WorldWideScience

Sample records for next-generation reactor neutrino

  1. Study on the Neutrino Oscillation with a Next Generation Medium-Baseline Reactor Experiment

    International Nuclear Information System (INIS)

    Joo, Kyung Kwang; Shin, Chang Dong

    2014-01-01

    For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angle θ 13 , providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements of θ 12 ,Δm 12 2 , and mass hierarchy will be explored. The precise measurement of θ 13 would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package

  2. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  3. Neutrino Oscillations at Reactors: What Next?

    OpenAIRE

    Mikaelyan, L. A.; Sinev, V. V.

    1999-01-01

    We shortly review past and future experiments at reactors aimed at searches for neutrino masses and mixing. We also consider new idea to search at Krasnoyarsk for small mixing angle oscillations in the atmosheric neutrino mass parameter region.

  4. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  5. Results of the Nucifer reactor neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian; Lindner, Manfred [MPIK Heidelberg (Germany)

    2016-07-01

    Nuclear reactors are a strong and pure source of electron antineutrinos. With neutrino experiments close to compact reactor cores new insights into neutrino properties and reactor physics can be obtained. The Nucifer experiment is one of the pioneers in this class of very short baseline projects. Its detector to reactor distance is only about 7 m. The data obtained in the last years allowed to estimate the plutonium concentration in the reactor core by the neutrino flux measurement. This is of interest for safeguard applications and non proliferation efforts. The antineutrinos in Nucifer are detected via the inverse beta decay on free protons. Those Hydrogen nuclei are provided by 850 liters of organic liquid scintillator. For higher detection efficiency and background reduction the liquid is loaded with Gadolinium. Despite all shielding efforts and veto systems the background induced by the reactor activity and cosmogenic particles is still the main challenge in the experiment. The principle of the Nucifer detector is similar to the needs of upcoming experiments searching for sterile neutrinos. Therefore, the Nucifer results are also valuable input for the understanding and optimization of those next generation projects. The observation of sterile neutrinos would imply new physics beyond the standard model.

  6. The search for sterile neutrinos at reactors and underground laboratories

    Science.gov (United States)

    Langford, Thomas

    2017-01-01

    From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.

  7. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  8. Reactor Neutrino Oscillations: KamLAND and KASKA

    International Nuclear Information System (INIS)

    Suekane, F.

    2006-01-01

    Nuclear reactors generate a huge number of low energy ν-bar e 's. The reactor neutrinos have been used to study properties of neutrinos since its discovery a half century ago. Recently, KamLAND group finally discovered reactor neutrino oscillation with average baseline 180 km. According to the 3 flavor scheme of standard theory and measured oscillation parameters so far, the reactor neutrino is expected to perform another type of small oscillation at a baseline 1.8 km. KASKA experiment is a project to detect this small oscillation and to measure the last neutrino mixing angle θ 13 by using the world most powerful reactor complex, Kashiwazaki-Kariwa nuclear power station. In this proceedings, phenomena of neutrino oscillation and the two reactor oscillation experiments, KamLAND and KASKA, are introduced

  9. IceCube Gen2. The next-generation neutrino observatory for the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Santen, Jakob van [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic-kilometer Cherenkov telescope buried in the ice sheet at the South Pole that detects neutrinos of all flavors with energies from tens of GeV to several PeV. The instrument provided the first measurement of the flux of high-energy astrophysical neutrinos, opening a new window to the TeV universe. At the other end of its sensitivity range, IceCube has provided precision measurements of neutrino oscillation parameters that are competitive with dedicated accelerator-based experiments. Here we present design studies for IceCube Gen2, the next-generation neutrino observatory for the South Pole. Instrumenting a volume of more that 5 km{sup 3} with over 100 new strings, IceCube Gen2 will have substantially greater sensitivity to high-energy neutrinos than current-generation instruments. PINGU, a dense infill array, will lower the energy threshold of the inner detector region to 4 GeV, allowing a determination of the neutrino mass hierarchy. On the surface, a large air shower detector will veto high-energy atmospheric muons and neutrinos from the southern hemisphere, enhancing the reach of astrophysical neutrino searches. With its versatile instrumentation, the IceCube Gen2 facility will allow us to explore the neutrino sky with unprecedented sensitivity, providing new constraints on the sources of the highest-energy cosmic rays, and yield precision data on the mixing and mass ordering of neutrinos.

  10. On reactor type comparisons for the next generation of reactors

    International Nuclear Information System (INIS)

    Alesso, H.P.; Majumdar, K.C.

    1991-01-01

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs

  11. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  12. The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part VI: IceCube-Gen2, the Next Generation Neutrino Observatory

    OpenAIRE

    Collaboration, IceCube-Gen2; :; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.

    2017-01-01

    Papers on research & development towards IceCube-Gen2, the next generation neutrino observatory at South Pole, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube-Gen2 Collaboration.

  13. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  14. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  15. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  16. Development of Advanced Monitoring System with Reactor Neutrino Detection Technique for Verification of Reactor Operations

    International Nuclear Information System (INIS)

    Furuta, H.; Tadokoro, H.; Imura, A.; Furuta, Y.; Suekane, F.

    2010-01-01

    Recently, technique of Gadolinium-loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and ''nuclear Gain (GA)'' for IAEA safeguards. When the thermal operation power is known, it is, in principle, possible to non-destructively measure the ratio of Pu/U in reactor fuel under operation from the reactor neutrino flux. An experimental program led by Lawrence Livermore National Laboratory and Sandia National Laboratories in USA has already demonstrated feasibility of the reactor monitoring by neutrinos at San Onofre Nuclear Power Station, and the Pu monitoring by neutrino detection is recognized as a candidate of novel technology to detect undeclared operation of reactor. However, further R and D studies of detector design and materials are still necessary to realize compact and mobile detector for practical use of neutrino detector. Considering the neutrino interaction cross-section and compact detector size, the detector must be set at a short distance (a few tens of meters) from reactor core to accumulate enough statistics for monitoring. In addition, although previous reactor neutrino experiments were performed at underground to reduce cosmic ray muon background, feasibility of the measurement at ground level is required for the monitor considering limited access to the reactor site. Therefore, the detector must be designed to be able to reduce external backgrounds extremely without huge shields at ground level, eg. cosmic ray muons and fast neutrons. We constructed a 0.76 ton Gd-LS detector, and carried out a reactor neutrino measurement at the experimental fast reactor JOYO in 2007. The neutrino detector was set up at 24.3m away from the reactor core at the ground level, and we understood the property of the main background; the cosmic-ray induced fast neutron, well. Based on the experience, we are constructing a new detector for the next experiment. The detector is a Gd

  17. Applying Bayesian neural networks to separate neutrino events from backgrounds in reactor neutrino experiments

    International Nuclear Information System (INIS)

    Xu, Y; Meng, Y X; Xu, W W

    2008-01-01

    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks (BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and 8 He/ 9 Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample

  18. Application of Reactor Antineutrinos: Neutrinos for Peace

    Science.gov (United States)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  19. Neutrino scattering and the reactor antineutrino anomaly

    Science.gov (United States)

    Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander

    2017-12-01

    Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

  20. Safety reviews of next-generation light-water reactors

    International Nuclear Information System (INIS)

    Kudrick, J.A.; Wilson, J.N.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) is reviewing three applications for design certification under its new licensing process. The U.S. Advanced Boiling Water Reactor (ABWR) and System 80+ designs have received final design approvals. The AP600 design review is continuing. The goals of design certification are to achieve early resolution of safety issues and to provide a more stable and predictable licensing process. NRC also reviewed the Utility Requirements Document (URD) of the Electric Power Research Institute (EPRI) and determined that its guidance does not conflict with NRC requirements. This review led to the identification and resolution of many generic safety issues. The NRC determined that next-generation reactor designs should achieve a higher level of safety for selected technical and severe accident issues. Accordingly, NRC developed new review standards for these designs based on (1) operating experience, including the accident at Three Mile Island, Unit 2; (2) the results of probabilistic risk assessments of current and next-generation reactor designs; (3) early efforts on severe accident rulemaking; and (4) research conducted to address previously identified generic safety issues. The additional standards were used during the individual design reviews and the resolutions are documented in the design certification rules. 12 refs

  1. Constraining neutrino magnetic moment with solar and reactor neutrino data

    OpenAIRE

    Tortola, M. A.

    2004-01-01

    We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MU...

  2. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    International Nuclear Information System (INIS)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-01-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5 percent respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock

  3. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    International Nuclear Information System (INIS)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-01-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation--or neutrino oscillation--by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5% respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical

  4. Implementation of defence in depth for next generation light water reactors

    International Nuclear Information System (INIS)

    1997-12-01

    The publication of this IAEA technical document represents the conclusion of a task, initiated in 1995, devoted to defence in depth in future reactors. It focuses mainly on the next generation of LWRs, although many general considerations may also apply to other types of reactors

  5. Development of source term evaluation method for Korean Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon Jae; Cheong, Jae Hak; Park, Jin Baek; Kim, Guk Gee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-10-15

    This project had investigate several design features of radioactive waste processing system and method to predict nuclide concentration at primary coolant basic concept of next generation reactor and safety goals at the former phase. In this project several prediction methods of source term are evaluated conglomerately and detailed contents of this project are : model evaluation of nuclide concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant(NPP), investigation of prediction parameter of source term evaluation, basic parameter of PWR, operational parameter, respectively, radionuclide removal system and adjustment values of reference NPP, suggestion of source term prediction method of next generation NPP.

  6. Feasibility and application on steam injector for next-generation reactor

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Ishiyama, Takenori; Miyano, Hiroshi; Nei, Hiromichi; Shioiri, Akio

    1991-01-01

    A feasibility study has been conducted on steam injector for a next generation reactor. The steam injector is a simple, compact passive device for water injection, such as Passive Core Injection System (PCIS) of Passive Containment Cooling System (PCCS), because of easy start-up without an AC power. An analysis model for a steam injector characteristics has been developed, and investigated with a visualized fundamental test for a two-stage Steam Injector System (SIS) for PCIS and a one-stage low pressure SIS for PCCS. The test results showed good agreement with the analysis results. The analysis and the test results showed the SIS could work over a very wide range of the steam pressure, and is applicable for PCIS or PCCS in the next generation reactors. (author)

  7. The double chooz reactor neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Botella, I Gil [CIEMAT, Basic Research Department, Avenida Complutense, 22, 28040 Madrid (Spain)], E-mail: ines.gil@ciemat.es

    2008-05-15

    The Double Chooz reactor neutrino experiment will be the next detector to search for a non vanishing {theta}{sub 13} mixing angle with unprecedented sensitivity, which might open the way to unveiling CP violation in the leptonic sector. The measurement of this angle will be based in a precise comparison of the antineutrino spectrum at two identical detectors located at different distances from the Chooz nuclear reactor cores in France. Double Chooz is particularly attractive because of its capability to measure sin{sup 2} (2{theta}{sub 13}) to 3{sigma} if sin{sup 2}(2{theta}{sub 13}) > 0.05 or to exclude sin{sup 2}(2{theta}{sub 13}) down to 0.03 at 90% C.L. for {delta}m{sup 2} = 2.5 x 10{sup -3} eV{sup 2} in three years of data taking with both detectors. The construction of the far detector starts in 2008 and the first neutrino results are expected in 2009. The current status of the experiment, its physics potential and design and expected performance of the detector are reviewed.

  8. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  9. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Simos, N.

    2011-01-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  10. Development of next-generation light water reactor

    International Nuclear Information System (INIS)

    Ishibashi, Fumihiko; Yasuoka, Makoto

    2010-01-01

    The Next-Generation Light Water Reactor Development Program, a national project in Japan, was inaugurated in April 2008. The primary objective of this program is to meet the need for the replacement of existing nuclear power plants in Japan after 2030. With the aim of setting a global standard design, the reactor to be developed offers greatly improved safety, reliability, and economic efficiency through several innovative technologies, including a reactor core system with uranium enrichment of 5 to 10%, a seismic isolation system, long-life materials, advanced water chemistry, innovative construction techniques, optimized passive and active safety systems, innovative digital technologies, and so on. In the first three years, a plant design concept with these innovative features is to be established and the effectiveness of the program will be reevaluated. The major part of the program will be completed in 2015. Toshiba is actively engaged in both design studies and technology development as a founding member of this program. (author)

  11. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  12. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    Directory of Open Access Journals (Sweden)

    Myoung Youl Pac

    2016-01-01

    Full Text Available This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (ν¯e generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the |Δm312| and |Δm322| oscillations by applying the Fourier sine and cosine transforms to the L/E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2⁡2θ13=0.1. If the energy resolution of the neutrino detector is less than 0.04/Eν and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48–53 km from the reactor(s to measure the energy spectrum of ν¯e. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  13. Estabilishing requirements for the next generation of pressurized water reactors--reducing the uncertainty

    International Nuclear Information System (INIS)

    Chernock, W.P.; Corcoran, W.R.; Rasin, W.H.; Stahlkopf, K.E.

    1987-01-01

    The Electric Power Research Institute is managing a major effort to establish requirements for the next generation of U.S. light water reactors. This effort is the vital first step in preserving the viability of the nuclear option to contribute to meet U.S. national electric power capacity needs in the next century. Combustion Engineering, Inc. and Duke Power Company formed a team to participate in the EPRI program which is guided by a Utility Steering committee consisting of experienced utility technical executives. A major thrust of the program is to reduce the uncertainties which would be faced by the utility executives in choosing the nuclear option. The uncertainties to be reduced include those related to safety, economic, operational, and regulatory aspects of advanced light water reactors. This paper overviews the Requirements Document program as it relates to the U.S. Advanced Light Water Reactor (ALWR) effort in reducing these uncertainties and reports the status of efforts to establish requirements for the next generation of pressurized water reactors. It concentrates on progress made in reducing the uncertainties which would deter selection of the nuclear option for contributing to U.S. national electric power capacity needs in the next century and updates previous reports in the same area. (author)

  14. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  15. Safety criteria for the next generation of European reactors

    International Nuclear Information System (INIS)

    Dominguez Bautista, M.T.

    1995-01-01

    For the next generation of reactors, European companies operating in the electricity sector have drawn up a document called European Utilities Requirement (EUR), which sets out the requirements to be met by the designers of future reactors. The main objective of these new requirements is to increase the safety in existing reactors, making good use of operating experience available and the technological developments of the last decade. This paper offers an in-depth analysis of the most significant characteristics, describing how the EUR requirements have been prepared and how they are being implemented by the designers. Areas covered are: - Combining deterministic and probabilistic criteria - Automation of control systems - Design extension for severe accidents - Containment design - Emergency plans - Autonomy versus manual operation

  16. Next generation reactor development activity at Hitachi, Ltd

    International Nuclear Information System (INIS)

    Yamashita, Junichi

    2005-01-01

    Developments of innovative nuclear systems in Japan have been highly requested to cope with uncertain future nuclear power generation and fuel cycle situation. Next generation reactor system shall be surely deployed earlier to be capable to provide with several options such as plutonium multi-recycle, intermediate storage of spent fuels, simplified reprocessing of spent fuels and separated storage of 'Pu+FP' and 'U', spent fuels storage after Pu LWR recycle and their combinations, while future reactor system will be targeted at ideal fuel recycle system of higher breeding gain and transmutation of radioactive wastes. Modified designs of the ABWR at large size and medium and small size have been investigated as well as a BWR based RMWR and a supercritical-pressure LWR to ensure safety and improve economics. Advanced fuel cycle technologies of a combination of fluoride volatility process and PUREX process with high decontamination (FLUOREX process) and a modified fluoride volatility process with low decontamination have been developed. (T. Tanaka)

  17. Methodology on the sparger development for Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K.

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloud acceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs

  18. Methodology on the sparger development for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloudacceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs.

  19. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  20. Probing axions with the neutrino signal from the next galactic supernova

    International Nuclear Information System (INIS)

    Fischer, Tobias; Giannotti, Maurizio; Payez, Alexandre; Ringwald, Andreas

    2016-05-01

    We study the impact of axion emission in simulations of massive star explosions, as an additional source of energy loss complementary to the standard neutrino emission. The inclusion of this channel shortens the cooling time of the nascent protoneutron star and hence the duration of the neutrino signal. We treat the axion-matter coupling strength as a free parameter to study its impact on the protoneutron star evolution as well as on the neutrino signal. We furthermore analyze the observability of the enhanced cooling in current and next-generation underground neutrino detectors, showing that values of the axion mass m a >or similar 8 x 10 -3 eV can be probed. Therefore a galactic supernova neutrino observation would provide a valuable possibility to probe axion masses in a range within reach of the planned helioscope experiment, the International Axion Observatory (IAXO).

  1. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  2. Neutrino oscillation measurements with reactors

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, R.D. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-11-01

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided important information on the neutrino masses and the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  3. Development of Next-Generation LWR (Light Water Reactor) in Japan

    International Nuclear Information System (INIS)

    Yamamoto, T.; Kasai, S.

    2011-01-01

    The Next-Generation Light Water Reactor development program was launched in Japan in April 2008. The primary objective of the program is to cope with the need to replace existing nuclear power plants in Japan after 2030. The reactors to be developed are also expected to be a global standard design. Several innovative features are envisioned, including a reactor core system with uranium enrichment above 5%, a seismic isolation system, the use of long-life materials and innovative water chemistry, innovative construction techniques, safety systems with the best mix of passive and active concepts, and innovative digital technologies to further enhance reactor safety, reliability, economics, etc. In the first 3 years, a plant design concept with these innovative features is established and the effectiveness of the program is reevaluated. The major part of the program will be completed in 2015. (author)

  4. Major NSSS design features of the Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Insk; Kim, Dong-Su

    1999-01-01

    In order to meet national needs for increasing electric power generation in the Republic of Korea in the 2000s, the Korean nuclear development group (KNDG) is developing a standardized evolutionary advanced light water reactor (ALWR), the Korean Next Generation Reactor (KNGR). It is an advanced version of the successful Korean Standard Nuclear Power Plant (KSNP) design, which meets utility needs for safety enhancement, performance improvement and ease of operation and maintenance. The KNGR design starts fro the proven design concept of the currently operating KSNPs with uprated power and advanced design features required by the utility. The KNGR design is currently in the final stage of the basic design, and the paper describes the major nuclear steam supply system (NSSS) design features of the KNGR together with introduction of the KNGR development program. (author)

  5. Oscillating neutrinos from the Galactic center

    International Nuclear Information System (INIS)

    Crocker, R.M.; Volkas, R.R.; Melia, F.

    1999-11-01

    It has recently been demonstrated that the γ-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π 0, s produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically. The ratio of γ-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino Cerenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal, but that such an observation will probably not further constrain the oscillation parameter space mapped out by current atmospheric, solar, reactor and accelerator neutrino oscillation experiments

  6. Uso de detectores de neutrinos para el monitoreo de reactores nucleares Uso de detectores de neutrinos para el monitoreo de reactores nucleares

    Directory of Open Access Journals (Sweden)

    Gerardo Moreno

    2012-02-01

    Full Text Available Se estudia la factibilidad del uso de los detectores de antineutrinos para el monitoreo de reactores nucleares. Usando un modelo sencillo de cascada de fisión a dos componentes, se ilustra la dependencia del número de antineutrinos detectados a una distancia L del reactor según la composición nuclear del combustible. Se explica el principio de detección de neutrinos de reactores en base al decaimiento beta inverso y se describe como los detectores de neutrinos pueden emplearse para el monitoreo de la producción de materiales fisibles en el reactor. Se comenta como generalizar este análisis al caso real de un reactor nuclear in situ y uno de los principales experimentos internacionales dedicados a este propósito. We study the feasibility to use antineutrinos detectors for monitoring of nuclear reactors. Using a simple model of fission shower with two components, we illustrate how the numbers of antineutrinos detected at a distance L from the reactor depend on the composition of the nuclear combustible. We explain the principles of reactor neutrino detection using inverse beta decays and we describe how neutrinos detectors can be used for monitoring the production of fissile materials within the reactors. We comment how to generalize this analysis to the realistic case of a nuclear reactor in situ and one of the main international experiments dedicated to study the use of neutrinos detectors as nuclear safeguards.

  7. Neutrino-4 experiment on the search for a sterile neutrino at the SM-3 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M. [National Research Centre “Kurchatov Institute,”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I. [National Research Centre “Kurchatov Institute,” (Russian Federation); Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K. [State Scientific Centre Research Institute of Atomic Reactors (Russian Federation); and others

    2015-10-15

    In view of the possibility of the existence of a sterile neutrino, test measurements of the dependence of the reactor antineutrino flux on the distance from the reactor core has been performed on SM-2 reactor with the Neutrino-2 detector model in the range of 6–11 m. Prospects of the search for reactor antineutrinos at short distances have been discussed.

  8. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  9. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  10. Measurement of theta13 with reactor neutrinos

    International Nuclear Information System (INIS)

    Heeger, Karsten M.; Freedman, Stuart J.; Kadel, Richard W.; Luk, Kam-Biu

    2004-01-01

    Recent experimental results have provided unambiguous evidence that neutrinos have a small but finite mass and mix from one type into another. The phenomenon of neutrino mixing is characterized by the coupling between the neutrino flavor (nu e,mu,tau ) and mass eigenstates (nu 1,2,3 ) and the associated mixing angles. Previous neutrino oscillation experiments have determined two of the three mixing angles in the neutrino mixing matrix, U MNSP . Using multiple neutrino detectors placed at different distances from a nuclear power plant, a future reactor neutrino experiment has the potential to discover and measure the coupling of the electron neutrino flavor to the third mass eigenstate, U e3 , the last undetermined element of the neutrino mixing matrix

  11. Evaluation Metrics for Intermediate Heat Exchangers for Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; Anderson, Nolan

    2011-01-01

    The Department of Energy (DOE) is working with industry to develop a next generation, high-temperature gas-cooled reactor (HTGR) as a part of the effort to supply the United States with abundant, clean, and secure energy as initiated by the Energy Policy Act of 2005 (EPAct; Public Law 109-58,2005). The NGNP Project, led by the Idaho National Laboratory (INL), will demonstrate the ability of the HTGR to generate hydrogen, electricity, and/or high-quality process heat for a wide range of industrial applications.

  12. Puzzle of "lost" reactor neutrinos solved by scientists

    CERN Multimedia

    2002-01-01

    A collaboration of Chinese, Japanese and American scientists have announced that electron antineutrinos from nuclear reactors escape detection by oscillating into another type of neutrino. The experiment confirms solar neutrino oscillation and determines the key parameters of neutrino oscillation (1/2 page).

  13. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  14. Daya bay reactor neutrino experiment

    International Nuclear Information System (INIS)

    Cao Jun

    2010-01-01

    Daya Bay Reactor Neutrino Experiment is a large international collaboration experiment under construction. The experiment aims to precisely determine the neutrino mixing angle θ 13 by detecting the neutrinos produced by the Daya Bay Nuclear Power Plant. θ 13 is one of two unknown fundamental parameters in neutrino mixing. Its magnitude is a roadmap of the future neutrino physics, and very likely related to the puzzle of missing antimatter in our universe. The precise measurement has very important physics significance. The detectors of Daya Bay is under construction now. The full operation is expected in 2011. Three years' data taking will reach the designed the precision, to determine sin 2 2θ 13 to better than 0.01. Daya Bay neutrino detector is an underground large nuclear detector of low background, low energy, and high precision. In this paper, the layout of the experiment, the design and fabrication progress of the detectors, and some highlighted nuclear detecting techniques developed in the detector R and D are introduced. (author)

  15. Next generation of nucleon decay and neutrino detectors. Presentations

    International Nuclear Information System (INIS)

    Fogli, G.L.; Covi, L.; Shiozawa, M.; Dighe, A.; Ando, S.A.; Schwetz, Th.; Nakamura, K.; Nakahata, T.; Kajita, T.; Sadoulet, B.; Jung, C.K.; Bouchez, J.; Rubbia, A.; Vagins, M.; Mondal, L.N.; Oberauer, L.; Giomataris, I.; Ianni, A.; Duchesneau, D.; Kobayashi, T.; Bishai, M.; Bishai, M.; Ray, R.; Lindroos, M.; Mezzetto, M.; Palladino, V.; Andreopoulos, C.; Dunmore, J.; Yanagisawa, C.; Aihara, H.; Ferenc, D.; Pouthas, J.; Birkel, M.A.; Marmonier, C.; Mosca, L.; Gerbier, G.; Jung, C.K.; Nakagawa, T.; Levy, M.; Duffaut, P.; Nakamura, K.

    2005-01-01

    This document gathers the transparencies presented at the workshop, they are divided into 5 topics: 1) physics motivation, 2) underground projects, 3) present and future neutrino beams, 4) background studies and photo-detection, and 5) large cavities and vessels. The neutrino oscillation picture is still missing 3 fundamental ingredients: the mixing angle θ 13 , the mass pattern and the CP phase δ. Future neutrino beams of conventional and novel design aimed at megaton type detector could give access to these parameters

  16. Next generation of nucleon decay and neutrino detectors. Presentations

    Energy Technology Data Exchange (ETDEWEB)

    Fogli, G L; Covi, L; Shiozawa, M; Dighe, A; Ando, S A; Schwetz, Th; Nakamura, K; Nakahata, T; Kajita, T; Sadoulet, B; Jung, C K; Bouchez, J; Rubbia, A; Vagins, M; Mondal, L N; Oberauer, L; Giomataris, I; Ianni, A; Duchesneau, D; Kobayashi, T; Bishai, M; Bishai, M; Ray, R; Lindroos, M; Mezzetto, M; Palladino, V; Andreopoulos, C; Dunmore, J; Yanagisawa, C; Aihara, H; Ferenc, D; Pouthas, J; Birkel, M A; Marmonier, C; Mosca, L; Gerbier, G; Jung, C K; Nakagawa, T; Levy, M; Duffaut, P; Nakamura, K

    2005-07-01

    This document gathers the transparencies presented at the workshop, they are divided into 5 topics: 1) physics motivation, 2) underground projects, 3) present and future neutrino beams, 4) background studies and photo-detection, and 5) large cavities and vessels. The neutrino oscillation picture is still missing 3 fundamental ingredients: the mixing angle {theta}{sub 13}, the mass pattern and the CP phase {delta}. Future neutrino beams of conventional and novel design aimed at megaton type detector could give access to these parameters.

  17. Reactor neutrinos study: integration and characterization of the Nucifer detector

    International Nuclear Information System (INIS)

    Gaffiot, Jonathan

    2012-01-01

    The major advances done in the understanding of neutrinos properties and in detector technology have opened the door to a new discipline: the Applied Antineutrino Physics. Indeed, this particle has the great advantage to carry information from its emission place without perturbation. Because neutrinos are inextricably linked to nuclear processes, new applications are in nuclear safeguards. In this context, the Nucifer project aims to test a small electron-antineutrino detector to be installed a few 10 meters from a reactor core for monitoring its thermal power and for testing the sensitivity to the plutonium content. Moreover, recent re-analysis of previous short-distance reactor-neutrino experiments shows a significant discrepancy between measured and expected neutrino count rates. Among the various hypotheses a new phenomenon as the existence of a fourth sterile neutrino can explain this anomaly. To be able to count neutrinos and get the corresponding energy spectrum, the detection is based on the inverse beta decay in about 850 kg of doped liquid scintillator. The experimental challenge is to operate such a small detector in a high background place, due to the closeness with the surface and the reactor radiations. The detector is now finished and data taking has begun at the Osiris research reactor in Saclay since April 2012. Sadly, unexpected low liquid attenuation length and high gamma background level prevented us to highlight neutrinos. We are now waiting for a liquid change and a new lead wall to study reactor monitoring and to test the sterile neutrino hypothesis. (author) [fr

  18. Latest Results from the Daya Bay Reactor Neutrino Experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Among all the fundamental particles that have been experimentally observed, neutrinos remain one of the least understood. The Daya Bay Reactor Neutrino Experiment in China consists of eight identical detectors placed underground at different baselines from three groups of nuclear reactors, a configuration that is ideally suited for studying the properties of these elusive particles. This talk will present three sets of results that have just recently been released by the Daya Bay Collaboration: (i) a precision measurement of the oscillation parameters that drive the disappearance of electron antineutrinos at short baselines, (ii) a search for sterile neutrino mixing, and (iii) a high-statistics determination of the absolute flux and spectrum of reactor-produced electron antineutrinos. All of these results extend the limits of our knowledge in their respective areas and thus shed new light on neutrinos and the physics that surround them.

  19. SoLid: An innovative anti-neutrino detector for searching oscillations at the SCK•CEN BR2 reactor

    Science.gov (United States)

    Abreu, Yamiel; SoLid Collaboration

    2017-02-01

    The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillations at a very short baseline from the SCK•CEN BR2 research reactor (Mol, Belgium). A novel detector approach to measure reactor anti-neutrinos was developed based on an innovative sandwich of composite polyvinyl-toluene and 6LiF:ZnS(Ag) scintillators. The system is highly segmented and read out by a network of wavelength shifting fibers and SiPM. High experimental sensitivity can be achieved compared to other standard technologies thanks to the combination of high granularity, good neutron-gamma discrimination using 6LiF:ZnS(Ag) scintillator and precise localisation of the Inverse Beta Decay products. This technology can be considered as a new generation of an anti-neutrino detector. This compact system requires limited passive shielding and relies on spatial topology to determine the different classes of backgrounds. We will describe the principle of detection and the detector design. Particular focus on the neutron discrimination will be made, as well as on the capability to use cosmic muons for channel equalisation and energy calibration. The performance of the first 288 kg SoLid module (SM1), based on the data taken at BR2 from February to September 2015, will be presented. We will conclude with the next phase, which will start in 2016, and the future plans of the experiment.

  20. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Science.gov (United States)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  1. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  2. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  3. Wroclaw neutrino event generator

    International Nuclear Information System (INIS)

    Nowak, J A

    2006-01-01

    A neutrino event generator developed by the Wroclaw Neutrino Group is described. The physical models included in the generator are discussed and illustrated with the results of simulations. The considered processes are quasi-elastic scattering and pion production modelled by combining the Δ resonance excitation and deep inelastic scattering

  4. Use of virtual environments to reduce the construction costs of the next generation nuclear power reactors

    International Nuclear Information System (INIS)

    Whisker, V.E.; Baratta, A.J.

    2007-01-01

    The near term deployment of the next generation of reactors will only be successful if they are built on time and without the costly overruns experienced in the previous generation. One critical factor in achieving these goals is to ensure the design is optimized for constructability. In this work the authors explored the effectiveness of full-scale virtual reality simulation in the optimization of the design and construction of the next generation of nuclear reactors. The research tested the suitability of immersive virtual reality display technology in aiding engineers in evaluating potential cost reductions that can be realized by the optimization of design and installation and construction sequences. The intent of this research is to see if this type of technology can be used in capacities similar to those currently filled by full-scale physical mockups and desktop simulations. Using a fully-immersive five sided virtual reality system, known as a CAVE, the authors constructed a series of virtual mockups that represented two next generation nuclear power plants, the Westinghouse AP-1000 and the Pebble Bed Modular Reactor (PBMR). These virtual mockups were then tested as a design tool to help locate and correct problem areas, to optimize the construction sequence, and to assist with familiarizing trades people with the performance of maintenance activities. A series of experiments were performed to assess the usefulness of these virtual mockups in accomplishing these tasks. (authors)

  5. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    Science.gov (United States)

    Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie

    2018-01-01

    The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor

  6. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    Directory of Open Access Journals (Sweden)

    Mills Robert W

    2018-01-01

    Full Text Available The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152 during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of

  7. EDF view on next generation reactor safety and operability issues

    International Nuclear Information System (INIS)

    Serviere, G.

    2002-01-01

    is involved at various degrees in the evaluation of next generation: - Light-water reactors; - Gas-cooled reactors; - Liquid-metal reactors. Available information is not the same for all concepts, but nevertheless adequate for identifying areas where confirmation of assumptions would be needed. After discussing some crosscut issues, this paper outlines which areas would have to be clarified for each type of reactor before they could be considered proven by the company. Issues for which R and D programs could be needed are also be identified. (author)

  8. SoLid: An innovative anti-neutrino detector for searching oscillations at the SCK• CEN BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Yamiel, E-mail: yamiel.abreu@uantwerpen.be

    2017-02-11

    The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillations at a very short baseline from the SCK• CEN BR2 research reactor (Mol, Belgium). A novel detector approach to measure reactor anti-neutrinos was developed based on an innovative sandwich of composite polyvinyl-toluene and {sup 6}LiF:ZnS(Ag) scintillators. The system is highly segmented and read out by a network of wavelength shifting fibers and SiPM. High experimental sensitivity can be achieved compared to other standard technologies thanks to the combination of high granularity, good neutron–gamma discrimination using {sup 6}LiF:ZnS(Ag) scintillator and precise localisation of the Inverse Beta Decay products. This technology can be considered as a new generation of an anti-neutrino detector. This compact system requires limited passive shielding and relies on spatial topology to determine the different classes of backgrounds. We will describe the principle of detection and the detector design. Particular focus on the neutron discrimination will be made, as well as on the capability to use cosmic muons for channel equalisation and energy calibration. The performance of the first 288 kg SoLid module (SM1), based on the data taken at BR2 from February to September 2015, will be presented. We will conclude with the next phase, which will start in 2016, and the future plans of the experiment.

  9. Experiment for search for sterile neutrino at SM-3 reactor

    Science.gov (United States)

    Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Cherniy, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Zinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2016-11-01

    In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.

  10. A study of reactor neutrino monitoring at the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Furuta, H.; Fukuda, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Ishitsuka, M.; Ito, C.; Katsumata, M.; Kawasaki, T.; Konno, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Miyata, H.; Nagasaka, Y.; Nitta, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.

    2012-01-01

    We carried out a study of neutrino detection at the experimental fast reactor JOYO using a 0.76 tons gadolinium loaded liquid scintillator detector. The detector was set up on the ground level at 24.3 m from the JOYO reactor core of 140 MW thermal power. The measured neutrino event rate from reactor on-off comparison was 1.11±1.24(stat.)±0.46(syst.) events/day. Although the statistical significance of the measurement was not enough, backgrounds in such a compact detector at the ground level were studied in detail and MC simulations were found to describe the data well. A study for improvement of the detector for future such experiments is also shown.

  11. The neutrino in all its states - Seminar dedicated to Jacques Bouchez - Slides of the presentations

    International Nuclear Information System (INIS)

    Spiro, M.; Pessard, H.; Rubbia, A.; Petcov, S.; Cousins, B.; Fechner, M.; Mezetto, M.

    2011-01-01

    The present scientific seminar, organized in the memory of Jacques Bouchez is centered on neutrino physics and presents the state of the art on experiments, on future projects and on the theory of neutrinos (oscillations and MSW effect). This document is made up of the slides of 7 presentations: 1) The achievements of J.Bouchez; 2) Reactor neutrino experiments from Bugey to double-Chooz (via RENO and Daya-Bay); 3) Neutrinos and accelerators: on the way toward the third flavor (NOMA, OPERA and T2K experiments); 4) Neutrino oscillations and MSW effect; 5) Some statistical questions in neutrino physics; 6) Long baseline oscillations: towards Japan future neutrino oscillation experiments; and 7) Next generation of neutrino oscillation experiments. (A.C.)

  12. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.

  13. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  14. Proposal and analysis of the benchmark problem suite for reactor physics study of LWR next generation fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    In order to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels, the Research Committee on Reactor Physics organized by JAERI has established the Working Party on Reactor Physics for LWR Next Generation Fuels. The next generation fuels mean the ones aiming for further extended burn-up such as 70 GWd/t over the current design. The Working Party has proposed six benchmark problems, which consists of pin-cell, PWR fuel assembly and BWR fuel assembly geometries loaded with uranium and MOX fuels, respectively. The specifications of the benchmark problem neglect some of the current limitations such as 5 wt% {sup 235}U to achieve the above-mentioned target. Eleven organizations in the Working Party have carried out the analyses of the benchmark problems. As a result, status of accuracy with the current data and method and some problems to be solved in the future were clarified. In this report, details of the benchmark problems, result by each organization, and their comparisons are presented. (author)

  15. Areva's water chemistry guidebook with chemistry guidelines for next generation plants (AREVA EPRTM reactors)

    International Nuclear Information System (INIS)

    Ryckelynck, N.; Chahma, F.; Caris, N.; Guillermier, P.; Brun, C.; Caron-Charles, M.; Lamanna, L.; Fandrich, J.; Jaeggy, M.; Stellwag, B.

