defect interactions. Volume fractions of nanoscale precipitates are measured using STEM-based tomography techniques, atom probe tomography, and synchrotron diffraction of bulk samples. Plastic deformation of the HTSMA austenite phase is shown to occur through B2 type slip for the first time

  20. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  1. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hattel, Jesper Henri; Hald, John

    2010-01-01

    of the Au–Sn binary system were explored in this work. Furthermore, the effects of thermal aging on the microstructure and microhardness of these promising Au–Sn based ternary alloys were investigated. For this purpose, the candidate alloys were aged at a lower temperature, 150°C for up to 1week...

  2. On the nature of the variation of martensitic transformation hysteresis and SME characteristics in Fe-Ni-base alloys

    International Nuclear Information System (INIS)

    Koval, Yu.N.; Monastyrsky, G.E.

    1995-01-01

    The purpose of this paper is to summarize the various investigations, both by the authors and other works, concerning with the martensitic transformation and SME in Fe-Ni-base alloys. The thermal hysteresis dependence on the alloying elements and thermal treatments are surveyed. The contribution and effect on SME characteristics of widely used alloying elements such as Ti, Nb, Ni, Al, Co, Ta and peculiarities of thermal treatment are discussed. It is noted the main goal of these treatments is to reduce the symmetry of transformation by the ordering or precipitation of a fine coherent phase. The physical principles of transformation hysteresis manipulation in Fe-base alloys is discussed and it concluded that the thermal cycling behavior of Fe-base alloys is very complex and is not clearly understood at present. On the other hand, it is pointed out that thermal cycling is an effective method for control and improvement of SME in these alloys. It is concluded that Fe-base alloys are highly evolved shape memory materials-having a wide working range, good workability and are relatively cheap. In addition, the properties are easily controlled by suitably alloying, aging and thermal cycling. (orig.)

  3. First-principles investigations of iron-based alloys and their properties

    Science.gov (United States)

    Limmer, Krista Renee

    Fundamental understanding of the complex interactions governing structure-property relationships in iron-based alloys is necessary to advance ferrous metallurgy. Two key components of alloy design are carbide formation and stabilization and controlling the active deformation mechanism. Following a first-principles methodology, understanding on the electronic level of these components has been gained for predictive modeling of alloys. Transition metal carbides have long played an important role in alloy design, though the complexity of their interactions with the ferrous matrix is not well understood. Bulk, surface, and interface properties of vanadium carbide, VCx, were calculated to provide insight for the carbide formation and stability. Carbon vacancy defects are shown to stabilize the bulk carbide due to increased V-V bonding in addition to localized increased V-C bond strength. The VCx (100) surface energy is minimized when carbon vacancies are at least two layers from the surface. Further, the Fe/VC interface is stabilized through maintaining stoichiometry at the Fe/VC interface. Intrinsic and unstable stacking fault energy, gammaisf and gamma usf respectively, were explicitly calculated in nonmagnetic fcc Fe-X systems for X = Al, Si, P, S, and the 3d and 4d transition elements. A parabolic relationship is observed in gamma isf across the transition metals with minimums observed for Mn and Tc in the 3d and 4d periods, respectively. Mn is the only alloying addition that was shown to decrease gamma isf in fcc Fe at the given concentration. The effect of alloying on gammausf also has a parabolic relationship, with all additions decreasing gammaisf yielding maximums for Fe and Rh.

  4. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  5. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  6. Nickel-based materials and high-alloy, special stainless steels. 2. new rev. and enl. ed.

    International Nuclear Information System (INIS)

    Heubner, U.; Brill, U.; Hoffmann, T.; Jasner, M.; Kirchheiner, R.; Koecher, R.; Richter, H.; Rockel, M.; White, F.

    1993-01-01

    The book is intended as a source of information on nickel-based materials and special stainless steels and apart from the up-to-date materials data presents information on recent developments and knowledge gained, so that it may be a valuable aid to materials engineers looking for cost-effective resolutions of their materials problems in the chemical process industry, power plant operation, and high-temperature applications. The book presents eight individual contributions entitled as follows: (1) Nickel-base alloys and high-alloy, special stainless steels. - Materials survey and data sheets (Ulrich Heubner). (2) Corrosion of nickel-base alloys and special stainless steels (Manfred Rockel). (3) Welding of nickel-base alloys and high-alloy, special stainless steels (Theo Hoffmann). (4) High-temperature resistant materials (Ulrich Brill). (5) Application and processing of nickel-base materials in the chemical process industry and in pollution abatement equipment (Reiner Koecher). (6) Selected examples of applications of nickel-base materials in chemical plant (Manfred Jasner, Frederick White). (7) Applications of nickel-base alloys and special stainless steels in power plant. (8) The use of nickel-base alloys and stainless steels in pollution abatement processes (R. Kirchheiner). (orig./MM). 151 figs., 226 refs [de

  7. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  8. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    Science.gov (United States)

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  9. Phase transformations in TiAl based alloys

    International Nuclear Information System (INIS)

    Zghal, Slim; Thomas, Marc; Naka, Shigehisa; Finel, Alphonse; Couret, Alain

    2005-01-01

    Microstructural characteristics of a fully lamellar Ti 49 Al 47 Cr 2 Nb 2 alloy have been investigated in different annealed conditions by quantitative transmission electron microscopy. Statistical analyses have yielded clear information about the γ-γ interfaces, the respective orientation groups of the γ phase, and the distribution of orientational variants. From the results, three sequences of lamellar transformation have been identified with decreasing temperature: (1) a high-temperature heterogeneous transformation characterized by the nucleation of isolated primary γ lamellae mostly belonging to the same orientation group and having locally the same order; (2) a low-temperature homogeneous transformation in the ordered α 2 phase characterized by the formation of a fine lamellar structure with an even distribution of the orientation groups and a random ordering of γ lamellae; and (3) a coherent interfacial transformation at the α 2 /γ interfaces characterized by the nucleation of ultra-fine twin related lamellae. Finally, the driving forces for these various transformations as well as the nucleation mechanisms of γ lamellae involved in these transformations are discussed

