WorldWideScience

Sample records for ni-al fe-ti fe-al

  1. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  2. Research on microstructure properties of the TiC/Ni-Fe-Al coating prepared by laser cladding technology

    Science.gov (United States)

    Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan

    2017-10-01

    In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.

  3. Mechanical Properties of Nano structured TiC-FeAl Hard Materials

    International Nuclear Information System (INIS)

    Shon, In-Jin; Jo, Hyoung-Gon; Kim, Byung-Su; Yoon, Jin-Kook; Hong Kyung-Tae

    2015-01-01

    For the formation of cemented Tic composite, Co or Ni is added as a binder. However, the high cost and low hardness of Co or Ni as binder and the low corrosion resistance of Tic-Co and Tic-Ni composite have generated interest to find alternative binder materials. It has been reported that FeAl show higher oxidation resistance and hardness as well as low cost compared to Co or Ni. Highly dense nanocrystalline Tic and Tic-FelAl with a relative density of up to 100% were obtained within 2 min by PCAS(pulsed current activated sintering) under the condition of 80MPa and up to 1300. The effect of FeAl addition of FeAl on the consolidation, the microstructure and the mechanical properties (hardness and fracture toughness) of TiC were investigated. The fracture toughness of TiC greatly increases without great decrease of the hardness by addition of FeAl. Not only fracture toughness but also hardness values of TiC-10vol.%FeAl were higher than those of TiC-10vol.%Fe, TiC-10vol.%Ni and TiC-10vol.%Co.

  4. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  5. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  6. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  7. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  8. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    Science.gov (United States)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  9. Effect of iron content on the structure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25} and (AlTi){sub 60-x}Ni{sub 20}Cu{sub 20}Fe{sub x} (x=15, 20) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fazakas, É., E-mail: eva.fazakas@bayzoltan.hu [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525, P.O.B. 49 (Hungary); Bay Zoltán Nonprofit Ltd., For Applied Research H-1116 Budapest, Fehérvári út 130 (Hungary); Zadorozhnyy, V. [National University of Science and Technology «MISIS», Leninsky prosp., 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2015-12-15

    Highlights: • Three new refractory alloys namely: Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20}, were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}C{sub u25} Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys are relatively hard and ductile. Being heat treated at 973 K the Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  10. Erosion resistance of FeAl-TiB2 and FeAl-WC at room and elevated temperatures

    International Nuclear Information System (INIS)

    Alman, D.E.; Tylczak, J.H.; Hawk, J.A.

    2000-01-01

    The resistance of FeAl-40%TiB 2 and FeAl-80%WC cermets to solid particle erosion at 25, 180, 500 and 700 C was evaluated and compared to the behavior of WC-6%Co (Co-90%WC) cemented carbides. Even though the WC-Co contained a higher volume fraction of the hard phase, the erosion rates of the FeAl-cermets were similar in magnitude to the erosion rates of the WC-Co. However, the erosion rates of the FeAl-cermets either were constant (FeAl-TiB 2 ) or decreased (FeAl-WC) with increasing test temperature; whereas, the erosion rates of the WC-Co cemented carbides increased with increasing test temperature. This indicated that once the microstructures of the FeAl-cermets are optimized for wear resistance, these materials might make promising candidates for high-temperature wear applications

  11. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  12. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    Science.gov (United States)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  13. Phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC and the formation of TiC in Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Kobayashi, Satoru; Schneider, Andre; Zaefferer, Stefan; Frommeyer, Georg; Raabe, Dierk

    2005-01-01

    In the context of the development of high-strength Fe 3 Al-based alloys, phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC phases in the Fe-Al-Cr-Ti-C quinary system and the formation of TiC were determined. A pseudo-eutectic trough (L α + L + TiC) exists at 1470 deg C at around Fe-26Al-5Cr-2Ti-1.7C on the vertical section between Fe-26Al-5Cr (α) and Ti-46C (TiC) in at.%. Large faceted TiC precipitates form from the melt after the formation of primary α phase even in hypoeutectic alloys. The TiC formation is thought to be due to the composition change of the liquid towards the hypereutectic compositions by solidification of the primary α. In order to remove the faceted TiC, which are unfavourable for strengthening the material, two different processing routes have been successfully tested: (i) solidification with an increased rate to reduce the composition variation of the liquid during solidification, and (ii) unidirectional solidification to separate the light TiC precipitates from the melt

  14. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  15. Fe, Cr, Ni, Cu, Mg, Al, Ti, and S contents in plants and soil of heaps of nickel smelting works

    Energy Technology Data Exchange (ETDEWEB)

    Banasova, V; Hajduk, J

    1977-01-01

    The writers established the Fe, Ce, Cr, Ni, Ca, Mg, Al, Ti and S contents in the neopedon of heaps piling up from processing of nickel ore as well as in the plants: Cardaria draba, Salsola cali, Agropyrum repens, Bromus erectus, Calamagrostis epigeios, Cynodon dactylon and Matricaria inodora, growing on such heaps. Ca, Mg and S contents were found to be higher in dicotyledons and Fe, Al, Ti, Ni and Cr contents higher in monocotyledons. The analyzed dicotyledons appeared to be concentrators of Ca and S. Highest Fe, Al, Ti, Ni and Cr contents were found in individuals of the species Agropyrum repens. The neopedon as well as the plants had extraordinarily high Cr concentrations. The species Salsola cali has been found to possess an unusually higher affinity to the dump substrate after processing of nickel ore and to be a concentrator of Mg. 16 references, 1 table.

  16. Processing and characterization of AlCoFeNiXTi{sub 0,5} (X = Mn, V) high entropy alloys; Processamento e caracterizacao de ligas de alta entropia AlCoFeNixTi{sub 0,5} (X = Mn, V)

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, C., E-mail: carlos.triveno@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais; Lopes, E.S.N.; Caram, R. [Universidade Estadual de Campinas (FEM/DEMA/UNICAMP), Campinas, SP (Brazil); Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), Sao Carlos, SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi{sub 0,5} and AlCoFeNiVTi{sub 0,5} alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi{sub 0,5} alloy showed better mechanical properties than the AlCoFeNiMnTi{sub 0,5} alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  17. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  18. Interface electron structure of Fe3Al/TiC composites

    Institute of Scientific and Technical Information of China (English)

    PANG Lai-xue; SUN Kang-ning; SUN Jia-tao; FAN Run-hua; REN Shuai

    2006-01-01

    Based on YU's solids and molecules emperical electron theory(EET), interface valence electron structure of TiC-Fe3Al composites was set up, and the valence electron density of different atomic states TiC and Fe3Al composites in various planes was determined. The results indicate that the electron density of (100)Fe3Al is consistent with that of (110)TiC in the first-class approximation, the absolute value of minimum electron density difference along the interface is 0.007 37 nm-2, and the relative value is 0.759%. (110)TiC//(100)Fe3Al preferred orientation is believed to benefit the formation of the cuboidal shape TiC. In the other hand, it shows that the particle growth is accompanied by the transport of electron, the deviation continuity of electron density intrinsically hinders the grain growth. The electron density of (100)TiC is not consistent with Fe3Al arbitrary crystallographic plane,thus it well explains that the increased titanium and carbon contents do not increase the size of large particles. The crystallographic orientation of (110)TiC//(100)FeAl will improve the mechanical properties. Therefore interface electron theory is an effective theoretical implement for designing excellent property of composites.

  19. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  20. Density and atomic volume in liquid Al-Fe and Al-Ni binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plevachuk, Yu. [Ivan Franko National Univ., Lviv (Ukraine). Dept. of Metal Physics; Egry, I.; Brillo, J.; Holland-Moritz, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. fuer Raumsimulation; Kaban, I. [Chemnitz Univ. of Technolgy (Germany). Inst. of Physics

    2007-02-15

    The density of liquid Al-Fe and Al-Ni binary alloys have been determined over a wide temperature range by a noncontact technique combining electromagnetic levitation and optical dilatometry. The temperature and composition dependences of the density are analysed. A negative excess volume correlates with the negative enthalpy of mixing, compound forming ability and chemical short-range ordering in liquid Al-Fe and Al-Ni alloys. (orig.)

  1. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  2. Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys

    International Nuclear Information System (INIS)

    Triveno Rios, C.; Kiminami, C.S.

    2014-01-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  3. Thermodynamics of oxygen solutions in Fe-40% Ni-15% Cr melts containing Mn, Si, Ti, Al

    International Nuclear Information System (INIS)

    Dashevskij, V.Ya.; Makarova, N.N.; Grigorovich, K.V.; Kashin, V.I.; Polikarpova, N.V.

    2000-01-01

    Thermodynamic analysis and experimental studied are performed for oxygen solutions in Fe-40% Ni-15% Cr melts where Mn, Si, Ti, Al are used as reducing agents. It is revealed that in the alloys studied the affinity of reducing agents to oxygen essentially lower than in liquid iron, nickel and Fe-40% Ni alloy. This is explained by the fact that the oxygen activity in melts noticeably decreases due to a high chromium content whereas the activity of reducing elements increases in a rather less degree. The agreement between analytical and experimental results confirms the validity of the calculation technique [ru

  4. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  5. Resistencia a la corrosión a alta temperatura de recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por APS

    Directory of Open Access Journals (Sweden)

    José Luis Tristancho-Reyes

    2014-12-01

    Full Text Available La corrosión a alta temperatura de las tuberías utilizadas en equipos generadores de vapor (calderas ha sido reconocida como un grave problema que trae consigo el adelgazamiento de éstas y, por consiguiente, la falla de los equipos. En la última década se han incrementado las investigaciones que involucran recubrimientos protectores que ayudan de alguna manera a prolongar la vida útil de estos equipos. Esta investigación determinó el comportamiento de los recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por proyección térmica asistida por plasma (APS sobre la aleación SA213 – T22 (2¼Cr – 1Mo, en un ambiente corrosivo de 80%V2O5–20%K2SO4 a 800°C. Los valores de la cinética de corrosión fueron determinados mediante resistencia a la polarización lineal (RPL y espectroscopia de impedancia electroquímica (EIE. Los resultados obtenidos muestran una menor cinética de corrosión en el recubrimiento NiCrFeNbMoTiAl que la presentada por el recubrimiento NiCrAlY, corroborado por Microscopia Electrónica de Barrido (MEB.

  6. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  7. Oxidation Resistance of Fe3Al/TiC Composite at High Temperature%Fe3Al/TiC复合材料的高温抗氧化性能

    Institute of Scientific and Technical Information of China (English)

    范敏; 鲍剑斌

    2003-01-01

    研究了Fe3Al/TiC复合材料的高温抗氧化性能.结果表明:Fe3Al/TiC复合材料在950℃的氧化动力学特征均近似服从抛物线规律,并且随TiC含量增加,Fe3Al/TiC复合材料的高温抗氧化性能降低.

  8. Microstructure of two phases alloy Al3Ti/Al3Ti0.75Fe0.25

    International Nuclear Information System (INIS)

    Angeles, C.; Rosas, G.; Perez, R.

    1998-01-01

    The titanium-aluminium system presents three intermetallic compounds from those Al 3 Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al 3 Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al 2 Ti phase over Al 3 Ti intermetallic compound increases its ductility. (Author)

  9. A Comparative Study of Carbon Nanotubes Synthesized from Co/Zn/Al and Fe/Ni/Al Catalyst

    Directory of Open Access Journals (Sweden)

    Ezekiel Dixon Dikio

    2011-01-01

    Full Text Available The catalyst systems Fe/Ni/Al and Co/Zn/Al were synthesized and used in the synthesis of carbon nanotubes. The carbon nanotubes produced were characterized by Field Emission Scanning Electron Microscope (FE-SEM, Energy Dispersive x-ray Spectroscopy (EDS, Raman spectroscopy, Thermogravimetric Analysis (TGA and Transmission Electron Microscope (TEM. A comparison of the morphological profile of the carbon nanotubes produced from these catalysts indicates the catalyst system Fe/Ni/Al to have produced higher quality carbon nanotubes than the catalyst system Co/Zn/Al.

  10. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  11. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    Science.gov (United States)

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manzoni, A., E-mail: anna.manzoni@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany); Daoud, H.; Völkl, R.; Glatzel, U. [Metals and Alloys, University Bayreuth, Ludwig-Thoma-Strasse 36b, D-95447 Bayreuth (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany)

    2013-09-15

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al–Ni rich matrix and Cr–Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr–Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr–Fe-rich precipitates. - Highlights: ► The Alloy separates into an Al–Ni rich matrix and Cr–Fe-rich precipitates. ► Concentration depth profiles in the Cr–Fe rich regions show opposite fluctuations. ► They have been attributed to the spinodal decomposition of Fe- and Cr-rich phases. ► The Al–Ni rich region corresponds well to the Al–Ni rich phases observed in the 6 component AlCoCrCuFeNi alloy.

  13. Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene

    International Nuclear Information System (INIS)

    Hsieh, S.-H.; Horng, J.-J.

    2006-01-01

    This research proposes an efficient method for depositing Fe-Ni nanoparticles on Al 2 O 3 microparticles to decompose containments in ground water, such as chloroform and trichloroethylene. The Fe-Ni nanoparticles can be deposited onto the surface of Al 2 O 3 microparticles by electroless plating technique. The reasons why the Fe-Ni nanoparticles would be deposited on the surface of Al 2 O 3 microparticles is to avoid the agglomeration of Fe-Ni nanoparticles due to their surface effect and magnetic property. The results show that the sizes of Fe-Ni particles on Al 2 O 3 particles are between several and several hundreds of nanometers, the contents of Fe and Ni in Fe-Ni nanoparticles can be adjusted from 8 to 60 at.% for Fe and 40 to 92 at.% for Ni, the specific surface area of Fe-Ni nanoparticles can reach to 117 m 2 /g, and the reaction mechanism of dechlorination of chloroform of 2 mg/L by Fe-Ni/Al 2 O 3 particles of 5 g/L appears to be pseudo first order with a half life of 0.7 h and the half life is 0.25 h for the dechlorination of trichloroethylene of 2 mg/L

  14. Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating

    Science.gov (United States)

    Tian, Li-Hui; Xiong, Wei; Liu, Chuan; Lu, Sheng; Fu, Ming

    2016-12-01

    Due to the advantages such as high strength, high hardness and good wear resistance, high-entropy alloys (HEAs) attracted more and more attentions in recent decades. However, most reports on HEAs were limited to bulk materials. Although a few of studies on atmospheric plasma-sprayed (APS) HEA coatings were carried out, the wear behavior, especially the high-temperature wear behavior of those coatings has not been investigated till now. Therefore, in this study, APS was employed to deposit AlCoCrFeNiTi high-entropy alloy coating using mechanically alloyed AlCoCrFeNiTi powder as the feedstock. The phase structure of the initial powder, the feedstock powder and the as-sprayed coating was examined by an x-ray diffractometer. The surface morphology of the feedstock powder and the microstructure of the as-sprayed coating were analyzed by field emission scanning electron microscopy and energy-dispersive spectroscopy. The bonding strength and the microhardness of the as-sprayed coating were tested. The wear behavior of the coating at 25, 500, 700 and 900 °C was investigated by analysis of the wear surface morphology and measurements of the volume wear rate and the coefficient of friction.

  15. Microstructure of two phases alloy Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}; Microestructura de una aleacion de dos fases Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}

    Energy Technology Data Exchange (ETDEWEB)

    Angeles, C; Rosas, G; Perez, R [Instituto Nacional de Investigaciones Nucleares, Departamento de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The titanium-aluminium system presents three intermetallic compounds from those Al{sub 3}Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al{sub 3}Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al{sub 2}Ti phase over Al{sub 3}Ti intermetallic compound increases its ductility. (Author)

  16. Slurry Erosion Behavior of AlxCoCrFeNiTi0.5 High-Entropy Alloy Coatings Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Jianhua Zhao

    2018-02-01

    Full Text Available High-entropy alloys (HEAs have gained extensive attention due to their excellent properties and the related scientific value in the last decade. In this work, AlxCoCrFeNiTi0.5 HEA coatings (x: molar ratio, x = 1.0, 1.5, 2.0, and 2.5 were fabricated on Q345 steel substrate by laser-cladding process to develop a practical protection technology for fluid machines. The effect of Al content on their phase evolution, microstructure, and slurry erosion performance of the HEA coatings was studied. The AlxCoCrFeNiTi0.5 HEA coatings are composed of simple face-centered cubic (FCC, body-centered cubic (BCC and their mixture phase. Slurry erosion tests were conducted on the HEA coatings with a constant velocity of 10.08 m/s and 16–40 meshs and particles at impingement angles of 15, 30, 45, 60 and 90 degrees. The effect of three parameters, namely impingement angle, sand concentration and erosion time, on the slurry erosion behavior of AlxCoCrFeNiTi0.5 HEA coatings was investigated. Experimental results show AlCoCrFeNiTi0.5 HEA coating follows a ductile erosion mode and a mixed mode (neither ductile nor brittle for Al1.5CoCrFeNiTi0.5 HEA coating, while Al2.0CoCrFeNiTi0.5 and Al2.5CoCrFeNiTi0.5 HEA coatings mainly exhibit brittle erosion mode. AlCoCrFeNiTi0.5 HEA coating has good erosion resistance at all investigated impingement angles due to its high hardness, good plasticity, and low stacking fault energy (SFE.

  17. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  18. Study the microstructure of three and four component phases in Al-Ni-Fe-La alloys

    KAUST Repository

    Kolobylina, Natalia

    2016-12-21

    Aluminium alloys play a key role in modern engineering since they are the most used non-ferrous material. They have been widely used in automotive, aerospace, and construction engineering due to their good corrosion resistance, superior mechanical properties along with good machinability, weldability, and relatively low cost. The progress in practical application has been determined by intensive research and development works on the Al alloys. A new class of Al–REM–TM aluminum alloys (REM indicates rare earth metal and TM is transition metal) was revealed in the end of the last century. These alloys differ from conventional ones by their extraordinary ability to form metal glasses and nanoscale composites in a wide range of compositions. Having low density, these alloys possess unique mechanical characteristics and corrosion resistance. Two as received alloys, namely Al85Ni9Fe2La4 and Al85Ni7Fe4La4 were obtained in the form of ingots from melts of corresponding compositions upon cooling in air were studied by scanning/transmission electron microscopy (STEM), energy dispersive X-ray (EDX) microanalysis and X-ray diffraction (XRD). The microstructural analyses were performed in a aberration corrected TITAN 80-300 TEM/STEM (FEI, USA) attached with EDX spectrometer with ultrathin window (EDAX, USA). The specimens for transmission electron microscopy (TEM) were prepared by an electrochemical or ion etching. It was found that the received alloys exhibits along with fcc Al and Al4La (Al11La3) particles, these alloys contain a ternary phase Al3Ni1 Fe isostructural to the Al3Ni phase and a quaternary phase Al8Fe2 NiLa isostructural to the Al8Fe2Eu phase and monoclinic phase Al9(Fe,Ni)2 isostructural to the Al9Co2. The study by HRSTEM together with a new atomic resolution energy dispersive X-ray microanalysis method demonstrated that Fe and Ni atoms substituted one another in the Al8Fe2–NiLa quaternary compound. Besides, several types of defects were determined: first

  19. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    International Nuclear Information System (INIS)

    Schuon, S.R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life

  20. Design and characterization of FeCrNiCoAlCu and FeCrNiCo(AlCu){sub 0,5} multicomponent alloys; Previsao e caracterizacao de ligas multicomponentes FeCrNiCoAlCu e FeCrNiCo(AlCu){sub 0,5}

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, Carlos; Artacho, Victor Falcao [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais

    2014-07-01

    High entropy alloys using multi-element main quasi-equivalent atomic proportions and generally forms single-phase solid solution and has the ability to enhance levels of strain hardening combined with high levels of plastic deformation at room temperature. In this work two high-entropy alloys with almost similar composition were studied and the factors influencing the formation of solid solution phases (δ atomic radius difference, ΔH{sub mix} mixing enthalpy, ΔS{sub mix} mixing entropy) were evaluated. The microstructure as-cast and the compositions of phases in the two alloys were analyzed by SEM and XRD. The mechanical characterization was realized by measurements of microhardness and cold compression test. The results showed that FeCrNiCo(AlCu){sub 0,5} and FeCrNiCoAlCu alloys with δ equal to 5,7 and 4,9, respectively, form alloys with solid solutions of high entropy. However, the presence of FC and BCCC structures greatly influence the mechanical properties. (author)

  1. Ostwald Ripening Process of Coherent β′ Precipitates during Aging in Fe0.75Ni0.10Al0.15 and Fe0.74Ni0.10Al0.15Cr0.01 Alloys

    Directory of Open Access Journals (Sweden)

    N. Cayetano-Castro

    2015-01-01

    Full Text Available The Ostwald ripening process was studied in Fe0.75Ni0.10Al0.15 and Fe0.74Ni0.10Al0.15Cr0.01 alloys after aging at 750, 850, and 950°C for different times. The microstructural evolution shows a rounded cube morphology (Fe, NiAl β′ precipitates aligned in the ferrite matrix, which changes to elongated plates after prolonged aging. The variation of the equivalent radii of precipitates with time follows the modified Lifshitz-Slyozov-Wagner theory for diffusion-controlled coarsening. Thermo-Calc analysis shows that the chromium content is richer in the matrix than in the precipitates which causes higher hardness and coarsening resistance in the aged Fe0.74Ni0.10Al0.15Cr0.01 alloy.

  2. Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification

    International Nuclear Information System (INIS)

    Zhang Lijun; Du Yong; Steinbach, Ingo; Chen Qing; Huang Baiyun

    2010-01-01

    A systematical investigation of the diffusivities in an Al-Fe-Ni melt was presented. Based on the experimental and theoretical data about diffusivities, the temperature- and composition-dependent atomic mobilities were evaluated for the elements in Al-Ni, Al-Fe, Fe-Ni and Al-Fe-Ni melts via an effective approach. Most of the reported diffusivities can be reproduced well by the obtained atomic mobilities. In particular, for the first time the ternary diffusivity of the liquid in a ternary system is described in conjunction with the established atomic mobilities. The effect of the atomic mobilities in a liquid on microstructure and microsegregation during solidification was demonstrated with one Al-Ni binary alloy. The simulation results indicate that accurate databases of mobilities in the liquid phase are much needed for the quantitative simulation of microstructural evolution during solidification by using various approaches, including DICTRA and the phase-field method.

  3. Sintering of (Ni,Mg)(Al,Fe)2O4 Materials and their Corrosion Process in Na3AlF6-AlF3-K3AlF6 Electrolyte

    Science.gov (United States)

    Xu, Yibiao; Li, Yawei; Yang, Jianhong; Sang, Shaobai; Wang, Qinghu

    2017-06-01

    The application of ledge-free sidewalls in the Hall-Héroult cells can potentially reduce the energy requirement of aluminum production by about 30 pct (Nightingale et al. in J Eur Ceram, 33:2761-2765, 2013). However, this approach poses great material challenges since such sidewalls are in direct contact with corrosive electrolyte. In the present paper, (Ni,Mg)(Al,Fe)2O4 materials were prepared using fused magnesia, reactive alumina, nickel oxide, and iron oxide powders as the starting materials. The sintering behaviors of specimens as well as their corrosion resistance to molten electrolyte have been investigated by means of X-ray diffraction and scanning electron microscope. The results show that after firing at temperature ranging from 1673 K (1400 °C) up to 1873 K (1600 °C), all the specimens prepared are composed of single-phase (Ni,Mg)(Al,Fe)2O4 composite spinel, the lattice parameter of which increases with increasing Fe3+ ion concentration. Increasing the iron oxide content enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed smaller pores in the matrix. The corrosion tests show that corrosion layers consist of fluoride and Ni(Al,Fe)2O4 composite spinel grains are produced in specimens with Fe/Al mole ratio no more than 1, whereas dense Ni(Al,Fe)2O4 composite spinel layers are formed on the surface of the specimens with Fe/Al mole ratio more than 1. The dense Ni(Al,Fe)2O4 composite spinel layers formed improve the corrosion resistance of the specimens by inhibiting the infiltration of electrolyte and hindering the chemical reaction between the specimen and electrolyte.

  4. First-Principles Investigations of the Structural, Anisotropic Mechanical, Thermodynamic and Electronic Properties of the AlNi2Ti Compound

    Directory of Open Access Journals (Sweden)

    Shuli Tang

    2018-02-01

    Full Text Available In this paper, the electronic, mechanical and thermodynamic properties of AlNi2Ti are studied by first-principles calculations in order to reveal the influence of AlNi2Ti as an interfacial phase on ZTA (zirconia toughened alumina/Fe. The results show that AlNi2Ti has relatively high mechanical properties, which will benefit the impact or wear resistance of the ZTA/Fe composite. The values of bulk, shear and Young’s modulus are 164.2, 63.2 and 168.1 GPa respectively, and the hardness of AlNi2Ti (4.4 GPa is comparable to common ferrous materials. The intrinsic ductile nature and strong metallic bonding character of AlNi2Ti are confirmed by B/G and Poisson’s ratio. AlNi2Ti shows isotropy bulk modulus and anisotropic elasticity in different crystallographic directions. At room temperature, the linear thermal expansion coefficient (LTEC of AlNi2Ti estimated by quasi-harmonic approximation (QHA based on Debye model is 10.6 × 10−6 K−1, close to LTECs of zirconia toughened alumina and iron. Therefore, the thermal matching of ZTA/Fe composite with AlNi2Ti interfacial phase can be improved. Other thermodynamic properties including Debye temperature, sound velocity, thermal conductivity and heat capacity, as well as electronic properties, are also calculated.

  5. Improvements of room temperature tensile properties in cast TiAl-Fe-V-B alloy by microstructural control; Fe, V, B tenka TiAl gokin no soshiki seigyo ni yoru joon hippari tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nishikiori, S.; Matsuda, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-05-01

    Conditions of homogenization to follow the HIP (hot isostatic press) treatment of the TiAl alloy are tested and discussed for the optimization of the relationship between mechanical properties and the structure resulting from heat treatment. Fe, V, and B are added for improved castability to a TiAl alloy newly developed in this report, and this allows {beta} precipitation to take place which does not occur in the two-element alloy. Attention is paid to this {beta} phase, and the effect of homogenizing conditions and the amount of oxygen is investigated from the metallographic point of view. Some findings obtained are mentioned below. The {beta} phase size 30-50{mu}m emerges in the vicinity of {gamma} grains, containing more Fe and V in the solid solution state than the other structural phases. The {beta} phase rich in Fe and V concentration is high in Vickers hardness, and is supposedly brittle at room temperature. The added oxygen reduces the amount of {beta} phase precipitation for the stabilization of the {alpha} phase. The TiAl alloy containing Fe, V, and B exhibits a duplex structure after HIP treatment and the homogenization process to follow. It has a tensile strength of 550MPa, proof stress of 390MPa, and elongation of 1.80%, on the average at room temperature. 14 refs., 10 figs., 1 tab.

  6. Deposition of Fe-Ni nanoparticles on Al{sub 2}O{sub 3} for dechlorination of chloroform and trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S.-H. [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Taiwan (China) and Department of Materials Science and Engineering, National Formosa University, Taiwan (China)]. E-mail: shhsieh@sunws.nfu.edu.tw; Horng, J.-J. [Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 640, Taiwan (China)

    2006-11-30

    This research proposes an efficient method for depositing Fe-Ni nanoparticles on Al{sub 2}O{sub 3} microparticles to decompose containments in ground water, such as chloroform and trichloroethylene. The Fe-Ni nanoparticles can be deposited onto the surface of Al{sub 2}O{sub 3} microparticles by electroless plating technique. The reasons why the Fe-Ni nanoparticles would be deposited on the surface of Al{sub 2}O{sub 3} microparticles is to avoid the agglomeration of Fe-Ni nanoparticles due to their surface effect and magnetic property. The results show that the sizes of Fe-Ni particles on Al{sub 2}O{sub 3} particles are between several and several hundreds of nanometers, the contents of Fe and Ni in Fe-Ni nanoparticles can be adjusted from 8 to 60 at.% for Fe and 40 to 92 at.% for Ni, the specific surface area of Fe-Ni nanoparticles can reach to 117 m{sup 2}/g, and the reaction mechanism of dechlorination of chloroform of 2 mg/L by Fe-Ni/Al{sub 2}O{sub 3} particles of 5 g/L appears to be pseudo first order with a half life of 0.7 h and the half life is 0.25 h for the dechlorination of trichloroethylene of 2 mg/L.

  7. Preparation of Fe-Al Intermetallic / TiC-Al2O3 Ceramic Composites from Ilmenite by SHS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by self-propagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed.It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis;Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave arc improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.

  8. Dynamic magnetization of NiZn ferrite doped FeSiAl thin films fabricated by oblique sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaoxi, E-mail: xiaoxi.zhong@gmail.com [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China); Phuoc, Nguyen N. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Soh, Wee Tee [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Ong, C.K. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Li, Lezhong [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2017-06-15

    Highlights: • We prepared NiZn ferrite doped FeSiAl-based thin films using oblique deposition technique. • The magnetic properties of FeSiAl-based thin films were systematically studied. • Two ferromagnetic resonance peaks were observed in the permeability spectra. • The thermal stability of microwave properties of FeSiAl-based films was studied. • The thermal stability of properties we studied was relatively good. - Abstract: In this study, we comprehensively investigate the dynamic magnetic properties of FeSiAl-NiZnFeO thin films prepared by the oblique deposition method via a shorted microstrip perturbation technique. For the films with higher oblique angle and NiZn ferrite doping amount, there are two ferromagnetic resonance peaks observed in the permeability spectra, and both of the two peaks originate from FeSiAl. Furthermore, the magnetic anisotropy field H{sub K} of the ferromagnetic resonance peak at higher frequency is enhanced with increasing doping amount, which is interpreted in terms of the contribution of reinforced stress-induced anisotropy and shape anisotropy brought about by doping elements and oblique sputtering method. In addition, the thermal stability of the ferromagnetic resonance frequency f{sub FMR} of FeSiAl-NiZnFeO films with oblique angles of 35° and 45° with respect to temperature ranging from 300 K to 420 K is deteriorated with increasing ferrite doping amount, which is mainly ascribed to the influence of pair-ordering anisotropy and/or the reduction of the FeSiAl grain size.

  9. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study

    International Nuclear Information System (INIS)

    Sun, Ting; Wu, Xiaozhi; Wang, Rui; Li, Weiguo

    2015-01-01

    The adhesion and ductility of (100) and (110) Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe, and Ti have been investigated using first-principles methods. Fe and Ti can enhance the adhesion of (100) and (110) interfaces. Mg and Zn have the opposite effect. Interfacial electronic structures have been created to analyze the changes of the work of adhesion. It is found that more charge is accumulated at interfaces alloyed by Fe and Ti compared with pure Al/TiC. There is also an obvious downward shift in the Fermi energy of Fe, Ti at the interface. Furthermore, the unstable stacking fault energies of the interfaces are calculated; the results demonstrate that the preferred slip direction is the 〈110〉 direction for (100) and (110) Al/TiC. Based on the Rice criterion of ductility, the results predict that Mg, Fe, and Ti are promising candidates for improving the ductility of Al/TiC interfaces. (paper)

  10. Synthesis of Fe-Al-Ti Based Intermetallics with the Use of Laser Engineered Net Shaping (LENS

    Directory of Open Access Journals (Sweden)

    Monika Kwiatkowska

    2015-04-01

    Full Text Available The Laser Engineered Net Shaping (LENS technique was combined with direct synthesis to fabricate L21-ordered Fe-Al-Ti based intermetallic alloys. It was found that ternary Fe-Al-Ti alloys can be synthesized using the LENS technique from a feedstock composed of a pre-alloyed Fe-Al powder and elemental Ti powder. The obtained average compositions of the ternary alloys after the laser deposition and subsequent annealing were quite close to the nominal compositions, but the distributions of the elements in the annealed samples recorded over a large area were inhomogeneous. No traces of pure Ti were observed in the deposited alloys. Macroscopic cracking and porosity were observed in all investigated alloys. The amount of porosity in the samples was less than 1.2 vol. %. It seems that the porosity originates from the porous pre-alloyed Fe-Al powders. Single-phase (L21, two-phase (L21-C14 and multiphase (L21-A2-C14 Fe-Al-Ti intermetallic alloys were obtained from the direct laser synthesis and annealing process. The most prominent feature of the ternary Fe-Al-Ti intermetallics synthesized by the LENS method is their fine-grained structure. The grain size is in the range of 3–5 μm, indicating grain refinement effect through the highly rapid cooling of the LENS process. The Fe-Al-Ti alloys synthesized by LENS and annealed at 1000 °C in the single-phase B2 region were prone to an essential grain growth. In contrast, the alloys annealed at 1000 °C in the two-phase L21-C14 region exhibited almost constant grain size values after the high-temperature annealing.

  11. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    International Nuclear Information System (INIS)

    Liping, Mao; Yongfan, Shi; Yu, Han

    2014-01-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti 2 FeZ (Z=Al, Ga, Ge) alloys with Hg 2 CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti 2 FeZ follow the µ t =Z t −18 rule and agree with the Slater–Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. - Highlights: • Ti 2 FeZ (Z=Al, Ga, Ge) are found to be half-metallic ferrimagnets. • The band gaps are mainly determined by the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. • The s–p elements play an important role in the half-metallicity of these Heusler alloys

  12. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    Science.gov (United States)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  13. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    International Nuclear Information System (INIS)

    Baldenebro-Lopez, F.J.; Herrera-Ramírez, J.M.; Arredondo-Rea, S.P.; Gómez-Esparza, C.D.; Martínez-Sánchez, R.

    2015-01-01

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying

  14. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  15. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  16. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  17. Effect of hydrogen on Ti-10V-2Fe-3Al

    International Nuclear Information System (INIS)

    Costa, J.E.

    1985-01-01

    The effect of hydrogen on the physical and mechanical properties of the metastable β alloy Ti-10V-2Fe-3Al was examined. This study had three main goals. The first was to improve the understanding of the effects of hydrogen in the β phase. The second goal was to determine the effects of hydrogen on the specific alloy Ti-10V-2Fe-3Al. The third goal was to identify possible in-service problems that could occur in Ti-10V-2Fe-3Al and in similar alloys. The effects of hydrogen were examined in three different microstructures: beta-annealed and water-quenched (B/WQ), beta-annealed and furnace cooled (B/FC), and solution treated and aged (STA). The B/WQ microstructure was nominally all-β with some athermal omega phase while the B/FC and STA microstructures were α + β microstructures. Hydrogen concentrations from approx.0 to >30 at.% were used. Hydrogen was introduced into test specimens using either Sieverts charging or cathodic charging techniques. When the B/WQ microstructure was deformed, the β phase was transformed to orthorhombic α'' martensite. Hydrogen effects in the B/FC and STA microstructures were largely the result of hydride formation at α/β interfaces. The effect of hydride formation was observed as decreases in the reduction of area for tensile specimens

  18. Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys

    International Nuclear Information System (INIS)

    Shreder, E; Streltsov, S V; Svyazhin, A; Makhnev, A; Marchenkov, V V; Lukoyanov, A; Weber, H W

    2008-01-01

    We present the results of experiments on the optical, electrical and magnetic properties and electronic structure and optical spectrum calculations of the Heusler alloys Fe 2 TiAl, Fe 2 VAl and Fe 2 CrAl. We find that the drastic transformation of the band spectrum, especially near the Fermi level, when replacing the Me element (Me = Ti, V, Cr), is accompanied by a significant change in the electrical and optical properties. The electrical and optical properties of Fe 2 TiAl are typical for metals. The abnormal behavior of the electrical resistivity and the optical properties in the infrared range for Fe 2 VAl and Fe 2 CrAl are determined by electronic states at the Fermi level. Both the optical spectroscopic measurements and the theoretical calculations demonstrate the presence of low-energy gaps in the band spectrum of the Heusler alloys. In addition, we demonstrate that the formation of Fe clusters may be responsible for the large enhancement of the total magnetic moment in Fe 2 CrAl

  19. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  20. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhi, E-mail: Zhi.Tang@alcoa.com [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Senkov, Oleg N. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433 (United States); Parish, Chad M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, Chuan; Zhang, Fan [CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 53719 (United States); Santodonato, Louis J. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, Gongyao [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Zhao, Guangfeng; Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Liaw, Peter K., E-mail: pliaw@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2015-10-28

    The microstructure and phase composition of an AlCoCrFeNi high-entropy alloy (HEA) were studied in as-cast (AlCoCrFeNi-AC, AC represents as-cast) and homogenized (AlCoCrFeNi-HP, HP signifies hot isostatic pressed and homogenized) conditions. The AlCoCrFeNi-AC ally has a dendritric structure in the consisting primarily of a nano-lamellar mixture of A2 (disordered body-centered-cubic (BCC)) and B2 (ordered BCC) phases, formed by an eutectic reaction. The homogenization heat treatment, consisting of hot isostatic pressed for 1 h at 1100 °C, 207 MPa and annealing at 1150 °C for 50 h, resulted in an increase in the volume fraction of the A1 phase and formation of a Sigma (σ) phase. Tensile properties in as-cast and homogenized conditions are reported at 700 °C. The ultimate tensile strength was virtually unaffected by heat treatment, and was 396±4 MPa at 700 °C. However, homogenization produced a noticeable increase in ductility. The AlCoCrFeNi-AC alloy showed a tensile elongation of only 1.0%, while after the heat-treatment, the elongation of AlCoCrFeNi-HP was 11.7%. Thermodynamic modeling of non-equilibrium and equilibrium phase diagrams for the AlCoCrFeNi HEA gave good agreement with the experimental observations of the phase contents in the AlCoCrFeNi-AC and AlCoCrFeNi-HP. The reasons for the improvement of ductility after the heat treatment and the crack initiation subjected to tensile loading were discussed.

  1. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  2. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  3. Plastic deformation of Al13Fe4 particles in Al-Al13Fe4 by high-speed compression

    International Nuclear Information System (INIS)

    Yoneyama, N.; Mizoguchi, K.; Kumai, S.; Sato, A.; Kiritani, M.

    2003-01-01

    Spray-formed Al-Fe alloys having undergone high-speed deformation were examined under a high-voltage electron microscope. Two types of specimens were examined; one containing fine Al 13 Fe 4 particles, and the other containing large particles. In the former specimen, deformation is found to proceed in three patterns, depending on specimen thickness and strain rate: (1) without deformation of the Al 13 Fe 4 ; (2) breaking of the Al 13 Fe 4 ; or (3) melting of the Al 13 Fe 4 . Local melting is found to alter some of the Al 13 Fe 4 particles, to impart five-fold symmetry in diffraction or an amorphous structure. In the latter specimen, introduction of glide dislocations enabled us to determine a shear system in the mc102 monoclinic c2/m crystal of Al 13 Fe 4 . On the bases of these observations, the mechanism of high-speed deformation is discussed while taking into account the highly stressed and/or heated states of Al 13 Fe 4 embedded in Al matrix

  4. Generation and evolution of nanoscale AlP and Al{sub 13}Fe{sub 4} particles in Al-Fe-P system

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Huan; Gao, Tong; Zhu, Xiangzhen; Wu, Yuying; Qian, Zhao; Liu, Xiangfa, E-mail: xfliu@sdu.edu.cn

    2015-02-15

    Highlights: • Diffusion and gradual solid reactions between Al and Fe{sub x}P phases in Al-Fe-P alloy were investigated. • Nanoscale AlP clusters are in-situ generated and evolve during the whole process. • This novel Al-Fe-P alloy has an excellent low-temperature refining performance on hypereutectic Al-Si alloy. - Abstract: In this paper, the gradual solid reactions between Al and Fe{sub x}P phases in Al-Fe-P alloy were investigated. The results show that the whole reaction process undergoes four main stages: the diffusion of Al atom, the generation of (Al, Fe, P) intermediate compound, the precipitation of nano AlP and Al{sub 13}Fe{sub 4} clusters and their growth to submicron particles. The microstructure of Fe-P particles evolves from the “egg-type”, the “sponge-type” to the “sesame-cake” structure. AlP and Al{sub 13}Fe{sub 4} nano phases have in-situ generated and evolved during the whole process. The gradual reaction mechanism has been discussed. Furthermore, a novel Al-Fe-P alloy which contains (Al, Fe, P) intermediate compounds and nano AlP particles has been synthesized and its low-temperature refining performance on A390 alloy has also been investigated.

  5. Transient oxidation of Al-deposited Fe-Cr-Al alloy foil

    International Nuclear Information System (INIS)

    Andoh, A.

    1997-01-01

    The oxide phases formed on an Al-deposited Fe-Cr-Al alloy foil and an Fe-Cr-Al alloy foil of the same levels of Al and (La+Ce) contents, and their oxidation kinetics have been studied in air at 1173 and 1373 K using TGA, XRD and SEM. Al deposition promotes the growth of metastable aluminas (θ-Al 2 O 3 , γ-Al 2 O 3 ). Scales consisting of θ-Al 2 O 3 and a small amount of α-Al 2 O 3 develop on the Al-deposited foil at 1173 K and exhibit the whisker-type morphology. In the early stage of oxidation at 1373 K, thick scales consisting of θ-Al 2 O 3 and α-Al 2 O 3 grow rapidly on the Al-deposited foil. The transformation from θ-Al 2 O 3 to α-Al 2 O 3 is very fast, and the scales result in only α-Al 2 O 3 . In contrast, α-Al 2 O 3 scales containing a minor amount of FeAl 2 O 4 develop on the alloy foil. The growth rate of α-Al 2 O 3 scales on the Al-deposited foil is smaller than that on the alloy foil and very close to that on NiAl at 1373 K. (orig.)

  6. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    International Nuclear Information System (INIS)

    Xu Jiang; Liu Wenjin; Kan Yide; Zhong Minlin

    2006-01-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB 2 and Ti 3 B 4 peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO 2 laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB 2 , Ti 3 B 4 , Al 3 Ti, Al 3 Fe and α-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB 2 and Ti 3 B 4 peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB 2 and Ti 3 B 4 peritectic improve wear resistance when compared with the as-received Al substrate

  7. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    Science.gov (United States)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  8. SURFACE PROPERTIES OF THE IN SITU FORMED CERAMICS REINFORCED COMPOSITE COATINGS ON TI-3AL-2V ALLOYS

    OpenAIRE

    PENG LIU; WEI GUO; DAKUI HU; HUI LUO; YUANBIN ZHANG

    2012-01-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was obser...

  9. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  10. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    Directory of Open Access Journals (Sweden)

    W. Y. Zhang

    2016-05-01

    Full Text Available Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti3(Fe,Co5B2, FeCo-rich bcc, and NiAl-rich L21 phases; Ti3(Fe,Co5B2, is a new substitutional alloy series whose end members Ti3Co5B2 and Ti3Fe5B2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti11+xFe37.5-0.5xCo37.5−0.5xB14 (x = 0, 4 and alnico-like Ti11Fe26Co26Ni10Al11Cu2B14, the latter also containing an L21-type alloy. The volume fraction of the Ti3(Fe,Co5B2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystalline anisotropy of the tetragonal Ti3(Fe,Co5B2 phase. The alloy containing Ni, Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Our results indicate that magnetocrystalline anisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.

  11. The critical effect of Fe on the grain refinement of aluminium via Al-5Ti-1B addition

    International Nuclear Information System (INIS)

    Zhang, Y; Ma, N

    2016-01-01

    The influence of Fe on the nucleation potency of TiB 2 particles was investigated by employing grain refinement of high purity aluminium in this study. Experiment results showed that without Fe, high purity aluminium cannot be refined by 0.8wt.% addition of Al-5Ti-1B. However, high purity aluminium containing 0.08wt.% Fe can be refined effectively by 0.2wt.% addition of Al-5Ti-1B, its grain size was about 206µm in diameter. Fine equiaxed grains of about 153µm in diameter can be obtained for high purity aluminium containing 0.08wt.% Fe and 0.006wt.% Ti. Grain refinement mechanism should include nucleation and dendrite remelting and multiplication. Both nucleation and dendrite remelting and multiplication played essential role on the grain refinement of aluminium. The effect of Fe was linked to increase active nuclei by segregation on TiB 2 surface and then to promote nucleation of α-Al. The performance of Ti was to enhance the dendrite remelting and multiplication by forming small conglomeration zones of Ti atoms concentrated around TiB 2 particles. (paper)

  12. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  13. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  14. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  15. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)]. E-mail: xujiang73@sina.com.cn; Liu Wenjin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Kan Yide [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhong Minlin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2006-07-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO{sub 2} laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB{sub 2}, Ti{sub 3}B{sub 4}, Al{sub 3}Ti, Al{sub 3}Fe and {alpha}-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic improve wear resistance when compared with the as-received Al substrate.