    2012-09-01

    Over the years, AREVA globally has maintained a strong expertise in LWR water chemistry and has been focused on minimizing short-term and long-term detrimental effects of chemistry for startup, operation and shutdown chemistry for all key plant components (material integrity and reliability, promote optimal thermal performances, etc.) and fuel. Also AREVA is focused on minimizing contamination and equipment/plant dose rates. Current Industry Guidelines (EPRI, VGB, etc.) provide utilities with selected chemistry guidance for the current operating fleet. With the next generation of PWR plants (e.g. AREVA's EPR TM reactor), materials of construction and design have been optimized based on industry lessons learned over the last 50+ years. To support the next generation design, AREVA water chemistry experts, have subsequently developed a Chemistry Guidebook with chemistry guidelines based on an analysis of the current international practices, plant operating experience, R and D data and calculation codes now available and/or developed by AREVA. The AREVA LWR chemistry Guidebook can be used to help resolve utility and safety authority questions and addresses regulation requirement questions/issues for next generation plants. The Chemistry Guidebook provides water chemistry guidelines for primary coolant, secondary side circuit and auxiliary systems during startup, normal operation and shutdown conditions. It also includes conditioning and impurity limits, along with monitoring locations and frequency requirements. The Chemistry Guidebook Guidelines will be used as a design reference for AREVA's next generation plants (e.g. EPR TM reactor). (authors)

  16. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)

    2016-06-15

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)

  17. The importance of collaboration in the advancement of current and next generation reactors

    International Nuclear Information System (INIS)

    Jackson, Kate; Goossen, John; Anness, Mike; Meston, Tom

    2010-01-01

    The sections of the contribution are as follows: Tradition of innovation. Growing demand for nuclear power; Collaboration drivers; Responses. Knowledge transfer and management is critical. What kind of focus? Equipment reliability. Advanced repair, replacement and construction approaches. Materials. Plant safety margins. Spent fuel management. Examples of European collaboration. Zorita materials examination. Collaboration in the development of next generation reactors; Westinghouse R and D priorities; A look to the future. (P.A.)

  18. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  19. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  20. Neutrino mass?

    International Nuclear Information System (INIS)

    Kayser, B.

    1992-01-01

    After arguing that we should be looking for evidence of neutrino mass, we illustrate the possible consequences of neutrino mass and mixing. We then turn to the question of whether neutrinos are their own antiparticles, and to the process which may answer this question: neutrinoless double beta decay. Next, we review the proposed Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem, and discuss models which can generate neutrino electromagnetic moments large enough to play a role in the sun. Finally, we consider how the possible 17 keV neutrino, if real, would fit in with everything we know about neutrinos. (orig.)

  1. Non-standard interaction effects at reactor neutrino experiments

    International Nuclear Information System (INIS)

    Ohlsson, Tommy; Zhang, He

    2009-01-01

    We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on θ 13 . We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles θ 13 and θ 12 are discussed in detailed. Finally, we show that, even for a vanishing θ 13 , an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs

  2. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  3. Design optimization of general arrangement in Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, S. H.; Jung, D. W.; Choi, Y. B.; Cho, S. J.

    1999-01-01

    In order to optimize the general arrangement(GA) of Korean Next Generation Reactor (KNGR), field opinions in domestic nuclear power plants have been collected, and the bench marking on UCN No.1,2 which were estimated to be the most excellent in view of operability and maintenance has been accomplished. Through this work, design optimization items for GA were reviewed. Major items to be selected for optimization are summarized as follows; 'Expanding the compound building function and the mezzanine floor concept in the auxiliary building', 'Including the diesel generator building to the auxiliary building', 'Change of the equipment removal method in the auxiliary building'. With these GA design optimization, the auxiliary building boundary will be improved as a complete rectangular type. The power block volume except the changing effect to the single containment structure will be reduced to about 10% in comparison with that of in KNGR phase II

  4. Design requirements of instrumentation and control systems for next generation reactor

    International Nuclear Information System (INIS)

    Koo, In Soo; Lee, Byung Sun; Park, Kwang Hyun; Park, Heu Yoon; Lee, Dong Young; Kim, Jung Taek; Hwang, In Koo; Chung, Chul Hwan; Hur, Seop; Kim, Chang Hoi; Na, Nan Ju

    1994-03-01

    In this report, the basic design requirements of Instrumentation and Control systems for next generation reactor are described, which are top-tier level, to support the advanced I and C systems. It contains the requirements in accordance with the plant reliability, the plant performance, the operator's aid functions, the features for maintenance and testing, licensing issues for I and C systems. Advanced I and C systems are characterized such as the application of the digital and the human engineering technologies. To development of this requirements, the I and C systems for the foreign passive and the evolutionary types of reactor and the domestic conventional reators were reviewed and anlysed. At the detail design stage, these requirements will be used for top-tier requirements. To develop the detail design requirements in the future, more quantitive and qualitive analyses are need to be added. (Author) 44 refs

  5. Design requirements of instrumentation and control systems for next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Lee, Byung Sun; Park, Kwang Hyun; Park, Heu Yoon; Lee, Dong Young; Kim, Jung Taek; Hwang, In Koo; Chung, Chul Hwan; Hur, Seop; Kim, Chang Hoi; Na, Nan Ju [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-03-01

    In this report, the basic design requirements of Instrumentation and Control systems for next generation reactor are described, which are top-tier level, to support the advanced I and C systems. It contains the requirements in accordance with the plant reliability, the plant performance, the operator`s aid functions, the features for maintenance and testing, licensing issues for I and C systems. Advanced I and C systems are characterized such as the application of the digital and the human engineering technologies. To development of this requirements, the I and C systems for the foreign passive and the evolutionary types of reactor and the domestic conventional reators were reviewed and anlysed. At the detail design stage, these requirements will be used for top-tier requirements. To develop the detail design requirements in the future, more quantitive and qualitive analyses are need to be added. (Author) 44 refs.

  6. Search for eV sterile neutrinos at a nuclear reactor — the Stereo project

    Science.gov (United States)

    Haser, J.; Stereo Collaboration

    2016-05-01

    The re-analyses of the reference spectra of reactor antineutrinos together with a revised neutrino interaction cross section enlarged the absolute normalization of the predicted neutrino flux. The tension between previous reactor measurements and the new prediction is significant at 2.7 σ and is known as “reactor antineutrino anomaly”. In combination with other anomalies encountered in neutrino oscillation measurements, this observation revived speculations about the existence of a sterile neutrino in the eV mass range. Mixing of this light sterile neutrino with the active flavours would lead to a modification of the detected antineutrino flux. An oscillation pattern in energy and space could be resolved by a detector at a distance of few meters from a reactor core: the neutrino detector of the Stereo project will be located at about 10 m distance from the ILL research reactor in Grenoble, France. Lengthwise separated in six target cells filled with 2 m3 Gd-loaded liquid scintillator in total, the experiment will search for a position-dependent distortion in the energy spectrum.

  7. Tying the knot with next-generation reactors: Can the industry afford a second marriage?

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This article examines the future of nuclear power beyond the year 2000. The nuclear industry just celebrated 50 years of nuclear technology, but no new plants have been ordered in the US since 1978 and some European countries are giving up on the nuclear option. This article discusses the four US advanced light-water reactor design and safety features, specific design features and parameters for the advanced designs, advanced designs from Europe, features utilities look for in a reactor, evolutionary versus passive designs, gaining public acceptance for new designs, and what alternatives are there to installing next-generation nuclear systems?

  8. Neutrino Mass Models: impact of non-zero reactor angle

    International Nuclear Information System (INIS)

    King, Stephen F.

    2011-01-01

    In this talk neutrino mass models are reviewed and the impact of a non-zero reactor angle and other deviations from tri-bi maximal mixing are discussed. We propose some benchmark models, where the only way to discriminate between them is by high precision neutrino oscillation experiments.

  9. Monochromatic neutrinos from massive fourth generation neutrino annihilation in the Sun and Earth

    International Nuclear Information System (INIS)

    Belotskij, K.M.; Khlopov, M.Yu.; Shibaev, K.I.

    2001-01-01

    Accumulation inside the Earth and Sun of heavy (with the mass of 50 GeV) primordial neutrinos and antineutrinos of the fourth generation and their successive annihilation is considered. The minimal estimations of annihilational fluxes of monochromatic e, μ, τ neutrinos (neutrinos and antineutrinos) with the energy of 50 GeV are 4.1·10 -6 cm -2 ·s -1 from the Earth core and 1.1·10 -7 cm -2 ·s -1 from the Sun core. That makes the analysis of underground neutrino observatory data the additional source of information on the existence of massive stable 4th generation neutrino. It is shown that due to the kinetic equilibrium between the influx of the neutrinos and their annihilation the existence of new U(1)-gauge interaction of the 4th generation neutrino does not virtually influence the estimations of annihilational e-, μ-, τ-neutrino fluxes

  10. Future Long-Baseline Neutrino Facilities and Detectors

    Directory of Open Access Journals (Sweden)

    Milind Diwan

    2013-01-01

    Full Text Available We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  11. Future Long-Baseline Neutrino Facilities and Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Milind [Brookhaven; Edgecock, Rob [Huddersfield U.; Hasegawa, Takuya [KEK, Tsukuba; Patzak, Thomas [APC, Paris; Shiozawa, Masato [Kamioka Observ.; Strait, Jim [Fermilab

    2013-01-01

    We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  12. The ideal neutrino beams

    CERN Document Server

    Lindroos, Mats

    2009-01-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented....

  13. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    International Nuclear Information System (INIS)

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-01-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10 -8 . We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix

  14. Neutrino remote diagnostics of in-reactor processes

    CERN Document Server

    Rusov, V D; Shaaban, I

    2002-01-01

    The correlation passive location of spontaneous chain reaction inside reactor sources algorithm structures are obtained. The considered algorithm structures could be the base for practical realisation of neutrino sources passive location system. The automatics distance system of continues control for energy-generation and radiation creep of reactor fuel are considered. The model of a radiation creep is explained within the framework of the mechanism of gliding and climbing dislocations based on the conception of a dislocation as not ideal sink for point radiation defects (PRD). The used model is efficient for installed PRD concentration,considerably exceeding thermally steady state concentration. The gliding of dislocation are describing as due to moving dislocation kinks in Peierls relief. The climbing of dislocation are describing as due to moving dislocation jogs. The complex of the computer programs simulating the radiation creep needed the same output parameters: PRD concentration, which calculated by ne...

  15. Development of digital plant protection system for Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Suk-Joon Park

    1998-01-01

    A Digital Plant Protection System (DPPS) for Korean Next Generation Reactor (KNGR) is being developed using the Programmable Logic Controller (PLC) technology. For the design verification, the development of the DPPS prototype is progressing at this time. The prototype hardware equipment is installed and software coding is started. DPPS software is being coded by strict software V and V activities and function block language that uses simple graphical symbols. By adopting the PLC technology, the design of DPPS is possible to take full advantages in areas such as automatic testing, simplified calibration, improved isolation between redundant channels, reduced internal and external wiring and increased plant availability. (author)

  16. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  17. The New Status of Argon-37 Artificial Neutrino Source Project

    CERN Document Server

    Abdurashitov, J N; Mirmov, I N; Veretenkin, E P; Yants, V E; Oshkanov, N N; Karpenko, A I; Maltsev, V V; Barsanov, V I; Trubin, K S; Zlokazov, S B; Khomyakov, Y S; Poplavsky, V M; Saraeva, T O; Vasiliev, B A; Mishin, O V; Bowles, T J; Teasdale, W A; Lande, K; Wildenhain, P S; Cleveland, B T; Elliott, S R; Haxton, W; Wilkerson, J F; Suzuki, A; Suzuki, Y; Nakahata, M

    2002-01-01

    Solution of the solar neutrino problem is significantly depends on the next generation of detectors that can measure the neutrino radiation from the Sun in intermediate energies. An intense (approx 1 MCi) sup 3 sup 7 Ar source would be an ideal tool for the calibration of new solar neutrino detectors. The technology of the production of such a source is based on the irradiation of a large mass of a Ca-containing target in a high-flux fast-neutron reactor. Produced sup 3 sup 7 Ar extracted from this target, will be purified and encapsulated in a source holder. A joint scientific collaboration of Russian, US and Japanese institutions are researching and developing the initial steps of this work and are funded by ISTC and CRDF.

  18. Reactor Neutrino Detection for Non Proliferation with the NUCIFER Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bouvet, L. [CEA, Centre de Saclay, IRFU, Gif-sur-Yvette, (France); Bouvier, S.; Bui, V. M. [Laboratoire Subatech, Ecole des Mines, Nantes Cedex 3 (France); others, and

    2012-06-15

    Neutrinos are the most abundant matter particles in the Universe. Thoroughly investigated in basic science, the neutrino field is now delivering first applications to the monitoring of nuclear reactors. The neutrinos are emitted in the decay chain of the fission products; therefore measuring their flux provides real-time information, directly related to the fission process occurring in the reactor core. Because of the very weak interaction of neutrinos with matter a neutrino detector can stand outside the core containment vessel and provide a non-intrusive and inherently tamper resistant measurement. After a brief review of the existing data and worldwide projects, we present the NUCIFER experiment. The active part of the detector is a tank filled up with one ton of Gadolinium-doped liquid scintillator. Sixteen photomultiplier tubes, isolated from the liquid by an acrylic buffer, read out the light produced by the interaction of a neutrino with the protons of the liquid. The tank is surrounded by plastic scintillator plates to veto the cosmic rays. Then polyethylene and lead shielding suppress the background coming from external neutrons and gamma rays respectively. The NUCIFER detector has been designed for an optimal compromise between the detection performances and the specifications of operation in a safeguards regime. Its global footprint is 2.8 m x 2.8 m and it can monitor remotely the nuclear power plant thermal power and Plutonium content with very little maintenance on years scale. The experiment is currently installed near the OSIRIS research reactor (70 MWth) at CEA, in Saclay, France. First data are expected by May 2012. This work is done in contact with the IAEA/SGTN division that is currently investigating the potentiality of neutrinos as a novel safeguards tool. A dedicated working group has been created in 2010 to coordinate the simulation effort of various reactor types as well as the development of dedicated detectors and define and eventually

  19. Reconstruction of GeV Neutrino Events in LENA

    International Nuclear Information System (INIS)

    Moellenberg, R.; Feilitzsch, F. von; Goeger-Neff, M.; Hellgartner, D.; Lewke, T.; Meindl, Q.; Oberauer, L.; Potzel, W.; Tippmann, M.; Winter, J.; Wurm, M.; Peltoniemi, J.

    2011-01-01

    LENA (Low Energy Neutrino Astronomy) is a proposed next generation liquid-scintillator detector with about 50 kt target mass. Besides the detection of solar neutrinos, geoneutrinos, supernova neutrinos and the search for the proton decay, LENA could also be used as the far detector of a next generation neutrino beam. The present contribution outlines the status of the Monte Carlo studies towards the reconstruction of GeV neutrinos in LENA. Both the tracking capabilities at a few hundred MeV, most interesting for a beta beam, and above 1 GeV for a superbeam experiment are presented.

  20. Measurement of neutrinos released in nuclear reactors through the Borexino experiment; Mesure des neutrinos de reacteurs nucleaires dans l'experience Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Dadoun, O

    2003-06-01

    The main goal of the Borexino experiment is to measure in real time the solar neutrino flux from the beryllium (Be{sup 7}) line at 862 keV. Beyond this pioneer low energy neutrino detection, Borexino will be able to measure solar neutrinos above the MeV, (B{sup 8} neutrinos and pep neutrinos), nuclear reactor neutrinos (with an average energy of 3 MeV) and the supernova neutrinos (their spectrum goes up to some ten MeV). In this work I mainly focus on the study of the nuclear reactors neutrinos. This field has recently been enriched by the results of the KamLAND experiment, which have greatly improved the determination of the neutrino oscillation parameters. In order to measure these events which are above the MeV, the Borexino collaboration entrusted the PCC group at College de France, with the tasks of developing a fast digit system running at 400 MHz: the FADC cards. The PCC group designed the FADC cards and completed them at the beginning of 2002. The first cards which were introduced in the main electronic acquisition unit allowed us to control their functioning and that of the acquisition software. FADC cards were also installed in the Borexino prototype, CTF. The data are analysed in order to determine a limit to the expected background noise of Borexino in measuring the nuclear reactor neutrinos. (author)

  1. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  2. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  3. Coherent neutrino scattering with low temperature bolometers at Chooz reactor complex

    International Nuclear Information System (INIS)

    Billard, J; Gascon, J; Jesus, M De; Carr, R; Formaggio, J A; Heine, S T; Johnston, J; Leder, A; Sibille, V; Winslow, L; Dawson, J; Lasserre, T; Figueroa-Feliciano, E; Palladino, K J; Vivier, M

    2017-01-01

    We present the potential sensitivity of a future recoil detector for a first detection of the process of coherent elastic neutrino nucleus scattering (CE ν NS). We use the Chooz reactor complex in France as our luminous source of reactor neutrinos. Leveraging the ability to cleanly separate the rate correlated with the reactor thermal power against (uncorrelated) backgrounds, we show that a 10 kg cryogenic bolometric array with 100 eV threshold should be able to extract a CE ν NS signal within one year of running. (paper)

  4. Detecting Dark Photons with Reactor Neutrino Experiments

    Science.gov (United States)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ reactors as potential sources of intense fluxes of low-mass dark photons.

  5. Development of digital plant protection system for Korean Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suk-Joon [NSSS Engineering and Development Division, Korea Power Engineering Company, Taejon (Korea, Republic of)

    1998-10-01

    A Digital Plant Protection System (DPPS) for Korean Next Generation Reactor (KNGR) is being developed using the Programmable Logic Controller (PLC) technology. For the design verification, the development of the DPPS prototype is progressing at this time. The prototype hardware equipment is installed and software coding is started. DPPS software is being coded by strict software V and V activities and function block language that uses simple graphical symbols. By adopting the PLC technology, the design of DPPS is possible to take full advantages in areas such as automatic testing, simplified calibration, improved isolation between redundant channels, reduced internal and external wiring and increased plant availability. (author) 8 refs, 4 figs, 3 tabs

  6. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Beck, J.M.; Collins, J.W.; Garcia, C.B.; Pincock, L.F.

    2010-01-01

    High Temperature Gas Reactors (HTGR) have been designed and operated throughout the world over the past five decades. These seven HTGRs are varied in size, outlet temperature, primary fluid, and purpose. However, there is much the Next Generation Nuclear Plant (NGNP) has learned and can learn from these experiences. This report captures these various experiences and documents the lessons learned according to the physical NGNP hardware (i.e., systems, subsystems, and components) affected thereby.

  7. The GENIE neutrino Monte Carlo generator

    International Nuclear Information System (INIS)

    Andreopoulos, C.; Bell, A.; Bhattacharya, D.; Cavanna, F.; Dobson, J.; Dytman, S.; Gallagher, H.; Guzowski, P.; Hatcher, R.; Kehayias, P.; Meregaglia, A.; Naples, D.; Pearce, G.; Rubbia, A.; Whalley, M.; Yang, T.

    2010-01-01

    GENIE is a new neutrino event generator for the experimental neutrino physics community. The goal of the project is to develop a 'canonical' neutrino interaction physics Monte Carlo whose validity extends to all nuclear targets and neutrino flavors from MeV to PeV energy scales. Currently, emphasis is on the few-GeV energy range, the challenging boundary between the non-perturbative and perturbative regimes, which is relevant for the current and near future long-baseline precision neutrino experiments using accelerator-made beams. The design of the package addresses many challenges unique to neutrino simulations and supports the full life-cycle of simulation and generator-related analysis tasks. GENIE is a large-scale software system, consisting of ∼120000 lines of C++ code, featuring a modern object-oriented design and extensively validated physics content. The first official physics release of GENIE was made available in August 2007, and at the time of the writing of this article, the latest available version was v2.4.4.

  8. Safety design criteria for the next generation Sodium-cooled fast reactors based on lessons learned from the Fukushima NPS accident

    International Nuclear Information System (INIS)

    Sakai, Takaaki

    2012-01-01

    In this presentation, architecture of the safety design criteria as requirements for SFR system and the activities on safety research works to establish safety evaluation methods for the next generation SFRs are summarized with the basis on lessons learned from the Fukushima NPS accident. Nuclear safety is a grovel issue which should be achieved by the international cooperation. In respect of the development for the next generation reactor, it is necessary to build the harmonized safety criteria and evaluation methods to establish the next level of safety

  9. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  10. CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Gando, A; Gando, Y; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Ishikawa, H; Koga, M; Matsuda, R; Matsuda, S; Mitsui, T; Motoki, D; Nakamura, K; Oki, Y; Otani, M; Shimizu, I; Shirai, J; Suekane, F; Suzuki, A; Takemoto, Y; Tamae, K; Ueshima, K; Watanabe, H; Xu, BD; Yamada, S; Yamauchi, Y; Yoshida, H; Cribier, M; Durero, M; Fischer, V; Gaffiot, J; Jonqueres, N; Kouchner, A; Lasserre, T; Leterme, D; Letourneau, A; Lhuillier, D; Mention, G; Rampal, G; Scola, L; Veyssiere, C; Vivier, M; Yala, P; Berger, BE; Kozlov, A; Banks, T; Dwyer, D; Fujikawa, BK; Han, K; Kolomensky, YG; Mei, Y; O' Donnell, T; Decowski, P; Markoff, DM; Yoshida, S; Kornoukhov, VN; Gelis, TVM; Tikhomirov, GV; Learned, JG; Maricic, J; Matsuno, S; Milincic, R; Karwowski, HJ; Efremenko, Y; Detwiler, A; Enomoto, S

    2017-05-12

    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Δm$2\\atop{new}$ ≳ 0.1 eV2 and sin2(2θnew) > 0.05.

  11. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  12. On fire risk/methodology for the next generation of reactors and nuclear facilities

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Alesso, H.P.; Altenbach, T.J.

    1992-01-01

    Methodologies for including fire in probabilistic risk assessments (PRAs) have been evolving during the last ten years. Many of these studies show that fire risk constitutes a significant percentage of external events, as well as the total core damage frequency. This paper summarizes the methodologies used in the fire risk analysis of the next generation of reactors and existing DOE nuclear facilities. Methodologies used in other industries, as well as existing nuclear power plants, are also discussed. Results of fire risk studies for various nuclear plants and facilities are shown and compared

  13. Next generation PWR

    International Nuclear Information System (INIS)

    Tanaka, Toshihiko; Fukuda, Toshihiko; Usui, Shuji

    2001-01-01

    Development of LWR for power generation in Japan has been intended to upgrade its reliability, safety, operability, maintenance and economy as well as to increase its capacity in order, since nuclear power generation for commercial use was begun on 1970, to steadily increase its generation power. And, in Japan, ABWR (advanced BWR) of the most promising LWR in the world, was already used actually and APWR (advanced PWR) with the largest output in the world is also at a step of its actual use. And, development of the APWR in Japan was begun on 1980s, and is at a step of plan on construction of its first machine at early of this century. However, by large change of social affairs, economy of nuclear power generation is extremely required, to be positioned at an APWR improved development reactor promoted by collaboration of five PWR generation companies and the Mitsubishi Electric Co., Ltd. Therefore, on its development, investigation on effect of change in social affairs on nuclear power stations was at first carried out, to establish a design requirement for the next generation PWR. Here were described on outline, reactor core design, safety concept, and safety evaluation of APWR+ and development of an innovative PWR. (G.K.)

  14. Constraining dynamical neutrino mass generation with cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2017-09-01

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.

  15. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Kyberd, P.; et al.

    2012-06-01

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly give tantalizing hints of new physics. Models beyond the neutrino-SM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or 'sterile.' Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this Letter of Intent, we describe a facility, nuSTORM, 'Neutrinos from STORed Muons,' and an appropriate far detector for neutrino oscillation searches at short baseline. We present sensitivity plots that indicated that this experimental approach can provide over 10 sigma confirmation or rejection of the LSND/MinBooNE results. In addition we indicate how the facility can be used to make precision neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments.

  16. Study on dual plant concept for the next generation boiling water reactors

    International Nuclear Information System (INIS)

    Sato, Takashi; Oikawa, Hirohide

    1999-01-01

    The paper presents the study results on the basic concept of dual BWRs. For the convenience, we call the concept here as Trial Study on BWR dual concept (TSBWR dual). The concept is general and applicable to all BWRs which have internal recirculation pumps (RIP). The TSBWR dual is a plant concept of dual BWRs contained in a same secondary containment building. The plant output is from 2 x l,350 MWe up to 2 x 1,700 MWe. This concept is mainly aiming at safety improvement and cost savings of the next generation BWRs. The TSBWR dual has two RPVs and two dry wells (DW). It has, however, only one wet well (WW) and only one R/B. The WW and the R/B are shared by the dual reactors. The operating floor is also shared by the two reactors. The TSBWR dual has both passive safety systems and active safety systems. They are also shared between the two reactors. A lot of sharing between the dual reactors enables significant cost savings accompanied by the power increase up to 3,400 MWe. Although the TSBWR dual consists of two reactors, the simplified cylindrical configuration of the key structures and reduction of the R/B height can minimize the plant construction period. The TSBWR dual provides a concept with which we can challenge to construct a dual BWR plant in the near future. (author)

  17. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    International Nuclear Information System (INIS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T.J.; Cesar, J.; Cushman, P.; Dent, J.B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H.R.; Hays, C.C.; Iyer, V.

    2017-01-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  18. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnolet, G.; Baker, W. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Barker, D. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Beck, R. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Carroll, T.J.; Cesar, J. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Cushman, P. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dent, J.B. [Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504 (United States); De Rijck, S. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Dutta, B. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Flanagan, W. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Fritts, M. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Gao, Y. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Department of Physics & Astronomy, Wayne State University, Detroit 48201 (United States); Harris, H.R.; Hays, C.C. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Iyer, V. [School of Physical Sciences, National Institute of Science Education and Research, Jatni - 752050 (India); and others

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  19. The CERN Neutrino Platform

    CERN Document Server

    Bordoni, Stefania

    2018-01-01

    The long-baseline neutrino programme has been classified as one of the four highest-priority sci- entific objectives in 2013 by the European Strategy for Particle Physics. The Neutrino Platform is the CERN venture to foster and support the next generation of accelerator-based neutrino os- cillation experiments. Part of the present CERN Medium-Term Plan, the Neutrino Platform provide facilities to develop and prototype the next generation of neutrino detectors and contribute to unify the European neu- trino community towards the US and Japanese projects. A significative effort is made on R&D; for LAr TPC technologies: two big LAr TPC prototypes for the DUNE far detector are under con- struction at CERN. Those detectors will be exposed in 2018 to an entirely new and NP-dedicated beam-line from the SPS which will provide electron, muon and hadron beams with energies in the range of sub-GeV to a few GeV. Other projects are also presently under development: one can cite the refurbishing and shipping to the US ...

  20. Neutronics activities for next generation devices

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized

  1. Development of a framework for the neutronics analysis system for next generation (3)

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Hyoudou, Hideaki; Tatsumi, Masahiro

    2010-02-01

    Development of innovative analysis methods and models in fundamental studies for next-generation nuclear reactor systems is in progress. In order to efficiently and effectively reflect the latest analysis methods and models to primary design of commercial reactor and/or in-core fuel management for power reactors, a next-generation analysis system MARBLE has been developed. The next-generation analysis system provides solutions to the following requirements: (1) flexibility, extensibility and user-friendliness that can apply new methods and models rapidly and effectively for fundamental studies, (2) quantitative proof of solution accuracy and adaptive scoping range for design studies, (3) coupling analysis among different study domains for the purpose of rationalization of plant systems and improvement of reliability, (4) maintainability and reusability for system extensions for the purpose of total quality management and development efficiency. The next-generation analysis system supports many fields, such as thermal-hydraulic analysis, structure analysis, reactor physics etc., and now we are studying reactor physics analysis system for fast reactor in advance. As for reactor physics analysis methods for fast reactor, we have established the JUPITER standard analysis methods based on the past study. But, there has been a problem of extreme inefficiency due to lack of functionality in the conventional analysis system when changing analysis targets and/or modeling levels. That is why, we have developed the next-generation analysis system for reactor physics which reproduces the JUPITER standard analysis method that has been developed so far and newly realizes burnup and design analysis for fast reactor and functions for cross section adjustment. In the present study, we examined in detail the existing design and implementation of ZPPR critical experiment analysis database followed by unification of models within the framework of the next-generation analysis system by

  2. Feasibility of a next generation underground water Cherenkov detector: UNO

    International Nuclear Information System (INIS)

    Jung, Chang Kee

    2000-01-01

    The feasibility of a next generation underground water Cherenkov detector is examined and a conceptual design (UNO) is presented. The design has a linear detector configuration with a total volume of 650 kton which is 13 times the total volume of the Super-Kamiokande detector. It corresponds to a 20 times increase in fiducial volume for physics analysis. The physics goals of UNO are to increase the sensitivity of the search for nucleon decay by a factor of ten and to make precision measurements of the solar and atmospheric neutrino properties. In addition, the detection sensitivity for supernova neutrinos will reach as far as the Andromeda galaxy

  3. First results with the experimental set-up at a Bugey reactor: neutrino oscillations, search of axions

    International Nuclear Information System (INIS)

    Hoummada, A.

    1982-07-01

    This work presents an experimental set-up at the Bugey PWR reactor to put into evidence neutrino oscillations. The first part describes a neutrino detector specially designed for the investigation of neutrino oscillations at two distances (13.50 m and 19 m) under the core of the reactor. Preliminary analysis are presented. The second part reports a search for axions, using the neutrino detector well-shielded volume. Created in competition with electro magnetic transitions, axion should be produced in abondance in the reactor core. This experiment excludes the existence of the axion of the standard model [fr

  4. Design reliability assurance program for Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Beom-Su; Han, Jin-Kyu; Na, Jang Hwan; Yoo, Kyung Yeong

    1997-01-01

    The Korean Next Generation Reactor (KNGR) project is to develop standardized nuclear power plant design for the construction of future nuclear power plants in Korea. The main purpose of the KNGR project is to develop the advanced nuclear power plants, which enhance safety and economics significantly through the incorporation of design concepts for severe accident prevention and mitigation, supplementary passive safety concept, simplification and application of modularization and so on. For those, Probabilistic Safety Assessment (PSA) and availability study will be performed at the early stage of the design, and the Design Reliability Assurance Program (D-RAP) is applied in the development of the KNGR to ensure that the safety and availability evaluated in the PSA and availability study at the early phase of the design is maintained through the detailed design, construction, procurement and operation of the plants. This paper presents the D-RAP concept that could be applied at the stage of the basic design of the nuclear power plants, based on the models for the reference plants and/or similar plants. 4 refs., 1 fig

  5. The ideal neutrino beams

    Science.gov (United States)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  6. Efforts of development on the next generation nuclear reactor in the Mitsubishi Heavy Industries, Ltd

    International Nuclear Information System (INIS)

    Mukai, Hiroshi

    2002-01-01

    At present, the Mitsubishi Heavy Industry, Ltd. (MHI) enters to development on APWR+ for a large-scale reactor, AP1000 and pebble bed modular reactor (PBMR) for middle- and small-scale one, and innovative one, under cooperation of power industries, manufacturers and institutes in and out of Japan. On APWR+, MHI occupies the most advanced position of conventional large-scale route, intends to carry out further upgrading of large capacity on a base of already developed 1500 MWe class APWR, and aims at further upgrading of economical efficiency. On the other reactor, as it becomes possible to perform value addition specific to the small-scale reactor with smaller output, it is planned to overcome its scale demerit by introducing more innovative techniques. And, on AP1000, it is intended to remove dynamic safety system by introducing a static one, to upgrade simplification of apparatus and reliability of safety system and to reduce its human factors. In addition, here was described on the next generation nuclear reactors under development. (G.K.)

  7. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  8. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    Science.gov (United States)

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  9. Status of the Daya Bay Reactor Neutrino Oscillation Experiment

    International Nuclear Information System (INIS)

    Lin, Cheng-Ju Stephen

    2010-01-01

    The last unknown neutrino mixing angle θ 13 is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector. Daya Bay is a reactor neutrino oscillation experiment designed to achieve a sensitivity on the value of sin 2 (2*θ 13 ) to better than 0.01 at 90% CL. The experiment consists of multiple identical detectors placed underground at different baselines to minimize systematic errors and suppress cosmogenic backgrounds. With the baseline design, the expected anti-neutrino signal at the far site is about 360 events per day and at each of the near sites is about 1500 events per day. An overview and current status of the experiment will be presented.

  10. Transition period fuel cycle from current to next generation reactors for Japan

    International Nuclear Information System (INIS)

    Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi; Kawamura, Fumio; Shiina, Kouji; Sasahira, Akira

    2007-01-01

    Long-term energy security and global warming prevention can be achieved by a sustainable electricity supply with next generation fast breeder reactors (FBRs). Current light water reactors (LWRs) will be replaced by FBRs and FBR cycle will be established in the future considering the limited amount of uranium (U) resource. The introduction of FBRs requires plutonium (Pu) recovered from LWR spent fuel. The authors propose advanced system named Flexible Fuel Cycle Initiative (FFCI)' which can supply enough Pu and hold no surplus Pu, can respond flexibly the future technical and social uncertainties, and can achieve an economical FBR cycle. FFCI can simplify the 2nd LWR reprocessing facility for Japan (after Rokkasho Reprocessing Plant) which only carries out U removal from LWR spent fuel. Residual 'Recycle Material' is, according to FBRs introduction status, immediately treated in the FBR reprocessing to fabricate FBR fuel or temporarily stored for the utilization in FBRs at necessary timing. FFCI has high flexibility by having several options for future uncertainties by the introduction of Recycle Material as a buffer material between LWR and FBR cycles. (author)

  11. Neutrino oscillations in Gallium and reactor experiments and cosmological effects of a light sterile neutrino

    International Nuclear Information System (INIS)

    Acero-Ortega, Mario Andres

    2009-01-01

    Neutrino oscillations is a very well studied phenomenon and the observations from Solar, very-long-baseline Reactor, Atmospheric and Accelerator neutrino oscillation experiments give very robust evidence of three-neutrino mixing. On the other hand, some experimental data have shown anomalies that could be interpreted as indication of exotic neutrino physics beyond three-neutrino mixing. Furthermore, from a cosmological point of view, the possibility of extra light species contributing as a subdominant hot (or warm) component of the Universe is still interesting. In the first part of this Thesis, we focused on the anomaly observed in the Gallium radioactive source experiments. These experiments were done to test the Gallium solar neutrino detectors GALLEX and SAGE, by measuring the electron neutrino flux produced by intense artificial radioactive sources placed inside the detectors. The measured number of events was smaller than the expected one. We interpreted this anomaly as a possible indication of the disappearance of electron neutrinos and, in the effective framework of two-neutrino mixing, we obtained sin 2 2θ ≥ 0.03 and Δm 2 ≥ 0.1 eV 2 . We also studied the compatibility of this result with the data of the Bugey and Chooz reactor antineutrino disappearance experiments. We found that the Bugey data present a hint of neutrino oscillations with 0.02 ≤ sin 2 2θ ≤ 0.07 and Δm 2 ≅ 1.95 eV 2 , which is compatible with the Gallium allowed region of the mixing parameters. Then, combining the data of Bugey and Chooz, the data of Gallium and Bugey, and the data of Gallium, Bugey and Chooz, we found that this hint persists, with an acceptable compatibility of the experimental data. Furthermore, we analyzed the experimental data of the I.L.L., S.R.S, and Gosgen nuclear Reactor experiments. We obtained a good fit of the I.L.L. data, showing 1 and 2σ allowed regions in the oscillation parameters space. However, the combination of I.L.L. data with the Bugey

  12. Conceptual design of next generation MTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Hiroshi; Yamaura, Takayuki; Naka, Michihiro; Kawamata, Kazuo; Izumo, Hironobu; Hori, Naohiko; Nagao, Yoshiharu; Kusunoki, Tsuyoshi; Kaminaga, Masanori; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Mine, M [Hitachi-GE Nuclear Energy, Ltd., Hitachi, Ibaraki (Japan); Yamazaki, S [Kawasaki Heavy Industries, Ltd., Kobe, Hyogo (Japan); Ishikawa, S [NGK Insulators, Ltd., Nagoya, Aichi (Japan); Miura, K [Sukegawa Electric Co., Ltd., Takahagi, Ibaraki (Japan); Nakashima, S [Fuji Electric Co., Ltd., Tokyo (Japan); Yamaguchi, K [Chiyoda Technol Corp., Tokyo (Japan)

    2012-03-15

    Conceptual design of the high-performance and low-cost next generation materials testing reactor (MTR) which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  13. Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Xin, E-mail: hxwang@iphy.me [Department of Physics, Nanjing University, Nanjing 210093 (China); Zhan, Liang; Li, Yu-Feng; Cao, Guo-Fu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Shen-Jian [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2017-05-15

    We report the neutrino mass hierarchy (MH) determination of medium baseline reactor neutrino experiments with multiple detectors, where the sensitivity of measuring the MH can be significantly improved by adding a near detector. Then the impact of the baseline and target mass of the near detector on the combined MH sensitivity has been studied thoroughly. The optimal selections of the baseline and target mass of the near detector are ∼12.5 km and ∼4 kton respectively for a far detector with the target mass of 20 kton and the baseline of 52.5 km. As typical examples of future medium baseline reactor neutrino experiments, the optimal location and target mass of the near detector are selected for the specific configurations of JUNO and RENO-50. Finally, we discuss distinct effects of the reactor antineutrino energy spectrum uncertainty for setups of a single detector and double detectors, which indicate that the spectrum uncertainty can be well constrained in the presence of the near detector.