  10. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  11. Designing magnetic compensated states in tetragonal Mn{sub 3}Ge-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    You, Yurong; Xu, Guizhou, E-mail: gzxu@njust.edu.cn; Hu, Fang; Gong, Yuanyuan; Liu, Er; Peng, Guo; Xu, Feng, E-mail: xufeng@njust.edu.cn

    2017-05-01

    Magnetic compensated materials attracted much interests due to the observed large exchange bias and large coercivity, and also their potential applications in the antiferromagnetic spintronics with merit of no stray field. In this work, by using ab-initio studies, we designed several Ni (Pd, Pt) doped Mn{sub 3}Ge-based D0{sub 22}-type tetragonal Heusler alloys with fully compensated states. Theoretically, we find the total moment change is asymmetric across the compensation point (at ~x=0.3) in Mn{sub 3-x}Y{sub x}Ge (Y=Ni, Pd, Pt). In addition, an uncommon discontinuous jump is observed across the critical zero-moment point, indicating that some non-trivial properties may emerge at this point. Further electronic analyses of these compensated alloys reveal high spin polarizations at the Fermi level, which is advantageous for spin transfer torque applications. - Highlights: • Several new fully compensated magnetic states are identified in Mn{sub 3}Ge-based tetragonal alloys. • The magnetic moment changes are asymmetric upon Ni, Pd and Pt substitution. • Discontinuous jumps exist across the compensated points. • The three compensated alloys possess large spin polarizations.

  12. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  13. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  14. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  15. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    Science.gov (United States)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  16. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    Directory of Open Access Journals (Sweden)

    Kittima Sillapasa

    2017-02-01

    Full Text Available Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1 = 1.68 HV (σa is in MPa and HV has no unit. It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  17. Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys

    Directory of Open Access Journals (Sweden)

    Bünyamin Alım

    2018-04-01

    Full Text Available K shell X-ray fluorescence cross-sections (σKα, σKβ and σK, and K shell fluorescence yields (ωK of Ti, Ni both in pure metals and in different alloy compositions (TixNi1-x; x = 0.3, 0.4, 0.5, 0.6, 0.7 were measured by using energy dispersive X-ray fluorescence (EDXRF technique. The samples were excited by 22.69 keV X-rays from a 10 mCi Cd-109 radioactive point source and K X rays emitted by samples were counted by a high resolution Si(Li solid-state detector coupled to a 4 K multichannel analyzer (MCA. The alloying effects on the X-ray fluorescence (XRF parameters of Ti-Ni shape memory alloys (SMAs were investigated. It is clearly observed that alloying effect causes to change in K shell XRF parameter values in Ti-Ni based SMAs for different compositions of x. Also, the present investigation makes it possible to perform reliable interpretation of experimental σKα, σKβ and ωK values for Ti and Ni in SMAs and can also provide quantitative information about the changes of K shell X-ray fluorescence cross sections and fluorescence yields of these metals with alloy composition. Keywords: Alloying effect, XRF, K X-ray fluorescence cross-section, K shell fluorescence yield, Shape memory alloy

  18. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  19. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    Science.gov (United States)

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  20. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  1. Fragility of superheated melts and glass-forming ability in Pr-based alloys

    International Nuclear Information System (INIS)

    Meng, Q.G.; Zhou, J.K.; Zheng, H.X.; Li, J.G.

    2006-01-01

    The kinetic viscosity (η) of superheated melts, thermal properties (T x , T m , T L ) and X-ray diffraction analysis on the Pr-based bulk metallic glasses (BMG) are reported and discussed. A new refined concept, the superheated fragility defined as M' = E S δ x /k B , has been developed based on common solidification theory and the Arrhenius equation. The interrelationship between this kind of fragility and the glass-forming ability (GFA) is elaborated on and evaluated in Pr-based BMG and Al-based amorphous ribbon alloys. Using viscosity data of superheated melts, it is shown, theoretically and experimentally, that the fragility parameter M' may be used as a GFA indicator for metallic alloys

  2. Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures

    Czech Academy of Sciences Publication Activity Database

    Mukherji, D.; Roesler, J.; Strunz, Pavel; Gilles, R.; Schumacher, G.; Piegert, S.

    2011-01-01

    Roč. 102, č. 9 (2011), s. 1125-1132 ISSN 1862-5282 R&D Projects: GA ČR(CZ) GAP204/11/1453 Institutional research plan: CEZ:AV0Z10480505 Keywords : Co-base alloy * Rhenium * Electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2011

  3. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  4. Corrosion behavior of Nb-based and Mo-based super heat-resisting alloys in liquid Li

    International Nuclear Information System (INIS)

    Saito, J.; Kano, S.; Morinaga, M.

    1998-07-01

    Research on structural materials which will be utilized even in the severe environment of high-temperature liquid alkali metals has been promoted in order to develop the frontiers of materials techniques. The super-heat resisting alloys which are based on refractory metals, Nb and Mo, are aimed as promising materials used in such an environment. The corrosion resistance in liquid Li and the mechanical properties such as creep and tensile strengths at high temperatures are important for these structural materials. On the basis of many experiments and analyses of these properties at 1473 K, the material design of Nb-based and Mo-based alloys has been carried out successfully. In this report, all the previous experimental results of corrosion tests in liquid Li were summarized systematically for Nb-based and Mo-based alloys. The corrosion mechanism was proposed on the basis of a series of analyses, in particular, focussing on the deposition mechanism of corrosion products on the surface and also on the initiation and growth mechanism of cracks on the corroded surface of Nb-based alloys. The principal results are as follows. (1) For the deposition mechanism, a reaction took place first between dissolved metallic elements and nitrogen which existed as an impurity in liquid Li and then corrosion products (nitrides) precipitated on the metal surface. Subsequently, another reaction took place between dissolved metallic elements in liquid Li, and corrosion products (intermetallic compounds) precipitated on the metal surface. The composition of deposited corrosion products could be predicted on the basis of the deposition mechanism. (2) For the crack initiation mechanism, the chemical potential diagrams were utilized in order to understand the formation of Li-M-O ternary oxides which caused cracks to be formed on the corroded surface. Consequently, it was evident that not only the concentration of the dissolved oxygen in the alloy but also the concentration of Li which

