WorldWideScience

Sample records for newly isolated phages

  1. [Isolation and characterization of siphovirus phages infecting bovine Streptococcus agalactiae].

    Science.gov (United States)

    Bai, Qinqin; Yang, Yongchun; Lu, Chengping

    2016-02-04

    To isolate and identify Streptococcus agalactiae phages and screen candidate phages to control infection caused by bovine S. agalactiae. We used two methods for isolation of S. agalactiae phages, namely (1) isolation of phages from milk and environmental samples, and (2) isolation of phages via induction of lysogens with Mitomycin C. Double-layer agar culture method was used to purify phages. Then the newly obtained phages, with S. agalactiae phage JX01 isolated from mastitis milk, were comparatively analyzed in the following aspects: morphology of phages by transmission electron microscopy, host range of phages to 55 S. agalactiae strains and other Streptococcus strains, phages DNA using EcoR I, Xba I, Pst I and Sal I, the optical multiplicity of infection, absorption curve and one step growth curve, and the stability of phages at different storage conditions. The comparative analysis of the 3 novel phages LYGO9, HZ04 and pA11 (induced from S. agalctiae bovine clinical isolate HAJL2011070601) with JX01 showed that the 4 phages were classified as the member of Siphovirdae family. EcoR I, Sal I, Xba I and Pst I separately digested the 4 phages DNA provided 4, 3, 3 and 2 profiles, respectively. This suggested that they were different strains. All the 4 phages specifically infected bovine S. agalactiae isolates. LYGO9, pA11, JX01 and HZ04 could lyse 12, 13, 20 and 23 of 42 tested bovine S. agalctiae isolates, respectively. This clearly indicated that these 4 phages are closely related. The 3 new phages which specifically lyse bovine S. agalactiae isolates are siphovirus phages. Phage LYGO9 was shown having a short latent period and a larger burst size.

  2. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Maia Merabishvili

    Full Text Available Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively, high burst size (125 and 145, respectively, stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  3. Diversity and Geographical Distribution of Flavobacterium psychrophilum Isolates and Their Phages: Patterns of Susceptibility to Phage Infection and Phage Host Range

    DEFF Research Database (Denmark)

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio

    2014-01-01

    in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme...... analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were...... examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates...

  4. Genome Sequences of Ilzat and Eleri, Two Phages Isolated Using Microbacterium foliorum NRRL B-24224

    Science.gov (United States)

    Ali, Ilzat; Jones, Acacia Eleri; Mohamed, Aleem

    2018-01-01

    ABSTRACT Bacteriophages Ilzat and Eleri are newly isolated Siphoviridae infecting Microbacterium foliorum NRRL B-24224. The phage genomes are similar in length, G+C content, and architecture and share 62.9% nucleotide sequence identity. PMID:29650566

  5. A fast method for large-scale isolation of phages from hospital ...

    African Journals Online (AJOL)

    This plaque-forming method could be adopted to isolate E. coli phage easily, rapidly and in large quantities. Among the 18 isolated E. coli phages, 10 of them had a broad host range in E. coli and warrant further study. Key words: Escherichia coli phages, large-scale isolation, drug resistance, biological properties.

  6. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    Directory of Open Access Journals (Sweden)

    Martine C Holst Sørensen

    Full Text Available In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb, host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220 as well as receptors (CPS or flagella recognised by the isolated phages.

  7. Genome Sequences of Gordonia Phages BaxterFox, Kita, Nymphadora, and Yeezy

    OpenAIRE

    Pope, Welkin H.; Bandla, Sharanya; Colbert, Alexandra K.; Eichinger, Fiona G.; Gamburg, Michelle B.; Horiates, Stavroula G.; Jamison, Jerrica M.; Julian, Dana R.; Moore, Whitney A.; Murthy, Pranav; Powell, Meghan C.; Smith, Sydney V.; Mezghani, Nadia; Milliken, Katherine A.; Thompson, Paige K.

    2016-01-01

    Gordonia phages BaxterFox, Kita, Nymphadora, and Yeezy are newly characterized phages of Gordonia terrae, isolated from soil samples in Pittsburgh, Pennsylvania. These phages have genome lengths between 50,346 and 53,717?bp, and encode on average 84 predicted proteins. All have G+C content of 66.6%.

  8. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina

    2015-01-01

    were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according......In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...... therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages...

  9. Isolation and characterization of numerous novel phages targeting diverse strains of the ubiquitous and opportunistic pathogen Achromobacter xylosoxidans.

    Directory of Open Access Journals (Sweden)

    Johannes Wittmann

    Full Text Available The clinical relevance of nosocomially acquired infections caused by multi-resistant Achromobacter strains is rapidly increasing. Here, a diverse set of 61 Achromobacter xylosoxidans strains was characterized by MultiLocus Sequence Typing and Phenotype MicroArray technology. The strains were further analyzed in regard to their susceptibility to 35 antibiotics and to 34 different and newly isolated bacteriophages from the environment. A large proportion of strains were resistant against numerous antibiotics such as cephalosporines, aminoglycosides and quinolones, whereas piperacillin-tazobactam, ticarcillin, mezlocillin and imipenem were still inhibitory. We also present the first expanded study on bacteriophages of the genus Achromobacter that has been so far a blank slate with respect to phage research. The phages were isolated mainly from several waste water treatment plants in Germany. Morphological analysis of all of these phages by electron microscopy revealed a broad diversity with different members of the order Caudovirales, including the families Siphoviridae, Myoviridae, and Podoviridae. A broad spectrum of different host ranges could be determined for several phages that lysed up to 24 different and in part highly antibiotic resistant strains. Molecular characterisation by DNA restriction analysis revealed that all phages contain linear double-stranded DNA. Their restriction patterns display distinct differences underlining their broad diversity.

  10. Genome Sequences of Gordonia Phages BaxterFox, Kita, Nymphadora, and Yeezy.

    Science.gov (United States)

    Pope, Welkin H; Bandla, Sharanya; Colbert, Alexandra K; Eichinger, Fiona G; Gamburg, Michelle B; Horiates, Stavroula G; Jamison, Jerrica M; Julian, Dana R; Moore, Whitney A; Murthy, Pranav; Powell, Meghan C; Smith, Sydney V; Mezghani, Nadia; Milliken, Katherine A; Thompson, Paige K; Toner, Chelsea L; Ulbrich, Megan C; Furbee, Emily C; Grubb, Sarah R; Warner, Marcie H; Montgomery, Matthew T; Garlena, Rebecca A; Russell, Daniel A; Jacobs-Sera, Deborah; Hatfull, Graham F

    2016-08-11

    Gordonia phages BaxterFox, Kita, Nymphadora, and Yeezy are newly characterized phages of Gordonia terrae, isolated from soil samples in Pittsburgh, Pennsylvania. These phages have genome lengths between 50,346 and 53,717 bp, and encode on average 84 predicted proteins. All have G+C content of 66.6%. Copyright © 2016 Pope et al.

  11. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Anna Krasowska

    2015-01-01

    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  12. Characterisation of a novel enterobacteria phage, CAjan, isolated from rat faeces.

    Science.gov (United States)

    Carstens, Alexander B; Kot, Witold; Lametsch, Rene; Neve, Horst; Hansen, Lars H

    2016-08-01

    In this study, we describe the isolation and characterisation of the novel enterobacteria phage CAjan. This phage belongs to the order Caudovirales and the family Siphoviridae. The phage possesses a linear, double-stranded DNA genome consisting of 59,670 bp with a G+C content of 44.7 % and 91 predicted open reading frames (ORFs). Putative functions were assigned to 39 of the ORFs (37.4 %). The phage structural genes were furthermore functionally characterised by LC MS/MS. CAjan, together with Escherichia phage Seurat and Escherichia phage slur01, represent a novel and genetically distinct clade of Siphoviridae phages that could be considered to constitute a new phage genus. Despite limited sequence similarity, the phages in this group share a number of other common features, including genome structure and the presence of queuosine biosynthesis genes.

  13. Characterization and lytic activity of methicillin-resistant Staphylococcus aureus(MRSA phages isolated from NICU

    Directory of Open Access Journals (Sweden)

    Golnar Rahimzadeh

    2016-06-01

    Full Text Available Background Methicillin-resistant Staphylococcus aureus (MRSA is a well-known pathogen that causes serious diseases in humans. As part of the efforts to control this pathogen, an isolated bacteriophage, Siphoviridae, which specifically targets Methicillin-resistant Staphylococcus aureus (MRSA, was characterized. Aims The objective of this study was to characterize of a virulent bacteriophage (Siphoviridae isolated from a NICU bathroom sink. Methods The MRSA strain was isolated from patient blood. The isolated strain was confirmed as MRSA using conventional methods. Phages were isolated from a NICU bathroom sink and activity was lytic as determined by spot test. Titer phage lysate was measured by the Double Layer Agar (DLA technique. The morphology was found with electron microscopy. The single-step growth curve was plotted. Results Electron microscopy showed the phage as a member of the family Siphoviridae, serogroup A and F. The isolated phage was capable of lytic activity against methicillin-resistant Staphylococcus aureus (MRSA strain as shown by spot test. By DLA, the titre of the phages was determined to be 10×108PFU/ml. The single-step growth curve showed that the latent period of the isolated bacteriophage was 30 min and the total number of viable progeny per infected host, burst size, was 2600 PFU/infected host. Conclusion In this study, two phages were isolated and characterized from a NICU bathroom sink, from the Siphoviridae family, which specifically targetsmethicillin-resistant Staphylococcus aureus (MRSA.

  14. Use of phages against antibiotic-resistant Staphylococcus aureus isolated from bovine mastitis.

    Science.gov (United States)

    Dias, R S; Eller, M R; Duarte, V S; Pereira, Â L; Silva, C C; Mantovani, H C; Oliveira, L L; Silva, E de A M; De Paula, S O

    2013-08-01

    Bovine mastitis is the primary disease of dairy cattle worldwide and it causes large economic losses. Among several microorganisms that are the causative agents of this disease, Staphylococcus aureus is the most prevalent. Although antibiotic therapy is still the most widely used procedure for the treatment of bovine mastitis, alternative means of treatment are necessary due to the presence of antibiotic residues in milk, which is a growing concern because of its interference with the production of milk derivatives and the selection of resistant bacterial strains. The use of bacteriophages as a tool for the control of pathogens is an alternative treatment to antibiotic therapy. In this work, to obtain phages with the potential for use in phage therapy as a treatment for mastitis, we isolated and identified the bacteria from the milk of mastitis-positive cows. A total of 19% of the animals from small and medium farms of the Zona da Mata Mineira, Brazil, was positive for bovine mastitis, and bacteria of the genus Staphylococcus were the most prevalent pathogens. The majority of the S. aureus isolates tested was resistant to penicillin and ampicillin. In parallel, we isolated 10 bacteriophages able to infect some of these S. aureus isolates. We determined that these phages contained DNA genomes of approximately 175 kb in length, and the protein profiles indicated the presence of 4 major proteins. Electron microscopy revealed that the phages are caudate and belong to the Myoviridae family. The isolates exhibited interesting features for their use in phage therapy such as a high lytic potential, a wide range of hosts, and thermostability, all of which favor their use in the field.

  15. Association between phage types and antimicrobial resistance among bovine isolates of Staphylococcus aureus in 10 countries

    DEFF Research Database (Denmark)

    Vintov, J.; Aarestrup, Frank Møller; Zinn, C. E.

    2003-01-01

    This study was conducted to investigate the diversity of phage types and associations between penicillin resistance and phage types among 815 Staphylococcus aureus isolates from bovine mastitis in nine European countries and USA. All isolates were examined for susceptibility to antimicrobial agents...... associated with penicillin resistance in contrast to phage group I (P = 0.0023) and phage complex-80 (P = 0.0066). This study confirms that a large number of phage types of S. aureus cause bovine mastitis, but that some types predominate. In addition, these findings could indicate that the use of penicillin...... in the bovine environment has selected for specific types of S. aureus in countries with a high frequency of resistance. (C) 2003 Elsevier B.V. All rights reserved....

  16. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  17. [Inventory building of phages against extensively drug-resistant Acinetobacter baumannii isolated from wounds of patients with severe burn and related characteristic analysis].

    Science.gov (United States)

    Yang, Z C; Deng, L Y; Gong, Y L; Yin, S P; Jiang, B; Huang, G T; Peng, Y Z; Hu, F Q

    2016-09-20

    To build inventory of phages against extensively drug-resistant Acinetobacter Baumannii isolated from wounds of inpatients of burn ICU and analyze related characteristics. In 2014 and 2015, 131 strains of extensively drug-resistant Acinetobacter Baumannii were isolated from wounds of inpatients of burn ICU from one hospital in Chongqing. In 2015, 98 strains of extensively drug-resistant Acinetobacter Baumannii were isolated from wounds of inpatients of burn ICU from 6 hospitals in Guangdong province. Above-mentioned 229 strains were collected for conducting experiments as follows: (1) Multilocus sequence typing (MLST) of strains isolated from Chongqing and Guangdong province was analyzed. (2) Sewage co-culture method was applied for isolation of phages with above-mentioned strains and sewage from Chongqing and Guangdong province. Numbers of isolated phages and times of successful isolation and unsuccessful isolation were recorded. (3) The most prevalent subtypes of strains from Chongqing and Guangdong province in 2015 were collected, and their phages respectively underwent cross infection with all strains from Chongqing and those from Guangdong province. The lysis ability of phage was observed when phage underwent cross infection with the same subtype of strain or not the same, and the lytic ratio was calculated. (4) Fluid of phage in one type was randomly selected and equally divided into 3 parts, and its titer was determined by double dilution method. Then each part of phage fluid was subdivided into 3 small parts, which were cultured with LB fluid medium and respectively stored under the condition of -20 ℃, 4 ℃, and room temperature. After being stored for 1 month and 2 months, the titer of phage was determined for evaluating stability of phage. Data were processed with Fisher's exact test, chi-square test, and one-way analysis of variance. (1) The major type of strains from Chongqing in 2014 was ST368 (45%, 31/69), and major types of strains from Chongqing

  18. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae

    Science.gov (United States)

    Grose, Julianne H.; Casjens, Sherwood R.

    2014-01-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328

  19. Characterization of Bacillus phage-K2 isolated from chungkookjang, a fermented soybean foodstuff.

    Science.gov (United States)

    Kim, Eun Ju; Hong, Jeong Won; Yun, Na-Rae; Lee, Young Nam

    2011-01-01

    An investigation of a virulent Bacillus phage-K2 (named Bp-K2) isolated from chungkookjang (a fermented soybean foodstuff) was made. Bp-K2 differed in infectivity against a number of Bacillus subtilis strains including starter strains of chungkookjang and natto, being more infectious to Bacillus strains isolated from the chungkookjang, but much less active against a natto strain. Bp-K2 is a small DNA phage whose genome size is about 21 kb. Bp-K2 is a tailed bacteriophage with an isometric icosahedral head (50 nm long on the lateral side, 80 nm wide), a long contractile sheath (85-90 nm × 28 nm), a thin tail fiber (80-85 nm long, 10 nm wide), and a basal plate (29 nm long, 47 nm wide) with a number of spikes, but no collar. The details of the structures of Bp-K2 differ from natto phage ϕBN100 as well as other known Bacillus phages such as SPO1-like or ϕ 29-like viruses. These data suggest that Bp-K2 would be a new member of the Myoviridae family of Bacillus bacteriophages.

  20. Phage type and sensitivity to antibiotics of Staphylococcus aureus film-forming strains isolated from airway mucosa

    Directory of Open Access Journals (Sweden)

    O. S. Voronkova

    2014-10-01

    Full Text Available Today film-forming strains of bacteria play very important role in clinical pathology. Staphylococci are ones of most dangerous of them. This bacteria can determine different pathological processes, for example, complication of airway mucosa. The ability to form a biofilm is one of the main properties of nosocomial strains. These strains should be monitored and their carriers are to be properly treated. To determine the origin of staphylococci strains we used bacteriophages from the International kit. The aim of research was to determine the phage type of staphylococci film-forming strains, that were isolated from naso-pharingial mucosa. Phage typing has been carried out for 16 film-forming strains of S. aureus. To solve this problem, we used the International phage kit by Fisher’s method. As a result, sensitivity to phages from the International kit showed 53.8% of studied strains of S. aureus. 64.3% of sensitivity strains were lysed by one of the phage, 21.4% – were by two of the phages, 14.3% – by three of the phages. Isolates were sensitive to phages: 81 – 42.9%, 75 – 35.7%, 28.6% were sensitive to phages 47 and 53. All cases of detection of sensitivity to phage 47 coincided with the ability to form biofilm. Among non-film-forming strains there was no sensitive strains for this phage. Film-forming strains resist to erythromycin (62.5%, ciprofloxacin (43.8%, gentamicin (56.3%, tetracycline (87.5%, amoxicillin (93.8%, and cefuroxime (37.5%. All cases of sensitivity to phage 47 coincided with resistance to erythromycin, amoxicillin and tetracycline. For two of these strains, we also defined resistance to gentamicin and for one of them – to ciprofloxacin. Results of research allowed to relate the bacterial cultures for determining the type. This may have implications for studying of film-forming ability, because surface structures of bacterial cell take place in this process. Belonging of an isolate to specific phage type may

  1. Isolation and characterization of φkm18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Gwan-Han Shen

    Full Text Available AIMS: To isolate phages against extensively drug resistant Acinetobacter baumannii (XDRAB and characterize the highest lytic capability phage as a model to evaluate the potential on phage therapy. METHODS AND RESULTS: Eight phages were isolated from hospital sewage and showed narrow host spectrum. Phage φkm18p was able to effectively lyse the most XDRAB. It has a dsDNA genome of 45 kb in size and hexagonal head of about 59 nm in diameter and no tail. Bacterial population decreased quickly from 10(8 CFU ml(-1 to 10(3 CFU ml(-1 in 30 min by φkm18p. The 185 kDa lysis protein encoded by φkm18p genome was detected when the extracted protein did not boil before SDS-PAGE; it showed that the lysis protein is a complex rather than a monomer. Phage φkm18p improved human lung epithelial cells survival rates when they were incubated with A. baumannii. Combination of phages (φkm18p, φTZ1 and φ314 as a cocktail could lyse all genotype-varying XDRAB isolates. CONCLUSION: Infections with XDRAB are extremely difficult to treat and development of a phage cocktails therapy could be a therapeutic alternative in the future. Phage φkm18p is a good candidate for inclusion in phage cocktails.