  14. Next-generation reactors in the national energy strategy

    International Nuclear Information System (INIS)

    McGoff, D.J.

    1991-01-01

    In February 1991, the Bush Administration released the National Energy Strategy designed to provide an adequate and balanced energy supply. The strategy provides for major increases in energy efficiency and conservation. Even with these savings, however, there will be a need for substantial increases in base-load electrical generating capacity to sustain economic growth. The strategy identifies the actions required to allow nuclear power to cleanly and safely meet a substantial portion of this needed additional base-load capacity after the turn of the century. On June 27, 1991, the US Department of Energy (DOE) transmitted to Congress the Strategic Plan for Civilian Reactor Development, which reflects the initiative identified in the National Energy Strategy. The strategic plan identifies the advanced light water reactor (ALWR) as the basis for expanded use of nuclear power. The second advanced reactor concept that is being pursued is the modular high-temperature gas-cooled reactor (MHTGR)

  15. Monitoring nuclear reactors with anti-neutrino detectors: the ANGRA project

    Energy Technology Data Exchange (ETDEWEB)

    Chimenti, Pietro; Leigui, Marcelo Augusto [UFABC - Universidade Federal do ABC. Rua Santa Adelia, 166. Bairro Bangu. Santo Andre - SP (Brazil); Anjos, Joao; Azzi, Gabriel; Rafael, Gama; Ademarlaudo, Barbosa; Lima, Herman; VAZ, Mario; Villar, Arthur [Centro Brasileiro de Pesquisas Fisicas - CBPF, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ - 22290-180 (Brazil); Gonzales, Luis Fernando; Bezerra, Thiago; Kemp, Ernesto [Unicamp, State University of Campinas, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo - Campinas, Sao Paulo (Brazil); Nunokawa, Hiroshi [Department of Physics, Pontifical Catholic University - PUC, Rua Marques de Sao Vicente, 225, 22451-900 Gavea - Rio de Janeiro - RJ (Brazil); Guedes, Germano; Faria, Paulo Cesar [Universidade Estadual de Feira de Santana - UEFS, Avenida Transnordestina, Novo Horizonte (Brazil); Pepe, Iuri [Universidade Federal da Bahia - UFBA (Brazil)

    2010-07-01

    We describe the status of the ANGRA Project, aimed at developing an anti-neutrino detector for monitoring nuclear reactors. Indeed the detection of anti-neutrinos provides a unique handle for non-invasive measurements of the nuclear fuel. This kind of measurements are of deep interest for developing new safeguards tools which may help in nuclear non-proliferation programs. The ANGRA experiment, placed at about 30 m from the core of the 4 GW Brazilian nuclear power reactor ANGRA II, is based on a water Cherenkov detector with about one ton target mass. A few thousand antineutrino interactions per day are expected. The latest results from simulations and the status of the construction are presented. (authors)

  16. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  17. Reactor anti-neutrinos: measurement of the θ13 leptonic mixing angle and search for potential sterile neutrinos

    International Nuclear Information System (INIS)

    Collin, A.

    2014-01-01

    The Double Chooz experiment aims to measure the θ 13 mixing angle through the disappearance -induced by the oscillation phenomenon - of anti-neutrinos produced by the Chooz nuclear reactors. In order to reduce systematic uncertainties, the experiment relies on the relative comparison of detected signals in two identical liquid scintillator detectors. The near one, giving the normalization of the emitted flux, is currently being built and will be delivered in spring 2014. The far detector, sensitive to θ 13 , is located at about one kilometer and is taking data since 2011. In this first phase of the experiment, the far detector data are compared to a prediction of the emitted neutrino flux to estimate θ 13 . In this thesis, the Double Chooz experiment and its analysis are presented, especially the background studies and the rejection of parasitic signals due to light emitted by photo-multipliers. Neutron fluxes between the different detector volumes impact the definition of the fiducial volume of neutrino interactions and the efficiency of detection. Detailed studies of these effects are presented. As part of the Double Chooz experiment, studies were performed to improve the prediction of neutrino flux emitted by reactors. This work revealed a deficit of observed neutrino rates in the short baseline experiments of last decades. This deficit could be explained by an oscillation to a sterile state. The Stereo project aims to observe a typical signature of oscillations: the distortion of neutrino spectra both in energy and baseline. This thesis presents the detector concept and simulations as well as sensitivity studies. Background sources and the foreseen shielding are also discussed. (author) [fr

  18. Supernova signatures of neutrino mass ordering

    Science.gov (United States)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  19. Next generation toroidal devices

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  20. Next generation toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  1. Next generation CANDU plants

    International Nuclear Information System (INIS)

    Hedges, K.R.; Yu, S.K.W.

    1998-01-01

    Future CANDU designs will continue to meet the emerging design and performance requirements expected by the operating utilities. The next generation CANDU products will integrate new technologies into both the product features as well as into the engineering and construction work processes associated with delivering the products. The timely incorporation of advanced design features is the approach adopted for the development of the next generation of CANDU. AECL's current products consist of 700MW Class CANDU 6 and 900 MW Class CANDU 9. Evolutionary improvements are continuing with our CANDU products to enhance their adaptability to meet customers ever increasing need for higher output. Our key product drivers are for improved safety, environmental protection and improved cost effectiveness. Towards these goals we have made excellent progress in Research and Development and our investments are continuing in areas such as fuel channels and passive safety. Our long term focus is utilizing the fuel cycle flexibility of CANDU reactors as part of the long term energy mix

  2. Chasing {theta}{sub 13} with new reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [DSM/DAPNIA/SPP, CEA/Saclay, 91191 Gif-sur-Yvette (France)

    2005-12-15

    It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the {theta}{sub 13} mixing angle, free from any parameter degeneracies and correlations induced by matter effect and the unknown leptonic Dirac CP phase. The current best constraint on the third mixing angle comes from the Chooz reactor neutrino experiment sin{sup 2}(2{theta}{sub 13})<0.2 (90 % C.L., {delta}m{sub atm}{sup 2}=2.010{sup -3} eV{sup 2}). Several projects of experiment, with different timescales, have been proposed over the last two years all around the world. Their sensitivities range from sin{sup 2}(2{theta}{sub 13})<0.01 to 0.03, having thus an excellent discovery potential of the {nu}{sub e} fraction of {nu}{sub 3}.

  3. Architectural and Algorithmic Requirements for a Next-Generation System Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Mousseau

    2010-05-01

    This document presents high-level architectural and system requirements for a next-generation system analysis code (NGSAC) to support reactor safety decision-making by plant operators and others, especially in the context of light water reactor plant life extension. The capabilities of NGSAC will be different from those of current-generation codes, not only because computers have evolved significantly in the generations since the current paradigm was first implemented, but because the decision-making processes that need the support of next-generation codes are very different from the decision-making processes that drove the licensing and design of the current fleet of commercial nuclear power reactors. The implications of these newer decision-making processes for NGSAC requirements are discussed, and resulting top-level goals for the NGSAC are formulated. From these goals, the general architectural and system requirements for the NGSAC are derived.

  4. Search for neutrino oscillations at the palo verde nuclear reactors

    Science.gov (United States)

    Boehm; Busenitz; Cook; Gratta; Henrikson; Kornis; Lawrence; Lee; McKinny; Miller; Novikov; Piepke; Ritchie; Tracy; Vogel; Wang; Wolf

    2000-04-24

    We report on the initial results from a measurement of the antineutrino flux and spectrum at a distance of about 800 m from the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium-loaded scintillation detector. We find that the antineutrino flux agrees with that predicted in the absence of oscillations excluding at 90% C.L. nu;(e)-nu;(x) oscillations with Deltam(2)>1.12x10(-3) eV(2) for maximal mixing and sin (2)2straight theta>0.21 for large Deltam(2). Our results support the conclusion that the atmospheric neutrino oscillations observed by Super-Kamiokande do not involve nu(e).

  5. Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors

    Directory of Open Access Journals (Sweden)

    Hong-Xin Wang

    2017-05-01

    Full Text Available We report the neutrino mass hierarchy (MH determination of medium baseline reactor neutrino experiments with multiple detectors, where the sensitivity of measuring the MH can be significantly improved by adding a near detector. Then the impact of the baseline and target mass of the near detector on the combined MH sensitivity has been studied thoroughly. The optimal selections of the baseline and target mass of the near detector are ∼12.5 km and ∼4 kton respectively for a far detector with the target mass of 20 kton and the baseline of 52.5 km. As typical examples of future medium baseline reactor neutrino experiments, the optimal location and target mass of the near detector are selected for the specific configurations of JUNO and RENO-50. Finally, we discuss distinct effects of the reactor antineutrino energy spectrum uncertainty for setups of a single detector and double detectors, which indicate that the spectrum uncertainty can be well constrained in the presence of the near detector.

  6. Studying neutrino properties in the future LENA experiment

    International Nuclear Information System (INIS)

    Wurm, Michael

    2013-01-01

    LENA (Low Energy Neutrino Astronomy) is a next-generation neutrino detector based on 50 kt of liquid scintillator. The low detection threshold, the good energy resolution and the potent background discrimination inherent to liquid scintillator make LENA a versatile observatory for astrophysical and terrestrial neutrinos. The present contribution highlights LENA's capabilities for studying neutrino properties based on both natural and artificial sources

  7. The GENIE Universal, Object-Oriented Neutrino Generator

    International Nuclear Information System (INIS)

    Andreopoulos, C.

    2006-01-01

    A Universal Object-Oriented/C++ Neutrino Monte Carlo Generator (GENIE) is briefly described. The purpose of this large scale software system is to become the 'canonical' Monte Carlo for Neutrino Interaction Physics whose validity will extend to all neutrino types and nuclear targets in the energy range from few MeV to few hundred GeV. GENIE attempts to unify the Monte Carlo generation approaches used by a host of different, smaller procedural systems in a modern object-oriented software design. It is already a mature software system that currently consists of ∼100,000 lines of C++ code (∼350 classes organised in ∼40 packages)

  8. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  9. An assessment the severe accident equipment survivability for the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Lee, B. C.; Moon, Y. T.; Park, J. W.; Kho, H. J.; Lee, S. W.

    1999-01-01

    One of the prominent design approaches to cope with the severe accident challenges in the Korean Next Generation Reactor is an assessment of equipment survivability in the severe accident environment at early design stage. In compliance with 10CFR50.34(f) and SECY-93-087, this work addresses that a reasonable level of assurance be provided to demonstrate that sufficient instrumentation and equipment will survive the consequences of a severe accident and will be available so that the operator may recover from and trend severe core damage sequences, including those scenarios which result in 100 percent oxidation of the active fuel cladding. An analytical and systematic approach was used to identify the equipment and instrumentation of safety-function and define severe accident environments including temperature, pressure, humidity, and radiation before and after the reactor vessel breach. As a result, it was concluded that with minor exceptions, existing design basis equipment qualification methods are sufficient to provide a reasonable level of assurance that this equipment will function during a severe accident. Furthermore, supplemental severe accident equipment and instrument procurement requirements were identified. (author)

  10. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity

    International Nuclear Information System (INIS)

    Esteban, Ivan; Gonzalez-Garcia, M.C.; Maltoni, Michele; Martinez-Soler, Ivan; Schwetz, Thomas

    2017-01-01

    We perform a combined fit to global neutrino oscillation data available as of fall 2016 in the scenario of three-neutrino oscillations and present updated allowed ranges of the six oscillation parameters. We discuss the differences arising between the consistent combination of the data samples from accelerator and reactor experiments compared to partial combinations. We quantify the confidence in the determination of the less precisely known parameters θ 23 , δ CP , and the neutrino mass ordering by performing a Monte Carlo study of the long baseline accelerator and reactor data. We find that the sensitivity to the mass ordering and the θ 23 octant is below 1σ. Maximal θ 23 mixing is allowed at slightly more than 90% CL. The best fit for the CP violating phase is around 270 ∘ , CP conservation is allowed at slightly above 1σ, and values of δ CP ≃90 ∘ are disfavored at around 99% CL for normal ordering and higher CL for inverted ordering.

  11. Online monitoring of the Osiris reactor with the Nucifer neutrino detector

    Science.gov (United States)

    Boireau, G.; Bouvet, L.; Collin, A. P.; Coulloux, G.; Cribier, M.; Deschamp, H.; Durand, V.; Fechner, M.; Fischer, V.; Gaffiot, J.; Gérard Castaing, N.; Granelli, R.; Kato, Y.; Lasserre, T.; Latron, L.; Legou, P.; Letourneau, A.; Lhuillier, D.; Mention, G.; Mueller, Th. A.; Nghiem, T.-A.; Pedrol, N.; Pelzer, J.; Pequignot, M.; Piret, Y.; Prono, G.; Scola, L.; Starzinski, P.; Vivier, M.; Dumonteil, E.; Mancusi, D.; Varignon, C.; Buck, C.; Lindner, M.; Bazoma, J.; Bouvier, S.; Bui, V. M.; Communeau, V.; Cucoanes, A.; Fallot, M.; Gautier, M.; Giot, L.; Guilloux, G.; Lenoir, M.; Martino, J.; Mercier, G.; Milleto, T.; Peuvrel, N.; Porta, A.; Le Quéré, N.; Renard, C.; Rigalleau, L. M.; Roy, D.; Vilajosana, T.; Yermia, F.; Nucifer Collaboration

    2016-06-01

    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second-shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides a new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the International Agency for Atomic Energy to enhance the safeguards of civil nuclear reactors. Deployed at only 7.2 m away from the compact Osiris research reactor core (70 MW) operating at the Saclay research center of the French Alternative Energies and Atomic Energy Commission, the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the ˜0.85 m3 detector remotely operating at a shallow depth equivalent to ˜12 m of water and under intense background radiation conditions. Based on 145 (106) days of data with the reactor on (off), leading to the detection of an estimated 40760 ν¯ e , the mean number of detected antineutrinos is 281 ±7 (stat )±18 (syst )ν¯ e/day , in agreement with the prediction of 277 ±23 ν¯ e/day . Because of the large background, no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.

  12. The solar neutrinos epopee; L'epopee des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service de Physique des Particules, 91- Gif sur Yvette (France)

    2003-06-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos {nu}{sub e} emitted by the sun are converted into muon neutrinos ({nu}{sub {mu}}) and tau neutrinos ({nu}{sub {tau}}), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the surrounding Japanese nuclear reactors. This digest article describes step by step the epopee of solar neutrinos and shows how several generations of physicists have resolved one of the mystery of modern physics. (J.S.)

  13. Development of ceramic humidity sensor for the Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Na Young; Hwang, Il Soon; Yoo, Han Ill; Song, Chang Rock; Park, Sang Duk; Yang, Jun Seog

    1997-01-01

    For the Korean Next Generation Reactor(KNGR) development, LBB is considered for the Main Steam Line(MSL) piping inside its containment to achieve cost and safety improvement. To apply LBB concept to MSL, leak sensors highly sensitive to humidity is required. In this paper, a ceramic material, MgCr 2 O 4 -TiO 2 has been developed as a humidity sensor for MSL applications. Experiments performed to characterize the electrical conductivity shows that the conductivity of MgCr 2 O 4 -TiO 2 responds sensitively to both temperature and humidity changes. At a constant temperature below 100 .deg. C, the conductivity increases as the relative humidity increases, which makes the sensor favorable for application to the outside of MSL insulation layer. But as temperature increases beyond 100 .deg. C, the sensor composition should be adjusted for the application to KNGR is to be made at temperature above 100 .deg. C

  14. Three-generation neutrino oscillations in curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Hao, E-mail: yhzhang1994@gmail.com; Li, Xue-Qian, E-mail: lixq@nankai.edu.cn

    2016-10-15

    Three-generation MSW effect in curved spacetime is studied and a brief discussion on the gravitational correction to the neutrino self-energy is given. The modified mixing parameters and corresponding conversion probabilities of neutrinos after traveling through celestial objects of constant densities are obtained. The method to distinguish between the normal hierarchy and inverted hierarchy is discussed in this framework. Due to the gravitational redshift of energy, in some extreme situations, the resonance energy of neutrinos might be shifted noticeably and the gravitational effect on the self-energy of neutrino becomes significant at the vicinities of spacetime singularities.

  15. Investigating the spectral anomaly with different reactor antineutrino experiments

    Directory of Open Access Journals (Sweden)

    C. Buck

    2017-02-01

    Full Text Available The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in U235 with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted U235 spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.

  16. A dual tech gem for future neutrino detectors

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    Innovative technologies for next-generation neutrino detectors are currently being tested in the CERN Neutrino Platform project WA105.   Installation of the WA105 cryostat. (Image : Maximilien Brice/ CERN) The activities under way in the framework of the CERN Neutrino Platform are multiple and restless. Along with the refurbishment of ICARUS, another project is making great strides towards its completion: WA105. In spite of the not-so-expressive name, the technology being tested in this prototype is unprecedented. WA105, presently at an advanced state of assembly at CERN, is a 3x1x1-metre, 25-tonne “dual-phase” liquid argon time projection chamber (DLAr-TPC) demonstrator. It has been conceived in the quest to solve the technological problems related to the next generation of neutrino detectors, whose dimensions need to be gigantic in order to thoroughly study the phenomenon of neutrino oscillations. Indeed, a major new international project called DUNE (Deep Underground Neutri...

  17. Next Generation Reactors in Korea

    International Nuclear Information System (INIS)

    Oh, Yongshick; Choi, Youngsang; Park, Keecheol

    1990-01-01

    In Korea, nuclear power will be continuously needed to meet the trend of steady increase in electricity demand. But in relation to the further development of nuclear energy, there are still many uncertainties to be solved such as power demand forecast, site availability, thermal energy utilization and technology enhancement for economic and safety. To cope with those uncertainties effectively and to proceed the nuclear projects uninterruptedly, KEPCO decided to initiate two research project. i. e., one is 'the outlook and developmental strategy of nuclear energy for the early 21st century in the R. O. K' and the other is 'the feasibility study on the advanced reactors in Korea. Prospects of nuclear energy in Korea was overviewed and recommendations from the industry were introduced. It is strong opinion of Korea nuclear industry that nuclear policy should be changed from the support policy to the target management policy. In the point of reactor strategy, the life of light water reactor technology might be longer than expected before in Korea and it is emphasized that good maintenance of light water reactor technology and smooth transition program to the advanced technologies should be carefully considered. There are differences in the opinions between preferences to the evolutionary and/or passive, inherently safe reactors but, in the long-term point of view, it is judged to be desirable to have alternatives

  18. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    Buckthorpe, Derek

    2010-01-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO 2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  19. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  20. Neutrinos oscillations researches near a nuclear reactor

    International Nuclear Information System (INIS)

    Laiman, M.

    1999-01-01

    This thesis deals with the research of neutrinos oscillations near the Chooz B nuclear power plant in the Ardennes. The first part presents the framework of the researches and the chosen detector. The second part details the antineutrinos flux calculus from the reactors and the calculus of the expected events. The analysis procedure is detailed in the last part from the calibration to the events selection. (A.L.B.)

  1. Cost and schedule reduction for next-generation Candu

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Yu, S.; Pakan, M.; Soulard, M.

    2002-01-01

    AECL has developed a suite of technologies for Candu R reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and

  2. Matter effects on the flavor conversions of solar neutrinos and high-energy astrophysical neutrinos

    Science.gov (United States)

    Huang, Guo-yuan; Liu, Jun-Hao; Zhou, Shun

    2018-06-01

    Can we observe the solar eclipses in the neutrino light? In principle, this is possible by identifying the lunar matter effects on the flavor conversions of solar neutrinos when they traverse the Moon before reaching the detectors at the Earth. Unfortunately, we show that the lunar matter effects on the survival probability of solar 8B neutrinos are suppressed by an additional factor of 1.2%, compared to the day-night asymmetry. However, we point out that the matter effects on the flavor conversions of high-energy astrophysical neutrinos, when they propagate through the Sun, can be significant. Though the flavor composition of high-energy neutrinos can be remarkably modified, it is quite challenging to observe such effects even in the next-generation of neutrino telescopes.

  3. The KASKA project - a Japanese medium-baseline reactor-neutrino oscillation experiment to measure the mixing angle $\\theta_{13}$ -

    OpenAIRE

    Kuze, Masahiro; Collaboration, for the KASKA

    2005-01-01

    A new reactor-neutrino oscillation experiment, KASKA, is proposed to measure the unknown neutrino-mixing angle $\\theta_{13}$ using the world's most powerful Kashiwazaki-Kariwa nuclear power station. It will measure a very small deficit of reactor-neutrino flux using three identical detectors, two placed just close to the sources and one at a distance of about 1.8km. Its conceptual design and physics reach are discussed.

  4. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, Ivan [Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Gonzalez-Garcia, M.C. [Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys 23, 08010 Barcelona (Spain); C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook,Stony Brook, NY 11794-3840 (United States); Maltoni, Michele; Martinez-Soler, Ivan [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,Calle de Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Schwetz, Thomas [Institut für Kernphysik, Karlsruher Institut für Technologie (KIT),D-76021 Karlsruhe (Germany)

    2017-01-20

    We perform a combined fit to global neutrino oscillation data available as of fall 2016 in the scenario of three-neutrino oscillations and present updated allowed ranges of the six oscillation parameters. We discuss the differences arising between the consistent combination of the data samples from accelerator and reactor experiments compared to partial combinations. We quantify the confidence in the determination of the less precisely known parameters θ{sub 23}, δ{sub CP}, and the neutrino mass ordering by performing a Monte Carlo study of the long baseline accelerator and reactor data. We find that the sensitivity to the mass ordering and the θ{sub 23} octant is below 1σ. Maximal θ{sub 23} mixing is allowed at slightly more than 90% CL. The best fit for the CP violating phase is around 270{sup ∘}, CP conservation is allowed at slightly above 1σ, and values of δ{sub CP}≃90{sup ∘} are disfavored at around 99% CL for normal ordering and higher CL for inverted ordering.

  5. Studies of neutrino properties at nuclear reactors. Present status and future

    CERN Document Server

    Mikaehlyan, L A

    2002-01-01

    The state and prospects of the experiments at nuclear reactors on the search for the neutrino mass, mixing and magnetic moments, identification whereof would prove the existence of events behind the standard model limits, are considered. The CHOOZ experiment established with complete determination, that the nu sub e -> nu sub x channel is not predominant in the atmospheric neutrino oscillations. The KamLAND may become the first among the experiments with the neutrino earth sources, wherein the oscillation effect will be determined; the contributions of the m sub 1 and m sub 2 masses to the electron neutrino is established and solution of the solar neutrino problem is found. The Kr2Det experiment with its high sensitivity to the small mixing angles may identify the contribution of the m sub 3 mass to the nu sub e or establish a new more exact limit on its value. These studies rest upon the unprecedented improvement of the reverse beta-decay registration methods

  6. Adiabatic resonant oscillations of solar neutrinos in three generations

    International Nuclear Information System (INIS)

    Kim, C.W.; Sze, W.K.

    1987-01-01

    The Mikheyev-Smirnov-Wolfenstein model of resonant solar-neutrino oscillations is discussed for three generations of leptons. Assuming adiabatic transitions, bounds for the μ- and e-neutrinos mass-squared difference Δ/sub 21,0/ are obtained as a function of the e-μ mixing angle theta 1 . The allowed region in the Δ/sub 21,0/-theta 1 plot that would solve the solar-neutrino problem is shown to be substantially larger than that of the two-generation case. In particular, the difference between the two- and three-generation cases becomes significant for theta 1 larger than --20 0

  7. New neutrino physics and the altered shapes of solar neutrino spectra

    Science.gov (United States)

    Lopes, Ilídio

    2017-01-01

    Neutrinos coming from the Sun's core have been measured with high precision, and fundamental neutrino oscillation parameters have been determined with good accuracy. In this work, we estimate the impact that a new neutrino physics model, the so-called generalized Mikheyev-Smirnov-Wolfenstein (MSW) oscillation mechanism, has on the shape of some of leading solar neutrino spectra, some of which will be partially tested by the next generation of solar neutrino experiments. In these calculations, we use a high-precision standard solar model in good agreement with helioseismology data. We found that the neutrino spectra of the different solar nuclear reactions of the pp chains and carbon-nitrogen-oxygen cycle have quite distinct sensitivities to the new neutrino physics. The He P and 8B neutrino spectra are the ones in which their shapes are more affected when neutrinos interact with quarks in addition to electrons. The shapes of the 15O and 17F neutrino spectra are also modified, although in these cases the impact is much smaller. Finally, the impact in the shapes of the P P and 13N neutrino spectra is practically negligible.

  8. Scoping analyses for the safety injection system configuration for Korean next generation reactor

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Song, Jin Ho; Park, Jong Kyoon

    1996-01-01

    Scoping analyses for the Safety Injection System (SIS) configuration for Korean Next Generation Reactor (KNGR) are performed in this study. The KNGR SIS consists of four mechanically separated hydraulic trains. Each hydraulic train consisting of a High Pressure Safety Injection (HPSI) pump and a Safety Injection Tank (SIT) is connected to the Direct Vessel Injection (DVI) nozzle located above the elevation of cold leg and thus injects water into the upper portion of reactor vessel annulus. Also, the KNGR is going to adopt the advanced design feature of passive fluidic device which will be installed in the discharge line of SIT to allow more effective use of borated water during the transient of large break LOCA. To determine the feasible configuration and capacity of SIT and HPSl pump with the elimination of the Low Pressure Safety Injection (LPSI) pump for KNGR, licensing design basis evaluations are performed for the limiting large break LOCA. The study shows that the DVI injection with the fluidic device SlT enhances the SIS performance by allowing more effective use of borated water for an extended period of time during the large break LOCA

  9. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  10. Solar and atmospheric neutrinos in three generations with a magnetic moment

    International Nuclear Information System (INIS)

    Pulido, J.; Tao, Z.

    1995-01-01

    A solution to the solar and atomospheric neutrino problems in three generations in the joint context of matter oscillations and the magnetic moment is investigated. An appropriate rotation of the evolution Hamiltonian reduces the three generation case to a two generation one. A convenient background for such a scenario with small neutrino masses and large magnetic moments is given by the Zee-type models, in which the mass generation mechanism leads to a pair of separate orders of magnitude for the mass square differences between neutrino species. We obtain a ratio var-epsilon congruent 10 -2 --10 -3 between these orders of magnitude, so that one of them [(0.3--3)x10 -2 eV 2 ] is suitable for the atmospheric neutrino solution and the other (∼10 -5 eV 2 ) for the solar neutrino solution. The magnetic moment leads to a decrease of the survival probability with solar neutrino energy. Such a decrease is consistent with the experimental situation

  11. On the road to the solution of the Solar Neutrino Problem

    International Nuclear Information System (INIS)

    Norman, E.B.

    1995-01-01

    The present status of solar neutrino experiments is reviewed. The discrepancy between the experimental results and the theoretical expectations has come to be known as the Solar Neutrino Problem. Possible solutions to this problem are discussed. The next generation of solar neutrino experiments are described

  12. The solar neutrino problem

    International Nuclear Information System (INIS)

    Bahcall, J.N.

    1986-01-01

    The observed capture rate for solar neutrinos in the /sup 37/Cl detector is lower than the predicted capture rate. This discrepancy between theory and observation is known as the 'solar neutrino problem.' The author reviews the basic elements in this problem: the detector efficiency, the theory of stellar (solar) evolution, the nuclear physics of energy generation, and the uncertainties in the predictions. He also answers the questions of: So What? and What Next?

  13. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Andreopoulos, Costas [Univ. of Liverpool (United Kingdom). Dept. of Physics; Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Particle Physics Dept.; Barry, Christopher [Univ. of Liverpool (United Kingdom). Dept. of Physics; Dytman, Steve [Univ. of Pittsburgh, PA (United States). Dept. of Physics and Astronomy; Gallagher, Hugh [Tufts Univ., Medford, MA (United States). Dept. of Physics and Astronomy; Golan, Tomasz [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy; Hatcher, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Perdue, Gabriel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarba, Julia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-10-20

    GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.

  14. PARISROC, an autonomous front-end ASIC for triggerless acquisition in next generation neutrino experiments

    Science.gov (United States)

    Conforti Di Lorenzo, S.; Campagne, J. E.; Drouet, S.; Dulucq, F.; El Berni, M.; Genolini, B.; de La Taille, C.; Martin-Chassard, G.; Seguin Moreau, N.; Wanlin, E.; Xiangbo, Y.

    2012-12-01

    PARISROC (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is a complete readout chip in AustriaMicroSystems (AMS) SiGe 0.35 μm technology designed to read array of 16 Photomultipliers (PMTs). The ASIC is realized in the context of the PMm2 (square meter PhotoMultiplier) project that has proposed a new system of “smart photo-detectors” composed by sensor and read-out electronics dedicated to next generation neutrino experiments. The future water Cherenkov detectors will take place in megaton size water tanks then with a large surface of photo-detection. We propose to segment the large surface in arrays with a single front-end electronics and only the useful data send in surface to be stocked and analyzed. This paper describes the second version of the ASIC and illustrates the chip principle of operation and the main characteristics thank to a series of measurements. It is a 16-channel ASIC with channels that work independently, in triggerless mode and all managed by a common digital part. Then main innovation is that all the channels are handled independently by the digital part so that only channels that have triggered are digitized. Then the data are transferred to the internal memory and sent out in a data driven way. The ASIC allows charge and time measurement. We measured a charge measurement range starting from 160 fC (1 photoelectron-p.e., at PMT gain of 106) to 100 pC (around 600 p.e.) at 1% of linearity; time tagging at 1 ns thanks to a 24-bit counter at 10 MHz and a Time to Digital Converter (TDC) on a 100 ns ramp.

  15. PARISROC, an autonomous front-end ASIC for triggerless acquisition in next generation neutrino experiments

    International Nuclear Information System (INIS)

    Conforti Di Lorenzo, S.; Campagne, J.E.; Drouet, S.; Dulucq, F.; El Berni, M.; Genolini, B.; La Taille, C. de; Martin-Chassard, G.; Seguin Moreau, N.; Wanlin, E.; Xiangbo, Y.

    2012-01-01

    PARISROC (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is a complete readout chip in AustriaMicroSystems (AMS) SiGe 0.35 μm technology designed to read array of 16 Photomultipliers (PMTs). The ASIC is realized in the context of the PMm2 (square meter PhotoMultiplier) project that has proposed a new system of “smart photo-detectors” composed by sensor and read-out electronics dedicated to next generation neutrino experiments. The future water Cherenkov detectors will take place in megaton size water tanks then with a large surface of photo-detection. We propose to segment the large surface in arrays with a single front-end electronics and only the useful data send in surface to be stocked and analyzed. This paper describes the second version of the ASIC and illustrates the chip principle of operation and the main characteristics thank to a series of measurements. It is a 16-channel ASIC with channels that work independently, in triggerless mode and all managed by a common digital part. Then main innovation is that all the channels are handled independently by the digital part so that only channels that have triggered are digitized. Then the data are transferred to the internal memory and sent out in a data driven way. The ASIC allows charge and time measurement. We measured a charge measurement range starting from 160 fC (1 photoelectron-p.e., at PMT gain of 10 6 ) to 100 pC (around 600 p.e.) at 1% of linearity; time tagging at 1 ns thanks to a 24-bit counter at 10 MHz and a Time to Digital Converter (TDC) on a 100 ns ramp.

  16. Design features in Korean next generation reactor focused on performance and economic viability

    International Nuclear Information System (INIS)

    Lee, J.S.; Chung, M.S.; Na, J.H.; Kim, M.C.; Choi, Y.S.

    2001-01-01

    As of the end of Dec. 1999, Korea's total nuclear power capacity reached 13,716 MWe with 16 units in operation and 4 units under construction. In addition, as part of the national long-term R and D programme launched in 1992, the Korean Next Generation Reactor (KNGR) is being developed to meet the electricity demands in the years to come and is expected to be safer and more economically competitive than any other conventional electric power sources in Korea. The KNGR project has successfully completed its second phase and is now on the third phase. In Phase III of the KNGR design development project, KNGR aims at reinforcing the economic competitiveness while maintaining safety goals. To achieve these objectives, the design options studied and the design requirements set up in the first phase are pursued while the second phase are being reviewed. This paper summarizes such efforts for design improvement in terms of performance and economic viability along with the status of nuclear power generation in Korea, focusing on KNGR currently. (author)

  17. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  18. Status of advanced containment systems for next generation water reactors

    International Nuclear Information System (INIS)

    1994-06-01

    The present IAEA status report is intended to provide information on the current status and development of containment systems of the next generation reactors for electricity production and, particularly, to highlight features which may be considered advanced, i.e. which present improved performance with evolutionary or innovative design solutions or new design approaches. The objectives of the present status report are: To present, on a concise and consistent basis, selected containment designs currently being developed in the world; to review and compare new approaches to the design bases for the containments, in order to identify common trends, that may eventually lead to greater worldwide consensus, to identify, list and compare existing design objectives for advanced containments, related to safety, availability, maintainability, plant life, decommissioning, economics, etc.; to describe the general approaches adopted in different advanced containments to cope with various identified challenges, both those included in the current design bases and those related to new events considered in the design; to briefly identify recent achievements and future needs for new or improved computer codes, standards, experimental research, prototype testing, etc. related to containment systems; to describe the outstanding features of some containments or specific solutions proposed by different parties and which are generally interesting to the international scientific community. 36 refs, 27 figs, 1 tab

  19. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    International Nuclear Information System (INIS)

    Marino, Alysia

    2015-01-01

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos (?_?) and the appearance of electron neutrinos (?_e), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of ?_e appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of ?_? disappearance and ?_e appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  20. Bilarge neutrino mixing and mass of the lightest neutrino from third generation dominance in a democratic approach

    International Nuclear Information System (INIS)

    Dermisek, Radovan

    2004-01-01

    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bilarge mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin θ 13 . If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m top 2 /M GUT )sin 2 θ 23 sin 2 θ 12 in the limit sin θ 13 ≅0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M 1 ,M 2 -4 M 3 , M 3 =M GUT

  1. Neutrino mixing and future accelerator neutrino experiments

    International Nuclear Information System (INIS)

    Bilenky, S.M.

    1992-01-01

    No evidence for neutrino mixing has been obtained in experiments searching for oscillations with neutrinos from accelerators and reactors. The possible reason is that neutrino masses are too small to produce any sizable effects in the experiments with terrestrial neutrinos. We put forward here the point of view that the reason for that can be traced to the presence of a hierarchy of neutrino masses as well as strength of couplings between lepton families. (orig.)