  5. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    Science.gov (United States)

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  6. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  7. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, C., E-mail: cristina.balagna@polito.it [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy); Faga, M.G. [Istituto di Scienza e Tecnologia dei Materiali Ceramici, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino (Italy); Spriano, S. [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy)

    2012-05-01

    Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in total hip and knee joint replacement, due to high mechanical properties and resistance to wear and corrosion. They are able to form efficient artificial joints by means of coupling metal-on-polymer or metal-on-metal contacts. However, a high concentration of stress and direct friction between surfaces leads to the formation of polyethylene wear debris and the release of toxic metal ions into the human body, limiting, as a consequence, the lifetime of implants. The aim of this research is a surface modification of CoCrMo alloys in order to improve their biocompatibility and to decrease the release of metal ions and polyethylene debris. Thermal treatment in molten salts was the process employed for the deposition of tantalum-enriched coating. Tantalum and its compounds are considered biocompatible materials with low ion release and high corrosion resistance. Three different CoCrMo alloys were processed as substrates. An adherent coating of about 1 {mu}m of thickness, with a multilayer structure consisting of two tantalum carbides and metallic tantalum was deposited. The substrates and modified layers were characterized by means of structural, chemical and morphological analysis. Moreover nanoindentation, scratch and tribological tests were carried out in order to evaluate the mechanical behavior of the substrates and coating. The hardness of the coated samples increases more than double than the untreated alloys meanwhile the presence of the coating reduced the wear volume and rate of about one order of magnitude. - Highlights: Black-Right-Pointing-Pointer Thermal treatment in molten salts deposits a Ta-based coating on Co-based alloys. Black-Right-Pointing-Pointer Coating is composed by one or two tantalum carbides and/or metallic tantalum. Black-Right-Pointing-Pointer The coating structure depends on thermal temperature and substrates carbon content. Black-Right-Pointing-Pointer Coating is able to

  8. Development of silicide coating over molybdenum based refractory alloy and its characterization

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Banerjee, S.; Sharma, I.G.; Suri, A.K.

    2010-01-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2 , TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2 O 3 ), coating powder (Si) and activator (NH 4 Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 o C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 o C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  9. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  10. Stress corrosion cracking of nickel base alloys in PWR primary water

    International Nuclear Information System (INIS)

    Guerre, C.; Chaumun, E.; Crepin, J.; De Curieres, I.; Duhamel, C.; Heripre, E.; Herms, E.; Laghoutaris, P.; Molins, R.; Sennour, M.; Vaillant, F.

    2013-01-01

    Stress corrosion cracking (SCC) of nickel base alloys and associated weld metals in primary water is one of the major concerns for pressurized water reactors (PWR). Since the 90's, highly cold-worked stainless steels (non-sensitized) were also found to be susceptible to SCC in PWR primary water ([1], [2], [3]). In the context of the life extension of pressurized water reactors, laboratory studies are performed in order to evaluate the SCC behaviour of components made of nickel base alloys and of stainless steels. Some examples of these laboratory studies performed at CEA will be given in the talk. This presentation deals with both initiation and propagation of stress corrosion cracks. The aims of these studies is, on one hand, to obtain more data regarding initiation time or crack growth rate and, one the other hand, to improve our knowledge of the SCC mechanisms. The aim of these approaches is to model SCC and to predict components life duration. Crack growth rate (CGR) tests on Alloy 82 with and without post weld heat treatment are performed in PWR primary water (Figure 1). The heat treatment seems to be highly beneficial by decreasing the CGR. This result could be explained by the effect of thermal treatment on the grain boundary nano-scopic precipitation in Alloy 82 [4]. The susceptibility to SCC of cold worked austenitic stainless steels is also studied. It is shown that for a given cold-working procedure, SCC susceptibility increases with increasing cold-work ([2], [5]). Despite the fact that the SCC behaviour of Alloy 600 has been widely studied for many years, recent laboratory experiments and analysis ([6], [7], [8]) showed that oxygen diffusion is not a rate-limiting step in the SCC mechanism and that chromium diffusion in the bulk close the crack tip could be a key parameter. (authors)

  11. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  12. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    International Nuclear Information System (INIS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-01-01

    Highlights: ► The corrosion behavior of magnesium for orthopedic applications is extremely poor. ► The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. ► Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. ► Treated samples indicated significant damping for the degradation rate. ► Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc–solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  13. High temperature oxidation and electrochemical investigations on nickel-base alloys

    International Nuclear Information System (INIS)

    Obigodi-Ndjeng, Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy's corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 C in air for different time periods. The superalloy showed the best oxidation behavior at both temperatures, which might be due to the fact that the oxidation growth function is subparabolic for the model alloys and parabolic for the superalloy at 800 C. At higher temperatures, changes in the kinetics are induced, as the oxides grow faster, thus only PWA 1483 growth follows the parabolic law. Different scales in a typical sandwich form were detected, with the inner layer comprised of mostly Cr 2 O 3 , the middle layer was mixture of different oxides and spinels, depending on the alloying elements, and the oxide at the interface oxygen/oxide was found to be NiO. The influence of sample preparation could also be shown, as rougher surfaces change the oxidation kinetics from parabolic and subparabolic for polished samples to linear. The influence of moisture on the oxidation behavior of the 2 nd generation single crystal Ni-base superalloys (PWA 1484, PWA 1487, CMSX 4, Rene N5 and Rene N5+) was studied at 1000 C after 100 h oxidation period. It was found that the moisture increased the oxidation rate and mostly the transient oxides growth rate. The water vapor content in air also influenced the behavior of these alloys, as they showed a higher mass gain in air + 30% water vapor than in air + 10% water vapor. The alloys PWA 1484 and CMSX 4 showed respectively the worst and best behavior in all the studied atmospheres. The addition of reactive elements, such as Yttrium, Hafnium and Lanthanum is likely to enhance the oxidation behavior of PWA

  14. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  15. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    Science.gov (United States)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  16. Monte Carlo simulation of ordering transformations in Ni-Mo-based alloys

    International Nuclear Information System (INIS)

    Kulkarni, U.D.