  16. Aleaciones cuasicristalinas Al93Fe3Cr2Ti2

    Directory of Open Access Journals (Sweden)

    García-Escorial, Asunción

    2015-12-01

    Full Text Available Aluminium alloy powder having a nominal composition of Al93Fe3Cr2Ti2 (at% has been prepared using gas atomisation. The atomised powder present a microstructure of an aluminium matrix reinforced with a spherical quasicrystalline icosahedral phase, in the range of nanometre in size. The powder was consolidated into bars using warm extrusion. The microstructure of the extruded bars retains the quasicrystalline microstructure and the bars present outstanding mechanical properties, i.e. proof stress of 280 MPa at 300 °C. Upon heating the microstructure evolves towards the equilibrium. The thermal evolution was investigated by means of x-ray diffraction, differential scanning calorimeter, scanning electron microscopy and transmission electron microscopy. According to these observations a transformation in two steps is proposed. A first step consists in the decomposition of the supersaturated solid solution of the matrix and the quasicrystals, and a second step in the transformation of the quasicrystals into the equilibrium phases.Se ha obtenido por atomización por gas polvo de la aleación Al93Fe3Cr2Ti2 (at%. Este polvo presenta una microestructura de una matriz de aluminio reforzada por precipitados icosaédricos de tamaño nanométrico. El polvo fue consolidado por extrusión en forma de barras cilíndricas. La microestructura de las barras retiene la microestructura cuasicristalina de las partículas de polvo. El material consolidado presenta propiedades mecánicas prometedoras, como un límite elástico de 280 MPA a 300 °C. Con los tratamientos térmicos, la microestructura evoluciona hacia el equilibrio. Esta evolución se estudia por difracción de rayos x, calorimetría diferencial de barrido, microscopías electrónicas de barrido y de transmisión. A la luz de los resultados obtenidos se propone que la transformación de las fases con el tiempo de tratamiento térmico ocurre en dos pasos. Primeramente, tiene lugar la descomposición de la

  17. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys

    International Nuclear Information System (INIS)

    Zhang, K B; Fu, Z Y; Zhang, J Y; Wang, W M; Lee, S W; Niihara, K

    2011-01-01

    Novel CoCrFeNiTiAl x (x:molar ratio, other elements are equimolar) high-entropy alloys were prepared by vacuum arc melting and these alloys were subsequently annealed at 1000 deg. C for 2 h. The annealing effects on structure and mechanical properties were investigated. Compared with the as-cast alloys, there are many complex intermetallic phases precipitated from the solid solution matrix in the as-annealed alloys with Al content lower than Al 1.0 . Only simple BCC solid solution structure appears in the as-annealed Al 1.5 and Al 2.0 alloys. This kind of alloys exhibit high resistance to anneal softening. Most as-annealed alloys possess even higher Visker hardness than the as-cast ones. The as-annealed Al 0.5 alloys shows the highest compressive strength while the Al 0 alloy exhibits the best ductility, which is about 2.6 GPa and 13%, respectively. The CoCrFeNiTiAl x high-entropy alloys possess integrated high temperature mechanical property as well.

  18. Effect of Fe Content on the Microstructure and Mechanical Properties of Ti-Al-Mo-V-Cr-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Bae K.C.

    2017-06-01

    Full Text Available To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa, which decreased with further addition of Fe.

  19. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  20. Magnetostrictive properties of FeAl/polyester and FeAl/silicone composites

    Energy Technology Data Exchange (ETDEWEB)

    Riesgo, G. [Dpto. de Ciencias y Técnicas de la Navegación, Universidad de Oviedo, Campus universitario de Gijón, 33203 Gijón (Spain); Carrizo, J. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Crespo, R.D. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Sepúlveda, R. [Dpto. de Ingeniería Mecánica y de los Materiales, Universidad de Sevilla, Isla Cartuja, 41092 Sevilla (Spain); García, J.A. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2017-01-15

    Highlights: • Nanocrystalline powders of FeAl have been obtained from the Fe{sub 81}Al{sub 19} ribbon produced by melt spinning. • The method allows the obtainment of a FeAl solid solution from the starting process. • The microstructure and magnetic properties of the powders were investigated. • Composites with a magnetostriction of 45 ppm have been obtained. - Abstract: Ribbons of composition Fe{sub 81}Al{sub 19} obtained by the melt spinning method have been used to yield powder by mechanical milling. Using this method, a rapid nanocrystallization and a FeAl solid solution phase was obtained from the start of the process. The microstructural and magnetic properties as well as the XRD patterns of the powders were studied in function of the milling time. Grain refinement and an increase of the coercive field were the main transformations resulting from increasing the milling time. Two sets of magnetostrictive composites were produced from the 100 h-milled powder. In one of them polyester was used as matrix and in the other one silicone. In the case of the silicone composites cured in a magnetic field of 140 mT in the longitudinal direction a saturation magnetostriction as high as 45 ppm was obtained.

  1. Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z=Al, Ga, Si, Ge, As, Sb)

    International Nuclear Information System (INIS)

    Xiong, Lun; Yi, Lin; Gao, G.Y.

    2014-01-01

    We investigate the electronic structure and magnetic properties of the twelve quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z=Al, Ga, Si, Ge, As, Sb) by using the first-principles calculations. It is shown that only CoFeTiSi, CoFeTiAs and CoFeVSb are half-metallic ferromagnets with considerable half-metallic gaps of 0.31, 0.18 and 0.17 eV, respectively. CoFeTiAl and CoFeTiGa are conventional semiconductors, and other alloys exhibit nearly half-metallicity or their half-metallic gaps are almost zero eV. We also find that the half-metallicities of CoFeTiSi, CoFeTiAs and CoFeVSb can be preserved under appropriate uniform and in-plane strains. The considerable half-metallic gaps and the robust half-metallicities under uniform and in-plane strains make CoFeTiSi, CoFeTiAs and CoFeVSb promising candidates for spintronic applications. - Highlights: • CoFeTiSi, CoFeTiAs and CoFeVSb have considerable half-metallic gaps. • Total magnetic moments obey the Slater–Pauling behavior of quaternary Heusler half-metals. • CoFeTiSi, CoFeTiAs and CoFeVSb retain half-metallicity under uniform and in-plane strains

  2. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    Science.gov (United States)

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  3. NMR and NQR studies of 5f-band metamagnetic UCoAl and UCo{sub 1-x}T{sub x}Al (T=Fe,Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Kohori, Y. [Graduate School of Science and Technology, Chiba University, Chiba 263-8522 (Japan) and Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522 (Japan)]. E-mail: kohori@faculty.chiba-u.jp; Fukazawa, H. [Graduate School of Science and Technology, Chiba University, Chiba 263-8522 (Japan); Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522 (Japan); Iwamoto, Y. [Division of Cargo and Transportation Science, Kobe University, Kobe 658-0022 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Andreev, A.V. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18040 Prague 8 (Czech Republic); Sechovsky, V. [Department of Electronic Structures, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2006-05-01

    The 5f-band system UCoAl, which crystallizes in the hexagonal ZrNiAl-type structure, has the paramagnetic ground state. The magnetic fields H as low as 0.6T oriented along the c-axis induce the metamagnetic transition below 17K. In order to study the magnetic property of UCoAl, we performed {sup 27}Al and {sup 59}Co NMR/NQR measurements in UCoAl, UCo{sub 0.98}Fe{sub 0.02}Al and UCo{sub 0.95}Ni{sub 0.05}Al single crystals. The substitution of Fe stabilizes the ferromagnetic state, and that of Ni stabilizes the paramagnetic state. The nuclear spin-lattice relaxation rate 1/T{sub 1} obtained with the crystal c-axis perpendicular to H is nearly six times larger than the 1/T{sub 1} with the c-axis parallel to H, which reflects the anisotropy of the spin fluctuations of the system.

  4. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  5. Atomic site occupancies and magnetic properties of Ni-doped FeAl intermetallic compounds

    CERN Document Server

    Ko, K Y; Yoon, S

    1999-01-01

    Neutron and X-ray powder diffraction revealed FeAl sub 1 sub - sub x Ni sub x alloys to have the B2(CsCl) structure with a virtually constant lattice parameter of 2.91 A and with the Ni atoms preferring the Fe sites. The annealed specimens showed paramagnetism for x 0.25 whereas the rapidly solidified specimens showed superparamagnetism for x = 0.25. The magnetization increased as the Ni concentration (x) increased. The rapidly solidified specimens, in general, showed stronger magnetic properties than the annealed ones. The magnetic properties were explained in terms of the local environmental model for magnetic atoms.

  6. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    International Nuclear Information System (INIS)

    Cao, J.; Song, X.G.; Wu, L.Z.; Qi, J.L.; Feng, J.C.

    2012-01-01

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni 3 (AlTi) layer, a Ni 2 AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi 3 layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al 3 Ni and Al 3 Ni 2 phases. The reaction sequence of the Al/Ni multilayers was Al 3 NiAl 3 Ni 2 → AlNiAlNi 3 and the final products were AlNi and AlNi 3 phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: ► Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. ► The reaction sequence of the Al/Ni multilayers was Al 3 NiAl 3 Ni 2 → AlNiAlNi 3 . ► The interfacial microstructure of the joint was clarified. ► The application of Al/Ni multilayers improved the joining quality.

  7. Microstructures and mechanical properties of Fe-28Al-5Cr/TiC composites produced by hot-pressing sintering

    International Nuclear Information System (INIS)

    Zhang Xinghua; Yang Jun; Ma Jiqiang; Bi Qinling; Cheng Jun; Liang Yongmin; Liu Weimin

    2011-01-01

    Highlights: → The near fully dense Fe-28Al-5Cr/TiC composites are produced by hot-pressing sintering. → All the materials exhibit high compressive and bending strength. → Compressive strength increases but bending strength and ductility diminish with rising TiC amount in the composites. → Wear resistance significantly increases with rising TiC amount. - Abstract: The mechanical properties and microstructures of Fe-28Al-5Cr based composites reinforced with 15, 25, 35, 50 wt.% TiC ceramic particle, produced by hot-pressing sintering method, were investigated. The relative density of all the composites was up to 99%. The distribution of TiC was uniform in the composites. Results of XRD analysis showed that the composites were composed of TiC and disorder Fe 3 Al phases. All the materials exhibited very high strength of 1200-2000 MPa. The hardness and compressive strength of the composites increased obviously but compressive strain decreased gradually except 50% composite with increasing TiC content. The bending strength and deflection of the composites decreased significantly with increasing TiC content. The bending fracture surfaces of all the materials were examined using scanning electron microscopy (SEM). The fracture mode transformed gradually from tough dimple fracture mode to brittle cleavage facets crack mode with the increase of TiC content. Wear resistance of the Fe-28Al-5Cr alloy was also significantly improved by addition of TiC.

  8. Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing

    Science.gov (United States)

    Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés

    2018-04-01

    A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.

  9. Microstructure of Laser Clad TiC/FeAl Composite Coating and Growth Mechanism of Primary TiC Carbide%激光熔覆TiC/FeAl复合材料涂层显微组织及初生TiC生长机制研究

    Institute of Scientific and Technical Information of China (English)

    陈瑶; 王华明

    2003-01-01

    利用激光熔覆技术在 1Cr18Ni9Ti奥氏体不锈钢基体上制得了以 TiC为增强相、以 FeAl金属间化合物为基体的快速凝固 TiC/FeAl复合材料涂层,分析了该涂层的显微组织及初生 TiC的生长形态和生长机制.研究结果表明,激光熔覆 TiC/FeAl快速凝固复合材料涂层主要由初生 TiC碳化物、初生 FeAl树枝晶和枝晶间少量的 FeAl/TiC共晶组成,初生 TiC具有独特的径向辐射分枝小面枝晶团簇状生长形态,其生长机制为侧向生长.

  10. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  11. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J., E-mail: cao_jian@hit.edu.cn [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Song, X.G. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Wu, L.Z. [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Qi, J.L.; Feng, J.C. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China)

    2012-02-29

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni{sub 3}(AlTi) layer, a Ni{sub 2}AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi{sub 3} layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al{sub 3}Ni and Al{sub 3}Ni{sub 2} phases. The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3} and the final products were AlNi and AlNi{sub 3} phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: Black-Right-Pointing-Pointer Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. Black-Right-Pointing-Pointer The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3}. Black-Right-Pointing-Pointer The interfacial microstructure of the joint was clarified. Black-Right-Pointing-Pointer The application of Al/Ni multilayers improved the joining quality.

  12. Microstructural characterization of welded zone for Fe{sub 3}Al/Q235 fusion-bonded joint

    Energy Technology Data Exchange (ETDEWEB)

    Ma Haijun [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061, Shandong Province, Jing Shi Road 73, Shandong (China)], E-mail: hjma123@mail.sdu.edu.cn; Li Yajiang [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061, Shandong Province, Jing Shi Road 73, Shandong (China); Material Science Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Puchkov, U.A. [Material Science Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Wang Juan [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061, Shandong Province, Jing Shi Road 73, Shandong (China)

    2008-12-20

    The microstructural characterization of Fe{sub 3}Al/Q235 welded zone were analysed to investigate the welding behavior of Fe{sub 3}Al intermetallic. The results indicated that a crack-free Fe{sub 3}Al/Q235 joint was obtained when Cr25-Ni13 alloy was adopted as the filler metal. The microstructure of the welded zone presented different morphology due to the severe fluctuation of Al, Ni, Mn and Cr elements near the fusion zone. The fish-bone like structures in Q235 side fusion zone were composed of {alpha}-Fe(Cr, Al, Ni) solid solutions. Fe{sub 3}Al/Q235 joint fractured in the Fe{sub 3}Al HAZ, and shear strength of 533.33 MPa was achieved. The fracture mode of Fe{sub 3}Al side fracture surface was mainly transgranular cleavage, occured along [1 1 1] orientation on {l_brace}1 1 0{r_brace} planes. And the Q235 side fracture surface was in intergranular and quasi-cleavage mode. The phase relations of {gamma} and {alpha} in Fe{sub 3}Al side fusion zone, constituent of lower bainite in the weld and the Fe{sub 3}Al ordered transformation in HAZ were also determined.

  13. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  14. PRECIPITATION HARDENING IN B2-ORDERED NiAl BY Ni2AlTiCOMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; K. Ohishi; M. Nemoto

    2001-01-01

    Microstructural variations and correlated hardness changes in B2-ordered NiAl containing fine precipitation of Ni2AlTi have been investigated by means of transmission electron microscopy (TEM) and hardness tests. The amount of age hardening is not large as compared to the large microstructural variations during aging. TEM observations have revealed that the L21-type Ni2AlTi precipitates keep a lattice coherency with the NiAl matrix at the beginning of aging. By longer periods of aging Ni2AlTi precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. The temperature dependence of the yield strength of precipitate-containing B2-ordered NiAl was investigated by compression tests over the temperature range of 873-1273K. The fine precipitation of Ni2AlTi was found to enhance greatly the yield strength and the high-temperature strength is comparison with that of superalloy Mar-M200.``

  15. Moessbauer study of magnetic transformation of Ni3Al-(57Co+57Fe) surface layer

    International Nuclear Information System (INIS)

    Dudas, J.; Zemcik, T.

    1975-01-01

    The results of the magnetic transformation study of the Ni 3 Al-( 57 Co+ 57 Fe) surface layer by the 57 Fe Moessbauer effect in dependence on the penetration depth of ( 57 Co+ 57 Fe) are presented. These results are discussed in terms of the magnetic polarization of the Co (and Fe) atoms and the appearance of the 'giant' magnetic moment. The critical concentration of Co+Fe impurities sufficient for transformation of the originally paramagnetic surface layer into ferromagnetic at room temperature was determined to be 1.03 at.'=.. (author)

  16. Nanoscale Titanium Dioxide (nTiO2) Transport in Water-Saturated Natural Sediments: Influence of Soil Organic Matter and Fe/Al Oxyhydroxides

    Science.gov (United States)

    Fisher-Power, L.; Cheng, T.

    2017-12-01

    Transport of engineered nanoparticles (ENP) in subsurface environments has important implications to water quality and soil contamination. Although extensive research has been conducted to understand the effects of water chemistry on ENP transport, less attention has been paid to influences from the transport medium/matrix. The objective of this research is to investigate the effects of natural organic matter (NOM) and Fe/Al oxyhydroxides in a natural sediment on ENP transport. A sediment was collected and separated into four portions, one of which was unmodified, and the others treated to remove specific components (organic matter, Fe/Al oxyhydroxides, or both organic matter and Fe/Al oxyhydroxides). Transport of nanoscale titanium dioxide (nTiO2) in columns packed with quartz sand and each of the four types of the sediment under water-saturated conditions was studied. Our results showed that nTiO2 transport was strongly influenced by pH and sediment composition. When influent pH = 5, nTiO2 transport in all the sediments was low, as positively-charged nTiO2 was attracted to negatively charged NOM, quartz, and other minerals. nTiO2 transport was slightly enhanced in columns packed with untreated sediment or Fe/Al oxyhydroxides removed sediment due to dissolved organic matter generated by the partial dissolution of NOM, which adsorbed onto nTiO2 surface and reversed its zeta potential to negative. When influent pH = 9, nTiO2 transport was generally high since negatively-charged nTiO2 was repelled by negatively charged transport medium. However, in columns packed with the organic matter removed sediment or the Fe/Al oxyhydroxides removed sediment, nTiO2 transport was low. This was attributable to pH buffering by the sediment, which decreased pore water pH in the column, resulting in zeta potential change and electrostatic attraction between Fe/Al oxyhydroxides and nTiO2. This research demonstrates that electrostatic forces between nTiO2 and mineral/organic components

  17. The fluctuation field and anomalous magnetic viscosity in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Collocott, S.J. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)], E-mail: stephen.collocott@csiro.au; Dunlop, J.B. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)

    2008-08-15

    The fluctuation field, H{sub f}, is a useful parameter for characterising any ferromagnetic material that displays hysteresis, as it is a measure of the thermally activated rate processes that govern magnetisation reversals. Anomalous magnetic viscosity, i.e. nonmonotonic behaviour of the time dependent magnetisation, where the magnetisation is seen to increase, reach a peak, and then decrease, has been observed on both the upper and lower branches of minor loops or recoil curves in some ferromagnetic materials. Parameters relevant to the Preisach model are discussed as to their usefulness in predicting anomalous magnetic viscosity in ferromagnetic materials. This is done with reference to measurements of H{sub f} and the time dependent magnetisation in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}.

  18. Morphological evolution of primary TiC carbide in laser clad TiC reinforced FeAl intermetallic composite coating

    Institute of Scientific and Technical Information of China (English)

    陈瑶; 王华明

    2003-01-01

    The novel rapidly solidified TiC/FeAl composite coatings were fabricated by laser cladding on the substrate of 1Cr18Ni9Ti stainless steel, particular emphasis has been placed on the growth morphologies of TiC carbide and its growth mechanism under a constant solidification conditions. Results show that the growth morphology of TiC carbide strongly depends upon the nucleation process and mass transportation process of TiC forming elements in laser melt pool. With increasing amount of titanium and carbon in melt pool, the growth morphology of TiC carbide changes from block-like to star-like and well-developed dendrite. As the amount of titanium and carbon increases further, TiC carbide particles are found to be irregular polyhedral block. Although the growth morphologies of TiC are various,their advancing fronts are all faceted, illustrating that TiC carbide grows by the mechanism of lateral ledge growth.

  19. Investigation on effect of iron and corundum content on corrosion resistance of the NiFe-Al2O3 coatings

    International Nuclear Information System (INIS)

    Starosta, R.; Zielinski, A.

    1999-01-01

    The alloy NiFe and composite NiFe-Al 2 O 3 coatings, obtained by electrodeposition on the base of cast iron, were investigated. The iron content in alloy coatings was dependent on iron content in galvanic bath, and was estimated by means of X-ray microanalysis at 18.5 wt. pct. and 41.2 wt. pct. No existence of ordered Ni 3 Fe phase was found by diffraction technique. Both potentiodynamic and impedance measurements disclosed that a presence of Al 2 O 3 or increasing iron content in the layer caused the decrease in corrosion resistance. (author)

  20. Isothermal section of the Er-Fe-Al ternary system at 800 oC

    International Nuclear Information System (INIS)

    Jemmali, M.; Walha, S.; Pasturel, M.; Tougait, O.; Ben Hassen, R.; Noel, H.

    2010-01-01

    Physico-chemical analysis techniques, including X-ray diffraction and Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy, were employed to construct the isothermal section of the Er-Fe-Al system at 800 o C. At this temperature, the phase diagram is characterized by the formation of five intermediate phases, ErFe 12-x Al x with 5 ≤ x ≤ 8 (ThMn 12 -type), ErFe 1+x Al 1-x with -0.2 ≤ x ≤ 0.75 (MgZn 2 -type), ErFe 3-x Al x with 0.5 2 Al-type), Er 2 Fe 17-x Al x with 4.74 ≤ x ≤ 5.7 (TbCu 7 -type) and Er 2 Fe 17-x Al x with 5.7 2 Zn 17 -type), seven extensions of binaries into the ternary system; ErFe x Al 3-x with x 3 Cu-type), ErFe x Al 2-x with x ≤ 0.68 (MgCu 2 -type), Er 2 Fe x Al 1-x with x ≤ 0.25 (Co 2 Si-type), ErFe 2-x Al x with x ≤ 0.5 (MgCu 2 -type), ErFe 3-x Al x with x ≤ 0.5 (Be 3 Nb-type), Er 6 Fe 23-x Al x with x ≤ 8 (Th 6 Mn 23 -type), and Er 2 Fe 17-x Al x with x ≤ 4.75 (Th 2 Ni 17 -type) and one intermetallic compound; the ErFe 2 Al 10 (YbFe 2 Al 10 -type).

  1. Synthesis and characterization of pillared bentonite with Al, AL/Fe and impregnated with Pd; Sintese e caracterizacao de bentonitas pilarizadas com Al, AL/Fe e impregnadas com Pd

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcus Vinicius Costa; Pizarro, Alejandro Herrero; Molina, Carmen Belen, E-mail: marcus.ufpa@yahoo.com.br [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Instituto de Tecnologia. Faculdade de Engenharia Quimica; Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madri (Spain)

    2017-10-01

    In this work, a north american bentonite was pillared with Al and Al/Fe, creating the Al-PILC and Al-Fe-PILC, respectively. Then the Pd was impregnated in the materials, generating Pd-Al-PILC and Pd-Al-Fe-PILC, respectively. The samples were characterized by X-ray diffraction, differential thermal analysis and thermogravimetric and N{sub 2} adsorption at 77 K to determine the specific surface area by BET method (Brunauer - Emmett - Teller). There was an increase in the basal spacing of bentonite from 12.4Å in the original sample to 17.81Å in the Al-Fe-PILC, 17.20Å in Pd-Al-PILC and 17.05Å in the Pd-Al-Fe-PILC. The specific surface area increased from 19.05m{sup 2}/g in the original sample to 173.49m{sup 2}/g in Al-Fe-PILC, 101.31m{sup 2}/g to Pd-Al-PILC and 92m{sup 2}/g in Pd-Al-Fe-PILC. The pillaring process was successful and the synthesized materials have great potential for use as catalysts. (author)

  2. RF and microwave noise suppression in a transmission line using Fe-Si-Al/Ni-Zn magnetic composite films

    International Nuclear Information System (INIS)

    Lee, J. W.; Hong, Y. K.; Kim, K.; Joo, J.; Yoon, Y. W.; Kim, S. W.; Kim, Y. B.; Kim, K. Y.

    2006-01-01

    Radio-frequency (RF) and microwave noise suppression by using magnetic composite films on a microstrip line (MSL) was studied in the frequency range from 50 MHz to 13.5 GHz. The MSL was composed of a Cu transmission line, dielectric materials, and a Cu substrate. The Fe-Si-Al/Ni-Zn magnetic composite films were placed on the MSL, and the reflection and the transmission characteristics were investigated. We observed that RF and microwave noise suppression caused by the Fe-Si-Al/Ni-Zn magnetic composite films varied with the concentration ratio of the sendust (Fe-Si-Al) and the Ni-Zn ferrite. The frequency dependence of the power loss due to the composite films on the MSL was measured and the power loss increased at higher frequencies with increasing concentration of the sendust in the composites. The electromagnetic interference shielding efficiencies of the magnetic composite films in the far-field region are also discussed.

  3. Corrosion effect on the electrochemical properties of LaNi3.55Mn0.4Al0.3Co0.75 and LaNi3.55Mn0.4Al0.3Fe0.75 negative electrodes used in Ni-MH batteries

    International Nuclear Information System (INIS)

    Khaldi, Chokri; Boussami, Sami; Rejeb, Borhene Ben; Mathlouthi, Hamadi; Lamloumi, Jilani

    2010-01-01

    The thermodynamic parameters, electrochemical capacity, equilibrium potential and the equilibrium pressure, of LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloys have been evaluated from the electrochemical isotherms (C/30 and OCV methods) and CV technique. A comparative study has been done between the parameter values deduced from the electrochemical methods and the solid-gas method. The parameter values deduced from the electrochemical methods are influenced by the electrochemical corrosion of the alloys in aqueous KOH electrolyte. The corrosion behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 electrodes after activation was investigated using the method of the potentiodynamic polarization. The variation of current and potential corrosion values with the state of charge (SOC) show that the substitution of cobalt by iron accentuates the corrosion process. The high-rate dischargeability (HRD) of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloys was examined. By increasing the discharge current the (HRD) decrease linearly for both the alloys and for the LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 compound is greater then for the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 one.

  4. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

    Directory of Open Access Journals (Sweden)

    Cai Liang

    2014-07-01

    Full Text Available This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

  5. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.

    2014-07-04

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. 2014 by the authors.

  6. Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers

    International Nuclear Information System (INIS)

    Yang En; Ratanaphan, Sutatch; Zhu Jiangang; Laughlin, David E.

    2011-01-01

    Highly ordered L1 0 FePt-oxide thin films with small grains were prepared by using a RuAl layer as a grain size defining seed layer along with a TiN barrier layer. Different HAMR (Heat Assisted Magnetic Recording) favorable underlayers were studied to encourage perpendicular texture and preferred microstructure. It was found that the epitaxial and small grain growth from the RuAl/TiN underlayer results in small and uniform grains in the FePt layer with perpendicular texture. By introducing the grain size defining underlayers, the FePt grain size can be reduced from 30 to 6 nm with the same volume fraction (9%) of SiO 2 in the film, excellent perpendicular texture, and very high order parameter at 520 deg. C.

  7. Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites

    KAUST Repository

    Balasamy, Rabindran J.; Khurshid, Alam; Al-Ali, Ali A S; Atanda, Luqman A.; Sagata, Kunimasa; Asamoto, Makiko; Yahiro, Hidenori; Nomura, Kiyoshi; Sano, Tsuneji; Takehira, Katsuomi; Al-Khattaf, Sulaiman S.

    2010-01-01

    A series of FeOx-MeOy/Mg(Al)O catalysts were prepared from hydrotalcite-like compounds as precursors and were tested in the ethylbenzene dehydrogenation to styrene in He atmosphere at 550 °C. The hydrotalcite-like precursors of the metal compositions of Mg3Fe 0.25Me0.25Al0.5 (Me = Cu, Zn, Cr, Mn, Fe, Co and Ni) were coprecipitated from the nitrates of metal components and calcined to mixed oxides at 550 °C. After the calcination, the mixed oxides showed high surface area of 150-200 m2 gcat -1, and were mainly composed of (MgMe)(Fe3+Al)O periclase in the bulk, whereas the surface was enriched by (MgMe)(Fe3+Al)2O 4 pinel. Among the Me species tested, Co2+ was the most effective, followed by Ni2+. Co2+ addition increased the activity of original FeOx/Mg(Al)O catalyst, whereas Ni2+ increased the activity at the beginning of reaction, but deactivated the catalyst during the reaction. The other metals formed isolated MeOx species in the catalyst, resulting in a decrease in the activity compared to the original FeOx/Mg(Al)O catalyst. The active Fe species exists as metastable Fe3+ on the FeOx/Mg(Al)O catalyst. By the addition of Co2+, the reduction-oxidation between Fe3+ and Fe2+ was facilitated and, moreover, the active Fe3+ species was stabilized. It is likely that the dehydrogenation proceeds on the active Fe3+ species via its reduction-oxidation assisted by Co 2+. © 2010 Elsevier B.V.

  8. Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites

    KAUST Repository

    Balasamy, Rabindran J.

    2010-12-20

    A series of FeOx-MeOy/Mg(Al)O catalysts were prepared from hydrotalcite-like compounds as precursors and were tested in the ethylbenzene dehydrogenation to styrene in He atmosphere at 550 °C. The hydrotalcite-like precursors of the metal compositions of Mg3Fe 0.25Me0.25Al0.5 (Me = Cu, Zn, Cr, Mn, Fe, Co and Ni) were coprecipitated from the nitrates of metal components and calcined to mixed oxides at 550 °C. After the calcination, the mixed oxides showed high surface area of 150-200 m2 gcat -1, and were mainly composed of (MgMe)(Fe3+Al)O periclase in the bulk, whereas the surface was enriched by (MgMe)(Fe3+Al)2O 4 pinel. Among the Me species tested, Co2+ was the most effective, followed by Ni2+. Co2+ addition increased the activity of original FeOx/Mg(Al)O catalyst, whereas Ni2+ increased the activity at the beginning of reaction, but deactivated the catalyst during the reaction. The other metals formed isolated MeOx species in the catalyst, resulting in a decrease in the activity compared to the original FeOx/Mg(Al)O catalyst. The active Fe species exists as metastable Fe3+ on the FeOx/Mg(Al)O catalyst. By the addition of Co2+, the reduction-oxidation between Fe3+ and Fe2+ was facilitated and, moreover, the active Fe3+ species was stabilized. It is likely that the dehydrogenation proceeds on the active Fe3+ species via its reduction-oxidation assisted by Co 2+. © 2010 Elsevier B.V.

  9. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    OpenAIRE

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these allo...

  10. Análisis mecánico y tribológico de los recubrimientos fe-cr-ni-c y ni-al-mo

    Directory of Open Access Journals (Sweden)

    JORGE E. MUÑOZ

    2007-01-01

    Full Text Available En este trabajo de investigación se evaluaron dos recubrimientos aplicados por medio de la técnica de rociado térmico por combustión, la aleación: Ni=89%, Al = 5,5%, Mo=5,5% y la aleación Fe=81,8%, Cr=16%, Ni=2%, C=0,2. La preparación superficial de las probetas se realizó usando chorro de arena. Se realizaron pruebas de resistencia al cortante, adherencia, desgaste abrasivo, desgaste por deslizamiento y flexión en cuatro puntos. El recubrimiento Fe-Cr-Ni-C presentó menor pérdida de masa, tanto para desgaste abrasivo como para el desgaste por deslizamiento. La multicapa presentó una mayor porosidad en el recubrimiento Ni-Al- Mo usado como capa base y la capa exterior de Fe-Cr-Ni-C presentó mayor cantidad de partículas no fundidas y óxidos. La falla ocurrida en el ensayo de adherencia para las probetas con recubrimiento multicapa fue de característica adhesiva y cohesiva. El esfuerzo en el que se presenta la fisura por flexión en el recubrimiento multicapa disminuyó con el aumento del espesor

  11. Mechanical properties and electronic structures of Fe-Al intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua, E-mail: jiangyehua@kmust.edu.cn; Zhou, Rong; Feng, Jing, E-mail: jingfeng@kmust.edu.cn

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe{sub 3}Al, FeAl, FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe{sub 2}Al{sub 5} has the lowest formation enthalpy, which shows the Fe{sub 2}Al{sub 5} is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young’s modulus and anisotropic index. Fe{sub 3}Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong’s modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  12. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  13. Properties of porous FeAlOy/FeAlx ceramic matrix composite ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 7. Properties of porous FeAlO/FeAl ceramic matrix composite influenced by mechanical activation of FeAl powder. V Usoltsev S Tikhov A Salanov V Sadykov G Golubkova O Lomovskii. Volume 36 Issue 7 December 2013 pp 1195-1200 ...

  14. Evaluation of Ni-free Zr–Cu–Fe–Al bulk metallic glass for biomedical implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Zhang, Wei [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Kai, Wu [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN (United States); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2014-02-15

    Highlights: ► A Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} bulk metallic glass (BMG) with 50 GPa elastic modulus was used. ► This Ni-free Zr-based BMG had lower metal ion release rate than the commercial Ti. ► This Ni-free Zr-based BMG had better proteins adsorption than the commercial Ti. ► This Ni-free Zr-based BMG has a high potential for biomedical implant applications. -- Abstract: This study was conducted to investigate the surface characteristics, including the chemical composition, metal ion release, protein adsorption, and cell adhesion, of a Ni-free Zr-based (Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10}) bulk metallic glass (BMG) with low elastic modulus for biomedical implant applications. X-ray photoelectron spectroscopy was used to identify the surface chemical composition and the protein (albumin and fibronectin) adsorption of the specimen. The metal ions released from the specimen in simulated blood plasma and artificial saliva solutions were measured using an inductively coupled plasma-mass spectrometer. The cell adhesion, in terms of the morphology, focal adhesion complex, and skeletal arrangement, of human bone marrow mesenchymal stem cells was evaluated using scanning electron microscope observations and immunofluorescent staining. For comparison purposes, the above-mentioned tests were also carried out on the widely used biomedical metal, Ti. The results showed that the main component on the outermost surface of the amorphous Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG was ZrO{sub 2} with small amounts of Cu, Al, and Fe oxides. The released metal ions from Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG were well below the critical concentrations that cause negative biological effects. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG had a greater adsorption capacity for albumin and fibronectin than that of commercial biomedical Ti. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG surface showed an attached cell number similar

  15. Microstructure and magnetic behavior studies of processing-controlled and composition-modified Fe-Ni and Mn-Al alloys

    Science.gov (United States)

    Geng, Yunlong

    L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the

  16. Fusion of 48Ti+58Fe and 58Ni+54Fe below the Coulomb barrier

    Science.gov (United States)

    Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Courtin, S.; Bourgin, D.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Mijatović, T.; Montanari, D.; Pagliaroli, M.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Toniolo, N.; Torresi, D.

    2015-12-01

    Background: No data on the fusion excitation function of 48Ti+58Fe in the energy region near the Coulomb barrier existed prior to the present work, while fusion of 58Ni+54Fe was investigated in detail some years ago, down to very low energies, and clear evidence of fusion hindrance was noticed at relatively high cross sections. 48Ti and 58Fe are soft and have a low-lying quadrupole excitation lying at ≈800 -900 keV only. Instead, 58Ni and 54Fe have a closed shell (protons and neutrons, respectively) and are rather rigid. Purpose: We aim to investigate (1) the possible influence of the different structures of the involved nuclei on the fusion excitation functions far below the barrier and, in particular, (2) whether hindrance is observed in 48Ti+58Fe , and to compare the results with current coupled-channels models. Methods: 48Ti beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used. The experimental setup was based on an electrostatic beam separator, and fusion-evaporation residues (ERs) were detected at very forward angles. Angular distributions of ERs were measured. Results: Fusion cross sections of 48Ti+58Fe have been obtained in a range of nearly six orders of magnitude around the Coulomb barrier, down to σ ≃2 μ b . The sub-barrier cross sections of 48Ti+58Fe are much larger than those of 58Ni+54Fe . Significant differences are also observed in the logarithmic derivatives and astrophysical S factors. No evidence of hindrance is observed, because coupled-channels calculations using a standard Woods-Saxon potential are able to reproduce the data in the whole measured energy range. Analogous calculations for 58Ni+54Fe predict clearly too large cross sections at low energies. The two fusion barrier distributions are wide and display a complex structure that is only qualitatively fit by calculations. Conclusions: It is pointed out that all these different trends originate from the dissimilar low-energy nuclear structures of

  17. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    Energy Technology Data Exchange (ETDEWEB)

    Demchishin, A.V., E-mail: ademch@meta.ua [Institute of Problems in Material Science, NASU, Kiev (Ukraine); Gnilitskyi, I., E-mail: iaroslav.gnilitskyi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Orazi, L., E-mail: leonardo.orazi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Ascari, A., E-mail: a.ascari@unibo.it [DIN – Department of Industrial Engineering, University of Bologna, Bologna (Italy)

    2015-07-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics.

  18. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    International Nuclear Information System (INIS)

    Demchishin, A.V.; Gnilitskyi, I.; Orazi, L.; Ascari, A.

    2015-01-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics

  19. Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys

    International Nuclear Information System (INIS)

    Legarra, E.; Apiñaniz, E.; Plazaola, F.

    2012-01-01

    Highlights: ► Addition of Si to binary Fe–Al alloys makes the disordering more difficult. ► Si addition opposes the large volume increase found in FeAl alloys with deformation. ► Disordering induces a redistribution of non-ferrous atoms around Fe atoms in Fe 75 Al 25−x Si x and Fe 70 Al 30−x Si x . ► Addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe. ► Si inhibits the para-ferro transition found in Fe 60 Al 40 alloy with disordering. - Abstract: In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe 75 Al 25−x Si x , Fe 70 Al 30−x Si x and Fe 60 Al 40−x Si x alloys by means of Mössbauer spectroscopy, X-ray diffraction and magnetic measurements. In order to obtain different stages of disorder the alloys were deformed by different methods: crushing induction melted alloys and ball milling annealed (ordered) alloys using different number of balls and speed. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. In addition, X-ray diffraction patterns show that the normalized lattice parameter variation of the disordered alloys of each composition decreases monotonically with Si content, indicating clearly that Si addition opposes the large volume increase found in FeAl alloys with deformation. The study of the hyperfine fields indicates that there is a redistribution of non-ferrous atoms around Fe atoms with the disordering; indeed, there is an inversion of the behavior of the hyperfine field of the Fe atoms. On the other hand, the magnetic measurements indicate that addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.

  20. Environmental embrittlement of intermetallic compounds in Fe-Al alloys

    Institute of Scientific and Technical Information of China (English)

    张建民; 张瑞林; S.H.YU; 余瑞璜

    1996-01-01

    First,it is proposed that hydrogen atoms occupy the interstitial sites in Fe3Al and FeAl.Then the environmental embrittlement of intermetallic compounds in Fe-Al alloys is studied in the light of calculated valence electron structures and bond energy of Fe3Al and FeAl containing hydrogen atoms.From the analyses it is found that the states of metal atoms will change,in which more lattice electrons will become covalent electrons to bond with hydrogen atoms when the atomic hydrogen diffuses into the intermetallic compounds in Fe-Al alloys,which will result in the decrease of local metallicity in Fe3Al and FeAl.Meanwhile,it is found that the crystal will easily cleave since solute hydrogen bonds with metal atoms and severely anisotropic bonds form.As a conclusion,these factors result in the environmental embrittlement of Fe3Al and FeAl.

  1. Incorporation of Ba in Al and Fe pollucite

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Eric R., E-mail: erv@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia); Gregg, Daniel J.; Griffiths, Grant J. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia); Gaugliardo, Paul R. [Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009 (Australia); Grant, Charmaine [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia)

    2016-09-15

    Ba, the transmutation product of radioactive Cs, can be incorporated at levels of up to ∼0.07 formula units in Cs{sub (1−2x)}Ba{sub x}AlSi{sub 2}O{sub 6} aluminium pollucite formed by sol-gel methods and sintering at 1400 °C, with more Ba forming BaAl{sub 2}Si{sub 2}O{sub 8} phases. The effect of Ba substitution in pollucite-structured CsFeSi{sub 2}O{sub 6} was also studied and no evidence of Ba substitution in the pollucite structure via cation vacancies or Fe{sup 2+} formation was obtained. The Ba entered a Fe-silicate glass structure. Charge compensation was also attempted with a Cs{sup +} + Fe{sup 3+} ↔ Ba{sup 2+} + Ni{sup 2+} scheme but again the Ba formed a glass and NiO was evident. PCT leaching data showed CsFeSi{sub 2}O{sub 6} to be very leach resistant. - Highlights: • Barium can be incorporated into aluminium pollucite. • Positron annihilation lifetime spectroscopy supports a charge vacancy mechanism of incorporation. • Iron pollucite does not appear to incorporate any barium with either vacancy or charge compensation mechanisms. • Leaching data suggest iron pollucite is very leach resistant.

  2. Synthesis and Mechanical Characterization of Binary and Ternary Intermetallic Alloys Based on Fe-Ti-Al by Resonant Ultrasound Vibrational Methods.

    Science.gov (United States)

    Chanbi, Daoud; Ogam, Erick; Amara, Sif Eddine; Fellah, Z E A

    2018-05-07

    Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density.

  3. The Calculation of Fe-Al-O Interaction Coefficient

    International Nuclear Information System (INIS)

    Kuo, Chin-Guo

    2010-01-01

    Aluminum is a very common deoxidizer in steel-making processes. The solubility of oxygen in molten iron decreases with increasing aluminum content. For the deoxidation process, the solubility of oxygen in Fe-Al melts decreases with increasing aluminum content. When %Al is increased to 0.34 wt.%, %O decreases to 6.4 ppm, which is the lowest point of the FeAl 2 O 4 curve. Then the Al 2 O 3 curve appears and replaces the FeAl 2 O 4 curve, where the interconnection point of the two curves is the coexistence point of FeAl 2 O 4 and Al 2 O 3 phases. When %Al is increased to 0.4%, the %O decreases to 6.35 ppm, which is the lowest point of the Al 2 O 3 curve. The solubility of oxygen in Fe-Al alloys is about 6.35 ppm with 0.4 wt.% aluminum at 1873 K. Liquid FeO-Al 2 O 3 , hercynite (FeAl 2 O 4 ), and alumina (Al 2 O 3 ) are three possible products during the deoxidation process. Based on thermodynamic calculation, the value of the interaction coefficient of e o Al was determined as -0.75 at 1873 K. This value is in good agreement with experimental curves in the literature.

  4. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy)

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U.

    2015-06-01

    Homogenizing at 1220°C for 20 h and subsequent aging at 900°C for 5 h and 50 h of a novel Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) produces a microstructure consisting of an L12 ordered γ' phase embedded in a face-centered cubic solid-solution γ matrix together with needle-like B2 precipitates (NiAl). The volume fraction of γ' phase is ~46% and of needle-like B2 precipitates database; Thermo-Calc Software, Stockholm, Sweden). The high-temperature tensile tests were carried out at room temperature, 600°C, 700°C, 800°C, and 1000°C. The tensile strength as well as the elongation to failure of both heat-treated specimens is very high at all tested temperatures. The values of tensile strength has been compared with literature data of well-known Alloy 800H and Inconel 617, and is discussed in terms of the observed microstructure.

  5. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinlong; Mao Shoudong; Sun Kefei [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Li Xiaomin [Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050 (China); Song Zhenlun [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)], E-mail: songzhenlun@nimte.ac.cn

    2009-11-15

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  6. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Li Jinlong; Mao Shoudong; Sun Kefei; Li Xiaomin; Song Zhenlun

    2009-01-01

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  7. Tetragonal phase in Al-rich region of U-Fe-Al system

    International Nuclear Information System (INIS)

    Meshi, L.; Zenou, V.; Ezersky, V.; Munitz, A.; Talianker, M.

    2005-01-01

    A new ternary aluminide U 2 FeAl 20 with the approximate composition Al-4.2at% Fe-8.5at% U was observed in the Al-rich corner of the U-Al-Fe system. Transmission electron microscopy and electron microdiffraction technique were used for characterization of the structure of this phase. It has a tetragonal unit cell with the parameters a=12.4A and c=10.3A and can be described by the space group I4-bar 2m

  8. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Eskin, D.G. [Netherlands Institute for Metals Research, Rotterdamseweg 137, 2628AL Delft (Netherlands)]. E-mail: deskin@nimr.nl; Avxentieva, N.N. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation)

    2005-10-15

    The evaluation of phase equilibria in quinary systems that constitute the commercially important Al-Cu-Fe-Mg-Ni-Si alloying system is performed in the compositional range of casting alloys by means of metallography, electron probe microanalysis, X-ray diffractometry, differential scanning calorimetry, and by the analysis of phase equilibria in the constituent systems of lesser dimensionality. Suggested phase equilibria are illustrated by bi-, mono- and invariant solidification reactions, polythermal diagrams of solidification, distributions of phase fields in the solid state, and isothermal and polythermal sections. Phase composition of as-cast alloys is analyzed in terms of non-equilibrium solidification. It is shown that the increase in copper concentration in piston Al-Si alloys results in the decrease in the equilibrium solidus from 540 to 505 deg C. Under non-equilibrium solidification conditions, piston alloys finish solidification at {approx}505 deg C. Iron is bound in the quaternary Al{sub 8}FeMg{sub 3}Si{sub 6} phase in low-iron alloys and in the ternary Al{sub 9}FeNi and Al{sub 5}FeSi phases in high-iron alloys.

  9. Formation of coarse Al13Fe4 particles and their effects in an RS/PM Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Lee, Sunghak; Lee, D.Y.; Ahn, Sangho.