  2. The radon monitoring system in Daya Bay Reactor Neutrino Experiment

    International Nuclear Information System (INIS)

    Chu, M.C.; Kwan, K.K.; Kwok, M.W.; Kwok, T.; Leung, J.K.C.; Leung, K.Y.; Lin, Y.C.; Luk, K.B.; Pun, C.S.J.

    2016-01-01

    We developed a highly sensitive, reliable and portable automatic system (H 3 ) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H 3 is able to measure radon concentration with a statistical error less than 10% in a 1-h measurement of dehumidified air (R.H. 5% at 25 °C) with radon concentration as low as 50 Bq/m 3 . This is achieved by using a large radon progeny collection chamber, semiconductor α-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  3. Safety of next generation power reactors

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address

  4. Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments

    International Nuclear Information System (INIS)

    Ghosh, Anushree; Choubey, Sandhya; Thakore, Tarak

    2013-01-01

    The relatively large measured value of θ 13 has opened up the possibility of determining the neutrino mass hierarchy through earth matter effects. Amongst the current accelerator experiments only NOvA has a long enough baseline to observe earth matter effects. However, even NOvA is plagued with uncertainty on the knowledge of the true value of Δ CP which drastically reduces its sensitivity to the neutrino mass hierarchy. Earth matter effects in atmospheric neutrinos on the other hand is almost independent of δ CP . The 50 kton magnetized Iron CALorimeter at the India-based Neutrino Observatory (ICAL at the rate lNO) will be observing atmospheric neutrinos. The charge identification capability of this detector gives it an edge over others for mass hierarchy determination through observation of earth matter effects. We study in detail the neutrino mass hierarchy sensitivity of the data from this experiment simulated using the Nuance based generator developed for ICAL at the rate lNO and folded with the detector resolution and efficiencies obtained by the INO collaboration from a full detector Geant based simulation. The data from ICAL at the rate lNO is then combined with simulated of T2K, NOvA Double Chooz, RENO and Daya Bay experiments and a combined sensitivity study to the mass hierarchy performed. With 10 years of ICAL at the rate lNO data combined with T2K, NOvA and reactor data, one could get 2.8σ - 5σ discovery for the neutrino mass hierarchy depending on the true value of (θ23, θ13 and δ CP . (author)

  5. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  6. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  7. Search for sterile neutrinos at RENO

    Science.gov (United States)

    Yeo, In Sung; RENO Collaboration

    2017-09-01

    The RENO experiment was designed to measure a neutrino mixing angle, θ13, by detecting electron antineutrinos emitted from the Hanbit nuclear reactors in Korea, and succeeded to measure θ13 from the disappearance mode in three neutrino frame. We investigate the possibility of sterile neutrinos existence at RENO experiment and compare data with Monte Carlo generated in four neutrino frame. In this talk, we present some recent results using chi-square analysis method. The probability deficit curve as a function of an effective baseline and the excluded contour plot in sin2(2 θ14) - Δ(m41)2 space will be shown.

  8. 17th International Workshop on Neutrino Factories and Future Neutrino Facilities Search

    CERN Document Server

    2015-01-01

    NuFact15 is the seventeenth in a series that started in 1999 as an important yearly workshop with emphasis on future neutrino projects. This will be the first edition in Latin America, showing the scientific growth of this field. The main goals of the workshop are to review the progress on studies of future facilities able to improve on measurements of the properties of neutrinos and charged lepton flavor violation as well as new phenomena searches beyond the capabilities of presently planned experiments. Since such progress in the neutrino sector could require innovation in neutrino beams, the role of a neutrino factory within future HEP initiatives will be addressed. The workshops are not only international but also interdisciplinary in that experimenters, theorists and accelerator physicists from the Asian, American and European regions share expertise with the common goal of designing the next generation of experiments.

  9. Constraints on a general 3-generation neutrino mass matrix from neutrino data application to the MSSM with R-parity violation

    CERN Document Server

    Abada, A

    2000-01-01

    We consider a general symmetric $(3\\times 3)$ mass matrix for three generations of neutrinos. Imposing the constraints, from the atmospheric neutrino and solar neutrino anomalies as well as from the CHOOZ experiment, on the mass squared differences and on the mixing angles, we identify the ranges of allowed inputs for the 6 matrix elements. We apply our results to Majorana left-handed neutrino masses generated at tree level and through The present experimental results on neutrinos from laboratories, cosmology and astrophysics are implemented to either put bounds on trilinear ($\\lambda_{ijk}, or constrain combinations of products of these couplings.

  10. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  11. Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production

    International Nuclear Information System (INIS)

    PARMA JR, EDWARD J.; PICKARD, PAUL S.; SUO-ANTTILA, AHTI JORMA

    2003-01-01

    The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept

  12. Software R&D for Next Generation of HEP Experiments, Inspired by Theano

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In the next decade, the frontiers of High Energy Physics (HEP) will be explored by three machines: the High Luminosity Large Hadron Collider (HL-LHC) in Europe, the Long Base Neutrino Facility (LBNF) in the US, and the International Linear Collider (ILC) in Japan. These next generation experiments must address two fundamental problems in the current generation of HEP experimental software: the inability to take advantage and adapt to the rapidly evolving processor landscape, and the difficulty in developing and maintaining increasingly complex software systems by physicists. I will propose a strategy, inspired by the automatic optimization and code generation in Theano, to simultaneously address both problems. I will describe three R&D projects with short-term physics deliverables aimed at developing this strategy. The first project is to develop maximally sensitive General Search for New Physics at the LHC by applying the Matrix Element Method running GPUs of HPCs. The second is to classify and reconstru...

  13. Future neutrino experiments

    CERN Document Server

    Di Lella, L

    2001-01-01

    Future experiments to search for neutrino oscillations using neutrinos from the Sun, from reactors and accelerators are reviewed. Possible long-term developments based on neutrino factories are also described. (29 refs).

  14. A model of radiative neutrino masses. Mixing and a possible fourth generation

    International Nuclear Information System (INIS)

    Babu, K.S.; Ma, E.; Pantaleone, J.

    1989-01-01

    We consider the phenomenological consequences of a recently proposed model with four lepton generations such that the three known neutrinos have radiatively induced Majorana masses. Mixing among generations in the presence of a heavy fourth neutrino necessitates a reevaluation of the usual experimental tests of the standard model. One interesting possibility is to have a τ lifetime longer than predicted by the standard three-generation model. Another is to have neutrino masses and mixing angles in the range needed for a natural explanation of the solar-neutrino puzzle in terms of the Mikheyev-Smirnov-Wolfenstein effect. (orig.)

  15. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  16. Sterile neutrino search in the STEREO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian; Lindner, Manfred; Roca, Christian [MPIK (Germany)

    2016-07-01

    In neutrino oscillations, a canonical understanding has been established during the last decades after the measurement of the mixing angles θ{sub 12}, θ{sub 23}, θ{sub 13} via solar, atmospheric and, most recently, reactor neutrinos. However, the re-evaluation of the reactor neutrino theoretical flux has forced a re-analysis of most reactor neutrino measurements at short distances. This has led to an unexpected experimental deficit of neutrinos with respect to the theory that needs to be accommodated, commonly known as the ''reactor neutrino anomaly''. This deficit can be interpreted as the existence of a light sterile neutrino state into which reactor neutrinos oscillate at very short distances. The STEREO experiment aims to find an evidence of such oscillations. The ILL research reactor in Grenoble (France) operates at a power of 58MW and provides a large flux of electron antineutrinos with an energy range of a few MeV. These neutrinos will be detected in a 2000 liter organic liquid scintillator detector doped with Gadolinium and consisting of 6 cells stacked along the direction of the core. Given the proximity of the detector, neutrinos will only travel a few meters until they interact with the scintillator. The detector will be placed about 10 m from the reactor core, allowing STEREO to be sensitive to oscillations into the above mentioned neutrino sterile state. The project presents a high potential for a discovery that would impact deeply the paradigms of neutrino oscillations and in consequence the current understanding of particle physics and cosmology.

  17. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  18. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  19. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  20. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  1. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  2. Determination of neutrino mass hierarchy and θ13 with a remote detector of reactor antineutrinos

    International Nuclear Information System (INIS)

    Learned, John G.; Pakvasa, Sandip; Dye, Stephen T.; Svoboda, Robert C.

    2008-01-01

    We describe a method for determining the hierarchy of the neutrino mass spectrum and θ 13 through remote detection of electron antineutrinos from a nuclear reactor. This method utilizing a single, 10-kiloton scintillating liquid detector at a distance of 49-63 kilometers from the reactor complex measures mass-squared differences involving ν 3 with a one(ten)-year exposure provided sin 2 (2θ 13 )>0.05(0.02). Our technique applies the Fourier transform to the event rate as a function of neutrino flight distance over neutrino energy. Sweeping a relevant range of δm 2 resolves separate spectral peaks for δm 2 31 and δm 2 32 . For normal (inverted) hierarchy |δm 2 31 | is greater (lesser) than |δm 2 32 |. This robust determination requires a detector energy resolution of 3.5%/√(E).

  3. Neutrino oscillations and neutrino-electron scattering

    International Nuclear Information System (INIS)

    Kayser, B.; Rosen, S.P.

    1980-10-01

    Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments

  4. Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Dentler, Mona [U. Mainz, PRISMA; Hernández-Cabezudo, Alvaro [KIT, Karlsruhe, IKP; Kopp, Joachim [CERN; Machado, Pedro [Fermilab; Maltoni, Michele [Madrid, IFT; Martinez-Soler, Ivan [Madrid, IFT; Schwetz, Thomas [KIT, Karlsruhe, IKP

    2018-03-28

    We discuss the possibility to explain the anomalies in short-baseline neutrino oscillation experiments in terms of sterile neutrinos. We work in a 3+1 framework and pay special attention to recent new data from reactor experiments, IceCube and MINOS+. We find that results from the DANSS and NEOS reactor experiments support the sterile neutrino explanation of the reactor anomaly, based on an analysis that relies solely on the relative comparison of measured reactor spectra. Global data from the $\

  5. Considerations of severe accidents in the design of Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Dong Wook Jerng; Choong Sup Byun

    1998-01-01

    The severe accident is one of the key issues in the design of Korean Next Generation Reactor (KNGR) which is an evolutionary type of pressurized water reactor. As IAEA recommends in TECDOC-801, the design objective of KNGR with regard to safety is provide a sound technical basis by which an imminent off-site emergency response to any circumstance could be practically unnecessary. To implement this design objective, probabilistic safety goals were established and design requirements were developed for systems to mitigate severe accidents. The basic approach of KNGR to address severe accidents is firstly prevent severe accidents by reinforcing its capability to cope with the design basis accidents (DBA) and further with some accidents beyond DBAs caused by multiple failures, and secondly mitigate severe accidents to ensure the retention of radioactive materials in the containment by providing mean to maintain the containment integrity. For severe accident mitigation, KNGR principally takes the concept of ex-vessel corium cooling. To implement this concept, KNGR is equipped with a large cavity and cavity flooding system connected to the in-containment refueling water storage tank. Other major systems incorporated in KNGR are hydrogen igniters and safety depressurization systems. In addition, the KNGR containment is designed to withstand the pressure and temperature conditions expected during the course of severe accidents. In this paper, the design features and status of system designs related with severe accidents will be presented. Also, R and D activities related to severe accident mitigation system design will be briefly described

  6. Neutrino mass models and the implications of a non-zero reactor angle

    International Nuclear Information System (INIS)

    King, S.F.

    2009-01-01

    In this talk we survey some of the recent promising developments in the search for the theory behind neutrino mass and mixing, and indeed all fermion masses and mixing. The talk is organized in terms of a neutrino mass models decision tree according to which the answers to experimental questions provide sign posts to guide through the maze of theoretical models eventually towards a complete theory of flavour and unification. It is also discussed the theoretical implications of the measurement of non-zero reactor angle, as hinted at by recent experimental measurements.

  7. Production of heavy neutrino in next-to-leading order QCD at the LHC and beyond

    International Nuclear Information System (INIS)

    Das, Arindam; Konar, Partha; Majhi, Swapan

    2016-01-01

    Majorana and pseudo-Dirac heavy neutrinos are introduced into the type-I and inverse seesaw models, respectively, in explaining the naturally small neutrino mass. TeV scale heavy neutrinos can also be accommodated to have a sizable mixing with the Standard Model light neutrinos, through which they can be produced and detected at the high energy colliders. In this paper we consider the Next-to-Leading Order QCD corrections to the heavy neutrino production, and study the scale variation in cross-sections as well as the kinematic distributions with different final states at 14 TeV LHC and also in the context of 100 TeV hadron collider. The repertoire of the Majorana neutrino is realized through the characteristic signature of the same-sign dilepton pair, whereas, due to a small lepton number violation, the pseudo-Dirac heavy neutrino can manifest the trileptons associated with missing energy in the final state. Using the √s=8 TeV, 20.3 fb"−"1 and 19.7 fb"−"1 data at the ATLAS and CMS respectively, we obtain prospective scale dependent upper bounds of the light-heavy neutrino mixing angles for the Majorana heavy neutrinos at the 14 TeV LHC and 100 TeV collider. Further exploiting a recent study on the anomalous multilepton search by CMS at √s=8 TeV with 19.5 fb"−"1 data, we also obtain the prospective scale dependent upper bounds on the mixing angles for the pseudo-Dirac neutrinos. We thus project a scale dependent prospective reach using the NLO processes at the 14 TeV LHC.

  8. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  9. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  10. Nuclear reactor technology: the next 50 years

    International Nuclear Information System (INIS)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T.

    2013-01-01

    In light of the growing awareness of the environmental externalities of fossil fuel combustion, alternatives for electric power generation such as solar, wind and nuclear energy are becoming more desirable. In developed countries, large power markets are currently served by a centralized energy system through well inter-connected electricity grids. However, as shares of variable renewable energy sources (mainly wind and solar power) are increasing in the future; larger fluctuation in power generation can be expected which lead to higher risk of grid instabilities. Less-capital intensive small and medium sized nuclear reactors (SMR) are emerging as an important element of alternative power generation system to fossil fuel, with a unique additional role of balancing the power generation fluctuation caused by the solar and wind power generation. In regions not served by large electricity grids, including many parts of the developing countries with increasing demand for energy at rates above world's average, power generation using locally available energy sources including renewable energy is the practical means of providing basic energy needed for social and economic development. The integration of locally supportable SMR and local renewable energy system in a hybrid fashion can reduce the relative scale but not eliminate the fluctuation in power generation caused by the irregular availability of solar and wind energy. Without the use of commercial electricity trading that is only available in regions served by large inter-connected electricity grids, further minimization of power generation fluctuation can be done by the installation of local energy (electricity and/or heat) applications and/or energy storage device. The operation of these applications and energy storage can be done in synchronization with the availability of excess power throughout the fluctuation of the overall power generation in the region. Under these conditions, SMRs utilization as part of

  11. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  12. Limits on neutrino masses from tritium beta decay

    CERN Document Server

    Bonn, J; Bornschein, L; Flatt, B; Kraus, C V; Otten, E W; Schall, J P; Thuemmler, T; Weinheimer, C

    2002-01-01

    The presently lowest limit for the mass of the electron neutrino is m nu < 2.2 eV (95 % C.L.) derived from measurements at Mainz up to 1999. The data taken in 2000 are not fully analyzed yet but limits of possible distortions as reported by the Troitsk group can be given. The next generation neutrino mass experiment KATRIN is briefly discussed.

  13. Next Generation Nuclear Plant System Requirements Manual

    International Nuclear Information System (INIS)

    Not Listed

    2008-01-01

    System Requirements Manual for the NGNP Project. The Energy Policy Act of 2005 (H.R. 6; EPAct), which was signed into law by President George W. Bush in August 2005, required the Secretary of the U.S. Department of Energy (DOE) to establish a project to be known as the Next Generation Nuclear Plant (NGNP) Project. According to the EPAct, the NGNP Project shall consist of the research, development, design, construction, and operation of a prototype plant (to be referred to herein as the NGNP) that (1) includes a nuclear reactor based on the research and development (R and D) activities supported by the Generation IV Nuclear Energy Systems initiative, and (2) shall be used to generate electricity, to produce hydrogen, or to both generate electricity and produce hydrogen. The NGNP Project supports both the national need to develop safe, clean, economical nuclear energy and the Nuclear Hydrogen Initiative (NHI), which has the goal of establishing greenhouse-gas-free technologies for the production of hydrogen. The DOE has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the reactor concept to be used for the NGNP because it is the only near-term Generation IV concept that has the capability to provide process heat at high-enough temperatures for highly efficient production of hydrogen. The EPAct also names the Idaho National Laboratory (INL), the DOE's lead national laboratory for nuclear energy research, as the site for the prototype NGNP

  14. RECENT DEVELOPMENTS IN ULTRA-HIGH ENERGY NEUTRINO ASTRONOMY

    Directory of Open Access Journals (Sweden)

    Peter K. F. Grieder

    2013-12-01

    Full Text Available We outline the current situation in ultrahigh energy (UHE cosmic ray physics, pointing out the remaining problems, in particular the puzzle concerning the origin of the primary radiation and the role of neutrino astronomy for locating the sources. Various methods for the detection of UHE neutrinos are briefly described and their merits compared. We give an account of the achievements of the existing optical Cherenkov neutrino telescopes, outline the possibility of using air fluorescence and particle properties of air showers to identify neutrino induced events, and discuss various pioneering experiments employing radio and acoustic detection of extremely energetic neutrinos. The next generation of space, ground and sea based neutrino telescopes now under construction or in the planning phase are listed.

  15. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  16. Next generation of energy production systems; Lancement pour les systemes du futur

    Energy Technology Data Exchange (ETDEWEB)

    Rouault, J.; Garnier, J.C. [CEA Saclay Dir. de l' Energie Nucleaire DEN, 91 - Gif sur Yvette (France); Carre, F. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares - DDIN, 91 - Gif Sur Yvette (France)] [and others

    2003-07-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources.

  17. PINGU sensitivity to neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Groß, Andreas

    2014-01-01

    Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit

  18. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  19. Neutrino-Flavoured Sneutrino Dark Matter

    CERN Document Server

    March-Russell, John; McCullough, Matthew

    2010-01-01

    A simple theory of supersymmetric dark matter (DM) naturally linked to neutrino flavour physics is studied. The DM sector comprises a spectrum of mixed lhd-rhd sneutrino states where both the sneutrino flavour structure and mass splittings are determined by the associated neutrino masses and mixings. Prospects for indirect detection from solar capture are good due to a large sneutrino-nucleon cross-section afforded by the inelastic splitting (solar capture limits exclude an explanation of DAMA/LIBRA). We find parameter regions where all heavier states will have decayed, leaving only one flavour mixture of sneutrino as the candidate DM. Such regions have a unique `smoking gun' signature--sneutrino annihilation in the Sun produces a pair of neutrino mass eigenstates free from vacuum oscillations, with the potential for detection at neutrino telescopes through the observation of a hard spectrum of nu_mu and nu_tau (for a normal neutrino hierarchy). Next generation direct detection experiments can explore much of...

  20. Testing the principle of equivalence by solar neutrinos

    International Nuclear Information System (INIS)

    Minakata, Hisakazu; Washington Univ., Seattle, WA; Nunokawa, Hiroshi; Washington Univ., Seattle, WA

    1994-04-01

    We discuss the possibility of testing the principle of equivalence with solar neutrinos. If there exists a violation of the equivalence principle quarks and leptons with different flavors may not universally couple with gravity. The method we discuss employs a quantum mechanical phenomenon of neutrino oscillation to probe into the non-university of the gravitational couplings of neutrinos. We develop an appropriate formalism to deal with neutrino propagation under the weak gravitational fields of the sun in the presence of the flavor mixing. We point out that solar neutrino observation by the next generation water Cherenkov detectors can improve the existing bound on violation of the equivalence principle by 3-4 orders of magnitude if the nonadiabatic Mikheyev-Smirnov-Wolfenstein mechanism is the solution to the solar neutrino problem

  1. Testing the principle of equivalence by solar neutrinos

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.

    1995-01-01

    We discuss the possibility of testing the principle of equivalence with solar neutrinos. If there exists a violation of the equivalence principle, quarks and leptons with different flavors may not universally couple with gravity. The method we discuss employs the quantum mechanical phenomenon of neutrino oscillation to probe into the nonuniversality of the gravitational couplings of neutrinos. We develop an appropriate formalism to deal with neutrino propagation under the weak gravitational fields of the Sun in the presence of the flavor mixing. We point out that solar neutrino observation by the next generation water Cherenkov detectors can place stringent bounds on the violation of the equivalence principle to 1 part in 10 15 --10 16 if the nonadiabatic Mikheyev-Smirnov-Wolfenstein mechanism is the solution to the solar neutrino problem

  2. Next-generation phylogenomics

    Directory of Open Access Journals (Sweden)

    Chan Cheong Xin

    2013-01-01

    Full Text Available Abstract Thanks to advances in next-generation technologies, genome sequences are now being generated at breadth (e.g. across environments and depth (thousands of closely related strains, individuals or samples unimaginable only a few years ago. Phylogenomics – the study of evolutionary relationships based on comparative analysis of genome-scale data – has so far been developed as industrial-scale molecular phylogenetics, proceeding in the two classical steps: multiple alignment of homologous sequences, followed by inference of a tree (or multiple trees. However, the algorithms typically employed for these steps scale poorly with number of sequences, such that for an increasing number of problems, high-quality phylogenomic analysis is (or soon will be computationally infeasible. Moreover, next-generation data are often incomplete and error-prone, and analysis may be further complicated by genome rearrangement, gene fusion and deletion, lateral genetic transfer, and transcript variation. Here we argue that next-generation data require next-generation phylogenomics, including so-called alignment-free approaches. Reviewers Reviewed by Mr Alexander Panchin (nominated by Dr Mikhail Gelfand, Dr Eugene Koonin and Prof Peter Gogarten. For the full reviews, please go to the Reviewers’ comments section.

  3. Meson exchange current (MEC) models in neutrino interaction generators

    International Nuclear Information System (INIS)

    Katori, Teppei

    2015-01-01

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators

  4. Frontiers in neutrino physics - Transparencies

    International Nuclear Information System (INIS)

    Akhmedov, E.; Balantekin, B.; Conrad, J.; Engel, J.; Fogli, G.; Giunti, C.; Espinoza, C.; Lasserre, T.; Lazauskas, R.; Lhuiller, D.; Lindner, M.; Martinez-Pinedo, G.; Martini, M.; McLaughlin, G.; Mirizzi, A.; Pehlivan, Y.; Petcov, S.; Qian, Y.; Serenelli, A.; Stancu, I.; Surman, R.; Vaananen, D.; Vissani, F.; Vogel, P.

    2012-01-01

    This document gathers the slides of the presentations. The purpose of the conference was to discuss the last advances in neutrino physics. The presentations dealt with: -) the measurement of the neutrino velocity, -) neutrino oscillations, -) anomaly in solar models and neutrinos, -) double beta decay, -) self refraction of neutrinos, -) cosmic neutrinos, -) antineutrino spectra from reactors, and -) some aspects of neutrino physics with radioactive ion beams. (A.C.)

  5. Near-term and next-generation nuclear power plant concepts

    International Nuclear Information System (INIS)

    Shiga, Shigenori; Handa, Norihiko; Heki, Hideaki

    2002-01-01

    Near-term and next-generation nuclear reactors will be required to have high economic competitiveness in the deregulated electricity market, flexibility with respect to electricity demand and investment, and good public acceptability. For near-term reactors in the 2010s, Toshiba is developing an improved advanced boiling water reactor (ABWR) based on the present ABWR with newly rationalized systems and components; a construction period of 36 months, one year shorter than the current period; and a power lineup ranging from 800 MWe to 1,600 MWe. For future reactors in the 2020s and beyond, Toshiba is developing the ABWR-II for large-scale, centralized power sources; a supercritical water-cooled power reactor with high thermal efficiency for medium-scale power sources; a modular reactor with siting flexibility for small-scale power sources; and a small, fast neutron reactor with inherent safety for independent power sources. From the viewpoint of efficient uranium resource utilization, a low-moderation BWR core with a high conversion factor is also being developed. (author)

  6. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  7. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  8. Nuclear reactor technology: the next 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T. [International Atomic Energy Agency, Vienna (Austria)

    2013-07-01

    In light of the growing awareness of the environmental externalities of fossil fuel combustion, alternatives for electric power generation such as solar, wind and nuclear energy are becoming more desirable. In developed countries, large power markets are currently served by a centralized energy system through well inter-connected electricity grids. However, as shares of variable renewable energy sources (mainly wind and solar power) are increasing in the future; larger fluctuation in power generation can be expected which lead to higher risk of grid instabilities. Less-capital intensive small and medium sized nuclear reactors (SMR) are emerging as an important element of alternative power generation system to fossil fuel, with a unique additional role of balancing the power generation fluctuation caused by the solar and wind power generation. In regions not served by large electricity grids, including many parts of the developing countries with increasing demand for energy at rates above world's average, power generation using locally available energy sources including renewable energy is the practical means of providing basic energy needed for social and economic development. The integration of locally supportable SMR and local renewable energy system in a hybrid fashion can reduce the relative scale but not eliminate the fluctuation in power generation caused by the irregular availability of solar and wind energy. Without the use of commercial electricity trading that is only available in regions served by large inter-connected electricity grids, further minimization of power generation fluctuation can be done by the installation of local energy (electricity and/or heat) applications and/or energy storage device. The operation of these applications and energy storage can be done in synchronization with the availability of excess power throughout the fluctuation of the overall power generation in the region. Under these conditions, SMRs utilization as part of

  9. Mixing of fourth-generation neutrinos

    International Nuclear Information System (INIS)

    Nussinov, S.

    1987-01-01

    This paper reviews some of the constraints on the mixing of massive decaying neutrinos. Some of the possible implications for neutrino physics of the recent supernova, and in particular the apparent overabundance of neutrino energy, are discussed

  10. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  11. Investigation of neutrino properties in experiments at nuclear reactors: Present status and prospects

    International Nuclear Information System (INIS)

    Mikaelyan, L.A.

    2002-01-01

    The present status of experiments that are being performed at nuclear reactors in order to seek the neutrino masses, mixing, and magnetic moments, whose discovery would be a signal of the existence of physics beyond the Standard Model, is considered, along with their future prospects

  12. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  13. Physics Potential of Very Intense Conventional Neutrino Beams

    CERN Document Server

    Gómez-Cadenas, J J; Burguet-Castell, J; Casper, David William; DOnega, M; Gilardoni, S S; Hernández, Pilar; Mezzetto, Mauro

    2001-01-01

    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.

  14. Development of PARA-ID Code to Simulate Inelastic Constitutive Equations and Their Parameter Identifications for the Next Generation Reactor Designs

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, J. H.

    2006-03-01

    The establishment of the inelastic analysis technology is essential issue for a development of the next generation reactors subjected to elevated temperature operations. In this report, the peer investigation of constitutive equations in points of a ratcheting and creep-fatigue analysis is carried out and the methods extracting the constitutive parameters from experimental data are established. To perform simulations for each constitutive model, the PARA-ID (PARAmeter-IDentification) computer program is developed. By using this code, various simulations related with the parameter identification of the constitutive models are carried out

  15. From double Chooz to triple Chooz - neutrino physics at the Chooz reactor complex

    International Nuclear Information System (INIS)

    Huber, Patrick; Kopp, Joachim; Lindner, Manfred; Rolinec, Mark; Winter, Walter

    2006-01-01

    We discuss the potential of the proposed Double Chooz reactor experiment to measure the neutrino mixing angle sin 2 2θ 13 . We especially consider systematical uncertainties and their partial cancellation in a near and far detector operation, and we discuss implications of a delayed near detector startup. Furthermore, we introduce Triple Chooz, which is a possible upgrade scenario assuming a second, larger far detector, which could start data taking in an existing cavern five years after the first far detector. We review the role of the Chooz reactor experiments in the global context of future neutrino beam experiments. We find that both Double Chooz and Triple Chooz can play a leading role in the search for a finite value of sin 2 2θ 13 . Double Chooz could achieve a sensitivity limit of ∼ 2.10 -2 at the 90% confidence level after 5 years while the Triple Chooz setup could give a sensitivity below 10 -2

  16. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  17. Data analysis for solar neutrinos observed by water Cherenkov detectors{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Koshio, Yusuke [Okayama University, Okayama (Japan)

    2016-04-15

    A method of analyzing solar neutrino measurements using water-based Cherenkov detectors is presented. The basic detection principle is that the Cherenkov photons produced by charged particles via neutrino interaction are observed by photomultiplier tubes. A large amount of light or heavy water is used as a medium. The first detector to successfully measure solar neutrinos was Kamiokande in the 1980's. The next-generation detectors, i.e., Super-Kamiokande and the Sudbury Neutrino Observatory (SNO), commenced operation from the mid-1990's. These detectors have been playing the critical role of solving the solar neutrino problem and determining the neutrino oscillation parameters over the last decades. The future prospects of solar neutrino analysis using this technique are also described. (orig.)

  18. Neutrino Physics without Neutrinos: Recent results from the NEMO-3 experiment and plans for SuperNEMO

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The observation of neutrino oscillations has proved that neutrinos have mass. This discovery has renewed and strengthened the interest in neutrinoless double beta decay experiments which provide the only practical way to determine whether neutrinos are Majorana or Dirac particles. The recently completed NEMO-3 experiment, located in the Laboratoire Souterrain de Modane in the Frejus Tunnel, was an experiment searching for neutrinoless double beta decays using a powerful technique for detecting a two-electron final state by employing an apparatus combining tracking, calorimetry, and the time-of-flight measurements. We will present latest results from NEMO-3 and will discuss the status of SuperNEMO, the next generation experiment that will exploit the same experimental technique to extend the sensitivity of the current search.

  19. Measuring nuclear power plant output by neutrino detection

    International Nuclear Information System (INIS)

    Korovkin, V.A.; Kodanev, S.A.; Panashchenko, N.S.; Sokolov, D.A.; Solov'yanov, O.M.; Tverdovskii, N.D.; Yarichin, A.D.; Ketov, S.N.; Kopeikin, V.I.; Machulin, I.N.; Mikaelyan, L.A.; Sinev, V.V.

    1989-01-01

    Neutrino emission from a reactor is inseparably linked with the fission process of heavy nuclei: each fission contributes a specific amount to the overall power output and gives rise to neutrinos which are emitted by the fission fragments created. Using a detector to record the neutrino flux gives a curve for the number of nuclei undergoing fission and the reactor power output. The question of whether it is practically possible to make use of neutrino emission from reactors was first posed in the mid-70s in connection with preparations for neutrino research at the Roven nuclear power plant (RAES) and in 1986 at an IAEA symposium on the topic of guarantees. Since 1982, research has been carried on at RAES on the fundamental properties and interactions of neutrinos. Based on this research and in parallel with it, in 1983 specialists from the Kurchatov Nuclear Power Institute and RAES jointly conducted an experiment which demonstrated in principle the possibility of remotely measuring reactor power output using the neutrino emission. This experiment had extremely limited statistics and is of interest today as the first demonstration of practical usage of neutrino emission from a reactor. At present the statistics for detecting neutrino events have increased tenfold and experience in lengthy measurements has been accumulated. This allows better analysis for the possibilities of the method. This paper reviews neutrino detection, theoretical bases of the method, determining the fission scale values for converting a number of neutrinos into power output, and measuring the power output

  20. Slow control systems of the Reactor Experiment for Neutrino Oscillation

    International Nuclear Information System (INIS)

    Choi, J.H.; Jang, H.I.; Choi, W.Q.; Choi, Y.; Jang, J.S.; Jeon, E.J.; Joo, K.K.; Kim, B.R.; Kim, H.S.; Kim, J.Y.; Kim, S.B.; Kim, S.Y.; Kim, W.; Kim, Y.D.; Ko, Y.J.; Lee, J.K.; Lim, I.T.; Pac, M.Y.; Park, I.G.; Park, J.S.

    2016-01-01

    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this paper, we report the design, hardware, operation, and performance of the slow control system.

  1. A National Demonstration Project Building the Next Generation

    International Nuclear Information System (INIS)

    Keuter, Dan; Hughey, Kenneth; Melancon, Steve; Quinn, Edward 'Ted'

    2002-01-01

    The U.S., and the world to a greater extent, needs more electrical power generating plants. In the U.S. alone some estimates say that over the next 20 years more than 400,000 MWe of new generation will be needed. This in a period when domestic oil and gas production decreases while consumption increases. Consequently, the U.S. grows more and more dependent on foreign energy sources today importing approximately 60% of our needs. Consider also that the U.S., once the world leader in all nuclear technology, no long leads the world in this technology and each day that goes by the U.S. nuclear infrastructure becomes less and less robust. Due to its improved safety, reliability/economics and emission free generation nuclear power is once more seen as an important energy source in many countries. In 2000, the number of operating nuclear power plants worldwide increased to 438, with 36 new plants under construction. Unfortunately, no new reactor orders have been placed in the US since 1979. When one considers national issues such as reducing environmental emissions, reallocation and conservation of limited natural resources and domestic energy security, the need for new nuclear generation is essential. While the hurdles facing the deployment of new nuclear generation in the U.S. are certainly formidable, the consequences of inaction in this regard are intolerable. In partnership with industry, the Department of Energy should move forward with an aggressive effort in support of deployment of an advanced nuclear power reactor incorporating state-of-the-art safety and proliferation resistant systems. This effort should be structured so as to significantly advance the timetable by which the systems would be available for commercial deployment by taking advantage of ongoing efforts currently underway at DOE and industry. The effort should be sequenced, to the extent possible, so that it can best reflect, both with respect to schedule and capability, the evolving national

  2. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung

    2002-01-01

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified

  3. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  4. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  5. Workshop on low energy neutrino physics

    International Nuclear Information System (INIS)

    2009-01-01

    The main topics of the workshop are: the determination of the neutrino mixing angle theta-13, the experiments concerning the monitoring of reactors based on the measurement of neutrino spectra, solar neutrinos, supernovae neutrinos, geo-neutrinos, neutrino properties, neutrinoless double beta decay and future low energy neutrino detectors. This document gathers together the program of the workshop, the slides of the presentations, some abstracts and some posters

  6. Next generation initiation techniques

    Science.gov (United States)

    Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans

    1993-01-01

    Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The

  7. Demonstration of Key Elements of a Dual Phase Argon Detection System Suitable for Measurement of Coherent Neutrino-Nucleus Scattering

    International Nuclear Information System (INIS)

    Adam, B; Celeste, W; Christian, H; Wolfgang, S; Norman, M

    2007-01-01

    This feasibility study sought to demonstrate several necessary steps in a research program whose ultimate goal is to detect coherent scattering of reactor antineutrinos in dual-phase noble liquid detectors. By constructing and operating a Argon gas-phase drift and scintillation test-bed, the study confirmed important expectations about sensitivity of these detectors, and thereby met the goals set forth in our original proposal. This work has resulted in a successful Lab-Wide LDRD for design and deployment of a coherent scatter detector at a nuclear reactor, and strong interest by DOE Office of Science. In recent years, researchers at LLNL and elsewhere have converged on a design approach for a new generation of very low noise, low background particle detectors known as two-phase noble liquid/noble gas ionization detectors. This versatile class of detector can be used to detect coherent neutrino scattering-an as yet unmeasured prediction of the Standard Model of particle physics. Using the dual phase technology, our group would be the first to verify the existence of this process. Its (non)detection would (refute)validate central tenets of the Standard Model. The existence of this process is also important in astrophysics, where coherent neutrino scattering is assumed to play an important role in energy transport within nascent neutron stars. The potential scientific impact after discovery of coherent neutrino-nuclear scattering is large. This phenomenon is flavor-blind (equal cross-sections of interaction for all three neutrino types), raising the possibility that coherent scatter detectors could be used as total flux monitors in future neutrino oscillation experiments. Such a detector could also be used to measure the flavor-blind neutrino spectrum from the next nearby (d ∼ 10kpc) type Ia supernova explosion. The predicted number of events [integrated over explosion time] for a proposed dual-phase argon coherent neutrino scattering detector is 10000 nuclear

  8. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  9. Proceedings of the first workshop on solar neutrino detection

    International Nuclear Information System (INIS)

    Sakuda, Makoto; Suzuki, Y.