    2004-01-01

    The quenched in state of short range order (SRO) in binary Ni-Mo alloys is characterized by intensity maxima at {1 (1/2) 0} and equivalent positions in the reciprocal space. Ternary addition of a small amount of Al to the binary alloy, on the other hand, leads to a state of SRO that gives rise to intensity maxima at {1 0 0} and equivalent, in addition to {1 (1/2) 0} and equivalent, positions in the selected area electron diffraction patterns. Different geometric patterns of streaks of diffuse intensity, joining the SRO maxima with the superlattice positions of the emerging long range ordered (LRO) structures or in some cases between the superlattice positions of different LRO structures, are observed during the SRO-to-LRO transitions in the Ni-Mo-based and other 1 (1/2) 0 alloys. Monte Carlo simulations have been carried out here in order to shed some light on the atomic structures of the SRO and the SRO-to-LRO transition states in these alloys

  17. Electrode characteristics of the (Mm)Ni 5-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Soo; Choi, Seung Jun; Chang, Min Ho; Choi, Jeon; Park, Choong Nyun [Chonnam National University, Kwangju (Korea, Republic of)

    1995-06-01

    The MmNi-based alloy electrode was studied for use a negative electrode in Ni-MH battery. Alloys with MmNi{sub 5}-{sub x} M{sub x}(M=Co,Al,Mn) composition were synthesized, and their electrode characteristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in MmNi{sub 5}-{sub x} M{sub x} increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is MmNi{sub 3}.5 Co{sub 0}.7 Al{sub 0}.5 Mn{sub 0}.3. (author). 9 refs., 9 figs., 1 tab.

  18. Tribological properties of Al 7075 alloy based composites strengthened with Al2O3 fibres

    Directory of Open Access Journals (Sweden)

    K. Naplocha

    2011-04-01

    Full Text Available Wear resistance of 7075 aluminium alloy based composite materials reinforced with Al2O3 Saffil fibres was investigated. The measurementsof wear were performed applying the pin-on-disc method at dry friction conditions with the gray iron counterpart. The effects ofpressure of composite samples on the counterpart made of gray iron and the orientation of fibers in relation to the friction surface on wear rate were determined. The materials were produced by squeeze casting method where 80-90% porous ceramic preform were infiltrated.After T6 heat treatment hardness increased about 50-60% both for unreinforced alloy and composites containing strengthening Saffilfibres. Wear resistance of composite materials in relation to the unreinforced 7075 alloy was slightly worse at lower pressure of 0.8 MPa. Under higher pressure of 1.2 MPa wear resistance of unreinforced 7075 alloy was even better whereas no effect of orientation of fibers on wear in composite materials was observed. Additionally, significant wear of counterface in the presence of debris with fragmented Al2O3 fibres as abrasives was observed. Wear resistance improvement of composite materials was obtained when with alumina Saffil fibres Carbon C fibres in the preforms were applied.

  19. Simultaneous study of sputtering and secondary ion emission of binary Fe-based alloys

    International Nuclear Information System (INIS)

    Riadel, M.M.; Nenadovic, T.; Perovic, B.

    1976-01-01

    The sputtering and secondary ion emission of binary Fe-based alloys of simple phase diagrams have been studied simultaneously. A series FeNi and FeCr alloys in the concentration range of 0-100% have been bombarded by 4 keV Kr + ions in a secondary ion mass spectrometer. The composition of the secondary ions has been analysed and also a fraction of the sputtered material has been collected and analysed by electron microprobe. The surface topography of the etched samples has been studied by scanning electron microscope. The relative sputtering coefficients of the metals have been determined, and the preferential sputtering of the alloying component of lower S have been proved. The etching pictures of samples are in correlation with the sputtering rates. Also the degree of secondary ionization has been calculated from the simultaneously measured ion emission and sputtering data. α + shows the change in the concentration range of the melting point minimum. This fact emphasizes the connection between the physico-chemical properties of alloys and their secondary emission process. From the dependence of the emitted homo- and hetero-cluster ions, conclusions could be shown concerning the production mechanism of small metallic aggregates

  20. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  1. Creep Rupture Properties for Base and Weld Metals of Alloy 617

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Kim, Min-Hwan; Park, Jae-Young; Ekaputra, I. M. W.

    2015-01-01

    The allowable deformation in the welds is also restricted to half the deformation permitted for the base metal, since the ductility of the welds at elevated temperatures is generally low. For a design use, the data of the tensile and creep properties for Alloy 617 WM should be sufficiently provided, and in particular, to develop a design code of Alloy 617 WM. However, the data for the WM are very rare and limited until now, although the data for the BM are available in the ASME draft code case, which was suspended at the end of the 1980s owing to a lack of support and interes. In this report, the creep data for Alloy 617 WM, which was fabricated by a gas tungsten arc welding (GTAW) procedure, were obtained by a series of creep tests at 800 .deg. C, and the creep properties of the WM were compared with those of the BM. The high-temperature creep properties for Alloy 617 WM, fabricated by a gas tungsten arc welding (GTAW) procedure, were investigated by a series of creep tests with different stress levels at 800 .deg. C, and the creep test data for the WM were compared with those of the BM. From the results, it was found that the WM had a slightly longer creep rupture life and lower creep rate than the BM, and a particularly lower rupture elongation. The lower creep rate in the WM was due to the lower rupture elongation than the BM

  2. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    International Nuclear Information System (INIS)

    López-Ruiz, P; Ordás, N; Iturriza, I; García-Rosales, C; Lindig, S; Koch, F

    2011-01-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  3. Effects in Mg-Zn-based alloys strengthened by quasicrystalline phase

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Lukáč, F; Melikhova, O; Hruška, P; Procházka, I; Vlach, M; Stulíková, I; Smola, B; Jäger, A

    2016-01-01

    Magnesium Mg-based alloys are promising lightweight structural materials for automotive, aerospace and biomedical applications. Recently Mg-Zn-Y system attracted a great attention due to a stable icosahedral phase (I-phase) with quasicrystalline structure which is formed in these alloys. Positron lifetime spectroscopy and in situ synchrotron X-ray diffraction were used to study thermal stability of I-phase and precipitation effects in Mg-Zn-Y and Mg- Zn-Al alloys. All alloys containing quasicrystalline I-phase exhibit misfit defects characterized by positron lifetime of ∼ 300 ps. These defects are associated with the interfaces between I- phase particles and Mg matrix. The quasicrystalline I-phase particles were found to be stable up to temperatures as high as ∼ 370°C. The W-phase is more stable and melts at ∼ 420°C. Concentration of defects associated with I-phase decreases after annealing at temperatures above ∼ 300°C. (paper)