  2. Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage Therapy.

    Directory of Open Access Journals (Sweden)

    Marion Dalmasso

    Full Text Available With the emergence of multi-drug resistant bacteria the use of bacteriophages (phages is gaining renewed interest as promising anti-microbial agents. The aim of this study was to isolate and characterize phages from human fecal samples. Three new coliphages, ɸAPCEc01, ɸAPCEc02 and ɸAPCEc03, were isolated. Their phenotypic and genomic characteristics, and lytic activity against biofilm, and in combination with ciprofloxacin, were investigated. All three phages reduced the growth of E. coli strain DPC6051 at multiplicity of infection (MOI between 10-3 and 105. A cocktail of all three phages completely inhibited the growth of E. coli. The phage cocktail also reduced biofilm formation and prevented the emergence of phage-resistant mutants which occurred with single phage. When combined with ciprofloxacin, phage alone or in cocktail inhibited the growth of E. coli and prevented the emergence of resistant mutants. These three new phages are promising biocontrol agents for E. coli infections.

  3. Characterization of Salmonella Typhimurium isolates from domestically acquired infections in Finland by phage typing, antimicrobial susceptibility testing, PFGE and MLVA.

    Science.gov (United States)

    Lienemann, Taru; Kyyhkynen, Aino; Halkilahti, Jani; Haukka, Kaisa; Siitonen, Anja

    2015-07-02

    Salmonella enterica spp. enterica serotype Typhimurium (STM) is the most common agent of domestically acquired salmonellosis in Finland. Subtyping methods which allow the characterization of STM are essential for effective laboratory-based STM surveillance and for recognition of outbreaks. This study describes the diversity of Finnish STM isolates using phage typing, antimicrobial susceptible testing, pulsed-field gel electrophoresis (PFGE) and multilocus variable-number tandem repeat analysis (MLVA), and compares the discriminatory power and the concordance of these methods. A total of 375 sporadic STM isolates were analysed. The isolates were divided into 31 definite phage (DT) types, dominated by DT1 (47 % of the isolates), U277 (9 % of the isolates) and DT104 (8 % of the isolates). Of all the isolates, 62 % were susceptible to all the 12 antimicrobials tested and 11 % were multidrug resistant. Subtyping resulted in 83 different XbaI-PFGE profiles and 111 MLVA types. The three most common XbaI-PFGE profiles (STYM1, STYM7 and STYM8) and one MLVA profile with three single locus variants accounted for 56 % and 49 % of the STM isolates, respectively. The studied isolates showed a genetic similarity of more than 70 % by XbaI-PFGE. In MLVA, 71 % of the isolates lacked STTR6 and 77 % missed STTR10p loci. Nevertheless, the calculated Simpson's diversity index for XbaI-PFGE was 0.829 (95 % CI 0.792-0.865) and for MLVA 0.867 (95 % CI 0.835-0.898). However, the discriminatory power of the 5-loci MLVA varied among the phage types. The highest concordance of the results was found between XbaI-PFGE and phage typing (adjusted Wallace coefficient was 0.833 and adjusted Rand coefficient was 0.627). In general, the calculated discriminatory power was higher for genotyping methods (MLVA and XbaI-PFGE) than for phenotyping methods (phage typing). Overall, comparable diversity indices were calculated for PFGE and MLVA (both DI > 0.8). However, MLVA was phage type dependent

  4. Isolation and Expression of the Lysis Genes of Actinomyces naeslundii Phage Av-1

    Science.gov (United States)

    Delisle, Allan L.; Barcak, Gerard J.; Guo, Ming

    2006-01-01

    Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective λ holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products. PMID:16461656

  5. Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates

    Directory of Open Access Journals (Sweden)

    Jin Jing

    2012-07-01

    Full Text Available Abstract Background Acinetobacter baumannii, a significant nosocomial pathogen, has evolved resistance to almost all conventional antimicrobial drugs. Bacteriophage therapy is a potential alternative treatment for multidrug-resistant bacterial infections. In this study, one lytic bacteriophage, ZZ1, which infects A. baumannii and has a broad host range, was selected for characterization. Results Phage ZZ1 and 3 of its natural hosts, A. baumanni clinical isolates AB09V, AB0902, and AB0901, are described in this study. The 3 strains have different sensitivities to ZZ1, but they have the same sensitivity to antibiotics. They are resistant to almost all of the antibiotics tested, except for polymyxin. Several aspects of the life cycle of ZZ1 were investigated using the sensitive strain AB09V under optimal growth conditions. ZZ1 is highly infectious with a short latent period (9 min and a large burst size (200 PFU/cell. It exhibited the most powerful antibacterial activity at temperatures ranging from 35°C to 39°C. Moreover, when ZZ1 alone was incubated at different pHs and different temperatures, the phage was stable over a wide pH range (4 to 9 and at extreme temperatures (between 50°C and 60°C. ZZ1 possesses a 100-nm icosahedral head containing double-stranded DNA with a total length of 166,682 bp and a 120-nm long contractile tail. Morphologically, it could be classified as a member of the Myoviridae family and the Caudovirales order. Bioinformatic analysis of the phage whole genome sequence further suggested that ZZ1 was more likely to be a new member of the Myoviridae phages. Most of the predicted ORFs of the phage were similar to the predicted ORFs from other Acinetobacter phages. Conclusion The phage ZZ1 has a relatively broad lytic spectrum, high pH stability, strong heat resistance, and efficient antibacterial potential at body temperature. These characteristics greatly increase the utility of this phage as an antibacterial agent

  6. Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates.

    Science.gov (United States)

    Jin, Jing; Li, Zhen-Jiang; Wang, Shu-Wei; Wang, Shan-Mei; Huang, De-Hai; Li, Ya-Hui; Ma, Yun-Yun; Wang, Jin; Liu, Fang; Chen, Xiang-Dong; Li, Guang-Xing; Wang, Xiao-Ting; Wang, Zhong-Quan; Zhao, Guo-Qiang

    2012-07-28

    Acinetobacter baumannii, a significant nosocomial pathogen, has evolved resistance to almost all conventional antimicrobial drugs. Bacteriophage therapy is a potential alternative treatment for multidrug-resistant bacterial infections. In this study, one lytic bacteriophage, ZZ1, which infects A. baumannii and has a broad host range, was selected for characterization. Phage ZZ1 and 3 of its natural hosts, A. baumanni clinical isolates AB09V, AB0902, and AB0901, are described in this study. The 3 strains have different sensitivities to ZZ1, but they have the same sensitivity to antibiotics. They are resistant to almost all of the antibiotics tested, except for polymyxin. Several aspects of the life cycle of ZZ1 were investigated using the sensitive strain AB09V under optimal growth conditions. ZZ1 is highly infectious with a short latent period (9 min) and a large burst size (200 PFU/cell). It exhibited the most powerful antibacterial activity at temperatures ranging from 35°C to 39°C. Moreover, when ZZ1 alone was incubated at different pHs and different temperatures, the phage was stable over a wide pH range (4 to 9) and at extreme temperatures (between 50°C and 60°C). ZZ1 possesses a 100-nm icosahedral head containing double-stranded DNA with a total length of 166,682 bp and a 120-nm long contractile tail. Morphologically, it could be classified as a member of the Myoviridae family and the Caudovirales order. Bioinformatic analysis of the phage whole genome sequence further suggested that ZZ1 was more likely to be a new member of the Myoviridae phages. Most of the predicted ORFs of the phage were similar to the predicted ORFs from other Acinetobacter phages. The phage ZZ1 has a relatively broad lytic spectrum, high pH stability, strong heat resistance, and efficient antibacterial potential at body temperature. These characteristics greatly increase the utility of this phage as an antibacterial agent; thus, it should be further investigated.

  7. A study of Salmonella typhi isolated in Suez Canal area. Biotyping, phage typing and colicinogenic property.

    Science.gov (United States)

    Shoeb, S; Khalifa, I; el Daly, O; Heiba, A; Farmer, J; Brenner, F; el Batawi, Y

    1989-01-01

    In this work a total of 82 strains of Salmonella typhi were isolated from Egyptian patients diagnosed as quiry enteric fever. These cases were from Ismalia, Suez and port Said Areas. The strains fell in 16 phage types. Phage types N, 40, E1, and degraded Vi were the commonest phage type in Ismailia, while phage types degraded Vi and C1 were the commonest in Port Said. Phage types Di-N, degraded Vi, A and C1 were the commonest in Suez. Chemotyping of Salmonella typhi showed that the majority of the strains belonged to chemotype I (82%), and the rest belonged to chemotype II (18%). Colicin production was negative and all the strains were susceptible to the currently used antibiotics.

  8. Vibrio vulnificus phage PV94 is closely related to temperate phages of V. cholerae and other Vibrio species.

    Directory of Open Access Journals (Sweden)

    Mark Pryshliak

    Full Text Available BACKGROUND: Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1 infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. RESULTS: In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. CONCLUSION: We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

  9. Characterization and Complete Genome Sequences of Three N4-Like Roseobacter Phages Isolated from the South China Sea.

    Science.gov (United States)

    Li, Baolian; Zhang, Si; Long, Lijuan; Huang, Sijun

    2016-09-01

    Three bacteriophages (RD-1410W1-01, RD-1410Ws-07, and DS-1410Ws-06) were isolated from the surface water of Sanya Bay, northern South China Sea, on two marine bacteria type strains of the Roseobacter lineage. These phages have an isometric head and a short tail, morphologically belonging to the Podoviridae family. Two of these phages can infect four of seven marine roseobacter strains tested and the other one can infect three of them, showing relatively broader host ranges compared to known N4-like roseophages. One-step growth curves showed that these phages have similar short latent periods (1-2 h) but highly variable burst sizes (27-341 pfu cell(-1)). Their complete genomes show high level of similarities to known N4-like roseophages in terms of genome size, G + C content, gene content, and arrangement. The morphological and genomic features of these phages indicate that they belong to the N4likevirus genus. Moreover, comparative genomic analysis based on 43 N4-like phages (10 roseobacter phages and 33 phages infecting other lineages of bacteria) revealed a core genome of 18 genes shared by all the 43 phages and 38 genes shared by all the ten roseophages. The 38 core genes of N4-like roseophages nearly make up 70 % of each genome in length. Phylogenetic analysis based on the concatenated core gene products showed that our phage isolates represent two new phyletic branches, suggesting the broad genetic diversity of marine N4-like roseophages remains.

  10. The role of staphylococci in subclinical mastitis of cows and lytic phage isolation against to Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Aliye Gulmez Saglam

    2017-12-01

    Full Text Available Aim: This study was conducted to determine the role of Staphylococcus in the formation of subclinical mastitis in cows and to isolate the phage against isolated Staphylococcus aureus strains. Materials and Methods: In this study, 400 milk cows were screened by California Mastitis Test (CMT for subclinical mastitis and 235 udders of 96 cows, which were determined to be positive, were evaluated for Staphylococcus. Milk samples were evaluated using conventional and molecular methods. In addition, phage isolation studies were performed against S. aureus strains causing mastitis. Results: At the result of cultural examination, of 235 milk samples that were found as positive for mastitis by CMT, a total of 117 (49.7% Staphylococcus spp. were isolated as a distribution of 74 (63.24% coagulase-positive staphylococci and 43 (36.75% coagulase-negative staphylococci. Of these isolates, 76 (64.95% were characterized as S. aureus both conventional and molecular techniques. Lytic bacteriophages against two S. aureus strains which were isolated from mastitic milk samples were obtained from wastewater samples. Conclusion: The results of this study show that a significant portion of subclinical mastitis was formed by staphylococci. In addition, phage isolation against S. aureus strains isolated can be considered as one of the steps to be applied in the prophylaxis and treatment of such infections.

  11. Phage Types and Genotypes of Shiga Toxin-Producing Escherichia coli O157:H7 Isolates from Humans and Animals in Spain: Identification and Characterization of Two Predominating Phage Types (PT2 and PT8)

    Science.gov (United States)

    Mora, Azucena; Blanco, Miguel; Blanco, Jesús E.; Alonso, M. Pilar; Dhabi, Ghizlane; Thomson-Carter, Fiona; Usera, Miguel A.; Bartolomé, Rosa; Prats, Guillermo; Blanco, Jorge

    2004-01-01

    Phage typing and DNA macrorestriction fragment analysis by pulsed-field electrophoresis (PFGE) were used for the epidemiological subtyping of a collection of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains isolated in Spain between 1980 and 1999. Phage typing distinguished a total of 18 phage types among 171 strains isolated from different sources (67 humans, 82 bovines, 12 ovines, and 10 beef products). However, five phage types, phage type 2 (PT2; 42 strains), PT8 (33 strains), PT14 (14 strains), PT21/28 (11 strains), and PT54 (16 strains), accounted for 68% of the study isolates. PT2 and PT8 were the most frequently found among strains from both humans (51%) and bovines (46%). Interestingly, we detected a significant association between PT2 and PT14 and the presence of acute pathologies. A group of 108 of the 171 strains were analyzed by PFGE, and 53 distinct XbaI macrorestriction patterns were identified, with 38 strains exhibiting unique PFGE patterns. In contrast, phage typing identified 15 different phage types. A total of 66 phage type-PFGE subtype combinations were identified among the 108 strains. PFGE subtyping differentiated between unrelated strains that exhibited the same phage type. The most common phage type-PFGE pattern combinations were PT2-PFGE type 1 (1 human and 11 bovine strains), PT8-PFGE type 8 (2 human, 6 bovine, and 1 beef product strains), PT2-PFGE subtype 4A (1 human, 3 bovine, and 1 beef product strains). Nine (29%) of 31 human strains showed phage type-PFGE pattern combinations that were detected among the bovine strains included in this study, and 26 (38%) of 68 bovine strains produced phage type-PFGE pattern combinations observed among human strains included in this study, confirming that cattle are a major reservoir of strains pathogenic for humans. PT2 and PT8 strains formed two groups which differed from each other in their motilities, stx genotypes, PFGE patterns, and the severity of the illnesses that they caused

  12. Complete genome sequence of Vibrio anguillarum phage CHOED successfully used for phage therapy in aquaculture

    DEFF Research Database (Denmark)

    Romero, Jaime; Higuera, Gastón; Gajardo, Felipe

    2014-01-01

    Vibrio anguillarum phage CHOED was isolated from Chilean mussels. It is a virulent phage showing effective inhibition of V. anguillarum. CHOED has potential in phage therapy, because it can protect fish from vibriosis in fish farms. Here, we announce the completely sequenced genome of V....... anguillarum phage CHOED....

  13. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    Directory of Open Access Journals (Sweden)

    Rosalind A. Gilbert

    2017-12-01

    Full Text Available The rumen is known to harbor dense populations of bacteriophages (phages predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome.

  14. Phage transposon mutagenesis.

    Science.gov (United States)

    Siegrist, M Sloan; Rubin, Eric J

    2009-01-01

    Phage transduction is an attractive method of genetic manipulation in mycobacteria. PhiMycoMarT7 is well suited for transposon mutagenesis as it is temperature sensitive for replication and contains T7 promoters that promote transcription, a highly active transposase gene, and an Escherichia coli oriR6 K origin of replication. Mycobacterial transposon mutant libraries produced by PhiMycoMarT7 transduction are amenable to both forward and reverse genetic studies. In this protocol, we detail the preparation of PhiMycoMarT7, including a description of the phage, reconstitution of the phage, purification of plaques, preparation of phage stock, and titering of phage stock. We then describe the transduction procedure and finally outline the isolation of individual transposon mutants.

  15. Isolation and evaluation of cocktail phages for the control of multidrug-resistant Escherichia coli serotype O104: H4 and E. coli O157: H7 isolates causing diarrhea.

    Science.gov (United States)

    Safwat Mohamed, Doaa; Farouk Ahmed, Eman; Mohamed Mahmoud, Abobakr; Abd El-Baky, Rehab Mahmoud; John, James

    2018-02-01

    Escherichia coli serotype O157: H7 and E. coli O104: H4 are well known foodborne pathogens causing sever enteric illness. Using bacteriophages as biocontrol agents of some foodborne pathogens and multidrug-resistant (MDR) bacteria has a great attention nowadays. This study aims to test the effect of cocktail phages on the growth of some foodborne pathogens and MDR E. coli. Routine conventional PCR was used to confirm the identification of E. coli isolates. Double-layered culture technique was used to isolate phages from sewage water. Morphology of bacteriophage was described using transmission electron microscopy, and spot test was performed to determine host range of the phage cocktail. Phage cocktail of Siphoviridae and Podoviridae family infecting E. coli O157: H7, E. coli O104: H4 and untypeable E. coli (neither O157 nor O104) has been isolated from sewage water. Phage cocktail showed both lytic and lysogenic activity. Lytic activity was observed against E. coli O157: H7, E. coli O104: H4 isolates, Staphylococcus. aureus ATCC6538 and Pseudomonas aeruginosa ATCC 10145, while the lysogenic activity was observed against the untypeable strain. The tested phage cocktail showed a promising inhibitory action on E. coli O157: H7 and O104: H4, S. aureus ATCC6538 and P. aeruginosa ATCC 10145, suggesting the possibility of its use as a biocontrol tool or as natural food preservatives for many food products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. A variety of human monoclonal antibodies against epidermal growth factor receptor isolated from a phage antibody library.

    Science.gov (United States)

    Kurosawa, Gene; Kondo, Mariko; Kurosawa, Yoshikazu

    2016-11-04

    When the technology for constructing human antibody (Ab) libraries using a phage-display system was developed, many researchers in Ab-related fields anticipated that it would be widely applied to the development of pharmaceutical drugs against various diseases, including cancers. However, successful examples of such applications are very limited. Moreover, researchers who utilize phage-display technology now show divergent ways of thinking about phage Ab libraries. For example, there is debate about what should be the source of V H and V L genes for the construction of libraries to cover the whole repertoire of Abs present in the human body. In the immune system, the introduction of mutations into V genes followed by selection based on binding activity, termed Ab maturation, is required for the production of Abs exhibiting high affinity to the antigen (Ag). Therefore, introduction of mutations and selection are required for isolation of Abs with high affinity after isolation of clones from phage Ab libraries. We constructed a large human Ab library termed AIMS, developed a screening method termed ICOS, and succeeded in isolating many human monoclonal Abs (mAbs) that specifically and strongly bind to various tumor-associated Ags. Eight anti-EGFR mAbs were included, which we characterized. These mAbs showed various different activities against EGFR-expressing cancer cells. In this paper, we describe these data and discuss the possibility and necessity that the mAbs isolated from the AIMS library might be developed as therapeutic drugs against cancers without introduction of mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A study of phage- and ribotype patterns of Staphylococcus aureus isolated from bovine mastitis in the Nordic countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Wegener, Henrik Caspar; Jensen, N.E.