    1986-12-01

    The purpose of the workshop was to review this vital field of the solar neutrino physics and to search for new techniques for next generation detectors to cover full range of the solar neutrino spectrum. Reviews of the solar model, the matter oscillation and experimental status were given. Discussions were also focused on a radio chemical measurement and indium detectors. Progress reports of scintillation fibers and indium-loaded scintillators were presented. Possible new detectors to use low temperature techniques were also reported. Progress reports from the Kamioka experiment, the only one from the real world, covered their search for the solar neutrinos and the effect of the matter oscillation of atomospheric neutrinos. (author)

  10. Review of indirect detection of dark matter with neutrinos

    Science.gov (United States)

    Danninger, Matthias

    2017-09-01

    Dark Matter could be detected indirectly through the observation of neutrinos produced in dark matter self-annihilations or decays. Searches for such neutrino signals have resulted in stringent constraints on the dark matter self-annihilation cross section and the scattering cross section with matter. In recent years these searches have made significant progress in sensitivity through new search methodologies, new detection channels, and through the availability of rich datasets from neutrino telescopes and detectors, like IceCube, ANTARES, Super-Kamiokande, etc. We review recent experimental results and put them in context with respect to other direct and indirect dark matter searches. We also discuss prospects for discoveries at current and next generation neutrino detectors.

  11. Comparison of nuclear reactor types of the next generation; Komparativni prikaz novih tipova reaktorskih komercijalnih postrojenja slijedece generacije

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Z; Kastelan, M [NPP Krsko (Slovenia)

    1992-07-01

    The paper presents a comparison for a selected relevant set of parameters for different commercial nuclear reactor types at the next generation. This parameters overview could serve as the base for the semi-quantitative decision bases for the selection of the future nuclear strategy. The number of advanced reactor designs of the LWR, HWR, GCR and LMR type are presented. Even currently many of them are still on the drawing boards, the concepts and designs should be assessed in the sense of sensible approach for planning the possible future nuclear strategy. (author) Clanek predstavlja usporedbu odabranih bitnih parametara karakteristicnih za razlicite tipove energetskih nuklearnih postrojenja slijedece generacije. Prikazani pregled parametara omogucava osnov za polu kvantitativnu osnovu za odlucivanje u svrhu donosenja odluke oko odrednica buduce strategije uporabe nuklearne energije. Brojni koncepti naprednih nuklearnih reaktora tipa LWR, HWR, GCR i LMR su prezentirani. S obzirom na cinjenicu da se mnogi of prezentiranih nalaze jos uvijek na crtacim daskama projektanata, koncepti i projekti koji su iz njih proizasli zahtijevaju analizu u smislu kvalitativnog pristupa planiranja moguce buduce nuklearne startegije. (author)

  12. Studies of neutrino asymmetries generated by ordinary-sterile neutrino oscillations in the early Universe and implications for big bang nucleosynthesis bounds

    Energy Technology Data Exchange (ETDEWEB)

    Foot, R.; Volkas, R.R. [Research Centre for High Energy Physics, School of Physics, University of Melbourne, Parkville, 3052 (Australia)

    1997-04-01

    Ordinary-sterile neutrino oscillations can generate a significant lepton number asymmetry in the early Universe. We study this phenomenon in detail. We show that the dynamics of ordinary-sterile neutrino oscillations in the early Universe can be approximately described by a single integrodifferential equation which we derive from both the density matrix and Hamiltonian formalisms. This equation reduces to a relatively simple ordinary first-order differential equation if the system is sufficiently smooth (static limit). We study the conditions for which the static limit is an acceptable approximation. We also study the effect of the thermal distribution of neutrino momenta on the generation of lepton number. We apply these results to show that it is possible to evade (by many orders of magnitude) the big bang nucleosynthesis (BBN) bounds on the mixing parameters {delta}m{sup 2} and sin{sup 2}2{theta}{sub 0} describing ordinary-sterile neutrino oscillations. We show that the large angle or maximal vacuum oscillation solution to the solar neutrino problem does not significantly modify BBN for most of the parameter space of interest, provided that the {tau} and/or {mu} neutrinos have masses greater than about 1 eV. We also show that the large angle or maximal ordinary-sterile neutrino oscillation solution to the atmospheric neutrino anomaly does not significantly modify BBN for a range of parameters. {copyright} {ital 1997} {ital The American Physical Society}

  13. From high-scale leptogenesis to low-scale one-loop neutrino mass generation

    Science.gov (United States)

    Zhou, Hang; Gu, Pei-Hong

    2018-02-01

    We show that a high-scale leptogenesis can be consistent with a low-scale one-loop neutrino mass generation. Our models are based on the SU(3)c × SU(2)L × U(1)Y × U(1) B - L gauge groups. Except a complex singlet scalar for the U(1) B - L symmetry breaking, the other new scalars and fermions (one scalar doublet, two or more real scalar singlets/triplets and three right-handed neutrinos) are odd under an unbroken Z2 discrete symmetry. The real scalar decays can produce an asymmetry stored in the new scalar doublet which subsequently decays into the standard model lepton doublets and the right-handed neutrinos. The lepton asymmetry in the standard model leptons then can be partially converted to a baryon asymmetry by the sphaleron processes. By integrating out the heavy scalar singlets/triplets, we can realize an effective theory to radiatively generate the small neutrino masses at the TeV scale. Furthermore, the lightest right-handed neutrino can serve as a dark matter candidate.

  14. Astrophysical neutrinos flavored with beyond the Standard Model physics

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Rasmus W.; Ackermann, Markus; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lechner, Lukas [Vienna Univ. of Technology (Austria). Dept. of Physics; Kowalski, Marek [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2017-07-15

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or non-standard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow to efficiently test and discriminate models. More detailed information can be obtained from additional observables such as the energy-dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  15. Astrophysical neutrinos flavored with beyond the Standard Model physics

    International Nuclear Information System (INIS)

    Rasmussen, Rasmus W.; Ackermann, Markus; Winter, Walter; Lechner, Lukas; Kowalski, Marek; Humboldt-Universitaet, Berlin

    2017-07-01

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or non-standard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow to efficiently test and discriminate models. More detailed information can be obtained from additional observables such as the energy-dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  16. Meeting the future of coherent neutrino scattering. A feasibility study for upcoming reactor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco; Rink, Thomas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Due to ongoing progress in detector development and background suppression techniques first evidence of neutrino coherent scattering seems reachable in future experiments. In recent years efforts have been enhanced to detect this effect with germanium detectors. This work aims at summarizing and improving past studies on the potential of an experiment at a reactor site to a new level of accuracy by using the most recent neutrino spectra, knowledge gained in recent detector developments and in contrast to prior studies an energy-dependent quenching factor. The influence of the main parameters (background suppression, detector resolution and threshold, reactor spectra, different isotopes) of a germanium detector experiment is presented and the sensitivities regarding the main reaction channels are calculated. The results were obtained through two independent methods; an algebraic computation and a numerical simulation. Both methods reveal the most important experimental parameters and clarify the state of the art challenges that research has to meet in such an experiment.

  17. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  18. Neutrino Oscillations:. a Phenomenological Approach

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.; Rotunno, A. M.; Montanino, D.

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  19. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  20. Measurement of atmospheric neutrino oscillations and matter effects with PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan; Euler, Sebastian; Krings, Kai; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    With IceCube's low-energy extension DeepCore the first significant effects of atmospheric neutrino oscillations have been observed. The planned ''Precision Icecube Next Generation Upgrade'' (PINGU) inside DeepCore will lower the energy threshold to a few GeV, where matter effects of neutrino oscillations have to be taken into account. The Mikheyev-Smirnov-Wolfenstein (MSW) effect modifies the mixing between flavor and mass eigenstates of the neutrinos, resulting in stronger oscillations. Furthermore, neutrinos when passing through the Earth core experience parametric enhancement due to multiple discontinuities in the electron density. In this talk the effects of matter oscillations and the capabilities to measure these effects with PINGU are investigated.

  1. Design of a fault diagnosis system for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-01-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  2. Solar Mikheyev-Smirnov-Wolfenstein Effect with Three Generations of Neutrinos

    OpenAIRE

    Osland, P; Wu Tai Tsun

    1999-01-01

    Under the assumption that the density variation of the electrons can be approximated by an exponential function, the solar Mikheyev-Smirnov-Wolfenstein effect is treated for three generations of neutrinos. The generalized hypergeometric functions that result from the exact solution of this problem are studied in detail, and a method for their numerical evaluation is presented. This analysis plays a central role in the determination of neutrino masses, not only the differences of their squares...

  3. RGG: Reactor geometry (and mesh) generator

    International Nuclear Information System (INIS)

    Jain, R.; Tautges, T.

    2012-01-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  4. CNO neutrino Grand Prix: the race to solve the solar metallicity problem

    Science.gov (United States)

    Cerdeño, David G.; Davis, Jonathan H.; Fairbairn, Malcolm; Vincent, Aaron C.

    2018-04-01

    Several next-generation experiments aim to make the first measurement of the neutrino flux from the Carbon-Nitrogen-Oxygen (CNO) solar fusion cycle. We calculate how much time these experiments will need to run for in order to measure this flux with enough precision to tell us the metal content of the Sun's core, and thereby help to solve the solar metallicity problem. For experiments looking at neutrino-electron scattering, we find that SNO+ will measure this CNO neutrino flux with enough precision after five years in its pure scintillator mode, provided its 210Bi background is measured to 1% accuracy. By comparison, a 100 ton liquid argon experiment such as Argo will take ten years in Gran Sasso lab, or five years in SNOLAB or Jinping. Borexino could obtain this precision in ten years, but this projection is very sensitive to background assumptions. For experiments looking at neutrino-nucleus scattering, the best prospects are obtained for low-threshold solid state detectors (employing either germanium or silicon). These would require new technologies to lower the experimental threshold close to detection of single electron-hole pairs, and exposures beyond those projected for next-generation dark matter detectors.

  5. Neutrino oscillations: present status and outlook

    International Nuclear Information System (INIS)

    Schwetz, T.

    2005-01-01

    In this talk the present status of neutrino oscillations is reviewed, based on a global analysis of world neutrino oscillation data from solar, atmospheric, reactor, and accelerator neutrino experiments. Furthermore, I discuss the expected improvements in the determination of neutrino parameters by future oscillation experiments within a timescale of 10 years. (author)

  6. Optical scattering lengths in large liquid-scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J. [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Lachenmaier, T.; Traunsteiner, C. [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, D-85748 Garching (Germany); Undagoitia, T. Marrodan [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Physik-Institut, Universitaet Zuerich, Winterthurstr. 189, CH-8057 Zuerich (Switzerland)

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  7. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    Science.gov (United States)

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  8. Neutrino-nucleus cross section in the impulse approximation regime

    International Nuclear Information System (INIS)

    Benhar, Omar; Farina, Nicola

    2005-01-01

    In the impulse approximation regime the nuclear response to a weakly interacting probe can be written in terms of the measured nucleon structure functions and the target spectral function, yielding the energy and momentum distribution of the constituent nucleons. We discuss a calculation of charged current neutrino-oxygen interactions in the quasielastic channel, carried out within nuclear many body theory. The proposed approach, extensively and successfully employed in the analysis of electron-nucleus scattering data, allows for a parameter free prediction of the neutrino-nucleus cross section, whose quantitative understanding will be critical to the analysis of the next generation of high precision neutrino oscillation experiments

  9. Neutrino GDR meeting

    International Nuclear Information System (INIS)

    Aguilar-Saavedra, J.A.; Camilleri, L.; Mention, G.; VanElewyck, V.; Verderi, M.; Blondel, A.; Augier, C.; Bellefon, A. de; Coc, A.; Duchesneau, D.; Favier, J.; Lesgourgues, J.; Payet, J.

    2006-01-01

    The purpose of the neutrino GDR (research program coordination) is to federate the activities of French research teams devoted to studying the neutrino. The presentations have been organized on 2 days. A review of the present status of the theoretical and experimental knowledge on neutrinos on a worldwide basis has been made on the first day while the second day has been dedicated to reporting the activities of the 5 following working groups: 1) determination of neutrino parameters, 2) physics beyond the standard model, 3) neutrinos in the universe, 4) neutrino detection, and 5) common tools. During the first day the American neutrino research program has been presented through the description of the 2 neutrino detection systems: Nova and Minor. The following neutrino experiments involving nuclear reactors: Chooz (France), Daya-bay (China), Reno (Korea) and Angra (Brazil) have also been reviewed. This document is made up of the slides of the presentations

  10. GRAN SASSO/GRENOBLE: Artificial neutrino source confirms solar neutrino result

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In 1992, the Gallex experiment announced the first observation of the neutrinos produced in the primary proton-proton fusion reaction in the core of the Sun, reaction at the origin of the energy production by our star (September 1992, page 1). The Gallex team stressed that the observed neutrino flux was only about two-thirds of the predicted level, confirming the deficit observed by the two pioneering experiments, Ray Davis' chlorine-based detector in the USA and the Kamiokande study in Japan (which are only sensitive to neutrinos from subsidiary solar fusion processes). This deficit demands explanation, and could considerably modify our understanding of how stars shine and/or of neutrino physics. But before drawing conclusions, the Gallex result had to be checked. Gallex, installed in the Italian Gran Sasso underground Laboratory, is a radiochemical experiment using neutrino interactions to transform gallium-71 into germanium-71. The latter is radioactive and decays with a half-life of 11.4 days. Counting the germanium-71 atoms extracted from the target tank measures the neutrino flux to which the detector is exposed. Neutrinos are famous for their reluctance to interact. 65 billion per square centimetre per second on the surface of the Earth produce only one germanium-71 atom in the Gallex target containing 30 tons of gallium. This is at the limit of homeopathy (extracting few atoms of germanium-71 from a solution containing 10 30 atoms) and needs careful checking. Since it is not possible to switch off the Sun, the only recourse was to build an artificial neutrino source more powerful than the Sun as a benchmark. This was done last summer. Last May, 36 kilograms of chromium grains were placed in the Siloe reactor of the French Commissariat à l'énergie atomique, Grenoble. The chromium had been previously enriched to 40% chromium-50 by the Kurchatov Institute in Moscow (natural chromium contains only 4.5% chromium-50). A dedicated core was built for

  11. Nuclear the next generation. 34th Annual Canadian Nuclear Society conference and 37th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The 34th Annual Canadian Nuclear Society Conference and 37th CNS/CNA Student Conference was held in Toronto, Ontario, Canada on June 10-13, 2013. With the theme of the conference, 'Nuclear the Next Generation{sup ,} the conference actively engaged 400 participants in the many facets of this well-rum event. The conference combined excellent plenary speakers, a full set of technical papers, challenging student poster competitions, and interesting exhibits. The plenary session focussed on the themes: 'Nuclear Power - a Business Driver for the Next Generation'; and, 'Designing - the Next Generation'. The technical session titles were: Reactor and Radiation Physics; Environment and Spent Fuel Management; Operations and Maintenance; Fusion Science and Technology; Advanced Reactors and Fuels; Plant Life Extension, Refurbishment and Aging; Safety and Licensing; Chemistry and Materials; and, Thermalhydraulics. The student conference session was well attended and completed the 4 day event.

  12. Light neutrinos as cosmological dark matter and the next supernova

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.

    1990-01-01

    We point out that the light-neutrino hypothesis for cosmological dark matter can be tested by observing a neutrino burst from a type-II supernova. With the luck of a nearby (∼10 kpc) event watched by enlarged water Cherenkov detectors, such as the proposed super-Kamiokande, it might be possible to measure the tau- (heaviest-)neutrino mass. In such a case the statistically significant (4000--6000) bar ν e absorption events would allow the precise determination of the neutrino flux and the temperature. By using a simple model of neutrino emission based on the simulation by Mayle, Wilson, and Schramm, we show that the existence of the neutrino mixing can be signaled by 20--30 % excess of the scattering events in the water Cherenkov detector, and by factor ∼3 larger rate in Davis's 37 Cl detector. The effect on the recoil electron energy spectrum is also analyzed

  13. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Daijiro [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2018-01-15

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z{sub 2} symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem. (orig.)

  14. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Science.gov (United States)

    Suematsu, Daijiro

    2018-01-01

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z_2 symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem.

  15. Development of a framework for the neutorinics analysis system for next generation (2) (Contract research)

    International Nuclear Information System (INIS)

    Hirai, Yasushi; Hyoudou, Hideaki; Tatsumi, Masahiro; Jin, Tomoyuki; Yokoyama, Kenji

    2008-10-01

    Japan Atomic Energy Agency promotes development of innovative analysis methods and models in fundamental studies for next-generation nuclear reactor systems. In order to efficiently and effectively reflect the latest analysis methods and models to primary design of prototype reactor and/or in-core fuel management for power reactors, a next-generation analysis system MARBLE has been developed. The next-generation system provides solutions to the following requirements: (1) Flexibility, extensibility and user-friendliness that can apply new methods and models rapidly and effectively for fundamental studies, (2) quantitative assurance of solution accuracy and adaptive scoping range for design studies, (3) coupling analysis among different study domains for the purpose of rationalization of plant systems and improvement of reliability, (4) maintainability and reusability for system extensions for the purpose of total quality assurance and development efficiency. There has been a problem of extreme inefficiency due to lack of functionality in the conventional analysis system when changing analysis targets and/or modeling levels. In order to solve this problem, a policy of the hybrid system is adopted for the next-generation system, in which a controlling part is implemented in the scripting language with rich flexibility and maintainability and solution kernels that requires execution speed in the system language. In this study, detailed design of a framework, its implementation and tests are conducted so that a Python system layer can drive calculation codes written in C++ and/or Fortran. It is confirmed that various type of calculation codes such as diffusion, transport and burnup codes can be treated in the same manner on the platform for unified management system for calculation codes with a data exchange mechanism for abstracted data model between the Python and the calculation code layers. (author)

  16. Research and development on next generation reactor (phase I)

    International Nuclear Information System (INIS)

    Park, Jong Kyoon; Chang, Moon Heuy; Hwang, Yung Dong

    1994-10-01

    The objective of the study is to improve the volume of nuclear power plant which adopts passive safety system concept. The passive safety system reactor is characterized by excellent safety and reliability. But the volume of NSSS (Nuclear Steam Supply System) of the passive safety system reactor is so small that it should be upgraded for commercial operation. For volume upgrade, detailed analyses are performed as follows; core design, hydraulics, design and mechnical structures, and safety analysis. In addition to above analysis, some investigations must be supplied as follows: power density vs. DNB margin decrease, outlet temperature vs. EPRI-URD, additional tests for upgraded reactor, dynamic analysis of mechanical vibration according to expanded reactor vessel and expanded in-core structures, and Merit loss of passive safety system reactor according to design margin decrease. (Author)

  17. Research and development on next generation reactor (phase I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyoon; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1994-10-01

    The objective of the study is to improve the volume of nuclear power plant which adopts passive safety system concept. The passive safety system reactor is characterized by excellent safety and reliability. But the volume of NSSS (Nuclear Steam Supply System) of the passive safety system reactor is so small that it should be upgraded for commercial operation. For volume upgrade, detailed analyses are performed as follows; core design, hydraulics, design and mechnical structures, and safety analysis. In addition to above analysis, some investigations must be supplied as follows: power density vs. DNB margin decrease, outlet temperature vs. EPRI-URD, additional tests for upgraded reactor, dynamic analysis of mechanical vibration according to expanded reactor vessel and expanded in-core structures, and Merit loss of passive safety system reactor according to design margin decrease. (Author).

  18. Search for sterile neutrinos at a new short-baseline CERN neutrino beam

    International Nuclear Information System (INIS)

    Mauri, N.

    2014-01-01

    In the last few years the experimental results on neutrino/anti-neutrino oscillations at Short-Baseline (SBL) showed a tension with several phenomenological models. The recent and carefully recomputed anti-neutrino fluxes from nuclear reactors have further increased this tension drawing a picture not fully compatible with the 3 neutrino oscillation scenario. A sterile neutrino is a neutral lepton which does not couple with W/Z bosons. it is not an exotic particle, its existence being a natural consequence of neutrinos having a non-zero mass. Sterile neutrinos can mix with the active ones through additional mass eigenstates, with no necessary mass scale. We will present an experimental search for sterile neutrinos with a new CERN-SPS neutrino beam using muon spectrometers and large LAr detectors. To definitely clarify the physics issue, the proposed experiment will study oscillations in a muon neutrino / antineutrino beam both in appearance and disappearance modes, exploring the Δm 2 ∼ 1 eV 2 range

  19. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  20. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  1. Neutrino-antineutrino pair production by hadronic bremsstrahlung

    Science.gov (United States)

    Bacca, Sonia

    2016-09-01

    I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).

  2. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  3. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  4. Neutrino mass and mixing, and non-accelerator experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  5. The experimental status of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  6. Sterile Neutrino Search with the Double Chooz Experiment

    Science.gov (United States)

    Hellwig, D.; Matsubara, T.; Double Chooz Collaboration

    2017-09-01

    Double Chooz is a reactor antineutrino disappearance experiment located in Chooz, France. A far detector at a distance of about 1 km from reactor cores is operating since 2011; a near detector of identical design at a distance of about 400 m is operating since begin 2015. Beyond the precise measurement of θ 13, Double Chooz has a strong sensitivity to so called light sterile neutrinos. Sterile neutrinos are neutrino mass states not taking part in weak interactions, but may mix with known neutrino states. In this paper, we present an analysis method to search for sterile neutrinos and the expected sensitivity with the baselines of our detectors.

  7. Safety design philosophy of the ABWR for the next generation LWRs

    International Nuclear Information System (INIS)

    Sato, Takashi; Akinaga, Makoto; Kojima, Yoshihiro

    2009-01-01

    The paper presents safety design philosophy of the advanced boiling water reactor (ABWR) to be reflected in developing the next generation light water reactors (LWRs). The basic policy of the ABWR safety design was to improve safety and reduce cost simultaneously by reflecting lessons learned of precursors, incidents and accidents that were beyond the design basis such as the Three Mile Island Unit 2 (TMI 2) accident. The ABWR is a fully active safety plant. The ABWR enhanced redundancy and diversity of active safety systems using probabilistic safety assessment (PSA) insights. It adopted a complete three division active emergency core cooling system (ECCS) and attained a very low core damage frequency (CDF) value of less than 10 -7 /ry for internal events. Only very small residual risks, if any, rather exist in external events such as an extremely large earthquake beyond the design basis. This is because external events can constitute a common cause that disables all the redundant active safety systems. Therefore, it is useless to add one more ECCS train and make a four division active ECCS for external events. Nowadays, however, fully passive safety LWRs are already established. Incorporating some of these passive safety systems we can also establish the next generation LWRs that are truly strong against external events. We can establish a plant that can survive a giant earthquake at least three days without AC power source, SA proof safety design that enables no containment failure and no evacuation to eliminate the residual risks. The same basic policy as the ABWR to improve safety and reduce cost simultaneously is again effective for the next generation LWRs. (author)

  8. The application of MVC design pattern in Daya bay reactor neutrino experiments online safety training system

    International Nuclear Information System (INIS)

    Liu Guanchuan; Chu Yuanping

    2011-01-01

    The article made an introduction to MVC, which is an architectural pattern used in software engineering. It specified the advantages and disadvantages of MVC and also the application of MVC in Daya Bay nuclear reactor neutrino experiment online safety training system. (authors)

  9. Spectrometry of the Earth using Neutrino Oscillations

    Science.gov (United States)

    Rott, C.; Taketa, A.; Bose, D.

    2015-01-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth’s inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth’s electron density. The Earth’s chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth’s matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways. PMID:26489447

  10. Neutrinos: from the Workshop to the Factory

    CERN Multimedia

    2001-01-01

    Over the next 5 years much work will be done to reach a theoretical and practical description of a neutrino factory. How could this project turn out to be an interesting future option for CERN? Neutrino beams travelling from CERN to the Canary Islands? And to the Svalbard archipelago in Norway? Or even to the Pyhaesalmi Mine in Finland? Why neutrinos? And why so far? The answers provide one of CERN's next challenging options: the construction of a high-energy muon storage ring to provide neutrino beams. This project, nicknamed 'neutrino factory', now figures in CERN's middle term plan as a recognized and supported research and development project. International collaborations, with other European laboratories and also with America and Japan, are now being set up. Long baseline locations for neutrino oscillations studies at a CERN based neutrino factory. Early in its history, LEP established that there exist just three kinds of light neutrinos, those associated with the electron, muon, and tau leptons. For a...

  11. Research report on the users' needs for next research reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Tamura, Itaru; Hosoya, Toshiaki; Horiguchi, Hironori

    2015-03-01

    JRR-3 has been operated for more than 25 years for that it is time to investigate the role of a next research reactor. A task force under the Committee for Promotion of JRR-3 Neutron Beam Application has been organized by Department of Research Reactor and Tandem Accelerator to survey neutron beam application trends in the future. This is a report on the survey results and users' requirements for the next research reactor have been summarized in this report carried by the task force. (author)

  12. Sterile neutrino search with the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hellwig, Denise; Bekman, Ilja; Kampmann, Philipp; Schoppmann, Stefan; Soiron, Michael; Stahl, Achim; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany)

    2016-07-01

    The Double Chooz experiment is a reactor neutrino disappearance experiment located at the Chooz nuclear power plant, France. It measures the electron-antineutrino flux of the two nuclear reactors with two detectors of identical design. A far detector at a distance of about 1 km is operating since 2011; a near detector at a distance of about 400 m is operating since the end of 2014. The combination of the two detectors offers sensitivity to sterile neutrino mixing parameters. Sterile neutrinos are neutrino mass states not taking part in weak interactions, but may mix with known neutrino states. This induces additional mixing angles and mass differences. This talk describes the search for sterile neutrinos and the sensitivity of Double Chooz to the mixing angle θ{sub 14}.

  13. Proceedings of US-Japan workshop on new generation experiments and reactors (joined by EC)

    International Nuclear Information System (INIS)

    1988-07-01

    The workshop, titled 'New Generation Experiments and Reactors', was held at Plasma Physics Laboratory, Kyoto University from 25 to 28 July 1988. The purpose of the meeting was to review the latest achievements and status of stellarator/heliotron new generation experiments as well as the prospects for stellarator/heliotron fusion reactors on the occasion when the New Large Helical System of MOE in Japan is being realized. The reports on the New Large Helical System of MOE cover an overview, physics issues, design, MHD studies, transport code results and bootstrap current, particle orbit studies, divertor studies, NBI heating, analysis of wave heating, heating system, diagnostics, and SC coil technology. The reports on ATF II cover an overview, physics studies strategy, status of physics studies, engineering issues, perspective of helical systems, issues for next-generation experiments and relationship to the Univ. of Wisconsin Program, and issues for next-generation experiments and relation to Auburn Program. Other reports address recent studies of present devices, studies related with WVIIX, and reactor studies. (N.K.)

  14. Combined potential of future long-baseline and reactor experiments

    International Nuclear Information System (INIS)

    Huber, P.; Lindner, M.; Rolinec, M.; Schwetz, T.; Winter, W.

    2005-01-01

    We investigate the determination of neutrino oscillation parameters by experiments within the next ten years. The potential of conventional beam experiments (MINOS, ICARUS, OPERA), superbeam experiments (T2K, NOνA), and reactor experiments (D-CHOOZ) to improve the precision on the 'atmospheric' parameters Δm 31 2 , θ 23 , as well as the sensitivity to θ 13 are discussed. Further, we comment on the possibility to determine the leptonic CP-phase and the neutrino mass hierarchy if θ 13 turns out to be large

  15. Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector

    Science.gov (United States)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-09-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.

  16. The next generation CANDU 6

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    1999-01-01

    AECL's product line of CANDU 6 and CANDU 9 nuclear power plants are adapted to respond to changing market conditions, experience feedback and technological development by a continuous improvement process of design evolution. The CANDU 6 Nuclear Power Plant design is a successful family of nuclear units, with the first four units entering service in 1983, and the most recent entering service this year. A further four CANDU 6 units are under construction. Starting in 1996, a focused forward-looking development program is under way at AECL to incorporate a series of individual improvements and integrate them into the CANDU 6, leading to the evolutionary development of the next-generation enhanced CANDU 6. The CANDU 6 improvements program includes all aspects of an NPP project, including engineering tools improvements, design for improved constructability, scheduling for faster, more streamlined commissioning, and improved operating performance. This enhanced CANDU 6 product will combine the benefits of design provenness (drawing on the more than 70 reactor-years experience of the seven operating CANDU 6 units), with the advantages of an evolutionary next-generation design. Features of the enhanced CANDU 6 design include: Advanced Human Machine Interface - built around the Advanced CANDU Control Centre; Advanced fuel design - using the newly demonstrated CANFLEX fuel bundle; Improved Efficiency based on improved utilization of waste heat; Streamlined System Design - including simplifications to improve performance and safety system reliability; Advanced Engineering Tools, -- featuring linked electronic databases from 3D CADDS, equipment specification and material management; Advanced Construction Techniques - based on open top equipment installation and the use of small skid mounted modules; Options defined for Passive Heat Sink capability and low-enrichment core optimization. (author)

  17. Solar Mikheyev-Smirnov-Wolfenstein effect with three generations of neutrinos

    International Nuclear Information System (INIS)

    Osland, Per; Wu, Tai Tsun

    2000-01-01

    Under the assumption that the density variation of the electrons can be approximated by an exponential function, the solar Mikheyev-Smirnov-Wolfenstein effect is treated for three generations of neutrinos. The generalized hypergeometric functions that result from the exact solution of this problem are studied in detail, and a method for their numerical evaluation is presented. This analysis plays a central role in the determination of neutrino masses, not only the differences of their squares, under the assumption of universal quark-lepton mixing. (c) 2000 The American Physical Society

  18. On-site underground background measurements for the KASKA reactor-neutrino experiment

    International Nuclear Information System (INIS)

    Furuta, H.; Sakuma, K.; Aoki, M.; Fukuda, Y.; Funaki, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Katsumata, M.; Kawasaki, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Matsumoto, T.; Miyata, H.; Nagasaka, Y.; Nakagawa, T.; Nakajima, N.; Nitta, K.; Sakai, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.; Tamura, N.; Tsuchiya, Y.

    2006-01-01

    On-site underground background measurements were performed for the planned reactor-neutrino oscillation experiment KASKA at Kashiwazaki-Kariwa nuclear power station in Niigata, Japan. A small-diameter boring hole was excavated down to 70m underground level, and a detector unit for γ-ray and cosmic-muon measurements was placed at various depths to take data. The data were analyzed to obtain abundance of natural radioactive elements in the surrounding soil and rates of cosmic muons that penetrate the overburden. The results will be reflected in the design of the KASKA experiment

  19. Accelerator studies of neutrino oscillations

    CERN Document Server

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  20. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  1. Neutrino Factory Targets and the MICE Beam

    International Nuclear Information System (INIS)

    Walaron, Kenneth A.

    2007-01-01

    The future of particle physics in the next 20 years must include detailed study of neutrinos. The first proof of physics beyond the Standard Model of particle physics is evident in results from recent neutrino experiements which imply that neutrinos have mass and flavour mixing. The Neutrino Factory is the leading contender to measure precisely the neutrino mixing parameters to probe beyond the Standard Model physics.

  2. Fourth Generation Reactor Concepts

    International Nuclear Information System (INIS)

    Furtek, A.

    2008-01-01

    Concerns over energy resources availability, climate changes and energy supply security suggest an important role for nuclear energy in future energy supplies. So far nuclear energy evolved through three generations and is still evolving into new generation that is now being extensively studied. Nuclear Power Plants are producing 16% of the world's electricity. Today the world is moving towards hydrogen economy. Nuclear technologies can provide energy to dissociate water into oxygen and hydrogen and to production of synthetic fuel from coal gasification. The introduction of breeder reactors would turn nuclear energy from depletable energy supply into an unlimited supply. From the early beginnings of nuclear energy in the 1940s to the present, three generations of nuclear power reactors have been developed: First generation reactors: introduced during the period 1950-1970. Second generation: includes commercial power reactors built during 1970-1990 (PWR, BWR, Candu, Russian RBMK and VVER). Third generation: started being deployed in the 1990s and is composed of Advanced LWR (ALWR), Advanced BWR (ABWR) and Passive AP600 to be deployed in 2010-2030. Future advances of the nuclear technology designs can broaden opportunities for use of nuclear energy. The fourth generation reactors are expected to be deployed by 2030 in time to replace ageing reactors built in the 1970s and 1980s. The new reactors are to be designed with a view of the following objectives: economic competitiveness, enhanced safety, minimal radioactive waste production, proliferation resistance. The Generation IV International Forum (GIF) was established in January 2000 to investigate innovative nuclear energy system concepts. GIF members include Argentina, Brazil, Canada, Euratom, France Japan, South Africa, South Korea, Switzerland, United Kingdom and United States with the IAEA and OECD's NEA as permanent observers. China and Russia are expected to join the GIF initiative. The following six systems

  3. Neutrino mass and mixing with discrete symmetry

    International Nuclear Information System (INIS)

    King, Stephen F; Luhn, Christoph

    2013-01-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)

  4. Geo-Neutrinos

    International Nuclear Information System (INIS)

    Dye, S.T.

    2009-01-01

    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  5. Geo-Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii, 96744 (United States)

    2009-03-15

    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  6. Discrete Symmetry Approach to Lepton Flavour, Neutrino Mixing and Leptonic CP Violation, and Neutrino Related Physics Beyond the Standard Theory

    OpenAIRE

    Girardi, Ivan

    2016-01-01

    The experimental evidences of neutrino oscillation, caused by non-zero neutrino masses and neutrino mixing, which were obtained in the experiments with solar, atmospheric, accelerator and reactor neutrinos, opened new field of research in elementary particle physics. The principal goal is to understand at fundamental level the mechanism giving rise to non-zero neutrino masses and neutrino mixing. The open fundamental questions include those of the nature — Dirac or Majorana — of massive neutr...

  7. Neutron sources for neutrino investigations with the lithium converter

    International Nuclear Information System (INIS)

    Lyashuk, V.I.; Lutostansky, Yu.S.

    2012-01-01

    Creation of the powerful antineutrino source with a hard spectrum is possible on the base of β - -decay of the short lived 8 Li (T 1/2 = 0.84 s) isotope formed in the reaction 7 Li(n,γ) 8 Li. The 8 Li. isotope is a prime perspective antineutrino source taking into account that neutrino cross section depends as σ ∼ E ν 2 at the considered energy. The creation of this type powerful neutrino source (neutrino factory) is possible by (n,γ)-activation of high-purified 7 Li isotope under intensive neutron flux. As a neutron source for this purpose can be used the nuclear reactors (of steady-state flux and pulsed one), neutron sources on the base of accelerators and neutron generating targets, beam-dumps of large accelerators. The capabilities and perspectives of neutron sources are considered for the purpose of creation of the neutrino factory. Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7 Li isotope) are discussed: static regime (i.e., without transport of 8 Li isotope to the detector); dynamic regime (pumping of activated lithium to a remote detector in a closed cycle); lithium converter on the base of (a) a pulse reactors and (b) constructed as tandem of an antineutrino source and accelerator with a neutron-producing target. Heavy water solution of LiOD is proposed as a substance for the lithium converter. The expressions for neutrino fluxes in the detector position are obtained

  8. Physics of the neutrino mass

    International Nuclear Information System (INIS)

    Mohapatra, R N

    2004-01-01

    Recent neutrino oscillation experiments have yielded valuable information on the nature of neutrino masses and mixings and qualify as the first evidence for physics beyond the standard model. Even though we are far from a complete understanding of the new physics implied by them, there are many useful hints. As the next precision era in neutrino physics is about to be launched, we review the physics of neutrino mass: what we have learned and what we are going to learn

  9. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  10. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  11. Generation Next

    Science.gov (United States)

    Hawkins, B. Denise

    2010-01-01

    There is a shortage of accounting professors with Ph.D.s who can prepare the next generation. To help reverse the faculty deficit, the American Institute of Certified Public Accountants (CPAs) has created the new Accounting Doctoral Scholars program by pooling more than $17 million and soliciting commitments from more than 70 of the nation's…

  12. Cosmology and CPT violating neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; Salvado, Jordi [Universitat de Valencia-CSIC, Departament de Fisica Teorica y Instituto de Fisica Corpuscular, Burjassot (Spain)

    2017-11-15

    The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment. (orig.)