    1991-01-01

    The present paper analyzed the fracture behavior of an RS/PM Al-Fe-V-Si alloy after high temperature exposure, in particular the effects of coarse Al13Fe4 particles formed during the exposure at 480 C. In situ SEM observations of crack opening processes found that brittle cleavage fracture occurred at these coarse Al13Fe4 particles, leading to the reduction in strength, fracture toughness, and ductility of the Al-Fe-V-Si alloy exposed to high temperatures. The results of fracture toughness were also interpreted using a simplified ductile fracture initiation model based on a basic assumption that crack extension starts to occur at a certain critical strain over a microstructurally significant critical distance. This model correlates microstructure to fracture toughness, confirming that the presence of coarse Al13Fe4 particles is the main metallurgical factor for the embrittlement phenomenon in the Al-Fe-V-Si alloy after high temperature exposure. 12 refs

  10. PREPARATION AND VISIBLE LIGHT RESPONSIVE PHOTOCATALYTIC ACTIVITY OF Fe3O4/Ni-Al-Ce LDH/Bi2WO6 COMPOSITES

    Directory of Open Access Journals (Sweden)

    Jiaqi Hao

    Full Text Available Novel Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites were prepared through a hydrothermal method and co-precipitation method. The morphologies and structures of the photocatalysts were characterized by XRD, Raman, TEM, UV-vis-DRS, BET surface area and VSM techniques. The photocatalytic performances of the photocatalysts were investigated by the decolorization of methyl orange (MO under visible-light irradiation. The results showed that the Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites exhibited greater photocatalytic activities compared to pure Bi2WO6 and the Ni-Al-Ce LDH; the decolorization rate of MO was 87% within 60 min under visible-light irradiation. The decolorization efficiency of the composite material remained at 71% after 4 recycling runs, showing improved stability. Furthermore, the experimental results also showed that the photocatalytic reactions for the composites followed first-order reaction kinetics. Therefore, the Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites were photocatalysts with high efficiencies and stabilities for a photocatalytic reaction of an organic pollutant, and this study provides a new, effective method for the development of wastewater treatment.

  11. Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications.

    Science.gov (United States)

    Yamanoglu, Ridvan; Efendi, Erdinc; Kolayli, Fetiye; Uzuner, Huseyin; Daoud, Ismail

    2018-01-30

    In this study, the mechanical, antibacterial properties and cell toxicity response of Ti-5Al2.5Fe alloy with different copper contents were investigated. The alloys were prepared by high-energy ball milling using elemental Ti, Al, Fe, and Cu powders and consolidated by a uniaxial vacuum hot press. Staphylococcus aureus strain ATCC 29213 and Escherichia coli strain ATCC 25922 were used to determine the antibacterial properties of the sintered alloys. The in vitro cytotoxicity of the samples was evaluated with HeLa (ATTC, CCL-2) cells using thiazolyl blue tetrazolium bromide. The mechanical behavior of the samples was determined as a function of hardness and bending tests and analyzed by scanning electron microscopy, energy dispersive x-ray spectroscopy, optical microscopy and x-ray diffraction (XRD). The results showed that the Cu content significantly improved the antibacterial properties. Cu addition prevented the formation of E. coli and S. aureus colonies on the surface of the samples. All samples exhibited very good cell biocompatibility. The alloys with different copper contents showed different mechanical properties, and the results were correlated by microstructural and XRD analyses in detail. Our results showed that Cu has a great effect on the Ti5Al2.5Fe alloy and the alloy is suitable for biomedical applications with enhanced antibacterial activity.

  12. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  13. Influence of intermetallic Fe and Co on crystal structure disorder and magnetic property of Ni50Mn32Al18 Heusler alloy

    International Nuclear Information System (INIS)

    Notonegoro, H. A.; Kurniawan, B.; Manaf, A.; Setiawan, J.; Nanto, D.

    2016-01-01

    This works reports a study on structure and magnetic properties influenced by both Fe and Co on Ni 50 Mn 32 Al 18 Heusler alloy as a candidate of magnetocaloric effect (MCE) materials. The Ni-Fe-Mn-Co-Al sample was prepared by arc melting furnace (AMF) in high purity argon atmosphere. X-ray diffraction investigation and magnetic hysteresis were conducted to characterize the synthesized sample. X-ray diffraction using Cu-Kα pattern shows that both Fe and Co introduce a tungsten type disorder of Ni 50 Mn 32 Al 18 Heusler alloy which partially replace the site position of Ni and Mn respectively. However, in this tungsten type disorder, it is difficult to distinguish the exact position of each constituent atom. Therefore, we believe it may allow any exchange interaction of each electron possessed the atom. Interestingly, it produced a significant increase in the value of the hysteresis magnetic saturation. (paper)

  14. Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating

    DEFF Research Database (Denmark)

    Torabinejad, V.; Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2017-01-01

    properties and wear resistance of composite coatings were studied. The shear punch testing method was employed to evaluate the room temperature mechanical properties. It was shown that increasing the pulse frequency and decreasing the pulse duty cycle improved the mechanical properties of monolithic coatings......A sulfate-based electrolyte was used for synthesis of multilayer (ML) and monolithic Ni-Fe-Al2O3 coatings. The ML electrodeposits were achieved by consecutive alteration of duty cycle of pulsed current between two values of 20% and 90%. The influences of the ML microstructure on mechanical....... The electrodeposited ML coatings exhibited a pronounced improvement in microhardness, shear strength and wear resistance in comparison to the monolithic coatings. Pin-on-disk sliding wear tests revealed that the main mechanisms of wear are plastic deformation, fatigue crack of deformed layers and delamination....

  15. The Phase Evolution and Property of FeCoCrNiAlTix High-Entropy Alloying Coatings on Q253 via Laser Cladding

    Directory of Open Access Journals (Sweden)

    Bin He

    2017-09-01

    Full Text Available High-entropy alloys (HEAs are emerging as a hot research frontier in the metallic materials field. The study on the effect of alloying elements on the structure and properties of HEAs may contribute to the progress of the research and accelerate the application in actual production. FeCoCrNiAlTix (x = 0, 0.25, 0.5, 0.75, and 1 in at.%, respectively HEA coatings with different Ti concentrations were produced on Q235 steel via laser cladding. The constituent phases, microstructure, hardness, and wear resistance of the coatings were investigated by XRD, SEM, microhardness tester and friction-wear tester, respectively. The results show that the structure of the coating is a eutectic microstructure of FCC and BCC1 at x = 0. The structure of coatings consists of both proeutectic FCC phase and the eutectic structure of BCC1 and BCC2. With the continuous addition of Ti, the amount of eutectic structure decreases. The average hardness of the FeCoCrNiAlTix HEA coatings at x = 0, 0.25, 0.5, 0.75, and 1 are 432.73 HV, 548.81 HV, 651.03 HV, 769.20 HV, and 966.29 HV, respectively. The hardness of coatings increases with the addition of Ti, where the maximum hardness is achieved for the HEA at x = 1. The wear resistance of the HEA coatings is enhanced with the addition of Ti, and the main worn mechanism is abrasive wear.

  16. Phase constituents and microstructure of laser cladding Al{sub 2}O{sub 3}/Ti{sub 3}Al reinforced ceramic layer on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Lin Zhaoqing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM - Department of Physics, Siena University, Siena 53100 (Italy)

    2011-04-07

    Research highlights: > In this study, Fe{sub 3}Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. > Laser cladding of Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can increase wear resistance of substrate. > In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of Ti{sub 3}Al and B. > This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser-cladded coating. - Abstract: Laser cladding of the Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of amount of Ti{sub 3}Al and B. This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser cladded coating, it was found that with addition of Al{sub 2}O{sub 3}, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  17. Structural evolution of Fe-18Ni-16Cr-4Al steel during aging at 950 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Man; Jang, Jinsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Zhou, Zhangjian [School of Materials Science and Engineering, USTB, Beijing (China)

    2015-05-15

    Austenitic stainless steels are also among important structural materials for in-core components of nuclear reactors, and the performance, the oxidation resistance as well as the mechanical strength at high temperature are further expected after Fukushima accident. Alumina-forming austenitic (AFA) steel was first developed by Y. Yamamoto et al. , which showed a good combination of oxidation resistance and creep resistance. The strengthening is achieved through nano-sized MX and Laves. Microstructural evolution of Fe-18Ni-16Cr-4Al during aging at 950 .deg. C was studied. This steel consists of two phases of austenite and ferrite. During aging, needle-shaped NiAl precipitates in austenite, while round shaped NiAl form in ferrite, which is supposed to be due to different crystal structural parameters.

  18. Reactive Stresses in Ni49Fe18Ga27Co6 Shape-Memory-Alloy Single Crystals

    Science.gov (United States)

    Averkin, A. I.; Krymov, V. M.; Guzilova, L. I.; Timashov, R. B.; Soldatov, A. V.; Nikolaev, V. I.

    2018-03-01

    The reactive stresses induced in Ni49Fe18Ga27Co6-alloy single crystals during martensitic transformations with a limited possibility of shape-memory-strain recovery have been experimentally studied. The data on these crystals are compared with the results obtained previously for Cu-Al-Ni, Ni-Ti, and Ni‒Fe-Ga crystals. The potential of application of the Ni49Fe18Ga27Co6 single crystals in designing drives and power motors is demonstrated.

  19. Room temperature luminescence and ferromagnetism of AlN:Fe

    Energy Technology Data Exchange (ETDEWEB)

    Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn [The Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cai, G. M. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn [Research and Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-06-15

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  20. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  1. Site occupancy of Fe in ternary Ni 75-x

    Indian Academy of Sciences (India)

    The results of a detailed structural and magnetic study clearly indicate that regardless of the thermal history of the samples, Fe has a strong preference for the Ni sites in Ni-poor (non-stoichiometric) Ni75Al25 alloys. Fe substitution has a profound effect on the nature of magnetism in Ni75Al25.

  2. Ethylbenzene dehydrogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−yNiyAl0.5 catalysts

    KAUST Repository

    Atanda, Luqman A.

    2011-04-01

    A series of Mg3Fe0.5-xCoxAl0.5 (x = 0-0.5) catalysts were prepared from hydrotalcite precursors and their activities in the dehydrogenation of ethylbenzene were compared with those of a series of Mg3Fe0.5-yNiyAl0.5 (y = 0-0.5) catalysts also derived from hydrotalcite. The hydrotalcites prepared by co-precipitation were calcined at 550 °C to the mixed oxides with a high surface area of 150-240m2gcat-1; they were composed of Mg(Fe,Me,Al)O periclase and Mg(Me)(Fe,Al)2O4 spinel (Me = Co or Ni). Bimetallic Fe3+-Co2+ system showed a synergy, i.e., an increase in the activity, whereas Fe3+-Ni2+ bimetallic system showed no synergy. The high styrene yield was obtained on Mg 3Fe0.1Co0.4Al0.5; however, a large substitution of Fe3+ with Co2+ caused a decrease in styrene selectivity along with coking on the catalysts, due to an isolation of CoOx on the catalyst surface. The highest yield as well as the highest selectivity for styrene production was obtained at x = 0.25 at time on stream of 30 min. The coprecipitation at pH = 10.0 and the composition of Mg3Fe0.25Co0.25Al0.5 were the best for preparing the active catalyst. This is partly due to the formation of a good hydrotalcite structure. On this catalyst, the active Fe3+ species was reduced at a low temperature by the Fe3+-Co2+ bimetal formation, leading to a high activity. Simultaneously, the amount of reducible Fe3+ was the smallest, resulting in a high stability of the active Fe3+ species. It is likely that the dehydrogenation was catalyzed by the reduction-oxidation between Fe3+ and Fe2+ and that Co2+ assisted the reduction-oxidation by forming Fe 3+-Co2+ (1/1) bimetallic active species. © 2011 Elsevier B.V. All rights reserved.

  3. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  4. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu; Enakonda, Linga Reddy; Saih, Youssef; Loptain, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-01-01

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% Fe

  5. Room temperature luminescence and ferromagnetism of AlN:Fe

    Directory of Open Access Journals (Sweden)

    H. Li

    2016-06-01

    Full Text Available AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV and 598 nm (2.07 eV are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  6. Experimental and thermodynamic assessments of substitutions in the AlFeSi, FeMnSi, FeSiZr and AlCaFeSi systems (65 wt % Si) - solidification simulation

    International Nuclear Information System (INIS)

    Gueneau, C.; Ansara, I.

    1994-01-01

    The substitutions of Al Si, Fe Mn and Fe Zr in some intermetallic compounds of the Al-Fe-Si, Fe-Mn-Si and Fe-Si-Zr systems are modelled in the Si-rich corner using a two sublattice model. The solidification paths of the studied alloys are determined at equilibrium. The ascalculated phase volume fractions of the alloys are compared to the experimental ones. Finally, a solidification simulation using the Gulliver-Scheil's model is performed in order to explain the formation of some precipitates experimentally observed. (authors). 14 figs., 19 refs

  7. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu

    2016-05-09

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% FeAl2O4 and 13.5wt% Fe0, showed a stable CMD activity at 750°C for as long as 10h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Production of 26Al by spallation of Fe, Si, Al nuclei

    International Nuclear Information System (INIS)

    Paillard, P.

    1977-01-01

    Cross sections for 7 Be, 10 Be and 26 Al formation in Al, Si and Fe targets bombarded with 0.6 and 24GeV protons have been measured by using highly selective chemical separation and low level background counters. Results for 26 Al at 0.6GeV are in mb: 17.9 + or - 2.7 in Al, 12.5 + or - 2.5 in Si and 0.45 + or - 0.14 in Fe; at 24GeV 2.6 + or - 0.5mb in Fe. Results for 10 Be are not valid on account of experimental difficulties. It is deduced from these values of aluminium in cosmic ray propagation that 26 Al is not yet cosmic ray chronometer [fr

  9. 激光熔覆TiC/FeAl原位复合涂层%In-situ TiC/FeAl Composite Coating Fabricated by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    赵龙志; 杨海超; 赵明娟; 谢玉江

    2017-01-01

    用激光熔覆法制备了TiC/FeAl原位复合涂层,使用光学显微镜(OM)和扫描电镜(SEM)观察了熔覆层的微观结构,使用能谱分析仪(EDS)和X射线衍射仪(XRD)分析了涂层的化学成分和物相,研究了熔覆层的显微硬度和耐磨性.结果表明:沿着熔池深度的方向从熔池底部到熔池顶部,FeAl基体从粗大的树枝晶渐渐转变为细小的等轴晶.原位TiC越过熔池界面进入基板表层,大部分TiC颗粒存在FeA1晶粒内部,熔池顶部的TiC颗粒含量较多.沿着熔池深度的方向从涂层项部到基板,涂层的硬度呈阶梯形分布,熔池顶部涂层的硬度最高,涂层的硬度和耐磨性分别比基板高6倍和52倍.涂层的磨损机理为典型的磨粒磨损.%The in-situ TiC/FeAl composite coating was fabricated by laser cladding technology in this paper.The microstructure of the coating was characterized by metallographic microscope (OM),scanning electron microscopy(SEM).The phases in the coating were examined by energy dispersive spectrometry (EDS) and X-ray diffraction (XRD),microhardness and wear resistance of the coating were also investigated.The results show that from the bottom to the surface of the melt pool along the depth the coarse dendrite grain is changed into fine quiaxed rosette grain.Some TiC particles going across the interface exist in the surface layer of the substrate.Most of TiC particles existing in the grains are nucleation centers during FeAl matrix solidification.The content of TiC particles in the top of the coating is much higher than that in other zone of the coating.Meanwhile,the microhardness and wear resistance of in-situ laser cladding are 5 times and 52 higher than those of substrate,respectively.And the wear mechanism of the composite coating is abrasive wear.

  10. Growth of uniform lath-like α-(Fe,Al)OOH and disc-like α-(Fe,Al)2O3 nanoparticles in a highly alkaline medium

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2010-01-01

    The effects of aluminium (Al 3+ )-dopant on the precipitation of uniform lath-like α-FeOOH particles, the obtention and growth of α-(Fe,Al)OOH and α-(Fe,Al) 2 O 3 solid solutions, particle size and shape were investigated using X-ray powder diffraction, Moessbauer and Fourier transform infrared spectroscopies, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Acicular α-FeOOH particles, precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH), were used as reference material. The influence of Al-dopant was investigated by adding varying amounts of Al 3+ ions to the initial FeCl 3 solution. In the presence of lower concentrations of aluminium ions (up to 11.11 mol%) α-(Fe,Al)OOH as a single phase was formed, whereas higher concentrations led to an additional obtention and growth of α-(Fe,Al) 2 O 3 . Al-for-Fe substitution in the α-FeOOH and α-Fe 2 O 3 structures was confirmed by a decrease in the unit-cell dimensions, a decrease in the hyperfine magnetic field and an increase in the wave number of the infrared absorption bands. The presence of lower concentrations of aluminium ions (up to 11.11 mol%) in the precipitation system did not affect the size and shape of the α-(Fe,Al)OOH particles, whereas higher concentrations influenced a decrease in the length and aspect ratio. In the presence of 42.86 mol% Al 3+ ions fairly uniform disc-shaped α-(Fe,Al) 2 O 3 were formed.

  11. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  12. Effect of Cr and Ni on diffusion bonding of Fe3Al with steel

    Indian Academy of Sciences (India)

    Unknown

    *Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, ... †National Key Lab of Advanced Bonding Production Technology, Harbin Institute of .... to Fe3Al can affect the dynamic balance at the Fe3Al/.

  13. Microstructural Influence on Dynamic Properties of Age Hardenable FeMnAl Alloys

    Science.gov (United States)

    2011-04-01

    strain amplitude on a wrought Fe-28Mn-9Al-0.86C-0.7W-0.43Mo-0.49Nb alloy and on a martensitic stainless steel of composition Fe-12Cr-1.25Ni-0.2V-1.8W...the martensite and loss of strength was used to explain the lower cyclic life of the stainless steel at elevated temperatures. Within the Fe-Mn-Al-C...through F in Table 2), 1010 carbon steel and 304 stainless steel as functions of exposure time in 1 atm flowing oxygen at 700°C (a) and 500°C (b).56

  14. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    Science.gov (United States)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  15. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Kunce, I., E-mail: ikunce@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Polanski, M.; Karczewski, K. [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Plocinski, T.; Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw (Poland)

    2015-11-05

    Laser engineered net shaping (LENS) was used to produce thin-walled samples of the high-entropy alloy AlCoCrFeNi from a prealloyed powder. To determine the effect of the cooling rate during solidification on the microstructure of the alloy, different laser scanning rates were used. A microstructural study of the surfaces of the sample walls was performed using X-ray diffraction analysis and optical and scanning/transmission electron microscopy. The crystal structure of the alloy was determined to be a body-centred cubic (bcc)-derivative B2-ordered type. The microstructure of the alloy produced by LENS was dendritic. Further, it was found that with an increase in the laser scanning rate from 2.5 to 40 mm s{sup −1}, the average grain size decreased from 108.3 ± 32.4 μm to 30.6 ± 9.2 μm. The maximum cooling rate achieved during the laser cladding of the alloy was 44 × 10{sup 3} K s{sup −1}. The electron microscopy study of the alloy showed the presence of precipitates. The morphology of the disordered bcc (Fe, Cr)-rich precipitates in the ordered B2 (Al, Ni)-rich matrix changed in the dendritic and interdendritic regions from fine and spherical (with a diameter of less 100 nm) to spinodal (with the thickness being less than 100 nm). The LENS- produced AlCoCrFeNi alloy exhibited an average microhardness of approximately 543 HV0.5; this was approximately 13% higher than the hardness in the as-cast state and can be attributed to the grain refinemet in the LENS- produced alloy. Moreover, it was found that increasing the cooling rate during laser cladding increasess the microhardness of the alloy. - Highlights: • Laser-engineered net shaping is used to produce samples of AlCoCrFeNi alloy. • The alloy has a body-centred cubic (bcc)-derivative B2-ordered crystal structure. • Electron microscopy images of the alloy show the presence of precipitates. • The microhardness of the laser-clad alloy is higher than that of the as-cast alloy. • The cooling rate

  16. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: azaldiva70@hotmail.com [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)

    2010-10-25

    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  17. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    International Nuclear Information System (INIS)

    Belmares-Perales, S.; Zaldivar-Cadena, A.A.

    2010-01-01

    Addition of iron into the molten metal for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the α-AlFeSi and β-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc TM software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of α-AlFeSi and removal of β-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of β-AlFeSi and α-AlFeSi phases, respectively. This study shows a new method of removal of β-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 μm.

  18. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  19. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Andrea Školáková

    2017-11-01

    Full Text Available In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  20. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  1. Martensitic Transformation and Superelasticity in Fe-Mn-Al-Based Shape Memory Alloys

    Science.gov (United States)

    Omori, Toshihiro; Kainuma, Ryosuke

    2017-12-01

    Ferrous shape memory alloys showing superelasticity have recently been obtained in two alloy systems in the 2010s. One is Fe-Mn-Al-Ni, which undergoes martensitic transformation (MT) between the α (bcc) parent and γ' (fcc) martensite phases. This MT can be thermodynamically understood by considering the magnetic contribution to the Gibbs energy, and the β-NiAl (B2) nanoprecipitates play an important role in the thermoelastic MT. The temperature dependence of critical stress for the MT is very small (about 0.5 MPa/°C) due to the small entropy difference between the parent and martensite phases in the Fe-Mn-Al-Ni alloy, and consequently, superelasticity can be obtained in a wide temperature range from cryogenic temperature to about 200 °C. Microstructural control is of great importance for obtaining superelasticity, and the relative grain size is among the most crucial factors.

  2. Heteroepitaxial growth of Fe{sub 2}Al{sub 5} inhibition layer in hot-dip galvanizing of an interstitial-free steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kuang-Kuo [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Chang, Liuwen, E-mail: lwchang@mail.nsysu.edu.t [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Gan, Dershin; Wang, Hung-Ping [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2010-02-01

    This work presents characterization results on inhibition layers formed on a TiNb-stabilized interstitial-free steel after short time galvanizing. The Fe-Al and steel interface was free from oxide, so that the Fe-Al intermetallic compound could directly nucleate on ferrite grains. Electron diffraction performed in a transmission electron microscope showed that only Fe{sub 2}Al{sub 5} was formed and it had a well-defined orientation relationship of [110]{sub Fe(sub/2)Al(sub/5)}// [111]{sub Fe}, (001){sub Fe(sub/2)Al(sub/5)}//(011){sub Fe} and (110){sub Fe(sub/2)Al(sub/5)}//(211){sub Fe} with Fe substrate. The structure of the interfaces between Fe{sub 2}Al{sub 5} and Fe is discussed. The epitaxially nucleated Fe{sub 2}Al{sub 5} grains on Fe substrate had very small grain size, 20 nm or less, and several variants were intimately mixed. The grains grew rapidly to hundreds of nanometers toward the Zn side.

  3. Synthesis of Fe-Al nanoparticles by hydrogen plasma-metal reaction

    CERN Document Server

    Liu Tong; Li Xing Guo

    2003-01-01

    Fe-Al nanoparticles of eight kinds have been prepared by hydrogen plasma-metal reaction. The morphology, crystal structure, and chemical composition of the nanoparticles obtained were investigated by transmission electron microscopy (TEM), x-ray diffractometry (XRD), and induction-coupled plasma spectroscopy. The particle size was determined by TEM and Brunaumer-Emmet-Teller gas adsorption. It was found that all the nanoparticles have spherical shapes, with average particle size in the range of 29-46 nm. The oxide layer in nanoparticles containing Al after passivation is not observable by XRD and TEM. The Al contents in Fe-Al ultrafine particles are about 1.2-1.5 times those in the master alloys. The evaporation speeds of Al and Fe in Fe-Al alloys are mutually accelerated at a certain composition. The crystal structures of the Fe-Al nanoparticles vary with the composition of the master alloys. Pure Fe sub 3 Al (D0 sub 3) and FeAl (B2) structures are successfully produced with 15 and 25 at.% Al in bulks, respe...

  4. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    Science.gov (United States)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  5. The formation mechanism of mechanically alloyed Fe-20 at% Al powder

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, F., E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Otmani, A. [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Djekoun, A. [Laboratoire de Magnetisme et Spectroscopie des Solides, LM2S, Universite Badji Mokhtar, BP 12 Annaba 23000 (Algeria); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans (France)

    2013-01-15

    The formation mechanism of the mechanically alloyed Fe-20 at% Al, from elemental Fe and Al powders, has been investigated. The experimental results indicate the formation of a nanocrystalline bcc {alpha}-Fe(Al) solid solution with a lattice parameter close to a{sub {alpha}-Fe(Al)}=0.2890 nm, where each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere. The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Aluminum particles undergo an important refinement to the nanometer scale and then they stick on Fe particles of large sizes. A large number of clear Al/Fe interface areas were generated. The short diffusion path and the presence of high concentration of defects accelerated the solid state reaction. - Highlights: Black-Right-Pointing-Pointer A nanocrystalline bcc {alpha}-Fe(Al) solid solution is formed from elemental Fe and Al powders. Black-Right-Pointing-Pointer The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Black-Right-Pointing-Pointer Each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere.

  6. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  7. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in

    2014-03-25

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E{sub d} = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices.

  8. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    International Nuclear Information System (INIS)

    Kaur, Navjot; Kaur, Davinder

    2014-01-01

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E d = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices

  9. Preparation and properties of Ni80Fe20/Al2O3/Co magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chen Jing; Du Jun; Wu Xiaoshan; Pan Minghu; Long Jianguo; Zhang Wei; Lu Mu; Hu An; Zhai Hongru

    2000-01-01

    With plasma oxidisation to create an insulating layer of Al 2 O 3 , the authors have repeatedly fabricated Ni 80 Fe 20 /Al 2 O 3 /Co magnetic tunnel junctions which show obvious tunneling magnetoresistance (TMR) effect. At room temperature, the maximum TMR ratio reaches 6.0%. The switch field can be less than 800 A/m with a relative step width of about 2400 A/m. The junction resistance changes from hundreds of ohms to hundreds of kilo-ohms

  10. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  11. High Temperature Deformation Behavior and Microstructure Evolution of Ti-4Al-4Fe-0.25Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Woo; Lee, Yongmoon; Lee, Chong Soo [Pohang University of Science and Technology, Pohang (Korea, Republic of); Yeom, Jong-Taek [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Gi Yeong [KPCM Incorporated, Gyeongsan (Korea, Republic of)

    2016-05-15

    Hot deformation behavior of Ti-4Al-4Fe-0.25Si alloy with martensite microstructure was investigated by compression tests at temperatures of 1023 – 1173 K (α+β phase region) and strain rates of 10{sup -3} – 1 s{sup -1}. By analyzing the deformation behavior, plastic deformation instability parameters including strain rate sensitivity, deformation temperature sensitivity, efficiency of power dissipation, and Ziegler’s instability were evaluated as a function of deformation temperature and strain rate, and they were further examined by drawing deformation processing maps. The microstructure evolution was also studied to determine the deformation conditions under which equiaxed α phase was formed in the microstructure without remnants or kinked α phase platelets and shear bands, these last two of which cause severe cracks during post-forming process. Based on the combined results of the processing maps and the microstructure analysis, the optimum α+β forging conditions for Ti-4Al-4Fe-0.25Si alloy were determined.

  12. Synthesis, magnetism and electronic structure of YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.91) isolated from Al flux

    Energy Technology Data Exchange (ETDEWEB)

    Xiuni, Wu [Department of Physical Sciences, Rhode Island College, Providence, RI 02908 (United States); Francisco, Melanie [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Rak, Zsolt [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Bakas, T [Department of Physics, University of Ioannina, GR-45110 Ioannina (Greece); Mahanti, S D [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Kanatzidis, Mercouri G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)], E-mail: m-kanatzidis@northwestern.edu

    2008-12-15

    The combination of ytterbium, nickel, iron in liquid aluminum resulted in the formation of the new intermetallic compound YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.91) which adopts the CaCo{sub 2}Al{sub 8} structure type with a=14.458(3) A, b=12.455(3) A, c=3.9818(8) A and space group Pbam. Its resistivity drops with decreasing temperature, saturating to a constant value at lower temperatures. Above 50 K, the inverse magnetic susceptibility data follows Curie-Weiss Law, with a calculated {mu}{sub eff}=2.19 {mu}{sub B}. Although the observed reduced moment in magnetic susceptibility measurement suggests that the Yb ions in this compound are of mixed-valent nature, ab initio electronic structure calculations within density functional theory using LDA+U approximation give an f{sup 13} configuration in the ground state. - Graphical abstract: The reaction of ytterbium, nickel, iron in aluminum flux gives crystals of the intermetallic compound YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.96) which adopts the CaCo{sub 2}Al{sub 8} structure, ab initio electronic structure calculations within density functional theory using LDA+U approximation suggest an f{sup 13} configuration in the ground state.

  13. Synthesis, characterization and magnetic properties of Fe-Al nanopins

    International Nuclear Information System (INIS)

    Zhang, W.S.; Brueck, E.; Li, W.F.; Si, P.Z.; Geng, D.Y.; Zhang, Z.D.

    2005-01-01

    We report the synthesis of Fe-Al nanopins using arc discharge. The morphology and chemical composition of the Fe-Al nanopins were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). The nanopins are composed of a spherical base of about 20-100 nm and a needle-like tip of about several hundred nanometers. EDX and HRTEM studies indicate that the spherical base is mainly composed of α-Fe and FeAl core coated with a thin Al 2 O 3 layer, while the needle-like part contains only Al and O and corresponds to Al 2 O 3 . The formation mechanism of the nanopins is suggestive of a vapor-liquid-solid (VLS) growth process. The as-prepared Fe-Al nanopins show ferromagnetic properties. The temperature dependence of the magnetization at high temperatures indicates the existence of some phase transformations

  14. Point defects in B.C.C. Fe-Al, Fe-Co, and Fe-Co-V ordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1982-01-01

    Radiation damage produced at 20 K by 2.5 MeV electrons is studied in three B 2 type Fe-40 at % Al, Fe-Co, Fe-Co-V ordered alloys. The resistivity damage in Fe-40 at % Al ordered single crystals is found less effective in the directions. The results suggest that replacement collision chains are difficult to propagate along the direction. Frenkel pair creation superimposed with disordering can account for the resistivity damage in the initially ordered Fe-Co alloy. Informations concerning replacement collision sequences in direction are derived. During the recovery of all the alloys, three main stages are observed and an ordering enhancement occurs. (author)

  15. Corrosion Behavior of Detonation Gun Sprayed Fe-Al Type Intermetallic Coating

    Science.gov (United States)

    Senderowski, Cezary; Chodala, Michal; Bojar, Zbigniew

    2015-01-01

    The detonation gun sprayed Fe-Al type coatings as an alternative for austenitic valve steel, were investigated using two different methods of testing corrosion resistance. High temperature, 10-hour isothermal oxidation experiments at 550, 750, 950 and 1100 °C show differences in the oxidation behavior of Fe-Al type coatings under air atmosphere. The oxide layer ensures satisfying oxidation resistance, even at 950 and 1100 °C. Hematite, α-Al2O3 and metastable alumina phases were noticed on the coatings top surface, which preserves its initial thickness providing protection to the underlying substrate. In general, only negligible changes of the phase composition of the coatings were noticed with simultaneous strengthening controlled in the micro-hardness measurements, even after 10-hours of heating at 1100 °C. On the other hand, the electrochemical corrosion tests, which were carried out in 200 ppm Cl− (NaCl) and pH ~4 (H2SO4) solution to simulate the acid-rain environment, reveal higher values of the breakdown potential for D-gun sprayed Fe-Al type coatings than the ones for the bulk Fe-Al type alloy and Cr21Mn9Ni4 austenitic valve steel. This enables these materials to be used in structural and multifunctional applications in aggressive environments, including acidic ones. PMID:28787991

  16. Substitution studies of Mn and Fe in Ln{sub 6}W{sub 4}Al{sub 43} (Ln=Gd, Yb) and the structure of Yb{sub 6}Ti{sub 4}Al{sub 43}

    Energy Technology Data Exchange (ETDEWEB)

    Treadwell, LaRico J.; Watkins-Curry, Pilanda [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); McAlpin, Jacob D. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Prestigiacomo, Joseph; Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Chan, Julia Y., E-mail: Julia.Chan@utdallas.edu [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2014-02-15

    The synthesis and characterization of Mn- and Fe-substituted Ln{sub 6}W{sub 4}Al{sub 43} (Ln=Gd, Yb) and Yb{sub 6}Ti{sub 4}Al{sub 43} are reported. The compounds adopt the Ho{sub 6}Mo{sub 4}Al{sub 43} structure type with lattice parameters of a∼11 Å and c∼17.8 Å with structural site preferences for Mn and Fe. The magnetization of Yb{sub 6}W{sub 4}Al{sub 43} is sensitive to Mn and Fe doping, which is evident by an increase in the field dependent magnetization. Gd{sub 6}W{sub 4}Al{sub 43}, Gd{sub 6}W{sub 4}Al{sub 42.31(11)}Mn{sub 0.69(11)}, and Gd{sub 6}W{sub 4}Al{sub 41.69(12)}Fe{sub 1.30(12)} order antiferromagnetically in the ab- and c-directions at 15, 14, and 13 K, respectively, with positive Weiss constants, suggesting the presence of ferromagnetic exchange interactions. Anisotropic magnetization data of Gd{sub 6}W{sub 4}Al{sub 43−y}T{sub y} (T=Mn, Fe) analogs are discussed. - Graphical abstract: The magnetic susceptibility of Ln{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} (Ln = Gd, Yb; T= Mn, Fe). Display Omitted - Highlights: • Single crystals of Ln{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} were grown with Al-flux. • Anisotropic magnetic behavior were determined on single crystals. • Gd{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} (T=Mn, Fe) analogs order antiferromagnetically.

  17. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the AlCoFe

  18. Melting of Au and Al in nanometer Fe/Au and Fe/Al multilayers under swift heavy ions: A thermal spike study

    International Nuclear Information System (INIS)

    Chettah, A.; Wang, Z.G.; Kac, M.; Kucal, H.; Meftah, A.; Toulemonde, M.

    2006-01-01

    Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)] y and [Fe(3 nm)/Al(x)] y with x ranging between 1 and 10 nm, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of 208 Pb, 132 Xe and 84 Kr ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems

  19. Strength anomaly in B2 FeAl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, K.; Hanada, S.; Yoo, M.H. [Oak Ridge National Lab., TN (United States); Matsumoto, N. [Tohoku Univ. (Japan). Graduate School

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  20. Surface morphology of scale on FeCrAl (Pd, Pt, Y) alloys

    International Nuclear Information System (INIS)

    Amano, T.; Takezawa, Y.; Shiino, A.; Shishido, T.

    2008-01-01

    The high temperature oxidation behavior of Fe-20Cr-4Al, floating zone refined (FZ) Fe-20Cr-4Al, Fe-20Cr-4Al-0.5Pd, Fe-20Cr-4Al-0.5Pt and Fe-20Cr-4Al-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys was studied in oxygen for 0.6-18 ks at 1273-1673 K by mass gain measurements, X-ray diffraction and scanning electron microscopy. The mass gains of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys showed almost the same values. Those of FeCrAl-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys decreased with increasing yttrium of up to 0.1% followed by an increase with the yttrium content after oxidation for 18 ks at 1473 K. Needle-like oxide particles were partially observed on FeCrAl alloy after oxidation for 7.2 ks at 1273 K. These oxide particles decreased in size with increasing oxidation time of more than 7.2 ks at 1473 K, and then disappeared after oxidation for 7.2 ks at 1573 K. It is suggested that a new oxide develops at the oxygen/scale interface. The scale surface of FeCrAl alloy showed a wavy morphology after oxidation for 7.2 ks at 1273 K which then changed to planar morphology after an oxidation time of more than 7.2 ks at 1573 K. On the other hand, the scale surfaces of other alloys were planar after all oxidation conditions in this study. The scale surfaces of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys were rough, however, those of FeCrAl-(0.1, 0.2, 0.5)Y alloys were smooth. The oxide scales formed on FeCrAl-(0.1, 0.2, 0.5)Y alloys were found to be α-Al 2 O 3 with small amounts of Y 3 Al 5 O 12 , and those of the other alloys were only α-Al 2 O 3

  1. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  2. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  3. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    Science.gov (United States)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  4. MICROSTRUCTURE AND TENSILE PROPERTIES OF Fe3Al-BASED ALLOYS WITH VC AND TiC ADDITIONS

    Institute of Scientific and Technical Information of China (English)

    W.L.Xu; Y.S.Sun; S.S.Ding

    2001-01-01

    Microstructure and tensile properties of Fe3Al-based alloys with additions of TiC andVC particles have been investigated.Results show that the formation of TiC particlesresults in the refinement of the macrostructure of as-cast ingots.Although the additionof VC particles does not cause significant change of the as-cast microstructure,themicrostructure of the alloy after hot-working and recrystallization has been found tobe refined.The formation of both VC and TiC particles results in the increase of yieldstrength,especially at high temperature of 600℃.

  5. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  6. On the Correlation between Morphology of alpha and Its Crystallographic Orientation Relationship with TiB and Beta in Boron Containing Ti-5Al-5Mo-5V-3Cr-0.5Fe Alloy (Preprint)

    Science.gov (United States)

    2012-01-01

    orientation microscopy studies on a boron containing version of the commercial Ti- 5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. 15. SUBJECT TERMS Ti5553 ...of the commercial Ti-5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. Keywords: Ti5553 , TiB, EBSD, crystallography, orientation relationship. Paper There has...absence of orientation relationships between the α, β and TiB phases, on the morphology of α nucleating from TiB in the Ti5553 alloy.. The base

  7. Al/Fe isomorphic substitution versus Fe{sub 2}O{sub 3} clusters formation in Fe-doped aluminosilicate nanotubes (imogolite)

    Energy Technology Data Exchange (ETDEWEB)

    Shafia, Ehsan [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Esposito, Serena [Università degli Studi di Cassino e del Lazio Meridionale, Department of Civil and Mechanical Engineering (Italy); Manzoli, Maela; Chiesa, Mario [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Tiberto, Paola [Electromagnetism, I.N.Ri.M. (Italy); Barrera, Gabriele [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Menard, Gabriel [Harvard University, Department of Chemistry and Chemical Biology (United States); Allia, Paolo, E-mail: paolo.allia@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Freyria, Francesca S. [Massachusetts Institute of Technology, Department of Chemistry (United States); Garrone, Edoardo; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy)

    2015-08-15

    Textural, magnetic and spectroscopic properties are reported of Fe-doped aluminosilicate nanotubes (NTs) of the imogolite type, IMO, with nominal composition (OH){sub 3}Al{sub 2−x}Fe{sub x}O{sub 3}SiOH (x = 0, 0.025, 0.050). Samples were obtained by either direct synthesis (Fe-0.025-IMO, Fe-0.050-IMO) or post-synthesis loading (Fe-L-IMO). The Fe content was either 1.4 wt% (both Fe-0.050-IMO and Fe-L-IMO) or 0.7 wt% (Fe-0.025-IMO). Textural properties were characterized by High-Resolution Transmission Electron Microscopy, X-ray diffraction and N{sub 2} adsorption/desorption isotherms at 77 K. The presence of different iron species was studied by magnetic moment measurements and three spectroscopies: Mössbauer, UV–Vis and electron paramagnetic resonance, respectively. Fe{sup 3+}/Al{sup 3+} isomorphic substitution (IS) at octahedral sites at the external surface of NTs is the main process occurring by direct synthesis at low Fe loadings, giving rise to the formation of isolated high-spin Fe{sup 3+} sites. Higher loadings give rise, besides IS, to the formation of Fe{sub 2}O{sub 3} clusters. IS occurs up to a limit of Al/Fe atomic ratio of ca. 60 (corresponding to x = 0.032). A fraction of the magnetism related to NCs is pinned by the surface anisotropy; also, clusters are magnetically interacting with each other. Post-synthesis loading leads to a system rather close to that obtained by direct synthesis, involving both IS and cluster formations. Slightly larger clusters than with direct synthesis samples, however, are formed. The occurrence of IS indicates a facile cleavage/sealing of Al–O–Al bonds: this opens the possibility to exchange Al{sup 3+} ions in pre-formed IMO NTs, a much simpler procedure compared with direct synthesis.

  8. Relaxation-phenomena in LiAl/FeS-cells

    Science.gov (United States)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  9. Preparation of TiC/Ni3Al Composites by Upward Melt Infiltration

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    TiC/Ni3Al composites have been prepared using upward infiltration method. The densificstion was performed by both Ni3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni3Al has been evidenced by finding Ni3(Al,Ti)C after fast cooling in the TiC/Ni3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni3Al composite processed by upward infiltration had a flexural strength of 1476 Mpa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 Mpa(m). Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration.

  10. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  11. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  12. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    International Nuclear Information System (INIS)

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-01-01

    The influence of annealing on the microstructural evolution and magnetic properties of Ni 50 Fe x Al 50-x alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type β-phase and typical off eutectic microstructure consisting of proeutectic B2 type β dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC γ-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC γ-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T C ). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T C of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC α-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the β-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: → Evolution of microstructure and magnetic properties with varying Fe content. → Transient rise in magnetization via the formation of ferromagnetic phase. → Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. → Nanoscale precipitation of ferromagnetic BCC α-Fe confirmed by TEM.

  13. ac Conductivity of mixed spinel NiAl0.7Cr0.7Fe0.6O4

    Indian Academy of Sciences (India)

    Abstract. ac Conductivity measurements are carried out across the metal to insulator transition in NiAl0.7Cr0.7Fe0.6O4. The low frequency data is analyzed using Summerfield scaling theory for hopping conductivity. The exponent of the scaling behavior has significantly different values in the conducting and insulating ...

  14. Microstructure and wear behaviour of FeAl-based composites ...

    Indian Academy of Sciences (India)

    FeAl-based composites; precipitation; mechanical properties; wear. 1. Introduction. Fe–Al alloys ... ground to 1500 grit and polished with alumina powder. (0.5 μm). ... Alloy-2 (figure 2) consists of cuboid-shaped ZrC (region C), an FeAl matrix ...

  15. The effect of small 4th element alloying additions on the calculated phase stability in the Fe-Cr-Ni system

    International Nuclear Information System (INIS)

    Watkin, J.S.

    1979-01-01

    Recent studies into the void swelling of Fe-Cr-Ni alloys have revealed that the magnitude of swelling depends upon alloy constitution and this together with the fact that minor element additions also play a major role in swelling necessitate a detailed knowledge of the influence of small 4th element additions on phase stability. In this paper the effects of additions of Nb, Ti, Al, Mo, Co and C to the Fe-Cr-Ni ternary are assessed by calculation. They confirm the ferritising tendencies of Nb, Ti and Al and the strong austenitising effect of C. Confirmation is also found for the scaling factors in the equivalent Ni and Cr equations in common usage and the paper presents Fe-Cr-Ni ternary sections at 400, 550 and 700 0 C modified for 1 at.% addition of each of the above elements. (orig.) [de

  16. Study of the effect of PH, surface finish and thermal treatment on the corrosion of AlFeNi aluminum alloy

    International Nuclear Information System (INIS)

    Nabhan, Diana

    2013-01-01

    The Jules Horowitz Reactor (JHR) is a research reactor under construction at the CEA Cadarache research center, France. It is scheduled to start operating by 2020. The fuel elements of this reactor core consist of eight concentric rows of cylindrical plates, each row being composed of three thin aluminum coated plates. Cooling water circulates between these plates through very thin gaps smaller than 2 mm. The aluminum alloy used to coat the fuel plates is an alloy called AlFeNi, which contains 1% wt. Fe, 1% wt. Ni and 1% wt. Mg. In the reactor environment, this alloy may undergo corrosion. The oxide layer formed on the AlFeNi alloy is composed of two different types of oxides: an inner oxide layer formed by a diffusion mechanism and an outer oxide layer formed by re-precipitation. As a consequence, formation of an oxide scale on the aluminum coating could reduce the gap between the cladding plates, thus allowing less water to circulate. This could in turn lead to local heating of the fuel cladding. In addition, the metal consumption and the softening of the metal at high temperatures can lead to a decrease of the mechanical strength of the cladding. In order to qualify the fuel elements of the JHR, several specimens of AlFeNi, representative of the future cladding, were corroded at 250 .deg. C for different durations (9 to 34 days) in distilled water of different pH: 4.9; 5.2 and 5.6. These pH values have been chosen to simulate the ones currently predicted for the JHR. The effect of surface finish (polished and not polished) and thermal treatment (annealed and not annealed) on the oxide growth rate was also investigated. For long tests over 30 days, the pH 5,6 appears to be more favorable than the pH 5,2 and 4,9 to limit the oxide thickness, but this pH effect is reduced on unpolished samples. In one hand, the effect of surface finish on the corrosion behavior as measured by optical microscopy appears to be strong. On the other hand, the effect of thermal

  17. Study of the effect of PH, surface finish and thermal treatment on the corrosion of AlFeNi aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nabhan, Diana [Comissariat a l' Energie Atomique, Paris (France)

    2013-07-01

    The Jules Horowitz Reactor (JHR) is a research reactor under construction at the CEA Cadarache research center, France. It is scheduled to start operating by 2020. The fuel elements of this reactor core consist of eight concentric rows of cylindrical plates, each row being composed of three thin aluminum coated plates. Cooling water circulates between these plates through very thin gaps smaller than 2 mm. The aluminum alloy used to coat the fuel plates is an alloy called AlFeNi, which contains 1% wt. Fe, 1% wt. Ni and 1% wt. Mg. In the reactor environment, this alloy may undergo corrosion. The oxide layer formed on the AlFeNi alloy is composed of two different types of oxides: an inner oxide layer formed by a diffusion mechanism and an outer oxide layer formed by re-precipitation. As a consequence, formation of an oxide scale on the aluminum coating could reduce the gap between the cladding plates, thus allowing less water to circulate. This could in turn lead to local heating of the fuel cladding. In addition, the metal consumption and the softening of the metal at high temperatures can lead to a decrease of the mechanical strength of the cladding. In order to qualify the fuel elements of the JHR, several specimens of AlFeNi, representative of the future cladding, were corroded at 250 .deg. C for different durations (9 to 34 days) in distilled water of different pH: 4.9; 5.2 and 5.6. These pH values have been chosen to simulate the ones currently predicted for the JHR. The effect of surface finish (polished and not polished) and thermal treatment (annealed and not annealed) on the oxide growth rate was also investigated. For long tests over 30 days, the pH 5,6 appears to be more favorable than the pH 5,2 and 4,9 to limit the oxide thickness, but this pH effect is reduced on unpolished samples. In one hand, the effect of surface finish on the corrosion behavior as measured by optical microscopy appears to be strong. On the other hand, the effect of thermal

  18. Optimization of the boron content in FeAl (40 at. % Al) alloys

    International Nuclear Information System (INIS)

    Webb, G.; Juliet, P.; Lefort, A.