    1997-01-01

    This study was conducted to investigate the geographical distribution of phage and ribotypes of Staphylococcus aureus causing bovine mastitis in the 5 Nordic countries. A total of 403 isolates of S. aureus was isolated from 403 different dairy herds. One hundred five strains were isolated...... of the isolates of ribotype 1 belonged to phage type 29/52. This combined type accounted for 17% of all the 403 isolates. These findings show that a large number of different types of S. aureus can be isolated from cases of bovine mastitis. However, few types predominate within different countries....... These predominating types seem to be specific in each country, however, a single type was common for both Denmark, Sweden and Finland. This could suggest differences in the virulence or in modes of transmission of predominating and rare types of S. aureus associated with bovine mastitis....

  18. Current taxonomy of phages infecting lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Jennifer eMahony

    2014-01-01

    Full Text Available Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp. and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.

  19. Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China.

    Science.gov (United States)

    Zhang, Qian; Xing, Shaozhen; Sun, Qiang; Pei, Guangqian; Cheng, Shi; Liu, Yannan; An, Xiaoping; Zhang, Xianglilan; Qu, Yonggang; Tong, Yigang

    2017-06-01

    Bovine mastitis is one of the most costly diseases in dairy cows worldwide. It can be caused by over 150 different microorganisms, where Staphylococcus aureus is the most frequently isolated and a major pathogen responsible for heavy economic losses in dairy industry. Although antibiotic therapy is most widely used, alternative treatments are necessary due to the increasing antibiotic resistance. Using phage for pathogen control is a promising tool in the fight against antibiotic resistance. Mainly using high-throughput sequencing, bioinformatics and our proposed phage termini identification method, we have isolated and characterized a novel virulent phage, designated as vB_SauS_IMEP5, from manure collected from dairy farms in Shihezi, Xinjiang, China, for use as a biocontrol agent against Staphylococcus aureus infections. Its latent period was about 30 min and its burst size was approximately 272PFU/cell. Phage vB_SauS_IMEP5 survives in a wide pH range between 3 and 12. A treatment at 70 °C for 20 min can inactive the phage. Morphological analysis of vB_SauS_IMEP5 revealed that phage vB_SauS_IMEP5 morphologically resembles phages in the family Siphoviridae. Among our tested multiplicity of infections (MOIs), the optimal multiplicity of infection (MOI) of this phage was determined to be 0.001, suggesting that phage vB_SauS_IMEP5 has high bacteriolytic potential and good efficiency for reducing bacterial growth. The complete genome of IME-P5 is a 44,677-bp, linear, double-stranded DNA, with a G+C content of 34.26%, containing 69 putative ORFs. The termini of genome were determined with next-generation sequencing data using our previously proposed termini identification method, which suggests that this phage has non-redundant termini with 9nt 3' protruding cohesive ends. The genomic and proteomic characteristics of IMEP5 demonstrate that this phage does not belong to any of the previously recognized Siphoviridae Staphylococcus phage groups, suggesting the

  20. Stumbling across the same phage

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis; Rørbo, Nanna Iben; Castillo Bermúdez, Daniel Elías

    2017-01-01

    46,006 and 54,201 bp. All 19 phages showed high genetic similarity, and 13 phages were genetically identical. Apart from sporadically distributed single nucleotide polymorphisms (SNPs), genetic diversifications were located in three variable regions (VR1, VR2 and VR3) in six of the phage genomes...... was lysogenized by the temperate phages and a genomic analysis of a collection of 31 virulent V. anguillarum showed that the isolated phages were present as prophages in >50% of the strains covering large geographical distances. Further, phage sequences were widely distributed among CRISPR-Cas arrays of publicly...... available sequenced Vibrios. The observed distribution of these specific temperate Vibriophages across large geographical scales may be explained by efficient dispersal of phages and bacteria in the marine environment combined with a mutualistic interaction between temperate phages and their hosts which...

  1. Development of a phage typing system for Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    1993-01-01

    Bacteriophages were released by 98% of 100 Staphylococcus hyicus strains studied after treatment with mitomycin C. Twenty-three phages with different lytic spectra were included in a phage typing system and used f or typing S. hyicus. On a test-set of 100 epidemiologically unrelated S. hyicus...... strains isolated from Danish pig herds, the phages were able to type 92% of the strains, producing 16 different phage types. Reproducibility of the phage typing system after subculture of the strains and using fresh phage stock was 96%. Typability ranged from 52 to 80% when typing porcine strains...... originating from other countries. Although phages were isolated from porcine skin strains exclusively, the system produced phage types in S. hyicus strains of bovine origin. Ten strains of S. aureus and S. chromogenes were not typable by these phages. Strains belonging to one phage type (A/B/C/W) were...

  2. Phage types of Salmonella enterica ssp. enterica serovar Typhimurium isolated from production animals and humans in Denmark

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Wegener, Henrik Caspar

    1994-01-01

    S. Typhimurium is one of the 2 most common salmonella serotypes causing human salmonellosis in Denmark. In order to illustrate the significance of different production animals as a source of infection, 1461 isolates were characterized by phage typing. The isolates originated from human patients a...

  3. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India.

    Science.gov (United States)

    Stalin, Nattan; Srinivasan, Pappu

    2017-08-01

    A diverse set of novel phages infecting the marine pathogenic Vibrio harveyi was isolated from shrimp aquaculture environments in the south east coast of India. Based on initial screening, three phages with a broad host range revealed that the growth inhibition of phage is relatively specific to V. harveyi. They were also able to infect V. alginolyticus and V. parahemolyticus that belonged to the Harveyi clade species from shrimp pond and sea coast environment samples. However, the impact of these phages on their host bacterium are well understood; a one-step growth curve experiment and transmission electron microscope (TEM) revealed three phages grouped under the Myoviridae (VHM1 and VHM2); Siphoviridae (VHS1) family. These phages were further molecular characterized with respect to phage genomic DNA isolates. The randomly amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP) digestion with HindIII, and major structural proteins were distinguished by sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) clearly indicated that all the phage isolates were different, even when they came from the same source, giving an insight into the diversity of phages. Evaluation of microcosm studies of Penaeus monodon larvae infected with V. harveyi (105 CFU mL-1) showed that larvae survival after 96 h in the presence of phage treatment at 109 PFU mL-1 was enhanced when compared with the control. The resolution in over survival highly recommended that this study provides the phage-based therapy which could be an innovative and eco-friendly solution against Vibrio disease in shrimp aquaculture and in the natural environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo

    NARCIS (Netherlands)

    Dolk, E.; Vaart, M. van der; Lutje Hulsik, D.; Vriend, G.; Haard, H. de; Spinelli, S.; Cambillau, C.; Frenken, L.; Verrips, T.

    As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama

  5. Phage types and antimicrobial resistance among Danish bovine Staphylococcus aureus isolates since the 1950s

    DEFF Research Database (Denmark)

    Vintov, Jan; Aarestrup, Frank Møller; Zinn, C. E.

    2003-01-01

    three time periods, representing 43.3% of the typeable isolates. This indicates that the Danish S. aureus population related to bovine mastitis has remained relatively unchanged over the last 50 years. The occurrence of antimicrobial resistance has remained low in Denmark in comparison to other......A total of 292 bovine Staphylococcus aureus isolates obtained from the 1950s (86 isolates), 1992 (107 isolates), and 2000 (99 isolates) were examined for antimicrobial susceptibility and phage typing. The same types of S. aureus (80, 52, 3A, 3A/3C, 42E, 77) were found among the isolates from all...

  6. Affinity isolation of antigen-specific circulating B cells for generation of phage display-derived human monoclonal antibodies

    DEFF Research Database (Denmark)

    Ditzel, Henrik

    2009-01-01

    A method is described for affinity isolation of antigen-specific circulating B cells of interest for subsequent generation of immune antibody phage display libraries. This approach should overcome the problem of low yields of monoclonal antibodies of interest in the libraries generated from...... peripheral blood lymphocytes caused by the low abundance of antigen-specific B cells in the circulation. The preselection of B cells is based on the specificity of the surface Ig receptor and is accomplished using the antigen of interest conjugated to magnetic beads. This method should significantly increase...... the frequency of antibody phage particles of interest in the library and allow for efficient isolation monoclonal antibodies with the predefined specificity....

  7. Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Luis Amarillas

    2017-07-01

    Full Text Available Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac-type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative

  8. Phage-Host Interactions in Flavobacterium psychrophilum and the Potential for Phage Therapy in Aquaculture

    DEFF Research Database (Denmark)

    Christiansen, Rói Hammershaimb

    , the increasing problem with antibiotic resistance has led to increased attention to the use of phages for controlling F. psychrophilum infections in aquaculture. In a synopsis and four scientific papers, this PhD project studies the potential and optimizes the use of phage therapy for treatment and prevention......, studies of the genetic diversity and susceptibility patterns of F. psychrophilum strains and phages isolated in three geographically distinct areas (Chile, Denmark, and USA) showed that the strains and phages clustered into geographically distinct groups. However, cross-infectivity between Chilean phage......-phage. In the third paper, a detailed analysis of the resistance mechanisms in F. psychrophilum and six phage resistant mutants was done. The results revealed unique changes in the genomes in all the phage resistant strains and that some of these changes were related to cell surface properties which were suggested...

  9. The Caulobacter crescentus phage phiCbK: genomics of a canonical phage

    Directory of Open Access Journals (Sweden)

    Gill Jason J

    2012-10-01

    Full Text Available Abstract Background The bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives. Results Five novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK to 280 kb encoding 448 proteins (CcrColossus, and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell’s replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level. Conclusions Due to their lack of any apparent relationship to

  10. Characterization of Two Virulent Phages of Lactobacillus plantarum

    Science.gov (United States)

    Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea

    2012-01-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172

  11. Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2.

    Directory of Open Access Journals (Sweden)

    Sanaa A Ahmed

    Full Text Available In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493 and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071. Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.

  12. Isolation and Host Range of Bacteriophage with Lytic Activity against Methicillin-Resistant Staphylococcus aureus and Potential Use as a Fomite Decontaminant.

    Directory of Open Access Journals (Sweden)

    Kyle C Jensen

    Full Text Available Staphylococcus aureus (SA is a commensal bacterium and opportunistic pathogen commonly associated with humans and is capable of causing serious disease and death including sepsis, pneumonia, and meningitis. Methicillin-resistant SA (MRSA isolates are typically resistant to many available antibiotics with the common exception of vancomycin. The presence of vancomycin resistance in some SA isolates combined with the current heavy use of vancomycin to treat MRSA infections indicates that MRSA may achieve broad resistance to vancomycin in the near future. New MRSA treatments are clearly needed. Bacteriophages (phages are viruses that infect bacteria, commonly resulting in death of the host bacterial cell. Phage therapy entails the use of phage to treat or prevent bacterial infections. In this study, 12 phages were isolated that can replicate in human SA and/or MRSA isolates as a potential way to control these infections. 5 phage were discovered through mitomycin C induction of prophage and 7 others as extracellular viruses. Primary SA strains were also isolated from environmental sources to be used as tools for phage discovery and isolation as well as to examine the target cell host range of the phage isolates by spot testing. Primary isolates were tested for susceptibility to oxacillin in order to determine which were MRSA. Experiments were performed to assess the host range and killing potential of newly discovered phage, and significant reductions in bacterial load were detected. We explored the utility of some phage to decontaminate fomites (glass and cloth and found a significant reduction in colony forming units of MRSA following phage treatment, including tests of a phage cocktail against a cocktail of MRSA isolates. Our findings suggest that phage treatment can be used as an effective tool to decontaminate human MRSA from both hard surfaces and fabrics.

  13. Two Novel Myoviruses from the North of Iraq Reveal Insights into Clostridium difficile Phage Diversity and Biology

    Directory of Open Access Journals (Sweden)

    Srwa J. Rashid

    2016-11-01

    Full Text Available Bacteriophages (phages are increasingly being explored as therapeutic agents to combat bacterial diseases, including Clostridium difficile infections. Therapeutic phages need to be able to efficiently target and kill a wide range of clinically relevant strains. While many phage groups have yet to be investigated in detail, those with new and useful properties can potentially be identified when phages from newly studied geographies are characterised. Here, we report the isolation of C. difficile phages from soil samples from the north of Iraq. Two myoviruses, CDKM15 and CDKM9, were selected for detailed sequence analysis on the basis of their broad and potentially useful host range. CDKM9 infects 25/80 strains from 12/20 C. difficile ribotypes, and CDKM15 infects 20/80 strains from 9/20 ribotypes. Both phages can infect the clinically relevant ribotypes R027 and R001. Phylogenetic analysis based on whole genome sequencing revealed that the phages are genetically distinct from each other but closely related to other long-tailed myoviruses. A comparative genomic analysis revealed key differences in the genes predicted to encode for proteins involved in bacterial infection. Notably, CDKM15 carries a clustered regularly interspaced short palindromic repeat (CRISPR array with spacers that are homologous to sequences in the CDKM9 genome and of phages from diverse localities. The findings presented suggest a possible shared evolutionary past for these phages and provides evidence of their widespread dispersal.

  14. Exploration of Phage-Host Interactions in Fish Pathogen Vibrio anguillarum and Anti-Phage Defense Strategies

    DEFF Research Database (Denmark)

    Tan, Demeng

    The disease vibriosis is caused by the bacterial pathogen Vibrio anguillarum and results in large losses in aquaculture both in Denmark and around the world. Antibiotics have been widely used in antimicrobial prophylaxis and treatment of vibriosis. Recently, numerous multidrug-resistant strains...... of V. anguillarum have been isolated, indicating that antibiotic use has to be restricted and alternatives have to be developed. Lytic phages have been demonstrated to play an essential role in preventing bacterial infection. However, phages are also known to play a critical role in the evolution...... of bacterial pathogenicity development. Therefore, successful application of phage therapy in the treatment of vibriosis requires a detailed understanding of phage-host interactions, especially with regards to anti-phage defense mechanisms in the host. Part I. As a first approach, 24 V. anguillarum and 13...

  15. How to Name and Classify Your Phage: An Informal Guide

    Directory of Open Access Journals (Sweden)

    Evelien Adriaenssens

    2017-04-01

    Full Text Available With this informal guide, we try to assist both new and experienced phage researchers through two important stages that follow phage discovery; that is, naming and classification. Providing an appropriate name for a bacteriophage is not as trivial as it sounds, and the effects might be long-lasting in databases and in official taxon names. Phage classification is the responsibility of the Bacterial and Archaeal Viruses Subcommittee (BAVS of the International Committee on the Taxonomy of Viruses (ICTV. While the BAVS aims at providing a holistic approach to phage taxonomy, for individual researchers who have isolated and sequenced a new phage, this can be a little overwhelming. We are now providing these researchers with an informal guide to phage naming and classification, taking a “bottom-up” approach from the phage isolate level.

  16. The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages

    Directory of Open Access Journals (Sweden)

    James J Bull

    2014-11-01

    Full Text Available The use of bacteriophages as antibacterial agents is being actively researched on a global scale. Typically, the phages used are isolated from the wild by plating on the bacteria of interest, and a far larger set of candidate phages is often available than can be used in any application. When an excess of phages is available, how should the best phages be identified? Here we consider phage-bacterial population dynamics as a basis for evaluating and predicting phage success. A central question is whether the innate dynamical properties of phages are the determinants of success, or instead, whether extrinsic, indirect effects can be responsible. We address the dynamical perspective, motivated in part by the absence of dynamics in previously suggested principles of phage therapy. Current mathematical models of bacterial-phage dynamics do not capture the realities of in vivo dynamics, nor is this likely to change, but they do give insight to qualitative properties that may be generalizable. In particular, phage adsorption rate may be critical to treatment success, so understanding the effects of the in vivo environment on host availability may allow prediction of useful phages prior to in vivo experimentation. Principles for predicting efficacy may be derived by developing a greater understanding of the in vivo system, or such principles could be determined empirically by comparing phages with known differences in their dynamic properties. The comparative approach promises to be a powerful method of discovering the key to phage success. We offer five recommendations for future study: (i compare phages differing in treatment efficacy to identify the phage properties associated with success, (ii assay dynamics in vivo, (iii understand mechanisms of bacterial escape from phages, (iv test phages in model infections that are relevant to the intended clinical applications, and (v develop new classes of models for phage growth in spatially heterogeneous

  17. Coevolution of CRISPR bacteria and phage in 2 dimensions

    Science.gov (United States)

    Han, Pu; Deem, Michael

    2014-03-01

    CRISPR (cluster regularly interspaced short palindromic repeats) is a newly discovered adaptive, heritable immune system of prokaryotes. It can prevent infection of prokaryotes by phage. Most bacteria and almost all archae have CRISPR. The CRISPR system incorporates short nucleotide sequences from viruses. These incorporated sequences provide a historical record of the host and predator coevolution. We simulate the coevolution of bacteria and phage in 2 dimensions. Each phage has multiple proto-spacers that the bacteria can incorporate. Each bacterium can store multiple spacers in its CRISPR. Phages can escape recognition by the CRISPR system via point mutation or recombination. We will discuss the different evolutionary consequences of point mutation or recombination on the coevolution of bacteria and phage. We will also discuss an intriguing ``dynamic phase transition'' in the number of phage as a function of time and mutation rate. We will show that due to the arm race between phages and bacteria, the frequency of spacers and proto-spacers in a population can oscillate quite rapidly.