  13. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    Dupraz, B.; Bertel, E.

    2003-01-01

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  14. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  15. In search of new neutrinos and dark matter. The return of fundamental research to BR2

    International Nuclear Information System (INIS)

    2015-01-01

    A consortium of three French, two British, and four Flemish universities and research institutions, including the Belgian Nuclear Research Center SCK-CEN, started in 2014 on the construction of a neutrino experiment in the BR2 reactor. A reactor such as this is an extremely intense source of neutrinos: elementary particles that are generated as a by-product of nuclear beta decay. BR2 is particularly suitable with regard to carrying out this measurement because of the compact core, the high operating capacity, sufficient space for placing a fairly large detector, and the extremely low background radiation. The article discusses recent developments.

  16. Applying Bayesian neural networks to event reconstruction in reactor neutrino experiments

    International Nuclear Information System (INIS)

    Xu Ye; Xu Weiwei; Meng Yixiong; Zhu Kaien; Xu Wei

    2008-01-01

    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The electron samples from the Monte-Carlo simulation of the toy detector have been reconstructed by the method of Bayesian neural networks (BNNs) and the standard algorithm, a maximum likelihood method (MLD), respectively. The result of the event reconstruction using BNN has been compared with the one using MLD. Compared to MLD, the uncertainties of the electron vertex are not improved, but the energy resolutions are significantly improved using BNN. And the improvement is more obvious for the high energy electrons than the low energy ones

  17. Candu technology: the next generation now

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Duffey, R.B.; Torgerson, D.F.

    2001-01-01

    We describe the development philosophy, direction and concepts that are being utilized by AECL to refine the CANDU reactor to meet the needs of current and future competitive energy markets. The technology development path for CANDU reactors is based on the optimization of the pressure tube concept. Because of the inherent modularity and flexibility of this basis for the core design, it is possible to provide a seamless and continuous evolution of the reactor design and performance. There is no need for a drastic shift in concept, in technology or in fuel. By continual refinement of the flow and materials conditions in the channels, the basic reactor can be thermally and operationally efficient, highly competitive and economic, and highly flexible in application. Thus, the design can build on the successful construction and operating experience of the existing plants, and no step changes in development direction are needed. This approach minimizes investor, operator and development risk but still provides technological, safety and performance advances. In today's world energy markets, major drivers for the technology development are: (a) reduced capital cost; (b) improved operation; (c) enhanced safety; and (d) fuel cycle flexibility. The drivers provide specific numerical targets. Meeting these drivers ensures that the concept meets and exceeds the customer economic, performance, safety and resource use goals and requirements, including the suitable national and international standards. This logical development of the CANDU concept leads naturally to the 'Next Generation' of CANDU reactors. The major features under development include an optimized lattice for SEU (slightly enriched uranium) fuel, light water cooling coupled with heavy water moderation, advanced fuel channels and CANFLEX fuel, optimization of plant performance, enhanced thermal and BOP (balance of plant) efficiency, and the adoption of layout and construction technology adapted from successful on

  18. Inclusion of GENIE as neutrino event generator for INO ICAL

    Indian Academy of Sciences (India)

    2017-02-22

    Feb 22, 2017 ... be the largest experimental facility of basic science in India which will carry ..... further support the use of GENIE over Nuance, and also highlight the .... A neutrino event generator is a vital component in the simulation studies ...

  19. A single-stage high pressure steam injector for next generation reactors: test results and analysis

    International Nuclear Information System (INIS)

    Cattadori, G.; Galbiati, L.; Mazzocchi, L.; Vanini, P.

    1995-01-01

    Steam injectors can be used in advanced light water reactors (ALWRs) for high pressure makeup water supply; this solution seems to be very attractive because of the ''passive'' features of steam injectors, that would take advantage of the available energy from primary steam without the introduction of any rotating machinery. The reference application considered in this work is a high pressure safety injection system for a BWR; a water flow rate of about 60 kg/s to be delivered against primary pressures covering a quite wide range up to 9 MPa is required. Nevertheless, steam driven water injectors with similar characteristics could be used to satisfy the high pressure core coolant makeup requirements of next generation PWRs. With regard to BWR application, an instrumented steam injector prototype with a flow rate scaling factor of about 1:6 has been built and tested. The tested steam injector operates at a constant inlet water pressure (about 0.2 MPa) and inlet water temperature ranging from 15 to 37 o C, with steam pressure ranging from 2.5 to 8.7 MPa, always fulfilling the discharge pressure target (10% higher than steam pressure). To achieve these results an original double-overflow flow rate-control/startup system has been developed. (Author)

  20. Next Generation Microshutter Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  1. Project control - the next generation

    International Nuclear Information System (INIS)

    Iorii, V.F.; McKinnon, B.L.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) is the U.S. Department of Energy's (DOE) second largest Major System Acquisition Project. We have developed an integrated planning and control system (called PACS) that we believe represents the 'Next Generation' in project control. PACS integrates technical scope, cost, and schedule information for over 50 participating organizations and produces performances measurement reports for science and engineering managers at all levels. Our 'Next Generation' project control too, PACS, has been found to be in compliance with the new DOE Project Control System Guidelines. Additionally, the nuclear utility oversight group of the Edison Electric Institute has suggested PACS be used as a model for other civilian radioactive waste management projects. A 'Next Generation' project control tool will be necessary to do science in the 21st century

  2. Effect of atmospheric flux uncertainties on the determination of the neutrino mass hierarchy

    Directory of Open Access Journals (Sweden)

    Sandroos Joakim

    2016-01-01

    Full Text Available The next generation of large-volume neutrino telescopes will include low-energy subarrays which will be able to measure neutrinos with energies of a few GeV. In this energy range the primary signal below the horizon is neutrinos created by cosmic ray interactions in the atmosphere. The measured event rate will depend on the neutrino mass hierarchy, allowing determination of this quantity to a significance level of about 3.5 sigma within a 5-year period, mostly limited by systematic uncertainties. We present here the impact of the uncertainties on the atmospheric neutrino flux normalization on the determination of the neutrino mass hierarchy. We suggest constraining the systematic uncertainties by including the downgoing neutrino sample, which will increase the significance. This work was performed using simulation data from the low-energy extension to the IceCube detector located at the geographic south pole, PINGU, and is relevant to a wide range of other experiments.

  3. New results from RENO & prospects with RENO-50

    Science.gov (United States)

    Joo, K. K.

    2017-09-01

    This paper briefly describes recent progress of RENO and next generation future prospect of the reactor neutrino oscillation experiment, RENO-50. Recently the RENO experiment has updated its latest value on sin22θ 13 and provided new results on 5 MeV excess, Δm2 ee, θ 13 with n-H analysis, absolute antineutrino flux measurement, and sterile neutrino search. It gives rich programs of neutrino properties, detector development, nuclear monitoring and application. Using reactor neutrinos, the future RENO-50 experiment will search for more precise measurement of θ 12, Δm 2 12 and mass hierarchy.

  4. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  5. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  6. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  7. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  8. Neutrino oscillations - the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPP/APC), 91- Gif sur Yvette (France)

    2007-07-01

    {theta}{sub 13} is the mixing angle that couples the field of the neutrino number 3 (the heaviest) to the electron field. The Double Chooz experiment will use 2 identical detectors, near the Chooz nuclear reactor cores to measure the last undetermined mixing angle {theta}{sub 13}. The basic principle of the multi-detector concept is the cancellation of the reactor-induced systematic errors. The first detector will be installed in the existing underground laboratory (1050 meters away from the plant station) that was used in the first Chooz experiment in the nineties. The second detector will be constructed from 2009 in a new neutrino laboratory, located down a 45 m well that will be excavated 300 m away from the reactors. An average visible neutrino rate of 55 (550) events per day is expected to be detected inside the far (near) detector, taking into account the various inefficiencies, if no oscillations. The near detector will perform a measurement of the anti-neutrino flux and its energy spectrum with an unprecedented accuracy and for a long period (3 years). These huge statistics will also be exploited to monitor changes in the relative amounts of U{sup 235} and Pu{sup 239} in the core, paving the way to use neutrino detection for safeguards applications. (A.C.)

  9. Neutrino overview

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1994-01-01

    I discuss some of the open issues in neutrino physics, emphasizing areas of intersection with astrophysics, that occupied the participants of the Snowmass Workshop on Nuclear and Particle Astrophysics and Cosmology in the Next Millenium

  10. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2001-01-01

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  11. Cycle layout studies of S-CO2 cycle for the next generation nuclear system application

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Bae, Seong Jun; Kim, Minseok; Cho, Seong Kuk; Baik, Seungjoon; Lee, Jeong Ik; Cha, Jae Eun

    2014-01-01

    According to the second law of thermodynamics, the next generation nuclear reactor system efficiency can potentially be increased with higher operating temperature. Fig.1 shows several power conversion system efficiencies and heat sources with respect to the system top operating temperature. As shown in Fig.1, the steam Rankine and gas Brayton cycles have been considered as the major power conversion systems more than several decades. In the next generation reactor operating temperature region (450 - 900 .deg. C), the steam Rankine and gas Brayton cycles have limits due to material problems and low efficiency, respectively. Among the future power conversion systems, S-CO 2 cycle is receiving interests due to several benefits including high efficiency under the mild turbine inlet temperature range (450-650 .deg. C), compact turbomachinery and simple layout compared to the steam Rankine cycle. S-CO 2 cycle can show relatively high efficiency under the mild turbine inlet temperature range (450-600 .deg. C) compared to other power conversion systems. The recompression cycle shows the best efficiency among other layouts and it is suitable for the application to advanced nuclear reactor systems. As S-CO 2 cycle performance can vary depending on the layout configuration, further studies on the layouts are required to design a better performing cycle

  12. A Comparison Framework for Reactor Anti-Neutrino Detectors in Near-Field Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brodsky, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculating generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.

  13. Next-Generation Tools For Next-Generation Surveys

    Science.gov (United States)

    Murray, S. G.

    2017-04-01

    The next generation of large-scale galaxy surveys, across the electromagnetic spectrum, loom on the horizon as explosively game-changing datasets, in terms of our understanding of cosmology and structure formation. We are on the brink of a torrent of data that is set to both confirm and constrain current theories to an unprecedented level, and potentially overturn many of our conceptions. One of the great challenges of this forthcoming deluge is to extract maximal scientific content from the vast array of raw data. This challenge requires not only well-understood and robust physical models, but a commensurate network of software implementations with which to efficiently apply them. The halo model, a semi-analytic treatment of cosmological spatial statistics down to nonlinear scales, provides an excellent mathematical framework for exploring the nature of dark matter. This thesis presents a next-generation toolkit based on the halo model formalism, intended to fulfil the requirements of next-generation surveys. Our toolkit comprises three tools: (i) hmf, a comprehensive and flexible calculator for halo mass functions (HMFs) within extended Press-Schechter theory, (ii) the MRP distribution for extremely efficient analytic characterisation of HMFs, and (iii) halomod, an extension of hmf which provides support for the full range of halo model components. In addition to the development and technical presentation of these tools, we apply each to the task of physical modelling. With hmf, we determine the precision of our knowledge of the HMF, due to uncertainty in our knowledge of the cosmological parameters, over the past decade of cosmic microwave background (CMB) experiments. We place rule-of-thumb uncertainties on the predicted HMF for the Planck cosmology, and find that current limits on the precision are driven by modeling uncertainties rather than those from cosmological parameters. With the MRP, we create and test a method for robustly fitting the HMF to observed

  14. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)

    2013-02-15

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.

  15. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    International Nuclear Information System (INIS)

    Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.

    2013-01-01

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

  16. Reducing Risk for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  17. Reducing Risk for the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Beck, John M. II; Heydt, Harold J.; Opare, Emmanuel O.; Oswald, Kyle B.

    2010-01-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  18. Status and topics of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Ohnuki, Akira; Arai, Kenji; Kikuta, Michitaka; Yonomoto, Taisuke; Araya, Fumimasa; Akimoto, Hajime

    1999-01-01

    For increasing of electric power demand and reducing of carbon dioxide exhaust in the 21st century, studies of the next-generation light water reactor (LWR) with passive safety systems are developing in the world: AP-600 (by Westing House Co.); SBWR (by General Electric Co.); SWR1000 (by Siemens Co.); NP21 (by Mitsubishi Heavy Industry Co., et al.); JPSR (by JAERI). The passive equipment using natural circulation and natural convection are installed in the passive safety system, instead of active safety equipment, such as pumps, etc. It remains still as a important issue, however, to verify the reliability on the functions of the passive equipment, since that the driving forces of the passive equipment are small at comparison with the active safety equipment. The various subjects of thermal-hydraulic analysis for the next-generation light water reactors, such as temperature stratification in the passive safety systems, vapor condensation in the mixture of non-condensable gases and the interactions of the passive safety system with the primary cooling system, are illustrated and discussed in the paper. (M. Suetake)

  19. Dynalight Next Generation

    DEFF Research Database (Denmark)

    Jørgensen, Bo Nørregaard; Ottosen, Carl-Otto; Dam-Hansen, Carsten

    2016-01-01

    The project aims to develop the next generation of energy cost-efficient artificial lighting control that enables greenhouse growers to adapt their use of artificial lighting dynamically to fluctuations in the price of electricity. This is a necessity as fluctuations in the price of electricity c...

  20. High energy neutrino astronomy; past, present and future

    International Nuclear Information System (INIS)

    Learned, J.G.

    1993-01-01

    The nascent field of high energy neutrino astronomy seems to be near to blossoming in the next few years, after decades of speculation and preliminary experimental work. The motivation for the endeavor, anticipated types of sources, consideration of energy regime for first attempts, scale size needed, and techniques are qualitatively reviewed. A summary of relevant current projects is presented with emphasis on the new initiatives with detectors of the 10,000m 2 class. It seems that by the end of the decade there may be a few such new generation instruments in operation, and that with luck the business of high energy neutrino astrophysics will be underway by the turn of the century. (orig.)

  1. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  2. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  3. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  4. Disappearing neutrinos at KamLAND suport the case for neutrino mass

    CERN Multimedia

    Johnson, G

    2002-01-01

    Measurements from KamLAND, show that anti-neutrinos emanating from nearby nuclear reactors are "disappearing," which indicates they have mass and can oscillate or change from one type to another (2 pages)

  5. PINGU and the neutrino mass hierarchy: Statistical and systematical aspects

    International Nuclear Information System (INIS)

    Capozzi, F.; Marrone, A.; Lisi, E.

    2016-01-01

    The proposed PINGU project (Precision IceCube Next Generation Upgrade) is supposed to determine neutrino mass hierarchy through matter effects of atmospheric neutrinos crossing the Earth core and mantle, which leads to variations in the events spectrum in energy and zenith angle. The presence of non-negligible (and partly unknown) systematics on the spectral shape can make the statistical analysis particularly challenging in the limit of high statistics. Assuming plausible spectral shape uncertainties at the percent level (due to effective volume, cross section, resolution functions, oscillation parameters, etc.), we obtain a significant reduction in the sensitivity to the hierarchy. The obtained results show the importance of a dedicated research program aimed at a better characterization and reduction of the uncertainties in future high-statistics experiments with atmospheric neutrinos.

  6. Reines-Cowan team discovery of the electron neutrino

    International Nuclear Information System (INIS)

    Kruse, Herald W.

    2011-01-01

    Personal perspective and recollections by the author discuss the Reines-Cowan team discovery of the electron neutrino at a Savannah River reactor in 1956. First presented at the Neutrino Santa Fe 2006 Conference.

  7. Neutrino masses twenty-five years later

    International Nuclear Information System (INIS)

    Valle, J.W.F.

    2003-01-01

    The discovery of neutrino mass marks a turning point in elementary particle physics, with important implications for nuclear and astroparticle physics. Here I give a brief update, where I summarize the current status of three-neutrino oscillation parameters from current solar, atmospheric, reactor and accelerator neutrino data, discuss the case for sterile neutrinos and LSND, and also the importance of tritium and double beta decay experiments probing the absolute scale of neutrino mass. In this opinionated look at the present of neutrino physics, I keep an eye in the future, and a perspective of the past, taking the opportunity to highlight Joe Schechter's pioneering contribution, which I have had the fortune to share, as his PhD student back in the early eighties

  8. Current Results of NEUTRINO-4 Experiment

    Science.gov (United States)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-12-01

    The main goal of experiment “Neutrino-4” is to search for the oscillation of reactor antineutrino to a sterile state. Experiment is conducted on SM-3 research reactor (Dimitrovgrad, Russia). Data collection with full-scale detector with liquid scintillator volume of 3m3 was started in June 2016. We present the results of measurements of reactor antineutrino flux dependence on the distance in range 6- 12 meters from the center of the reactor. At that distance range, the fit of experimental dependence has good agreement with the law 1/L2. Which means, at achieved during the data collecting accuracy level oscillations to sterile state are not observed. In addition, the spectrum of prompt signals of neutrino-like events at different distances have been presented.

  9. The Next Great Generation?

    Science.gov (United States)

    Brownstein, Andrew

    2000-01-01

    Discusses ideas from a new book, "Millennials Rising: The Next Great Generation," (by Neil Howe and William Strauss) suggesting that youth culture is on the cusp of a radical shift with the generation beginning with this year's college freshmen who are typically team oriented, optimistic, and poised for greatness on a global scale. Includes a…

  10. Tailoring next-generation biofuels and their combustion in next-generation engines

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wu, Weihua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taatjes, Craig A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheer, Adam Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Kevin M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Eizadora T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Bryan, Greg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Powell, Amy Jo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Connie W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  11. Neutrino Physics at Kalinin Nuclear Power Plant: 2002 - 2017

    Science.gov (United States)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye; Shirchenko, M.; Shitov, Yu; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    2017-12-01

    The results of the research in the field of neutrino physics obtained at Kalinin nuclear power plant during 15 years are presented. The investigations were performed in two directions. The first one includes GEMMA I and GEMMA II experiments for the search of the neutrino magnetic moment, where the best result in the world on the value of the upper limit of this quantity was obtained. The second direction is tied with the measurements by a solid scintillator detector DANSS designed for remote on-line diagnostics of nuclear reactor parameters and search for short range neutrino oscillations. DANSS is now installed at the Kalinin Nuclear Power Plant under the 4-th unit on a movable platform. Measurements of the antineutrino flux demonstrated that the detector is capable to reflect the reactor thermal power with an accuracy of about 1.5% in one day. Investigations of the neutrino flux and their energy spectrum at different distances allowed to study a large fraction of a sterile neutrino parameter space indicated by recent experiments and perform the reanalysis of the reactor neutrino fluxes. Status of the short range oscillation experiment is presented together with some preliminary results based on about 170 days of active data taking during the first year of operation.

  12. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically in influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the part of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material inter actions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (author)

  13. Plasma-material interactions in current tokamaks and their implications for next-step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several cm from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the engineering design activities of the international thermonuclear experimental reactor project (ITER) and significant progress has been made in better understanding these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/re-deposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (orig.)

  14. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W.

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design

  15. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design.

  16. Neutrino versus antineutrino oscillation parameters at DUNE and Hyper-Kamiokande experiments

    Science.gov (United States)

    de Gouvêa, André; Kelly, Kevin J.

    2017-11-01

    Testing, in a nontrivial, model-independent way, the hypothesis that the three-massive-neutrinos paradigm properly describes nature is among the main goals of the current and the next generation of neutrino oscillation experiments. In the coming decade, the DUNE and Hyper-Kamiokande experiments will be able to study the oscillation of both neutrinos and antineutrinos with unprecedented precision. We explore the ability of these experiments, and combinations of them, to determine whether the parameters that govern these oscillations are the same for neutrinos and antineutrinos, as prescribed by the C P T -theorem. We find that both DUNE and Hyper-Kamiokande will be sensitive to unexplored levels of leptonic C P T -violation. Assuming the parameters for neutrino and antineutrino oscillations are unrelated, we discuss the ability of these experiments to determine the neutrino and antineutrino mass-hierarchies, atmospheric-mixing octants, and C P -odd phases, three key milestones of the experimental neutrino physics program. Additionally, if the C P T -symmetry is violated in nature in a way that is consistent with all present neutrino and antineutrino oscillation data, we find that DUNE and Hyper-Kamiokande have the potential to ultimately establish leptonic C P T -invariance violation.

  17. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  18. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  19. Information Management system of the safety regulatory requirements and guidance for the Korea next generation reactors

    International Nuclear Information System (INIS)

    Yun, Y. C.; Lee, J. H.; Lee, H. C.; Lee, J. S.

    2000-01-01

    In order to achieve the safety of the Korea Next Generation Reactors (KNGR), the Korea Institute of Nuclear Safety has carried out the Safety and Regulatory Requirements and Guidance (SRRG) development program from 1992 such as establishment of the SRRG hierarchy, development of technical requirements and guidance, and consideration of new licensing system. The SRRG hierarchy for the KNGR was consisted of five tiers; Safety Objectives, Safety Principles, General Safety Criteria, Specific Safety Requirements and Safety Regulatory Guides. The developed SRRG have been compared the criteria in 10CFR and Reg. Guide in the U.S.A and the IAEA documents for assuring internationally acceptable level of the SRRG. To improve the efficiency and accuracy of SRRG development, the construction of database system was required in the course of development. Therefore, the Information Management System of SRRG for the KNGR has been developed which enables developers to quickly and accurately seek and systematically manage whole contexts of the SRRG, reference requirements, and current atomic energy regulation rules. Moreover, through homepage whose URL is 'http://kngr.kins.re.kr', the concerned persons and public can acquire the information related with SRRG and KNGR project, and post his/her thought to the opinion forum in the homepage

  20. Information Management system of the safety regulatory requirements and guidance for the Korea next generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Y. C. [LG-EDS Systems, Seoul (Korea, Republic of); Lee, J. H.; Lee, H. C.; Lee, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2000-05-01

    In order to achieve the safety of the Korea Next Generation Reactors (KNGR), the Korea Institute of Nuclear Safety has carried out the Safety and Regulatory Requirements and Guidance (SRRG) development program from 1992 such as establishment of the SRRG hierarchy, development of technical requirements and guidance, and consideration of new licensing system. The SRRG hierarchy for the KNGR was consisted of five tiers; Safety Objectives, Safety Principles, General Safety Criteria, Specific Safety Requirements and Safety Regulatory Guides. The developed SRRG have been compared the criteria in 10CFR and Reg. Guide in the U.S.A and the IAEA documents for assuring internationally acceptable level of the SRRG. To improve the efficiency and accuracy of SRRG development, the construction of database system was required in the course of development. Therefore, the Information Management System of SRRG for the KNGR has been developed which enables developers to quickly and accurately seek and systematically manage whole contexts of the SRRG, reference requirements, and current atomic energy regulation rules. Moreover, through homepage whose URL is 'http://kngr.kins.re.kr', the concerned persons and public can acquire the information related with SRRG and KNGR project, and post his/her thought to the opinion forum in the homepage.

  1. Fission energy: The integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements

  2. Fission energy: The integral fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements.

  3. Advancing the CANDU reactor: From generation to generation

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Duffey, Romney B.; Yu, Steven; Torgerson, Dave F.

    2006-01-01

    Emphasizing safety, reliability and economics, the CANDU reactor development strategy is one of continuous improvement, offering value and assured support to customers worldwide. The Advanced CANDU Reactor (ACR-1000) generation, designed by Atomic Energy of Canada Limited (AECL), meets the new economic expectation for low-cost power generation with high capacity factors. The ACR is designed to meet customer needs for reduced capital cost, shorter construction schedule, high plant capacity factor, low operating cost, increased operating life, simple component replacement, enhanced safety features, and low environmental impact. The ACR-1000 design evolved from the internationally successful medium-sized pressure tube reactor (PTR) CANDU 6 and incorporates operational feedback from eight utilities that operate 31 CANDU units. This technical paper provides a brief description of the main features of the ACR-1000, and its major role in the development path of the generations of the pressure tube reactor concept. The motivation, philosophy and design approach being taken for future generation of CANDU pressure tube reactors are described

  4. Status and subjects of thermal-hydraulic analysis for next-generation LWRs

    International Nuclear Information System (INIS)

    2000-03-01

    The status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were surveyed through about 5 years until March 1999 by subcommittee on improvement of reactor thermal-hydraulic analysis codes under the nuclear code committee in Japan Atomic Energy Research Institute. Based on the survey results and discussion, the status and subjects on system analysis for various types of proposed reactor were summarized in 1998 and those on multidimensional two-phase flow analysis were also reviewed, since the multidimensional analysis was recognized as one of the most important subjects through the investigation on system analysis. In this report, the status and subjects for the following were summarized from the survey results and discussion in 1998 and 1999; (1) BWR neutronic/thermal-hydraulic coupled analysis, (2) Evaluation of passive safety system performance and (3) Gas-liquid two-phase flow analysis. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs including test results from several large-scale facilities. We expect that the contents can offer a guideline to improve reactor thermal-hydraulic analysis codes in future. (author)

  5. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  6. Neutrino Mass Matrix Textures: A Data-driven Approach

    CERN Document Server

    Bertuzzo, E; Machado, P A N

    2013-01-01

    We analyze the neutrino mass matrix entries and their correlations in a probabilistic fashion, constructing probability distribution functions using the latest results from neutrino oscillation fits. Two cases are considered: the standard three neutrino scenario as well as the inclusion of a new sterile neutrino that potentially explains the reactor and gallium anomalies. We discuss the current limits and future perspectives on the mass matrix elements that can be useful for model building.

  7. Cluster cosmology with next-generation surveys.

    Science.gov (United States)

    Ascaso, B.

    2017-03-01

    The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3next-generation surveys and introduce very preliminary results.

  8. The KM3NeT deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, Annarita

    2014-12-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km{sup 3}-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere.

  9. An origin for small neutrino masses in the NMSSM

    International Nuclear Information System (INIS)

    Abada, Asmaa; Moreau, Gregory

    2006-01-01

    We consider the Next to Minimal Supersymmetric Standard Model (NMSSM) which provides a natural solution to the so-called μ problem by introducing a new gauge-singlet superfield S. We realize that a mechanism of neutrino mass suppression arises, based on the R-parity violating bilinear terms μ i L i H u mixing neutrinos and higgsinos, offering thus an original approach to the neutrino mass problem (connected to the solution for the μ problem). We generate realistic (Majorana) neutrino mass values without requiring any strong hierarchy amongst the fundamental parameters, in contrast with the alternative models. In particular, the ratio μ i /μ can reach ∼ 10 -1 , unlike in the MSSM where it has to be much smaller than unity. We check that the obtained parameters also satisfy the collider constraints and internal consistencies of the NMSSM. The price to pay for this new cancellation-type mechanism of neutrino mass reduction is a certain fine tuning, which get significantly improved in some regions of parameter space. Besides, we discuss the feasibility of our scenario when the R-parity violating bilinear terms have a common origin with the μ term, namely when those are generated via a VEV of the S scalar component from the couplings λ i SL i H u . Finally, we make comments on some specific phenomenology of the NMSSM in the presence of R-parity violating bilinear terms

  10. A road map to solar neutrino fluxe, neutrino oscillation parameters, and tests for new physics

    CERN Document Server

    Bahcall, J N; Bahcall, John N.; Peña-Garay, Carlos

    2003-01-01

    We analyze all available solar and related reactor neutrino experiments, as well as simulated future ^7Be, p-p, pep, and ^8B solar neutrino experiments. We treat all solar neutrino fluxes as free parameters subject to the condition that the total luminosity represented by the neutrinos equals the observed solar luminosity (the `luminosity constraint'). Existing experiments show that the p-p solar neutrino flux is 1.01 + - 0.02 (1 sigma) times the flux predicted by the BP00 standard solar model; the ^7Be neutrino flux is 0.97^{+0.28}_{-0.54} the predicted flux; and the ^8B flux is 1.01 + - 0.06 the predicted flux. The oscillation parameters are: Delta m^2 = 7.3^{+0.4}_{-0.6} 10^{-5} eV^2 and tan^2 theta_{12} = 0.42^{+0.08}_{-0.06}. We evaluate how accurate future experiments must be to determine more precisely neutrino oscillation parameters and solar neutrino fluxes, and to elucidate the transition from vacuum-dominated to matter-dominated oscillations. A future ^7Be nu-e scattering experiment accurate to + -...

  11. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  12. Astrophysics and neutrinos

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is primarily intended for CERN guides. The formation of sun-like stars, their life cycle, and their final destiny will be explained in simple terms, appropriate for the majority of our visitors. An overview of the nuclear reaction chains in our sun will presented (Standard Solar Model), with special emphasis on the production of neutrinos and their measurement in underground detectors. These detectors are also able to record high-energy cosmic neutrinos. Since many properties of neutrinos are still unknown, a brief description of table-top and nuclear reactor experiments is included, as well as those using beams from particle accelerators. Measurements with a variety of space telescopes complement the knowledge of our universe, previously limited to the visible range of the electromagnetic spectrum.

  13. Next Generation Inverter

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zilai [General Motors LLC, Detroit, MI (United States); Gough, Charles [General Motors LLC, Detroit, MI (United States)

    2016-04-22

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  14. Technical presentation: Next Generation Oscilloscopes

    CERN Multimedia

    PH Department

    2011-01-01

      Rohde & Schwarz "Next Generation Oscilloscopes" - Introduction and Presentation Agenda: Wednesday 23 March  -  09:30 to 11:30 (open end) Bldg. 13-2-005 Language: English 09.30 Presentation "Next Generation Oscilloscopes" from Rohde & Schwarz RTO / RTM in theory and practice Gerard Walker 10.15 Technical design details from R&D Dr. Markus Freidhof 10.45 Scope and Probe Roadmap (confidential) Guido Schulze 11.00 Open Discussion Feedback, first impression, wishes, needs and requirements from CERN All 11.30 Expert Talks, Hands on All Mr. Dr. Markus Freidhof, Head of R&D Oscilloscopes, Rohde & Schwarz, Germany; Mr. Guido Schulze, ...

  15. Charge coupled devices for detection of coherent neutrino-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Moroni, Guillermo; Estrada, Juan; Paolini, Eduardo E.; Cancelo, Gustavo; Tiffenberg, Javier; Molina, Jorge

    2015-04-01

    In this article the feasibility of using charge coupled devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei is analyzed. The detection of neutrinos through this standard model process has been elusive because of the small energy deposited in such interaction. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The CCD detectors discussed in this paper can operate at a threshold of approximately 30 eV, making them ideal for observing this signal. On a CCD array of 500 g located next to a power nuclear reactor the number of coherent scattering events expected is about 3000 events/year. Our results shows that a detection with a confidence level of 99% can be reached within 16 days of continuous operation; with the current 52 g detector prototype this time lapse extends to five months.

  16. The AMANDA Neutrino Detector - Status report

    International Nuclear Information System (INIS)

    Wischnewski, R.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.; Bay, R.; Becker, K.; Bergstroem, L.; Bertrand, D.; Besson, D.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Conrad, J.; Cowen, D.F.; Costa, C.; Dalberg, E.; Desiati, P.; Dewulf, J.; Deyoung, T.; Doksus, P.; Edsjoe, J.; Ekstroem, P.; Feser, T.; Frichter, G.; Gaisser, T.; Goldschmidt, A.; Goobar, A.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hellwig, M.; Hill, G.; Hulth, P.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koepke, L.; Kowalski, M.; Kravchenko, I.; Lamoureux, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liss, T.; Loaiza, P.; Lowder, D.; Ludvig, J.; Marciniewski, P.; Matis, H.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Neunhoeffer, T.; Newcomer, M.; Niessen, P.; Nygren, D.; Perez de los Heros, C.; Porrata, R.; Price, P.; Przybylski, G.; Rawlins, K.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Sander, H.; Schaefer, U.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Silvestri, A.; Smoot, G.; Solarz, M.; Spiczak, G.; Spiering, C.; Starinski, N.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2000-01-01

    The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B10, is taking data since 1997. We describe results on atmospheric neutrinos, limits on indirect WIMP detection, seasonal muon flux variation, relativistic monopole flux limits, a search for gravitational collapse neutrinos, and a depth scan of the optical ice properties. The next stage 19-string detector AMANDA-II with ∼650 PMTs will be completed in spring 2000

  17. Status of solar neutrino experiments

    International Nuclear Information System (INIS)

    Beier, E.W.; Davis, R. Jr.; Kim, S.B.; Jelley, N.

    1990-01-01

    A summary of the status of four solar neutrino experiments is presented. The Homestake 37 Cl data are presented and the possible time dependence of the data is addressed. Data from 1040 days of operation of the Kamiokande II detector are presented next. The status of the 71 Ga experiment in the Baksan Neutrino Observatory, which has operated for a short time, is discussed. The summary concludes with a discussion of the status of the Sudbury Neutrino Observatory, which has been under construction since the beginning of 1990. 7 refs., 6 figs

  18. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  19. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT (deuterium-tritium) fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D (Research and Development) avenues for their resolution are presented

  20. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  1. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  2. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  3. A Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2011-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials.......We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  4. Development of a framework for the neutronics analysis system for next generation (Contract research)

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Yokoyama, Kenji

    2007-11-01

    In JAEA, authors has been promoting the development of an object-oriented next-generation neutronics analysis system in order to reflect the latest methods and models of reactor analysis to basic designs and operations of fast reactors in the efficient and effective way. A purpose of the developing system is to effectively realize requirements that has been difficult to manage in the conventional systems, such as change of analysis targets and change of analysis modeling levels. For the realization of the requirements, the authors adopted the two-layer model which consists of a control layer written in the Python as an object-oriented scripting language and a solver layer in the C++ as a system programming language. After having studied the principle on the two-layer model in the next-generation neutronics analysis system, the authors designed and implemented a library that enabled transparent transfer of data objects between the two layers. In each layer, appropriate numerical library was used for better performance. In the present library, a model proxy was implemented to exchange internal data that is represented in different ways in each layer. With this mechanism of the model proxy, it confirmed that data exchange between the layers can be performed easily and effectively. (author)

  5. Gauge Trimming of Neutrino Masses

    International Nuclear Information System (INIS)

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.

    2006-01-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses

  6. Charged lepton flavor violation in a class of radiative neutrino mass generation models

    Science.gov (United States)

    Chowdhury, Talal Ahmed; Nasri, Salah

    2018-04-01

    We investigate the charged lepton flavor violating processes μ →e γ , μ →e e e ¯, and μ -e conversion in nuclei for a class of three-loop radiative neutrino mass generation models with electroweak multiplets of increasing order. We find that, because of certain cancellations among various one-loop diagrams which give the dipole and nondipole contributions in an effective μ e γ vertex and a Z-penguin contribution in an effective μ e Z vertex, the flavor violating processes μ →e γ and μ -e conversion in nuclei become highly suppressed compared to μ →e e e ¯ process. Therefore, the observation of such a pattern in LFV processes may reveal the radiative mechanism behind neutrino mass generation.

  7. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.H. [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of); Kang, Sin Kyu [Insitute for Convergence Fundamental Study, School of Liberal Arts, Seoul-Tech.,Seoul, 01811 (Korea, Republic of); Kim, C.S. [Dept. of Physics and IPAP, Yonsei University,Seoul, 120-749 (Korea, Republic of)

    2016-10-18

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  8. RES-E-NEXT: Next Generation of RES-E Policy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.; Bird, L.; Cochran, J.; Milligan, M.; Bazilian, M. [National Renewable Energy Laboratory, Golden, CO (United States); Denny, E.; Dillon, J.; Bialek, J.; O’Malley, M. [Ecar Limited (Ireland); Neuhoff, K. [DIW Berlin (Germany)

    2013-07-04

    The RES-E-NEXT study identifies policies that are required for the next phase of renewable energy support. The study analyses policy options that secure high shares of renewable electricity generation and adequate grid infrastructure, enhance flexibility and ensure an appropriate market design. Measures have limited costs or even save money, and policies can be gradually implemented.