  4. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    Science.gov (United States)

    2013-02-01

    concerns. These braze alloys use a high Si content to produce a low melting Al-Si near eutectic alloy. The recommended 11 brazing temperature for A A...each successive dip enhancing the 21 high temperature Si enrichment outside of the braze gap and decreasing the Si content within the braze gap.6...Nevertheless equilibrium phases should be considered as a reference point for grain boundaries after high temperature brazing . Recent literature [22

  5. Microstructural evolutions and mechanical behaviour of the nickel based alloys 617 and 230 at high temperature

    International Nuclear Information System (INIS)

    Chomette, S.

    2009-11-01

    High Temperature Reactors (HTR), is one of the innovative nuclear reactor designed to be inherently safer than previous generation and to produce minimal waste. The most critical metallic component in that type of reactor is the Intermediate Heat exchanger (IHX). The constraints imposed by the conception and the severe operational conditions (high temperature of 850 C to 950 C, lifetime of 20,000 h) have guided the IHX material selection toward two solid solution nickel base alloys, the Inconel 617 and the Haynes 230. Inconel 617 is the primary candidate alloy thanks to its good high temperature mechanical and corrosion properties and the large data base developed in previous programs. However, its high cobalt content has to be considered as an issue (nuclear activation). The more recent alloy Haynes 230, in which most of the cobalt has been replaced by tungsten, present characteristics similar to the 617 alloy. The objective of this thesis is to study the high temperature mechanical behaviour of both alloys in relation with their microstructural evolutions. The as received microstructural observations have revealed primary carbides (M 6 C). Most of this precipitates are evenly distributed in the materials. Few M 23 C 6 secondary carbides are observed in both alloys in the as received state. Thermal ageing treatments at 850 C lead to an important M 23 C 6 precipitation on slip lines and at grain boundaries. The size of this carbides increases and their number decreases with increasing ageing duration. The intragranular precipitation of secondary carbides at 950 C is more limited and the intergranular evolution more important than at 850 C. The microstructural observations and the hardness evolution of both alloys show that the main microstructural evolutions occur before 1,000 h at both studied temperatures. The mechanical properties of the Inconel 617 and the Haynes 230 have been studied using tensile, creep, fatigue and relaxation-fatigue tests. Particularly, the

  6. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Bafandeh, Mohammad Reza, E-mail: mr.bafandeh@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Gharahkhani, Raziyeh; Fathi, Mohammad Hossein [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  7. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  8. Multi-scale Modelling of bcc-Fe Based Alloys for Nuclear Applications

    International Nuclear Information System (INIS)

    Malerba, Lorenzo

    2008-01-01

    , advanced techniques to fit interatomic potentials consistent with thermodynamics are proposed and the results of their application to the mentioned alloys are presented. Next, the development of advanced methods, based on the use of artificial intelligence, to improve both the physical reliability and the computational efficiency of kinetic Monte Carlo codes for the study of point-defect clustering and phase changes beyond the scale of MD, is reported. These recent progresses bear the promise of being able, in the near future, of producing reliable tools for the description of the microstructure evolution of realistic model alloys under irradiation. (author)

  9. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    Energy Technology Data Exchange (ETDEWEB)

    Langelier, B., E-mail: langelb@mcmaster.ca [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Korinek, A. [Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Donnadieu, P. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Esmaeili, S. [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada)

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. It has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.

  10. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2016-01-01

    The interfacial reactions between two commercially available Ag–Cu–Ti-based active braze alloys and sapphire have been studied. In separate experiments, Ag–35.3Cu–1.8Ti wt.% and Ag–26.7Cu–4.5Ti wt.% alloys have been sandwiched between pieces of R-plane orientated sapphire and heated in argon to temperatures between 750 and 900 °C for 1 min. The phases at the Ag–Cu–Ti/sapphire interfaces have been studied using selected area electron diffraction, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. Gradual and subtle changes at the Ag–Cu–Ti/sapphire interfaces were observed as a function of temperature, along with the formation of a transient phase that permitted wetting of the sapphire. Unequivocal evidence is shown that when the active braze alloys melt, titanium first migrates to the sapphire and reacts to dissolve up to ∼33 at.% oxygen, forming a nanometre-size polycrystalline layer with a chemical composition of Ti 2 O 1–x (x ≪ 1). Ti 3 Cu 3 O particles subsequently nucleate behind the Ti 2 O 1–x layer and grow to become a continuous micrometre-size layer, replacing the Ti 2 O 1–x layer. Finally at 845 °C, a nanometre-size γ-TiO layer forms on the sapphire to leave a typical interfacial structure of Ag–Cu/Ti 3 Cu 3 O/γ-TiO/sapphire consistent with that seen in samples of polycrystalline alumina joined to itself with these active braze alloys. These experimental observations have been used to establish a definitive bonding mechanism for the joining of sapphire with Ag–Cu alloys activated by small amounts of titanium.