  18. Isolation and characterization of Bacteroides host strain HB-73 used to detect sewage specific phages in Hawaii.

    Science.gov (United States)

    Vijayavel, Kannappan; Fujioka, Roger; Ebdon, James; Taylor, Huw

    2010-06-01

    Previous studies have shown that Escherichia coli and enterococci are unreliable indicators of fecal contamination in Hawaii because of their ability to multiply in environmental soils. In this study, the method of detecting Bacteroides phages as specific markers of sewage contamination in Hawaii's recreational waters was evaluated because these sewage specific phages cannot multiply under environmental conditions. Bacteroides hosts (GB-124, GA-17), were recovered from sewage samples in Europe and were reported to be effective in detecting phages from sewage samples obtained in certain geographical areas. However, GB-124 and GA-17 hosts were ineffective in detecting phages from sewage samples obtained in Hawaii. Bacteroides host HB-73 was isolated from a sewage sample in Hawaii, confirmed as a Bacteroides sp. and shown to recover phages from multiple sources of sewage produced in Hawaii at high concentrations (5.2-7.3 x 10(5) PFU/100 mL). These Bacteroides phages were considered as potential markers of sewage because they also survived for three days in fresh stream water and two days in marine water. Water samples from Hawaii's coastal swimming beaches and harbors, which were known to be contaminated with discharges from streams, were shown to contain moderate (20-187 CFU/100 mL) to elevated (173-816 CFU/100 mL) concentrations of enterococci. These same samples contained undetectable levels (Hawaii and the most likely source of these enterococci is from environmental soil rather than from sewage. 2010 Elsevier Ltd. All rights reserved.

  19. The Isolation of Novel Phage Display-Derived Human Recombinant Antibodies Against CCR5, the Major Co-Receptor of HIV

    OpenAIRE

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai; Hizi, Amnon

    2013-01-01

    Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening s...

  20. Longitudinal monitoring of Listeria monocytogenes and Listeria phages in seafood processing environments in Thailand.

    Science.gov (United States)

    Vongkamjan, Kitiya; Benjakul, Soottawat; Kim Vu, Hue Thi; Vuddhakul, Varaporn

    2017-09-01

    Listeria monocytogenes is a foodborne pathogen commonly found in environments of seafood processing, thus presenting a challenge for eradication from seafood processing facilities. Monitoring the prevalence and subtype diversity of L. monocytogenes together with phages that are specific to Listeria spp. ("Listeria phages") will provide knowledge on the bacteria-phage ecology in food processing plants. In this work, a total of 595 samples were collected from raw material, finished seafood products and environmental samples from different sites of a seafood processing plant during 17 sampling visits in 1.5 years of study. L. monocytogenes and Listeria spp. (non-monocytogenes) were found in 22 (3.7%) and 43 (7.2%) samples, respectively, whereas 29 Listeria phages were isolated from 9 (1.5%) phage-positive samples. DNA fingerprint analysis of L. monocytogenes isolates revealed 11 Random Amplified Polymorphic DNA (RAPD) profiles, with two subtypes were frequently observed over time. Our data reveal a presence of Listeria phages within the same seafood processing environments where a diverse set of L. monocytogenes subtypes was also found. Although serotype 4b was observed at lower frequency, data indicate that isolates from this seafood processing plant belonged to both epidemiologically important serotypes 1/2a and 4b, which may suggest a potential public health risk. Phages (all showed a unique genome size of 65 ± 2 kb) were classified into 9 host range groups, representing both broad- and narrow-host range. While most L. monocytogenes isolates from this facility were susceptible to phages, five isolates showed resistance to 12-20 phages. Variations in phage host range among Listeria phages isolated from food processing plant may affect a presence of a diverse set of L. monocytogenes isolates derived from the same processing environment in Thailand. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Control of Pierce's Disease by Phage.

    Directory of Open Access Journals (Sweden)

    Mayukh Das

    Full Text Available Pierce's Disease (PD of grapevines, caused by Xylella fastidiosa subsp. fastidiosa (Xf, is a limiting factor in the cultivation of grapevines in the US. There are presently no effective control methods to prevent or treat PD. The therapeutic and prophylactic efficacy of a phage cocktail composed of four virulent (lytic phages was evaluated for control of PD. Xf levels in grapevines were significantly reduced in therapeutically or prophylactically treated grapevines. PD symptoms ceased to progress one week post-therapeutic treatment and symptoms were not observed in prophylactically treated grapevines. Cocktail phage levels increased in grapevines in the presence of the host. No in planta phage-resistant Xf isolates were obtained. Moreover, Xf mutants selected for phage resistance in vitro did not cause PD symptoms. Our results indicate that phages have great potential for biocontrol of PD and other economically important diseases caused by Xylella.

  2. Recombinant phage probes for Listeria monocytogenes

    Science.gov (United States)

    Carnazza, S.; Gioffrè, G.; Felici, F.; Guglielmino, S.

    2007-10-01

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 104 cells ml-1. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  3. Enterococcus phages as potential tool for identifying sewage inputs in the Great Lakes region

    Science.gov (United States)

    Vijayavel, K.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Ebdon, J.; Taylor, H.; Kashian, D.R.

    2014-01-01

    Bacteriophages are viruses living in bacteria that can be used as a tool to detect fecal contamination in surface waters around the world. However, the lack of a universal host strain makes them unsuitable for tracking fecal sources. We evaluated the suitability of two newly isolated Enterococcus host strains (ENT-49 and ENT-55) capable for identifying sewage contamination in impacted waters by targeting phages specific to these hosts. Both host strains were isolated from wastewater samples and identified as E. faecium by 16S rRNA gene sequencing. Occurrence of Enterococcus phages was evaluated in sewage samples (n = 15) from five wastewater treatment plants and in fecal samples from twenty-two species of wild and domesticated animals (individual samples; n = 22). Levels of Enterococcus phages, F + coliphages, Escherichia coli and enterococci were examined from four rivers, four beaches, and three harbors. Enterococcus phages enumeration was at similar levels (Mean = 6.72 Log PFU/100 mL) to F + coliphages in all wastewater samples, but were absent from all non-human fecal sources tested. The phages infecting Enterococcus spp. and F + coliphages were not detected in the river samples (detection threshold < 10 PFU/100 mL), but were present in the beach and harbor samples (range = 1.83 to 2.86 Log PFU/100 mL). Slightly higher concentrations (range = 3.22 to 3.69 Log MPN/100 mL) of E. coli and enterococci when compared to F + coliphages and Enterococcus phages, were observed in the river, beach and harbor samples. Our findings suggest that the bacteriophages associated with these particular Enterococcus host strains offer potentially sensitive and human-source specific indicators of enteric pathogen risk.

  4. Recombinant phage probes for Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S; Gioffre, G; Felici, F; Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2007-10-03

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 10{sup 4} cells ml{sup -1}. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  5. Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase.

    Directory of Open Access Journals (Sweden)

    Chun-Ru Hsu

    Full Text Available BACKGROUND: Klebsiella pneumoniae is one of the major pathogens causing hospital-acquired multidrug-resistant infections. The capsular polysaccharide (CPS is an important virulence factor of K. pneumoniae. With 78 capsular types discovered thus far, an association between capsular type and the pathogenicity of K. pneumoniae has been observed. METHODOLOGY/PRINCIPAL FINDINGS: To investigate an initially non-typeable K. pneumoniae UTI isolate NTUH-K1790N, the cps gene region was sequenced. By NTUH-K1790N cps-PCR genotyping, serotyping and determination using a newly isolated capsular type-specific bacteriophage, we found that NTUH-K1790N and three other isolates Ca0507, Ca0421 and C1975 possessed a new capsular type, which we named KN2. Analysis of a KN2 CPS(- mutant confirmed the role of capsule as the target recognized by the antiserum and the phage. A newly described lytic phage specific for KN2 K. pneumoniae, named 0507-KN2-1, was isolated and characterized using transmission electron microscopy. Whole-genome sequencing of 0507-KN2-1 revealed a 159 991 bp double-stranded DNA genome with a G+C content of 46.7% and at least 154 open reading frames. Based on its morphological and genomic characteristics, 0507-KN2-1 was classified as a member of the Myoviridae phage family. Further analysis of this phage revealed a 3738-bp gene encoding a putative polysaccharide depolymerase. A recombinant form of this protein was produced and assayed to confirm its enzymatic activity and specificity to KN2 capsular polysaccharides. KN2 K. pneumoniae strains exhibited greater sensitivity to this depolymerase than these did to the cognate phage, as determined by spot analysis. CONCLUSIONS/SIGNIFICANCE: Here we report that a group of clinical strains possess a novel Klebsiella capsular type. We identified a KN2-specific phage and its polysaccharide depolymerase, which could be used for efficient capsular typing. The lytic phage and depolymerase also have potential as

  6. The Isolation of Novel Phage Display-Derived Human Recombinant Antibodies Against CCR5, the Major Co-Receptor of HIV

    Science.gov (United States)

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai

    2013-01-01

    Abstract Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest. PMID:23941674

  7. Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1.

    Science.gov (United States)

    Andrade-Domínguez, Andrés; Kolter, Roberto

    2016-08-25

    Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. Copyright © 2016 Andrade-Domínguez and Kolter.

  8. Phage typing of Staphylococcus saprophyticus.

    Science.gov (United States)

    Torres Pereira, A.; Melo Cristino, J. A.

    1991-01-01

    This study included 502 staphylococcus strains; Staphylococcus saprophyticus (297 strains) S. cohnii (47), S. xylosus (10), S. epidermidis (67) and S. aureus (81). Mitomycin C induction was performed on 100 isolates of S. saprophyticus and all induced strains were reacted with each other. Twenty-six strains proved to be lysogenic. Phages were propagated and titrated. With 12 of the phages there were three frequent associations, named lytic groups A, B and C, which included 75% of all typable strains. Typability of the system was 45% and reproducibility was between 94.2% and 100%. Phages did not lyse S. aureus and S. epidermidis strains, but they lysed S. saprophyticus and only rare strains of other novobiocin resistant species. Effective S. saprophyticus typing serves ecological purposes and tracing the origin of urinary strains from the skin or mucous membranes. Phage typing in association with plasmid profiling previously described, are anticipated as complementary methods with strong discriminatory power for differentiating among S. saprophyticus strains. PMID:1752305

  9. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    OpenAIRE

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for ...

  10. Effect of Bacteriophages on the Growth of Flavobacterium psychrophilum and Development of Phage-Resistant Strains

    DEFF Research Database (Denmark)

    Christiansen, Rói Hammershaimb; Madsen, Lone; Dalsgaard, Inger

    2016-01-01

    The controlling effect of single and multiple phages on the density of Flavobacterium psychrophilum at different initial multiplicity of infection (MOI) was assessed in batch cultures to explore the potential for phage-based treatment of this important fish pathogen. A high initial phage concentr......The controlling effect of single and multiple phages on the density of Flavobacterium psychrophilum at different initial multiplicity of infection (MOI) was assessed in batch cultures to explore the potential for phage-based treatment of this important fish pathogen. A high initial phage...... concentration (MOI = 0.3–4) was crucial for efficient viral lysis, resulting in a 104–105-fold reduction of phage-sensitive cells (both single phages and phage cocktails), which was maintained throughout the incubation (>10 days). Following cell lysis, regrowth of phage-resistant strains was examined...... and resistant strains were isolated for further characterization. The application of a mathematical model allowed simulation of phage-host interactions and resistance development, confirming indications from strain isolations that phage-sensitive strains dominated the regrowing population (>99.8 %) at low MOI...

  11. Phage-resistance linked to cell heterogeneity in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1.

    Science.gov (United States)

    Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge

    2008-12-10

    The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates M.

  12. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    Science.gov (United States)

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. PMID:25002431

  13. Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus

    Science.gov (United States)

    Goerke, Christiane; Köller, Johanna; Wolz, Christiane

    2006-01-01

    In Staphylococcus aureus strains of human origin, phages which integrate into the chromosomal gene coding for β-hemolysin (hlb) are widely distributed. Most of them encode accessory virulence determinants such as staphylokinase (sak) or enterotoxins. Here, we analyzed the effects of ciprofloxacin and trimethoprim on phage induction and expression of phage-encoded virulence factors by using isolates from patients with cystic fibrosis for which the induction of hlb-converting phages was demonstrated in vivo (C. Goerke, S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl, and C. Wolz, J. Infect. Dis. 189:724-734, 2004) as well as a φ13 lysogen of phage-cured strain 8325-4. Treatment of lysogens with subinhibitory concentrations of either antibiotic resulted in (i) delysogenization of strains resembling the isolates picked up after chronic lung infection and (ii) replication of phages in the bacterial host in a dose-dependent manner. Ciprofloxacin treatment resulted in enhanced recA transcription, indicating involvement of the SOS response in phage mobilization. Induction of φ13 was linked to elevated expression of the phage-encoded virulence gene sak, chiefly due to the activation of latent phage promoters. In summary, we could show the induction of hlb-converting phages and a subsequent virulence modulation of the host bacterium by ciprofloxacin and trimethoprim. PMID:16377683

  14. Staphylococcus aureus phage types and their correlation to antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Mehndiratta P

    2010-10-01

    Full Text Available Context: Staphylococcus aureus is one of the most devastating human pathogen. The organism has a differential ability to spread and cause outbreak of infections. Characterization of these strains is important to control the spread of infection in the hospitals as well as in the community. Aim: To identify the currently existing phage groups of Staphylococcus aureus, their prevalence and resistance to antibiotics. Materials and Methods: Study was undertaken on 252 Staphylococcus aureus strains isolated from clinical samples. Strains were phage typed and their resistance to antibiotics was determined following standard microbiological procedures. Statistical Analysis: Chi square test was used to compare the antibiotic susceptibility between methicillin resistant Staph. aureus (MRSA and methicillin sensitive S. aureus (MSSA strains. Results: Prevalence of MRSA and MSSA strains was found to be 29.36% and 70.65% respectively. Of these 17.56% of MRSA and 40.44% of MSSA strains were community acquired. All the MSSA strains belonging to phage type 81 from the community were sensitive to all the antibiotics tested including clindamycin and were resistant to penicillin. Forty five percent strains of phage group III and 39% of non-typable MRSA strains from the hospital were resistant to multiple antibiotics. Conclusion: The study revealed that predominant phage group amongst MRSA strains was phage group III and amongst MSSA from the community was phage group NA (phage type 81. MSSA strains isolated from the community differed significantly from hospital strains in their phage type and antibiotic susceptibility. A good correlation was observed between community acquired strains of phage type 81 and sensitivity to gentamycin and clindamycin.

  15. Association between phage types and antimicrobial resistance among bovine Staphylococcus aureus from 10 countries

    DEFF Research Database (Denmark)

    Vintov, J.; Aarestrup, Frank Møller; Zinn, C. E.

    2003-01-01

    This study was conducted to investigate the diversity of phage types and associations between penicillin resistance and phage types among 815 Staphylococcus aureus isolates from bovine mastitis in nine European countries and USA. All isolates were examined for susceptibility to antimicrobial agents...... associated with penicillin resistance in contrast to phage group I (P = 0.0023) and phage complex-80 (P = 0.0066). This study confirms that a large number of phage types of S. aureus cause bovine mastitis, but that some types predominate. In addition, these findings could indicate that the use of penicillin...... in the bovine environment has selected for specific types of S. aureus in countries with a high frequency of resistance....

  16. Molecular characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages.

    Science.gov (United States)

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2014-09-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Phage therapy against Enterococcus faecalis in dental root canals

    Directory of Open Access Journals (Sweden)

    Leron Khalifa

    2016-09-01

    Full Text Available Antibiotic resistance is an ever-growing problem faced by all major sectors of health care, including dentistry. Recurrent infections related to multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, and vancomycin-resistant enterococci (VRE in hospitals are untreatable and question the effectiveness of notable drugs. Two major reasons for these recurrent infections are acquired antibiotic resistance genes and biofilm formation. None of the traditionally known effective techniques have been able to efficiently resolve these issues. Hence, development of a highly effective antibacterial practice has become inevitable. One example of a hard-to-eradicate pathogen in dentistry is Enterococcus faecalis, which is one of the most common threats observed in recurrent root canal treatment failures, of which the most problematic to treat are its biofilm-forming VRE strains. An effective response against such infections could be the use of bacteriophages (phages. Phage therapy was found to be highly effective against biofilm and multidrug-resistant bacteria and has other advantages like ease of isolation and possibilities for genetic manipulations. The potential of phage therapy in dentistry, in particular against E. faecalis biofilms in root canals, is almost unexplored. Here we review the efforts to develop phage therapy against biofilms. We also focus on the phages isolated against E. faecalis and discuss the possibility of using phages against E. faecalis biofilm in root canals.

  18. Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1.

    Science.gov (United States)

    Solís-Sánchez, Alejandro; Hernández-Chiñas, Ulises; Navarro-Ocaña, Armando; De la Mora, Javier; Xicohtencatl-Cortes, Juan; Eslava-Campos, Carlos

    2016-03-22

    Epidemics and pandemics of cholera, a diarrheal disease, are attributed to Vibrio cholera serogroups O1 and O139. In recent years, specific lytic phages of V. cholera have been proposed to be important factors in the cyclic occurrence of cholera in endemic areas. However, the role and potential participation of lytic phages during long interepidemic periods of cholera in non-endemic regions have not yet been described. The purpose of this study was to isolate and characterize specific lytic phages of V. cholera O1 strains. Sixteen phages were isolated from wastewater samples collected at the Endhó Dam in Hidalgo State, Mexico, concentrated with PEG/NaCl, and purified by density gradient. The lytic activity of the purified phages was tested using different V. cholerae O1 and O139 strains. Phage morphology was visualized by transmission electron microscopy (TEM), and phage genome sequencing was performed using the Genome Analyzer IIx System. Genome assembly and bioinformatics analysis were performed using a set of high-throughput programs. Phage structural proteins were analyzed by mass spectrometry. Sixteen phages with lytic and lysogenic activity were isolated; only phage ØVC8 showed specific lytic activity against V. cholerae O1 strains. TEM images of ØVC8 revealed a phage with a short tail and an isometric head. The ØVC8 genome comprises linear double-stranded DNA of 39,422 bp with 50.8 % G + C. Of the 48 annotated ORFs, 16 exhibit homology with sequences of known function and several conserved domains. Bioinformatics analysis showed multiple conserved domains, including an Ig domain, suggesting that ØVC8 might adhere to different mucus substrates such as the human intestinal epithelium. The results suggest that ØVC8 genome utilize the "single-stranded cohesive ends" packaging strategy of the lambda-like group. The two structural proteins sequenced and analyzed are proteins of known function. ØVC8 is a lytic phage with specific activity against V. cholerae

  19. Characterization of Campylobacter phages including analysis of host range by selected Campylobacter Penner serotypes

    DEFF Research Database (Denmark)

    Hansen, Vinni; Rosenquist, Hanne; Baggesen, Dorte Lau

    2007-01-01

    range often displayed by phages. To identify the potential of phages as a Campylobacter reducing agent we needed to determine their infectivity on a panel of isolates representing the Campylobacter strains found in broilers as well as humans. Results: In this study, Campylobacter phages were isolated...... from the intestines of broilers and ducks and from abattoir sewage. Twelve phages were investigated to determine their ability to infect the Campylobacter Penner serotypes commonly present in Danish poultry and patients with campylobacteriosis. A total of 89% of the Campylobacter jejuni strains and 14...... range of 12 Danish Campylobacter phages. Due to their ability to infect the majority of the common serotypes in Denmark we suggest the phages can become an effective agent in the effort to reduce the incidence of campylobacteriosis in Denmark. This study provides the basis for future experiments...