  9. Evolution of the liquid metal reactor: The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs

  10. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  11. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    International Nuclear Information System (INIS)

    Saurwein, J.

    2011-01-01

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  12. Progress on next generation linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1989-01-01

    In this paper, I focus on reviewing the issues and progress on a next generation linear collider with the general parameters of energy, luminosity, length, power, technology. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10 3 /minus/ 10 4 units of R 0 per year. The length is consistent with a site on Stanford land with collisions occurring on the SLAC site. The power was determined by economic considerations. Finally, the technology was limited by the desire to have a next generation linear collider before the next century. 25 refs., 3 figs., 6 tabs

  13. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  14. A Systems Engineering Framework for Design, Construction and Operation of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Edward J. Gorski; Charles V. Park; Finis H. Southworth

    2004-01-01

    Not since the International Space Station has a project of such wide participation been proposed for the United States. Ten countries, the European Union, universities, Department of Energy (DOE) laboratories, and industry will participate in the research and development, design, construction and/or operation of the fourth generation of nuclear power plants with a demonstration reactor to be built at a DOE site and operational by the middle of the next decade. This reactor will be like no other. The Next Generation Nuclear Plant (NGNP) will be passively safe, economical, highly efficient, modular, proliferation resistant, and sustainable. In addition to electrical generation, the NGNP will demonstrate efficient and cost effective generation of hydrogen to support the President's Hydrogen Initiative. To effectively manage this multi-organizational and technologically complex project, systems engineering techniques and processes will be used extensively to ensure delivery of the final product. The technological and organizational challenges are complex. Research and development activities are required, material standards require development, hydrogen production, storage and infrastructure requirements are not well developed, and the Nuclear Regulatory Commission may further define risk-informed/performance-based approach to licensing. Detailed design and development will be challenged by the vast cultural and institutional differences across the participants. Systems engineering processes must bring the technological and organizational complexity together to ensure successful product delivery. This paper will define the framework for application of systems engineering to this $1.5B - $1.9B project

  15. Phenomenology of MaVaN’s Models in Reactor Neutrino Data

    Directory of Open Access Journals (Sweden)

    M. F. Carneiro

    2013-01-01

    Full Text Available Mass Varying Neutrinos (MaVaN’s mechanisms were proposed to link the neutrino mass scale with the dark energy density, addressing the coincidence problem. In some scenarios, this mass can present a dependence on the baryonic density felt by neutrinos, creating an effective neutrino mass that depends both on the neutrino and baryonic densities. In this work, we study the phenomenological consequence of MaVaN’s scenarios in which the matter density dependence is induced by Yukawa interactions of a light neutral scalar particle which couples to neutrinos and matter. Under the assumption of one mass scale dominance, we perform an analysis of KamLAND neutrino data which depends on 4 parameters: the two standard oscillation parameters, Δm0,212 and tan2θ12, and two new coefficients which parameterize the environment dependence of neutrino mass. We introduce an Earth’s crust model to compute precisely the density in each point along the neutrino trajectory. We show that this new description of density does not affect the analysis with the standard model case. With the MaVaN model, we observe a first order effect in lower density, which leads to an improvement on the data description.

  16. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  17. A Nine-Year Hunt for Neutrinos

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    .Observatories on the HuntNeutrino observatories are often built to take advantage of pre-existing deep bodies of ice or water for their detectors. One of the most well-known neutrino observatories is IceCube, an array of detectors located far beneath the Antarctic ice. A few years ago, IceCube announced the observation of an excess of events over the expected atmospheric background the first detection of a diffuse flux of cosmic neutrinos. The next step:confirmation from another observatory.ANTARES detections across different energy bins, for both track-like (top) and shower-like (bottom) events. Plot includes data (black), model for atmospheric events (blue), and two different models for cosmic events (red). Above an energy cutoff of 20 TeV (grey line), nine excess neutrinos are detected relative to the atmospheric model. [Albert et al. 2018]Enter ANTARES, short for Astronomy with a Neutrino Telescope and Abyss Environmental Research. Completed in 2008, this neutrino telescope was built 1.5 miles beneath the surface of the Mediterranean Sea. Now the collaboration is presenting the results of their nine-year search for a diffuse cosmic neutrino flux.A Mild ExcessThe outcome? Success! sort of.The very nature of neutrinos elusiveness means that we have to draw conclusions with very small numbers of detections. Over nine years, ANTARES detected a total of 33 events above an energy cutoff of 20 TeV, whereas models predict it should have seen only 24 such events due to atmospheric particles. This detection of nine extra neutrinos may sound insubstantial but statistically, it allows the team to reject the hypothesis that there is no diffuse cosmic flux at an 85% confidence level.The mild excess of neutrinos detected by ANTARES is by no means a smoking gun, but the properties of this cosmic neutrino flux are consistent with those detected by IceCube, which is a very promising outcome. At the moment, it would seem that a diffuse flux of cosmic neutrinos is present and the next generation

  18. Fuel recycling and 4. generation reactors

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, J.G.; Gauche, F.; Mathonniere, G.

    2012-01-01

    The 4. generation reactors meet the demand for sustainability of nuclear power through the saving of the natural resources, the minimization of the volume of wastes, a high safety standard and a high reliability. In the framework of the GIF (Generation 4. International Forum) France has decided to study the sodium-cooled fast reactor. Fast reactors have the capacity to recycle plutonium efficiently and to burn actinides. The long history of reprocessing-recycling of spent fuels in France is an asset. A prototype reactor named ASTRID could be entered into operation in 2020. This article presents the research program on the sodium-cooled fast reactor, gives the status of the ASTRID project and present the scenario of the progressive implementation of 4. generation reactors in the French reactor fleet. (A.C.)

  19. Management and share of regulatory information through web; development of regulatory information management system for Korea next generation reactors

    International Nuclear Information System (INIS)

    Lee, J. S.; Lee, J. H.; Jeong, Y. H.; Lee, S. H.; Yun, Y. C.; Park, M. I.

    2001-01-01

    The Regulatory Information Management System developed by the Korea Institute of Nuclear Safety supports researchers who are in charge of developing SRRG for the Korea Next Generation Reactors, manage the developed SRRG and development process, and make it possible to share the SRRG information and background knowledge through the internet with the nuclear-related personnel and the public. From the experience of the system operation, the search engine is repalced to manage the native SRRG files directly. This change eliminates the inconsistency between native files and database files and improve the search exactness by automatic indexing function. The user interface of the internet homepage (http://kngr.kins.re.kr) is completely rebuilded and allows SRRG developers to manage the search system and the atomic energy regulations database on the Web without the help of the client programs. General users are also able to utilize more convenient search function and additional information by the improved interface. The system is running under the backup system and firewall system for the data protection and security

  20. Management and share of regulatory information through web; development of regulatory information management system for Korea next generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Lee, J. H.; Jeong, Y. H.; Lee, S. H. [KINS, Taejon (Korea, Republic of); Yun, Y. C.; Park, M. I. [LG-EDS Systems, Seoul (Korea, Republic of)

    2001-05-01

    The Regulatory Information Management System developed by the Korea Institute of Nuclear Safety supports researchers who are in charge of developing SRRG for the Korea Next Generation Reactors, manage the developed SRRG and development process, and make it possible to share the SRRG information and background knowledge through the internet with the nuclear-related personnel and the public. From the experience of the system operation, the search engine is repalced to manage the native SRRG files directly. This change eliminates the inconsistency between native files and database files and improve the search exactness by automatic indexing function. The user interface of the internet homepage (http://kngr.kins.re.kr) is completely rebuilded and allows SRRG developers to manage the search system and the atomic energy regulations database on the Web without the help of the client programs. General users are also able to utilize more convenient search function and additional information by the improved interface. The system is running under the backup system and firewall system for the data protection and security.

  1. Next generation of accelerators

    International Nuclear Information System (INIS)

    Richter, B.

    1979-01-01

    Existing high-energy accelerators are reviewed, along with those under construction or being designed. Finally, some of the physics issues which go into setting machine parameters, and some of the features of the design of next generation electron and proton machines are discussed

  2. Prospects for next-generation e+e- linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-02-01

    The purpose of this paper is to review progress in the US towards a next generation linear collider. During 1988, there were three workshops held on linear colliders: ''Physics of Linear Colliders,'' in Capri, Italy, June 14--18, 1988; Snowmass 88 (Linear Collider subsection) June 27--July 15, 1988; and SLAC International Workshop on Next Generation Linear Colliders, November 28--December 9, 1988. In this paper, I focus on reviewing the issues and progress on a next generation linear collider. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10 3 --10 4 units of R 0 per year. The length is consistent with a site on Stanford land with collision occurring on the SLAC site; the power was determined by economic considerations. Finally, the technology as limited by the desire to have a next generation linear collider by the next century. 37 refs., 3 figs., 6 tabs

  3. Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO)

    CERN Document Server

    Stahl, A; Guler, A M; Kamiscioglu, M; Sever, R; Yilmazer, A U; Gunes, C; Yilmaz, D; Del Amo Sanchez, P; Duchesneau, D; Pessard, H; Marcoulaki, E; Papazoglou, I A; Berardi, V; Cafagna, F; Catanesi, M G; Magaletti, L; Mercadante, A; Quinto, M; Radicioni, E; Ereditato, A; Kreslo, I; Pistillo, C; Weber, M; Ariga, A; Ariga, T; Strauss, T; Hierholzer, M; Kawada, J; Hsu, C; Haug, S; Jipa, A; Lazanu, I; Cardini, A; Lai, A; Oldeman, R; Thomson, M; Blake, A; Prest, M; Auld, A; Elliot, J; Lumbard, J; Thompson, C; Gornushkin, Y A; Pascoli, S; Collins, R; Haworth, M; Thompson, J; Bencivenni, G; Domenici, D; Longhin, A; Blondel, A; Bravar, A; Dufour, F; Karadzhov, Y; Korzenev, A; Noah, E; Ravonel, M; Rayner, M; Asfandiyarov, R; Haesler, A; Martin, C; Scantamburlo, E; Cadoux, F; Bayes, R; Soler, F J P; Aalto-Setälä, L; Enqvist, K; Huitu, K; Rummukainen, K; Nuijten, G; Eskola, K J; Kainulainen, K; Kalliokoski, T; Kumpulainen, J; Loo, K; Maalampi, J; Manninen, M; Moore, I; Suhonen, J; Trzaska, W H; Tuominen, K; Virtanen, A; Bertram, I; Finch, A; Grant, N; Kormos, L L; Ratoff, P; Christodoulou, G; Coleman, J; Touramanis, C; Mavrokoridis, K; Murdoch, M; McCauley, N; Payne, D; Jonsson, P; Kaboth, A; Long, K; Malek, M; Scott, M; Uchida, Y; Wascko, M O; Di Lodovico, F; Wilson, J R; Still, B; Sacco, R; Terri, R; Campanelli, M; Nichol, R; Thomas, J; Izmaylov, A; Khabibullin, M; Khotjantsev, A; Kudenko, Y; Matveev, V; Mineev, O; Yershov, N; Palladino, V; Evans, J; Söldner-Rembold, S; Yang, U K; Bonesini, M; Pihlajaniemi, T; Weckström, M; Mursula, K; Enqvist, T; Kuusiniemi, P; Räihä, T; Sarkamo, J; Slupecki, M; Hissa, J; Kokko, E; Aittola, M; Barr, G; Haigh, M D; de Jong, J; O'Keeffe, H; Vacheret, A; Weber, A; Galvanin, G; Temussi, M; Caretta, O; Davenne, T; Densham, C; Ilic, J; Loveridge, P; Odell, J; Wark, D; Robert, A; Andrieu, B; Popov, B; Giganti, C; Levy, J -M; Dumarchez, J; Buizza-Avanzini, M; Cabrera, A; Dawson, J; Franco, D; Kryn, D; Obolensky, M; Patzak, T; Tonazzo, A; Vanucci, F; Orestano, D; Di Micco, B; Tortora, L; Bésida, O; Delbart, A; Emery, S; Galymov, V; Mazzucato, E; Vasseur, G; Zito, M; Kudryavtsev, V A; Thompson, L F; Tsenov, R; Kolev, D; Rusinov, I; Bogomilov, M; Vankova, G; Matev, R; Vorobyev, A; Novikov, Yu; Kosyanenko, S; Suvorov, V; Gavrilov, G; Baussan, E; Dracos, M; Jollet, C; Meregaglia, A; Vallazza, E; Agarwalla, S K; Li, T; Autiero, D; Chaussard, L; Déclais, Y; Marteau, J; Pennacchio, E; Rondio, E; Lagoda, J; Zalipska, J; Przewlocki, P; Grzelak, K; Barker, G J; Boyd, S; Harrison, P F; Litchfield, R P; Ramachers, Y; Badertscher, A; Curioni, A; Degunda, U; Epprecht, L; Gendotti, A; Knecht, L; Di Luise, S; Horikawa, S; Lussi, D; Murphy, S; Natterer, G; Petrolo, F; Periale, L; Rubbia, A; Sergiampietri, F; Viant, T

    2012-01-01

    This Expression of Interest (EoI) describes the motivation for and the feasibility studies of a long baseline neutrino oscillation experiment (LBNO) with a new conventional neutrino beamline facility (CN2PY). The beam will be aimed at a next generation deep-underground neutrino observatory comprising a double phase liquid argon (LAr) detector and a magnetized iron calorimeter, located at the Pyh\\"asalmi (Finland) mine at a distance of 2300~km. The double phase LAr Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC) is known to provide excellent tracking and calorimetry performance that can outperform other techniques. An initial 20~kton LAr fiducial volume, as considered here, comparable to the fiducial mass of SuperKamiokande and NOvA, offers a new insight and an increase in sensitivity reach for many physics channels. A magnetized iron calorimeter with muon momentum and charge determination collects an independent neutrino sample, and serves as a tail catcher for CERN beam eve...

  4. A New Class of Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Jain, Mohit; Skandan, Ganesh; Khose, Gordon E.; Maro, Judith

    2008-01-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 C. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  5. "A New Class od Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose; Mrs. Judith Maro, Nuclear Reactor Laboratory, MIT

    2008-05-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  6. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    International Nuclear Information System (INIS)

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.

    2004-01-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos

  7. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.

    2004-03-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos.

  8. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  9. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  10. Materials for generation-IV nuclear reactors

    International Nuclear Information System (INIS)

    Alvarez, M. G.

    2009-01-01

    Materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV. Six systems have been selected for Generation IV consideration: gas-cooled fast reactor, lead-cooled fast reactor, molten salt-cooled reactor, sodium-cooled fast reactor, supercritical water-cooled reactor, and very high temperature reactor. The structural materials need to resist much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. For this reason, the first consideration in the development of Generation-IV concepts is selection and deployment of materials that operate successfully in the aggressive operating environments expected in the Gen-IV concepts. This paper summarizes the Gen-IV operating environments and describes the various candidate materials under consideration for use in different structural applications. (author)

  11. White paper report on using nuclear reactors to search for a value of theta13

    International Nuclear Information System (INIS)

    Anderson, K.; Anjos, J.C.; Ayres, D.; Beacom, J.; Bediaga, I.; Bellefon, A. de; Berger, B.E.; Bilenky, S.; Blucher, E.; Bolton, T.; Buck, C.; Bugg, W.; Busenitz, J.; Choubey, S.; Conrad, J.; Cribier, M.; Dadoun, O.; Dalnoki-Veress, F.; Decowski, M.; Gouvea, Andre de; Demutrh, D.; Dessages-Ardellier, F.; Efremenko, Y.; Feilitzsch, F. von; Finley, D.; Formaggio, J.A.; Freedman, S.J.; Fujikawa, B.K.; Garbini, M.; Giusti, P.; Goger-Neff, M.; Goodman, M.; Gray, F.; Grieb, C.; Grudzinski, J.J.; Guarino, V.J.; Hartmann, F.; Hagner, C.; Heeger, K.M.; Hofmann, W.; Horton-Smith, G.; Huber, P.; Inzhechik, L.; Jochum, J.; Jostlein, H.; Kadel, R.; Kamyshkov, Y.; Kaplan, D.; Kasper, P.; Kerret, H. de; Kersten, J.; Klein, J.; Knopfle, K.T.; Kopeikin, V.; Kozlov, Yu.; Kryn, D.; Kuchler, V.; Kuze, M.; Lachenmaier, T.; Lasserre, T.; Laughton, C.; Lendvai, C.; Li, J.; Lindner, M.; Link, J.; Longo, M.; Lu, Y.S.; Luk, K.B.; Ma, Y.Q.; Martemyanov, V.P.; Mauger, C.; Manghetti, H.; McKeown, R.; Mention, G.; Meyer, J.P.; Mikaelyan, L.; Minakata, H.; Naples, D.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Parke, S.; Petcov, S.T.; Peres, O.L.G.; Potzel, W.; Pilcher, J.; Plunkett, R.; Raffelt, G.; Rapidis, P.; Reyna, D.; Roe, B.; Rolinec, M.; Sakamoto, Y.; Sartorelli, G.; Schonert, S.; Schwertz, T.; Selvi, M.; Shaevitz, M.; Shellard, R.; Shrock, R.; Sidwell, R.; Sims, J.; Sinev, V.; Stanton, N.; Stancu, I.; Stefanski, R.; Seukane, F.; Sugiyama, H.; Sukhotin, S.; Sumiyoshi, T.; Svoboda, R.; Talaga, R.; Tamura, N.; Tanimoto, M.; Thron, J.; Toerne, E. von; Vignaud, D.; Wagner, C.; Wang, Y.F.; Wang, Z.; Winter, W.; Wong, H.; Yakushev, E.; Yang, C.G.; Yasuda, O.

    2004-01-01

    There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator ν experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter θ 13 is such that sin 2 (2θ 13 ) greater than or equal to on the order of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter θ 13 in this range has a great opportunity for an exciting discovery, a non-zero value to θ 13 . This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved

  12. White paper report on using nuclear reactors to search for a value of theta13

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.; Anjos, J.C.; Ayres, D.; Beacom, J.; Bediaga, I.; de Bellefon, A.; Berger, B.E.; Bilenky, S.; Blucher, E.; Bolton, T.; Buck, C.; Bugg, W.; Busenitz, J.; Choubey, S.; Conrad, J.; Cribier, M.; Dadoun, O.; Dalnoki-Veress, F.; Decowski, M.; de Gouvea, Andre; Demutrh, D.; Dessages-Ardellier, F.; Efremenko, Y.; von Feilitzsch, F.; Finley, D.; Formaggio, J.A.; Freedman, S.J.; Fujikawa, B.K.; Garbini, M.; Giusti, P.; Goger-Neff, M.; Goodman, M.; Gray, F.; Grieb, C.; Grudzinski, J.J.; Guarino, V.J.; Hartmann, F.; Hagner, C.; Heeger, K.M.; Hofmann, W.; Horton-Smith, G.; Huber, P.; Inzhechik, L.; Jochum, J.; Jostlein, H.; Kadel, R.; Kamyshkov, Y.; Kaplan, D.; Kasper, P.; de Kerret, H.; Kersten, J.; Klein, J.; Knopfle, K.T.; Kopeikin, V.; Kozlov, Yu.; Kryn, D.; Kuchler, V.; Kuze, M.; Lachenmaier, T.; Lasserre, T.; Laughton, C.; Lendvai, C.; Li, J.; Lindner, M.; Link, J.; Longo, M.; Lu, Y.S.; Luk, K.B.; Ma, Y.Q.; Martemyanov, V.P.; Mauger, C.; Manghetti, H.; McKeown, R.; Mention, G.; Meyer, J.P.; Mikaelyan, L.; Minakata, H.; Naples, D.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Parke, S.; Petcov, S.T.; Peres, O.L.G.; Potzel, W.; Pilcher, J.; Plunkett, R.; Raffelt, G.; Rapidis, P.; Reyna, D.; Roe, B.; Rolinec, M.; Sakamoto, Y.; Sartorelli, G.; Schonert, S.; Schwertz, T.; Selvi, M.; Shaevitz, M.; Shellard, R.; Shrock, R.; Sidwell, R.; Sims, J.; Sinev, V.; Stanton, N.; Stancu, I.; Stefanski, R.; Seukane, F.; Sugiyama, H.; Sukhotin, S.; Sumiyoshi, T.; Svoboda, R.; Talaga, R.; Tamura, N.; Tanimoto, M.; Thron, J.; von Toerne, E.; Vignaud, D.; Wagner, C.; Wang, Y.F.; Wang, Z.; Winter, W.; Wong, H.; Yakushev, E.; Yang, C.G.; Yasuda, O.

    2004-02-26

    There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator {nu} experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter {theta}{sub 13} is such that sin{sup 2} (2{theta}{sub 13}) greater than or equal to on the order of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter {theta}{sub 13} in this range has a great opportunity for an exciting discovery, a non-zero value to {theta}{sub 13}. This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved.

  13. Status and aims of the DUMAND neutrino project: the ocean as a neutrino detector

    International Nuclear Information System (INIS)

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth's atmosphere. The technology for such an undertaking seems to be within reach

  14. Status and Aims of the DUMAND Neutrino Project: the Ocean as a Neutrino Detector

    Science.gov (United States)

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth`s atmosphere. The technology for such an undertaking seems to be within reach.

  15. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    Science.gov (United States)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  16. Design option of heat exchanger for the next generation nuclear plant - HTR2008-58175

    International Nuclear Information System (INIS)

    Oh, C. H.; Kim, E. S.

    2008-01-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale, producing a few hundred megawatts of power in the form of electricity and hydrogen. The power conversion unit (PCU) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTRs to provide higher efficiencies than can be achieved with the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTRs and the hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTRs to the hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger is very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and simple stress analyses of a printed circuit heat exchanger (PCHE), helical coil heat exchanger, and shell/tube heat exchanger. (authors)

  17. Neutrino physics at a muon collider

    International Nuclear Information System (INIS)

    King, B.J.

    1998-02-01

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed

  18. Oscillation sensitivity with up-going muons in lCAL at India based Neutrino Observatory (INO)

    International Nuclear Information System (INIS)

    Rawat, Kanishka; Bhatnagar, Vipin; Indumathi, D.

    2013-01-01

    The proposed magnetised Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) lab is mostly sensitive to the muon neutrinos. We present preliminary results for oscillation studies with up-going muons. We have used charge-current events with Honda flux for the analysis. Honda flux is calculated for INO-Theni site where the INO-ICAl detector will be placed. For up-going muon with 2-flavour oscillation, the parameters taken are: θ 12 = 34, θ 13 = 0, θ 23 = 45, Δm 2 31 = 7.92 x 10 -5 eV 2 , Δm 2 21 = 2.4 x 10 -3 eV 2 , δ cp = 0. We generate events using the ICAL geometry in the Nuance neutrino generator and pass the produced events through the ICAl-GEANT4 simulated detector. The muon tracks are reconstructed according to this package through a Kalman filter algorithm that returns both the magnitude and direction of the muon momentum. The sensitivity of these events to oscillations in the parent neutrino flux will be studied next

  19. Next Generation Social Networks

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Skouby, Knud Erik

    2008-01-01

    different online networks for communities of people who share interests or individuals who presents themselves through user produced content is what makes up the social networking of today. The purpose of this paper is to discuss perceived user requirements to the next generation social networks. The paper...

  20. Optical Subsystems for Next Generation Access Networks

    DEFF Research Database (Denmark)

    Lazaro, J.A; Polo, V.; Schrenk, B.

    2011-01-01

    Recent optical technologies are providing higher flexibility to next generation access networks: on the one hand, providing progressive FTTx and specifically FTTH deployment, progressively shortening the copper access network; on the other hand, also opening fixed-mobile convergence solutions...... in next generation PON architectures. It is provided an overview of the optical subsystems developed for the implementation of the proposed NG-Access Networks....

  1. Building next-generation converged networks theory and practice

    CERN Document Server

    Pathan, Al-Sakib Khan

    2013-01-01

    Supplying a comprehensive introduction to next-generation networks, Building Next-Generation Converged Networks: Theory and Practice strikes a balance between how and why things work and how to make them work. It compiles recent advancements along with basic issues from the wide range of fields related to next generation networks. Containing the contributions of 56 industry experts and researchers from 16 different countries, the book presents relevant theoretical frameworks and the latest research. It investigates new technologies such as IPv6 over Low Power Wireless Personal Area Network (6L

  2. Active-sterile neutrino conversion: consequences for the r-process and supernova neutrino detection

    Science.gov (United States)

    Fetter, J.; McLaughlin, G. C.; Balantekin, A. B.; Fuller, G. M.

    2003-02-01

    We examine active-sterile neutrino conversion in the late time post-core-bounce supernova environment. By including the effect of feedback on the Mikheyev-Smirnov-Wolfenstein (MSW) conversion potential, we obtain a large range of neutrino mixing parameters which produce a favorable environment for the r-process. We look at the signature of this effect in the current generation of neutrino detectors now coming on line. We also investigate the impact of the neutrino-neutrino forward-scattering-induced potential on the MSW conversion.

  3. Neutronic calculation of the next fuel elements for the Argonaut reactor

    International Nuclear Information System (INIS)

    Oliveira, C.R.E.; Brito Aghina, L.O. de

    1981-01-01

    The best parameters of the next fuel elements of the Argonaut reactor, at IEN (Instituto de Engenharia Nuclear - Brazil), were determined. The next fuel elements will be rods of an uranium mixture (19.98% enriched), graphite and bakelite. The parameters to be determined are: mixture density, percentage of uranium in the mixture, pellet radius, rod material and elements arrangement (step). The calculations routines consisted in the analysis of several steps, using the LEOPARD computer code for cell calculations and RMAT1D for one dimensional spatial calculations (criticality) with four energy groups. Finally a neutronic study of the Argounat reactors present configuration was done, using the HAMMER computer code (cell), the EXTERMINATOR computer code (two-dimensional calculations) and RAMAT1D. (Author) [pt

  4. Global Analysis of Neutrino Data

    CERN Document Server

    González-Garciá, M C

    2005-01-01

    In this talk I review the present status of neutrino masses and mixing and some of their implications for particle physics phenomenology. I first discuss the minimum extension of the Standard Model of particle physics required to accommodate neutrino masses and introduce the new parameters present in the model and in particular the possibility of leptonic mixing. I then describe the phenomenology of neutrino masses and mixing leading to flavour oscillations and present the existing evidence from solar, reactor, atmospheric and long-baseline neutrinos as well as the results from laboratory searches at short distances. I derive the allowed ranges for the mass and mixing parameters when the bulk of data is consistently analyzed in the framework of mixing between the three active neutrinos and obtain as a result the most up-to-date determination of the leptonic mixing matrix. Then I briefly summarize the status of some proposed phenomenological explanations to accommodate the LSND results: the role of sterile neu...

  5. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    International Nuclear Information System (INIS)

    Bond, L.G.; Doctor, S.R.; Gilbert, R.W.; Jarrell, D.B.; Greitzer, F.L.; Meador, R.J.

    2000-01-01

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities

  6. Investigation of the influence of nuclear matter on hard neutrino nucleus interaction using the HARDPING Monte Carlo Event Generator

    International Nuclear Information System (INIS)

    Berdnikov, Ya.A.; Berdnikov, A.Ya.; Kim, V.T.; Ivanov, A.E.; Suetin, D.P.; Tiangov, K.D.

    2016-01-01

    Hadron production in neutrino-nucleus interactions is implemented in Monte Carlo event generator HARDPING (HARD Probe INteraction Generator). Such effects as formation length, energy loss and multiple rescattering for produced hadrons and their constituents are taken into account in HARDPING. Available data from WA/59 and SCAT collaborations on hadron production in neutrino-nucleus collisions is described by HARDPING with a reasonable agreement

  7. European facilities for accelerator neutrino physics: Perspectives for the decade to come

    International Nuclear Information System (INIS)

    Battistoni, R.; Mezzetto, M.; Migliozzi, P.; Terranova, F.

    2010-01-01

    Very soon a new generation of reactor and accelerator neutrino oscillation experiments -Double Chooz, Daya Bay, Reno and T 2 K- will seek for oscillation signals generated by the mixing parameter θ13. The knowledge of this angle is a fundamental milestone to optimize further experiments aimed at detecting C P violation in the neutrino sector. Leptonic C P violation is a key phenomenon that has profound implications in particle physics and cosmology but it is clearly out of reach for the aforementioned experiments. Since late 90s', a world-wide activity is in progress to design facilities that can access C P violation in neutrino oscillation and perform high-precision measurements of the lepton counterpart of the Cabibbo-Kobayashi-Maskawa matrix. In this paper the status of these studies will be summarized, focusing on the options that are best suited to exploit existing European facilities (firstly CERN and the INFN Gran Sasso Laboratories) or technologies where Europe has a world leadership. Similar considerations will be developed in more exotic scenarios -beyond the standard framework of flavor oscillation among three active neutrinos- that might appear plausible in the occurrence of anomalous results from post-MiniBooNE experiments or the CNGS.

  8. Key thrusts in next generation CANDU. Annex 10

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Torgerson, D.F.; Duffey, R.B.

    2002-01-01

    Current electricity markets and the competitiveness of other generation options such as CCGT have influenced the directions of future nuclear generation. The next generation CANDU has used its key characteristics as the basis to leap frog into a new design featuring improved economics, enhanced passive safety, enhanced operability and demonstrated fuel cycle flexibility. Many enabling technologies spinning of current CANDU design features are used in the next generation design. Some of these technologies have been developed in support of existing plants and near term designs while others will need to be developed and tested. This paper will discuss the key principles driving the next generation CANDU design and the fuel cycle flexibility of the CANDU system which provide synergism with the PWR fuel cycle. (author)

  9. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  10. Health physics aspects of advanced reactor licensing reviews

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, C.S. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-03-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.

  11. Kobayashi-Maskawa type of hard-CP-violation model with three-generation Majorana neutrinos

    International Nuclear Information System (INIS)

    Cheng, H.

    1986-01-01

    Within the framework of the Kobayashi-Maskawa (KM) type of hard CP-violation model with three-generation Majorana neutrinos, we point out that on-shell CP-violation phenomena (i.e., CP-violating effects taking place in on-shell processes), which are characteristic of Majorana neutrinos, can only occur in total-lepton-number-conserving reactions, and are unobservably small. Off-shell CP-nonconserving effects which arise from gauge bosons are undetectable, but those which are mediated by Higgs bosons could be seen in certain rare decays. It is emphasized that CP-odd effects intrinsic to Majorana behavior depend not only on the two CP-violating Majorana phases but also on the KM phase. We then demonstrate why the KM model, which has rich implications in the hadronic sector, leads to no observable CP-violating effects in leptonic processes (except in neutrino oscillations) directly related to the CP-odd KM phase

  12. Radiative Majorana Neutrino Masses

    OpenAIRE

    Hou, Wei-Shu; Wong, Gwo-Guang

    1994-01-01

    We present new radiative mechanisms for generating Majorana neutrino masses, within an extension of the standard model that successfully generates radiative charged lepton masses, order by order, from heavy sequential leptons. Only the new sequential neutral lepton has a right-handed partner, and its Majorana mass provides the seed for Majorana neutrino mass generation. Saturating the cosmological bound of $50$ eV with $m_{\

  13. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    Science.gov (United States)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; Kimura, A.; Lindau, R.; Odette, G. R.; Rieth, M.; Tan, L.; Tanigawa, H.

    2017-09-01

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.

  14. Next Generation Biopharmaceuticals: Product Development.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian

    2018-04-11

    Therapeutic proteins show a rapid market growth. The relatively young biotech industry already represents 20 % of the total global pharma market. The biotech industry environment has traditionally been fast-pasted and intellectually stimulated. Nowadays the top ten best selling drugs are dominated by monoclonal antibodies (mABs).Despite mABs being the biggest medical breakthrough in the last 25 years, technical innovation does not stand still.The goal remains to preserve the benefits of a conventional mAB (serum half-life and specificity) whilst further improving efficacy and safety and to open new and better avenues for treating patients, e.g., improving the potency of molecules, target binding, tissue penetration, tailored pharmacokinetics, and reduced adverse effects or immunogenicity.The next generation of biopharmaceuticals can pose specific chemistry, manufacturing, and control (CMC) challenges. In contrast to conventional proteins, next-generation biopharmaceuticals often require lyophilization of the final drug product to ensure storage stability over shelf-life time. In addition, next-generation biopharmaceuticals require analytical methods that cover different ways of possible degradation patterns and pathways, and product development is a long way from being straight forward. The element of "prior knowledge" does not exist equally for most novel formats compared to antibodies, and thus the assessment of critical quality attributes (CQAs) and the definition of CQA assessment criteria and specifications is difficult, especially in early-stage development.

  15. Neutrino Oscillations

    Indian Academy of Sciences (India)

    work of Takaaki Kajita and Arthur B McDonald clearly demon- strated the ... time belief that neutrinos are massless particles. .... SK is a second generation, 50,000 t wa- ..... values of the parameters of the PMNS matrix based on a global .... [13] Y Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino.

  16. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    identified as a priority of the neutrino community, as determined through the APS Multidisciplinary Study on the Future of Neutrino Physics. From the APS report, the Neutrino Matrix makes its recommendations in context of several assumptions regarding the neutrino program, including: ''Determination of the neutrino reaction and production cross sections required for a precise understanding of neutrino oscillation physics and the neutrino astronomy of astrophysical and cosmological sources. Our broad and exacting program of neutrino physics is built upon precise knowledge of how neutrinos interact with matter''. The experiment described here will provide unique information on cross sections of {approx}1 GeV neutrinos, in precisely the range explored by present and future long baseline oscillation programs. Fermi National Accelerator Laboratory is the natural place to perform this experiment. The physics goals proposed here grow the existing program and are necessary ingredients for the next generation oscillation physics measurements in this same energy range. This is a small, cost-effective, and timely experiment which fits well with the growing neutrino program at Fermilab.

  17. Estimation of the systematic uncertainties of the measurement of the neutrino mixing angle θ{sub 13} related to the trigger system of the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Stueken, David Anselm

    2013-10-14

    The Double Chooz experiment, located in the Ardennes region next to the CHOOZ-B nuclear power plant, is a reactor antineutrino experiment to measure neutrino oscillations. It has been designed as precision experiment to measure the neutrino mixing angel θ{sub 13} with highest possible accuracy due to its small value close to zero. The electron antineutrino flux emitted by the reactor cores is measured by two identical neutrino detectors located at different distances from the reactor cores. Each detector consist of a 10.3 m{sup 3} target volume filled with liquid scintillator and surrounded by 390 photomultiplier tubes. The far detector is located 1.05 km away from the reactor cores to be most sensitive to oscillation effects. The unoscillated neutrino flux is measured by the near detector located 400 m away from the reactor cores. In order to reduce background events and other sources resulting in systematic uncertainties, special requirements have been demanded for all detector components and electronic systems. In this context, a most efficiently operating data acquisition system is essential. The subsystem responsible to start data storage for events of interest is the so called ''trigger system''. The design concept of the Double Chooz trigger system introduces two redundancy concepts in order to trigger the data acquisition in the most robust and efficient way: The trigger decision is based on a combination of an energy threshold and the number of active photomultiplier tubes (multiplicity condition). Secondly, the system is divided into two identical but independently operating subsystems for most robust operations of the full system. Additionally, the two subsystem provide the possibility to measure the efficiency of the system. Apart from generating the trigger signal for the data acquisition, the system provides an online event classification in order to adjust the amount of stored data for each event type. After one and a half year

  18. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  19. Radiative neutrino mass model with degenerate right-handed neutrinos

    International Nuclear Information System (INIS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-01-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z 2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  20. Next Generation Nuclear Plant GAP Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  1. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  2. Massive neutrinos in almost-commutative geometry

    International Nuclear Information System (INIS)

    Stephan, Christoph A.