  11. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  12. Effect of surface treatments on stress corrosion cracking susceptibility of nickel base alloys

    International Nuclear Information System (INIS)

    Iwanami, Masaru; Kaneda, Junya; Tamako, Hiroaki; Hato, Hisamitsu; Takamoto, Shinichi

    2009-01-01

    Effect of surface treatment on SCC susceptibility of Ni base alloys was investigated. Cracks were observed in all grinding specimens in a creviced bent beam (CBB) test. On the other hand, no cracks occurred in shot peening (SP), water jet peening (WJP) specimens. It was indicated that these surface treatments effectively reduced the SCC susceptibility of nickel-base alloys. As a result of a residual stress test, the surface of specimens with grinding had high tensile residual stress. However, SP and WJP improved surface residual stress to compressive stress. The depth of the compressive effect of WJP was almost the same as that of SP. However, the surface hardness of WJP specimens differed from that of SP and it was found that WJP had less impact on surface hardening. This difference was consistent with their surface microstructures. The surface of SP specimens had clearly the deformation region, but the surface of WJP specimens was localized. (author)

  13. A life evaluation under creep-fatigue-environment interaction of Ni-base wrought alloys

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira; Itoh, Mitsuyoshi

    1986-01-01

    In order to determine a failure criteria under cyclic loading and affective environment for HTGR systems, a series of strain controlled low-cycle fatigue tests were carried out at HTGR maximum gas temperatures in air, in vacuum and in HTGR helium environments on two nickel-base wrought alloys, namely Inconel 617 and Hastelloy XR. This paper first describes the creep-fatigue-environment properties of these alloys followed by a proposal of an evaluation method of creep-fatigue-environment interaction based on the experimental data to define the more reasonable design criteria, which is a modification of the linear damage summation rule. Second, the creep-fatigue properties of Hastelloy XR at 900 deg C and the result evaluated by this proposed method are shown. This criterion is successfully applied to the life prediction at 900 deg C. In addition, the creep-fatigue properties of Hastelloy XR-II are discussed. (author)

  14. Point defects behavior in beta Cu-based shape memory alloys

    International Nuclear Information System (INIS)

    Romero, R.; Somoza, A.

    1999-01-01

    A summary of positron annihilation spectroscopy data relating to the point defect behavior after quenching and to thermal equilibrium in β-phase Cu-based shape memory alloys Cu-Zn-Al and Cu-Al-Be is presented. Particular attention is given to the initial concentration of quenched-in vacancies as a function of the quenching temperature, migration of the retained point defects with aging temperature and time, and the vacancy formation and migration energies. (orig.)

  15. Chemical interaction of the In-Ga eutectic with Al and Al-base alloys

    International Nuclear Information System (INIS)

    Trenikhin, M.V.; Bubnov, A.V.; Duplyakin, V.K.; Nizovskij, A.I.

    2006-01-01

    The chemical interaction of the indium-gallium eutectic with Al and Al-base alloys is studied by X-ray diffraction, optical microscopy, and electron microscopy. Experimental data are presented that shed light on the reaction mechanism and the diffusion processes responsible for the subsequent disintegration of the material and its dissolution in water. Mechanical tests show that the activation of aluminum leads to a transition from plastic to brittle fracture [ru

  16. Acoustic recognition of stress induced martensitic transformations in Cu-based shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Novák, Václav; Landa, Michal; Šittner, Petr

    2003-01-01

    Roč. 112, - (2003), s. 593-596 ISSN 1155-4339 R&D Projects: GA AV ČR IAA1048107; GA ČR GA106/01/0396 Institutional research plan: CEZ:AV0Z1010914 Keywords : shape memory alloys(SMA) * Cu-based SMA * Martensitic phase transformation * acoustic emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.319, year: 2003

  17. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  18. Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

    Science.gov (United States)

    Mu, G. Y.; Mi, X. Z.; Wang, F.

    2018-01-01

    The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

  19. Evaluation of thermal conductivity for liquid lead lithium alloys at various Li concentrations based on measurement and evaluation of density, thermal diffusivity and specific heat of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Nakajima, Yuu; Tsuji, Mitsuyo [Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Nozawa, Takashi [Japan Atomic Energy Agency, Rokkasyo-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Graphical abstract: Thermal diffusivities and thermal conductivities of liquid Pb–Li alloys (Pb–5Li, Pb–11Li and Pb–17Li). - Highlights: • The densities and specific heats of liquid Pb–Li alloys are evaluated based on the previous studies, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal diffusivities of liquid Pb–Li alloys (i.e., Pb–5Li, Pb–11Li and Pb–17Li) are obtained by laser flash method, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal conductivities of liquid Pb–Li alloys were evaluated and mathematically expressed in the equations with the functions of temperature and Li concentration. - Abstract: The thermophysical properties of lead lithium alloy (Pb–Li) are essential for the design of liquid Pb–Li blanket system. The purpose of the present study is to make clear the density, the thermal diffusivity and the heat conductivity of the alloys as functions of temperature and Li concentration. The densities of the solid alloys were measured by means of the Archimedean method. The densities of the alloys at 300 K as a function of Li concentration (0 at% < χ{sub Li} < 28 at%) were obtained in the equation as ρ{sub (300} {sub K)} [g/cm{sup 3}] = −6.02 × 10{sup −2} × χ{sub Li} + 11.3. The density of the liquid alloys was formulated as functions of temperature and Li concentration (0 at% < χ{sub Li} < 30 at%), and expressed in the equation as ρ [g/cm{sup 3}] = (9.00 × 10{sup −6} × T − 7.01 × 10{sup −2}) × χ{sub Li} + 11.4 − 1.19 × 10{sup −3}T. The thermal diffusivity of Pb, Pb–5Li, Pb–11Li and Pb–17Li were measured by means of laser flash method. The thermal diffusivity of Pb–17Li was obtained in the equation as α{sub Pb–17Li} [cm{sup 2}/s] = 3.46 × 10{sup −4}T + 1.05 × 10{sup −1} for the temperature range between 573 K and 773 K. The thermal conductivity of

  20. Failure probability analyses for PWSCC in Ni-based alloy welds

    International Nuclear Information System (INIS)

    Udagawa, Makoto; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng

    2015-01-01

    A number of cracks due to primary water stress corrosion cracking (PWSCC) in pressurized water reactors and Ni-based alloy stress corrosion cracking (NiSCC) in boiling water reactors have been detected around Ni-based alloy welds. The causes of crack initiation and growth due to stress corrosion cracking include weld residual stress, operating stress, the materials, and the environment. We have developed the analysis code PASCAL-NP for calculating the failure probability and assessment of the structural integrity of cracked components on the basis of probabilistic fracture mechanics (PFM) considering PWSCC and NiSCC. This PFM analysis code has functions for calculating the incubation time of PWSCC and NiSCC crack initiation, evaluation of crack growth behavior considering certain crack location and orientation patterns, and evaluation of failure behavior near Ni-based alloy welds due to PWSCC and NiSCC in a probabilistic manner. Herein, actual plants affected by PWSCC have been analyzed using PASCAL-NP. Failure probabilities calculated by PASCAL-NP are in reasonable agreement with the detection data. Furthermore, useful knowledge related to leakage due to PWSCC was obtained through parametric studies using this code

  1. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  2. Development of phased array UT procedure for crack depth sizing on nickel based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki

    2012-01-01

    Recently, it is reported that the primary water stress corrosion cracking (PWSCC) has been occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic inspection technique is required. Phased array UT technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)

  3. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    Science.gov (United States)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  4. Analysis of nickel-base alloys by Grimm-type glow discharge emission and x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Strauss, J.A.; Van Maarseveen, I.; Ivanfy, A.B.