  20. Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections

    Science.gov (United States)

    Melo, Luís D. R.; Veiga, Patrícia; Cerca, Nuno; Kropinski, Andrew M.; Almeida, Carina; Azeredo, Joana; Sillankorva, Sanna

    2016-01-01

    Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages’ ability to prevent catheter’s colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic biofilm model simulating CAUTIs, have shown a significant reduction of P. mirabilis biofilm formation up to 168 h of catheterization. These results highlight the potential usefulness of the two isolated phages for the prevention of surface colonization by this bacterium. PMID:27446059

  1. Influence of environmental factors on phage-bacteria interaction and on the efficacy and infectivity of phage P100

    Directory of Open Access Journals (Sweden)

    Susanne Fister

    2016-07-01

    Full Text Available When using bacteriophages to control food-borne bacteria in food production plants and processed food, it is crucial to consider that environmental conditions influence their stability. These conditions can also affect the physiological state of bacteria and consequently host-virus interaction and the effectiveness of the phage ability to reduce bacteria numbers. In this study we investigated the stability, binding and replication capability of phage P100 and its efficacy to control L. monocytogenes under conditions typically encountered in dairy plants. The influences of SDS, Lutensol AO 7, salt, smear water and different temperatures were investigated. Results indicate that phage P100 is stable and able to bind to the host under most conditions tested. Replication was dependent upon the growth of L. monocytogenes and efficacy was higher when bacterial growth was reduced by certain environmental conditions. In long-term experiments at different temperatures phages were initially able to reduce bacteria up to seven log10 units after two weeks at 4 °C. However, thereafter re-growth and development of phage-resistant L. monocytogenes isolates were encountered.

  2. Detection and quantification of microcystins (cyanobacterial hepatotoxins) with recombinant antibody fragments isolated from a naïve human phage display library.

    Science.gov (United States)

    McElhiney, J; Lawton, L A; Porter, A J

    2000-12-01

    Single-chain antibody fragments against the cyanobacterial hepatotoxin microcystin-LR were isolated from a naive human phage display library and expressed in Escherichia coli. In competition enzyme-linked immunosorbent assay (ELISA), the most sensitive antibody clone selected from the library detected free microcystin-LR with an IC(50) value of 4 microM. It was found to cross react with three other microcystin variants - microcystin-RR, microcystin-LW and microcystin-LF - and detected microcystins in extracts of the cyanobacterium Microcystis aeruginosa, found to contain the toxins by high-performance liquid chromatography (HPLC). The quantification of microcystins in these extracts by ELISA and HPLC showed good correlation. Although the antibody isolated in this study was considerably less sensitive than the polyclonal and monoclonal antibodies already available for microcystin detection, phage display technology represents a cheaper, more rapid alternative for the production of anti-microcystin antibodies than the methods currently in use.

  3. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    International Nuclear Information System (INIS)

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui; Xiao, Gengfu

    2011-01-01

    Highlights: → Successfully selected specific PreS1-interacting peptides by using phage displayed library. → Alignment of the positive phage clones revealed a consensus PreS1 binding motif. → A highly enriched peptide named P7 had a strong binding ability for PreS1. → P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX n HX m HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  4. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-09-09

    Highlights: {yields} Successfully selected specific PreS1-interacting peptides by using phage displayed library. {yields} Alignment of the positive phage clones revealed a consensus PreS1 binding motif. {yields} A highly enriched peptide named P7 had a strong binding ability for PreS1. {yields} P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX{sub n}HX{sub m}HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  5. Differences in Shiga toxin and phage production among stx2g-positive STEC strains

    Directory of Open Access Journals (Sweden)

    Claudia Viviana Granobles Velandia

    2012-06-01

    Full Text Available Shigatoxigenic E. coli (STEC are characterized by the production of Shiga toxins (Stx encoded by temperate bacteriophages. Stx production is linked to the induction of the phage lytic cycle. Several stx variants have been described and differentially associated with the risk of developing severe illness.The variant named stx2g was first identified in a STEC strain isolated from the faeces of healthy cattle. Analysis of stx2g-positive strains isolated from humans, animals and environmental sources have shown that they have a close relationship. In this study, stx2g-positive STEC isolated from cattle were analyzed for phage and Stx production, with the aim to relate the results to differences observed in cytotoxicity.The presence of inducible phages was assessed by analyzing the bacterial growth/lysis curves and also by plaque assay. Bacterial growth curves in the absence of induction were similar for all isolates, however, notably differed among induced cultures. The two strains that clearly evidenced bacteriolysis under this condition also showed higher phage titers in plaque assays. However, only the phage plaques produced by one of these strains (FB 62 hybridized with a stx2-probe. Furthermore, the production of Stx was evaluated by EIA and Western immunoblotting in overnight supernatants. By EIA, we detected Stx only in supernatants of FB 62, with a higher signal with induced than in uninduced cultures. By immunoblotting, Stx2 could be detected after induction in all stx2g-positive isolates, but with lower amounts of Stx2B subunit in those supernatants where phages could not be detected.Taking into account all the results, several differences could be found among stx2g-positive strains. The strain with the highest cytotoxic titer showed higher levels of stx2-phages and toxin production by EIA, and the opposite was observed for strains that previously showed low cytotoxic titers, confirming that in stx2g-positive strains Stx production is

  6. Basic Phage Mathematics.

    Science.gov (United States)

    Abedon, Stephen T; Katsaounis, Tena I

    2018-01-01

    Basic mathematical descriptions are useful in phage ecology, applied phage ecology such as in the course of phage therapy, and also toward keeping track of expected phage-bacterial interactions as seen during laboratory manipulation of phages. The most basic mathematical descriptor of phages is their titer, that is, their concentration within stocks, experimental vessels, or other environments. Various phenomena can serve to modify phage titers, and indeed phage titers can vary as a function of how they are measured. An important aspect of how changes in titers can occur results from phage interactions with bacteria. These changes tend to vary in degree as a function of bacterial densities within environments, and particularly densities of those bacteria that are susceptible to or at least adsorbable by a given phage type. Using simple mathematical models one can describe phage-bacterial interactions that give rise particularly to phage adsorption events. With elaboration one can consider changes in both phage and bacterial densities as a function of both time and these interactions. In addition, phages along with their impact on bacteria can be considered as spatially constrained processes. In this chapter we consider the simpler of these concepts, providing in particular detailed verbal explanations toward facile mathematical insight. The primary goal is to stimulate a more informed use and manipulation of phages and phage populations within the laboratory as well as toward more effective phage application outside of the laboratory, such as during phage therapy. More generally, numerous issues and approaches to the quantification of phages are considered along with the quantification of individual, ecological, and applied properties of phages.

  7. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis.

    Science.gov (United States)

    Furusawa, Takaaki; Iwano, Hidetomo; Hiyashimizu, Yutaro; Matsubara, Kazuki; Higuchi, Hidetoshi; Nagahata, Hajime; Niwa, Hidekazu; Katayama, Yoshinari; Kinoshita, Yuta; Hagiwara, Katsuro; Iwasaki, Tomohito; Tanji, Yasunori; Yokota, Hiroshi; Tamura, Yutaka

    2016-09-01

    Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro effectiveness for a broad

  8. Twelve previously unknown phage genera are ubiquitous in global oceans.

    Science.gov (United States)

    Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh; Corrier, Kristen; Riemann, Lasse; Verberkmoes, Nathan C; Sullivan, Matthew B

    2013-07-30

    Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in "unknowns" dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage-host systems for experimental hypothesis testing.

  9. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform.

    Directory of Open Access Journals (Sweden)

    Graham F Hatfull

    2006-06-01

    Full Text Available Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774 of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three-encoding tape-measure proteins, lysins, and minor tail proteins-are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15% have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education.

  10. Lethal effects of 32P decay on transfecting activity of Bacillus subtillis phage phie DNA

    International Nuclear Information System (INIS)

    Loveday, K.S.

    1979-01-01

    Disintegration of 32 P present in the DNA of Bacillus subtilis phage phie (a phage containing double-strand DNA) results in the loss of viability of intact phage as well as transfecting activity of isolated DNA. Only 1/12 of the 32 P disintegrations per phage DNA equivalent inactivities the intact phage while nearly every disintegration inactivates the transfecting DNA. This result provides evidence for a single-strand intermediate in the transfection of B. subtilis by phie DNA

  11. ORIGINAL ARTICLE: Multidrug Resistance and Phage Pattern of Staphylococcus aureus in Pyoderma Cases

    Directory of Open Access Journals (Sweden)

    Sanjay M. Wavare

    2012-01-01

    Full Text Available Background: Pyoderma is common in India and other tropical countries. Staphylococcus aureus is the commonest causative agent ofpyoderma. Aims and Objectives: To know the antibiotic susceptibility and bacteriophage pattern of Staphylococcus aureus isolated from pyoderma infection. Materials and Methods: One hundred clinically diagnosed pyoderma cases were investigated bacteriologically. A total of 59 isolates of S. aureus were subjected to antibioticsusceptibility testing by Kirby Bauer’s disk diffusion method and phage typing by routine test dilution X 100 bacteriophages. Results: Most of the strains were resistant to penicillin, ampicillin and were susceptible to gentamicin, streptomycin and erythromycin. Multidrug resistance was also high among these strains. Regarding the phage types, Phage type 52 (15 strains, 96 (8 strains and 71(16strains were predominant among the typed strains (55.95% of S. aureus. The most common group was mixed phage group (17% followed by phage group I (13.55%. Conclusion: Knowledge of antibioticsusceptibility pattern is essential to give proper antibiotic therapy and avoid unnecessary medication with non-effective drugs, which may increase resistance. Gentamicin, streptomycin and erythromycin are the drugs of choice in that order. Association of phage typing and antibiotic sensitivity of S. aureus showed the predominance of phage group III with greater frequency of penicillin resistance.

  12. Prevalence, Host Range, and Comparative Genomic Analysis of Temperate Ochrobactrum Phages

    Directory of Open Access Journals (Sweden)

    Claudia Jäckel

    2017-06-01

    Full Text Available Ochrobactrum and Brucella are closely related bacteria that populate different habitats and differ in their pathogenic properties. Only little is known about mobile genetic elements in these genera which might be important for survival and virulence. Previous studies on Brucella lysogeny indicated that active phages are rare in this genus. To gain insight into the presence and nature of prophages in Ochrobactrum, temperate phages were isolated from various species and characterized in detail. In silico analyses disclosed numerous prophages in published Ochrobactrum genomes. Induction experiments showed that Ochrobactrum prophages can be induced by various stress factors and that some strains released phage particles even under non-induced conditions. Sixty percent of lysates prepared from 125 strains revealed lytic activity. The host range and DNA similarities of 19 phages belonging to the families Myoviridae, Siphoviridae, or Podoviridae were determined suggesting that they are highly diverse. Some phages showed relationship to the temperate Brucella inopinata phage BiPB01. The genomic sequences of the myovirus POA1180 (41,655 bp and podovirus POI1126 (60,065 bp were analyzed. Phage POA1180 is very similar to a prophage recently identified in a Brucella strain isolated from an exotic frog. The POA1180 genome contains genes which may confer resistance to chromate and the ability to take up sulfate. Phage POI1126 is related to podoviruses of Sinorhizobium meliloti (PCB5, Erwinia pyrifoliae (Pep14, and Burkholderia cenocepacia (BcepIL02 and almost identical to an unnamed plasmid of the Ochrobactrum intermedium strain LMG 3301. Further experiments revealed that the POI1126 prophage indeed replicates as an extrachromosomal element. The data demonstrate for the first time that active prophages are common in Ochrobactrum and suggest that atypical brucellae also may be a reservoir for temperate phages.

  13. Comparative Omics and Trait Analyses of Marine Pseudoalteromonas Phages Advance the Phage OTU Concept

    Directory of Open Access Journals (Sweden)

    Melissa B. Duhaime

    2017-07-01

    Full Text Available Viruses influence the ecology and evolutionary trajectory of microbial communities. Yet our understanding of their roles in ecosystems is limited by the paucity of model systems available for hypothesis generation and testing. Further, virology is limited by the lack of a broadly accepted conceptual framework to classify viral diversity into evolutionary and ecologically cohesive units. Here, we introduce genomes, structural proteomes, and quantitative host range data for eight Pseudoalteromonas phages isolated from Helgoland (North Sea, Germany and use these data to advance a genome-based viral operational taxonomic unit (OTU definition. These viruses represent five new genera and inform 498 unaffiliated or unannotated protein clusters (PCs from global virus metagenomes. In a comparison of previously sequenced Pseudoalteromonas phage isolates (n = 7 and predicted prophages (n = 31, the eight phages are unique. They share a genus with only one other isolate, Pseudoalteromonas podophage RIO-1 (East Sea, South Korea and two Pseudoalteromonas prophages. Mass-spectrometry of purified viral particles identified 12–20 structural proteins per phage. When combined with 3-D structural predictions, these data led to the functional characterization of five previously unidentified major capsid proteins. Protein functional predictions revealed mechanisms for hijacking host metabolism and resources. Further, they uncovered a hybrid sipho-myovirus that encodes genes for Mu-like infection rarely described in ocean systems. Finally, we used these data to evaluate a recently introduced definition for virus populations that requires members of the same population to have >95% average nucleotide identity across at least 80% of their genes. Using physiological traits and genomics, we proposed a conceptual model for a viral OTU definition that captures evolutionarily cohesive and ecologically distinct units. In this trait-based framework, sensitive hosts are

  14. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains

    Directory of Open Access Journals (Sweden)

    Christine Rohde

    2018-04-01

    Full Text Available Phage therapy is increasingly put forward as a “new” potential tool in the fight against antibiotic resistant infections. During the “Centennial Celebration of Bacteriophage Research” conference in Tbilisi, Georgia on 26–29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.

  15. Typing discrepancy between phenotypic and molecular characterization revealing an emerging biovar 9 variant of smooth phage-resistant B. abortus strain 8416 in China

    Directory of Open Access Journals (Sweden)

    YaoXia eKang

    2015-12-01

    Full Text Available A newly isolated smooth colony morphology phage-resistant (SPR strain 8416 isolated from a 45-year-old cattle farm cleaner with clinical features of brucellosis in China was reported. The most unusual phenotype was its resistance to two Brucella phages Tbilisi and Weybridge, but sensitive to Berkeley 2, a pattern similar to that of B. melitensis biovar 1. VITEK 2 biochemical identification system found that both strain 8416 and B. melitensis strains shared positive ILATk, but negative in other B. abortus strains. However, routine biochemical and phenotypic characteristics of strain 8416 were most similar to that of B. abortus biovar 9 except CO2 requirement. In addition, multiple PCR molecular typing assays including AMOS-PCR, B. abortus special PCR (B-ab PCR and a novel sub-biovar typing PCR, indicated that strain 8416 may belong to either biovar 3b or 9 of B. abortus. Surprisingly, further MLVA typing results showed that strain 8416 was most closely related to B. abortus biovar 3 in the Brucella MLVA database, primarily differing in 4 out of 16 screened loci. Therefore, due to the unusual discrepancy between phenotypic (biochemical reactions and particular phage lysis profile and molecular typing characteristics, strain 8416 couldn’t be exactly classified to any of the existing B. abortus biovars and might be a new variant of B. abortus biovar 9. The present study also indicates that the present phage typing scheme for Brucella spp. is subject to variation and the routine Brucella biovar typing needs further studies.

  16. Typing Discrepancy Between Phenotypic and Molecular Characterization Revealing an Emerging Biovar 9 Variant of Smooth Phage-Resistant B. abortus Strain 8416 in China.

    Science.gov (United States)

    Kang, Yao-Xia; Li, Xu-Ming; Piao, Dong-Ri; Tian, Guo-Zhong; Jiang, Hai; Jia, En-Hou; Lin, Liang; Cui, Bu-Yun; Chang, Yung-Fu; Guo, Xiao-Kui; Zhu, Yong-Zhang

    2015-01-01

    A newly isolated smooth colony morphology phage-resistant strain 8416 isolated from a 45-year-old cattle farm cleaner with clinical features of brucellosis in China was reported. The most unusual phenotype was its resistance to two Brucella phages Tbilisi and Weybridge, but sensitive to Berkeley 2, a pattern similar to that of Brucella melitensis biovar 1. VITEK 2 biochemical identification system found that both strain 8416 and B. melitensis strains shared positive ILATk, but negative in other B. abortus strains. However, routine biochemical and phenotypic characteristics of strain 8416 were most similar to that of B. abortus biovar 9 except CO2 requirement. In addition, multiple PCR molecular typing assays including AMOS-PCR, B. abortus special PCR (B-ab PCR) and a novel sub-biovar typing PCR, indicated that strain 8416 may belong to either biovar 3b or 9 of B. abortus. Surprisingly, further MLVA typing results showed that strain 8416 was most closely related to B. abortus biovar 3 in the Brucella MLVA database, primarily differing in 4 out of 16 screened loci. Therefore, due to the unusual discrepancy between phenotypic (biochemical reactions and particular phage lysis profile) and molecular typing characteristics, strain 8416 could not be exactly classified to any of the existing B. abortus biovars and might be a new variant of B. abortus biovar 9. The present study also indicates that the present phage typing scheme for Brucella sp. is subject to variation and the routine Brucella biovar typing needs further studies.

  17. Isolation of high-affinity human IgE and IgG antibodies recognising Bet v 1 and Humicola lanuginosa lipase from combinatorial phage libraries

    DEFF Research Database (Denmark)

    Jakobsen, Charlotte G; Bødtger, Uffe; Kristensen, Peter

    2004-01-01

    Allergen-specific Fab fragments isolated from combinatorial IgE and IgG libraries are useful tools for studying allergen-antibody interactions. To characterise the interaction between different allergens and antibodies we have created recombinant human phage antibody libraries in the Fab format...