    1993-01-01

    FeAl intermetallic alloys are of interest for several high temperature applications due to excellent oxidation resistance, low density, and relatively low cost. Attempts to further increase the ductility of iron-rich FeAl have met with, at best, marginal success. Of the ductilization techniques employed, B doping appears to be a promising method for obtaining enhanced ductility and high strength in iron rich FeAl. Boron additions enhance the ductility of these alloys by increasing the grain boundary cohesive strength which reduces the tendency for intergranular fracture. The goal of the present work was to determine the optimum B concentration for increasing ambient temperature ductility. To accomplish this, a series of three iron rich FeAl alloys of similar Fe stoichiometries were doped with different levels of B (0,12, and 80 wppm). Secondary ion mass spectrometry (SIMS) was conducted on these alloys for evaluation of the B partitioning after consolidation by extrusion. Ambient temperature tensile testing and SEM fractography were then used to evaluate the effect of such additions on ambient temperature ductility in air. The results of these experiments indicate that optimum ductility is obtained from a homogeneous distribution of boron in which boride precipitation is limited

  19. Magnetoimpedance of FeNi-based asymmetric sensitive elements

    International Nuclear Information System (INIS)

    Chlenova, A.A.; Svalov, A.V.; Kurlyandskaya, G.V.; Volchkov, S.O.

    2016-01-01

    [Ti/FeNi] 5 /Ti/Cu/Ti/[FeNi/Ti] x (x=0–5) multilayers were prepared by sputtering. Their magnetic properties and magnetoimpedance were studied focusing on future technological applications. Both (ΔZ/Z) max and (ΔR/R) max values showed a tendency to decrease with a decrease of the number of magnetic layers of the top multilayer. Such a parameter as an even or odd number of layers is important for the MI value. In the field interval of technological interest all [Ti/FeNi] 5 /Ti/Cu/Ti/[FeNi/Ti] x structures show similar sensitivities of about 70%/Oe for ΔR/R ratios but the lower the number of magnetic layers in the top multilayer, the higher the operating frequency. - Highlights: • Giant magnetoimpedance effect. • Non-symmetric multilayers sructure. • Biosensing.

  20. Creep of cast Fe-36Al-2Ti alloy

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Ferdinand; Kratochvíl, P.; Milička, Karel

    2006-01-01

    Roč. 14, 10-11 (2006), s. 1199-1203 ISSN 0966-9795. [EUROMAT 2005. Praha, 05.09.2005-08.09.2005] R&D Projects: GA ČR(CZ) GA106/05/0409 Institutional research plan: CEZ:AV0Z20410507 Keywords : iron aluminides, based on FeAl * creep * mechanical testing Subject RIV: JG - Metallurgy Impact factor: 1.943, year: 2006

  1. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Wen, Haiming; Zhang, Dalong; Chen, Zhen; Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.

    2016-01-01

    We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA.

  2. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with high...... temperatures and a low NH3-to-H2 ratio, the catalytic activity of the best Ni-Fe/Al2O3 catalyst was found to be comparable or even better to that of a more expensive Ru-based catalyst. Small Ni-Fe nanoparticle sizes are crucial for an optimal overall NH3 conversion because of a structural effect favoring...

  3. Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites

    Directory of Open Access Journals (Sweden)

    Jia Hanzhong

    2017-09-01

    Full Text Available Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.

  4. A study on the microstructural characteristics of rapidly solidified Al-Fe alloys(I)

    International Nuclear Information System (INIS)

    Kim, D.H.; Lee, H.I.

    1991-01-01

    Solidification microstructures and phases in rapidly solidified Al-5, 10wt% Fe alloys have been investigated by TEM bright field and dark field imaging techniques and electron and x-ray diffraction techniques. Rapid solidification of Al-5, 10wt%Fe alloys produces various metastable and stable phases, such as Al m Fe, Al 6 Fe and Al 13 Fe 4 . In addition to these phases, clusters of randomly oriented few nm scale particles exist in the form of fine cellular network with α-Al or primary spherical particles. Solidification microstructures of the rapidly solidified Al-5, 10wt%Fe alloys consist of various combination of primary phases such as Al 13 Fe 4 , Al m Fe and cluster of nm scale particles, and cellular/dendritic structures such as fine cellular network structure of nm scale particle clusters and α-Al and cellular structure of Al m Fe and α-Al, depending upon alloy compositions and local cooling rates. (Author)

  5. Photoabsorption coefficient of alloys at Al with transition metals V, Fe, Ni and with Cu and Pr from 30 eV to 150 eV photon energy

    International Nuclear Information System (INIS)

    Hagemann, H.J.; Gudat, W.; Kunz, C.

    1975-10-01

    The absorption coeffecient of VAl 3 , FeAl, NiAl, NiAl 3 , CuAl 2 , PrAl 2 and of disordered V-Al (16 at. % Al, 28 %, 41%) and Fe-Al (11%) alloys has been measured in the region of the Msub(2,3)-absorption of the transition metals and the L-absorption of Al. The strong changes of the Al spectrum in the region of the 100 eV maximum upon alloying are explained as another evidence of the EXAFS (extended X-ray absorption fine structure) nature of these structures. The broad, prominent absorption peaks from the 3p excitations in V and Fe and from the 4d excitations in Pr are influenced only little on alloying and thus appear to be of atomic origin. The fine structure at the onset of the Pr 4d-transitions is identical in the metal and the alloy but differs from that of Pr oxide. The only Msub(2,3)-edge which is detectably shifted is that if Ni (up to 2.1 eV), whereas the onset of the Al Lsub(2,3)-edge is shifted in all the alloys (up to 1.1 eV). The shifts are interpreted in accordance with X-ray fluorescence and nuclear resonance measurements as changes of the density of states in the valence band of the alloys. (orig.) [de

  6. Magnetoimpedance of FeNi-based asymmetric sensitive elements

    Energy Technology Data Exchange (ETDEWEB)

    Chlenova, A.A., E-mail: chlenova.anna@gmail.com [Ural Federal University, Laboratory of Magnetic Sensorics, Lenin Ave. 51, 620083 Ekaterinburg, Russian Ferderation (Russian Federation); Immanuel Kant Baltic Federal University, Science and Technology Park “Fabrica”, Gaidara str. 6, Kaliningrad (Russian Federation); Svalov, A.V.; Kurlyandskaya, G.V. [Ural Federal University, Laboratory of Magnetic Sensorics, Lenin Ave. 51, 620083 Ekaterinburg, Russian Ferderation (Russian Federation); Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Volchkov, S.O. [Ural Federal University, Laboratory of Magnetic Sensorics, Lenin Ave. 51, 620083 Ekaterinburg, Russian Ferderation (Russian Federation)

    2016-10-01

    [Ti/FeNi]{sub 5}/Ti/Cu/Ti/[FeNi/Ti]{sub x} (x=0–5) multilayers were prepared by sputtering. Their magnetic properties and magnetoimpedance were studied focusing on future technological applications. Both (ΔZ/Z){sub max} and (ΔR/R){sub max} values showed a tendency to decrease with a decrease of the number of magnetic layers of the top multilayer. Such a parameter as an even or odd number of layers is important for the MI value. In the field interval of technological interest all [Ti/FeNi]{sub 5}/Ti/Cu/Ti/[FeNi/Ti]{sub x} structures show similar sensitivities of about 70%/Oe for ΔR/R ratios but the lower the number of magnetic layers in the top multilayer, the higher the operating frequency. - Highlights: • Giant magnetoimpedance effect. • Non-symmetric multilayers sructure. • Biosensing.

  7. Catalytic Oxidation of Propene over Pd Catalysts Supported on CeO2, TiO2, Al2O3 and M/Al2O3 Oxides (M = Ce, Ti, Fe, Mn

    Directory of Open Access Journals (Sweden)

    Sonia Gil

    2015-04-01

    Full Text Available In the following work, the catalytic behavior of Pd catalysts prepared using different oxides as support (Al2O3, CeO2 and TiO2 in the catalytic combustion of propene, in low concentration in excess of oxygen, to mimic the conditions of catalytic decomposition of a volatile organic compound of hydrocarbon-type is reported. In addition, the influence of different promoters (Ce, Ti, Fe and Mn when added to a Pd/Al2O3 catalyst was analyzed. Catalysts were prepared by the impregnation method and were characterized by ICP-OES, N2 adsorption, temperature-programmed reduction, temperature-programmed oxidation, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Catalyst prepared using CeO2 as the support was less easily reducible, due to the stabilization effect of CeO2 over the palladium oxides. Small PdO particles and, therefore, high Pd dispersion were observed for all of the catalysts, as confirmed by XRD and TEM. The addition of Ce to the Pd/Al2O3 catalysts increased the metal-support interaction and the formation of highly-dispersed Pd species. The addition of Ce and Fe improved the catalytic behavior of the Pd/Al2O3 catalyst; however, the addition of Mn and Ti decreased the catalytic activity in the propene oxidation. Pd/TiO2 showed the highest catalytic activity, probably due to the high capacity of this catalyst to reoxidize Pd into PdO, as has been found in the temperature-programmed oxidation (TPO experiments.

  8. Flow boiling heat transfer enhancement on copper surface using Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sujith Kumar, C.S., E-mail: sujithdeepam@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Suresh, S., E-mail: ssuresh@nitt.edu [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Aneesh, C.R., E-mail: aneeshcr87@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Santhosh Kumar, M.C., E-mail: santhoshmc@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Praveen, A.S., E-mail: praveen_as_1215@yahoo.co.in [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Raji, K., E-mail: raji.kochandra@gmail.com [School of Nano Science and Technology, National Institute of Technology, Calicut 673601, Kerala (India)

    2015-04-15

    Graphical abstract: - Highlights: • Fe–Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings were coated on the copper using spray pyrolysis. • Effect of Fe doping on porosity was determined using AFM. • Effect of Fe doping on hydrophilicity was determined. • Higher enhancement in CHF was obtained for 7.2 at% Fe doped coated sample. - Abstract: In the present work, flow boiling experiments were conducted to study the effect of spray pyrolyzed Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings over the copper heater blocks on critical heat flux (CHF) and boiling heat transfer coefficient. Heat transfer studies were conducted in a mini-channel of overall dimension 30 mm × 20 mm × 0.4 mm using de-mineralized water as the working fluid. Each coated sample was tested for two mass fluxes to explore the heat transfer performance. The effect of Fe addition on wettability and porosity of the coated surfaces were measured using the static contact angle metre and the atomic force microscope (AFM), and their effect on flow boiling heat transfer were investigated. A significant enhancement in CHF and boiling heat transfer coefficient were observed on all coated samples compared to sand blasted copper surface. A maximum enhancement of 52.39% and 44.11% in the CHF and heat transfer coefficient were observed for 7.2% Fe doped TiO{sub 2}–Al{sub 2}O{sub 3} for a mass flux of 88 kg/m{sup 2} s.

  9. Preparation and visible light responsive photocatalytic activity of Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiaqi; Qu, Ting; Wang, Qiufeng; Zhao, Zhenbo, E-mail: zhaozhenbo@ccut.edu.cn [School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin (China)

    2017-09-15

    Novel Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites were prepared through a hydrothermal method and co-precipitation method. The morphologies and structures of the photocatalysts were characterized by XRD, Raman, TEM, UV-vis-DRS, BET surface area and VSM techniques. The photocatalytic performances of the photocatalysts were investigated by the decolorisation of methyl orange (MO) under visible-light irradiation. The results showed that the Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites exhibited greater photocatalytic activities compared to pure Bi{sub 2}WO{sub 6} and the Ni-Al-Ce LDH; the decolorisation rate of MO was 87% within 60 min under visible-light irradiation. The decolorisation efficiency of the composite material remained at 71% after 4 recycling runs, showing improved stability. Furthermore, the experimental results also showed that the photocatalytic reactions for the composites followed first-order reaction kinetics. Therefore, the Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites were photocatalysts with high efficiencies and stabilities for a photocatalytic reaction of an organic pollutant, and this study provides a new, effective method for the development of wastewater treatment. (author)

  10. Two-dimensional nano-lattice in Fe-Co-Ni-Al-Cu alloys

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, H.D.

    2007-01-01

    Full text: The high coercive strength of the dispersionally solidified alloys on the base of Fe-Co-Ni-Al-Cu system appears as a result of the special thermomagnetic annealing, when particles of the strong magnetic phase are distinguished in non-magnetic matrix along an external magnetic field direction. The neutron studying allows one to reveal the correlation between magnetization and inclusion axes, and also existence of magnetic microcell and perfectness of the lattice. This work presents results of neutron diffraction study with a double-crystal spectrometer (0.145 nm). Plate like samples of size 18 12 4 mm 3 were cut from a single crystal of alloy UNDK35 T5 along (100) plane. Magnetic field of 6 kOe was applied perpendicular to the neutron beam. Zero-field spectrum had only random variation of the background. Under the applied magnetic field two maxima appeared at the angles of 12 and 24 minute. In the case of the magnetic field directed in parallel to the scattering vector, the two maxima disappeared as expected. It is evidence that nuclear scattering is less than magnetic one and the observed maxima correspond to (10) and (20) reflections from a two dimensional ferro-magnetic microcell. The cell parameter of the magnetic microcell was found 40.6 nm. The coherent scattering region size was 120-160 nm. The ferro-magnetic rod diameter estimated from the peak widths was 16 nm. The diffraction pattern for the demagnetized sample strongly differs from the initial magnetized sample, where a diffuse reflection was observed near Bragg reflection and related with residual magnetization. So, the magnetic inclusions created in the Fe-Co-Ni-Al-Cu system at the thermomagnetic annealing by means of disintegration of the solid solution are strong ferro-magnetic and one-domain. These particles form the two-dimensional magnetic microcell and interact each to other within 3-4 periods of the cell. (authors)

  11. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  12. Preparation, characterization, and antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Allafchian, Alireza, E-mail: Allafchian@cc.iut.ac.ir [Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Jalali, Seyed Amir Hossein [Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Department of Natural Resources, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Bahramian, Hamid; Ahmadvand, Hossein [Department of physics, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of)

    2016-04-15

    We have described a facile fabrication of silver deposited on the TiO{sub 2}, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2}) through a three-step procedure. A pre-synthesized NiFe{sub 2}O{sub 4} was first coated with PAMA polymer and then Ag–TiO{sub 2} was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}/Ag, AgNPs and NiFe{sub 2}O{sub 4}/PAMA. The results demonstrated that the AgNPs, when embedded in TiO{sub 2} and combined with NiFe{sub 2}O{sub 4}/PAMA, became an excellent antibacterial agent. The NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field. - Highlights: • A novel NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} magnetic nanocomposite has been prepared. • This nanocomposite displays potent antimicrobial activity. • The antibacterial effect was evaluated by the disk diffusion method. • Recyclable antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} was studied.

  13. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  14. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    Science.gov (United States)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  15. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    International Nuclear Information System (INIS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-01-01

    High pressure powder X-ray diffraction studies of several A 2 Mo 3 O 12 materials (A 2 =Al 2 , Fe 2 , FeAl, and AlGa) were conducted up to 6–7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga 2 Mo 3 O 12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations. - Graphical abstract: Overlay of variable pressure X-ray diffraction data of Al 2 Mo 3 O 12 collected in a diamond anvil cell. Both subtle and discontinuous phase transitions are clearly observed. - Highlights: • The high pressure behavior of A 2 Mo 3 O 12 (A=Al, Fe, (AlGa), (AlFe)) was studied. • All compounds undergo the same sequence of pressure-induced phase transitions. • The phase transition pressures correlate with the average size of the A-site cation. • All transitions were reversible with hysteresis. • Previously studied Ga 2 Mo 3 O 12 undergoes the same sequence of transitions.

  16. Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels

    Science.gov (United States)

    McMurray, J. W.; Hu, R.; Ushakov, S. V.; Shin, D.; Pint, B. A.; Terrani, K. A.; Navrotsky, A.

    2017-08-01

    Ferritic FeCrAl alloys are candidate accident tolerant cladding materials. There is a paucity of data concerning the melting behavior for FeCrAl and its oxides. Analysis tools have therefore had to utilize assumptions for simulations using FeCrAl cladding. The focus of this study is to examine in some detail the solid-liquid phase equilibria of FeCrAl alloys and spinels with the aim of improving the accuracy of severe accident scenario computational studies.

  17. Core–shell structured FeSiAl/SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite cores with tunable insulating layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xi’an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wang, Jian, E-mail: snove418562@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wu, Zhaoyang, E-mail: wustwuzhaoyang@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Li, Guangqiang, E-mail: ligq-wust@mail.wust.edu.cn [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China)

    2015-11-15

    Graphical abstract: - Highlights: • FeSiAl/SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores were prepared. • SiO{sub 2} surrounding FeSiAl were replaced by Al{sub 2}O{sub 3} during sintering process. • Fe{sub 3}Si particles were separated by Al{sub 2}O{sub 3} with tunable thickness in composite cores. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than FeSiAl core. • The insulating layer between ferromagnetic particles can reduce core loss. - Abstract: FeSiAl/SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores with tunable insulating layer thicknesses have been synthesized via a modified Stöber method combined with following high temperature sintering process. Most of the conductive FeSiAl particles could be coated by insulating SiO{sub 2} using the modified Stöber method. During the sintering process, the reaction 4Al + 3SiO{sub 2} ≣ 2α-Al{sub 2}O{sub 3} + 3Si took place and the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher resistivity and lower core loss than the raw FeSiAl core. Based on this, several types of FeSiAl/SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores with tunable insulating layer thicknesses were selectively prepared by simply varying TEOS contents. The thickness of Al{sub 2}O{sub 3} insulating layer and resistivity of Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores increased with increasing the TEOS contents, while the permeability and core loss changed in the opposite direction.

  18. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rubing, E-mail: zrb86411680@126.com [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Deming [Beijing General Research Institute of Mining and Metallurgy, Beijing 100044 (China); Chen, Guiqing [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yuesheng [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  19. Aluminum Coprecipitates with Fe (hydr)oxides: Does Isomorphous Substitution of Al3plus for Fe3plus in Goethite Occur

    Energy Technology Data Exchange (ETDEWEB)

    E Bazilevskaya; D Archibald; M Aryanpour; J Kubicki; C Martinez

    2011-12-31

    Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitates were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the

  20. Effects of Al substitution in Nd2Fe17 studied by first-principles calculations

    International Nuclear Information System (INIS)

    Huang, M.; Ching, W.Y.

    1994-01-01

    We have studied the effect of Al substitution in Nd 2 Fe 17 compound by means of first-principles calculations. We first obtain the site-decomposed potentials for Fe from self-consistent calculation on Y 2 Fe 17 and the atomiclike potentials in the crystalline environment for Al and Nd. Calculations are carried out for a single Al substituting one Fe at four different Fe sites (6c), (9d), (18f ), and (18h), two Al substituting two Fe (18h), and four Al substituting three Fe (18h) and one Fe (18f ). Our results show that the Al moment is oppositely polarized to Fe. The average moment per Fe atom actually increases for Al substituting Fe (18h) and Fe (18f ) is about the same for Al substituting Fe (6c), and is drastically reduced when replacing Fe (9d). Experimentally, Al is shown to be excluded from the (9d) sites because of the small Wigner--Seitz volume. When two Fe atoms are replaced by two Al atoms, the total moment is only slightly less than when only one Fe atom is replaced, and the M s per Fe site actually increases, in agreement with the Moessbauer data. These results are analyzed in terms of the local atomic geometry and the charge transfer effect from the neighboring Fe to Al

  1. Positron annihilation in gaseous nitrided cold-rolled FeNiTi films

    NARCIS (Netherlands)

    Chechenin, NG; van Veen, A; Galindo, RE; Schut, H; Chezan, A; Boerma, DO; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    Positron beam analysis (PBA) was performed on cold-rolled Fe0.94Ni0.04Ti0.02 foils, which were subjected to different thermal treatments in an atmosphere of a gas mixture of NH3+H-2 (nitriding). The nitriding of the samples in the alpha -region (alphaN) of Lehrer diagram for the Fe-N system produced

  2. Structural, electronic and magnetic properties of Fe{sub 2}-based full Heusler alloys: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dahmane, F., E-mail: fethallah05@gmail.com [Département de SM, Institue des sciences et des technologies, Centre universitaire de Tissemsilt, 38000, Tissemsilt (Algeria); Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Mogulkoc, Y. [Department of Engineering Physics, Ankara University, Ankara (Turkey); Doumi, B.; Tadjer, A. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 Mascara (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Rai, D.P. [Department of Physics, Pachhunga University College, Aizawl-796001 (India); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Varshney, Dinesh [Materials Science Laboratory, School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India)

    2016-06-01

    Using the first-principles density functional calculations, the structural, electronic and magnetic properties of the Fe{sub 2}XAl (X=Cr, Mn, Ni) compounds in both the Hg{sub 2}CuTi and Cu{sub 2}MnAl-type structures were studied by the full-potential linearized augmented plane waves (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) where the results show that the Cu{sub 2}MnAl-type structure is energetically more stable than the Hg{sub 2}CuTi-type structure for the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds at the equilibrium volume. The full Heusler compounds Fe{sub 2}XAl (X=Cr, Mn) are half-metallic in the Cu{sub 2}MnAl-type structure. Fe{sub 2}NiAl has a metallic character in both CuHg{sub 2}Ti and AlCu{sub 2}Mn-type structures. The total magnetic moments of the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds are 1.0 and 2.0 μ{sub B}, respectively, which are in agreement with the Slater–Pauling rule M{sub tot}=Z{sub tot}− 24.

  3. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM=Fe, Co, Ni or Cu) alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang Tao

    1997-01-01

    Bulk amorphous alloys were prepared for Nd 70 Al 10 TM 20 and Nd 60 Al 10 TM 30 (TM=Fe or Co) alloys by copper mold casting. The maximum sample thickness for glass formation reaches 15 mm for the Nd-Al-Fe alloys and 5 mm for the Nd-Al-Co alloys. A significant difference in the phase transition upon heating is recognized between the Fe- and Co-containing alloys. No glass transition before crystallization is observed for the Nd-Al-Fe alloys, but the Nd-Al-Co alloys exhibit the glass transition. The ΔT x (=T x -T g ) and T g /T m are 40-55 K and 0.65-0.67, respectively, for the latter alloys. The absence of supercooled liquid for the former alloys is different from those for all bulk amorphous alloys reported up to date. The T x /T m and ΔT m (=T m -T x ) are 0.85-0.89 and 88-137 K, respectively, for the Nd-Al-Fe alloys and, hence, the large glass-forming ability is presumably due to the high T x /T m and small ΔT m values. (orig.)

  4. The changes in the electronic structure of B2 FeAl alloy with a Fe antisite and absorbed hydrogen

    International Nuclear Information System (INIS)

    Gonzalez, E.A.; Jasen, P.V.; Luna, R.; Bechthold, P.; Juan, A.; Brizuela, G.

    2009-01-01

    The electronic structure and bonding in a B2 FeAl alloy with and without hydrogen interaction with a Fe antisite were computed using a density functional theoretical method. The hydrogen absorption turns out to be a favorable process. The hydrogen was found close to an octahedral site where one of its Al capped is replaced by a Fe antisite. The Fe-H distance is of 1.45 A same as the Al-H distance. The density of states (DOS) curves show several peaks below the d metal band which is made up mostly of hydrogen based states (>50% H 1s ) while the metal contribution in this region includes mainly s and p orbitals. An electron transfer of nearby 0.21e - comes from the metal to the H. The overlap population values reveal metal-metal bond breaking, the intermetallic bond being the most affected. The H bond mainly with the Al atom and the reported Fe-H overlap population is much lower than that corresponding to FePd alloys and BCC Fe. The changes in the overlap population show the Fe-Al bond is weakened nearly 41.5% after H absorption, while the Fe-Fe bond is only weakened 34.5%. H also develops a stronger bond with the Al atoms. The main bond is developed with Al being twice stronger than Fe-H.

  5. Formation of AlFeSi phase in AlSi12 alloy with Ce addition

    Directory of Open Access Journals (Sweden)

    S. Kores

    2012-04-01

    Full Text Available The influence of cerium addition on the solidification sequence and microstructure constituents of the Al-Si alloys with 12,6 mass % Si was examined. The solidification was analyzed by a simple thermal analysis. The microstructures were examined with conventional light and scanning electron microscopy. Ternary AlSiCe phase was formed in the Al-Si alloys with added cerium during the solidification process. AlSiCe and β-AlFeSi phases solidified together in the region that solidified the last. Cerium addition influenced on the morphology of the α-AlFeSi phase solidification.

  6. Enhancing pitting corrosion resistance of Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} high-entropy alloys by anodic treatment in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan (China)], E-mail: hcshih@mx.nthu.edu.tw

    2008-12-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 {omega}cm{sup 2} as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 {omega}cm{sup 2}). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H{sub 2}SO{sub 4} solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe{sub 1.5}MnNi{sub 0.5} and Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} alloys optimized their surface structures and minimized their susceptibility to pitting corrosion.

  7. Viscosity of SiO2-"FeO"-Al2O3 System in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2013-08-01

    The present study delivered the measurements of viscosities in SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe. The rotational spindle technique was used in the measurements at the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The Fe saturation condition was maintained by an iron plate placed at the bottom of the crucible. The equilibrium compositions of the slags were measured by EPMA after the viscosity measurements. The effect of up to 20 mol. pct Al2O3 on the viscosity of the SiO2-"FeO" slag was investigated. The "charge compensation effect" of the Al2O3 and FeO association has been discussed. The modified quasi-chemical viscosity model has been optimized in the SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe to describe the viscosity measurements of the present study.

  8. Thermal stability study of the insulator layer in NiFe/CoFe/Al2O3/Co spin-dependent tunnel junction

    International Nuclear Information System (INIS)

    Liao, C.C.; Ho, C.H.; Huang, R.-T.; Chen, F.-R.; Kai, J.J.; Chen, L.-C.; Lin, M.-T.; Yao, Y.D.

    2002-01-01

    Spin-dependent tunnel junction, NiFe/CoFe/Al 2 O 3 /Co//Si, was fabricated to investigate the thermal stability induced diffusion behaviors. The interfacial diffusion causes the degradation of the ratio of the TMR, the enhancement of the switching field of the two magnetic electrodes, the thickness decrease of the insulator layer, and the increase of the interfacial roughness. The outward diffusion of oxygen from the insulator layer is faster than that of aluminum for samples annealed below 400 deg. C. The degradation of the ratio of TMR is attributed to the disturbance of the spin polarization in the magnetic layers, and the increase of the pinholes and spin-flip effect in the insulator layer. The relative roughness between the two interfaces of the insulator induces the surface magnetic dipoles, and hence, increases the switching field of the ferromagnetic electrodes

  9. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, S.; Maity, T.N.; Mukhopadhyay, S. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sarkar, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bhowmick, S. [Hysitron Inc., Eden Prairie, MN 55344 (United States); Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-02

    Phase formation, microstructural evolution and the mechanical properties of novel multi-component equiatomic AlCoCrFeNi high entropy alloy synthesized by high energy ball milling followed by spark plasma sintering have been reported here. The microstructure of the mechanically alloyed (MA) powder and sintered samples were studied using X-ray diffraction, scanning electron and transmission electron microscopy, whereas the detailed investigation of the mechanical properties of the sintered samples were measured using micro and nano hardness techniques. The fracture toughness measurements were performed by applying single edge V notch beam (SEVNB) technique. The MA powder shows the presence of FCC (τ) and BCC (κ) solid solution phases. Extended ball milling (up to 60 h) does not change the phases present in MA powder. The sintered pellets show phase-separated microstructure consisting of Al-Ni rich L1{sub 2} phase, α′ and tetragonal Cr-Fe-Co based σ phase along with Al-Ni-Co-Fe FCC solid solution phase (ε) for sample sintered from 973 to 1273 K. The experimental evidences indicate that BCC (κ) solid solution undergoes eutectoid transformation during sintering leading to the formation of L1{sub 2} ordered α′ and σ phases, whereas FCC (τ) phase remains unaltered with a slight change in the lattice parameter. The hardness of the sample increases with sintering temperature and a sudden rise in hardness is observed 1173 K. The sample sintered at 1273 K shows the highest hardness of ~8 GPa. The elastic modulus mapping clearly indicates the presence of three phases having elastic moduli of about 300, 220 and 160 GPa. The fracture toughness obtained using SEVNB test shows a maximum value of 3.9 MPa m{sup 1/2}, which is attributed to the presence of brittle nanosized σ phase precipitates. It is proposed that significant increase in the fraction of σ phase precipitates and eutectoid transformation of the τ phase contribute to increase in hardness along with

  10. Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl

    Energy Technology Data Exchange (ETDEWEB)

    Welk, Brian A.; Williams, Robert E.A.; Viswanathan, Gopal B. [Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, 1305 Kinnear Road, Columbus, OH 43212 (United States); Gibson, Mark A. [CSIRO, Private Bag 33, Clayton, Victoria 3169 (Australia); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, 414 Ferris Hall, 1508 Middle Drive, Knoxville, TN 37996 (United States); Fraser, Hamish L., E-mail: fraser.3@osu.edu [Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, 1305 Kinnear Road, Columbus, OH 43212 (United States)

    2013-11-15

    The interfaces between the phase separated regions in the dendritic grains of laser-deposited samples of the high entropy alloy CoCrCuFeNiAl have been studied using aberration-corrected analytical (scanning) transmission electron microscopy ((S)TEM). The compositional variations have been determined using energy dispersive x-ray spectroscopy (EDS) in (S)TEM. It was found that between B2, consisting mainly of Al, Ni, Co, and Fe, and disordered bcc phase, consisting mainly of Cr and Fe, there is a transition region, approximately 1.5 nm in width, over which the chemical composition changes from the B2 to that of the bcc phase. The crystal structure of this interfacial region is also B2, but with very different sublattice occupancy than that of the adjacent B2 compound. The structural aspects of the interface between the ordered B2 phase and the disordered bcc phase have been characterized using high angle annular dark-field (HAADF) imaging in STEM. It has been determined that the interfaces are essentially coherent, with the lattice parameters of the two B2 regions and the disordered bcc phase being more or less the same, the uncertainty arising from possible relaxations from the proximity of the surfaces of the thin foils used in imaging of the microstructures. Direct observations show that there is a planar continuity between all three constituent phases. - Highlights: • In the dendritic grains, there are two dominant phases, one with the ordered B2 structure, and the other disordered bcc. • From the intensity ratios in HAADF, the B2 phase appears to have a stoichiometry of the form Al(Ni, Co, and Fe). • Energy dispersive x-ray spectroscopy reveals the presence of an ordered interface transition region between the two phases. • Nanodiffraction in the Titan shows that the interface region is also ordered with the B2 crystal structure based on C.

  11. TiC/Fe-Al复合陶瓷材料量子化学计算研究%Quantum Chemistry Calculation on Composite Ceramics of TiC/Fe-Al

    Institute of Scientific and Technical Information of China (English)

    闵新民; 许德华; 叶春勇

    2006-01-01

    用离散变分密度泛函方法研究了TiC、FeAl、Fe3Al和TiC/Fe-Al复合陶瓷材料,讨论了材料组成、结构、化学键与性能等之间的关系.在TiC/FeAl和TiC/Fe3Al复合体系中,界面上两相之间的离子和共价相互作用都较强.从TiC、FeAl和Fe3Al单相,到TiC/FeAl和TiC/Fe3Al复合体系,离子键强度逐渐减弱,而共价键强度逐渐增强.TiC/Fe3Al复合体系中轨道相互作用和共价键比TiC/FeAl的强.这与TiC/Fe-Al系列样品中,随铝含量逐渐减少,即FeAl含量逐渐减少,Fe3Al逐渐增多,抗弯强度等增加的实验结果一致.

  12. Cinética de engrosamiento de precipitados coherentes en la aleación Fe-10 % Ni-15 % Al

    Directory of Open Access Journals (Sweden)

    Cayetano-Castro, N.

    2008-04-01

    Full Text Available The coarsening kinetics and the morphology evolution of the coherent β’ (Fe, NiAl precipitates embedded in a ferritic matrix were studied in the aged Fe-10 % Ni-15 % Al alloy. Samples were solution treated at 1,100°C for 24 h and subsequently aged at 750, 850 and 920 °C for different times. XRD, SEM and TEM results showed the following decomposition reaction after aging treatment, αsss → α + β. Intragranular particles distribution changes from a random to an aligned on the elastically soft <100> crystallographic directions of the matrix. Additionally, the morphological evolution of the precipitates was as follows: spheres → cuboids → parallelepipeds → plates. The variation of the cube of mean radius of particles, r3, and the particle density as a function of time followed a linear relationship, as predicted by the Lifshitz, Slyosov and Wagner (LSW theory for diffusion-controlled coarsening. The rate constant (K increased with the aging temperature. The activation energy for coarsening process was determined to be about of 220 kJ/mol.

    La cinética de engrosamiento y la evolución morfológica de precipitados coherentes β’ (Fe, NiAl en una matriz ferrítica se estudió en la aleación Fe-10 % Ni-15 % Al. Se solubilizaron muestras a 1.100 °C por 24, y posteriormente, se envejecieron a 750, 850 y 920 °C por diferentes tiempos. Los resultados de DRX, MEB y MET mostraron la descomposición, αsss → α + β, durante su envejecido. La distribución de precipitados dentro del grano cambia, gradualmente, de aleatoria a un alineamiento preferencial sobre las direcciones cristalográficas <100> de la matriz. Asimismo, la evolución morfológica de los precipitados fue: esféricos → cúbicos → paralelepípedos → placas. La variación del tamaño de partícula, r3, y la densidad de precipitados en función del tiempo se comportan linealmente, como lo predice la teoría de Lifshitz

  13. Microstructural evolution and creep of Fe-Al-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prokopcakova, Petra; Svec, Martin [Technical University of Liberec (Czech Republic). Dept. of Material Science; Palm, Martin [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany). Structure and Nano-/Micromechanics of Materials

    2016-05-15

    The microstructural evolution in Fe-Al-Ta alloys containing 23 - 31 at.% Al and 1.5 - 2.2 at.% Ta has been studied in the temperature range 650 - 750 C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L2{sub 1} Heusler phase precipitates within the Fe-Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe-Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.

  14. Microstructural evolution and creep of Fe-Al-Ta alloys

    International Nuclear Information System (INIS)

    Prokopcakova, Petra; Svec, Martin; Palm, Martin

    2016-01-01

    The microstructural evolution in Fe-Al-Ta alloys containing 23 - 31 at.% Al and 1.5 - 2.2 at.% Ta has been studied in the temperature range 650 - 750 C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L2 1 Heusler phase precipitates within the Fe-Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe-Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.

  15. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  16. Study of the aqueous corrosion mechanisms and kinetics of the AlFeNi aluminium based alloy used for the fuel cladding in the Jules Horowitz research reactor; Etude des mecanismes et des cinetiques de corrosion aqueuse de l'alliage d'aluminium AlFeNi utilise comme gainage du combustible nucleaire de reacteurs experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Wintergerst, M.

    2009-05-15

    For the Jules Horowitz new material-testing reactor (JHR), an aluminium base alloy, called AlFeNi, will be used for the cladding of the fuel plates. This alloy (Al - 1% Fe - 1% Ni - 1 % Mg), which is already used as fuel cladding, was developed for its good corrosion resistance in water at high temperatures. However, few studies dealing with the alteration process in water and the relationships with irradiation effects have been performed on this alloy. The conception of the JHR fuel requires a better knowledge of the corrosion mechanisms. Corrosion tests were performed in autoclaves at 70 C, 165 C and 250 C on AlFeNi plates representative of the fuel cladding. Several techniques were used to characterize the corrosion scale: SEM, TEM, EPMA, XRD, Raman spectroscopy. Our observations show that the corrosion scale is made of two main layers: a dense amorphous scale close to the metal and a porous crystalline scale in contact with the water. More than the morphology, the chemical compositions of both layers are different. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion followed by a dissolution-precipitation process to form the outer one. Dynamic experiments at 70 C and corrosion kinetics measurements have demonstrated that the oxide growth process is controlled by a diffusion step associated to a dissolution/precipitation process. A corrosion mechanism of the AlFeNi alloy in aqueous media has been proposed. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core. (author)

  17. Structural studies of CaAl{sub 12}O{sub 19}, SrAl{sub 12}O{sub 19}, La{sub 2/3+δ}Al{sub 12-δ}O{sub 19}, and CaAl{sub 10}NiTiO{sub 19} with the hibonite structure; indications of an unusual type of ferroelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Medina, Elena A.; Sleight, Arthur W.; Subramanian, M.A. [Oregon State University, Corvallis, OR (United States). Dept. of Chemistry; Stalick, Judith K. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research

    2016-08-01

    Various oxides with the hibonite structure were synthesized and structurally analyzed using powder neutron diffraction. The structure of CaAl{sub 12}O{sub 19} at 298 and 11 K shows dipoles that are apparently too dilute to order unless subjected to a suitable electric field. Magnetoplumbites, such as BaFe{sub 12}O{sub 19}, are isostructural with hibonite. These compounds possess ferromagnetic properties, which combined with the electric dipoles may influence multiferroic behavior. Our SrAl{sub 12}O{sub 19} sample showed two distinct hexagonal phases, a major phase with the normal hibonite structure and a minor phase having a closely related structure. Our sample of the defect hibonite phase La{sub 2/3+δ}Al{sub 12-δ}O{sub 19} shows a distinctly higher δ value (0.25) vs. that reported (∝ 0.15) for samples made from the melt. Finally, we used to advantage the negative scattering length of Ti to determine the site occupancies of Ni and Ti in CaAl{sub 10}NiTiO{sub 19}.

  18. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    Science.gov (United States)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-03-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  19. Preparation and Mechanical Properties of TiC-Fe Cermets and TiC-Fe/Fe Bilayer Composites

    Science.gov (United States)

    Zheng, Yong; Zhou, Yang; Li, Runfeng; Wang, Jiaqi; Chen, Lulu; Li, Shibo

    2017-10-01

    TiC-Fe cermets and TiC-Fe/Fe bilayer composites consisting of a pure Fe layer and a TiC-Fe cermets layer were fabricated by hot-pressing sintering. The pure Fe layer contributes to the toughness of composites, and the TiC-Fe cermets layer endows the composites with an improved tensile strength and hardness. The effect of TiC contents (30-60 vol.%) on the mechanical properties of TiC-Fe cermets and TiC-Fe/Fe bilayer composites was investigated. Among the TiC-Fe cermets, the 40 vol.% TiC-Fe cermets possessed the highest tensile strength of 581 MPa and Vickers hardness of 5.1 GPa. The maximum fracture toughness of 17.0 MPa m1/2 was achieved for the TiC-Fe cermets with 30 vol.% TiC. For the TiC-Fe/Fe bilayer composites, the 40 vol.% TiC-Fe/Fe bilayer composite owns the maximum tensile strength of 588 MPa, which is higher than that of 40 vol.% TiC-Fe cermets. In addition, the 33.5% increment of tensile strength of 30 vol.% TiC-Fe/Fe bilayer composite comparing with the 30 vol.% TiC-Fe cermets, which is attributed to the 30 vol.% TiC-Fe/Fe bilayer composite exhibited the largest interlaminar shear strength of 335 MPa. The bilayer composites are expected to be used as wear resistance components in some heavy wear conditions.

  20. Maps of Fe-Al phases formation kinetics parameters during isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pochec, Ewelina, E-mail: epochec@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology (Poland); Jozwiak, Stanislaw; Karczewski, Krzysztof; Bojar, Zbigniew [Department of Advanced Materials and Technology, Military University of Technology (Poland)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The sintering temperature and compaction pressure have a strong influence on the sinters structure. Black-Right-Pointing-Pointer The measurements confirmed the presence of the high-aluminium phases from Fe-Al equilibrium system in tested sinters. Black-Right-Pointing-Pointer The kinetics of Fe-Al phase formation can be described by Johnson-Mehl-Avrami modelling. - Abstract: The influence of technological parameters (compaction pressure and sintering temperature) on Fe-Al phase formation was investigated. The kinetics of phase transformation preceding and during an SHS reaction was studied in isothermal conditions by DSC using the JMA (Johnson-Mehl-Avrami) model. This model allowed us to determine basic kinetic parameters, including the Avrami exponent, which characterises the rate and manner of particular phase nucleation. The activation energy (E{sub a}) of particular phase formation was determined by the Kissinger method. XRD analysis and SEM observations of sintered material showed that not only Fe{sub 2}Al{sub 5} phase and low-aluminium solid solution in iron but also aluminium-rich FeAl{sub 2} and FeAl{sub 3} phases are formed during the sintering of an FeAl50 elementary powder mixture in isothermal conditions with an SHS reaction. The above conclusions were confirmed by iron-based solid solution lattice parameter studies and microhardness measurements.

  1. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    Science.gov (United States)

    Seteni, Bonani; Rapulenyane, Nomasonto; Ngila, Jane Catherine; Mpelane, Siyasanga; Luo, Hongze

    2017-06-01

    Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 and Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 are characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The scanning electron microscopy shows the agglomeration of the materials and their nanoparticle size ∼100 nm. The transmission electron microscopy confirms that LiFePO4 forms a rough mat-like surface and Al2O3 remain as islandic particles on the surface of the Li1.2Mn0.54Ni0.13Co0.13O2 material. The Li1.2Mn0.54Ni0.13Co0.13O2 coated with LiFePO4 and Li1.2Mn0.54Ni0.13Co0.13O2 coated with Al2O3 exhibits improved electrochemical performance. The initial discharge capacity is enhanced to 267 mAhg-1 after the LiFePO4 coating and 285 mAhg-1 after the Al2O3 coating compared to the as-prepared Li1.2Mn0.54Ni0.13Co0.13O2 material that has an initial discharge capacity of 243 mAhg-1. Galvanostatic charge-discharge tests at C/10 display longer activation of Li2MnO3 phase and higher capacity retention of 88% after 20 cycles for Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3 of 80% after 20 cycles and LMNC of 80% after 20 cycles. Meanwhile Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 also shows higher rate capability compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3.

  2. Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.

    Science.gov (United States)

    Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho

    2018-09-01

    Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.

  3. Effect of Nb aggregates on Zr2Fe

    International Nuclear Information System (INIS)

    Ramos, Cinthia P.

    2001-01-01

    The binary Zr-Fe phase diagram revision, performed by Arias et al., accepted the intermetallic Zr 2 Fe crystalline structure as tetragonal and determined that the presence of a third element like oxygen, nitrogen or carbon, stabilizes a cubic phase. Nevitt et al. studying Ti, Zr and Hf alloys with transition metals as second or third element and ternary systems with oxygen as third element, systematized the occurrence of phases with a cubic Ti 2 Ni type crystalline structure. From previous studies in the Zr-Nb-Fe system, it is an agreed fact that Nb presence in the Zr 2 Fe intermetallic stabilizes a cubic Ti 2 Ni type phase. The purpose of the present work is to determine the stability range of the Zr 2 Fe intermetallic with Nb contents, the existence range of the ternary cubic Ti 2 Ni type phase (designated Λ) and the corresponding two-phase region. We analyze as cast and heat treated (800 C degrees) Zr-Nb-Fe alloys with 35 atomic % Fe and Nb contents between 0.5 and 15 atomic %. The determination and characterization of the phases is made by optical and scanning electron microscopy, X-ray diffraction microprobe analysis and Moessbauer Spectroscopy. Joining these techniques together it is found, among many other things, that the Zr 2 Fe phase would accept up to around 0.5 atomic % Nb in solution and that the two-phase region Zr 2 Fe+Λ would be stable in the (0.5 - 3.5) Nb atomic % range. It is proposed as well a 800 C degrees section of the ternary (Zr-Nb-Fe) in the studied region. (author) [es

  4. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.