    1985-01-01

    Nickel-base alloys can be analysed as satisfactorily as steels by XRF as well as by the Grimm-type source, in spite of problems caused by element combinations, spectral line overlap and the influence of the structure and heat conduction properties on sputtering in the glow discharge source. This extended abstract briefly discusses the use of Grimm-type glow discharge emission and XRF as techniques for the analysis of nickel-base alloys

  5. EIS pitting temperature determination of A182 nickel based alloy in simulated BWR environment containing dilute seawater

    International Nuclear Information System (INIS)

    Lavigne, Olivier; Shoji, Tetsuo; Takeda, Yoichi

    2014-01-01

    Graphical abstract: - Highlights: • Stable pitting events in function of the temperature are monitored by electrochemical impedance spectroscopy. • The pitting temperature for the nickel based alloy A182 in solution containing 450 ppm Cl − is defined as above 160 °C. • The presented method can be applied for others passive alloys as stainless steel in solution containing aggressive anions. - Abstract: A method based on electrochemical impedance spectroscopy (EIS) measurements to monitor the pitting temperature of passive alloys in a given media is developed in this communication. The pitting corrosion behavior of the nickel based alloy 182 in water containing 450 ppm by weight of chloride is presented in this study. The analysis of the EIS fit parameters from the proposed equivalent electrical circuit allows to determine the temperature from which stable pitting event occurs at open circuit potential. For the A182 sample this temperature is measured above 160 °C

  6. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tufan, E-mail: tufanroyburdwan@gmail.com [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Chakrabarti, Aparna [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India)

    2017-04-25

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping. - Highlights: • We discuss the effects of Co doping on magnetic properties of Ni/Pt based Heusler alloys. • Indirect RKKY interaction is maximum for shape memory alloy like systems. • We predict Pt{sub 2}MnSn as a probable ferromagnetic shape memory alloy.

  7. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    Science.gov (United States)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  8. Availability of niobium and tantalum-base alloy products for space nuclear reactors

    International Nuclear Information System (INIS)

    Kumar, P.K.; Huber, L.H.

    1986-01-01

    In order to provide orbiting electrical power generators for use in Space, current US efforts are focusing on fast neutron flux nuclear power systems; these systems would generate in excess of 100 kW, yet be compact enough to be economically carried into Space by NASA's Space Shuttle. Considerable data on physical, mechanical and corrosion properties are available for the Nb and Ta-base alloys that are prime candidates for such structural components. However, most of these data pertain to the metallurgical state of the art of the 1965-1975 time period; therefore, they have to be reviewed and updated as appropriate to reflect present processing and manufacturing technology. This article summarizes this state of the art, making reasonable projections as well for ongoing improvements and their probable impact on alloy properties achievable in the 1990's

  9. Lithium based alloy-thionyl chloride cells for applications at temperatures to 200 C

    Science.gov (United States)

    Kane, P.; Marincic, N.; Epstein, J.; Lindsey, A.

    A long-life lithium battery for industrial applications at temperatures up to 200 C was developed by combining Li-based alloy anodes with oxyhalide electrolytes. Cathodes were fabricated by rolling the blend of polycarbonomonofluoride, a conductive carbon additive, and a binder, while anodes were fabricated as those used in oxyhalide cells, incorporating a modified anode current collector designed to prevent the formation of 'lithium islands' at the end of discharge; nonwoven glass fiber separators were pretreated to remove excessive binders and lubricants. Various active electrode surface areas were combined with a corresponding thickness of electrodes and separators, matched in capacity. Tests of the high-rate electrode structure, using Li-Mg alloy anode in conjunction with thionyl chloride electrolyte, have demonstrated that the battery with this anode can be used under abusive conditions such as short circuit and external heating (at 175 C). Raising the operating temperature to 200 C did require some modifications of regular cell hardware.

  10. Observation of Pseudopartial Grain Boundary Wetting in the NdFeB-Based Alloy

    Science.gov (United States)

    Straumal, B. B.; Mazilkin, A. A.; Protasova, S. G.; Schütz, G.; Straumal, A. B.; Baretzky, B.

    2016-08-01

    The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain the 2-4-nm-thin uniform Nd-rich layer.

  11. Cast thermally stable high temperature nickel-base alloys and casting made therefrom

    International Nuclear Information System (INIS)

    Acuncius, D.A.; Herchenroeder, R.B.; Kirchner, R.W.; Silence, W.L.

    1977-01-01

    A cast thermally stable high temperature nickel-base alloy characterized by superior oxidation resistance, sustainable hot strength and retention of ductility on aging is provided by maintaining the alloy chemistry within the composition molybdenum 13.7% to 15.5%; chromium 14.7% to 16.5%; carbon up to 0.1%, lanthanum in an effective amount to provide oxidation resistance up to 0.08%; boron up to 0.015%; manganese 0.3% to 1.0%; silicon 0.2% to 0.8%; cobalt up to 2.0%; iron up to 3.0%; tungsten up to 1.0%; copper up to 0.4%; phosphorous up to 0.02%; sulfur up to 0.015%; aluminum 0.1% to 0.5% and the balance nickel while maintaining the Nv number less than 2.31

  12. Microstructure-based multiscale modeling of elevated temperature deformation in aluminum alloys

    International Nuclear Information System (INIS)

    Krajewski, Paul E.; Hector, Louis G.; Du Ningning; Bower, Allan F.