  18. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do....... The scFvs were sequenced and characterized, and specificity was characterized by ELISA. The methods developed in this study are universally applicable for antibody phage display to efficiently produce antibody fragments against small peptides....

  19. Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies

    DEFF Research Database (Denmark)

    Friman, Ville-Petri; Ghoul, Melanie; Molin, Søren

    2013-01-01

    ) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage......-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker...

  20. Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium sp. PH-08.

    Science.gov (United States)

    Le, T T; Murugesan, K; Nam, I-H; Jeon, J-R; Chang, Y-S

    2014-03-01

    To demonstrate the biodegradation of dibenzofuran (DF) and its structural analogs by a newly isolated Agrobacterium sp. PH-08. To assess the biodegradation potential of newly isolated Agrobacterium sp. PH-08, various substrates were evaluated as sole carbon sources in growth and biotransformation experiments. ESI LC-MS/MS analysis revealed the presence of angular degrading by-products as well as lateral dioxygenation metabolites in the upper pathway. The metabolites in the lower pathway also were detected. In addition, the cometabolically degraded daughter compounds of DF-related compounds such as BP and dibenzothiophene (DBT) in dual substrate degradation were observed. Strain PH-08 exhibited the evidence of meta-cleavage pathway as confirmed by the activity and gene expression of catechol-2,3-dioxygenase. Newly isolated bacterial strain, Agrobacterium sp. PH-08, grew well with and degraded DF via both angular and lateral dioxygenation as demonstrated by metabolites identified through ESI LC-MS/MS and GC-MS analyses. The other heterocyclic pollutants were also cometabolically degraded. Few reports have described the complete degradation of DF by a cometabolic lateral pathway. Our study demonstrates the novel results that the newly isolated strain utilized the DF as a sole carbon source and mineralized it via multiple dioxygenation. © 2013 The Society for Applied Microbiology.

  1. Genomic analysis of WCP30 Phage of Weissella cibaria for Dairy Fermented Foods.

    Science.gov (United States)

    Lee, Young-Duck; Park, Jong-Hyun

    2017-01-01

    In this study, we report the morphogenetic analysis and genome sequence of a new WCP30 phage of Weissella cibaria , isolated from a fermented food. Based on its morphology, as observed by transmission electron microscopy, WCP30 phage belongs to the family Siphoviridae . Genomic analysis of WCP30 phage showed that it had a 33,697-bp double-stranded DNA genome with 41.2% G+C content. Bioinformatics analysis of the genome revealed 35 open reading frames. A BLASTN search showed that WCP30 phage had low sequence similarity compared to other phages infecting lactic acid bacteria. This is the first report of the morphological features and complete genome sequence of WCP30 phage, which may be useful for controlling the fermentation of dairy foods.

  2. Synergy as a rationale for phage therapy using phage cocktails.

    Science.gov (United States)

    Schmerer, Matthew; Molineux, Ian J; Bull, James J

    2014-01-01

    Where phages are used to treat bacterial contaminations and infections, multiple phages are typically applied at once as a cocktail. When two or more phages in the cocktail attack the same bacterium, the combination may produce better killing than any single phage (synergy) or the combination may be worse than the best single phage (interference). Synergy is of obvious utility, especially if it can be predicted a priori, but it remains poorly documented with few examples known. This study addresses synergy in which one phage improves adsorption by a second phage. It first presents evidence of synergy from an experimental system of two phages and a mucoid E. coli host. The synergy likely stems from a tailspike enzyme produced by one of the phages. We then offer mathematical models and simulations to understand the dynamics of synergy and the enhanced magnitude of bacterial control possible. The models and observations complement each other and suggest that synergy may be of widespread utility and may be predictable from easily observed phenotypes.

  3. Typing of Panton-Valentine leukocidin-encoding phages carried by methicillin-susceptible and methicillin-resistant Staphylococcus aureus from Italy.

    Science.gov (United States)

    Sanchini, A; Del Grosso, M; Villa, L; Ammendolia, M G; Superti, F; Monaco, M; Pantosti, A

    2014-11-01

    Panton-Valentine leukocidin (PVL) is the hallmark of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) but can also be found in methicillin-susceptible S. aureus (MSSA) sharing pathogenic and epidemiological characteristics of CA-MRSA. PVL is encoded by two co-transcribed genes that are carried by different staphylococcal bacteriophages. We applied an extended PCR-based typing scheme for the identification of two morphological groups (elongated-head group and icosahedral-head group I phages) and specific PVL phage types in S. aureus isolates recovered in Italy. We examined 48 PVL-positive isolates (25 MSSA and 23 MRSA) collected from different hospital laboratories from April 2005 to May 2011. spa typing, multilocus sequence typing and staphylococcal cassette chromosome mec typing were applied to categorize the isolates. Phage typeability was 48.0% in MSSA and 91.3% in MRSA, highlighting the limitation of the PCR typing scheme when applied to PVL-positive MSSA. Five different PVL phages and two variants of a known phage were detected, the most prevalent being ΦSa2usa, recovered in 15 out of 48 (31.2%) isolates, and carried by both MSSA and MRSA belonging to CC8 and CC5. The recently described ΦTCH60 was recovered in four isolates. A PVL phage (ΦSa119) from an ST772 MRSA, that was not detected using the previous typing scheme, was sequenced, and new primers were designed for the identification of the icosahedral-head group II PVL phages present in ST772 and ST59 MRSA. A comprehensive PVL-phage typing can contribute to the understanding of the epidemiology and evolution of PVL-positive MSSA and MRSA. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  4. The Lytic SA Phage Demonstrate Bactericidal Activity against Mastitis Causing Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Hamza Ameer

    2016-01-01

    Full Text Available Staphylococcus aureus is the major causative agent of mastitis among dairy animals as it causes intramammary gland infection. Due to antibiotic resistance and contamination of antibiotics in the milk of diseased animals; alternative therapeutic agents are required to cure mastitis. Lytic bacteriophages and their gene products can be potential therapeutic agents against bacteria as they are host specific and less harmful than antibiotics. In this study, Staphylococcus aureus were isolated from milk samples of the infected animals and identified biochemically. SA phage was isolated from sewage water showing lytic activity against Staphylococcus aureus isolates. The highest lytic activity of bacteriophages was observed at 37°C and pH 7, and the most suitable storage condition was at 4°C. SA phage efficiently reduced bacterial growth in the bacterial reduction assay. The characterization and bacterial growth reduction activity of the bacteriophages against Staphylococcus aureus signifies their underlying potential of phage therapy against mastitis.

  5. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages.

    Directory of Open Access Journals (Sweden)

    Karen K Klyczek

    Full Text Available The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp to over 70 kbp, and G+C contents range from 45-68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate.

  6. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages.

    Science.gov (United States)

    Klyczek, Karen K; Bonilla, J Alfred; Jacobs-Sera, Deborah; Adair, Tamarah L; Afram, Patricia; Allen, Katherine G; Archambault, Megan L; Aziz, Rahat M; Bagnasco, Filippa G; Ball, Sarah L; Barrett, Natalie A; Benjamin, Robert C; Blasi, Christopher J; Borst, Katherine; Braun, Mary A; Broomell, Haley; Brown, Conner B; Brynell, Zachary S; Bue, Ashley B; Burke, Sydney O; Casazza, William; Cautela, Julia A; Chen, Kevin; Chimalakonda, Nitish S; Chudoff, Dylan; Connor, Jade A; Cross, Trevor S; Curtis, Kyra N; Dahlke, Jessica A; Deaton, Bethany M; Degroote, Sarah J; DeNigris, Danielle M; DeRuff, Katherine C; Dolan, Milan; Dunbar, David; Egan, Marisa S; Evans, Daniel R; Fahnestock, Abby K; Farooq, Amal; Finn, Garrett; Fratus, Christopher R; Gaffney, Bobby L; Garlena, Rebecca A; Garrigan, Kelly E; Gibbon, Bryan C; Goedde, Michael A; Guerrero Bustamante, Carlos A; Harrison, Melinda; Hartwell, Megan C; Heckman, Emily L; Huang, Jennifer; Hughes, Lee E; Hyduchak, Kathryn M; Jacob, Aswathi E; Kaku, Machika; Karstens, Allen W; Kenna, Margaret A; Khetarpal, Susheel; King, Rodney A; Kobokovich, Amanda L; Kolev, Hannah; Konde, Sai A; Kriese, Elizabeth; Lamey, Morgan E; Lantz, Carter N; Lapin, Jonathan S; Lawson, Temiloluwa O; Lee, In Young; Lee, Scott M; Lee-Soety, Julia Y; Lehmann, Emily M; London, Shawn C; Lopez, A Javier; Lynch, Kelly C; Mageeney, Catherine M; Martynyuk, Tetyana; Mathew, Kevin J; Mavrich, Travis N; McDaniel, Christopher M; McDonald, Hannah; McManus, C Joel; Medrano, Jessica E; Mele, Francis E; Menninger, Jennifer E; Miller, Sierra N; Minick, Josephine E; Nabua, Courtney T; Napoli, Caroline K; Nkangabwa, Martha; Oates, Elizabeth A; Ott, Cassandra T; Pellerino, Sarah K; Pinamont, William J; Pirnie, Ross T; Pizzorno, Marie C; Plautz, Emilee J; Pope, Welkin H; Pruett, Katelyn M; Rickstrew, Gabbi; Rimple, Patrick A; Rinehart, Claire A; Robinson, Kayla M; Rose, Victoria A; Russell, Daniel A; Schick, Amelia M; Schlossman, Julia; Schneider, Victoria M; Sells, Chloe A; Sieker, Jeremy W; Silva, Morgan P; Silvi, Marissa M; Simon, Stephanie E; Staples, Amanda K; Steed, Isabelle L; Stowe, Emily L; Stueven, Noah A; Swartz, Porter T; Sweet, Emma A; Sweetman, Abigail T; Tender, Corrina; Terry, Katrina; Thomas, Chrystal; Thomas, Daniel S; Thompson, Allison R; Vanderveen, Lorianna; Varma, Rohan; Vaught, Hannah L; Vo, Quynh D; Vonberg, Zachary T; Ware, Vassie C; Warrad, Yasmene M; Wathen, Kaitlyn E; Weinstein, Jonathan L; Wyper, Jacqueline F; Yankauskas, Jakob R; Zhang, Christine; Hatfull, Graham F

    2017-01-01

    The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45-68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate.

  7. Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds.

    Directory of Open Access Journals (Sweden)

    Panos G Kalatzis

    Full Text Available Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them.

  8. Engineered phages for electronics.

    Science.gov (United States)

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Targeting mammalian organelles with internalizing phage (iPhage) libraries

    Science.gov (United States)

    Rangel, Roberto; Dobroff, Andrey S.; Guzman-Rojas, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Techniques largely used for protein interaction studies and discovery of intracellular receptors, such as affinity capture complex purification and yeast two-hybrid, may produce inaccurate datasets due to protein insolubility, transient or weak protein interactions, or irrelevant intracellular context. A versatile tool to overcome these limitations as well as to potentially create vaccines and engineer peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries utilizing a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and to fingerprint functional protein domains in living cells. Here we explain the design, cloning, construction, and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in ~8 weeks. PMID:24030441

  10. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF.

    Science.gov (United States)

    Leon-Velarde, Carlos G; Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P; Odumeru, Joseph A; Griffiths, Mansel W; Skurnik, Mikael

    2016-09-01

    Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of

  11. Combining EL4-B5-based B-cell stimulation and phage display technology for the successful isolation of human anti-Scl-70 autoantibody fragments.

    Science.gov (United States)

    Weber, Malte; Weiss, Etienne; Engel, Alfred M

    2003-07-01

    Scl-70 is the major antigen recognised by autoantibodies in the sera of patients with systemic sclerosis (SSc). The autoantibodies that specifically react with Scl-70 are highly characteristic of the disease and represent valuable markers for the diagnosis of SSc. We describe a novel strategy for cloning autoantibody fragments starting with a small blood sample from an SSc patient. B cells isolated from the collected peripheral blood mononuclear cells (PBMCs) were cultured in vitro using the EL4-B5 system. Anti-Scl-70 IgG-producing cells were pooled for RNA preparation followed by the generation of phagemid libraries of approximately 10(7) independent single-chain Fvs (scFvs). The screening of these libraries by phage display allowed us to isolate four anti-Scl-70 scFvs following three rounds of biopanning. About 10 times more starting blood material was needed to generate scFv libraries of similar size from PBMCs of an SSc patient and only two anti-Scl-70 scFvs were isolated after three rounds of phage selection. Together, this work shows that functional autoantibody fragments can be advantageously cloned after in vitro expansion of B cells. The isolated anti-Scl-70 autoantibody fragments represent useful tools for calibrating SSc diagnostic assays.

  12. The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight.

    Science.gov (United States)

    Meczker, Katalin; Dömötör, Dóra; Vass, János; Rákhely, Gábor; Schneider, György; Kovács, Tamás

    2014-01-01

    The enterobacterium Erwinia amylovora is the causal agent of fire blight. This study presents the analysis of the complete genome of phage PhiEaH1, isolated from the soil surrounding an E. amylovora-infected apple tree in Hungary. Its genome is 218 kb in size, containing 244 ORFs. PhiEaH1 is the second E. amylovora infecting phage from the Siphoviridae family whose complete genome sequence was determined. Beside PhiEaH2, PhiEaH1 is the other active component of Erwiphage, the first bacteriophage-based pesticide on the market against E. amylovora. Comparative genome analysis in this study has revealed that PhiEaH1 not only differs from the 10 formerly sequenced E. amylovora bacteriophages belonging to other phage families, but also from PhiEaH2. Sequencing of more Siphoviridae phage genomes might reveal further diversity, providing opportunities for the development of even more effective biological control agents, phage cocktails against Erwinia fire blight disease of commercial fruit crops.

  13. Generation of human antibody fragments recognizing distinct epitopes of the nucleocapsid (N SARS-CoV protein using a phage display approach

    Directory of Open Access Journals (Sweden)

    Grasso Felicia

    2005-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. Successful control of the global SARS epidemic will require rapid and sensitive diagnostic tests to monitor its spread, as well as, the development of vaccines and new antiviral compounds including neutralizing antibodies that effectively prevent or treat this disease. Methods The human synthetic single-chain fragment variable (scFv ETH-2 phage antibody library was used for the isolation of scFvs against the nucleocapsid (N protein of SARS-CoV using a bio panning-based strategy. The selected scFvs were characterized under genetics-molecular aspects and for SARS-CoV N protein detection in ELISA, western blotting and immunocytochemistry. Results Human scFv antibodies to N protein of SARS-CoV can be easily isolated by selecting the ETH-2 phage library on immunotubes coated with antigen. These in vitro selected human scFvs specifically recognize in ELISA and western blotting studies distinct epitopes in N protein domains and detect in immunohistochemistry investigations SARS-CoV particles in infected Vero cells. Conclusion The human scFv antibodies isolated and described in this study represent useful reagents for rapid detection of N SARS-CoV protein and SARS virus particles in infected target cells.

  14. Pyocin-sensitivity testing as a method of typing Pseudomonas aeruginosa: use of "phage-free" preparations of pyocin.

    Science.gov (United States)

    Rampling, A; Whitby, J L; Wildy, P

    1975-11-01

    A method for pyocin-sensitivity typing by means of "phage-free" preparations of pyocin is described. The method was tested on 227 isolates of P. aeruginosa, collected from 34 different foci of infection in hospitals in the British Isles and the results were compared with those for combined serological and phage typing of all strains and pyocin production of 105 of the isolates. It is concluded that pyocin-sensitivity typing is a simple and reliable method giving a high degree of discrimination, comparable to that of combined serological and phage typing, and it is suitable for use in routine hospital laboratories.

  15. Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium?

    Science.gov (United States)

    Mohammed, Manal

    2017-11-07

    Salmonella Typhimurium is the most dominant Salmonella serovar around the world. It is associated with foodborne gastroenteritis outbreaks but has recently been associated with invasive illness and deaths. Characterization of S. Typhimurium is therefore very crucial for epidemiological surveillance. Phage typing has been used for decades for subtyping of S. Typhimurium to determine the epidemiological relation among isolates. Recent studies however have suggested that high throughput clustered regular interspaced short palindromic repeats (CRISPR) typing has the potential to replace phage typing. This study aimed to determine the efficacy of high-throughput CRISPR typing over conventional phage typing in epidemiological surveillance and outbreak investigation of S. Typhimurium. In silico analysis of whole genome sequences (WGS) of well-documented phage types of S. Typhimurium reveals the presence of different CRISPR type among strains belong to the same phage type. Furthermore, different phage types of S. Typhimurium share identical CRISPR type. Interestingly, identical spacers were detected among outbreak and non-outbreak associated DT8 strains of S. Typhimurium. Therefore, CRISPR typing is not useful for the epidemiological surveillance and outbreak investigation of S. Typhimurium and phage typing, until it is replaced by WGS, is still the gold standard method for epidemiological surveillance of S. Typhimurium.

  16. Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans.

    Science.gov (United States)

    Kang, Ilnam; Oh, Hyun-Myung; Kang, Dongmin; Cho, Jang-Cheon

    2013-07-23

    The abundance, genetic diversity, and crucial ecological and evolutionary roles of marine phages have prompted a large number of metagenomic studies. However, obtaining a thorough understanding of marine phages has been hampered by the low number of phage isolates infecting major bacterial groups other than cyanophages and pelagiphages. Therefore, there is an urgent requirement for the isolation of phages that infect abundant marine bacterial groups. In this study, we isolated and characterized HMO-2011, a phage infecting a bacterium of the SAR116 clade, one of the most abundant marine bacterial lineages. HMO-2011, which infects "Candidatus Puniceispirillum marinum" strain IMCC1322, has an ~55-kb dsDNA genome that harbors many genes with novel features rarely found in cultured organisms, including genes encoding a DNA polymerase with a partial DnaJ central domain and an atypical methanesulfonate monooxygenase. Furthermore, homologs of nearly all HMO-2011 genes were predominantly found in marine metagenomes rather than cultured organisms, suggesting the novelty of HMO-2011 and the prevalence of this phage type in the oceans. A significant number of the viral metagenome sequences obtained from the ocean surface were best assigned to the HMO-2011 genome. The number of reads assigned to HMO-2011 accounted for 10.3%-25.3% of the total reads assigned to viruses in seven viromes from the Pacific and Indian Oceans, making the HMO-2011 genome the most or second-most frequently assigned viral genome. Given its ability to infect the abundant SAR116 clade and its widespread distribution, Puniceispirillum phage HMO-2011 could be an important resource for marine virus research.