    2014-09-08

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  5. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Zaibing; Zhang, Xixiang

    2014-01-01

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  6. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Kim, Y.K.

    2007-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) comprising Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer (CoFe 4/NiFeSiB 2/CoFe 4, CoFe 10, or NiFeSiB 10)/AlO x /CoFe 7/IrMn 10/Ru 60 (nm) have been examined with an emphasis given on understanding the interfacial mixing effects. The DMTJ, consisted of NiFeSiB, shows low switching field and low bias voltage dependence because the amorphous NiFeSiB has lower M S (=800 emu/cm 3 ) and offers smoother interfaces than polycrystalline CoFe. An interesting feature observed in the CoFe/NiFeSiB/CoFe sandwich free layered DMTJ is the presence of a wavy MR transfer curve at high-resistance region. Because the polycrystalline CoFe usually grows into a columnar structure, diamagnetic CoSi, paramagnetic FeSi, and/or diamagnetic CoB might have been formed during the sputter-deposition process. By employing electron energy loss spectrometry (EELS) and Auger electron spectroscopy (AES), we were able to confirm that Si and B atoms were arranged evenly in the top and bottom portions of AlO x /CoFe interfaces. This means that the interfacial mixing resulted in a distorted magnetization reversal process

  7. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  8. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  9. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  10. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    Science.gov (United States)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-03-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  11. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    Science.gov (United States)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-05-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  12. Investigation of the 600 C isothermal section of the Fe-Al-Ce ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huiyun; Yin, Fucheng [Xiangtan Univ., Hunan (China). School of Materials Science and Engineering; Xiangtan Univ., Hunan (China). Key Laboratory of Materials Design and Preparation Technology of Hunan Province; Li, Zhi [Xiangtan Univ., Hunan (China). School of Materials Science and Engineering; Xiangtan Univ., Hunan (China). Key Laboratory of Materials Design and Preparation Technology of Hunan Province; Xiangtan Univ., Hunan (China). Key Laboratory of Key Film Materials and Application for Equipment (Hunan province); Ji, Li [South China University of Technology, Guangdong (China). School of Materials Science and Engineering

    2017-01-15

    The isothermal section of the Fe-Al-Ce system at 600 C was determined by means of scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray powder diffraction. Twenty three-phase regions were confirmed experimentally, and two three-phase regions could be deduced in this section. Five ternary compounds, i. e., τ{sub 1}, τ{sub 2}, τ{sub 3}, τ{sub 5}, and τ{sub 6}, exist at 600 C. The Fe{sub 2}Ce phase contains 6.6 at.% Al in the Fe-Al-Ce system. The Fe solubility in α-Al, αAl{sub 11}Ce{sub 3}, αAl{sub 3}Ce, Al{sub 2}Ce, AlCe, and AlCe{sub 3} is approximately 1.7 at.%, 1.1 at.%, 1.2 at.%, 1.3 at.%, 5.8 at.%, and 0.1 at.%, respectively, and the solubility of Ce in α-Al, FeAl{sub 3}, Fe{sub 2}Al{sub 5}, FeAl{sub 2}, and FeAl is approximately 0.1 at.%, 1.2 at.%, 1.9 at.%, 0.9 at.%, and 3.7 at.%, respectively.

  13. Sequestration of uranium on fabricated aluminum co-precipitated with goethite (Al-FeOOH)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubing; Yang, Shubin; Wang, Qi; Wang, Xiangke [Chinese Academy of Science, Hefei (China). Key Laboratory of Novel Thin Film Solar Cells; Alsaedi, Ahmad [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nonlinear Analysis and Applied Mathematics (NAAM) Research Group

    2014-11-01

    Aluminum co-precipitated with goethites (Al-FeOOHs) are ubiquitous within (sub)-surface environments, which are considered one of the most important sinks for radionuclide pollution management. Accordingly, various mole ratios Al-FeOOH were synthesized and characterized by XRD, FT-IR, TEM, specific surface area and potentiometric acid-base titration. According to XRD and TEM images, the morphology of Al-FeOOH was transformed from acicular-like goethite to cotton-like gibbsite with increasing Al content. The adsorption and sequential desorption of U(VI) on Al-FeOOHs were conducted by batch techniques under N{sub 2} conditions. The batch adsorption results showed that the adsorption of U(VI) on Al-FeOOHs slightly increased at pH < 4.0, then the significant increase of U(VI) adsorption was observed at pH from 4.0 to 7.0, whereas the suppressed adsorption at pH > 8.0 was due to the electrostatic repulsion between negative charge surface and negative carbonato-complexes. The adsorption of U(VI) on Al-FeOOHs was independent of ionic strength at pH > 5.0, indicating that the inner-sphere surface complexation predominated their adsorption behaviors, whereas U(VI) adsorption on Al-FeOOH could be the outer-sphere surface/cation exchange reaction. The sequential extraction texts showed that the desorption of U(VI) from Al-FeOOHs decreased with increasing Al content. These findings highlighted the effect of Al content on the sequestration and immobilization of U(VI) onto Al-FeOOHs from (sub)-surface environments in pollution management.

  14. L1{sub 0} stacked binaries as candidates for hard-magnets. FePt, MnAl and MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yu-ichiro [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Applied Physics, The University of Tokyo (Japan); Madjarova, Galia [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University (Bulgaria); Flores-Livas, Jose A. [Department of Physics, Universitaet Basel (Switzerland); Dewhurst, J.K.; Gross, E.K.U. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Felser, C. [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sharma, S. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physics, Indian Institute of Technology, Roorkee, Uttarkhand (India)

    2017-08-15

    We present a novel approach for designing new hard magnets by forming stacks of existing binary magnets to enhance the magneto crystalline anisotropy. This is followed by an attempt at reducing the amount of expensive metal in these stacks by replacing it with cheaper metal with similar ionic radius. This strategy is explored using examples of FePt, MnAl and MnGa. In this study a few promising materials are suggested as good candidates for hard magnets: stacked binary FePt{sub 2}MnGa{sub 2} in structure where each magnetic layer is separated by two non-magnetic layers, FePtMnGa and FePtMnAl in hexagonally distorted Heusler structures and FePt{sub 0.5}Ti{sub 0.5}MnAl. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Thermodynamic Description Of Ternary Fe-B-X Systems. Part 2: Fe-B-Ni

    Directory of Open Access Journals (Sweden)

    Miettinen J.

    2014-06-01

    Full Text Available Przedstawiono termodynamiczny opis trójskładnikowego układu Fe-B-Ni w kontekście nowej bazy danych dla układów Fe-B-X (X = Cr, Ni, Mn, Si, Ti, V, C. Parametry termodynamiczne dwuskładnikowych stopów Fe-B. Fe-Ni i B-Ni zostały są zaczerpnięte z wcześniejszych opracowań, przy tym opis B-Ni został nieznacznie zmodyfikowany. Parametry dla układu Fe-B-Ni zostały zoptymalizowane w tej pracy w oparciu o eksperymentalne równowagi fazowe i dane termodynamiczne zaczerpnięte z literatury. Roztwory stałe w układzie Fe-B-Ni opisano przy użyciu modelu roztworu substytucyjnego, a borki traktowane są jako fazy stechiometryczne lub półstechiometryczne typu (A.BpCq opisane przy użyciu modelu dwu podsieci.

  16. Development of ODS-Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  17. Structural, electronic, magnetic and optical properties of Ni,Ti/Al-based Heusler alloys. A first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Paul O. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; McPherson Univ., Abeokuta (Nigeria). Dept. of Physical and Computer Sciences; Adetunji, Bamidele I. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Bells Univ. of Technology, Oto (Nigeria). Dept. of Mathematics; Olowofela, Joseph A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Oguntuase, James A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Mathematics; Adebayo, Gboyega A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2016-05-01

    In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1{sub b} with space group F anti 43m (216) NiTiAl alloys is predicted and that of Ni{sub 2}TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni{sub 2}TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni{sub 2}TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni{sub 3}Al binary systems.

  18. Bulk-compositional changes of Ni2Al3 and NiAl3 during ion etching

    International Nuclear Information System (INIS)

    Chen Houwen; Wang Rong

    2008-01-01

    Bulk-compositional changes of Ni 2 Al 3 and NiAl 3 in a Ni-50 wt% Al alloy during ion etching have been investigated by transmission electron microscopy and energy dispersive X-ray spectroscopic analyses. After etching with 7, 5 and 3 keV Ar + ions for 15, 24 and 100 h nickel contents in both Ni 2 Al 3 and NiAl 3 exceeded greatly those in the initial compounds and increased with the decrement of the sputtering energy. After 100 h etching with 3 keV Ar + ions the compositions of these two compounds reached a similar value, about Ni 80-83 Al 12-15 Fe 3-4 Cr 1-2 (at%). A synergistic action of preferential sputtering, radiation-induced segregation and radiation-enhanced diffusion enables the altered-layers at the top and bottom of the film extend through the whole film. The bulk-compositional changes are proposed to occur in the unsteady-state sputtering regime of ion etching and caused by an insufficient supply of matter in a thin film

  19. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    International Nuclear Information System (INIS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S

    2014-01-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al 6 Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al 3 Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al 6 Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al 6 Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented

  20. Microstructural characterization and phase transformation of ternary alloys near at Al{sub 3}Ti compound; Caracterizacion microestructural y transformaciones de fase de aleaciones ternareas cercanas al compuesto Al{sub 3}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Ch, C [Instituto Nacional de Investigaciones Nucleares. Depto.de Sintesis y Caracterizacion de Materiales. Carretera Mexico-Toluca Km. 36.5 C.P. 52045, Ocoyoacac, Edo. de Mexico (Mexico)

    1999-07-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10{sup 3}-10{sup 4} K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al{sub 3}Ti and others phases of L1{sub 2} type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO{sub 22} to the cubic phases L1{sub 2}. The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1{sub 2} phase tends to increase to hardness depending of the content of this phase.

  1. A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar

    Science.gov (United States)

    Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves

    2017-11-01

    The petrology and mineralogy of the Itsindro complex in south-central Madagascar has been investigated through samples obtained from the 320.7 m-deep Lanjanina borehole. The section consists of a 254 m-thick pyroxenite unit with interbedded gabbro layers that overlies a gabbro unit and is itself overlain by a 19 m-thick granite unit. Most of the structures are sub-horizontal. A weak magmatic layering is locally observed but at the scale of the core, the intrusion does not appear to be a layered complex. Pyroxenite and gabbro show a systematic disseminated mineralization consisting of Fe-Ti-P oxides and Fe-(Cu-Ni) sulphides that takes the form of ilmenite-titanomagnetite ± apatite and pyrrhotite ± chalcopyrite ± pentlandite. In the upper zone, from 90 to 72 m, sub-massive centimetre-to decimetre-sized layers of oxides and sulphides comprise a total of 16 m of sub-massive sulphide (the main mineralized zone). In this mineralized zone the oxide/sulphide ratio is close to 1/1. The sulphide is strongly dominated by pyrrhotite, which may locally contain inclusions of molybdenite crystals with the Re sulphide rheniite (ReS2). Oxides are generally euhedral, included in or attached to the Fe-sulphide, and also locally form sub-massive centimetre-sized bands. Apatite as a cumulus phase is ubiquitous. Locally it may account for 30% of the ore-rich samples and some samples consist of apatite-Fe-Ti oxides-Fe-Cu-Ni sulphides with virtually no silicate. Apatite is the main REE carrier but the total REE content remains low (<90 ppm). Mineral compositions and whole rock geochemistry indicate that the rocks are highly differentiated, and in spite of a relatively limited thickness, the differentiation process is observed. Two zones can be distinguished: from the bottom to 162.8 m we see a decrease in the Mg number of olivine and pyroxene, and a drop in TiO2 and Al2O3 for the latter. A reverse trend is then observed within the pyroxenite unit from the 162.8 m level upwards. The

  2. Diffusion and Bonding Mechanism of Protective γ-Al2O3 on FeCrAl Foil for Metallic Three-Way Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Feriyanto Dafit

    2017-01-01

    Full Text Available High pollutant level contributed by mobile sources/land transportation that become main problems for the human health. Improving exhaust emission system by improving catalytic converter properties is one of the most effective way to produce healthy air in our environment. It is conducted by two methods i.e. ultrasonic during electroplating (UBDEL and electroplating process (EL which are not fully investigated yet as catalytic converter coating process. UBDEL is conducted using sulphamate types electrolyte solution, Frequency of 35 kHz, current of 1.28A, Voltage of 12 V, and various time of 15, 30, 45, 60 and 75 minutes. Meanwhile El method is conducted using parameters of current of 1.28A, Voltage of 12 V, stirrer speed of 60 rpm and various time of 15, 30, 45, 60 and 75 minutes. Fully γ-Al2O3 bonding to the FeCrAl substrate is shown by UBDEL 75 minutes samples proved by SEM images and Ra and Rq are 4.01 μm and 5.64 μm, respectively. Ni present on the FeCrAl substrate as other protective layer generated by Ni electroplating process that will improve thermal stability of FeCrAl at high temperature of 1000 °C. From the results, can summarized that UBDEL technique is promoted as an effective catalytic converter coating technique.

  3. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning

    International Nuclear Information System (INIS)

    Rajabi, M.; Simchi, A.; Davami, P.

    2008-01-01

    Al-20Si-5Fe-2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 deg. C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110-150 nm) and iron-containing intermetallic particles were noticed in the microstructure of the consolidated ribbons. An improved strength was achieved by alloying of Al-20Si-5Fe with Cu, Ni, and Cr. Nickel was found to be the most effective element in increasing the maximum stress, particularly at elevated temperatures

  5. Ab-initio electronic and magnetic properties of Fe-Al alloys

    Directory of Open Access Journals (Sweden)

    Apiñaniz, E.

    2000-06-01

    Full Text Available This work presents ab-initio self-consistent calculations performed with the TB-LMTO code to study the different phases of the Fe-Al phase diagram, corresponding to the ordered structures B2, DO3 and B32 and for Fe50Al50 and Fe3Al compositions. Both, unpolarized and spin-polarized calculations have been performed to deduce the energetic difference between the paramagnetic and ferromagnetic state of the corresponding structure. Calculations for the disordered structures have also been performed for the previously mentioned compositions. These results show that by disordering the alloy magnetism is enhanced and that the equilibrium lattice parameter increases.

    En este trabajo se presentan cálculos autoconsistentes ab-initio realizados con el método TB-LMTO (Tight Binding Linear Muffin Tin Orbital con el fin de estudiar las diferentes estructuras que se presentan en el diagrama de fases de las aleaciones Fe-Al. Se han estudiado las estructuras ordenadas B2, DO3 y B32 para las siguientes concentraciones: Fe50Al50 y Fe3Al. Asimismo, se han realizado cálculos teniendo y sin tener en cuenta la polarización de spin con el fin de poder deducir la diferencia energética entre los estados ferromágneticos y paramágneticos de la misma estructura. Por otra parte se han realizado estos mismos cálculos para estructuras desordenadas y las mismas concentraciones. Los resultados muestran que mediante el desorden aumenta el magnetismo de estas aleaciones y crece el parámetro de red.

  6. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations

    International Nuclear Information System (INIS)

    Bobbio, Lourdes D.; Otis, Richard A.; Borgonia, John Paul; Dillon, R. Peter; Shapiro, Andrew A.; Liu, Zi-Kui; Beese, Allison M.

    2017-01-01

    In functionally graded materials (FGMs), the elemental composition, or structure, within a component varies gradually as a function of position, allowing for the gradual transition from one alloy to another, and the local tailoring of properties. One method for fabricating FGMs with varying elemental composition is through layer-by-layer directed energy deposition additive manufacturing. This work combines experimental characterization and computational analysis to investigate a material graded from Ti-6Al-4V to Invar 36 (64 wt% Fe, 36 wt% Ni). The microstructure, composition, phases, and microhardness were determined as a function of position within the FGM. During the fabrication process, detrimental phases associated with the compositional blending of the Ti-6Al-4V and Invar formed, leading to cracking in the final deposited part. Intermetallic phases (FeTi, Fe_2Ti, Ni_3Ti, and NiTi_2) were experimentally identified to occur throughout the gradient region, and were considered as the reason that the FGM cracked during fabrication. CALPHAD (CALculation of PHase Diagrams) thermodynamic calculations were used concurrently to predict phases that would form during the manufacturing process and were compared to the experimental results. The experimental-computational approach described herein for characterizing FGMs can be used to improve the understanding and design of other FGMs.

  7. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  8. Thermodynamic properties of Al-Mn, Al-Cu, and Al-Fe-Cu melts and their relations to liquid and quasicrystal structure

    International Nuclear Information System (INIS)

    Zaitsev, A I; Zaitseva, N E; Shimko, R Yu; Arutyunyan, N A; Dunaev, S F; Kraposhin, V S; Lam, Ha Thanh

    2008-01-01

    Thermodynamic properties of molten Al-Mn, Al-Cu and Al-Fe-Cu alloys in a wide temperature range of 1123-1878 K and the whole range of concentrations have been studied using the integral effusion method and Knudsen mass spectrometry. Thermodynamic functions of melts were described by the associated solution model. The possibility of icosahedral quasicrystal (i-QC) precipitation from liquid Al-Mn and Al-Cu-Fe alloys was found to be a consequence of the existence in liquid associates (clusters). A geometric model is suggested for the structure of associates in liquid

  9. Intrinsic Properties of Fe-Substituted L1(0) Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, P; Kumar, P; Kashyap, A; Lucis, MJ; Shield, JE; Mubarok, A; Goldstein, JI; Constantinides, S; Barmak, K; Lewis, LH; Sellmyer, DJ; Skomski, R

    2013-10-01

    First-principle supercell calculations are used to determine how 3d elemental additions, especially Fe additions, modify the magnetization, exchange and anisotropy of L1(0)-ordered ferromagnets. Calculations are performed using the VASP code and partially involve configurational averaging over site disorder. Three isostructural systems are investigated: Fe-Co-Pt, Mn-Al-Fe, and transition metal-doped Fe-Ni. In all three systems the iron strongly influences the magnetic properties of these compounds, but the specific effect depends on the host. In CoPt(Fe) iron enhances the magnetization, with subtle changes in the magnetic moments that depend on the distribution of the Fe and Co atoms. The addition of Fe to MnAl is detrimental to the magnetization, because it creates antiferromagnetic exchange interactions, but it enhances the magnetic anisotropy. The replacement of 50% of Mn by Fe in MnFeAl2 enhances the anisotropy from 1.77 to 2.5 MJ/m(3). Further, the substitution of light 3d elements such as Ti, V, Cr into L1(0)-ordered FeNi is shown to substantially reduce the magnetization.

  10. Epitactical FeAl films on sapphire and their magnetic properties; Epitaktische FeAl-Filme auf Saphir und ihre magnetischen Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Trautvetter, Moritz

    2011-05-05

    In the presented thesis epitaxial FeAl thin films on sapphire have been prepared by pulse laser deposition (PLD). The thin films deposited at room temperature exhibits ferromagnetism and subsequent annealing is necessary to transform the thin films to paramagnetic B2-phase, where the transition temperature depends on the crystalline orientation of the sapphire substrate. Alternatively, by deposition at higher substrate temperature the B2-phase is obtained directly. However, morphology of the FeAl film is influenced by different growth modes resulting from different substrate temperatures. The paramagnetic FeAl films can then be transformed to ferromagnetic phase by successive ion irradiation. Independent of the ion species used for irradiation, the same universal relation between thin films' coercive fields and irradiation damage is identified. The ion irradiation ferromagnetism can be transformed back to paramagnetism by subsequent annealing. The mutual transition between ferromagnetic and paramagnetic phases has been performed several times and shows full reversibility. The ferromagnetic phase induced by Kr{sup +} irradiation exhibits structural relaxation, where the saturate magnetization of FeAl thin film gradually decreases in several days. Later, ion irradiation has been performed selectively on defined areas of the thin film with the help of an unconventional lithography technique. The subsequent thin film is composed of ordered hexagonal array of ferromagnetic nano-cylinders separated by a paramagnetic matrix, suggesting a promising system for magnetic data storage. (orig.)

  11. Elemental analysis of the Al-Fe intermetallic prepared by fast solidification; Analisis elemental del intermetalico Al-Fe preparado por solidificacion rapida

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval J, R.A.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.; Villasenor S, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Applying the PIXE technique samples of the Al-Fe intermetallic prepared by fast solidification, obtained starting from Al recycled were analyzed. The concentrations of the found elements are given. (Author)

  12. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  13. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  14. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  15. Database on Performance of Neutron Irradiated FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States); Littrell, Ken [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerance of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.

  16. A study of a stable Al-Cu-Fe quasicrystal in solid and liquid state

    International Nuclear Information System (INIS)

    Chen Lifan; Chen Xishen

    1992-01-01

    A stable Al 65 Cu 20 Fe 15 quasicrystal with an icosahedral structure is studied in solid and liquid state. It is found that the icosahedral phase in Al 65 Cu 20 Fe 15 alloy does not grow directly from the pure liquid state, but rather forms between monoclinic Al 13 Fe 4 and residual liquid state at 865degC. The melting point of the Al 65 Cu 20 Fe 15 icosahedral quasicrystal occurs at 865degC and that of the Al 65 Cu 20 Fe 15 alloy occurs at 1008degC. Moreover, the monoclinic Al 13 Fe 4 is transformed into the icosahedral phase easily at the temperature of 845degC. The icosahedral quasicrystal in Al 65 Cu 20 Fe 15 alloy has a high thermal stability even at 950degC. Above 950degC, the icosahedral structure tends to an amorphous structure. (orig.)

  17. Moessbauer study of Fe-Al disordered alloys near the critical concentration

    International Nuclear Information System (INIS)

    Bohorquez, A.; Tabares, J.A.; Perez Alcazar, G.A.; Gancedo, J.R.

    1994-01-01

    Disordered bcc Fe 1-q Al q alloys in the composition range 0.5≤q≤0.6 were studied by Moessbauer effect measurements. The Moessbauer spectra at 300 K of all the samples consist of two paramagnetic sites, one is a singlet and the other a doublet with quadrupole splitting. The results can be interpreted by considering that the sites of this disordered system are arranged near the configurations of the Fe and Al sites of the Fe-Al ordered system. (orig.)

  18. Neutron-scattering study of the magnetic structure of DyFe4Al8 and HoFe4Al8

    DEFF Research Database (Denmark)

    Paixao, J.A.; Silva, M.R.; Sørensen, S.Aa.

    2000-01-01

    The magnetic structures of DyFe4Al8 and HoFe4Al8, which have been reported to be unusual spin-glass systems, were studied in detail by neutron diffraction, using both unpolarized and polarized beams. In fact these compounds have long-range magnetic order in both the Fe and rare-earth sublattices....

  19. A study on the formation of iron aluminide (FeAl) from elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Sina, H.; Corneliusson, J.; Turba, K.; Iyengar, S.

    2015-07-05

    Highlights: • Fe–40 at.% Al discs with coarse iron powder showed precombustion and combustion peaks. • Loose powder mixtures and discs with fine iron powder showed only combustion peaks. • Slower heating rate and fine aluminum particles promote precombustion. • The major product formed during both the reactions was Fe{sub 2}Al{sub 5}. • Heating the samples to 1000 °C yielded a stable FeAl phase as the final product. - Abstract: The formation of iron aluminide (FeAl) during the heating of Fe–40 at.% Al powder mixture has been studied using a differential scanning calorimeter. The effect of particle size of the reactants, compaction of the powder mixtures as well as the heating rate on combustion behavior has been investigated. On heating compacted discs containing relatively coarser iron powder, DSC data show two consecutive exothermic peaks corresponding to precombustion and combustion reactions. The product formed during both these reactions is Fe{sub 2}Al{sub 5} and there is a volume expansion in the sample. The precombustion reaction could be improved by a slower heating rate as well as a better surface coverage of iron particles using relatively finer aluminum powder. The combustion reaction was observed to be weaker after a strong precombustion stage. Heating the samples to 1000 °C resulted in the formation of a single and stable FeAl phase through the diffusional reaction between Fe{sub 2}Al{sub 5} and residual iron. DSC results for compacted discs containing relatively finer iron powder and for the non-compacted samples showed a single combustion exotherm during heating, with Fe{sub 2}Al{sub 5} as the product and traces of FeAl. X-ray diffraction and EDS data confirmed the formation of FeAl as the final product after heating these samples to 1000 °C.

  20. Production of hard hydrophilic Ni-B coatings on hydrophobic Ni-Ti and Ti-6Al-4V alloys by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Buelbuel, Ferhat; Karabudak, Filiz; Yesildal, Ruhi [Ataturk Univ., Erzurum (Turkey). Mechanical Engineering Dept.

    2017-07-01

    This paper is mainly focused on the wetting state of liquid droplets on Ni-Ti and Ti-6Al-4V hierarchical structured hydrophobic surfaces in micro/nanoscale. Electroless Ni-B deposition as a surface coating treatment has recently drawn considerable attention of researchers owing to remarkable advantages when compared with other techniques such as low price, conformal ability to coat substrates, good bath stability and relatively easier plating process control. The Ni-Ti and Ti-6Al-4V substrates were plated by electroless Ni-B plating process. The coated films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness testing and static contact angle measurement. Results obtained from the analyses show that electroless Ni-B deposition may improve the hardness and wettability of the Ni-Ti and Ti-6Al-4V alloy surfaces.

  1. Study of the aqueous corrosion mechanisms and kinetics of the AlFeNi aluminium based alloy used for the fuel cladding in the Jules Horowitz research reactor

    International Nuclear Information System (INIS)

    Wintergerst, M.

    2009-05-01

    For the Jules Horowitz new material-testing reactor (JHR), an aluminium base alloy, called AlFeNi, will be used for the cladding of the fuel plates. This alloy (Al - 1% Fe - 1% Ni - 1 % Mg), which is already used as fuel cladding, was developed for its good corrosion resistance in water at high temperatures. However, few studies dealing with the alteration process in water and the relationships with irradiation effects have been performed on this alloy. The conception of the JHR fuel requires a better knowledge of the corrosion mechanisms. Corrosion tests were performed in autoclaves at 70 C, 165 C and 250 C on AlFeNi plates representative of the fuel cladding. Several techniques were used to characterize the corrosion scale: SEM, TEM, EPMA, XRD, Raman spectroscopy. Our observations show that the corrosion scale is made of two main layers: a dense amorphous scale close to the metal and a porous crystalline scale in contact with the water. More than the morphology, the chemical compositions of both layers are different. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion followed by a dissolution-precipitation process to form the outer one. Dynamic experiments at 70 C and corrosion kinetics measurements have demonstrated that the oxide growth process is controlled by a diffusion step associated to a dissolution/precipitation process. A corrosion mechanism of the AlFeNi alloy in aqueous media has been proposed. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core. (author)

  2. The disordering phase transformation in (Ni/sub 70/Fe/sub 30/)/sub 3/(V/sub 98-x/Al/sub x/Ti/sub 2/) alloys with O ≤ x ≤ 80

    International Nuclear Information System (INIS)

    Das Gupta, A.; Horton, J.A.

    1985-01-01

    The sequence of disordering transformation processes in the A/sub 3/B type alloy series (Ni/sub 70/Fe/sub 30/)/sub 3/(V/sub 98-x/Al/sub x/Ti/sub 2/), currently under development for high-temperature structural applications, was studied by differential scanning calorimetry (DSC), x-ray diffraction, optical microscopy, and transmission electron microscopy (TEM). Results of DSC show that in all alloys there are two endothermic stages of phase transformation from the ordered to the disordered state. With increasing chi, the disordering transition temperature, T/sub c/, reaches a maximum --1000 0 C at chi ≅ 50 and then decreases. Interrupted heating, followed by water quenching, was used to characterize the crystal structure and the microstructure of the intermediate phases. For the x = 20 alloy, TEM observations showed ordered regions of DO/sub 22/ phase in a matrix of disordered fcc (Al) phase at intermediate temperatures. The ordered domains transformed morphologically into cuboid like regions at higher temperatures. From a combined study by all the techniques, the authors conclude that in alloy with x between 0 and 20, the sequence of phase transformations from heating is: DO/sub 2/ → DO/sub 22/ + AlAl, whereas in alloys with x > 40, the major sequence is Ll/sub 2/ + B/sub 2/ → Ll/sub 2/ + AlAl

  3. Formation of Al70Cu20Fe10 icosahedral quasicrystal by mechanically alloyed method

    International Nuclear Information System (INIS)

    Yin Shilong; Bian Qing; Qian Liying; Zhang Aimei

    2007-01-01

    The structural evolutions of the mechanically alloyed ternary Al 70 Cu 20 Fe 10 powders with the milling time and the annealing treatment have been studied by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and X-ray absorption fine-structure spectroscopy (XAFS) techniques. Results show that an Al 2 Cu compound forms with short-time milling, while a Cu 9 Al 4 compound forms with long-time milling. Fe can react with Al-Cu alloy by annealing treatment. Al 7 Cu 2 Fe compound with tetragonal structure or Al (Cu, Fe) solid solution with cubic structure may form at lower temperature, while a quasicrystal phase of Al 65 Cu 20 Fe 15 alloy may form at higher temperature

  4. Explosive device of conduit using Ti Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Yu. Kolobov

    2014-01-01

    Full Text Available Presently, materials have been developed which are capable at changing temperate to return significant inelastic deformations, exhibit rubber-like elasticity, convert heat into mechanical work, etc. The aggregate of these effects is usually called the shape memory effect.At present a great number of compounds and alloys with a shape memory effect has been known.These are alloys based on titanium nickelide (TiNi, copper-based alloys (Cu-Al, Cu-Sn, Cu-Al-Ni, Cu-Zn-Si, etc., gold and silver (Ag-Cd, Au-Ag-Cd, Au-Cd-Cu, Au-Zn-Cu, etc., manganese (Mn-Cr, Fe-Cu, Mn-Cu-Ni, Mn-Cu-Zr, Mn-Ni, etc., iron (Fe-Mn, Fe-Ni, Fe-Al, etc., and other compounds.The alloys based on titanium nickelide (nitinol are the most widely used.Alloys with shape memory effect find various applications in engineering and medicine, namely connecting devices, actuators, transformable design, multipurpose medical implants, etc.There is a task of breaking fuel conduit during separating the spacecraft from the rocket in space technology.The paper examines the procedure for design calculation of the separating device of conduit with the use of Ti-Ni alloy. This device can be used instead of the pyro-knives.The device contains two semi-rings from Ti-Ni alloy. In the place of break on the conduit an annular radius groove is made.At a temperature of martensite passage the semi-rings undergo deformation and in the strained state are set in the device. With heating to the temperature of the austenitic passage of bushing macro-deformation the energy stored by the nitinol bushing is great enough to break the conduit on the neck.The procedures of design calculation and response time of device are given.

  5. Effect of Fe-Content on the Mechanical Properties of Recycled Al Alloys during Hot Compression

    Directory of Open Access Journals (Sweden)

    Hongzhou Lu

    2017-07-01

    Full Text Available It is unavoidable that Fe impurities will be mixed into Al alloys during recycling of automotive aluminum parts, and the Fe content has a significant effect on the mechanical properties of the recycled Al alloys. In this work, hot compression tests of two Fe-containing Al alloys were carried out at elevated temperatures within a wide strain rate range from 0.01 s−1 to 10 s−1. The effect of Fe content on the peak stress of the stress vs. strain curves, strain rate sensitivity and activation energy for dynamic recrystallization are analyzed. Results show that the recycled Al alloy containing 0.5 wt % Fe exhibits higher peak stresses and larger activation energy than the recycled Al alloy containing 0.1 wt % Fe, which results from the fact that there are more dispersed AlMgFeSi and/or AlFeSi precipitates in the recycled Al alloy containing 0.5 wt % Fe as confirmed by SEM observation and energy spectrum analysis. It is also shown that the Fe content has little effect on the strain rate sensitivity of the recycled Al alloys.

  6. Pitting Corrosion of Ni3(Si,Ti+4Al Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-04-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 4 at% Al consisting of two regions of a Ni3(Si,Ti single-phase of L12 structure and two phases of L12 and fcc Niss was investigated as function of chloride concentrations by using electrochemical method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  In addition, the pitting corrosion of Ni3(Si,Ti and  type C276 alloy were also studied under the same experimental condition for comparison.  The pitting potential obtained for the Ni3(Si,Ti with 4 at%Al decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti with 4at%, Ni3(Si,Ti and C276 were the lowest, the moderate and the highest, respectively, which means that the pitting corrosion resistance of Ni3(Si,Ti was higher than Ni3(Si,Ti with 4at% Al, but lower than that of C276.  A critical chloride concentration of Ni3(Si,Ti with 4at% Al was found to be lower than that of Ni3(Si,Ti.  The Pitting corrosion of Ni3(Si,Ti with 4at% Al occurred in the two phase mixture (L12 + Niss.

  7. Calculation of solidification microstructure maps for the system Al-Fe-Si

    International Nuclear Information System (INIS)

    Gilgien, P.

    1996-01-01

    Computer programs have been developed in order to calculate solidification microstructure maps for binary and ternary alloys. These programs are based on recent analytical models for the constrained growth of dendrites and eutectics. Due to the importance of phase diagrams data, programs for the calculation of growth kinetics are coupled with ThermoCalc, a commercial software for phase diagram calculations. These programs have been used to calculate a solidification microstructure map for the Al-Fe system from 0 to 4 at%Fe. Comparison of the calculated results with an experimental solidification microstructure map from the literature shows that all microstructure transitions were predicted. Nevertheless there remain significant discrepancies between some calculated and experimental transition velocities. The programs were also used to calculate solidification microstructure maps in the Al-rich corner of the Al-Fe-Si system (0 to 8 at% Fe and 0 to 8 at% Si). In this case also, calculated results were in satisfactory agreement with experimental solidification microstructure maps, although the comparison was only partial since experimental ternary microstructure maps are less complete than for the binary system, and because the available thermodynamic database does not, as yet, include metastable phases. Laser surface remelting experiments were carried out on an Al-4 at% Fe alloy in order to link results from the literature, obtained at high solidification rates by laser surface remelting and at low solidification rates by Bridman experiments. Finally, Bridman experiments were carried out with an Al-2.63 wt% Fe alloy in order to determine the critical velocity at which a planar Al-Al 13 Fe 4 eutectic front is destabilised in a cellular eutectic by a small amount of Si. The critical solidification velocity thus obtained was in agreement with a criterion of constitutional undercooling. (author) figs., tabs., refs

  8. Study of Ti/Si/Ti/Al/Ni/Au ohmic contact for AlGaN/GaN HEMT

    Science.gov (United States)

    Shostachenko, S. A.; Porokhonko, Y. A.; Zakharchenko, R. V.; Burdykin, M. S.; Ryzhuk, R. V.; Kargin, N. I.; Kalinin, B. V.; Belov, A. A.; Vasiliev, A. N.

    2017-12-01

    This paper is dedicated to the experimental investigation of Ohmic contacts to the n+-doped region of AlGaN/GaN transistor heterostructure based on Ti/Si/Ti/Al/Ni/Au metallization. Effect of annealing temperature on the specific resistance of Ohmic contact was studied. Ohmic contact with the resistance of 3.4·10-6 Ω·cm2 was formed by optimization of the annealing temperature and introduction of the additional doping silicon layer.

  9. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.

    Science.gov (United States)

    Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey

    2017-12-29

    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

  10. Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy

    Science.gov (United States)

    Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc

    2015-07-01

    The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.

  11. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound

    International Nuclear Information System (INIS)

    Yan-Ming, Hao; Xin-Yuan, Jiang; Chun-Jing, Gao; Yan-Zhao, Wu; Yan-Yan, Zhang

    2009-01-01

    The structure and magnetic properties of Y 2 Fe 14 Al 3 compound are investigated by means of x-ray diffraction and magnetization measurements. The Y 2 Fe 14 Al 3 compound has a hexagonal Th 2 Ni 17 -type structure. Negative thermal expansion is found in Y 2 Fe 14 Al 3 compound in the temperature range from 403 to 491K by x-ray dilatometry. The coefficient of the average thermal expansion is α-bar = –2.54 × 10 −5 K −1 . The spontaneous magnetostrictive deformations from 283 to 470K are calculated by means of the differences between the experimental values of the lattice parameters and the corresponding values extrapolated from the paramagnetic range. The result shows that the spontaneous volume magnetostrictive deformation ω S decreases from 5.74 × 10 −3 to nearly zero with temperature increasing from 283 to 470 K, the spontaneous linear magnetostrictive deformation λ c along the c-axis is larger than the spontaneous linear magnetostrictive deformation λ a in basal-plane in the same temperature below 350 K

  12. Modified embedded-atom method interatomic potential for the Fe-Al system

    International Nuclear Information System (INIS)

    Lee, Eunkoo; Lee, Byeong-Joo

    2010-01-01

    An interatomic potential for the Fe-Al binary system has been developed based on the modified embedded-atom method (MEAM) potential formalism. The potential can describe various fundamental physical properties of Fe-Al binary alloys-structural, elastic and thermodynamic properties, defect formation behavior and interactions between defects-in reasonable agreement with experimental data or higher-level calculations. The applicability of the potential to atomistic investigations of various defect formation behaviors and their effects on the mechanical properties of high aluminum steels as well as Fe-Al binary alloys is demonstrated.

  13. Mössbauer spectroscopic studies of Al{sup 3+} ions substitution effects in superparamagnetic Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Satish, E-mail: satishapurva@gmail.com [Department of Physics, Govt. P.G. College, Solan (India); Chand, Jagdish; Singh, M. [Department of Physics, Himachal Pradesh University, Summer-Hill, Shimla, 171005 (India)

    2016-09-15

    Nanoparticles of Al{sup 3+} ions substituted Mg−Mn−Ni materials with compositions Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} (y = 0.15–0.25) were synthesized by citrate precursor technique. Samples were characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and room temperature {sup 57}Fe Mössbauer spectroscopy. Saturation magnetization decreases with increasing Al{sup 3+} ions concentration because replacement of Fe{sup 3+} ions by Al{sup 3+} ions at octahedral B-site weaken sublattice interaction and lowers magnetic moments. Mössbauer spectral studies show that as-prepared nano-sized samples are superparamagnetic at room temperature. Superparamagnetic relaxation was observed for small crystallite in samples with higher Al content, which is attributed to weakening of A–B exchange interaction. Mössbauer spectra at 300 K show a gradual collapse of magnetic hyperfine splitting typical for superparamagnetic relaxation. An increase in inversion parameter is observed with increasing Al{sup 3+} ions substitution, which is attributed to decrease in crystallite size. - Highlights: • Single phase nanocrystalline samples were synthesized by citrate precursor method. • Particle size decreases as non-magnetic Al{sup 3+} ions concentration increase. • Presence of doublet in Mössbauer spectra was due to superparamagnetic relaxation. • Study shows collapse of long range magnetic order and quenching of magnetic moment.

  14. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  15. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy

    Science.gov (United States)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2017-04-01

    A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.

  16. Preparation of Al/Fe-Pillared Clays: Effect of the Starting Mineral.

    Science.gov (United States)

    Muñoz, Helir-Joseph; Blanco, Carolina; Gil, Antonio; Vicente, Miguel-Ángel; Galeano, Luis-Alejandro

    2017-11-28

    Four natural clays were modified with mixed polyoxocations of Al/Fe for evaluating the effect of the physicochemical properties of the starting materials (chemical composition, abundance of expandable clay phases, cationic exchange capacity and textural properties) on final physicochemical and catalytic properties of Al/Fe-PILCs. The aluminosilicate denoted C2 exhibited the highest potential as starting material in the preparation of Al/Fe-PILC catalysts, mainly due to its starting cationic exchange capacity (192 meq/100 g) and the dioctahedral nature of the smectite phase. These characteristics favored the intercalation of the mixed (Al 13- x /Fe x ) 7+ Keggin-type polyoxocations, stabilizing a basal spacing of 17.4 Å and high increase of the BET surface (194 m²/g), mainly represented in microporous content. According to H₂-TPR analyses, catalytic performance of the incorporated Fe in the Catalytic Wet Peroxide Oxidation (CWPO) reaction strongly depends on the level of location in mixed Al/Fe pillars. Altogether, such physicochemical characteristics promoted high performance in CWPO catalytic degradation of methyl orange in aqueous medium at very mild reaction temperatures (25.0 ± 1.0 °C) and pressure (76 kPa), achieving TOC removal of 52% and 70% of azo-dye decolourization in only 75 min of reaction under very low concentration of clay catalyst (0.05 g/L).

  17. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  18. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire

    Directory of Open Access Journals (Sweden)

    T. Omori

    2013-09-01

    Full Text Available Effects of grain size on superelastic properties in Fe-34Mn-15Al-7.5Ni alloy wires with a ⟨110⟩ fiber-texture were investigated by cyclic tensile tests. It was confirmed that the critical stress for induced martensitic transformation and the superelastic strain are functions of relative grain size d/D (d: mean grain diameter, D: wire diameter, and that the critical stress is proportional to (1–d/D2 as well as in Cu-based shape memory alloys. A large superelastic strain of about 5% was obtained in the specimen with a large relative grain size over d/D = 1.

  19. SYNTHESIS OF MAGNETIC NANOPARTICLES OF TiO2-NiFe2O4: CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY ON DEGRADATION OF RHODAMINE B

    Directory of Open Access Journals (Sweden)

    Rahmayeni Rahmayeni

    2012-12-01

    Full Text Available Magnetic nanoparticles of TiO2-(xNiFe2O4 with x = 0.01, 0.1, and 0.3have been synthesized by mixture of titanium isopropoxide (TIP and nitric metal as precursors. The particles were characterized by XRD, SEM-EDX, and VSM. XRD pattern show the peaks at 2q = 25.3°, 38.4° and 47.9° which are referred as anatase phase of TiO2. Meanwhile NiFe2O4 phase was observed clearly for x = 0.3. The present of NiFe2O4 can prevent the transformation of TiO2 from anatase to rutile when the calcination temperature increased. Microstructure analyses by SEM show the homogeneous form and size of particles. The magnetic properties analysis by VSM indicates that TiO2-NiFe2O4 is paramagnetic behavior. TiO2 doped NiFe2O4 has higher photocatalytic activity than TiO2 synthesized for degradation of Rhodamine B in aqueous solution under solar light irradiation.

  20. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  1. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  2. Large tunnel magnetoresistance at room temperature with a Co2FeAl full-Heusler alloy electrode

    International Nuclear Information System (INIS)

    Okamura, S.; Miyazaki, A.; Sugimoto, S.; Tezuka, N.; Inomata, K.

    2005-01-01

    Magnetic tunnel junctions (MTJs) with a Co 2 FeAl Heusler alloy electrode are fabricated by the deposition of the film using an ultrahigh vacuum sputtering system followed by photolithography and Ar ion etching. A tunnel magnetoresistance (TMR) of 47% at room temperature (RT) are obtained in a stack of Co 2 FeAl/Al-O x /Co 75 Fe 25 magnetic tunnel junction (MTJ) fabricated on a thermally oxidized Si substrate despite the A2 type atomic site disorder for Co 2 FeAl. There is no increase of TMR in MTJs with the B2 type Co 2 FeAl, which is prepared by the deposition on a heated substrate. X-ray photoelectron spectroscopy (XPS) depth profiles in Co 2 FeAl single layer films reveal that Al atoms in Co 2 FeAl are oxidized preferentially at the surfaces. On the other hand, at the interfaces in Co 2 FeAl/Al-O x /Co 75 Fe 25 MTJs, the ferromagnetic layers are hardly oxidized during plasma oxidation for a formation of Al oxide barriers

  3. Evolution of magnetic order in mechanically alloyed Al-1 at%Fe

    International Nuclear Information System (INIS)

    Sebastian, Varkey; Lakshmi, N.; Venugopalan, K.