    2010-01-01

    A multiscale model for predicting elevated temperature deformation in Al-Mg alloys is presented. Constitutive models are generated from a theoretical methodology and used to investigate the effects of grain size on formability. Flow data are computed with a polycrystalline, microstructure-based model which accounts for grain boundary sliding, stress-induced diffusion, and dislocation creep. Favorable agreement is found between the computed flow data and elevated temperature tensile measurements. A creep constitutive model is then fit to the computed flow data and used in finite-element simulations of two simple gas pressure forming processes, where favorable results are observed. These results are fully consistent with gas pressure forming experiments, and suggest a greater role for constitutive models, derived largely from theoretical methodologies, in the design of Al alloys with enhanced elevated temperature formability. The methodology detailed herein provides a framework for incorporation of results from atomistic-scale models of dislocation creep and diffusion.

  13. Correlation between structure and optical properties of Si-based alloys deposited by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, M.M. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy)]. E-mail: michelaria@hotmail.com; Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy); Sacchetti, A. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy); Capezzuto, P. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy); Bruno, G. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy)

    2006-07-26

    Si-based thin films, including {mu}c-Si, Si{sub 1-x}Ge {sub x} and Si{sub 1-x}C {sub x} alloys, have been deposited by plasma enhanced chemical vapor deposition (PECVD) using SiF{sub 4}:H{sub 2}:He, SiF{sub 4}:GeH{sub 4}:H{sub 2} and SiF{sub 4}:CH{sub 4}:H{sub 2} plasmas, respectively. When SiF{sub 4} is used as Si-precursor, it is found that a low flux of CH{sub 4} or GeH{sub 4} results in incorporation of C and Ge in alloys as high as 30%. Correlations between microstructure and optical properties of films are investigated using spectroscopic ellipsometry. The role of fluorine atoms in the growth chemistry and material microstructure is discussed.

  14. Role of samarium additions on the shape memory behavior of iron based alloys

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad; Kang, Kisuk

    2011-01-01

    Research highlights: → The effect of samarium contents on shape memory behavior has been studied. → Addition of samarium increases the strength, c/a ratio and ε (hcp martensite). → Addition of samarium retards the nucleation of α (bcc martensite). → Improvement in shape memory effect with the increase in samarium contents. - Abstract: The effect of samarium contents on shape memory behavior of iron based shape memory alloys has been studied. It is found that the strength of the alloys increases with the increase in samarium contents. This effect can be attributed to the solid solution strengthening of austenite by samarium addition. It is also noticed that the shape memory effect increases with the increase in samarium contents. This improvement in shape memory effect presumably can be regarded as the effect of improvement in strength, increase in c/a ratio and obstruction of nucleation of α in the microstructure.

  15. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  16. An informatics approach to transformation temperatures of NiTi-based shape memory alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Balachandran, Prasanna V.; Ding, Xiangdong; Sun, Jun; Lookman, Turab

    2017-01-01

    The martensitic transformation serves as the basis for applications of shape memory alloys (SMAs). The ability to make rapid and accurate predictions of the transformation temperature of SMAs is therefore of much practical importance. In this study, we demonstrate that a statistical learning approach using three features or material descriptors related to the chemical bonding and atomic radii of the elements in the alloys, provides a means to predict transformation temperatures. Together with an adaptive design framework, we show that iteratively learning and improving the statistical model can accelerate the search for SMAs with targeted transformation temperatures. The possible mechanisms underlying the dependence of the transformation temperature on these features is discussed based on a Landau-type phenomenological model.

  17. Nanoscale characterization of martensite structures in copper based shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adiguzel, O, E-mail: oadiguzel@firat.edu.t [Firat University Department of Physics, 23169 Elazig (Turkey)

    2010-11-01

    Martensitic transformations are first order displacive transitions and occur in the materials on cooling from high temperature. Shape memory effect is an unusual property exhibited by certain alloy systems, and leads to martensitic transition. Copper-based alloys exhibit this property in beta phase field which possess simple bcc- structures, austenite structure at high-temperatures. As temperature is lowered the austenite undergoes martensitic transition following two ordering reactions, and structural changes in nanoscale govern this transition. Atomic movements are also confined to interatomic lengths in sub-{mu}m or angstrom scale in martensitic transformation. The formation of the layered structures in copper based alloys consists of shears and shear mechanism. Martensitic transformations occur in a few steps with the cooperative movement of atoms less than interatomic distances by means of lattice invariant shears on a {l_brace}110{r_brace} - type plane of austenite matrix which is basal plane or stacking plane of martensite. The lattice invariant shears occurs, in two opposite directions, <110> -type directions on the {l_brace}110{r_brace}-type plane. These shears gives rise to the formation of layered structure.

  18. Computational Design and Discovery of Ni-Based Alloys and Coatings: Thermodynamic Approaches Validated by Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Kui [Pennsylvania State University; Gleeson, Brian [University of Pittsburgh; Shang, Shunli [Pennsylvania State University; Gheno, Thomas [University of Pittsburgh; Lindwall, Greta [Pennsylvania State University; Zhou, Bi-Cheng [Pennsylvania State University; Liu, Xuan [Pennsylvania State University; Ross, Austin [Pennsylvania State University

    2018-04-23

    This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities, which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.

  19. Effects of La and Ce Addition on the Modification of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Elgallad

    2016-01-01

    Full Text Available This study focuses on the effects of the addition of rare earth metals (mainly lanthanum and cerium on the eutectic Si characteristics in Al-Si based alloys. Based on the solidification curves and microstructural examination of the corresponding alloys, it was found that addition of La or Ce increases the alloy melting temperature and the Al-Si eutectic temperature, with an Al-Si recalescence of 2-3°C, and the appearance of post-α-Al peaks attributed to precipitation of rare earth intermetallics. Addition of La or Ce to Al-(7–13% Si causes only partial modification of the eutectic Si particles. Lanthanum has a high affinity to react with Sr, which weakens the modification efficiency of the latter. Cerium, however, has a high affinity for Ti, forming a large amount of sludge. Due to the large difference in the length of the eutectic Si particles in the same sample, the normal use of standard deviation in this case is meaningless.

  20. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    Science.gov (United States)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database