    2007-01-01

    In the noncommutative formulation of the standard model of particle physics by Chamseddine and Connes [Commun. Math. Phys. 182, 155 (1996), e-print hep-th/9606001], one of the three generations of fermions has to possess a massless neutrino. [C. P. Martin et al., Phys. Rep. 29, 363 (1998), e-print hep-th-9605001]. This formulation is consistent with neutrino oscillation experiments and the known bounds of the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix). But future experiments which may be able to detect neutrino masses directly and high-precision measurements of the PMNS matrix might need massive neutrinos in all three generations. In this paper we present an almost-commutative geometry which allows for a standard model with massive neutrinos in all three generations. This model does not follow in a straightforward way from the version of Chamseddine and Connes since it requires an internal algebra with four summands of matrix algebras, instead of three summands for the model with one massless neutrino

  3. Development of the next generation code system as an engineering modeling language. (2). Study with prototyping

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Uto, Nariaki; Kasahara, Naoto; Ishikawa, Makoto

    2003-04-01

    In the fast reactor development, numerical simulation using analytical codes plays an important role for complementing theory and experiment. It is necessary that the engineering models and analysis methods can be flexibly changed, because the phenomena to be investigated become more complicated due to the diversity of the needs for research. And, there are large problems in combining physical properties and engineering models in many different fields. Aiming to the realization of the next generation code system which can solve those problems, the authors adopted three methods, (1) Multi-language (SoftWIRE.NET, Visual Basic.NET and Fortran) (2) Fortran 90 and (3) Python to make a prototype of the next generation code system. As this result, the followings were confirmed. (1) It is possible to reuse a function of the existing codes written in Fortran as an object of the next generation code system by using Visual Basic.NET. (2) The maintainability of the existing code written by Fortran 77 can be improved by using the new features of Fortran 90. (3) The toolbox-type code system can be built by using Python. (author)

  4. The Majorana project: sup 7 sup 6 Ge 0 nu beta beta-decay neutrino mass measurement

    CERN Document Server

    Aalseth, C E

    2002-01-01

    Interest in, and the relevance of, next-generation 0 nu beta beta-decay experiments is increasing. Even with nonzero neutrino mass strongly suggested by SNO, Super Kamiokande, and similar experiments sensitive to delta m sup 2 , 0 nu beta beta-decay experiments are still the only way to establish the Dirac or Majorana nature of neutrinos by measuring effective electron neutrino mass, . Various theorists have recently argued in favor of a neutrino mass between 0.01 and 1 eV. The Majorana Project aims to probe this effective neutrino mass range, reaching a sensitivity of 0.02-0.07 eV. The experiment relies entirely on proven technology and has been devised based upon the materials, technology, and data analysis demonstrated to produce the lowest background per kilogram of fiducial germanium. The project plan includes 500 kg of germanium detector material enriched to 85% in sup 7 sup 6 Ge, specialized pulse-acquisition electronics and detector segmentation for background rejection, and underground electroformed ...

  5. Is the neutrino as changeable as a weather vane?

    CERN Multimedia

    2003-01-01

    We conclude the first part of our feature on the CNGS project with a sneak preview of next week's articles. The neutrino is something of a headache for physicists, who have come to wonder whether the muon neutrino is capable of changing into a tau neutrino. This hypothesis would explain the deficit of muon neutrinos in the atmosphere. When cosmic rays interact with the nuclei of atoms from the upper atmosphere, two kinds of neutrino are produced: muon neutrinos and electron neutrinos. Measurements have shown that there are fewer muon neutrinos than would normally have been expected. In 1998, the Super Kamiokande experiment in Japan revealed that the oscillation (or transformation) of muon neutrinos into tau neutrinos could be responsible for this shortfall, an idea which was supported, shortly afterwards, by the K2K (KEK to Kamioka) experiment. The main purpose of the experiments at the CNGS (CERN Neutrinos to Gran Sasso) project is to demonstrate this oscillation, which is thought to occur over long distan...

  6. Structural materials for the next generation nuclear reactors - an overview

    International Nuclear Information System (INIS)

    Charit, I.; Murty, K.L.

    2007-01-01

    The Generation-IV reactors need to withstand much higher temperatures, greater neutron doses, severe corrosive environment and above all, a substantially higher life time (60 years or more). Hence for their successful deployment, a significant research in structural materials is needed. Various potential candidate materials, such as austenitic stainless steels, oxide-dispersion strengthened steels, nickel-base superalloys, refractory alloys etc. are considered. Both baseline and irradiated mechanical, thermophysical and chemical properties are important. However, due to the longer high temperature exposure involved in most designs, creep and corrosion/oxidation will become the major performance limiting factors. In this study we did not cover fabricability and weldability of the candidate materials. Pros and cons of each candidate can be summarized as following: -) for austenitic stainless steel: lower thermal creep resistance at higher temperatures but poor swelling resistance at high temperatures; -) for ferritic-martensitic steels: excellent swelling resistance at higher burnups but thermal creep strength is limited at higher temperatures and radiation embrittlement at low temperature; -) for Ni-base alloys: excellent thermal creep resistance at higher temperatures but radiation embrittlement even at moderate doses and helium embrittlement at higher temperatures; and -) for refractory alloys: adequate swelling resistance up to high burnups but fabrication difficulties, low temperature radiation hardening and poor oxidation resistance

  7. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    L. J. Bond; S. R. Doctor; R. W. Gilbert; D. B. Jarrell; F. L. Greitzer; R. J. Meador

    2000-09-01

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities.

  8. Plant availability design aspects of Korean next generation reactor

    International Nuclear Information System (INIS)

    Woo Sang Lim; Ha Chung Beak

    1998-01-01

    The purpose of this paper is to describe the KNGR design concepts adopted for reducing forced outages and refueling outages, and current design changes, to assess their availability impacts compared to existing domestic nuclear power plants, and then to identify design directions for next design stage. (author)

  9. High temperature structural integrity evaluation method and application studies by ASME-NH for the next generation reactor design

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2006-01-01

    The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500 .deg. C and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated

  10. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  11. Three Dirac neutrinos

    International Nuclear Information System (INIS)

    Joshipura, A.S.; Rindani, S.D.

    1991-01-01

    The consequences of imposing an exact L e +L τ -L μ symmetry on a 6x6 matrix describing neutrino masses are discussed. The presence of right-handed neutrinos avoids the need of introducing any SU(2) Higgs triplet. Hence the conflict with the CERN LEP data on the Z width found in earlier models with L e +L τ -L μ symmetry is avoided. The L e +L τ -L μ symmetry provides an interesting realization of a recent proposal of Glashow to accommodate the 17-keV Dirac neutrino in the SU(2)xU(1) theory. All the neutrinos in this model are Dirac particles. The solar-neutrino problem can be solved in an extension of the model which generates a large (∼10 -11 μ B ) magnetic moment for the electron neutrino

  12. Highlights on experimental neutrino physics

    International Nuclear Information System (INIS)

    Kemp, Ernesto

    2013-01-01

    Full text: In the last years a remarkable progress was achieved in a deeper understanding of neutrino sector. Nowadays we know all mixing angles and mass splits which govern the neutrino oscillation phenomena. The parameters of neutrino mixing were measured by combining results of different experimental approaches including accelerator beams, nuclear reactors, radiative decays and astrophysical neutrinos. Nevertheless, there are open questions which can be viewed as key points to consolidate our knowledge on the intrinsic properties of neutrinos such as mass hierarchy and the existence of a CP violation in leptonic sector. To answer these questions and also to improve the precision of the already known mixing parameters, a series of huge experimental efforts are being set up, even in a world-wide scale in some cases. In this presentation I will review the current knowledge of the fundamental properties of neutrinos and the experimental scenario in which we expect, in a time frame of a decade, to find missing pieces in the leptonic sector. The findings can strengthen the foundations of the Standard Model as well as open very interesting paths for new physics. (author)

  13. On the possibilities of distinguishing Dirac from Majorana neutrinos

    International Nuclear Information System (INIS)

    Zralek, M.

    1997-01-01

    The problem if existing neutrinos are Dirac or Majorana particles is considered in a very pedagogical way. After a few historical remarks we recall the theoretical description of neutral spin 1/2 particles, emphasizing the difference between chirality and helicity which is important in our discussion. Next we describe the properties of neutrinos in the cases when their interactions are given by the standard model and by its extensions (massive neutrinos, right-handed currents, electromagnetic neutrino interaction, interaction with scalar particles). Various processes where the different nature of neutrinos could in principle be visible are reviewed. We clear up misunderstandings which have appeared in last suggestions how to distinguish both types of neutrinos. (author)

  14. First results of the deployment of a SoLid detector module at the SCK•CEN BR2 reactor

    Science.gov (United States)

    Ryder, N.

    The SoLid experiment aims to resolve the reactor neutrino anomaly by searching for electron-to-sterile anti-neutrino oscillations. The search will be performed between 5.5 and 10 m from the highly enriched uranium core of the BR2 reactor at SCK-CEN. The experiment utilises a novel approach to anti-neutrino detection based on a highly segmented, composite scintillator detector design. High experimental sensitivity can be achieved using a combination of high neutron-gamma discrimination using 6 LiF:ZnS(Ag) and precise localisation of the inverse beta decay products. This compact detector system requires limited passive shielding as it relies on spacial topology to determine the different classes of backgrounds. The first full scale, 288 kg, detector module was deployed at the BR2 reactor in November 2014. A phased three tonne experimental deployment will begin in the second half of 2016, allowing a precise search for oscillations that will resolve the reactor anomaly using a three tonne detector running for three years. In this talk the novel detector design is explained and initial detector performance results from the module level deployment are presented along with an estimation of the physics reach of the next phase.

  15. Future of nuclear power in Japan - Development of next Generation LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Eiji; Yamamoto, T.; Kurosaki, K.; Ohga, Y.; Tsuzuki, K.; Kasai, S.; Tanaka, T.

    2010-09-15

    Japan's energy policies have been to decrease the oil portion and dependence on the Middle East for energy security, as well as satisfy environmental requirement. The report of 2008 targeted reducing GHG emission by 60-80% before 2050, and highlighted ''Cool Earth-Innovative Energy Technology Program'' featuring 21 innovative technologies. In this context nuclear power is expected as a core power source. In April 2008, ''Next Generation Light Water Power Reactor Development Program'' was launched with the IAE as the core organization in alliance with Japan's major vendors and in collaboration with METI and power utilities for the future of nuclear power.

  16. Nuclear reactors and technology in the next stage

    International Nuclear Information System (INIS)

    Orlov, V.

    2000-01-01

    Author deals with the perspectives of development of nuclear power. It is possible to create in a fairly short time reactors and fuel technology that would meet the main requirements for large-scale power production, i.e.: (a) to afford a 100-fold reduction in the specific consumption of uranium, by utilizing thousands of tonnes of Pu accumulated in the spent fuel from the reactors of the fl t stage; .to rule out nuclear disasters, by taking advantage of the intrinsic properties and behavior of reactor, coolant, fuel, etc., with the plants made simpler and cheaper; (b) to hit a balance between the radiotoxicity of waste and that of feed uranium, by providing neutron transmutation; (c) to create power reactors and fuel cycle technology that would not afford extraction of weapon-grade materials. To fulfil all these requirements, it is necessary to provide substantial neutron excess in a chain reaction for Pu breeding, to use fuel with an equilibrium composition, to bum actinides and LLFPs. All this can be done only in fast reactors. Fast reactors can also provide fuel for thermal reactors that might still be used for some applications, operating in a Th/U cycle, which is the best option for such facilities. Novel engineering solutions will be necessary: high-density heat-conductive fuel (UPuN), chemically inert high-boiling coolant (Pb), dry reprocessing. These issues have been studied well enough to allow embarking on the development of advanced fast reactors. Minatom institutions are finalizing a detailed design of a demonstration BREST-300 plant, complete with an on-site fuel cycle that will meet the requirements of large-scale nuclear power. Hopefully, construction of this plant at Beloyarsk site with its subsequent trial operation would open a door to the next stage in nuclear power development. (author)

  17. Overview of the present status and challenges of neutrino oscillation physics

    Energy Technology Data Exchange (ETDEWEB)

    Mocioiu, Irina [Pennsylvania State University, 104 Davey Lab, University Park, PA 16802 (United States)

    2012-11-20

    This is an overview of the current status of neutrino oscillation physics, including atmospheric, solar, reactor and accelerator neutrino experiments. After summarizing our present understanding of all data, I discuss the open questions and how they might be addressed in the future. I also discuss how neutrinos can be used to learn about new physics and astrophysics.

  18. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1998-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  19. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y.; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  20. No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase

    Science.gov (United States)

    Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard

    2011-10-01

    We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13 is not very small.

  1. The sun and the neutrinos

    International Nuclear Information System (INIS)

    Forgacsne Dajka, E.

    2000-01-01

    A review of the solar neutrino puzzle is given. The main processes in the sun, the pp-chain and the CNO cycle are described. The solar neutrino puzzle, i.e. the fact that the detected amount of neutrinos coming from the sun is less than the amount predicted by the solar model is discussed. The first generation solar neutrino experiments are presented. (K.A.)

  2. Neutrino mixing and lepton CP-phase in neutrino oscillations

    International Nuclear Information System (INIS)

    Ryzhikh, D.A.; Ter-Martirosyan, K.A.

    2001-01-01

    One studied oscillations of the Dirac neutrinos belonging to three generations in vacuum with regard to the effect of the lepton CP-breaking phase on them in the matrix of lepton mixing (analogue of the quark CP-phase). In the general form one obtained formulae for probabilities of transition of neutrino of one kind to another at oscillations depending on three angles of mixing and on CP-phase. It was pointed that when measuring oscillation average probabilities of transition of neutrino of one kind to another one might in principle, restore the value of lepton CP-phase. Manifestation of CP-phase in the form of deviation of the values of probabilities of direct neutrino transition from reverse one is the effect practically escaping observation [ru

  3. Extrinsic CPT violation in neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Jacobson, Magnus; Ohlsson, Tommy

    2004-01-01

    We investigate matter-induced (or extrinsic) CPT violation effects in neutrino oscillations in matter. Especially, we present approximate analytical formulas for the CPT-violating probability differences for three flavor neutrino oscillations in matter with an arbitrary matter density profile. Note that we assume that the CPT invariance theorem holds, which means that the CPT violation effects arise entirely because of the presence of matter. As special cases of matter density profiles, we consider constant and step-function matter density profiles, which are relevant for neutrino oscillation physics in accelerator and reactor long baseline experiments as well as neutrino factories. Finally, the implications of extrinsic CPT violation on neutrino oscillations in matter for several past, present, and future long baseline experiments are estimated

  4. Feasibility study for a first observation of coherent neutrino nucleus scattering using low-temperature detectors

    International Nuclear Information System (INIS)

    Guetlein, Achim

    2013-01-01

    Coherent Neutrino Nucleus Scattering (CNNS) is a neutral current process of the weak interaction. For low transferred momenta the neutrino scatters coherently off all nucleons leading to an enhanced cross section. However, because of the small resulting recoil energies (O(keV)) CNNS has not been observed experimentally so far. For the first observation of CNNS a strong neutrino source is needed. Thus, the expected count rates for solar neutrinos, supernova neutrinos, neutrinos generated by the decay of stopped π + particles at accelerators, and reactor neutrinos were calculated. Although an observation of CNNS could also be possible with other sources, the most promising neutrino sources are nuclear reactors with thermal powers between 2 and 4 GW. For an assumed energy threshold of 0.5 keV the target material with the largest count rate (∝10 kg -1 day -1 ) is sapphire. Thus, a low-temperature detector based on a 32 g sapphire crystal was designed and built to measure the background spectrum for energies below ∝10 keV. Although the energy threshold (∝1 keV) of this detector is too large for an observation of CNNS, the measured background spectrum can still be used for an investigation of the main background sources and the suppression of their events. For this investigation the simulated spectra of cosmic muons, ambient neutrons, and external gamma-rays are compared to the measured background spectrum. As a result, cosmic muons are the main contribution to the measured background spectrum. For a future experiment aiming at the observation of CNNS an array of 125 low-temperature detectors based on 32 g sapphire crystals is assumed. Background simulations of cosmic muons, ambient neutrons, and intrinsic radioactivity show that especially an efficient muon-veto system is crucial for a sufficient background suppression. To study the observation potential of this future experiment a distance of ∝ 40 m to a reactor core with a thermal power of ∝4 GW (neutrino

  5. Three-generation study of neutrino spin-flavor conversion in supernovae and implication for the neutrino magnetic moment

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-01-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  6. A pilot experiment with reactor neutrinos in Taiwan

    International Nuclear Information System (INIS)

    Wong, Henry T.; Li Jin

    1999-01-01

    A Collaboration comprising scientists from Taiwan, mainland China and the United States has been built up since 1996 to pursue an experimental program in neutrino and astro-particle physics in Taiwan. A pilot experiment to be performed at the Nuclear Power Station II in Taiwan is now under intense preparation. It will make use of a 500 kg CsI(Tl) crystal calorimeter to study various neutrino interactions. Various possible future directions will also be explored. The conceptual design and the physics to be addressed by the pilot experiment are discussed

  7. New reactor concepts for new generation of nuclear power plants: an overview, invited paper

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Milosevic, M.

    2006-01-01

    The outlook for energy demand underscores the need to increase the share of nuclear energy production. Achieving the vision of sustainable growth of nuclear energy will require development of both advanced nuclear fuel cycles and next generation reactor technologies and advanced reprocessing and fuel treatment technologies. To achieve this vision, the US department of energy (DOE) has adopted new strategy, the Global Nuclear Energy Partnership (GNEP), which integrates earlier programs: the Generation IV Nuclear Energy Systems Initiative (Generation IV), Nuclear Hydrogen Initiative (NHI), and the Advanced Fuel Cycle Initiative (AFCI) with proliferation-resistant spent fuel reprocessing to minimize nuclear waste. Generation IV furthers this vision beyond previous energy systems, such as Generation III+, through incremental improvements in economic competitiveness, sustainability, development of passively safe systems, and breakthrough methods to reduce the routes of nuclear proliferation. This paper summarizes the main characteristics of the six most promising nuclear energy systems identified by the Generation IV Roadmap and reviews some Generation IV system designs for small-side proliferation resistant reactors being developed by University of California at Berkeley. (author)

  8. A search for muon neutrino to electron neutrino oscillations at Δm2 > 0.1 eV2

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ryan Benton [Princeton Univ., NJ (United States)

    2007-11-01

    The evidence is compelling that neutrinos undergo flavor change as they propagate. In recent years, experiments have observed this phenomenon of neutrino oscillations using disparate neutrino sources: the sun, fission reactors, accelerators, and secondary cosmic rays. The standard model of particle physics needs only simple extensions - neutrino masses and mixing - to accommodate all neutrino oscillation results to date, save one. The 3.8σ-significant $\\bar{v}$e excess reported by the LSND collaboration is consistent with $\\bar{v}$μ →$\\bar{v}$e oscillations with a mass-squared splitting of Δm2 ~ 1 eV2. This signal, which has not been independently verified, is inconsistent with other oscillation evidence unless more daring standard model extensions (e.g. sterile neutrinos) are considered.

  9. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-02-01

    Full Text Available We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  10. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen, E-mail: liu-zhen@sjtu.edu.cn; Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2017-02-15

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  11. Solar Mikheyev-Smirnov-Wolfenstein Effect with Three Generations of Neutrinos

    CERN Document Server

    Osland, P; Osland, Per; Wu, Tai Tsun

    2000-01-01

    Under the assumption that the density variation of the electrons can beapproximated by an exponential function, the solar Mikheyev-Smirnov-Wolfensteineffect is treated for three generations of neutrinos. The generalizedhypergeometric functions that result from the exact solution of this problemare studied in detail, and a method for their numerical evaluation ispresented. This analysis plays a central role in the determination of neutrinomasses, not only the differences of their squares, under the assumption ofuniversal quark-lepton mixing.

  12. Development of next BWR plant

    International Nuclear Information System (INIS)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke

    1995-01-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.)

  13. Development of next BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1995-04-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.).

  14. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  15. Real-Time Optimization and Control of Next-Generation Distribution

    Science.gov (United States)

    -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution developing a system-theoretic distribution network management framework that unifies real-time voltage and Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next

  16. The Search for Muon Neutrinos from Northern HemisphereGamma-Ray Bursts with AMANDA

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer; Achterberg, A.

    2007-05-08

    We present the results of the analysis of neutrino observations by the Antarctic Muon and Neutrino Detector Array (AMANDA) correlated with photon observations of more than 400 gamma-ray bursts (GRBs) in the Northern Hemisphere from 1997 to 2003. During this time period, AMANDA's effective collection area for muon neutrinos was larger than that of any other existing detector. Based on our observations of zero neutrinos during and immediately prior to the GRBs in the dataset, we set the most stringent upper limit on muon neutrino emission correlated with gamma-ray bursts. Assuming a Waxman-Bahcall spectrum and incorporating all systematic uncertainties, our flux upper limit has a normalization at 1 PeV of E{sup 2}{Phi}{sub {nu}} {le} 6.0 x 10{sup -9} GeV cm{sup -2}s{sup -1}sr{sup -1}, with 90% of the events expected within the energy range of {approx}10 TeV to {approx}3 PeV. The impact of this limit on several theoretical models of GRBs is discussed, as well as the future potential for detection of GRBs by next generation neutrino telescopes. Finally, we briefly describe several modifications to this analysis in order to apply it to other types of transient point sources.

  17. Hacking the next generation

    CERN Document Server

    Dhanjani, Nitesh; Hardin, Brett

    2009-01-01

    With the advent of rich Internet applications, the explosion of social media, and the increased use of powerful cloud computing infrastructures, a new generation of attackers has added cunning new techniques to its arsenal. For anyone involved in defending an application or a network of systems, Hacking: The Next Generation is one of the few books to identify a variety of emerging attack vectors. You'll not only find valuable information on new hacks that attempt to exploit technical flaws, you'll also learn how attackers take advantage of individuals via social networking sites, and abuse

  18. Parametrization of Seesaw Models and Light Sterile Neutrinos

    CERN Document Server

    Blennow, Mattias

    2011-01-01

    The recent recomputation of the neutrino fluxes from nuclear reactors relaxes the tension between the LSND and MiniBooNE anomalies and disappearance data when interpreted in terms of sterile neutrino oscillations. The simplest extension of the Standard Model with such fermion singlets is the addition of right-handed sterile neutrinos with small Majorana masses. Even when introducing three right-handed neutrinos, this scenario has less free parameters than the 3+2 scenarios studied in the literature. This begs the question whether the best fit regions obtained can be reproduced by this simplest extension of the Standard Model. In order to address this question, we devise an exact parametrization of Standard Model extensions with right-handed neutrinos. Apart from the usual 3x3 neutrino mixing matrix and the 3 masses of the lightest neutrinos, the extra degrees of freedom are encoded in another 3x3 unitary matrix and 3 additional mixing angles. The parametrization includes all the correlations among masses and ...

  19. Meeting the next generation PWR safety requirements: The EPR Reactor

    International Nuclear Information System (INIS)

    Salhi, Othman

    2008-01-01

    The development process pursued the harmonization of technical solutions and the integration of all the lessons learned from earlier nuclear plants built by both vendors. As far as safety more specifically is concerned, the basic choice for the EPR was to adopt an evolutionary approach based on experience feedback from the reactors built by Areva, which at the time already amounted to nearly 100. This philosophy makes today's Areva EPR the natural descendant of the most advanced French N4 and German Konvoi power reactors currently in operation. EPR design choices affecting safety were motivated by a continuous quest for higher levels of safety. A two-fold approach was followed: 1. improvement of the measures aimed at further reducing the already very low probability of core melt 2. incorporation of measures aimed at further limiting the consequences of a severe accident, in the knowledge that its probability of occurrence has been considerably reduced. Through its filiations with French N4 and German Konvoi power reactors, the EPR benefits from the uninterrupted, evolutionary innovation process that has supported the development of PWRs since their introduction into the market place. This is especially true for safety where the EPR brings a unique combination of both tried and tested and innovative features that further improve the prevention of severe accidents and their mitigation

  20. Discovery Mondays - Neutrinos: journeying with the phantom particles

    CERN Multimedia

    2006-01-01

    The target of the CNGS facility at CERN, which will enable the production of neutrinos. On 29 May, CNGS (CERN Neutrinos to Gran Sasso) will send the first neutrino beams from CERN to the Gran Sasso Laboratory in Italy. The neutrinos will journey 730 km through the earth's crust. To mark the occasion, Discovery Mondays is organising a special evening devoted to the CNGS project, whose purpose is to provide us with a better understanding of the neutrino, a particle that is still shrouded in mystery. The neutrino is an elusive particle that is very difficult to study. Masters of the art of evading capture, neutrinos can pass through thousands of kilometres of matter with little or no interaction. As you are reading this text, 400000 billion neutrinos from the sun are passing through your body every second. However, only one or two will be stopped by your body during your entire lifetime. Detecting neutrinos is therefore a very arduous task. This is why we still know so little about them. At the next Discovery ...

  1. Experimental neutronic science and instrumentation: from hybrid reactors to fourth generation reactors

    International Nuclear Information System (INIS)

    Jammes, Ch.

    2010-07-01

    After an overview of his academic career and scientific and research activities, the author proposes a rather detailed synthesis and overview of his scientific activities in the fields of cross sections and Doppler effect (development and validation of a code), on the MUSE-4 hybrid reactor (experiments, static and dynamic measurements), on the TRADE hybrid reactor (experimental means, sub-critical reactivity measurement), on the RACE hybrid reactor (experimental results, modelling and interpretation), and on neutron detection (design and modelling of fission chamber, on-line measurement of the fast flow). The next part gives an overview of some research programs (neutron monitoring in sodium-cool fast reactors, research and development on fission chambers, improvement of effective delayed neutron measurements)

  2. One-point fluctuation analysis of the high-energy neutrino sky

    Energy Technology Data Exchange (ETDEWEB)

    Feyereisen, Michael R.; Ando, Shin' ichiro [GRAPPA Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Tamborra, Irene, E-mail: m.r.feyereisen@uva.nl, E-mail: tamborra@nbi.ku.dk, E-mail: s.ando@uva.nl [Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-03-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even with low statistics and in the absence of point source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple model of the high-energy neutrino background by assuming two main extra-galactic components: star-forming galaxies and blazars. By leveraging multi-wavelength data from Herschel and Fermi , we predict the spectral and anisotropic probability distributions for their expected neutrino counts in IceCube. We find that star-forming galaxies are likely to remain a diffuse background due to the poor angular resolution of IceCube, and we determine an upper limit on the number of shower events that can reasonably be associated to blazars. We also find that upper limits on the contribution of blazars to the measured flux are unfavourably affected by the skewness of the blazar flux distribution. One-point event clustering and likelihood analyses of the IceCube HESE data suggest that this method has the potential to dramatically improve over more conventional model-based analyses, especially for the next generation of neutrino telescopes.

  3. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.A.; Rameika, R.; Stanton, N.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increase intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery can not be overstated. The current experimental status and future possibilities are discussed below

  4. The NASA Next Generation Stirling Technology Program Overview

    Science.gov (United States)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  5. Rhamnolipids--next generation surfactants?

    Science.gov (United States)

    Müller, Markus Michael; Kügler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hörmann, Barbara; Pöhnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2012-12-31

    The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of renewable resources for chemical synthesis of already established product classes, (2) the replacement of chemical synthesis of already established product classes by new biotechnological processes based on renewable resources, and (3) the biotechnological production of new molecules with new features or better performances than already established comparable chemically synthesized products. All three approaches are currently being pursued for surfactant production. Biosurfactants are a very promising and interesting substance class because they are based on renewable resources, sustainable, and biologically degradable. Alkyl polyglycosides are chemically synthesized biosurfactants established on the surfactant market. The first microbiological biosurfactants on the market were sophorolipids. Of all currently known biosurfactants, rhamnolipids have the highest potential for becoming the next generation of biosurfactants introduced on the market. Although the metabolic pathways and genetic regulation of biosynthesis are known qualitatively, the quantitative understanding relevant for bioreactor cultivation is still missing. Additionally, high product titers have been exclusively described with vegetable oil as sole carbon source in combination with Pseudomonas aeruginosa strains. Competitive productivity is still out of reach for heterologous hosts or non-pathogenic natural producer strains. Thus, on the one hand there is a need to gain a deeper understanding of the regulation of rhamnolipid production on process and cellular level during bioreactor cultivations. On the other hand, there is a need for metabolizable renewable substrates, which do not compete with food and feed. A sustainable bioeconomy approach should

  6. Physical Configuration of the Next Generation Home Network

    Science.gov (United States)

    Terada, Shohei; Kakishima, Yu; Hanawa, Dai; Oguchi, Kimio

    The number of broadband users is rapidly increasing worldwide. Japan already has over 10 million FTTH users. Another trend is the rapid digitalization of home electrical equipment e. g. digital cameras and hard disc recorders. These trends will encourage the emergence of the next generation home network. In this paper, we introduce the next generation home network image and describe the five domains into which home devices can be classified. We then clarify the optimum medium with which to configure the network given the requirements imposed by the home environment. Wiring cable lengths for three network topologies are calculated. The results gained from the next generation home network implemented on the first phase testbed are shown. Finally, our conclusions are given.

  7. Quasi-elastic interactions and one-pion production by neutrinos and anti-neutrinos on a deuterium target

    International Nuclear Information System (INIS)

    Barlag, S.J.M.

    1984-01-01

    In this thesis, the weak charged current interactions of neutrinos and antineutrinos with nucleons are described, in which the neutrino scatters in a quasi-elastic way with the nucleon, leaving an excited nucleon state. The experiments have been performed in the bubble chamber BEBC, filled with deuterium and exposed to the CERN Wide Band (anti-)neutrino beams. This gave the opportunity to study both interactions on protons and on neutrons separately, whereas the measurement of the exclusive channels could be performed with a high precision. After a short introduction of the relevant theories (standard model; QCD; one-pion production models; FKR quark model), the experimental set-up at CERN is described as well as the bubble chamber picture facility in Amsterdam. Next, results of the neutrino and antineutrino experiments are given followed by a comparison with theory. (Auth.)

  8. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  9. How neutrino oscillations can induce an effective neutrino number of less than three during big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Foot, R.; Volkas, R.R.

    1997-01-01

    Ordinary-sterile neutrino oscillations can generate significant neutrino asymmetry in the early Universe. In this paper we extend this work by computing the evolution of neutrino asymmetries and light element abundances during the big bang nucleosynthesis (BBN) epoch. We show that a significant electron-neutrino asymmetry can be generated in a way that is approximately independent of the oscillation parameters δm 2 and sin 2 2θ for a range of parameters in an interesting class of models. The numerical value of the asymmetry leads to the prediction that the effective number of neutrino flavors during BBN is either about 2.5 or 3.4, depending on the sign of the asymmetry. Interestingly, one class of primordial deuterium abundance data favors an effective number of neutrino flavors during the epoch of BBN of less than 3. copyright 1997 The American Physical Society

  10. Neutrino Physics: what we have learned so far and what

    Energy Technology Data Exchange (ETDEWEB)

    Nunokawa, Hiroshi [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2013-07-01

    Full text: In the last 15 years, after the discovery of neutrino oscillation by the Super-Kamiokande collaboration in 1998, an enormous progress has been made in neutrino physics. Thanks to the recent results from reactor experiments which finally measured the angle theta13 whose value was not known for a long time, we now know all the mixing angles in the standard three flavor scheme. Yet there are several unknowns and open questions about neutrinos. I will try to discuss what we have learned so far and what we would like to know more about neutrinos.we would like to know more about neutrinos.

  11. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  12. The International conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development. Book of abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    The materials of the International Conference on Fast Reactors and Related Fuel Cycles (June 26-29, 2017, Yekaterinburg) are presented. The forum was organized by the IAEA with the assistance of Rosatom State Corporation. The theme of the conference: “The New Generation of Nuclear Systems for Sustainable Development”. About 700 specialists from more than 30 countries took part in the conference. The state and prospects for the development of the direction of fast reactors in countries dealing with this topic were discussed. A wide range of scientific issues covered the concepts of prospective reactors, reactor cores, fuel and fuel cycles, operation and decommissioning, safety, licensing, structural materials, industrial implementation [ru

  13. From the measurement of the θ13 mixing angle to the search for geo-neutrinos: studying νe-bare with Double Chooz and Borexino

    International Nuclear Information System (INIS)

    Roncin, Romain

    2014-01-01

    Double Chooz is a reactor neutrino oscillation experiment which aims at measuring the θ 13 mixing angle thanks to two identical detectors located at different distances from the two reactors of the Chooz nuclear power plant, in the French Ardennes. While the near detector will start taking data in fall 2014 to normalize the flux of the neutrinos emitted by the nuclear reactors, the far detector is running since April 2011 and allows to observe the neutrinos disappearance through the neutrino oscillation phenomenon. This thesis is also dedicated to the Borexino experiment which was designed to observe solar neutrinos. Due to its low background level as well as its position in a nuclear free country, Italy, Borexino is also sensitive to geo-neutrinos. This thesis presents both the Double Chooz and Borexino experiments, from the description of the detectors to the main results, with a special attention to the background and its rejection. Studies on the neutrino directionality with these two experiments are also detailed. In the case of Double Chooz, since the neutrinos are coming from the two nuclear reactors, the precision of the analysis method can be assessed. This thesis presents also for the first time the possibility to retrieve the initial direction of the neutrinos when the neutrons created in the inverse beta decay reactions are captured on hydrogen. In the case of Borexino, neutrino directionality information could facilitate the discrimination between geo-neutrinos and neutrinos from nuclear reactors. (author) [fr

  14. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-01

    The use of internally and externally cooled annular fuel rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and economic assessment. The investigation was conducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperature. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasibility issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density

  15. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  16. Spin and electroweak effects in the neutrino-electron interaction

    International Nuclear Information System (INIS)

    Kerimov, B.K.; Safin, M.Yu.; Haidar, N.; Tikhomirov, A.M.

    1987-01-01

    The experimental data on elastic ν-bar e e - scattering with reactor antineutrinos are also analysed. νe - and ν-bare - scattering are highly sensitive to values of the EM moments of neutrinos. The results obtained give following bounds on the values of neutrino EM moments: f 2ν (0), g 2ν (0) -11

  17. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  18. Determining neutrino mass hierarchy from electron disappearance at a low energy neutrino factory

    International Nuclear Information System (INIS)

    Raut, Sushant K.

    2013-01-01

    Reactor neutrino experiments have recently measured the value of θ 13 , to be non-zero and moderately large. This makes the determination of the neutrino mass hierarchy possible. However, our lack of knowledge of δ CP results in a parameter degeneracy, which makes this task difficult. The electron neutrino disappearance probability does not depend on δ CP . Therefore, in principle, it is possible to determine the hierarchy independently of δ CP using this channel. Previous studies of neutrino factories have not considered this channel, because the effect of systematics in electron disappearance is substantial. However, we show that for the moderately large value of θ 13 measured, hierarchy determination is possible in spite of systematic effects. We consider a low energy neutrino factory (LENF) setup with a totally active scintillator detector (TASD) with charge-identification. We optimize the setup in muon energy and baseline, for different allowed values of θ 13 and runtime. We find that a LENF with baseline of around 1300 km and muon energy around 3-4 GeV is well suited for hierarchy determination. For the RENO best-fit value of θ 13 , this setup can determine the hierarchy at 5ω, for all values of δ CP and for both hierarchies. (author)

  19. Introduction to models of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.

    2004-01-01

    This review contains an introduction to models of neutrino masses for non-experts. Topics discussed are i) different types of neutrino masses ii) structure of neutrino masses and mixing needed to understand neutrino oscillation results iii) mechanism to generate neutrino masses in gauge theories and iv) discussion of generic scenarios proposed to realize the required neutrino mass structures. (author)

  20. Neutrino oscillations and antiνsub(e)-e scattering

    International Nuclear Information System (INIS)

    Halls, B.; McKellar, B.H.J.

    1980-01-01

    Electron antineutrino-electron scattering is modified in the presence of neutrino mixing and neutrino oscillation. In the Weinberg-Salam model the results for reactor antineutrinos are insensitive to the degree of mixing, to the extent that the experiment of Reines, Gurr and Sobel cannot differentiate between no oscillation and complete disappearance of the electron antineutrinos from the beam