    2007-01-01

    The evolution of ferromagnetic order in high-energy ball-milled Al-1 at% Fe before the onset of a considerable Fe-Al solid solution phase has been investigated using 57 Fe Moessbauer and bulk magnetization studies. The unmilled sample does not exhibit bulk magnetic properties and an onset of bulk magnetization is observed only after 30 min of milling, when the grain size becomes comparable to the ferromagnetic exchange length. The Curie temperatures of all the samples are less than that of pure iron. The reduction in grain size is accompanied by an increase in coercivity and reduced remanence and a decrease in T C . The effective magnetic moment per iron atom decreases with the development of a non-magnetic, Al-rich Fe-Al solution on longer milling. The clustering of Fe at grain boundaries is responsible for the observed bulk magnetic ordering. The systematic variation of the magnetic properties has been qualitatively correlated with the evolution of microstructure, reduction in grain size and enhanced inter-granular exchange coupling

  4. Fluorescent metal-organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution.

    Science.gov (United States)

    Yang, Cheng-Xiong; Ren, Hu-Bo; Yan, Xiu-Ping

    2013-08-06

    Fluorescent metal-organic frameworks (MOFs) have received great attention in sensing application. Here, we report the exploration of fluorescent MIL-53(Al) for highly selective and sensitive detection of Fe(3+) in aqueous solution. The cation exchange between Fe(3+) and the framework metal ion Al(3+) in MIL-53(Al) led to the quenching of the fluorescence of MIL-53(Al) due to the transformation of strong-fluorescent MIL-53(Al) to weak-fluorescent MIL-53(Fe), allowing highly selective and sensitive detection of Fe(3+) in aqueous solution with a linear range of 3-200 μM and a detection limit of 0.9 μM. No interferences from 0.8 M Na(+); 0.35 M K(+); 11 mM Cu(2+); 10 mM Ni(2+); 6 mM Ca(2+), Pb(2+), and Al(3+); 5.5 mM Mn(2+); 5 mM Co(2+) and Cr(3+); 4 mM Hg(2+), Cd(2+), Zn(2+), and Mg(2+); 3 mM Fe(2+); 0.8 M Cl(-); 60 mM NO2(-) and NO3(-); 10 mM HPO4(2-), H2PO4(-), SO3(2-), SO4(2-), and HCOO(-); 8 mM CO3(2-), HCO3(-), and C2O4(2-); and 5 mM CH3COO(-) were found for the detection of 150 μM Fe(3+). The possible mechanism for the quenching effect of Fe(3+) on the fluorescence of MIL-53(Al) was elucidated by inductively coupled plasma-mass spectrometry, X-ray diffraction spectrometry, and Fourier transform infrared spectrometry. The specific cation exchange behavior between Fe(3+) and the framework Al(3+) along with the excellent stability of MIL-53(Al) allows highly selective and sensitive detection of Fe(3+) in aqueous solution. The developed method was applied to the determination of Fe(3+) in human urine samples with the quantitative spike recoveries from 98.2% to 106.2%.

  5. M(Al,Ni)-TiO2-Based Photoanode for Photoelectrochemical Solar Cells

    Science.gov (United States)

    Navas, Javier; Reyes-Pérez, Fran; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Bernal, Juan Jesús Gallardo; Martín-Calleja, Joaquín

    2018-05-01

    This study presents the incorporation of Al and Ni cations onto the surface of TiO2 nanoparticles used as photoelectrode in dye sensitized solar cells (DSSCs). The incorporation of these cations was performed using the chemical bath deposition (CBD) technique. This process was applied up to three times to evaluate the semiconductors' properties with respect to the amount of Al and Ni. The M(Al,Ni)-TiO2-based semiconductors were widely characterized using techniques such as X-ray fluorescence, X-ray diffraction, Raman spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy. The presence of (hydr)oxide species of Al(III) and Ni(II) was confirmed and anatase was the predominant crystalline phase obtained. Moreover, for both elements, a decrease in the band gap energy was observed, this being more pronounced after the incorporation of Ni. Furthermore, the use of the M(Al,Ni)-TiO2-based semiconductors as photoelectrodes in DSSCs led to an increase in the open-circuit voltage of up to 22% and 10% for the incorporation of Al and Ni, respectively. This increase can be reasonably explained by the negative shift of the flat band potential of the photoelectrodes. EIS measurements were performed to study the electron transport kinetics in the photoelectrode and the internal resistance in the DSSCs to understand the photocurrent density values obtained.

  6. Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming

    Science.gov (United States)

    Wang, Xiang; Guan, Ren-Guo; Tie, Di; Shang, Ying-Qiu; Jin, Hong-Mei; Li, Hong-Chao

    2018-04-01

    As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.

  7. A comparative study of radiation damage in Al2O3, FeTiO3, and MgTiO3

    International Nuclear Information System (INIS)

    Mitchell, J.N.; Yu, Ning; Sickafus, K.E.; Nastasi, M.; Taylor, T.N.; McClellan, K.J.; Nord, G.L. Jr.

    1995-01-01

    Oriented single crystals of synthetic alpha-alumina (α-Al 2 O 3 ), geikielite (MgTiO 3 ) natural ilmenite (FeTiO 3 ) were irradiated with 200 keV argon ions under cryogenic conditions (100 K) to assess their damage response. Using Rutherford backscattering spectrometry combined with ion channeling techniques, it was found that ilmenite amorphized readily at doses below 5x10 14 , alumina amorphized at a dose of 1-2x 15 , and geikielite was amorphized at ∼2x10 15 Ar cm -2 . The radiation damage response of the ilmenite crystal may be complicated by the presence of hematite exsolution lamellae and the experimentally induced oxidation of iron. The relative radiation-resistance of geikielite holds promise for similar behavior in other Mg-Ti oxides

  8. The effect of boron doping on the magnetostriction of Fe-Ga and Fe-Al samples

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [TU Dresden, Institut fuer Festkoerperphysik (Germany); Teodoro dos Santos, Claudio; Bormio-Nunes, Cristina [Universidade de Sao Paulo, Escola de Engenharia de Lorena, Lorena (Brazil)

    2011-07-01

    Fe-Ga (Galfenol) based alloys are used in a number of magnetomechanical applications because of the high magnetostriction values of more than 100 ppm at room temperature. The addition of boron inhibits the crystallographic ordering of the alloys and stabilizes the disordered A2 structure that is responsible for the high striction values. Especially, polycrystalline and rapid cooled Fe-Ga-B and Fe-Al-B samples were investigated in our project. Magnetization and longitudinal as well as transversal magnetostriction measurements at temperatures of 5 K, 80 K and 300 K show a similar effect of the amount of B as found on single crystals. Whereas the saturation magnetization is nearly the same and mainly determined by the Fe content, a dependence of the striction values on the amount of B is visible (more than 10% in the Fe-Al system). The results illustrate the influence of the stoichiometry and the preparation conditions on the magnetomechanical properties.

  9. Moessbauer effect measurements on the intermetallic compounds Ni3Al and Ni3Ge

    International Nuclear Information System (INIS)

    Drijver, J.W.; Woude, F. van der

    1975-01-01

    Moessbauer parameters obtained from room temperature emission and absorption spectra of Ni 3 Al and Ni 3 Ga processed by a computer assuming a singlet and a doublet are given. The doublet is due to iron or cobalt atoms at the nickel site. Quadrupole splitting at 57 Fe nuclei in Ni 3 Ga is larger than in Ni 3 Al, viz. 0.52 and 0.37 mm/sec, respectively. Isomer shift at the Al/Ga position is very close to -0.02 mm/sec found in metallic nickel. Also given are the hyperfine magnetic fields at 4.2 K. Considering the preference of 57 Co and 57 Fe atoms in the lattice, the field intensities at the nickel and aluminium sites are found to be 227 +- 1 and 238 +- 1 kOe, respectively. (Z.S.)

  10. Magnetic properties of melt-spun FeMnAlB alloys

    International Nuclear Information System (INIS)

    Betancourt, I.; Nava, F.

    2007-01-01

    Magnetic properties of melt spun Fe 89-x Mn 11 Al x (x=2,4,8,15) and Fe 87-y Mn 11 Al 2 By(y=6,8,10) alloy series were studied by vibrating sample magnetometry and complex permeability measurements. The saturation magnetization exhibited an initial high value of 210emu/g followed by a decreasing tendency with increasing Al and B additions (up to 139emu/g). On the other hand, the initial permeability showed variations within the range 1000-2000, whereas the relaxation frequency displayed a maximum of 2MHz for the 4at% Al alloy

  11. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    Science.gov (United States)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  12. Analytical methods for the determintion of some elements and Fe+2 to Fe+3 ratio in simulated sludges and Synroc formulations

    International Nuclear Information System (INIS)

    Lim, R.

    1981-10-01

    Analytical methods for the determination of Fe, Al, Mn, Ca, Ni, Na, Sr, Cs, Ti, and Ba in simulated sludges and Synroc formulations are discussed. These are the elements that may be completed by atomic absorption spectroscopy, AAS. AAS methods are complicated by the dissolution methods used. These problems are discussed. In addition, the method used for the determination of Fe +2 to Fe +3 ratio is presented

  13. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  14. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  15. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    Science.gov (United States)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  16. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  17. Benchmark experiments with 14 MeV neutrons transmitted through Pe, Fe, Ni and Al

    International Nuclear Information System (INIS)

    Tichy, M.; Kralik, M.; Pulpan, J.

    1989-01-01

    Spectra of 14 MeV neutrons transmitted through 7.6 cm of Pb, Fe, Ni and Al are presented. The target of d-t generator was placed to the center of the sphere from the tested material (outer diam. 24 cm). The detector (NE-213 scintillator diameter 5.08 cmx5.08 cm) was located at the distance 3 m and background was subtracted by means of 1 m iron cone. Measured pulse height spectra were processed by two methods and the results were compared with spectra calculated by means of the Blank and Brand codes using Endl and ENDF/B-IV libraries. Preliminary results show remarkable differences between calculation and experiment which requires additional calculations and an improvement of experimental equipment. (orig.)

  18. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  19. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  20. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  1. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  2. Characterization of Low-Symmetry Structures from Phase Equilibrium of Fe-Al System—Microstructures and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Piotr Matysik

    2015-03-01

    Full Text Available Fe-Al intermetallic alloys with aluminum content over 60 at% are in the area of the phase equilibrium diagram that is considerably less investigated in comparison to the high-symmetry Fe3Al and FeAl phases. Ambiguous crystallographic information and incoherent data referring to the phase equilibrium diagrams placed in a high-aluminum range have caused confusions and misinformation. Nowadays unequivocal material properties description of FeAl2, Fe2Al5 and FeAl3 intermetallic alloys is still incomplete. In this paper, the influence of aluminum content and processing parameters on phase composition is presented. The occurrence of low-symmetry FeAl2, Fe2Al5 and FeAl3 structures determined by chemical composition and phase transformations was defined by scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS examinations. These results served to verify diffraction investigations (XRD and to explain the mechanical properties of cast materials such as: hardness, Young’s modulus and fracture toughness evaluated using the nano-indentation technique.

  3. In-situ investigation of the icosahedral Al-Cu-Fe phase formation in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidara, F., E-mail: fanta.haidara@im2np.fr [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Duployer, B. [Universite Paul Sabatier CIRIMAT-LCMIE 2R1, 118, Route de Narbonne, 31062 Toulouse Cedex 09 (France); Mangelinck, D.; Record, M.-C. [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer We investigated the phase formation of i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} in thin films. Black-Right-Pointing-Pointer We characterized the samples by DSC and in-situ XRD and resistance measurements. Black-Right-Pointing-Pointer The resistivity value for i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} was determined. - Abstract: This work is an investigation of the formation by reactive diffusion at high temperatures of the icosahedral phase, i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, in thin films. The samples were prepared by sputtering at room temperature. The elements Al, Cu and Fe were sequentially deposited onto oxidized silicon substrates. The two following stacking sequences, Al/Cu/Fe and Al/Fe/Cu, were investigated. The phase formation was studied using in situ resistivity, in situ X-ray Diffraction and Differential Scanning Calorimetry measurements. Whatever the stacking sequence, the sequences of phase formation evidenced during the heating treatment are similar. However the temperatures of formation for the first phases that are formed are different; they are higher in the case of the Al/Fe/Cu stacking sequence.

  4. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  5. Synthesis NiAl1,0Fe1,0O4 catalyst by the combustion reaction to their use in the shift reaction (WGSR)

    International Nuclear Information System (INIS)

    Santos, P.T.A.; Costa, A.C.F.M.; Neiva, L.S.; Gama, L.; Argolo, F.; Andrade, H.M.C.

    2009-01-01

    This work aims at the synthesis of catalyst NiAl 1,0 Fe 1,0 O 4 by combustion reaction using urea as fuel, to evaluate its performance in the production of hydrogen by the reaction of displacement of water vapor (WGSR). The initial composition of the solution was based on valencia total oxidizing and reducing reagents based on the concepts of the chemistry of propellants, using container as a crucible of glassy silica. The resulting powder was characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption isotherms (BET), scanning electronic microscope and catalytic tests. The DRX results reveal the presents majoritary phase NiAl 1,0 Fe 1,0 O 4 spinel, the catalyst presents surface area 28 m 2 /g and isotherms type III. Higher conversion CO/CO 2 of 75% CO conversion observed at 500 deg C and catalytic activity of 43 mmolg -1 .h -1 at 450 deg C. (author)

  6. Enhanced algae removal by Ti-based coagulant: comparison with conventional Al- and Fe-based coagulants.

    Science.gov (United States)

    Xu, Jie; Zhao, Yanxia; Gao, Baoyu; Zhao, Qian

    2018-05-01

    The water eutrophication caused by cyanobacteria seasonally proliferates, which is a hot potato to be resolved for water treatment plants. This study firstly investigated coagulation performance of titanium tetrachloride (TiCl 4 ) for Microcystis aeruginosa synthetic water treatment. Results show complete algal cell removal by TiCl 4 coagulation without damage to cell membrane integrity even under harsh conditions; 60 mg/L TiCl 4 was effective in removing the microcystins up to 85%. Furthermore, besides having stronger UV 254 removal capability and the higher removal of fluorescent substances over Al- and Fe-based coagulants, TiCl 4 coagulant required more compact coagulation and sedimentation tanks due to its significantly improved floc growth and sedimentation speed. Meanwhile, its' short hydraulic retention time avoided algal cell breakage and subsequent algal organic matter release. Microcystin concentrations were kept at a low level during sludge storage period, indicating that the TiCl 4 flocs could prevent algal cells from natural lysis. To facilitate water recycling without secondary contamination, the algae-containing sludge after TiCl 4 coagulation ought to be disposed within 12 days at 20 °C and 8 days at 35 °C.

  7. Disorder trapping in Ni3(Al, Ti) by solidification from the undercooled melt

    International Nuclear Information System (INIS)

    Goetzinger, R.; Kurz, W.

    1997-01-01

    Modelling of rapid solidification predicts disorder trapping in the superlattice structure of Ni 3 Al. However, experimental investigations on this compound suffer from ambiguities concerning the solidification path. There is a phase selection competition between the ordered fcc γ'-phase (Ni 3 Al), the ordered bcc β-phase (NiAl), the disordered fcc γ-phase (Ni), the stable γ'/β eutectic and the metastable γ/β eutectic, and there are subsequent solid state transformations. A replacement of several at.% Al by Ti leads to a stabilization of the γ'-phase and to an avoidance of most of the problems encountered on Ni 3 Al. The experiments on Ni 3 (Al, Ti) presented here clearly show the expected disordered crystallization from the undercooled melt. This was proven by measuring the dendrite growth velocity of electromagnetically levitated droplets and by analysing the data in the framework of dendrite and kinetic growth models. Complementary microstructural investigations were performed on the as-solidified samples. (orig.)

  8. Wetting behavior of liquid Fe-C-Ti alloys on sapphire

    International Nuclear Information System (INIS)

    Gelbstein, M.; Froumin, N.; Frage, N.

    2008-01-01

    Wetting behavior in the (Fe-C-Ti)/sapphire system was studied at 1823 K. The wetting angle between sapphire and Fe-C alloys is higher than 90 deg. (93 deg. and 105 deg. for the alloys with 1.4 and 3.6 at.% C, respectively). The presence of Ti improves the wetting of the iron-carbon alloys, especially for the alloys with carbon content of 3.6 at.%. The addition of 5 at.% Ti to Fe-3.6 at.% C provides a contact angle of about 30 deg., while the same addition to Fe-1.4 at.% C decreases the wetting angle to 70 deg. only. It was established that the wetting in the systems is controlled by the formation of a titanium oxicarbide layer at the interface, which composition and thickness depend on C and Ti contents in the melt. The experimental observations are well accounted for by a thermodynamic analysis of the Fe-Ti-Al-O-C system

  9. Cavitation erosion of Ti-Ni shape memory alloy deposited coatings and Fe base shape memory alloy solid

    International Nuclear Information System (INIS)

    Hattori, Shuji; Fujisawa, Seiji; Owa, Tomonobu

    2007-01-01

    In this study, cavitation erosion tests were carried out by using thermal spraying and deposition of Ti-Ni shape memory alloy for the surface coating. The results show the test speciment of Ti-Ni thermal spraying has many initial defects, so that the erosion resistance is very low. The erosion resistance of Ti-Ni deposit is about 5-10 times higher than that of SUS 304, thus erosion resistance of Ti-Ni deposit is better than that of Ti-Ni thermal spraying. The cavitation erosion tests were carried out by using Fe-Mn-Si with shape memory and gunmetal with low elastic modulus. The erosion resistance of Fe-Mn-Si shape memory alloy solid is about 9 times higher than that of SUS 304. The erosion resistance of gunmetal is almost the same as SUS 304, because the test specimen of gunmetal has many small defects on the original surface. (author)

  10. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    International Nuclear Information System (INIS)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  11. Precipitation processes in DC-cast AlMn(Fe,Si) alloys

    International Nuclear Information System (INIS)

    Voeroes, G.; Kovacs, I.

    1990-01-01

    The precipitation processes in DC cast Al-Mn alloys were investigated by electrical resistivity measurements. It was obtained that the addition of Fe or Fe and Si influences basically the precipitation of Mn. In pure Al-Mn alloys a phase transition like behaviour was observed at about 550 degC, which can be related to the formation of two different precipitate particles below and above this temperature

  12. A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering.

    Science.gov (United States)

    Liu, L H; Yang, C; Kang, L M; Qu, S G; Li, X Q; Zhang, W W; Chen, W P; Li, Y Y; Li, P J; Zhang, L C

    2016-03-31

    It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications.

  13. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  14. Study of the structural, thermodynamic and electrochemical properties of LaNi3.55Mn0.4Al0.3(Co1-xFe x)0.75 (0 ≤ x ≤ 1) compounds used as negative electrode in Ni-MH batteries

    International Nuclear Information System (INIS)

    Ayari, M.; Paul-Boncour, V.; Lamloumi, J.; Mathlouthi, H.; Percheron-Guegan, A.

    2006-01-01

    This study concerns the influence of iron for cobalt substitution on the structural, thermodynamic and electrochemical properties of the hydrides of poly-substituted LaNi 3.55 Mn 0.4 Al 0.3 (Co 1-x Fe x ) 0.75 (0 ≤ x ≤ 1) alloys used as material for negative electrode in Ni-MH batteries. The Fe substitution leads to an increase of the cell parameter, this increase is linear according to the rate of substitution, and a decrease of the equilibrium pressure in agreement with the geometric law. Nevertheless, it is observed that the Fe substitution leads to a deviation from the linear variation between the logarithm of the pressure and the cell volume observed for Co, Mn and Al for Ni substitution. The Fe for Co substitution leads also to a decrease of the solid-gas and electrochemical capacity

  15. Dynamic globularization of a-phase in Ti6Al4V alloy during hot compression

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-12-01

    Full Text Available composition dependence of the martensite start temperature (Ms) has been done for Ti-Fe, Ti-Cr, Ti-Mo, Ti-V, Ti-Nb, Ti-Zr and Ti-Al alloys [1], [2]. The beneficial effect on the formation of hexagonal-structured martensite (α′) of Al, Mn, Cr, Sn and Fe... alloying elements, has been discussed by Lin et al [4]. However, the formation of the orthorhombic-structured martensite (α′′) which is favoured by elements such as Nb, Mo, Zr, W and V (strong β stabilizers) or H (a strong β stabilizer), has been reported...

  16. EFFECT OF THE REDUCTION TEMPERATURE INTO CATALYTIC ACTIVITY OF Ni SUPPORTED BY TiO2, AL2O2 AND TiO2/AL2O3 FOR CONVERSION CO2 INTO METHANE

    Directory of Open Access Journals (Sweden)

    Hery Haerudin

    2010-06-01

    Full Text Available Nickel catalysts, containing 6% (w/w of nickel, have been prepared using TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9. The catalysts were used for CO2 conversion into methane. The characteristics of catalysts were studied by determination of its specific surface area, temperature programmed reaction technique and X-ray diffraction. The specific surface area were varied slightly by different temperature of reduction, namely after reduction at 300°C it was 39, 120 and 113 m2/g and after reduction at 400°C it was 42, 135  and 120 m2/g for 6% nickel catalysts supported on TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9 respectively. Temperature program reaction studies (TPO and TPR showed that NiTiOx species were possibly formed during the pretreatments which has shown by the shift of its peak to the lower temperature on Ni catalyst, that supported on mixture of TiO2-Al2O3 compared with catalysts supported on individual TiO2 or Al2O3. The nickel species on reduced Ni catalysts supported on TiO2 and on mixture of TiO2-Al2O3 could be detected by X-ray diffraction. The catalyst's activities toward CH4 formation were affected by the reduction temperature. Activity for CH4 formation was decreased in the following order: Ni/ TiO2 > Ni/ TiO2: Al2O3 > Ni/ Al2O3 and Ni/ TiO2: Al2O3 > Ni/ TiO2> Ni/ Al2O3, when catalysts were reduced at 300°C or 400°C respectively. The CO2 conversion was decreased in the following order: Ni/ Al2O3 > Ni/ TiO2: Al2O3 > Ni/ TiO2 when catalysts were reduced at 300°C or 400°C respectively.   Keywords: nickel catalyst, carbondioxide, methane

  17. Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals

    International Nuclear Information System (INIS)

    Chumlyakov, Y.; Panchenko, E.; Kireeva, I.; Karaman, I.; Sehitoglu, H.; Maier, H.J.; Tverdokhlebova, A.; Ovsyannikov, A.

    2008-01-01

    In the present study the effects of crystal axis orientation, stress state (tension/compression) and test temperature on shape memory effect and superelasticity of Ni 54 Fe 19 Ga 27 (I), Co 40 Ni 33 Al 27 (II), Co 49 Ni 21 Ga 30 (III) (numbers indicate at.%) single crystals were investigated. The shape memory effect, the start temperature of superelasticity T 1 and the mechanical hysteresis Δσ were found to be dependent on crystal axis orientation and stress state. Superelasticity was observed at T 1 = A f (A f , reverse transformation-finish temperature) in tension/compression for [0 0 1]-oriented Ni-Fe-Ga crystals and in compression for [0 0 1]-oriented Co-Ni-Ga crystals, which all displayed a small mechanical hysteresis (Δσ ≤ 30 MPa). An increase in Δσ of up to 90 MPa in the Co-Ni-Al and the Co-Ni-Ga crystals lead to stabilization of the stress-induced martensite, and an increase in to T 1 = A f + Δ. The maximal value of Δ (75 K) was found in [0 0 1]-oriented Co-Ni-Al crystals in tension. A thermodynamic criterion describing the dependencies of the start temperature of superelasticity T 1 on crystal axis orientation, stress state and the magnitude of mechanical hysteresis is discussed

  18. Investigation of the structure and properties of the titanium alloy of the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system

    International Nuclear Information System (INIS)

    Moiseev, V.N.; Dolzhanskij, Yu.M.; Zakharov, Yu.I.; Znamenskaya, E.V.

    1979-01-01

    The alloys of martensitic type in the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system after heat treatment are investigated. To determine the composition of the titanium alloy methods of mathematical planning of the experiment are applied. Results of mechanical tests of the alloys are presented, as well as coefficients of models for the properties, calculated according to these data. The investigation establishes the composition of a high-strength titanium alloy of a martensitic type, containing 4.5-60 % Al, 2.0-4.0 % Mo, 0.5-1.9 % V, 0.3-1.5 % Fe, 0.3-1.5 % Cu, 1.5-3.0 % Sn, 2.0-4.0 % Zr. The semiproducts, produced by deformation in β-field, after heat treatment have an ultimate strength >=120 kg/mm 2 , satisfactory ductility and reliability. The alloy possesses rather a high heat resistance and can be operated at 400-500 deg C

  19. Structural and magnetic properties of Fe-Al silica composites prepared by sequential ion implantation

    International Nuclear Information System (INIS)

    Julian Fernandez, C. de; Tagliente, M.A.; Mattei, G.; Sada, C.; Bello, V.; Maurizio, C.; Battaglin, G.; Sangregorio, C.; Gatteschi, D.; Tapfer, L.; Mazzoldi, P.

    2004-01-01

    The nanostructural and magnetic properties of Fe-Al/SiO 2 granular solids prepared by ion implantation have been investigated. A strong effect of the implantation order of the Fe and Al ions has been evidenced. By implanting first the Al ions and later Fe ions, 5-40 nm core-shell nanoparticles are formed with a magnetic behavior similar to that of Fe. The lattice parameter of the nanoparticles is consistent with that of the α-Fe. By changing the implantation order, 10-15 nm core-shell nanoparticles of a bcc Fe-based phase with a lattice 2.5% smaller than that of α-Fe are formed. The temperature dependence of the magnetization indicates a superparamagnetic behavior

  20. Structural and magnetic properties of Fe-Al silica composites prepared by sequential ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Julian Fernandez, C. de E-mail: dejulian@padova.infm.it; Tagliente, M.A.; Mattei, G.; Sada, C.; Bello, V.; Maurizio, C.; Battaglin, G.; Sangregorio, C.; Gatteschi, D.; Tapfer, L.; Mazzoldi, P

    2004-02-01

    The nanostructural and magnetic properties of Fe-Al/SiO{sub 2} granular solids prepared by ion implantation have been investigated. A strong effect of the implantation order of the Fe and Al ions has been evidenced. By implanting first the Al ions and later Fe ions, 5-40 nm core-shell nanoparticles are formed with a magnetic behavior similar to that of Fe. The lattice parameter of the nanoparticles is consistent with that of the {alpha}-Fe. By changing the implantation order, 10-15 nm core-shell nanoparticles of a bcc Fe-based phase with a lattice 2.5% smaller than that of {alpha}-Fe are formed. The temperature dependence of the magnetization indicates a superparamagnetic behavior.

  1. La mortalidad infantil en Santa Fe, Argentina (2007-2011. Un aporte al monitoreo de los derechos de los niños

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Augsburger

    2015-07-01

    Full Text Available La mortalidad infantil en Santa Fe tuvo un comportamiento similar al de Argentina, acompañando el descenso que se presentó para el país, aunque siempre con valores inferiores al indicador nacional. Pese a ello, mereció particular preocupación la elevada proporción de defunciones cuyas causas se consideran reducibles con valores históricos superiores al 50%. El establecimiento de las metas internacionales conocidas como Objetivos de Desarrollo del Milenio, que bregó por la protección de los derechos de la niñez, contó con la ratificación nacional al tiempo que la provincia se comprometió con estos fijándolos como política socio-sanitaria estratégica. El estudio construyó el perfil de la mortalidad infantil de la provincia de Santa Fe durante el quinquenio 2007-2011. Se realizó un estudio epidemiológico descriptivo y transversal. La población incluyó las defunciones en menores de un año del período estudiado. Se analizó su distribución según la edad al morir, peso al nacer y lugar de ocurrencia, causas de muerte y criterios de reducibilidad. Ocurrieron 2.904 muertes de niños, obteniendo una tasa del 10,9‰, que mantuvo el comportamiento descendente previo. Las muertes neonatales duplicaron la mortalidad posneonatal y se concentraron en la primera semana de vida. Las causas más frecuentes estuvieron asociadas a los problemas perinatales. El mayor riesgo de morir fue para los niños de menos de 1.000 gramos o inmadurez extrema. El 60% de los eventos podría haberse evitado. La persistencia de muertes consideradas reducibles debería estimular para incentivar estrategias de intervenciones sociales y sanitarias más equitativas y de protección de la infancia.

  2. La mortalidad infantil en Santa Fe, Argentina (2007-2011. Un aporte al monitoreo de los derechos de los niños

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Augsburger

    2015-01-01

    Full Text Available La mortalidad infantil en Santa Fe tuvo un comportamiento similar al de Argentina, acompañando el descenso que se presentó para el país, aunque siempre con valores inferiores al indicador nacional. Pese a ello, mereció particular preocupación la elevada proporción de defunciones cuyas causas se consideran reducibles con valores históricos superiores al 50%. El establecimiento de las metas internacionales conocidas como Objetivos de Desarrollo del Milenio, que bregó por la protección de los derechos de la niñez, contó con la ratificación nacional al tiempo que la provincia se comprometió con estos fijándolos como política socio-sanitaria estratégica. El estudio construyó el perfil de la mortalidad infantil de la provincia de Santa Fe durante el quinquenio 2007-2011. Se realizó un estudio epidemiológico descriptivo y transversal. La población incluyó las defunciones en menores de un año del período estudiado. Se analizó su distribución según la edad al morir, peso al nacer y lugar de ocurrencia, causas de muerte y criterios de reducibilidad. Ocurrieron 2.904 muertes de niños, obteniendo una tasa del 10,9‰, que mantuvo el comportamiento descendente previo. Las muertes neonatales duplicaron la mortalidad posneonatal y se concentraron en la primera semana de vida. Las causas más frecuentes estuvieron asociadas a los problemas perinatales. El mayor riesgo de morir fue para los niños de menos de 1.000 gramos o inmadurez extrema. El 60% de los eventos podría haberse evitado. La persistencia de muertes consideradas reducibles debería estimular para incentivar estrategias de intervenciones sociales y sanitarias más equitativas y de protección de la infancia.

  3. High frequency and magnetoelectrical properties of magnetoresistive memory element based on FeCoNi/TiN/FeCoNi film

    Directory of Open Access Journals (Sweden)

    Kurlyandskaya, G. V.

    2000-08-01

    Full Text Available A miniaturised memory device for information recording and readout processes have been designed on the basis of anisotropic magnetoresistive effect in Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å three-layered film done by rf diode sputtering. Stable recording and readout processes were available for 32 rectangular element column, where each element had μm dimensions convenient to fabricate memory chip with 106 bits capacity. Rectangles of different sizes with removed corners were used in order to define the geometry of most of all stable recording and readout processes. Magnetoresistance and magnetoimpedance effects of a magnetic memory device have been comparatively analysed. We suggest that the decrease of the absolute value of the magnetoimpedance of the memory device comes from the reduction of the real part via the magnetoresistance.

    Se ha diseñado un dispositivo de memoria para la grabación y lectura de información basado en el efecto de la anisotropía magnetorresistiva de una multicapa fabricada por sputtering mediante diodo de rf. El elemento de memoria se compone de tres películas delgadas, de composición Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å. El dispositivo permite procesos de grabación y lectura estables, y se compone de 32 elementos de memoria rectangulares por columna, donde cada elemento tiene dimensiones de μm lo que permite la fabricación de memorias integradas con capacidades del orden de 106 bits. Se han ensayado elementos de memoria rectangulares de diferentes tamaños, con las esquinas redondeadas con objeto de conseguir procesos de lectura-escritura lo más estable posible. Se han analizado comparativamente los efectos de magnetorresistencia y magnetoimpedancia de los elementos de memoria de diferentes dimensiones. Sugerimos que la disminución del valor absoluto de la magnetoimpedancia del elemento de memoria es consecuencia de la reducción de la parte real, de origen magnetorresistivo.

  4. Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl

    Science.gov (United States)

    Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.

    2018-04-01

    In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.

  5. Oxide scale formation of modified FeCrAl coatings exposed to liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Weisenburger, Alfons; Jianu, Adrian; Mueller, Georg [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Modified FeCrAl coatings show oxide scale formation when exposed to liquid lead. Black-Right-Pointing-Pointer Formation of thin Al-rich oxide scales is promoted by the presence of Y. Black-Right-Pointing-Pointer FeCrAlY with at least 8 wt.% Al forms thin Al-rich oxide scales. Black-Right-Pointing-Pointer For low Al content, thick multilayer Fe-based oxide scales are found. - Abstract: Modified FeCrAl coatings were studied with respect to their capability to form a thin protective oxide scale in liquid lead environment. They were manufactured by low pressure plasma spraying and GESA surface melting, thereby tuning the Al content. The specimens were exposed for 900 h to liquid lead containing 10{sup -6} and 10{sup -8} wt.% oxygen, respectively, at various temperatures from 400 to 550 Degree-Sign C. Threshold values for an Al content that guarantees the formation of thin protective Al-rich oxide scales are determined, dependent on the respective chromium content, on the presence of yttrium in the modified coating, and on the exposure conditions.

  6. Ferromagnetic resonance study of sputtered NiFe/V/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Departamento de Física – IFM, Universidade Federal de Pelotas, 96010-900 Rio Grande do Sul (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, 22290-180 (Brazil)

    2015-03-01

    The Ni{sub 81}Fe{sub 19}/V/Ni{sub 81}Fe{sub 19} heterostructures has been produced by magnetron sputtering and analyzed by ferromagnetic resonance. Two systems were investigated: the non symmetrical NiFe(50 Å)/V(t)/NiFe(30 Å) trilayers and the symmetrical NiFe(80 Å)/V(t)/NiFe(80 Å) trilayers, with variable ultrathin V thickness t. Ferromagnetic exchange coupling was evidenced for t below 10 Å by the excitation of the optic mode, in the case of the non symmetrical samples, and by the observation of a single resonance mode for the symmetrical trilayers. For larger V thickness, all samples exhibited two modes, which were attributed to the resonance of the individual NiFe layers with different effective magnetizations. The analysis with the equilibrium and resonance conditions provided the exchange coupling constants and effective magnetizations. - Highlights: • We present a study of symmetrical and non symmetrical NiFe/V/NiFe trilayers deposited on Si single crystals by ferromagnetic resonance (FMR) at room temperature. • For the non symmetrical trilayers, the FMR spectra show the optic and acoustic modes for samples with very thin V layer thicknesses, evidencing ferromagnetic exchange coupling, whereas, for larger V thickness, the spectra exhibited two well resolved modes associated to each independent NiFe layer. For the symmetrical trilayers, strong ferromagnetic exchange coupling is evidenced by the observation of a single resonance mode. • The analysis with the equilibrium condition and dispersion relation provides the exchange coupling constants and effective magnetizations.

  7. The bonding character and magnetic properties of Fe3Al: Comparison between disordered and ordered alloy

    International Nuclear Information System (INIS)

    Fan Runhua; Qi Liang; Sun Kangning; Min Guanghui; Gong Hongyu

    2006-01-01

    Fe 3 Al with D0 3 -ordered structure is one of the few structural intermetallics that can be disordered using non-equilibrium processing techniques. The bonding and magnetic character of the stoichiometric Fe 3 Al, with D0 3 -ordered or disordered structure, have been studied using the empirical electron theory of solid and molecular (EET). It was found that the magnetic property is basically dictated by the chemical bonding. There is a change of the character of the interatomic bonds from 3d(Fe)-3p(Al) for the D0 3 -ordered Fe 3 Al to 4sp(Fe)-3p(Al) for the disordered Fe 3 Al. For the latter, while the Fe 3d electrons participating in bonding is reduced, the mean magnetic moment is increased

  8. Creation of submicrocrystalline structure and enhancing of functional properties of Ti-Ni-Fe alloys with the shape-memory effect using equichannel-angular pressing (ECAP)

    International Nuclear Information System (INIS)

    Prokoshkin, S.D.; Belousov, M.N.; Abramov, V.Ya.

    2007-01-01

    Methods of X-ray diffraction analysis, transmission electron microscopy, mechanical and thermomechanical tests are used to study structure, mechanical and service properties of Ti-Ni-Fe system shape memory alloys (Ti-47.6 % Ni-2.4 % Fe; Ti-47 % Ni-3 % Fe; Ti-46.6 % Ni-3.4 % Fe). The alloys are subjected to hardening, high temperature thermomechanical treatment (HTMT) and equal-channel angular pressing (EChAP). Thermomechanical connecting pieces of given alloys are tested for carrying capacity and low temperature stability. It is established that the use of EChAP and post-deformation annealing at pressing temperature provides more high properties of the alloys in comparison with hardening and HTMT [ru

  9. Solid solution inhomogeneity in DC-cast AlMn(Fe,Si) ingots

    International Nuclear Information System (INIS)

    Lakner, J.; Kovacs-Csetenyi, E.; Lal, K.

    1990-01-01

    The aim of this work was to characterize the structure in cast state of the AlMn1 alloy containing different Fe and Si concentration. The casting parameters were intended to keep constant and the effect of impurities was studied. The inhomogeneity along the diameter of cast billet was characterized by the dendrite arm spacing and by the solid solution content. To explain the results the model developed for binary AlFe and AlMn alloys was applied

  10. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  11. Origin of metallic Fe-Ni in Renazzo and related chondrites

    Science.gov (United States)

    Lee, Min S.; Rubin, Alan E.; Wasson, John T.

    1992-01-01

    To assess the formation of metallic Fe-Ni in Renazzo and related chondrites, Ni and Co zoning profiles in metallic Fe-Ni are determined from different petrographic sites (chondrule interiors, chondrule margins, chondrule rims, and matrix) in Renazzo, Al Rais, and the related chondrite, MacAlpine Hills 87320. Metal from chondrule interiors shows flat Ni and Co concentrations and profiles, moderately large grain-to-grain compositional variations (even with chondrules), and generally high Ni and Co. Nickel concentrations extend above the kamacite stability limit; etching such 'martensite' shows high-Ni domains in some cases, but observed Ni concentrations do not exceed 190 mg/g. Metal from chondrule margins adjacent to matrix shows convex Ni and Co zoning profiles; the highest Ni and Co concentrations are at grain centers, although the mean central Ni and Co concentrations in margin grains are much lower than those from chondrule interiors; the remainder are convex. The low Co and Ni contents at the edge of grains in chondrule margins are interpreted to reflect dilution by Fe produced by FeO reduction.

  12. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  13. Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation

    Science.gov (United States)

    Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury

    2018-03-01

    The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

  14. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  15. Comparison of the irradiation effects on swelling and microstructure in commercial alloy A-286 and a simple Fe--25 Ni--15Cr gamma prime hardened alloy

    International Nuclear Information System (INIS)

    Chickering, R.W.; Bajaj, R.; Lally, J.S.

    1977-01-01

    The irradiation behaviors of alloy A-286 as well as experimental gamma prime hardened alloys are being studied in the National Alloy Development Program for application of gamma prime hardened alloys in the liquid metal fast breeder reactor. The principal direction of the studies concerns the high temperature strength and swelling resistance of the alloys. Minor element compositions may affect the phase stability and void swelling. A high Ti to Al ratio indicates a tendency for the gamma prime Ni 3 (Ti,Al) to transform into eta phase (Ni 3 Ti) after long term thermal aging and irradiation enhances the tendency for transformation. Another minor element, Si, as a constituent of G-phase, and irradiation may enhance G-phase formation. The Ti, Al, and Si contents affect the swelling of Fe-Cr-Ni alloys. The swelling resistance generally increases with increasing amounts of these three elements in the matrix. In the study the effects of Ti to Al ratio, Ti content, Al content, and Si content on swelling and phase stability were analyzed after Ni-ion irradiation

  16. Synthesis, microstructure and magnetic properties of Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: snove418562@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Fan, Xi’an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wu, Zhaoyang, E-mail: wustwuzhaoyang@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Li, Guangqiang [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China)

    2015-11-15

    Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{sub 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.

  17. Doping effect on the structural properties of Cu{sub 1−x}(Ni, Zn, Al and Fe){sub x}O samples (0

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, J.B. [Faculdade Estácio de Sergipe, 49020-530 Aracaju, SE (Brazil); Araujo, R.M. [Coordenação de Química, IPISE/PIC, Faculdade Pio Décimo, 49095-000 Aracaju, SE (Brazil); Pedra, P.P. [CETEC, Universidade Federal do Recôncavo da Bahia, 44380-000 Cruz das Almas, BA (Brazil); Meneses, C.T.; Duque, J.G.S. [Departamento de Física, Universidade Federal de Sergipe, Campus Prof. Alberto Carvalho, 49500-000 Itabaiana, SE (Brazil); Rezende, M.V. dos S, E-mail: mvsrezende@gmail.com [Departamento de Física, Universidade Federal de Sergipe, Campus Prof. Alberto Carvalho, 49500-000 Itabaiana, SE (Brazil)

    2016-09-15

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu{sub 1−x}TM{sub x}O samples (0Ni and Zn-doped samples show a small amount of spurious phases for concentrations above x=0.05. Based on these results, a defect disorder study for using atomistic computational simulations which is based on the lattice energy minimization technique is employed to predict the location of the dopant ions in the structure. In agreement with XRD data, our computational results indicate that the trivalent (Al and Fe ions) are more favorable to be incorporated into CuO matrix than the divalent (Ni and Zn ions). - Graphical Abstract: The effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu{sub 1−x}TM{sub x}O samples (0

  18. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    International Nuclear Information System (INIS)

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-01-01

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl 2 O 4 , Cd 1-x Fe 2+x O 4 , or Cd x Fe 2.66 O 4 ) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0

  19. Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Shen, Huajun, E-mail: shenhuajun@ime.ac.cn; Tang, Yidan; Bai, Yun; Liu, Xinyu [Microwave Device and IC Department, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Xufang [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wu, Yudong; Liu, Kean [Zhuzhou CSR Times Electric Co., Ltd, ZhuZhou 412001 (China)

    2015-01-14

    Low resistivity Ni/Ti/Al ohmic contacts on p-type 4H-SiC epilayer were developed, and their thermal stabilities were also experimentally investigated through high temperature storage at 600 °C for 100 h. The contact resistance of the Al/Ti/Ni/SiC contacts degraded in different degrees, and the contact morphology deteriorated with the increases of the average surface roughness and interface voids. X-ray spectra showed that Ni{sub 2}Si and Ti{sub 3}SiC{sub 2}, which were formed during ohmic contact annealing and contributed to low contact resistivity, were stable under high temperature storage. The existence of the TiAl{sub 3} and NiAl{sub 3} intermetallic phases was helpful to prevent Al agglomeration on the interface and make the contacts thermally stable. Auger electron spectroscopy indicated that the incorporation of oxygen at the surface and interface led to the oxidation of Al or Ti resulting in increased contact resistance. Also, the formation of these oxides roughened the surface and interface. The temperature-dependence of the specific contact resistance indicated that a thermionic field emission mechanism dominates the current transport for contacts before and after the thermal treatment. It suggests that the Ni/Ti/Al composite ohmic contacts are promising for SiC devices to be used in high temperature applications.

  20. Growth and magnetic study of sputtered Fe/Al multilayers

    International Nuclear Information System (INIS)

    Cherif, S.M.; Bouziane, K.; Roussigne, Y.; Al-Busaidy, M.

    2007-01-01

    Brillouin light scattering (BLS) and vibrating sample magnetometry (VSM) were used to study the effect of interfacial intermixing and microstructure on the magnetic properties of DC magnetron sputtered Fe/Al multilayers (MLs) on Si(1 0 0) substrate. Three samples with nominal composition [Al (4 nm)/Fe (3.7 nm)] x18 and deposited under different negative DC bias voltages (V b = -50, -200 and -400 V) have been investigated. The X-ray diffraction results indicate that the FeAl MLs have a poor crystallinity with no evidence of the absence of B2 phase. The grazing X-ray reflectivity results suggest that the interfacial roughness and intermixing were gradually reduced from 0.7 to 0.5 nm (±0.05 nm) by increasing V b from -50 to -400 V. The magnetization measurements demonstrate the presence of in-plane uniaxial anisotropy and magnetically dead interfacial layers. The BLS results reveal spin-wave surface modes whose frequencies also depend on the applied V b . The same trend upon V b was observed for the perpendicular and in-plane anisotropies

  1. Growth and magnetic study of sputtered Fe/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S.M. [LPMTM (CNRS-UPR 9001), Universite Paris 13, 99 Av. J.B. Clement, 93430 Villetaneuse (France); Bouziane, K. [LPMTM (CNRS-UPR 9001), Universite Paris 13, 99 Av. J.B. Clement, 93430 Villetaneuse (France) and Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman)]. E-mail: bouzi@squ.edu.om; Roussigne, Y. [LPMTM (CNRS-UPR 9001), Universite Paris 13, 99 Av. J.B. Clement, 93430 Villetaneuse (France); Al-Busaidy, M. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman)

    2007-03-15

    Brillouin light scattering (BLS) and vibrating sample magnetometry (VSM) were used to study the effect of interfacial intermixing and microstructure on the magnetic properties of DC magnetron sputtered Fe/Al multilayers (MLs) on Si(1 0 0) substrate. Three samples with nominal composition [Al (4 nm)/Fe (3.7 nm)]{sub x18} and deposited under different negative DC bias voltages (V {sub b} = -50, -200 and -400 V) have been investigated. The X-ray diffraction results indicate that the FeAl MLs have a poor crystallinity with no evidence of the absence of B2 phase. The grazing X-ray reflectivity results suggest that the interfacial roughness and intermixing were gradually reduced from 0.7 to 0.5 nm ({+-}0.05 nm) by increasing V {sub b} from -50 to -400 V. The magnetization measurements demonstrate the presence of in-plane uniaxial anisotropy and magnetically dead interfacial layers. The BLS results reveal spin-wave surface modes whose frequencies also depend on the applied V{sub b}. The same trend upon V {sub b} was observed for the perpendicular and in-plane anisotropies.