  17. Isolation of lytic bacteriophage against Vibrio harveyi.

    Science.gov (United States)

    Crothers-Stomps, C; Høj, L; Bourne, D G; Hall, M R; Owens, L

    2010-05-01

    The isolation of lytic bacteriophage of Vibrio harveyi with potential for phage therapy of bacterial pathogens of phyllosoma larvae from the tropical rock lobster Panulirus ornatus. Water samples from discharge channels and grow-out ponds of a prawn farm in northeastern Australia were enriched for 24 h in a broth containing four V. harveyi strains. The bacteriophage-enriched filtrates were spotted onto bacterial lawns demonstrating that the bacteriophage host range for the samples included strains of V. harveyi, Vibrio campbellii, Vibrio rotiferianus, Vibrio parahaemolyticus and Vibrio proteolyticus. Bacteriophage were isolated from eight enriched samples through triple plaque purification. The host range of purified phage included V. harveyi, V. campbellii, V. rotiferianus and V. parahaemolyticus. Transmission electron microscope examination revealed that six purified phage belonged to the family Siphoviridae, whilst two belonged to the family Myoviridae. The Myoviridae appeared to induce bacteriocin production in a limited number of host bacterial strains, suggesting that they were lysogenic rather than lytic. A purified Siphoviridae phage could delay the entry of a broth culture of V. harveyi strain 12 into exponential growth, but could not prevent the overall growth of the bacterial strain. Bacteriophage with lytic activity against V. harveyi were isolated from prawn farm samples. Purified phage of the family Siphoviridae had a clear lytic ability and no apparent transducing properties, indicating they are appropriate for phage therapy. Phage resistance is potentially a major constraint to the use of phage therapy in aquaculture as bacteria are not completely eliminated. Phage therapy is emerging as a potential antibacterial agent that can be used to control pathogenic bacteria in aquaculture systems. The development of phage therapy for aquaculture requires initial isolation and determination of the bacteriophage host range, with subsequent creation of

  18. Isolation of Osteosarcoma-Associated Human Antibodies from a Combinatorial Fab Phage Display Library

    Directory of Open Access Journals (Sweden)

    Carmela Dantas-Barbosa

    2009-01-01

    Full Text Available Osteosarcoma, a highly malignant disease, is the most common primary bone tumor and is frequently found in children and adolescents. In order to isolate antibodies against osteosarcoma antigens, a combinatorial osteosarcoma Fab library displayed on the surface of phages was used. After three rounds of selection on the surface of tumor cells, several osteosarcoma-reactive Fabs were detected. From these Fabs, five were better characterized, and despite having differences in their VH (heavy chain variable domain and Vκ (kappa chain variable domain regions, they all bound to a protein with the same molecular mass. Further analysis by cell ELISA and immunocytochemistry suggested that the Fabs recognize a membrane-associated tumor antigen expressed in higher amounts in neoplasic cells than in normal tissue. These results suggest that the human Fabs selected in this work are a valuable tool for the study of this neoplasia.

  19. Heterogeneity in Induction Level, Infection Ability, and Morphology of Shiga Toxin-Encoding Phages (Stx Phages) from Dairy and Human Shiga Toxin-Producing Escherichia coli O26:H11 Isolates

    Science.gov (United States)

    Bonanno, Ludivine; Petit, Marie-Agnès; Loukiadis, Estelle; Michel, Valérie

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event. PMID:26826235

  20. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Tazzyman, Samuel J; Hall, Alex R

    2015-03-17

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.

  1. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome.

    Directory of Open Access Journals (Sweden)

    Brendan J O'Hara

    2017-06-01

    Full Text Available Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution.

  2. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome.

    Science.gov (United States)

    O'Hara, Brendan J; Barth, Zachary K; McKitterick, Amelia C; Seed, Kimberley D

    2017-06-01

    Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements) are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin) respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution.

  3. Characterization of a ViI-like Phage Specific to Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    Kropinski Andrew M

    2011-09-01

    Full Text Available Abstract Phage vB_EcoM_CBA120 (CBA120, isolated against Escherichia coli O157:H7 from a cattle feedlot, is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and none targeting E. coli have been described in the literature. The genome of CBA120 has been fully sequenced and is highly similar to those of both ViI and the Shigella phage AG3. The core set of structural and replication-related proteins of CBA120 are homologous to those from T-even phages, but generally are more closely related to those from T4-like phages of Vibrio, Aeromonas and cyanobacteria than those of the Enterobacteriaceae. The baseplate and method of adhesion to the host are, however, very different from those of either T4 or the cyanophages. None of the outer baseplate proteins are conserved. Instead of T4's long and short tail fibers, CBA120, like ViI, encodes tail spikes related to those normally seen on podoviruses. The 158 kb genome, like that of T4, is circularly permuted and terminally redundant, but unlike T4 CBA120 does not substitute hmdCyt for cytosine in its DNA. However, in contrast to other coliphages, CBA120 and related coliphages we have isolated cannot incorporate 3H-thymidine (3H-dThd into their DNA. Protein sequence comparisons cluster the putative "thymidylate synthase" of CBA120, ViI and AG3 much more closely with those of Delftia phage φW-14, Bacillus subtilis phage SPO1, and Pseudomonas phage YuA, all known to produce and incorporate hydroxymethyluracil (hmdUra.

  4. Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Susan Renee Steyert

    2012-11-01

    Full Text Available Infection by Escherichia coli and Shigella species are among the leading causes of death due to diarrheal disease in the world. Shiga toxin producing Escherichia coli (STEC that do not encode the locus of enterocyte effacement (LEE-negative STEC often possess Shiga toxin gene variants and have been isolated from humans and a variety of animal sources. In this study, we compare the genomes of nine LEE-negative STEC harboring various stx alleles with four complete reference LEE-positive STEC isolates. Compared to a representative collection of prototype E. coli and Shigella isolates representing each of the pathotypes, the whole genome phylogeny demonstrated that these isolates are diverse. Whole genome comparative analysis of the 13 genomes revealed that in addition to the absence of the LEE pathogenicity island, phage encoded genes including non-LEE encoded effectors, were absent from all nine LEE-negative STEC genomes. Several plasmid-encoded virulence factors reportedly identified in LEE-negative STEC isolates were identified in only a subset of the nine LEE-negative isolates further confirming the diversity of this group. In combination with whole genome analysis, we characterized the lambdoid phages harboring the various stx alleles and determined their genomic insertion sites. Although the integrase gene sequence corresponded with genomic location, it was not correlated with stx variant, further highlighting the mosaic nature of these phages. The transcription of these phages in different genomic backgrounds was examined. Expression of the Shiga toxin genes, stx1 and/or stx2, as well as the Q genes, were examined with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR assays. A wide range of basal and induced toxin induction was observed. Overall, this is a first significant foray into the genome space of this unexplored group of emerging and divergent pathogens.

  5. Complete Genome Sequence of EtG, the First Phage Sequenced from Erwinia tracheiphila.

    Science.gov (United States)

    Andrade-Domínguez, Andrés; Kolter, Roberto; Shapiro, Lori R

    2018-02-22

    Erwinia tracheiphila is the causal agent of bacterial wilt of cucurbits. Here, we report the genome sequence of the temperate phage EtG, which was isolated from an E. tracheiphila -infected cucumber plant. Phage EtG has a linear 30,413-bp double-stranded DNA genome with cohesive ends and 45 predicted open reading frames. Copyright © 2018 Andrade-Domínguez et al.

  6. Genome Sequence of Gordonia Phage BetterKatz

    Science.gov (United States)

    Berryman, Emily N.; Forrest, Kaitlyn M.; McHale, Lilliana; Wertz, Anthony T.; Zhuang, Zenas; Kasturiarachi, Naomi S.; Pressimone, Catherine A.; Schiebel, Johnathon G.; Furbee, Emily C.; Grubb, Sarah R.; Warner, Marcie H.; Montgomery, Matthew T.; Garlena, Rebecca A.; Russell, Daniel A.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2016-01-01

    BetterKatz is a bacteriophage isolated from a soil sample collected in Pittsburgh, Pennsylvania using the host Gordonia terrae 3612. BetterKatz’s genome is 50,636 bp long and contains 75 predicted protein-coding genes, 35 of which have been assigned putative functions. BetterKatz is not closely related to other sequenced Gordonia phages. PMID:27516497

  7. Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies.

    Directory of Open Access Journals (Sweden)

    Ville-Petri Friman

    Full Text Available Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7 and protist (Tetrahymena thermophila and Acanthamoebae polyphaga enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months, were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years, were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations.

  8. Cultural characters of a newly recognized group of hospital staphylococci.

    Science.gov (United States)

    Jevons, M P; John, M; Parker, M T

    1966-07-01

    Members of a newly recognized group of hospital staphylococci, which are believed to have arisen from 83A staphylococci by lysogenization, differ from them in several cultural characters. Some but not all of these characters appear to be determined by the carriage of phage.

  9. Newly isolated Nodularia phage influences cyanobacterial community dynamics

    Czech Academy of Sciences Publication Activity Database

    Coloma, S.E.; Dienstbier, Ana; Bamford, D.H.; Sivonen, K.; Roine, E.; Hiltunen, T.

    2017-01-01

    Roč. 19, č. 1 (2017), s. 273-286 ISSN 1462-2912 Institutional support: RVO:61388971 Keywords : Baltic sea cyanobacteria * Blue-green-algae * Nitrogen-fixation Subject RIV: EE - Microbiology , Virology OBOR OECD: Microbiology Impact factor: 5.395, year: 2016

  10. Selection of staphylococcal enterotoxin B (SEB)-binding peptide using phage display technology

    International Nuclear Information System (INIS)

    Soykut, Esra Acar; Dudak, Fahriye Ceyda; Boyaci, Ismail Hakki

    2008-01-01

    In this study, peptides were selected to recognize staphylococcal enterotoxin B (SEB) which cause food intoxication and can be used as a biological war agent. By using commercial M13 phage library, single plaque isolation of 38 phages was done and binding affinities were investigated with phage-ELISA. The specificities of the selected phage clones showing high affinity to SEB were checked by using different protein molecules which can be found in food samples. Furthermore, the affinities of three selected phage clones were determined by using surface plasmon resonance (SPR) sensors. Sequence analysis was realized for three peptides showing high binding affinity to SEB and WWRPLTPESPPA, MNLHDYHRLFWY, and QHPQINQTLYRM amino acid sequences were obtained. The peptide sequence with highest affinity to SEB was synthesized with solid phase peptide synthesis technique and thermodynamic constants of the peptide-SEB interaction were determined by using isothermal titration calorimetry (ITC) and compared with those of antibody-SEB interaction. The binding constant of the peptide was determined as 4.2 ± 0.7 x 10 5 M -1 which indicates a strong binding close to that of antibody

  11. Phage types, antibiograms and R-plasmids of Klebsiella and Enterobacter isolated from hospital environment and food.

    Science.gov (United States)

    Horváth, J; Lantos, J; Fekete, J; Marjai, E

    1986-01-01

    Four-hundred and twenty-two Klebsiella strains and 294 Enterobacter strains were isolated from direct or indirect environment of hospitalized patients, from foodstuffs, foods, culinary utensils and staff in hospital and in catering establishments. Of Klebsiella, the species K. aerogenes (76.5%) of Enterobacter, the species E. cloacae (77.6%) occurred the most frequently in all specimens. Klebsiella strains were typable in 68.5%; 53.1% of the Enterobacter strains were sensitive to phage. Most of the untypable Klebsiella and Enterobacter strains and the multiresistant strains originated from screening in hospitals. Sensitive bacteria as well as those resistant to one or two antibiotics may be potentially dangerous for the patient consuming them, since they may become multiresistant due to R-plasmid transfer.

  12. Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas.

    Science.gov (United States)

    Ahern, Stephen J; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F

    2014-01-01

    The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.

  13. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    Science.gov (United States)

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  14. Xylanase production by a newly isolated Aspergillus niger SS7 in submerged culture.

    Science.gov (United States)

    Bakri, Yasser; Al-Jazairi, Manal; Al-Kayat, Ghassan

    2008-01-01

    Xylanase production by a newly isolated Aspergillus niger SS7 was studied in submerged culture. The optimum initial pH for xylanase production was found to be 7.0. Different agricultural and industrial wastes were evaluated for their ability to induce xylanase production by this isolate. The best xylanase production (293.82 IU/ml) was recorded at 3% (w/v) corn cob hulls after 120 h of incubation. The Aspergillus niger SS7 isolate grown in a simple medium, proved to be a promising microorganism for xylanase production.

  15. Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.

    Science.gov (United States)

    Lee, Young-Duck; Park, Jong-Hyun

    2016-02-01

    Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.

  16. Bioinformatic analysis of phage AB3, a phiKMV-like virus infecting Acinetobacter baumannii.

    Science.gov (United States)

    Zhang, J; Liu, X; Li, X-J

    2015-01-16

    The phages of Acinetobacter baumannii has drawn increasing attention because of the multi-drug resistance of A. baumanni. The aim of this study was to sequence Acinetobacter baumannii phage AB3 and conduct bioinformatic analysis to lay a foundation for genome remodeling and phage therapy. We isolated and sequenced A. baumannii phage AB3 and attempted to annotate and analyze its genome. The results showed that the genome is a double-stranded DNA with a total length of 31,185 base pairs (bp) and 97 open reading frames greater than 100 bp. The genome includes 28 predicted genes, of which 24 are homologous to phage AB1. The entire coding sequence is located on the negative strand, representing 90.8% of the total length. The G+C mol% was 39.18%, without areas of high G+C content over 200 bp in length. No GC island, tRNA gene, or repeated sequence was identified. Gene lengths were 120-3099 bp, with an average of 1011 bp. Six genes were found to be greater than 2000 bp in length. Genomic alignment and phylogenetic analysis of the RNA polymerase gene showed that similar to phage AB1, phage AB3 is a phiKMV-like virus in the T7 phage family.

  17. Identification of keratinocyte specific markers using phage display and mass spectrometry

    DEFF Research Database (Denmark)

    Jensen, K.B.; Jensen, O.N.; Ravn, P.

    2003-01-01

    and mass spectrometry that allows identification of cell type-specific protein markers. The most important features of the method are (i) reduction of experimental noise originating from background binding of phage particles and (ii) isolation of affinity binders after a single round of selection, which...... antigens were subsequently identified by mass spectrometry as laminin-5, plectin, and fibronectin. The combination of phage display technology with mass spectrometry methods for protein identification is a general and promising approach for proteomic analysis of cell surface complexity....

  18. Phage Therapy: Eco-Physiological Pharmacology

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2014-01-01

    Full Text Available Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies, impact on body-associated microbiota (as ecological communities, and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology.

  19. Bacteriophage interactions with Vibrio anguillarum and the potential for phage therapy in marine aquaculture

    DEFF Research Database (Denmark)

    Rørbo, Nanna Iben

    is widespread in the Vibrio community which underscore the lysogenic phages influence on bacterial evolution and functional properties. Highly genetically similar Vibrio phages, termed H20-like prophages, were isolated across large geographical scales being present both as freeliving phages and as prophages...... in V. anguillarum genomes. The H20-like phages’ widespread presence suggests a mutualistic interaction which selects for co-existence with V. anguillarum. In aquaculture, especially the larvae and fry are vulnerable to pathogens, and they are not susceptible to alternatives to antibiotics, e...

  20. Biology of the temperate Streptococcus thermophilus bacteriophage TP-J34 and physical characterization of the phage genome

    International Nuclear Information System (INIS)

    Neve, Horst; Freudenberg, Wiebke; Diestel-Feddersen, Frederike; Ehlert, Regina; Heller, Knut J.

    2003-01-01

    The temperate Streptococcus thermophilus bacteriophage TP-J34 was identified in the lysogenic host strain J34. The majority of phage particles produced upon induction was defective and noninfectious, consisting of DNA-filled heads lacking tails. A physical map (45.6 kb) was established. Analysis of minor restriction bands of the DNA isolated from phage particles as well as the analysis of the protein pattern indicated that phage TP-J34 is a pac-type phage. This was confirmed by immunoelectron microscopy using antisera raised against virulent cos- and pac-type S. thermophilus phages. The lysogenic host J34 but not its noninducible derivate J34-12 contained phage DNA in the nonintegrated state and exhibited autolysis at elevated temperatures. Prophage-carrying strains grew homogeneously while 16 of 20 prophage-cured derivatives aggregated and sedimented rapidly. When phage TP-J34 was propagated lytically on a prophage-cured host strain, a 2.7-kb site-specific deletion occurred in the phage genome. This deletion was also identified in the prophage DNAs of relysogenized strains

  1. Colonisation of a phage susceptible Campylobacter jejuni population in two phage positive broiler flocks.

    Directory of Open Access Journals (Sweden)

    Sophie Kittler

    Full Text Available The pathogens Campylobacter jejuni and Campylobacter coli are commensals in the poultry intestine and campylobacteriosis is one of the most frequent foodborne diseases in developed and developing countries. Phages were identified to be effective in reducing intestinal Campylobacter load and this was evaluated, in the first field trials which were recently carried out. The aim of this study was to further investigate Campylobacter population dynamics during phage application on a commercial broiler farm. This study determines the superiority in colonisation of a Campylobacter type found in a field trial that was susceptible to phages in in vitro tests. The colonisation factors, i.e. motility and gamma glutamyl transferase activity, were increased in this type. The clustering in phylogenetic comparisons of MALDI-TOF spectra did not match the ST, biochemical phenotype and phage susceptibility. Occurrence of Campylobacter jejuni strains and phage susceptibility types with different colonisation potential seem to play a very important role in the success of phage therapy in commercial broiler houses. Thus, mechanisms of both, phage susceptibility and Campylobacter colonisation should be further investigated and considered when composing phage cocktails.