  2. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  3. Atomic-partial vibrational density of states of i-AlCuFe quasicrystals

    International Nuclear Information System (INIS)

    Parshin, P.P.; Zemlyanov, M.; Brand, R.A.; Dianoux, A.J.; Calvayrac, Y.

    2002-01-01

    We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al 62 Cu 25.5 Fe 12.5 . The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)

  4. Effects of A1 substitution by Fe in CeAl2

    International Nuclear Information System (INIS)

    Takeuchi, A.Y.; Cunha, S.F. da.

    1989-01-01

    Magnetization and electrical resistivity measurements of the CeAl 2 with Al substitution by Fe up to 10% at Fe show that the competition between the increasing Kondo effect and the antiferromagnetism persists. Change of the electronic density is followed by a decreasing Neel temperature and an increasing residual electrical reistivity. The probable appearance of ferromagnetism of the Ce moments, at intermediate temperature range, is discussed. The small decrease of the lattice parameter with Fe concentration or the magnetic behaviour do not show evidence of valence changes in the Ceion. (author) [pt

  5. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils.

    Science.gov (United States)

    Watanabe, Toshihiro; Jansen, Steven; Osaki, Mitsuru

    2006-12-01

    Plants growing in acid sulphate soils are subject to high levels of Al availability, which may have effects on the growth and distribution of these species. Although Fe availability is also high in acid sulphate soils, little is known about the effect of Fe on the growth of native plants in these soils. Two species dominating this soil type in Asia, viz. Melastoma malabathricum and Miscanthus sinensis were grown hydroponically in a nutrient solution with different concentrations of Al and Fe. Melastoma malabathricum is found to be sensitive to Fe (40 and 100 microm). Application of 500 microm Al, however, completely ameliorates Fe toxicity and is associated with a decrease of Fe concentration in shoots and roots. The primary reason for the Al-induced growth enhancement of M. malabathricum is considered to be the Al-induced reduction of toxic Fe accumulation in roots and shoots. Therefore, Al is nearly essential for M. malabathricum when growing in acid sulphate soils. In contrast, application of both Fe and Al does not reduce the growth of M. sinensis, and Al application does not result in lower shoot concentrations of Fe, suggesting that this grass species has developed different mechanisms for adaptation to acid sulphate soils.

  6. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    International Nuclear Information System (INIS)

    Kobya, M.; Gebologlu, U.; Ulu, F.; Oncel, S.; Demirbas, E.

    2011-01-01

    Highlights: → Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. → Operating costs at the optimum conditions were 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. → Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. → The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m -2 ), initial concentration (75-500 μg L -1 ) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m -2 , respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 μg L -1 with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  7. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M., E-mail: kobya@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Gebologlu, U.; Ulu, F.; Oncel, S. [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Demirbas, E. [Gebze Institute of Technology, Department of Chemistry, 41400 Gebze (Turkey)

    2011-05-30

    Highlights: > Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. > Operating costs at the optimum conditions were 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. > Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. > The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m{sup -2}), initial concentration (75-500 {mu}g L{sup -1}) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m{sup -2}, respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 {mu}g L{sup -1} with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  8. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    Science.gov (United States)

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  9. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide; Valero-Romero, Marí a José ; Wezendonk, Tim; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  10. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide

    2017-11-15

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  11. Microstructural Evolution during Pressureless Sintering of Blended Elemental Ti-Al-V-Fe Titanium Alloys from Fine Hydrogenated-Dehydrogenated Titanium Powder

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-07-01

    Full Text Available A comprehensive study was conducted on microstructural evolution of sintered Ti-Al-V-Fe titanium alloys utilizing very fine hydrogenation-dehydrogenation (HDH titanium powder with a median particle size of 8.84 μm. Both micropores (5–15 μm and macropores (50–200 μm were identified in sintered titanium alloys. Spherical micropores were observed in Ti-6Al-4V sintered with fine Ti at the lowest temperature of 1150 °C. The addition of iron can help reduce microporosity and improve microstructural and compositional homogenization. A theoretical calculation of evaporation based on the Miedema model and Langmuir equation indicates that the evaporation of aluminum could be responsible for the formation of the macropores. Although reasonable densification was achieved at low sintering temperatures (93–96% relative density the samples had poor mechanical properties due mainly to the presence of the macroporosity and the high inherent oxygen content in the as-received fine powders.

  12. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    Science.gov (United States)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  13. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu ...

    Indian Academy of Sciences (India)

    The diameter of wires can be easily varied by pore size of alumina, ranging ... saturated HgCl2 solution to remove the remaining Al, and then dipped in 5 wt% ... for NiFe alloy it is 1.3 V, that is higher than for Ni/Cu nanowires to diminish Cu.

  14. Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.

    Science.gov (United States)

    Kuan, W H; Hu, C Y; Chiang, M C

    2009-01-01

    A batch electrocoagulation (EC) process with bipolar electrode and potentiodynamic polarization tests with monopolar systems were investigated as methods to explore the effects of electrode materials and initial solution pH on the As(V) and As(III) removal. The results displayed that the system with Al electrode has higher reaction rate during the initial period from 0 to 25 minutes than that of Fe electrode for alkaline condition. The pH increased with the EC time because the As(V) and As(III) removal by either co-precipitation or adsorption resulted in that the OH positions in Al-hydroxide or Fe-hydroxide were substituted by As(V) and As(III). The pH in Fe electrode system elevate higher than that in Al electrode because the As(V) removal substitutes more OH position in Fe-hydroxide than that in Al-hydroxide. EC system with Fe electrode can successfully remove the As(III) but system with Al electrode cannot because As(III) can strongly bind to the surface of Fe-hydroxide with forming inner-sphere species but weakly adsorb to the Al-hydroxide surface with forming outer-sphere species. The acidic solution can destroy the deposited hydroxide passive film then allow the metallic ions liberate into the solution, therefore, the acidic initial solution can enhance the As(V) and As(III) removal. The over potential calculation and potentiodynamic polarization tests reveal that the Fe electrode systems possess higher over potential and pitting potential than that of Al electrode system due to the fast hydrolysis of and the occurrence of Fe-hydroxide passive film.

  15. Enhancement of magnetoresistance by inserting thin NiAl layers at the interfaces in Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag/Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} current-perpendicular-to-plane pseudo spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. W.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp; Sasaki, T. T.; Hono, K. [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Y. [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Kyoto Institute of Technology, Electrical Engineering and Electronics, Kyoto 606-8585 (Japan)

    2016-03-07

    We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm{sup 2}) and 77% (31 mΩ μm{sup 2}) at room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.

  16. Microstructure and corrosion resistance of Sm-containing Al-Mn-Si-Fe-Cu alloy

    Directory of Open Access Journals (Sweden)

    Han Yuyin

    2017-12-01

    Full Text Available Optimizing alloy composition is an effective way to improve physical and chemical properties of automobile heat exchanger materials.A Sm-containing Al-Mn-Si-Fe-Cu alloy was investigated through transmission electron microscopy,scanning electron microscopy,and electrochemical measurement.Experimental results indicated that main phases distributed in the alloy wereα-Al(Mn,FeSi,Al2Sm and Al10Cu7Sm2.Alloying with Sm element could refine the precipitated α-Al(Mn,FeSi phase.Polarization testing results indicated that the corrosion surfacewas mainly composed of pitting pits and corrosion products.Sea water acetic acid test(SWAAT showed that corrosion loss increased first and then slowed downwith increase of the corrosion time.

  17. Obtention of the TiFe compound by high-energy milling of Ti+Fe and TiH{sub 2}+Fe powder mixtures; Obtencao do composto TiFe a partir da moagem de alta energia de misturas Ti+Fe e TiH{sub 2}+Fe

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.B.; Dammann, E.D.C.C.; Rocha, C.J.; Leal Neto, R.M., E-mail: railson.falcao@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencias e Tecnologia de Materiais. Lab. de Intermetalicos

    2010-07-01

    In this work TiFe compound was obtained by two process routes involving high-energy ball milling: mechanical alloying from Ti and Fe powders (route 1) and mechanical milling from TiH{sub 2} and Fe powders, both followed by an annealing heat treatment. Shaker and planetary ball mills were utilized for times varying from 1-25 hours. Milled and annealed powders were characterized by SEM and X-ray diffraction analyses. TiFe compound was formed in both routes. A strong powder adherence in the milling vial and balls occurred with route 1 in both mills. Powder adherence was significantly reduced by using TiH{sub 2} (route 2) mainly in the planetary mill, in spite of TiFe formation has only occurred after the annealing treatment. (author)

  18. Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler

    Science.gov (United States)

    Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie

    2013-09-01

    ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.

  19. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  20. Epitactical FeAl films on sapphire and their magnetic properties

    International Nuclear Information System (INIS)

    Trautvetter, Moritz

    2011-01-01

    In the presented thesis epitaxial FeAl thin films on sapphire have been prepared by pulse laser deposition (PLD). The thin films deposited at room temperature exhibits ferromagnetism and subsequent annealing is necessary to transform the thin films to paramagnetic B2-phase, where the transition temperature depends on the crystalline orientation of the sapphire substrate. Alternatively, by deposition at higher substrate temperature the B2-phase is obtained directly. However, morphology of the FeAl film is influenced by different growth modes resulting from different substrate temperatures. The paramagnetic FeAl films can then be transformed to ferromagnetic phase by successive ion irradiation. Independent of the ion species used for irradiation, the same universal relation between thin films' coercive fields and irradiation damage is identified. The ion irradiation ferromagnetism can be transformed back to paramagnetism by subsequent annealing. The mutual transition between ferromagnetic and paramagnetic phases has been performed several times and shows full reversibility. The ferromagnetic phase induced by Kr + irradiation exhibits structural relaxation, where the saturate magnetization of FeAl thin film gradually decreases in several days. Later, ion irradiation has been performed selectively on defined areas of the thin film with the help of an unconventional lithography technique. The subsequent thin film is composed of ordered hexagonal array of ferromagnetic nano-cylinders separated by a paramagnetic matrix, suggesting a promising system for magnetic data storage. (orig.)

  1. Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys

    Science.gov (United States)

    Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio

    Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.

  2. Synthesis NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} catalyst by the combustion reaction to their use in the shift reaction (WGSR); Sintese do catalisador de NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} por reacao de combustao visando sua utilizacao na reacao de shift (WGSR)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, P.T.A.; Costa, A.C.F.M.; Neiva, L.S.; Gama, L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais; Argolo, F.; Andrade, H.M.C. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2009-07-01

    This work aims at the synthesis of catalyst NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} by combustion reaction using urea as fuel, to evaluate its performance in the production of hydrogen by the reaction of displacement of water vapor (WGSR). The initial composition of the solution was based on valencia total oxidizing and reducing reagents based on the concepts of the chemistry of propellants, using container as a crucible of glassy silica. The resulting powder was characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption isotherms (BET), scanning electronic microscope and catalytic tests. The DRX results reveal the presents majoritary phase NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} spinel, the catalyst presents surface area 28 m{sup 2}/g and isotherms type III. Higher conversion CO/CO{sub 2} of 75% CO conversion observed at 500 deg C and catalytic activity of 43 mmolg{sup -1}.h{sup -1} at 450 deg C. (author)

  3. Microstructural response of an Al-modified Ni-Cr-Fe ternary alloy during thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Akinlade, D.A. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB (Canada)], E-mail: dotun172@yahoo.co.uk; Caley, W.F. [Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS (Canada); Richards, N.L.; Chaturvedi, M.C. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB (Canada)

    2008-07-15

    A thermodynamic package was used to predict the phase transformations that occurred during thermal processing of a superalloy based on the composition of a ternary Ni-Cr-Fe alloy. The effect of the addition of 6 w/o Al on phase transformation in the material sintered were estimated and compared with results obtained experimentally by X-ray diffraction and metallography, while the transformation temperature of the modified alloy was corroborated by differential scanning calorimetry (DSC). Mechanical property of the alloy was estimated in terms of Vickers hardness. These results suggest that despite potential problems encountered in high-temperature powder processing of superalloys that often tend to influence the feasibility of using thermodynamic predictions to model such alloy systems, the software and predictions used in this study offer a way to simulate both design and characterisation of the experimental alloy.

  4. Corrosion behavior of Fe-Si metallic coatings added with NiCrAlY in an environment of fuel oil ashes at 700 C

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Bravo, V.M.; Porcayo-Calderon, J.; Romero-Castanon, T. [Instituto de Investigaciones Electricas, Gerencia de Procesos Termicos., Av. Reforma 113, C.P. 62490 Col. Palmira. Temixco. Morelos (Mexico); Dominguez-Patino, G.; Gonzalez-Rodriguez, J.G. [U.A.E.M. Centro de Investigaciones en Ingenieria y Ciencias Aplicadas., Av. Universidad 1001, C.P. 62210, Col. Chamilpa. Cuernavaca, Morelos (Mexico)

    2005-07-01

    Electrochemical potentiodynamic polarization curves and immersion tests for 300 h at 700 C in a furnace have been used to evaluate the corrosion resistance of Fe-Si metallic coatings added with up to 50 wt.% of NiCrAIY. The corrosive environment was fuel oil ashes from a steam generator. The composition of fuel oil ashes includes high content of vanadium, sodium and sulfur. The results obtained show that only the addition of 20 wt.% NiCrAlY to the Fe-Si coating improves its corrosion resistance. The behavior of all tested coatings is explained by the results obtained from the analysis of every coating using electron microscopy and energy dispersive X-ray analysis. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  5. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    Science.gov (United States)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  6. Atomic-partial vibrational density of states of i-AlCuFe quasicrystals

    CERN Document Server

    Parshin, P P; Brand, R A; Dianoux, A J; Calvayrac, Y

    2002-01-01

    We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al sub 6 sub 2 Cu sub 2 sub 5 sub . sub 5 Fe sub 1 sub 2 sub . sub 5. The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)

  7. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  8. Observations of the Minor Species Al and Fe in Mercury's Exosphere

    Science.gov (United States)

    Bida, Thomas A.; Killen, Rosemary M.

    2016-01-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of resolved emission lines of these metals with Keck-1/HIRES. Al emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 3.1 +/- 1.0 and 4.0 +/-1.5 x 10(exp 7) Al atoms cm(exp - 2) at altitudes of 1185 and 1870 km (1.5 and 1.75 R(sub M). The Al radiative intensity was seen to increase where the slit crossed the planetary penumbral shadow, and then decrease monotonically with altitude. Fe emission has been observed once, in 2009, indicating an extended source. We also present observed 3- Sigma Ca(+) upper limits near Mercury's equatorial anti-solar limb, from which an abundance limit of 4.0 x 10(exp 6) cm(exp -2) at 1650 km altitude is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 1.9 -5.2 x 10(exp 7) Al cm(exp -2) , and 8.2 x 10(exp 8) Fe cm(exp -2) . The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 6100-8000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules.

  9. First principles calculation of L21+A2 coherent equilibria in the Fe-Al-Ti system

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Gargano, Pablo H.; Ramirez-Caballero, Gustavo E.; Balbuena, Perla B.; Rubiolo, Gerardo H.

    2009-01-01

    By combining first-principles density functional total energy calculations and statistical mechanics the ground state and the phase equilibria at finite temperatures of the ternary system Fe-Al-Ti have been investigated. Total energy calculations have been performed by means of the Wien 2k code to establish the ground state energetic. A cluster expansion method was therewith used to describe solid solutions. At several chosen finite temperatures the cluster variation method in the irregular tetrahedron approximation was employed in order to calculate the iron rich ternary bcc equilibria. It is confirmed that there are two kinds of phase separations of the bcc phase, A2+L2 1 and B2+L2 1 .

  10. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sun, Zhiqian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process in a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental

  11. Ni-Al phase transformation of dual layer coating prepared by pack cementation and electrodeposition

    Science.gov (United States)

    Afandi, A.; Sugiarti, E.; Ekaputra, R.; Sudiro, T.; Thosin, K. A. Z.

    2018-03-01

    In this work, Fe-Cr alloys were coated via Aluminum (Al) pack cementation, followed by Nickel (Ni) electrodeposition. The process of pack cementation was done with mixing powders of Al, Al203 and NH4Cl with weight percentage of 15%, 85%, and 5% respectively. To control successful Al diffusion to the substrate, pack cementation was conducted for 7 hours with two holding temperatures treatment at 400 °C for 4 hours, and 800 ° C hours for 2 hours. Subsequently, the electrodeposition of Ni was applied with the solution consisting of NiSO4, H3BO3, and NiCl2. The samples were placed in the cathode, and then dipped in the solutions, while Ni plate used as anode. Successfully the samples were coated by dual Al-Ni layers, the samples were slowly heat treated at 900 °C for 10 hours. The inter-diffusion of Al and Ni were characterized with SEM/EDX to investigate the distribution of the elements. Mechanical properties of the coated substrates were analyzed with Hardness Vickers (HV). It was found the hardness of the substrate increased significantly, from originally 255 HV to the 1177 HV after pack cementation. The hardness of the substrates has decreased to 641 HV after Ni plating, but subsequent heat treatment has been able to increase the hardness to 842 HV. This phenomenon can be correlated to the inward Al diffusion, and outward Fe, Cr diffusion. The formation of intermetallic compounds due to Al inward and Fe, Cr outward diffusion were discussed in details.

  12. Influence of the technology of melting and inoculation preliminary alloy AlBe5 on change of concentration of Al and micro-structure of the bronze CuAl10Ni5Fe4

    Directory of Open Access Journals (Sweden)

    B. Pisarek

    2010-04-01

    Full Text Available Examining was the aim of the work: influence of the permanent temperature 1300°C ± 15°C and changing time of isothermal holding in the range 0÷50 minutes on the melting loss of aluminum in the bronze CuAl10Ni5Fe4; the quantity the slag rafining - covering Unitop BA-1 (0÷1,5% on the effectiveness of the protection of liquid bronze before the oxygenation, the quantity of the preliminary alloy - in-oculant AlBe5 (0÷1,0% on the effective compensation melting loss of aluminum and time of isothermal holding on the effect of the in-oculation of the bronze and the comparison of the effectiveness of the inoculation of the bronze in furnace and in the form. Introduced investigations resulted from the study of the new grades of the Cu-Al-Fe-Ni bronze with additions singly or simultaneously Si, Cr, Mo and/or W, to melting which necessary it is for high temperature and comparatively long time isothermal holding indispensable to the occur of the process of diffusive dissolving the high-melting of the bronze components. High temperature and lengthening the time of isothermal holding the liquid bronze in casting furnace the melting loss of Al influences the growth. Addition the slag of covering-refining Unitop BA-1 in the quantity 1,5% the bronze protects before the melting loss of aluminum by the time of isothermal holding in the temperature 1300°C about 15 minutes. Addition of the preliminary alloy AlBe5 in the quantity 0,6% it assures the effective compensation of the aluminum which melting loss undergoes for the studied parameters of the melting. The effect of the inoculation of the bronze together with diminishes the preliminary alloy AlBe5 with lengthening the time of isothermal hold-ing. Because of this, use of the method of introducing the preliminary alloy it is seems good solution on the inoculation of aluminum bronzes directly to form, unsensitive on the time of isothermal holding the bronze.

  13. Arcillas pilarizadas con Al-Fe y Al-Ce-Fe como sistema de postratamiento de las aguas residuales del beneficio húmedo del café

    OpenAIRE

    Peralta Ladino, Yury Marlén

    2013-01-01

    El efluente del sistema de tratamiento biológico de las aguas residuales del beneficio húmedo del café contiene compuestos no biodegradables, principalmente (ácidos hidroxicinámicos y clorogénicos) los cuales fueron identificados mediante análisis preliminares por LC-MS, por su toxicidad deben ser tratados antes de su descarga en las fuentes hídricas. El sistema Fenton heterogéneo empleando como soportes Al-Fe-PILC y Al-Ce-Fe-PILC (en polvo) mostró importantes conversión de compuestos fenólic...

  14. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  15. Antifriction coating of Cu-Fe-Al-Pb system for plain bearings

    Science.gov (United States)

    Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan

    2017-09-01

    Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.

  16. Inhibited Aluminization of an ODS FeCr Alloy

    International Nuclear Information System (INIS)

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A.

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small (∼ 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  17. Structural stability of ternary C22–Zr6X2Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and C22–Zr6Sn2T′ (T′=Fe, Co, Ni, Cu) compounds

    International Nuclear Information System (INIS)

    Colinet, Catherine; Crivello, Jean-Claude; Tedenac, Jean-Claude

    2013-01-01

    The crystal and electronic structures, and the thermodynamic properties of Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu) ternary compounds in the Fe 2 P-type structure have been investigated by means of first principle calculations. The calculated structural parameters are in good agreement with the experimental data. The total electronic densities of states as well as the Bader charges of the atoms have been computed. Both electronic and size effects allow to explain the stability of the ternary Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu) compounds. - Graphical abstract: Valence charge electronic localization function (ELF) calculated for Zr 6 Sb 2 Co compound. Display Omitted - Highlights: • Structural stability of Zr 6 X 2 T′ compounds (X: p element, T′: late transition metal) in the Fe 2 P-type structure. • First principles calculation of lattice parameters and enthalpies of formation. • Electronic densities of state in the series Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu). • Electronic densities of state in the series Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te)

  18. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0

    Science.gov (United States)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0Ni and Zn-doped samples show a small amount of spurious phases for concentrations above x=0.05. Based on these results, a defect disorder study for using atomistic computational simulations which is based on the lattice energy minimization technique is employed to predict the location of the dopant ions in the structure. In agreement with XRD data, our computational results indicate that the trivalent (Al and Fe ions) are more favorable to be incorporated into CuO matrix than the divalent (Ni and Zn ions).

  19. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  20. Magnetoelectric coupling and spin-dependent tunneling in Fe/PbTiO3/Fe multiferroic heterostructure with a Ni monolayer inserted at one interface

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2015-01-01

    We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO 3 /Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO 3 /Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances

  1. Microstructural characterization and phase transformation of ternary alloys near at Al3Ti compound

    International Nuclear Information System (INIS)

    Angeles Ch, C.

    1999-01-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10 3 -10 4 K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al 3 Ti and others phases of L1 2 type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO 22 to the cubic phases L1 2 . The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1 2 phase tends to increase to hardness depending of the content of this phase

  2. The bonding character and magnetic properties of Fe{sub 3}Al: Comparison between disordered and ordered alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fan Runhua [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China)]. E-mail: fan@sdu.edu.cn; Qi Liang [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Sun Kangning [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Min Guanghui [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Gong Hongyu [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China)

    2006-12-25

    Fe{sub 3}Al with D0{sub 3}-ordered structure is one of the few structural intermetallics that can be disordered using non-equilibrium processing techniques. The bonding and magnetic character of the stoichiometric Fe{sub 3}Al, with D0{sub 3}-ordered or disordered structure, have been studied using the empirical electron theory of solid and molecular (EET). It was found that the magnetic property is basically dictated by the chemical bonding. There is a change of the character of the interatomic bonds from 3d(Fe)-3p(Al) for the D0{sub 3}-ordered Fe{sub 3}Al to 4sp(Fe)-3p(Al) for the disordered Fe{sub 3}Al. For the latter, while the Fe 3d electrons participating in bonding is reduced, the mean magnetic moment is increased.

  3. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    Science.gov (United States)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  4. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    International Nuclear Information System (INIS)

    Kumar, Santosh; Deepika; Tripathi, Malvika; Vaibhav, Pratyush; Kumar, Aman; Kumar, Ritesh; Choudhary, R.J.; Phase, D.M.

    2016-01-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn_0_._9_7Al_0_._0_3O, Zn_0_._9_5Fe_0_._0_5O and Zn_0_._9_2Al_0_._0_3Fe_0_._0_5O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments. - Highlights: • Al, Fe, Al–Fe co-doped and undoped films of ZnO are deposited on Si by PLD. • Single phase (002) oriented Wurtzite ZnO phase is formed for all films. • Fe doped and Fe–Al co-doped ZnO films reveal magnetic hysteresis at 300 K. • Negative magnetoresistance is observed in undoped and Fe–Al co-doped ZnO film. • It is apparent that charge carriers are coupled with the local magnetic moment.

  5. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh, E-mail: skphysics@yahoo.co.in [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Deepika [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Tripathi, Malvika [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India); Vaibhav, Pratyush [Jaypee University of Engineering and Technology, Guna 473226, Madhya Pradesh (India); Kumar, Aman [Indian Institute of Technology, Roorkee (India); Kumar, Ritesh [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Choudhary, R.J., E-mail: ram@csr.res.in [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India); Phase, D.M. [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India)

    2016-12-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn{sub 0.97}Al{sub 0.03}O, Zn{sub 0.95}Fe{sub 0.05}O and Zn{sub 0.92}Al{sub 0.03}Fe{sub 0.05}O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments. - Highlights: • Al, Fe, Al–Fe co-doped and undoped films of ZnO are deposited on Si by PLD. • Single phase (002) oriented Wurtzite ZnO phase is formed for all films. • Fe doped and Fe–Al co-doped ZnO films reveal magnetic hysteresis at 300 K. • Negative magnetoresistance is observed in undoped and Fe–Al co-doped ZnO film. • It is apparent that charge carriers are coupled with the local magnetic moment.

  6. Fe-Al2O3 nanocomposites prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Linderoth, Søren; Pedersen, M.S.

    1994-01-01

    Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x(upsilon) alm......Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x...

  7. Structure of as cast L12 compounds in Al3Zr-base alloys containing Cu and Mn

    International Nuclear Information System (INIS)

    Virk, I.S.; Varin, R.A.

    1991-01-01

    It was first shown that the low symmetry, tetragonal DO 23 crystal structure of Al 3 Zr intermetallic can be changed to the related cubic L1 2 crystal structure by alloying with Ni (Al 5 NiZr 2 ) and Cu(Al 5 CuZr 2 ). It has been reported that previous work has successfully modified Al 3 Zr with Fe, Cu, Cr and Ni obtaining nearly single phase materials with L1 2 structure. However, they only studied the microstructure and mechanical properties of Fe - modified intermetallic (Al-6at% Fe-25at% Zr). The purpose of the paper is to describe and interpret experimental observations on the microstructure of Al 5 CuZr 2 and Al 66 Mn 9 Zr 25 (at.%) modifications of base Al 3 Zr intermetallic. The one modified with Mn has not been reported in literature although its Al 3 Ti - base counterpart has recently been successfully produced (3, 4)

  8. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    International Nuclear Information System (INIS)

    Xu Jiang; Li Zhengyang; Zhu Wenhui; Liu Zili; Liu Wenjin

    2007-01-01

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of α-Al, TiB, Al 3 Ti and Al 3 Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al 5 Fe 2 phase and definite crystallographic relationship between the Al 5 Fe 2 phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase

  9. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)]. E-mail: xujiang73@nuaa.edu.cn; Li Zhengyang [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhu Wenhui [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Zili [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Wenjin [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2007-02-25

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of {alpha}-Al, TiB, Al{sub 3}Ti and Al{sub 3}Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al{sub 5}Fe{sub 2} phase and definite crystallographic relationship between the Al{sub 5}Fe{sub 2} phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase.

  10. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  11. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys

    International Nuclear Information System (INIS)

    Rajabi, M.; Vahidi, M.; Simchi, A.; Davami, P.

    2009-01-01

    The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al-20Si-5Fe-2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 x 10 5 K/s and 5 x 10 7 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 deg. C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated. Results showed a profound effect of the cooling rate, consolidation stage, and transition metals on the microstructure and mechanical strength of Al-20Si-5Fe alloys. While microstructural refining was obtained at both cooling rates, the microstructure of the atomized powder exhibited the formation of fine primary silicon (∼ 1 μm), eutectic Al-Si phase with eutectic spacing of ∼ 300 nm, and δ-iron intermetallic. Supersaturated Al matrix containing 5-7 at.% silicon and nanometric Si precipitates (20-40 nm) were determined in the microstructure of the melt-spun ribbons. The hot consolidation resulted in coarsening of Si particles in the atomized particles, and precipitation of Si and Fe-containing intermetallics from the supersaturated Al matrix in the ribbons. The consolidated ribbons exhibited higher mechanical strength compared to the atomized powders, particularly at elevated temperatures. The positive influence of the transition metals on the thermal stability of the Al-20Si-5Fe alloy was noticed, particularly in the Ni-containing alloy.

  12. Estimation of the Levels of Fe in Wheat and Maize Flour Milled using ...

    African Journals Online (AJOL)

    ADOWIE PERE

    and homes and variety of elements such as Cu, Ni, Zn, Pb, Ti, Co, Cr, Al, Si, and Fe are used in their manufacture ... heavy metal such as Cr, Fe, Ni, Co, Pb, and Cd has received .... Dabonne, S; Koffi, B. P. K; Kouadio, E. J. P; Koffi, ... Jigam, A. A., Bukar, E. N. D., Jimoh, T., Hauwa, N. ... Salama, K.A; Mohamed, A.R.(2005).

  13. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    International Nuclear Information System (INIS)

    Rhen, Fernando M.F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    2008-01-01

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4 Fe 27.7 Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux (μ 0 M s ) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μ r ' ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μ r '=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency

  14. Clarifying roughness and atomic diffusion contributions to the interface broadening in exchange-biased NiFe/FeMn/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, V.P., E-mail: valberpn@yahoo.com.br [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Merino, I.L.C.; Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Alayo, W. [Departamento de Física, Universidade de Pelotas, 96010-610 Pelotas (Brazil); Tafur, M. [Instituto de Ciências Exatas, Universidade Federal de Itajubá, 37500-903 Itajubá (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia (Brazil); Magalhães-Paniago, R. [Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Alvarenga, A.D. [Instituto Nacional de Metrologia, 25250-020 Xerém (Brazil); Saitovitch, E.B. [Coordenação de Física Experimental e Baixas Energias, Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro (Brazil)

    2013-09-02

    NiFe(30 nm)/FeMn(13 nm)/NiFe(10 nm) heterostructures prepared by magnetron sputtering at different argon working pressures (0.27, 0.67 and 1.33 Pa) were systematically investigated by using specular and off-specular diffuse X-ray scattering experiments, combined with ferromagnetic resonance technique, in order to distinguish the contribution from roughness and atomic diffusion to the total structural disorder at NiFe/FeMn interfaces. It was shown that an increase in the working gas pressure from 0.27 to 1.33 Pa causes an enhancement of the atomic diffusion at the NiFe/FeMn interfaces, an effect more pronounced at the top FeMn/NiFe interface. In particular, this atomic diffusion provokes a formation of non-uniform magnetic dead-layers at the NiFe/FeMn interfaces (NiFeMn regions with paramagnetic or weak antiferromagnetic properties); that are responsible for the substantial reduction of the exchange bias field in the NiFe/FeMn system. Thus, this work generically helps to understand the discrepancies found in the literature regarding the influence of the interface broadening on the exchange bias properties (e.g., exchange bias field) of the NiFe/FeMn system. - Highlights: • Roughness and atomic diffusion contributions to the interface broadening • Clarification of the exchange bias field dependence on the interface disorder • Ferromagnetic, paramagnetic and antiferromagnetic phases at the magnetic interface • Magnetic dead layers formed by increasing the argon work pressure • Atomic diffusion in heterostructures prepared at higher argon pressure.

  15. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the development of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.

  16. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    International Nuclear Information System (INIS)

    Fabrizi, A; Timelli, G

    2016-01-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al 15 (Fe,Mn,Cr) 3 Si 2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al 5 (Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates. (paper)

  17. Manufacturing of FeCrAl/Zr Dual Layer tube for its application to LWR Fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Lim, Do Wan; Jung, Yang Il; Kim, Hyun Gil; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Many advanced materials such as MAX phases, Mo, SiC, and Fe-based alloys are being considered a possible candidate to substitute the Zr-based alloy cladding has been used in light water reactors. Among the proposed candidate materials, Fe-based alloy is one of the most promising candidates owing to its excellent formability, very good high strength, and corrosion resistance at high temperature. However, neutron cross section of FeCrAl alloy is much higher than that of existing Zr-based alloys. In this study, FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. The thickness of outer FeCrAl layer was varied from 50 to 250 μm but all the FeCrAl/Zr dual layer tube samples maintained its total thickness of 570 μm. For a detailed microstructural characterization of FeCrAl/Zr dual layer, polarized optical microscopy and scanning electron microscopy (SEM) study carried out and its mechanical property was measured by ring compression test. FeCrAl/Zr dual layer tube sample was successfully manufactured with good adhesion between both layers. Inter layer showing gradual element variation was observed at interface. Result obtained from simulated LOCA test indicates that FeCrAl/Zr dual layer tube may maintain its integrity during LOCA and its accident tolerance had greatly improved compared to that of Zr-based alloy.

  18. Nanophase intermetallic FeAl obtained by sintering after mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, L., E-mail: luisa.dangelo@gmail.co [Departamento de Mecanica, UNEXPO, Luis Caballero Mejias, Charallave (Venezuela, Bolivarian Republic of); D' Onofrio, L. [Facultad de Ciencias, Dpto. Fisica, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Gonzalez, G., E-mail: gemagonz@ivic.v [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas, Apdo. 21827, Caracas 1020A (Venezuela, Bolivarian Republic of)

    2009-08-26

    The preparation of bulk nanophase materials from nanocrystalline powders has been carried out by the application of sintering at high pressure. Fe-50 at.%Al system has been prepared by mechanical alloying for different milling periods from 1 to 50 h, using vials and balls of stainless steel and a ball-to-powder weight ratio (BPR) of 8:1 in a SPEX 8000 mill. Sintering of the 5 and 50 h milled powders was performed under high uniaxial pressure at 700 deg. C. The characterization of powders from each interval of milling was performed by X-ray diffraction, Moessbauer spectroscopy, scanning and transmission electron microscopy. After 5 h of milling formation of a nanocrystalline alpha-Fe(Al) solid solution that remains stable up to 50 h occurs. The grain size decreases to 7 nm after 50 h of milling. The sintering of the milled powders resulted in a nanophase-ordered FeAl alloys with a grain size of 16 nm. Grain growth during sintering was very small due to the effect of the high pressure applied.

  19. Effect of 1.0% Ni on high-temperature impression creep and hardness of recycled aluminium alloy with high Fe content

    Science.gov (United States)

    Faisal, M.; Mazni, Noor; Prasada Rao, A. K.

    2018-03-01

    Reported work focusses on the effect of 1.0% Ni addition on the microstructure, high- temperature impression creep and thereby the hardness of recycled Al-alloy containing >2wt% Fe, obtained from automotive scrap. Present studies have shown that the addition of 1.0% Ni have supress the formation of α-phase (Al5FeSi) by supressing the peritectic transformation of β-phase (Al8Fe2Si). Such suppression is found to improve the hardness and high-temperature impression creep of the recycled aluminium alloy.

  20. Granulation of Cu-Al-Fe-Ni Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2014-08-01

    Full Text Available With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness. Undertaken research to develop technology of thick-walled products (g> 6 mm of complex aluminium bronzes. Particular attention was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by infiltration of liquid alloy of granules (composites. Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5 bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process control parameters taken a casting temperature t (°C and the path h (mm of free-fall of the metal droplets in the surrounding atmosphere before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was assume maximize of the product of Um*n, the percentage weight “Um” and the quantity of granules ‘n’ in the mesh fraction. The maximum value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was identified microstructure composed of phases: β and fine bainite

  1. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  2. Effect of Fe, Ni, and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy under different pH conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Kaiser

    2018-05-01

    Full Text Available Effect of Fe, Ni and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy was studied. The test of corrosion behaviour at different environmental pH 1, 3, 5, 7, 9, 11 and 13 was performed using conventional gravimetric measurements and complemented by resistivity, optical micrograph, scanning electron microscopy (SEM and X-ray analyser (EDX investigations. The highest corrosion rate was observed at pH 13 followed by pH 1, while in the pH range of 3.0 to 11, there is a high protection of surface due to formation of stable surface oxide film. The highest corrosion rate at pH 13 is due to presence of sodium hydroxide in the solution in which the surface oxide film is soluble. At pH 1, however, high corrosion rate can be attributed to dissolution of Al due to the surface attack by aggressive chloride ions. Presence of Fe, Ni and Cr in hyper-eutectic Al-Si automotive alloy has significant effect on the corrosion rate at both environmental pH values. Resistivity of alloy surfaces initially decreases at pH 1 and pH 13 due to formation of thin films. The SEM images of corroded samples immersed in pH 1 solution clearly show pores due to uniform degradation of the alloy. In pH 13 solution, however, the corrosion layer looks more packed and impermeable.

  3. Elemental analysis of the Al-Fe intermetallic prepared by fast solidification

    International Nuclear Information System (INIS)

    Sandoval J, R.A.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.; Villasenor S, P.

    2003-01-01

    Applying the PIXE technique samples of the Al-Fe intermetallic prepared by fast solidification, obtained starting from Al recycled were analyzed. The concentrations of the found elements are given. (Author)

  4. Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field

    International Nuclear Information System (INIS)

    Houlding, Thomas K.; Gao, Pengzhao; Degirmenci, Volkan; Tchabanenko, Kirill; Rebrov, Evgeny V.

    2015-01-01

    Highlights: • Novel NiFe 2 O 4 –TiO 2 composite magnetic catalysts have been prepared by mechanochemical synthesis. • The synthesis time of 30 min provides the highest specific absorption rate (SAR) in RF heating. • Formation of NiTiO 3 phase during calcination decreases the SAR of the catalysts. • High stability of the NiFe 2 O 4 –TiO 2 catalyst was observed in a continuous amide bond synthesis under RF heating. - Abstract: Composite NiFe 2 O 4 –TiO 2 magnetic catalysts were prepared by mechanochemical synthesis from a mixture of titania supported nickel ferrite nanoparticles and P25 titania (Evonic). The former provides fast and efficient heating under radiofrequency field, while the latter serves as an active catalyst or catalyst support. The highest heating rate was observed over a catalyst prepared for a milling time of 30 min. The catalytic activity was measured over the sulfated composite catalysts in the condensation of aniline and 3-phenylbutyric acid in a stirred tank reactor and in a continuous RF heated flow reactor in the 140–170 °C range. The product yield of 47% was obtained over the sulfated P25 titania catalyst in the flow reactor

  5. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  6. Magnetoelectric coupling and spin-dependent tunneling in Fe/PbTiO{sub 3}/Fe multiferroic heterostructure with a Ni monolayer inserted at one interface

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jian-Qing, E-mail: djqkust@sina.com; Zhang, Hu; Song, Yu-Min [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-08-07

    We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO{sub 3}/Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances.

  7. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  8. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium

    Energy Technology Data Exchange (ETDEWEB)

    Kori, S.A.; Murty, B.S.; Chakraborty, M. [Indian Inst. of Technol., Kharagpur (India). Dept. of Metall. and Mater. Eng.

    2000-05-15

    The grain refining response of Al and Al-7Si alloy has been studied with various Al-Ti, Al-B and Al-Ti-B master alloys at different addition levels. The results show that Al-B and B rich Al-Ti-B master alloys cannot grain refine Al, while they are efficient grain refiners to Al-7Si alloy. The level of grain refinement saturates after 0.03% of Ti or B for most of the master alloys studied both at short and long holding times. The grain refining efficiency of some elements other than Ti and B on Al-7Si alloy has also been studied. Interestingly, all the elements studied (B, Cr, Fe, Mg, Ni, Ti and Zr) have resulted in some grain refinement of Al-7Si alloy at short holding time and have shown fading/poisoning on long holding, which increased in the order of B (no poisoning), Ti, Cr, Ni, Fe, Mg, Zr. Sr (0.02%) has been found to provide complete modification of the eutectic in Al-7Si alloy within 2 min, which is not lost even after long holding up to 120 min. Significant improvements in the mechanical properties have been obtained by a combination of grain refinement and modification to an extent that was not possible by either of them alone. (orig.)

  9. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    Science.gov (United States)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  10. Evaluation of cast Ti-Fe-O-N alloys for dental applications

    International Nuclear Information System (INIS)

    Koike, Marie; Ohkubo, Chikahiro; Sato, Hideki; Fujii, Hideki; Okabe, Toru

    2005-01-01

    Good mechanical properties, biocompatibility and corrosion resistance make titanium an excellent material for biomedical applications. However, when better mechanical properties than those offered by commercially pure titanium (CPTi) are needed, Ti-6Al-4V is sometimes a good alternative. Some new titanium alloys, developed as industrial structural materials, aim at an intermediate range of strength between that of CP Ti and Ti-6Al-4V. Two of these alloys are Super-TIX800TM (Ti-1% Fe-0.35% O-0.01% N) and Super-TIX800NTM (Ti-1% Fe-0.3% O-0.04% N) (both produced by Nippon Steel Corp., Japan). Besides being stronger than CP Ti, the cost of manufacturing these alloys is reportedly lower than for Ti-6Al-4V since they do not contain any expensive elements. In addition, they are not composed of elements such as aluminum or vanadium, which have caused biocompatibility concerns in medical and dental appliances. To evaluate these alloys as candidates for dental use, it is helpful to compare them to CP Ti (ASTM Grade 2) and Ti-6Al-4V (ASTM Grade 5), which have already been employed in dentistry. We evaluated the tensile properties, mold filling capacity, corrosion characteristics and grindability of these industrial alloys prepared by investment casting. Compared to the strengths of cast CPTi, the yield strength and tensile strength of these cast alloys were more than 20% and approximately 30% higher, respectively. On the other hand, both of these properties were 30% lower than for Ti-6Al-4V. Better grindability and wear resistance were additional benefits of these new alloys for dental applications

  11. Internal Friction of Austenitic Fe-Mn-C-Al Alloys

    Science.gov (United States)

    Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min

    2017-12-01

    The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.

  12. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  13. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  14. EMPIRICALLY DERIVED INTEGRATED STELLAR YIELDS OF Fe-PEAK ELEMENTS

    International Nuclear Information System (INIS)

    Henry, R. B. C.; Cowan, John J.; Sobeck, Jennifer

    2010-01-01

    We present here the initial results of a new study of massive star yields of Fe-peak elements. We have compiled from the literature a database of carefully determined solar neighborhood stellar abundances of seven iron-peak elements, Ti, V, Cr, Mn, Fe, Co, and Ni, and then plotted [X/Fe] versus [Fe/H] to study the trends as functions of metallicity. Chemical evolution models were then employed to force a fit to the observed trends by adjusting the input massive star metallicity-sensitive yields of Kobayashi et al. Our results suggest that yields of Ti, V, and Co are generally larger as well as anticorrelated with metallicity, in contrast to the Kobayashi et al. predictions. We also find the yields of Cr and Mn to be generally smaller and directly correlated with metallicity compared to the theoretical results. Our results for Ni are consistent with theory, although our model suggests that all Ni yields should be scaled up slightly. The outcome of this exercise is the computation of a set of integrated yields, i.e., stellar yields weighted by a slightly flattened time-independent Salpeter initial mass function and integrated over stellar mass, for each of the above elements at several metallicity points spanned by the broad range of observations. These results are designed to be used as empirical constraints on future iron-peak yield predictions by stellar evolution modelers. Special attention is paid to the interesting behavior of [Cr/Co] with metallicity-these two elements have opposite slopes-as well as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as well as those exhibited by the inferred integrated yields of all iron-peak elements with metallicity, are discussed in terms of both supernova nucleosynthesis and atomic physics.

  15. Correlation induced paramagnetic ground state in FeAl

    Czech Academy of Sciences Publication Activity Database

    Mohn, P.; Persson, C.; Blaha, P.; Schwarz, K.; Novák, Pavel; Eschrig, H.

    2001-01-01

    Roč. 87, č. 19 (2001), s. 196401-1-196401-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z1010914 Keywords : FeAl * paramagnetic ground state Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.668, year: 2001

  16. Structural evolutions of the mechanically alloyed Al70Cu20Fe10 ...

    Indian Academy of Sciences (India)

    The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The -phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation ...

  17. Determination of Fe and Al contamination by NAA at preparation of traditional Mexican food

    International Nuclear Information System (INIS)

    Arriola, S.H.; Cruz, M.M.

    2007-01-01

    A study was carried out using NAA to measure the concentration of Al and Fe leached from kitchen ware into some popular Mexican sauces and juices. These elements were measured in red and green hot sauces cooked in Fe, Al and clay pans compared to a stainless steel pan. Similarly Al was measured in orange and grapefruit juices obtained using an Al extractor compared to a plastic one. (author)

  18. An X-ray absorption spectroscopic study of the metal site preference in Al1−xGaxFeO3

    International Nuclear Information System (INIS)

    Walker, James D.S.; Grosvenor, Andrew P.

    2013-01-01

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO 3 (Pna2 1 ; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al 1−x Ga x FeO 3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L 2,3 -, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al 1−x Ga x FeO 3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO 3 than in GaFeO 3 , implying more anti-site disorder is present in AlFeO 3 . - Graphical abstract: Al 1−x Ga x FeO 3 has been investigated by XANES. Through examination of Al L 2,3 -, Ga K-, and Fe K-edge XANES spectra, it was found that more anti-site disorder of the Fe atoms is present in AlFeO 3 compared to in GaFeO 3 . Highlights: ► Al 1−x Ga x FeO 3 was investigated by X-ray absorption spectroscopy. ► Ga prefers to occupy the tetrahedral site in Al 1−x Ga x FeO 3 . ► Fe prefers to occupy the octahedral sites in Al 1−x Ga x FeO 3 as x increases. ► More anti-site disorder is present in AlFeO 3 compared to in GaFeO 3.

  19. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  20. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  1. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    CSIR Research Space (South Africa)

    Seteni, Bonani

    2017-06-01

    Full Text Available Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4...

  2. Fine structure at the diffusion welded interface of Fe3Al/Q235 ...

    Indian Academy of Sciences (India)

    Unknown

    iron lattice sites (Fair and Wood 1994). 3.2 TEM morphology at the diffusion joint of. Fe3Al/Q235. For the welding of dissimilar materials, the element diffusion and phase formed at the interface of dissimilar. Table 1. Chemical composition and thermophysical properties of Fe3Al intermetallic compound. Chemical composition ...

  3. Structural and Mössbauer spectroscopy characterization of bulk and nanostructured TiFe{sub 0.5} Ni{sub 0.5}/graphite compounds and their hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, M. A. R., E-mail: fisicorodriguez@gmail.com; André-Filho, J.; Félix, L. L.; Coaquira, J. A. H.; Garg, V. K.; Oliveira, A. C. [Universidade de Brasília, Instituto de Física, Núcleo de Física Aplicada (Brazil); Mestnik-Filho, J. [Instituto de Pesquisas energéticas e Nucleares, IPEN-CNEN/SP (Brazil)

    2015-06-15

    The structural and hyperfine properties of bulk TiFe{sub 0.5}Ni{sub 0.5} intermetallic and ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite compounds and their hydrides have been studied. The bulk and nanostructured TiFe{sub 0.5}Ni{sub 0.5} compounds crystallize in the cubic crystal structure of CsCl (B2). After hydrogenation, the formation of hydrogen-poor phase (∝-phase) and hydride phase (β-phase) have been determined for the bulk compound. However, the formation of the ∝-phase and the hydrogen-richest phase (γ-phase) and other secondary phases have been determined for the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample. It has been determined that the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample presents a large amount of the γ-phase which indicates that the presence of graphite nearby nanostructured intermetallic grains enhances the absorption of hydrogen. Mossbauer results are consistent with the structural results. Meanwhile, no significant changes in the isomer shift (IS) value has been determined for the α-phase with respect to the intermetallic compound, a strong increase in the IS value has been determined for the β- and γ-phases with respect to the ∝-phase. That increase indicates a decrease of the s-electron density at the Fe nuclei due to the charge transfer from the metal to the nearby hydrogen atoms.

  4. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.

    Science.gov (United States)

    Latta, Drew E; Bachman, Jonathan E; Scherer, Michelle M

    2012-10-02

    The reaction of Fe(II) with Fe(III) oxides and hydroxides is complex and includes sorption of Fe(II) to the oxide, electron transfer between sorbed Fe(II) and structural Fe(III), reductive dissolution coupled to Fe atom exchange, and, in some cases mineral phase transformation. Much of the work investigating electron transfer and atom exchange between aqueous Fe(II) and Fe(III) oxides has been done under relatively simple aqueous conditions in organic buffers to control pH and background electrolytes to control ionic strength. Here, we investigate whether electron transfer is influenced by cation substitution of Al(III) in goethite and the presence of anions such as phosphate, carbonate, silicate, and natural organic matter. Results from (57)Fe Mössbauer spectroscopy indicate that both Al-substitution (up to 9%) and the presence of common anions (PO(4)(3-), CO(3)(2-), SiO(4)(4-), and humic acid) does not inhibit electron transfer between aqueous Fe(II) and Fe(III) in goethite under the conditions we studied. In contrast, sorption of a long-chain phospholipid completely shuts down electron transfer. Using an enriched isotope tracer method, we found that Al-substitution in goethite (10%), does, however, significantly decrease the extent of atom exchange between Fe(II) and goethite (from 43 to 12%) over a month's time. Phosphate, somewhat surprisingly, appears to have little effect on the rate and extent of atom exchange between aqueous Fe(II) and goethite. Our results show that electron transfer between aqueous Fe(II) and solid Fe(III) in goethite can occur under wide range of geochemical conditions, but that the extent of redox-driven Fe atom exchange may be dependent on the presence of substituting cations such as Al.

  5. EXTRUIDOS DE AlFe-PILC EN LA OXIDACIÓN CATALÍTICA DE FENOL

    Directory of Open Access Journals (Sweden)

    Nancy R. Sanabria

    2010-09-01

    Full Text Available Extruidos de AlFe-PILC con forma de cilindro compacto se emplearon como catalizadores en la reacción de oxidación de fenol en medio acuoso. Debido a que el proceso de elaboración de los extruidos con fase activa AlFe-PILC afecta la actividad intrínseca del catalizador, en este trabajo se determinaron la resistencia mecánica y la estabilidad química del catalizador conformado, así como las limitaciones difusionales por efecto de la aglomeración. Los extruidos se elaboraron con la proporción másica 42/28/30 de arcilla intercalada con AlFe, aglomerante (mezcla 50/50 de bentonita sódica y cálcica y agua, exhibiendo elevada resistencia mecánica y estabilidad química a la inmersión en agua. Los extruidos de AlFe-PILC presentaron un factor de efectividad menor a 1; por tanto, la reacción se encuentra limitada por la difusión intrapartícula.

  6. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    Science.gov (United States)

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  7. Parametric and experimentally informed BWR Severe Accident Analysis Utilizing FeCrAl - M3FT-17OR020205041

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Larry J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristics are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate

  8. Characteristics Of The Porous Body Sintered By Nano-Sized Fe-Cr-Al Alloy Powder

    Directory of Open Access Journals (Sweden)

    Lee Su-In

    2015-06-01

    Full Text Available Porous metal with uniform honeycomb structure was successfully produced by sintering using Fe-Cr-Al nano powder, which was prepared by the pulsed wire evaporation (PWE in ethanol. Its process consisted of the several steps; 1 coating on the surface of polyurethane sponge with the liquid droplets generated from the ethanol-based slurry where the Fe-Cr-Al nano powders were uniformly dispersed, 2 heat treatment of debinding to remove the polyurethane sponge and 3 sintering of the porous green body formed by Fe-Cr-Al nano powders. The strut thickness of porous Fe-Cr-Al was increased by the increase of spraying times in ESP step. Also, The shrinkages and the oxidation resistance of the sintered porous body was increased with increase of sintering temperature. The optimal sintering temperature was shown to 1450°C in views to maximize the oxidation resistance and sinterability.

  9. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  10. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    Science.gov (United States)

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited.

  11. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  12. The corrosion and mechanical behaviour of Al, FeCrAlY, and CoCrAlY coatings in aggressive environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Geerdink, Bert; Fransen, T.; Gellings, P.J.

    1991-01-01

    The mechanical and chemical behaviours of aluminide coatings applied by pack cementation, FeCrAlY coatings applied by plasma spraying and CoCrAlY coatings applied by electrodeposition were studied. The coatings were pretreated for 0.5 h in argon at 1373 K to improve the adhesion and structural

  13. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  14. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  15. Effect of nano-oxide layers on giant magnetoresistance in pseudo-spin-valves using Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Miao, J.; Jiang, Y.

    2011-01-01

    We studied the pseudo-spin-valves (PSVs) with a structure of Ta/Co 2 FeAl/NOL 1 /Co 2 FeAl/Cu/Co 2 FeAl/NOL 2 /Ta, where NOL represents the nano-oxide layer. Compared with the normal Co 2 FeAl (CFA) PSV with a structure of Ta/Co 2 FeAl/Cu/Co 2 FeAl/Ta, which shows only a current-in-plane (CIP) giant magnetoresistance (GMR) of 0.03%, the CFA PSV with NOLs shows a large CIP-GMR of 5.84%. The enhanced GMR by the NOLs inserted in the CFA PSV is due to the large specular reflection caused by [(CoO)(Fe 2 O 3 )(Al 2 O 3 )] in NOL 1 and [(Fe 2 O 3 )(Al 2 O 3 )(Ta 2 O 5 )] in NOL 2 . Another reason is that the roughness of the interface between Ta and CFA is improved by the oxidation procedure. - Research highlights: → Nano-oxide layers are applied in the pseudo-spin-valves with the Heusler alloy. → The CIP-GMR of pseudo-spin-valves is improved from 0.03% to 5.84%. → The GMR ratio is decided by the position of nano-oxide layers.

  16. Amorphous Al-Mn coating on NdFeB magnets: Electrodeposition from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid and its corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing; Xu Bajin [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ling Guoping, E-mail: linggp@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-06-15

    Amorphous Al-Mn coating was electrodeposited on NdFeB magnets from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid with the pretreatment of anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al-Mn alloy coating to the NdFeB substrate. The amorphous Al-Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: Black-Right-Pointing-Pointer Amorphous Al-Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. Black-Right-Pointing-Pointer To remove the surface oxides of NdFeB, anodic etching pretreatment is used. Black-Right-Pointing-Pointer The deposited Al-Mn alloy coating shows high adhesion to the NdFeB substrate. Black-Right-Pointing-Pointer Corrosion tests show that amorphous Al-Mn alloy coating is anodic coating for NdFeB magnet.

  17. Material characteristic of Ti alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Toyoshima, Noboru

    1997-03-01

    In regard to material characteristic of Ti alloy (Ti-6Al-4V), the following matters are provided by experiments. 1) In high temperature permeation behavior of implanted deuterium ion (0.5keV, 6.4 x 10 18 D + ions/m 2 s, ∼760deg K), the ratio of permeation flux to incident flux ranges from 3.3 x 10 -3 at 633deg K to 4.8 x 10 -3 at 753deg K. The activation energy of permeation is 0.12eV in this temperature region above 600deg K. At temperatures below 600deg K, the permeation flux of deuterium decreases drastically and the implanted ions remain in the alloy. 2) Radioactivation analysis using 14MeV fast neutron shows that Ti-6Al-4V alloy contains higher values of principal ingredients, Al, V, Fe, than that recorded at the chemical composition of Ti alloy, and also, contains impurities with Ni, Co and Mn. 3) Fraction of about 0.095wt% H 2 were absorbed in the test specimens, and tensile strength test was carried out. Under the condition of the hydrogen pressure 50 torr and temperature ∼500degC. The results show that there is no degradation in mechanical properties for absorption of with less than 0.04wt% H 2 . The tensile strength of wilding specimens have almost the same as that without wilding. Ti alloy, as a material of vacuum vessel of nuclear fusion device, must be selected to that with less impurities, particularly Co, by radioactivation analysis, and must be used under the temperature of 200-300degC, where hydrogen absorption does not make too progress. It is considered that Ti alloy can be used with less than 0.04wt% H 2 absorption in viewpoint of material mechanical strength. (author)

  18. Sulfide phase in the Fe-Ti-S and Fe-C-Ti-S alloys

    International Nuclear Information System (INIS)

    Malinochka, Ya.N.; Balakina, N.A.; Shmelev, Yu.S.

    1976-01-01

    The nature of the sulfide phases in Fe-Ti-S and Fe-C-Ti-S alloys was studied. The carbide and the sulfide phase were identified the aid of X-ray spectral microanalysis. It was established that for a small content of titanium and sulfur in ternary Fe-Ti-S alloys the solidification of the γ-solution on the boundaries of dendritic branches is accompanied, along with the precipitation of a sulfide rich in iron of the (Fe, Ti) S type where a small quantity of titanium is dissolved, by the formation of a titanium-bearing sulfide eutectic γ + TiS. The amount of the sulfide eutectic increases with the contents of titanium and sulfur until a purely eutectic alloy is formed. Both carbides and sulfides may be formed in the solidification of quaternary alloys Fe-C-Ti-S

  19. Optimisation of the Ti/Al/Ni/Au ohmic contact on AlGaN/GaN FET structures

    NARCIS (Netherlands)

    Jacobs, B.; Krämer, M.C.J.C.M.; Geluk, E.J.; Karouta, F.

    2002-01-01

    We present a systematic approach to reduce the resistance of ohmic contacts on AlGaN/GaN FET structures. We have optimised the Ti/Al/Ni/Au contact with respect to the metal composition and annealing conditions. Our optimised contact has a very low contact resistance of 0.2 ohm mm (7.3 x 10^-7 ohm

  20. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  1. Tritium permeation characterization of Al{sub 2}O{sub 3}/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai, E-mail: zhangguikai@caep.cn; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-15

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al{sub 2}O{sub 3}/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al{sub 2}O{sub 3}/FeAl coated container was reduced by 3 orders of magnitude at 500–700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al{sub 2}O{sub 3}/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance. - Highlights: • T-permeation has been measured on bare and coated type 321 SS containers. • Al{sub 2}O{sub 3}/FeAl coating give a reduction of T-permeability of 3 orders of magnitude. • Mechanism of Al{sub 2}O{sub 3}/FeAl barrier resisting T-permeation has obtained. • Quality of TPB is a very important factor for efficient T-permeating reduction.

  2. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    International Nuclear Information System (INIS)

    Kim, Yuna; Kim, Seok

    2015-01-01

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors

  3. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuna; Kim, Seok [School of Chemical and Biomolecular Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-02-15

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors.

  4. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    Science.gov (United States)

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  5. Nanosized catalysts based on Fe oxide for combustion of n-hexane

    International Nuclear Information System (INIS)

    Picasso, Gino; Hermoza, Emilia; Lopez, Alcides; Gomez, Gemma; Pina, Maria Pilar; Herguido, Javier

    2009-01-01

    In this work, nanosized catalysts on Fe oxide have been prepared for total combustion on n-hexane (2000 ppmV). The synthesis of Fe oxide have been performed following sol-gel procedure starting from precursors based on nitrate salts. According to XRD analysis, nanoparticles formed α-hematite and the average particle size estimated by TEM was 9 nm with formation of agglomerations of 140 nm. Moreover, different clays pillared with Al (Al-PILC), Ti (Ti-PILC) and Fe (Fe-PILC) have been synthesized. Some samples based on Fe-Mn equimolar mixed supported on Al-PILC (FeMn/Al-PILC) and on Ti-PILC (FeMn/Ti-PILC) have been prepared in order to study the cooperative effect of Mn. Experimental conditions of calcination were adjusted in order to obtain samples with high thermal stability. XRD analysis of pillared samples revealed the formation of stable pillars, except for Fe-PILC which described a delaminated structure. As a consequence of pillaring, an enhancement of total surface area compared to starting clay material is observed. Concerning surface area, the decreasing order series of pillared material was: Ti-PILC > Fe-PILC > Al-PILC. Depression of total surface area decreasing of basal spacing d 001 with no modification of basal structure of starting natural clay have been observed due to the incorporation of Fe-Mn active phase into the structures of Ti-PILC and Al-PILC. The Fe-Mn mixed phase supported over pillared material exhibited higher catalytic activity than the Fe-PILC sample, which was attributed to the cooperative effect of Mn. This effect could be associated with redox properties of Mn and improving of surface oxygen mobility. Delaminated structure and strong interaction of Fe with clay porous network into the Fe-PILC sample could be the reason of lower activities. However, higher performances were observed in the case of Fe oxide nanoparticles prepared with surfactant agent over bentonite, due to a lesser extent of Fe-porous structure interaction presented in

  6. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  7. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  8. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  9. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    Science.gov (United States)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium

  10. An X-ray absorption spectroscopic study of the metal site preference in Al1-xGaxFeO3

    Science.gov (United States)

    Walker, James D. S.; Grosvenor, Andrew P.

    2013-01-01

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO3 (Pna21; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al1-xGaxFeO3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L2,3-, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al1-xGaxFeO3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO3 than in GaFeO3, implying more anti-site disorder is present in AlFeO3.

  11. Structural Investigation of Fe-Ni-S and Fe-Ni-Si Melts by High-temperature Fluorescence XAFS Measurements

    International Nuclear Information System (INIS)

    Manghnani, Murli H.; Balogh, John; Hong Xinguo; Newville, Matthew; Amulele, G.

    2007-01-01

    Iron-nickel (Fe-Ni) alloy is regarded as the most abundant constituent of Earth's core, with an amount of 5.5 wt% Ni in the core based on geochemical and cosmochemical models. The structural role of nickel in liquid Fe-Ni alloys with light elements such as S or Si is poorly understood, largely because of the experimental difficulties of high-temperature melts. Recently, we have succeeded in acquiring Ni K-edge fluorescence x-ray absorption fine structure (XAFS) spectra of Fe-Ni-S and Fe-Ni-Si melts and alloys. Different structural environment of Ni atoms in Fe-Ni-S and Fe-Ni-Si melts is observed, supporting the effect of light elements in Fe-Ni melts

  12. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2017-01-01

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al 3 Ti and Al 3 Ni. In addition, a small quantity of TiO 2 phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al 3 Ti, Al 3 Ni, and TiO 2 phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  13. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng, E-mail: dongpeng@tyut.edu.cn [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Wang, Zhe [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Wenxian [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Chen, Shaoping [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [Department of Mechanical Engineering, Pennsylvania State University Erie, Erie, PA 16563 (United States)

    2017-04-13

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al{sub 3}Ti and Al{sub 3}Ni. In addition, a small quantity of TiO{sub 2} phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al{sub 3}Ti, Al{sub 3}Ni, and TiO{sub 2} phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  14. Effects of Nb and Si on densities of valence electrons in bulk and defects of Fe3Al alloys

    Institute of Scientific and Technical Information of China (English)

    邓文; 钟夏平; 黄宇阳; 熊良钺; 王淑荷; 郭建亭; 龙期威

    1999-01-01

    Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and th

  15. Structural evolution of Fe-50 at.% Al powders during mechanical alloying and subsequent annealing processes

    International Nuclear Information System (INIS)

    Haghighi, Sh. Ehtemam; Janghorban, K.; Izadi, S.

    2010-01-01

    Iron aluminides, despite having desirable properties like excellent corrosion resistance, present low room-temperature ductility and low strength at high temperatures. Mechanical alloying as a capable process to synthesize nanocrystalline materials is under consideration to modify these drawbacks. In this study, the microstructure of iron aluminide powders synthesized by mechanical alloying and subsequent annealing was investigated. Elemental Fe and Al powders with the same atomic percent were milled in a planetary ball mill for 15 min to 100 h. The powder milled for 80 h was annealed at temperatures of 300, 500 and 700 o C for 1 h. The alloyed powders were disordered Fe(Al) solid solutions which were transformed to FeAl intermetallic after annealing. The effect of the milling time and annealing treatment on structural parameters, such as crystallite size, lattice parameter and lattice strain was evaluated by X-ray diffraction. Typically, these values were 15 nm, 2.92 A and 3.1% for the disordered Fe(Al) solid solution milled for 80 h and were 38.5 nm, 2.896 A and 1.2% for the FeAl intermetallic annealed at 700 o C, respectively.

  16. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.

    2012-01-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.

  17. Electrochemical Corrosion Behavior of Oxidation Layer on Fe30Mn5Al Alloy

    Directory of Open Access Journals (Sweden)

    ZHU Xue-mei

    2017-08-01

    Full Text Available The Fe30Mn5Al alloy was oxidized at 800℃ in air for 160h, the oxidation-induced layer about 15μm thick near the scale-metal interface was induced to transform to ferrite and become enriched in Fe and depletion in Mn. The effect of the oxidation-induced Mn depletion layer on the electrochemical corrosion behavior of Fe30Mn5Al alloy was evaluated. The results show that in 1mol·L-1 Na2SO4 solution, the anodic polarization curve of the Mn depletion layer exhibits self-passivation, compared with Fe30Mn5Al austenitic alloy, and the corrosion potential Evs SCE is increased to -130mV from -750mV and the passive current density ip is decreased to 29μA/cm2 from 310μA/cm2. The electrochemical impedance spectroscopy(EIS of the Mn depletion layer has the larger diameter of capacitive arc, the higher impedance modulus|Z|, and the wider phase degree range, and the fitted polarization resistant Rt is increased to 9.9kΩ·cm2 from 2.7kΩ·cm2 by using an equivalent electric circuit of Rs-(Rt//CPE. The high insulation of the Mn depletion layer leads to an improved corrosion resistance of Fe30Mn5Al austenitic alloy.

  18. Pr-magnetism in the quasi-skutterudite compound PrFe2Al8.

    Science.gov (United States)

    Nair, Harikrishnan S; Ogunbunmi, Michael O; Kumar, C M N; Adroja, D T; Manuel, P; Fortes, D; Taylor, J; Strydom, A M

    2017-08-31

    The intermetallic compound PrFe 2 Al 8 that possesses a three-dimensional network structure of Al polyhedra centered at the transition metal element Fe and the rare earth Pr is investigated through neutron powder diffraction and inelastic neutron scattering in order to elucidate the magnetic ground state of Pr and Fe and the crystal field effects of Pr. Our neutron diffraction study confirms long-range magnetic order of Pr below [Formula: see text] K in this compound. Subsequent magnetic structure estimation reveals a magnetic propagation vector [Formula: see text] with a magnetic moment value of [Formula: see text]/Pr along the orthorhombic c-axis and evidence the lack of ordering in the Fe sublattice. The inelastic neutron scattering study reveals one crystalline electric field excitation near 19 meV at 5 K in PrFe 2 Al 8 . The energy-integrated intensity of the 19 meV excitation as a function of [Formula: see text] follows the square of the magnetic form factor of [Formula: see text] thereby confirming that the inelastic excitation belongs to the Pr sublattice. The second sum rule applied to the dynamic structure factor indicates only 1.6(2) [Formula: see text] evolving at the 19 meV peak compared to the 3.58 [Formula: see text] for free [Formula: see text], indicating that the crystal field ground state is magnetic and the missing moment is associated with the resolution limited quasi-elastic line. The magnetic order occurring in Pr in PrFe 2 Al 8 is counter-intuitive to the symmetry-allowed crystal field level scheme, hence, is suggestive of exchange-mediated mechanisms of ordering stemming from the magnetic ground state of the crystal field levels.

  19. Neutron capture widths of s-wave resonances in 56Fe, 5860Ni and 27Al

    International Nuclear Information System (INIS)

    Wisshak, K.; Kaeppeler, F.; Reffo, G.; Fabbri, F.

    1982-01-01

    The neutron capture widths of s-wave resonances in 56 Fe (27.7 keV), 58 Ni (15.4 keV), 60 Ni (12.5 keV) and 27 Al (35.3 keV) have been determined, using a setup completely different from LINAC experiments. A pulsed 3 MV Van de Graaff accelerator and the 7 Li(p,n) reaction served as a neutron source. The proton energy was adjusted just above the reaction threshold to obtain a kinematically collimated neutron beam. This allowed to position the samples at a flight path as short as approx. 90 mm. Capture events were detected by three Moxon-Rae detectors with graphite, bismuth-graphite and pure bismuth converter, respectively. The measurements were performed relative to a gold standard. The setup allows to discriminate capture of scattered neutrons completely by time of flight and to use very thin samples (0.15 mm) in order to reduce multiple scattering. After correction for deviations of the detector efficiency from a linear increase with gamma-ray energy, the results obtained with different detectors agree within their remaining systematic uncertainty of approx. 5%. Only preliminary results are presented

  20. The Mechanical and Reaction Behavior of PTFE/Al/Fe2O3 under Impact and Quasi-Static Compression

    Directory of Open Access Journals (Sweden)

    Jun-yi Huang

    2017-01-01

    Full Text Available Quasi-static compression and drop-weight test were used to characterize the mechanical and reaction behavior of PTFE/Al/Fe2O3 composites. Two kinds of PTFE/Al/Fe2O3 composites were prepared with different mass of PTFE, and the reaction phenomenon and stress-strain curves were recorded; the residuals after reaction were analyzed by X-ray diffraction (XRD. The results showed that, under quasi-static compression condition, the strength of the materials is increased (from 37.1 Mpa to 77.2 Mpa with the increase of PTFE, and the reaction phenomenon occurred only in materials with high PTFE content. XRD analysis showed that the reaction between Al and Fe2O3 was not triggered with identical experimental conditions. In drop-weight tests, PTFE/Al/Fe2O3 specimens with low PTFE content were found to be more insensitive by high-speed photography, and a High Temperature Metal Slag Spray (HTMSS phenomenon was observed in both kinds of PTFE/Al/Fe2O3 composites, indicating the existence of thermite reaction, which was confirmed by XRD. In PTFE/Al/Fe2O3 system, the reaction between PTFE and Al precedes the reaction between Al and Fe2O3.

  1. Correlative Microscopy of Alpha Prime Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-01

    Fe-Cr-Al alloys are currently being considered for accident tolerant light water reactor fuel cladding applications due to their superior high temperature oxidation and corrosion resistance compared to Zr-based alloys. This work represents the current state-of-the-art on both techniques for analysis of α' precipitate microstructures and the processes and mechanisms governing its formation in neutron-irradiated Fe-Cr-Al alloys.

  2. Ethylbenzene dehydrogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−yNiyAl0.5 catalysts

    KAUST Repository

    Atanda, Luqman A.; Balasamy, Rabindran J.; Khurshid, Alam; Al-Ali, Ali A S; Sagata, Kunimasa; Asamoto, Makiko; Yahiro, Hidenori; Nomura, Kiyoshi; Sano, Tsuneji; Takehira, Katsuomi; Al-Khattaf, Sulaiman S.

    2011-01-01

    A series of Mg3Fe0.5-xCoxAl0.5 (x = 0-0.5) catalysts were prepared from hydrotalcite precursors and their activities in the dehydrogenation of ethylbenzene were compared with those of a series of Mg3Fe0.5-yNiyAl0.5 (y = 0-0.5) catalysts also derived

  3. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy

    International Nuclear Information System (INIS)

    Gao, Xuzhou; Lu, Yiping; Zhang, Bo; Liang, Ningning; Wu, Guanzhong; Sha, Gang; Liu, Jizi; Zhao, Yonghao

    2017-01-01

    Recent studies indicate that eutectic high-entropy alloys can simultaneously possess high strength and high ductility, which have potential applications in industrial fields. Nevertheless, microstructural origins of the excellent strength–ductility combination remain unclear. In this study, an AlCoCrFeNi 2.1 eutectic high-entropy alloy was prepared with face-centered cubic (FCC)(L1 2 )/body-centered-cubic (BCC)(B2) modulated lamellar structures and a remarkable combination of ultimate tensile strength (1351 MPa) and ductility (15.4%) using the classical casting technique. Post-deformation transmission electron microscopy revealed that the FCC(L1 2 ) phase was deformed in a matter of planar dislocation slip, with a slip system of {111} <110>, and stacking faults due to low stacking fault energy. Due to extreme solute drag, high densities of dislocations are distributed homogeneously at {111} slip plane. In the BCC(B2) phase, some dislocations exist on two {110} slip bands. The atom probe tomography analysis revealed a high density of Cr-enriched nano-precipitates, which strengthened the BCC(B2) phase by Orowan mechanisms. Fracture surface observation revealed a ductile fracture in the FCC(L1 2 ) phase and a brittle-like fracture in the BCC(B2) lamella. The underlying mechanism for the high strength and high ductility of AlCoCrFeNi 2.1 eutectic high-entropy alloy was finally analyzed based on the coupling between the ductile FCC(L1 2 ) and brittle BCC(B2) phases.

  4. NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti-6Al-4V substrates

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2014-03-01

    Full Text Available The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental...

  5. An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams

    OpenAIRE

    Hasan, MD. Anwarul

    2010-01-01

    Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...

  6. Microwave absorption and {sup 57}Fe Mössbauer properties of Ni-Ti doped barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Harker, S. J., E-mail: stephen.harker@defence.gov.au [Russell Offices, Program Office, Defence Science and Technology Organisation (Australia); Stewart, G. A.; Hutchison, W. D. [UNSW Canberra at the Australian Defence Force Academy, School of Physical, Environmental and Mathematical Sciences (Australia); Amiet, A. [Defence Science and Technology Organisation, Maritime Division (Australia); Tucker, D. [UNSW Canberra at the Australian Defence Force Academy, School of Physical, Environmental and Mathematical Sciences (Australia)

    2015-04-15

    The impact of doping the Fe component of barium hexaferrite with Ni{sub 0.5}Ti{sub 0.5} is investigated using x-ray powder diffraction, {sup 57}Fe Mössbauer spectroscopy and microwave network analysis. The dopant ions exhibit a preference for the 2b, 4f{sub 2} and 12k-sites and the unit cell volume is observed to decrease. The ferromagnetic resonance frequency is reduced by about 11.5 GHz for each additional dopant ion per formula unit.

  7. Co–Fe Prussian Blue Analogue Intercalated into Diamagnetic Mg–Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Cuijuan Zhang

    2016-04-01

    Full Text Available A heterostructure of diamagnetic magnesium‒aluminium layered double hydroxides (Mg‒Al LDHs and photomag‐ netic cobalt‒iron Prussian Blue analogue (Co‒Fe PBA was designed, synthesized and then designated as LDH‒PB. The cyanide-bridged Co‒Fe PBA was two-dimensionally intercalated into the Mg‒Al LDH template by the stepwise anion exchange method. LDH‒PB showed ferrimagnetic properties with in-plane antiferromagnetic exchange interactions, as well as small photo-induced magnetization by visible light illumination due to the low dimensional structures and the characteristic photo-induced electronic states of the mixed valence of FeIII(low spin, S = 1/2‒CN‒ CoII(high spin, S = 3/2‒NC‒FeII (low spin, S = 0.

  8. The Generation of AlmFe in Dilute Aluminium Alloys with Different Grain Refining Additions

    Science.gov (United States)

    Meredith, M. W.; Greer, A. L.; Evans, P. V.; Hamerton, R. G.

    Al13Fe4, Al6Fe and AlmFe are common intermetallics in commercial AA1XXX series Al alloys. Grain-refining additions (based on either Al-Ti-B or Al-Ti-C) are usually added to such alloys during solidification processing to aid the grain structure development. They also influence the favoured intermetallic and, hence, can affect the materials' properties. This work simulates commercial casting practices in an attempt to determine the mechanisms by which one intermetallic phase is favoured over another by the introduction of grain-refining additions. Directional solidification experiments on Al-0.3wt.%Fe-0.15wt.%Si with and without grain refiner are conducted using Bridgman apparatus. The type, amount and effectiveness of the grain-refining additions are altered and the resulting intermetallic phase selection followed. The materials are characterised using optical microscopy, scanning electron microscopy and X-ray diffraction. AlmFe is seen to form when Al-Ti-B grain-refiner is introduced but only when the refinement is successful; reducing the effectiveness of the refiner led to Al6Fe forming under all conditions. Al-Ti-C refiners are seen to promote AlmFe at lower solidification velocities than when Al-Ti-B was used even though the grain structure was not as refined. These trends can be explained within existing eutectic theory, by considering growth undercooling.

  9. Evaluation of Pb–17Li compatibility of ODS Fe-12Cr-5Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Unocic, Kinga A., E-mail: unocicka@ornl.gov; Hoelzer, David T.

    2016-10-15

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y{sub 2}O{sub 3} (125Y), (2) Y{sub 2}O{sub 3} + ZrO{sub 2} (125YZ), (3) Y{sub 2}O{sub 3} + HfO{sub 2} (125YH), and (4) Y{sub 2}O{sub 3} + TiO{sub 2} (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO{sub 2} on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO{sub 2} product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module. - Highlights: • Investigation of Pb-17Li compatibility of new ODS Fe-12Cr5Al. • Promising small mass change after static Pb-17Li exposure. • LiAlO{sub 2} formed on the surface during Pb-17Li exposure. • Oxide precipitates incorporated within the LiAlO{sub 2} product. • An inward scale growth mechanism was identified.

  10. Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mike O. Ojemaye

    2017-01-01

    Full Text Available Investigation into the reduction of Cr(VI in aqueous solution was carried out through some batch photocatalytic studies. The photocatalysts used were silica coated nickel ferrite nanoparticles (NiFe2O4-SiO2, nickel ferrite titanium dioxide (NiFe2O4-TiO2, nickel ferrite silica titanium dioxide (NiFe2O4-SiO2-TiO2, and titanium dioxide (TiO2. The characterization of the materials prepared via stepwise synthesis using coprecipitation and sol-gel methods were carried out with the aid of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, thermal gravimetric analysis (TGA, and vibrating sample magnetometry (VSM. The reduction efficiency was studied as a function of pH, photocatalyst dose, and contact time. The effects of silica interlayer between the magnetic photocatalyst materials reveal that reduction efficiency of NiFe2O4-SiO2-TiO2 towards Cr(VI was higher than that of NiFe2O4-TiO2. However, TiO2 was observed to have the highest reduction efficiency at all batch photocatalytic experiments. Kinetics study shows that photocatalytic reduction of Cr(VI obeyed Langmuir-Hinshelwood model and first-order rate kinetics. Regenerability study also suggested that the photocatalyst materials can be reused.

  11. Synthesis and adsorption properties of hierarchical Fe{sub 3}O{sub 4}@MgAl-LDH magnetic microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoge; Li, Bo; Wen, Xiaogang, E-mail: wenxg@scu.edu.cn [Sichuan University, School of Materials Science and Engineering (China)

    2017-04-15

    In this study, Fe{sub 3}O{sub 4} microspheres were prepared by a hydrothermal method, and then the synthesized Fe{sub 3}O{sub 4} microspheres were used as template to prepare Fe{sub 3}O{sub 4}@MgAl-LDH composite microspheres by a coprecipitation process. Morphology, composition, and crystal structure of synthesized nanomaterials were characterized by X-ray powder diffractometry, scanning electron microscopy, and Fourier transform infrared spectroscopy technologies. The composite hierarchical microspheres are composed of inner Fe{sub 3}O{sub 4} core and outer MgAl-LDH-nanoflake layer, and the average thickness of MgAl-LDH-nanoflake is about 70 nm. The adsorption property of the products toward congo red was also measured using UV–vis spectrometer. The result demonstrated that the Fe{sub 3}O{sub 4}@MgAl-LDH composite adsorbent could remove 99.8% congo red in 30 min, and the maximum adsorption capacity is about 404.6 mg/g, while congo red removal rate of pure MgAl-LDH and Fe{sub 3}O{sub 4} are only 86.3 and 53.1% in 40 min, respectively, and their adsorption capacity are 345.72 and 220.56 mg/g, respectively. It indicates the composite Fe{sub 3}O{sub 4}@ MgAl-LDH nanomaterials have better adsorption performance than pure Fe{sub 3}O{sub 4} and MgAl-LDH nanomaterials. In addition, the magnetic nanocomposites could be separated easily, and it demonstrated good cycle performance.

  12. Thermodynamic modelling and Gulliver-Scheil simulation of multi-component Al alloys

    International Nuclear Information System (INIS)

    Du Yong; Liu Shuhong; Chang, Keke; Hu Biao; Bu Mengjie; Jie Wanqi; Huang Weidong; Wang Jincheng

    2012-01-01

    Based on critical review for the available experimental phase diagram data of the Al-Cu-Fe-Mn, Al-Cu-Fe-Ni, Al-Cu-Fe-Si, Al-Fe-Mg-Si, Al-Fe-Mn-Si, and Al-Mg-Mn-Zn systems, a set of self-consistent thermodynamic parameters for these systems has been established using CALPHAD approach. In combination with the constituent binary, ternary, and quaternary systems, a thermodynamic database for the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system is developed. The calculated phase diagrams and invariant reactions agree well with the experimental data. The obtained database has been used to describe the solidification behaviour of Al alloys: Al365.1(91.95Al-0.46Fe-0.3Mg-0.32Mn-6.97Si, in wt.%) and Al365.2 (92.77Al-0.08Fe-0.35Mg-6.8Si, in wt.%) under both equilibrium and Gulliver-Scheil non-equilibrium conditions. The reliability of the present thermodynamic database is verified by the good agreement between calculation and measurement for both equilibrium and Gulliver–Scheil non-equilibrium solidification.

  13. Plastic deformation of Fe-Al polycrystals strengthened with Zr-containing Laves phases Part II. Mechanical properties

    International Nuclear Information System (INIS)

    Wasilkowska, A.; Bartsch, M.; Stein, F.; Palm, M.; Sauthoff, G.; Messerschmidt, U.

    2004-01-01

    Fe-10 at.% Al-2.5 at.% Zr and Fe-20 at.% Al-2.5 at.% Zr alloys were deformed between room temperature and 700 deg. C. The materials show a flow stress plateau at about 300 MPa up to 600 deg. C for the material with 10 at.% Al and above 600 MPa up to 400 deg. C for the alloy with 20% Al. The high flow stresses compared to Fe-Al reference materials are partly due to the addition of Zr. The strain rate sensitivity of the flow stress was measured by stress relaxation and strain rate cycling tests. It is low up to 400 deg. C and high between 450 and 600 deg. C, i.e. in the range of the flow stress decrease. The microstructures of the undeformed materials are described in Part I of this paper. Micrographs of the deformed specimens taken in a high-voltage electron microscope reveal that the deformation occurs mainly within the soft Fe-Al grains and in the Fe-Al component of the grain boundary eutectic. The deformation data are interpreted in terms of solution hardening from the Al solute, dynamic strain ageing due to the Cottrell effect of the same defects, the athermal stress component of elastic dislocation interactions, the Hall-Petch contribution from the grain size, and the strengthening effect of the grain boundary layers

  14. Ab initio based kinetic Monte-Carlo simulations of phase transformations in FeCrAl

    International Nuclear Information System (INIS)

    Olsson, Paer

    2015-01-01

    Document available in abstract form only, full text follows: Corrosion and erosion in lead cooled reactors can be a serious issue due to the high operating temperature and the necessary flow rates. FeCrAl alloys are under consideration as cladding or as coating for stainless steel cladding tubes for lead cooled reactor concepts. The alumina scale that is formed, as Al segregates to the surface and Fe and Cr rich oxides break off, offers a highly protective layer against lead corrosion in a large range of temperatures. However, there are concerns about the phase stability of the alloy under irradiation conditions and of possible induced alpha-prime precipitation. Here a theoretical model of the ternary FeCrAl alloy is presented, based on density functional theory predictions and linked to a kinetic Monte-Carlo simulation framework. The effect of Al on the FeCr miscibility properties are discussed and the coupling of irradiation induced defects with the solutes are treated. Simulations of the micro-structure evolution are tentatively compared to available experiments. (authors)

  15. Study of electronic structure and magnetic properties of epitaxial Co{sub 2}FeAl Heusler Alloy Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Soni, S. [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Dalela, S., E-mail: sdphysics@rediffmail.com [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Sharma, S.S. [Department of Physics, Govt. Women Engineering College, Ajmer (India); Liu, E.K.; Wang, W.H.; Wu, G.H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kumar, M. [Department of Physics, Malviya National Institute of Technology, Jaipur-302017 (India); Garg, K.B. [Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2016-07-25

    This work reports the magnetic and electronic characterization of plane magnetized buried Heusler Co{sub 2}FeAl nano thin films of different thickness by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements. . The spectra on both Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence, corresponding to a ferromagnetically-aligned moments on Fe and Co atoms conditioning the peculiar characteristics of the Co{sub 2}FeAl Heusler compound (a half-metallic ferromagnet). The detailed knowledge of the related magnetic and electronic properties of these samples over a wide range of thickness of films are indispensable for achieving a higher tunnel magnetoresistance ratio, and thus for spintronics device applications. - Highlights: • Electronic structure and Magnetic Properties of Epitaxial Co{sub 2}FeAl Heusler Films. • X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). • Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence. • Calculated Orbital, Spin and total magnetic moments of Fe and Co for 30 nm Co{sub 2}FeAl thin film. • The total magnetic moment of Fe at L{sub 2,3} edges increases with the thickness of the Co2FeAl films.

  16. Electronic, optical, and thermoelectric properties of Fe2+xV1−xAl

    Directory of Open Access Journals (Sweden)

    D. P. Rai

    2017-04-01

    Full Text Available We report the electronic, optical, and thermoelectric properties of full-Heusler alloy Fe2VAl with Fe antisite doping (Fe2+xV1−xAl as obtained from the first-principles Tran-Blaha modified Becke-Johnson potential. The results are discussed in relation to the available experimental data and show good agreements for the band gap, magnetic moment, and optical spectra. Exploring our transport data for thermoelectric applicability suggest that Fe2+xV1−xAl is a good candidate with a high figure of merit (ZT 0.75(0.65 for x = 0.25(0.50 at room temperature.

  17. Magnetic properties of ball-milled Fe0.6Mn0.1Al0.3 alloys

    International Nuclear Information System (INIS)

    Rebolledo, A.F.; Romero, J.J.; Cuadrado, R.; Gonzalez, J.M.; Pigazo, F.; Palomares, F.J.; Medina, M.H.; Perez Alcazar, G.A.

    2007-01-01

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe 0.6 Mn 0.1 Al 0.3 samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h

  18. Formation of Al{sub 2}O{sub 3}/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanjib, E-mail: sanjib@barc.gov.in [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Paul, Bhaskar [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Chakraborty, Poulami [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Kishor, Jugal; Kain, Vivekanand [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Dey, Gautam Kumar [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2017-04-01

    Iron aluminide coating layers were formed on a ferritic martensitic grade 9Cr-1Mo (P 91) steel using pack aluminizing process. The formation of different aluminide compositions such as orthorhombic-Fe{sub 2}Al{sub 5}, B2-FeAl and A2-Fe(Al) on the pack chemistry and heat treatment conditions have been established. About 4–6 μm thick Al{sub 2}O{sub 3} scale was formed on the FeAl phase by controlled heat treatment. The corrosion tests were conducted using both the FeAl and Al{sub 2}O{sub 3}/FeAl coated specimens in an electro-magnetic pump driven Pb-17Li Loop at 500 °C for 5000 h maintaining a flow velocity of 1.5 m/s. The detailed characterization studies using scanning electron microscopy, back-scattered electron imaging and energy dispersive spectrometry revealed no deterioration of the coating layers after the corrosion tests. Self-healing oxides were formed at the cracks generated in the aluminide layers during thermal cycling and protected the base alloy (steel) from any kind of elemental dissolution or microstructural degradation. - Highlights: •Al{sub 2}O{sub 3}/FeAl coating produced on P91 steel by pack aluminizing and heat treatment. •Corrosion tests of coated steel conducted in flowing Pb-17Li loop at 500 °C for 5000 h. •Coating was protective against molten metal corrosion during prolonged exposure. •Self-healing protective oxides formed in the cracks generated in aluminide layers.

  19. Natural gels: crystal-chemistry of short range ordered components in Al, Fe, and Si systems

    International Nuclear Information System (INIS)

    Ildefonse, Ph.; Calas, G.

    1997-01-01

    In this review, the most important inorganic natural gels are presented: opal, aluminosilicate (allophanes) and hydrous iron oxides and silicates. It is demonstrated that natural gels are ordered at the atomic scale. In allophanes, Al is distributed between octahedral and tetrahedral sites. The amount of Al increases as Al/Si ratio decreases. Si-rich allophane have a local structure around Al and Si very different of that is known in kaolinite or halloysite. Transformation of Si-rich allophanes to crystallized minerals implies dissolution-recrystallization processes. On the contrary, in iron silicate with Fe/Si = 0.72, Si and Fe environments are close to those found in nontronite. The gel transformation to Fe-smectite may occur by long range ordering during ageing. In ferric silicate gels, the similarity of local structure around Fe in poorly ordered precursors and what is known in crystallized minerals suggests a solid transformation during ageing. This difference between iron and aluminium is mainly due to the ability of Al to enter both tetrahedral and octahedral sites, while the affinity of iron for octahedral sites is higher at low temperature

  20. Structural features in icosahedral Al63Cu25Fe12

    International Nuclear Information System (INIS)

    Howell, R.H.; Solal, F.; Turchi, P.E.A.; Berger, C.; Calvayrac, Y.

    1991-01-01

    Since the discovery of a quasicrystalline phase in Al-Mn alloys a substantial amount of work has been done to understand the structural and physical properties of this new class of materials. More recently the discovery of a thermodynamically stable icosahedral phase in AlCuFe presents the opportunity to study pure quasicrystalline phases of high structural quality by eliminating known defects, especially phason disorder by conventional heat treatment. In particular it was shown that annealing treatments of as quenched samples resulted in a dramatic reduction in the width of the diffraction peaks associated with the elimination of as quenched defects, present in other quasicrystals. Positron annihilation lifetime measurements have a high sensitivity to intrinsic defects and positron annihilation radiation angular correlation measurements are well suited to measurements of electronic structure in systems where the defect effects do not dominate. We have measured positron annihilation lifetime and angular correlations on quasicrystalline samples of Al 63 Cu 25 Fe 12 in the pure icosahedral phase