  2. The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique

    Directory of Open Access Journals (Sweden)

    Ferreira Eugénio C

    2009-07-01

    Full Text Available Abstract Background The Double-Layer Agar (DLA technique is extensively used in phage research to enumerate and identify phages and to isolate mutants and new phages. Many phages form large and well-defined plaques that are easily observed so that they can be enumerated when plated by the DLA technique. However, some give rise to small and turbid plaques that are very difficult to detect and count. To overcome these problems, some authors have suggested the use of dyes to improve the contrast between the plaques and the turbid host lawns. It has been reported that some antibiotics stimulate bacteria to produce phages, resulting in an increase in final titer. Thus, antibiotics might contribute to increasing plaque size in solid media. Results Antibiotics with different mechanisms of action were tested for their ability to enhance plaque morphology without suppressing phage development. Some antibiotics increased the phage plaque surface by up to 50-fold. Conclusion This work presents a modification of the DLA technique that can be used routinely in the laboratory, leading to a more accurate enumeration of phages that would be difficult or even impossible otherwise.

  3. Clear Plaque Mutants of Lactococcal Phage TP901-1

    DEFF Research Database (Denmark)

    Kot, Witold; Kilstrup, Mogens; Vogensen, Finn K.

    2016-01-01

    We report a method for obtaining turbid plaques of the lactococcal bacteriophage TP901-1 and its derivative TP901-BC1034. We have further used the method to isolate clear plaque mutants of this phage. Analysis of 8 such mutants that were unable to lysogenize the host included whole genome...

  4. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy

    Directory of Open Access Journals (Sweden)

    Maciej Żaczek

    2016-10-01

    Full Text Available In this study, we investigated the humoral immune response (through the release of IgG, IgA, and IgM antiphage antibodies to a staphylococcal phage cocktail in patients undergoing experimental phage therapy at the Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy in Wrocław, Poland. We also evaluated whether occurring antiphage antibodies had neutralizing properties towards applied phages (K rate. Among 20 examined patients receiving the MS-1 phage cocktail orally and/or locally, the majority did not show a noticeably higher level of antiphage antibodies in their sera during phage administration. Even in those individual cases with an increased immune response, mostly by induction of IgG and IgM, the presence of antiphage antibodies did not translate into unsatisfactory clinical results of phage therapy. On the other hand, a negative outcome of the treatment occurred in some patients who showed relatively weak production of antiphage antibodies before and during treatment. This may imply that possible induction of antiphage antibodies is not an obstacle to the implementation of phage therapy and support our assumption that the outcome of the phage treatment does not primarily depend on the appearance of antiphage antibodies in sera of patients during therapy. These conclusions are in line with our previous findings. The confirmation of this thesis is of great interest as regards the efficacy of phage therapy in humans.

  5. Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy.

    Science.gov (United States)

    Żaczek, Maciej; Łusiak-Szelachowska, Marzanna; Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Międzybrodzki, Ryszard; Owczarek, Barbara; Kopciuch, Agnieszka; Fortuna, Wojciech; Rogóż, Paweł; Górski, Andrzej

    2016-01-01

    In this study, we investigated the humoral immune response (through the release of IgG, IgA, and IgM antiphage antibodies) to a staphylococcal phage cocktail in patients undergoing experimental phage therapy at the Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy in Wrocław, Poland. We also evaluated whether occurring antiphage antibodies had neutralizing properties toward applied phages (K rate). Among 20 examined patients receiving the MS-1 phage cocktail orally and/or locally, the majority did not show a noticeably higher level of antiphage antibodies in their sera during phage administration. Even in those individual cases with an increased immune response, mostly by induction of IgG and IgM, the presence of antiphage antibodies did not translate into unsatisfactory clinical results of phage therapy. On the other hand, a negative outcome of the treatment occurred in some patients who showed relatively weak production of antiphage antibodies before and during treatment. This may imply that possible induction of antiphage antibodies is not an obstacle to the implementation of phage therapy and support our assumption that the outcome of the phage treatment does not primarily depend on the appearance of antiphage antibodies in sera of patients during therapy. These conclusions are in line with our previous findings. The confirmation of this thesis is of great interest as regards the efficacy of phage therapy in humans.

  6. A Novel Application of Synthetic Biology and Directed Evolution to Engineer Phage-based Antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The emergence of multiple drug resistant bacteria poses threats to human health, agriculture and food safety. Annually over 100,000 deaths and up to $20 billion loss to the U.S. economy are attributed to multiple drug resistant bacteria. With only four new chemical antibiotics in the drug development pipeline, we are in dire need of new solutions to address the emerging threat of multiple drug resistance. We propose a paradigm-changing approach to address the multi-drug resistant bacteria problem by utilizing Synthetic Biology (SynBio) methodologies to create and evolve “designer” bacteriophages or phages – viruses that specifically infect bacteria – to infect and kill newly emerging pathogenic bacterial strains WITHOUT the need for chemical antibiotics. A major advantage of using phage to combat pathogenic bacteria is that phages can co-evolve with their bacterial host, and Sandia can be the first in the world to establish an industrial scale Synthetic Biology pipeline for phage directed evolution for safe, targeted, customizable solution to bacterial drug resistance. Since there is no existing phage directed evolution effort within or outside of Sandia, this proposal is suitable as a high-risk LDRD effort to create the first pipeline for such an endeavor. The high potential reward nature of this proposal will be the immediate impact in decontamination and restoration of surfaces and infrastructure, with longer term impact in human or animal therapeutics. The synthetic biology and screening approaches will lead to fundamental knowledge of phage/bacteria co-evolution, making Sandia a world leader in directed evolution of bacteriophages.

  7. Epifluorescence and atomic force microscopy: Two innovative applications for studying phage-host interactions in Lactobacillus helveticus.

    Science.gov (United States)

    Zago, Miriam; Scaltriti, Erika; Fornasari, Maria Emanuela; Rivetti, Claudio; Grolli, Stefano; Giraffa, Giorgio; Ramoni, Roberto; Carminati, Domenico

    2012-01-01

    Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥6log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Characterization of Salmonella Typhimurium isolates associated with septicemia in swine

    Science.gov (United States)

    Bergeron, Nadia; Corriveau, Jonathan; Letellier, Ann; Daigle, France; Quessy, Sylvain

    2010-01-01

    Salmonella Typhimurium is frequently isolated from pigs and may also cause enteric disease in humans. In this study, 33 isolates of S. Typhimurium associated with septicemia in swine (CS) were compared to 33 isolates recovered from healthy animals at slaughter (WCS). The isolates were characterized using phenotyping and genotyping methods. For each isolate, the phage type, antimicrobial resistance, and pulsed-field gel electrophoresis (PFGE) DNA profiles were determined. In addition, the protein profiles of each isolate grown in different conditions were studied by Coomassie Blue-stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot. Various phage types were identified. The phage type PT 104 represented 36.4% of all isolates from septicemic pigs. Resistance to as many as 12 antimicrobial agents, including some natural resistances, was found in isolates from CS and WCS. Many genetic profiles were identified among the PT 104 phage types. Although it was not possible to associate one particular protein with septicemic isolates, several highly immunogenic proteins, present in all virulent isolates and in most isolates from clinically healthy animals, were identified. These results indicated that strains associated with septicemia belong to various genetic lineages that can also be recovered from asymptomatic animals at the time of slaughter. PMID:20357952

  9. Phage Fab Display Selection In Vitro and In Vivo: Novel Means to Identify New Breast Cancer Avid Compounds

    National Research Council Canada - National Science Library

    Meighan, Mark

    2001-01-01

    .... In this annual report we present preliminary results on the isolation of antibody fragments (Fabs), isolated from phage display libraries, when affinity selected against breast cancer cell lines...

  10. Cadmium tolerant characteristic of a newly isolated Lactococcus lactis subsp. lactis.

    Science.gov (United States)

    Sheng, Yao; Wang, Ying; Yang, Xuan; Zhang, Boyang; He, Xiaoyun; Xu, Wentao; Huang, Kunlun

    2016-12-01

    Environmental contamination caused by heavy metals poses a major threat to the wildlife and human health for their toxicity and intrinsically persistent nature. Some specific food grade bacteria have properties that enable them to eliminate heavy metals from food and water. Lactococcus lactis subsp. lactis, newly isolated from pickles, is a cadmium (Cd) tolerant bacteria. Cd resistant properties of the lactis was evaluated under different Cd stresses. Cd accumulation in different cellular parts was determined by ICP-MS and cell morphology changes were measured by SEM-EDS and TEM-EDS. In addition, functional groups associated with Cd resistance were detected by infrared spectroscopic analysis. The results indicated that Cd mainly accumulated in the cell surface structures including cytoderm and cytomembrane. Functional groups such as OH and NH 2 in the cell surface played essential roles in Cd biosorption. The elements of O, P, S, and N of polysaccharide, membrane protein and phosphatidate in the cell surface structures might be responsible for Cd biosorption for their strong electronegativity. This study indicated that ultrastructural analysis can be a supplemental method to study heavy metal resistance mechanism of microorganism and the newly isolated lactococcus lactis subsp. lactis has great potential to be applied to decontamination of heavy metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    Science.gov (United States)

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  12. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater.

    Science.gov (United States)

    Eydal, Hallgerd S C; Jägevall, Sara; Hermansson, Malte; Pedersen, Karsten

    2009-10-01

    Viruses were earlier found to be 10-fold more abundant than prokaryotes in deep granitic groundwater at the Aspö Hard Rock Laboratory (HRL). Using a most probable number (MPN) method, 8-30 000 cells of sulphate-reducing bacteria per ml were found in groundwater from seven boreholes at the Aspö HRL. The content of lytic phages infecting the indigenous bacterium Desulfovibrio aespoeensis in Aspö groundwater was analysed using the MPN technique for phages. In four of 10 boreholes, 0.2-80 phages per ml were found at depths of 342-450 m. Isolates of lytic phages were made from five cultures. Using transmission electron microscopy, these were characterized and found to be in the Podoviridae morphology group. The isolated phages were further analysed regarding host range and were found not to infect five other species of Desulfovibrio or 10 Desulfovibrio isolates with up to 99.9% 16S rRNA gene sequence identity to D. aespoeensis. To further analyse phage-host interactions, using a direct count method, growth of the phages and their host was followed in batch cultures, and the viral burst size was calculated to be approximately 170 phages per lytic event, after a latent period of approximately 70 h. When surviving cells from infected D. aespoeensis batch cultures were inoculated into new cultures and reinfected, immunity to the phages was found. The parasite-prey system found implies that viruses are important for microbial ecosystem diversity and activity, and for microbial numbers in deep subsurface groundwater.

  13. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  14. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture

    Directory of Open Access Journals (Sweden)

    Elina eLaanto

    2015-08-01

    Full Text Available Flavobacterium columnare, the causative agent of columnaris disease in fish, causes millions of dollars of losses in the US channel catfish industry alone, not to mention aquaculture industry worldwide. Novel methods are needed for the control and treatment of bacterial diseases in aquaculture to replace traditionally used chemotherapies. A potential solution could be the use of phages, i.e., bacterial viruses, host-specific and self-enriching particles that can be can easily distributed via water flow. We examined the efficacy of phages to combat columnaris disease. A previously isolated phage, FCL-2, infecting F. columnare, was characterized by sequencing. The 47 142 bp genome of the phage had G + C content of 30.2%, and the closest similarities regarding the structural proteins were found in Cellulophaga phage phiSM. Under controlled experimental conditions, two host fish species, rainbow trout (Oncorhynchus mykiss and zebrafish (Danio rerio, were used to study the success of phage therapy to prevent F. columnare infections. The survival of both fish species was significantly higher in the presence of the phage. Hundred percent of the zebrafish and 50 % of the rainbow trout survived in the phage treatment (survival without phage 0 % and 8.3 %, respectively. Most importantly, the rainbow trout population was rescued from infection by a single addition of the phage into the water in a flow-through fish tank system. Thus, F. columnare could be used as a model system to test the benefits and risks of phage therapy on a larger scale.

  15. The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi.

    Science.gov (United States)

    Zhao, Xiangna; Wu, Weili; Qi, Zhizhen; Cui, Yujun; Yan, Yanfeng; Guo, Zhaobiao; Wang, Zuyun; Wang, Hu; Deng, Haijun; Xue, Yan; Chen, Weijun; Wang, Xiaoyi; Yang, Ruifu

    2011-01-01

    Yep-phi, a lytic phage of Yersinia pestis, was isolated in China and is routinely used as a diagnostic phage for the identification of the plague pathogen. Yep-phi has an isometric hexagonal head containing dsDNA and a short non-contractile conical tail. In this study, we sequenced the Yep-phi genome (GenBank accession no. HQ333270) and performed proteomics analysis. The genome consists of 38 ,616 bp of DNA, including direct terminal repeats of 222 bp, and is predicted to contain 45 ORFs. Most structural proteins were identified by proteomics analysis. Compared with the three available genome sequences of lytic phages for Y. pestis, the phages could be divided into two subgroups. Yep-phi displays marked homology to the bacteriophages Berlin (GenBank accession no. AM183667) and Yepe2 (GenBank accession no. EU734170), and these comprise one subgroup. The other subgroup is represented by bacteriophage ΦA1122 (GenBank accession no. AY247822). Potential recombination was detected among the Yep-phi subgroup.

  16. Tipificación fágica de aislados de Salmonella enteritidis de muestras clínicas, alimentarias y avícolas en Chile Phage typing of Salmonella enteritidis isolates from clinical, food, and poultry samples in Chile

    Directory of Open Access Journals (Sweden)

    Soledad Prat

    2001-01-01

    poultry isolates, we carried out phage typing of three groups of samples: 1 310 S. enteritidis clinical samples collected between 1975 and 1996, 2 47 food isolates obtained during S. enteritidis outbreaks, and 3 27 strains isolated in surveillance studies of poultry-raising establishments. With the clinical samples, a total of 13 phage types were identified, 2 isolates could not be typed, and 1 was considered atypical. The phage types that were identified most frequently were 1 (56.8% and 4 (31.3%, trailed by type 8 (4.8% and type 28 (1.9%. Over time and in different regions of the country there were major changes in the distribution of the phage types. In the first years of collection the only phage types registered were 8 and 28, which disappeared around 1980 and then began reappearing sporadically in 1996. With the gradual S. enteritidis expansion that started in 1988, in the central and southern areas of the country phage type 4 began to appear; that type had not been found before in Chile. In 1991 in the northern area of the country phage type 1 began to predominate; it was another type that had not been reported before in Chile. In the food isolates the only phage types identified were 1 and 4, which were also the most common in the poultry isolates. Phage typing of S. enteritidis has proved to be useful in guiding the epidemiological analysis of the infections caused by this pathogen.

  17. Phage exposure causes dynamic shifts in the expression states of specific phase-variable genes of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Aidley, Jack; Holst Sørensen, Martine C.; Bayliss, Christopher D.

    2017-01-01

    Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacter jejuni this reversible adaptive process is mediated by mutations in homop......Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacter jejuni this reversible adaptive process is mediated by mutations...... in homopolymeric G/C tracts. Many C. jejuni-specific phages are dependent on phase-variable surface structures for successful infection. We previously identified the capsular polysaccharide (CPS) moiety, MeOPN-GalfNAc, as a receptor for phage F336 and showed that phase-variable expression of the transferase...... for this CPS modification, cj1421, and two other phase-variable CPS genes generated phage resistance in C. jejuni. Here we investigate the population dynamics of C. jejuni NCTC11168 when exposed to phage F336 in vitro using a newly described method - the 28-locus-CJ11168 PV analysis. Dynamic switching...

  18. Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle.

    Science.gov (United States)

    Li, Longping; Zhang, Zhiying

    2014-09-01

    Mastitis in dairy cattle continues to be an economically important disease. However, control is complicated by a high prevalence of resistance to antibiotics. Phage therapy, therefore, is considered as an alternative way of controlling bacterial infections and contaminations. In this study, we have described isolation and characterization of a highly virulent phage SPW from wastewater of dairy farm, which possesses a strong lytic capability against mastitis-associated Staphylococcus aureus, the most important pathogen in bovine clinical and subclinical mastitis. The phage SPW produced large, round and clear plaques on bacterial culture plates. TEM showed phage SPW has an icosahedral head 62.5 nm in diameter and long tail of 106 nm, head and tail were held together by a connector of 18 ± 1.5 nm long and can be classified as a member of the Myoviridae family. Restriction analysis indicated that phage SPW was a dsDNA virus with an approximate genome size of 65-69 kb. One-step growth kinetics showed a short latency period of about 10-15 min and a rise period of 50 min and a relatively small burst size was 44 ± 3 phages particles/infected cell. Moreover, adsorption rates were not influenced by calcium ions and phage SPW was relatively stable in a wide range of temperature and pH values, and resistant to chloroform and isopropanol. The optimal multiplicity of infection (MOI) was 0.01. When phage SPW was used to infect five other clinically isolated pathogenic isolates, it showed relatively wide spectrum host range. Phage SPW was capable of eliciting efficient lysis of S. aureus, revealing it potentially as an effective approach to prophylaxis or treatment of S. aureus-associated mastitis in dairy cows.

  19. Current insights into phage biodiversity and biogeography.

    Science.gov (United States)

    Thurber, Rebecca Vega

    2009-10-01

    Phages exert tremendous ecological and evolutionary forces directly on their bacterial hosts. Phage induced cell lysis also indirectly contributes to organic and inorganic nutrient recycling. Phage abundance, diversity, and distribution are therefore important parameters in ecosystem function. The assumption that phage consortia are ubiquitous and homogenous across habitats (everything is everywhere) is currently being re-evaluated. New studies on phage biogeography have found that some phages are globally distributed while others are unique and perhaps endemic to specific environments. Furthermore, advances in technology have allowed scientists to conduct experiments aimed at analyzing phage consortia over temporal scales, and surprisingly have found reoccurring patterns. This review discusses currents in the field of phage ecology with particular focus on efforts to characterize phage diversity and biogeography across various spatial and temporal scales.

  20. Immune Regulatory Effect of Newly Isolated Lactobacillus delbrueckii from Indian Traditional Yogurt.

    Science.gov (United States)

    Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Jeon, Boram; Jagdish, Deepa; Jang, Soojin; Chung, Dae Kyun; Kim, Hangeun

    2015-08-01

    Lactic acid bacteria (LAB) are microorganisms that are believed to provide health benefits. Here, we isolated LAB from Indian fermented foods, such as traditional Yogurt and Dosa. LAB from Yogurt most significantly induced TNF-α and IL-1β production, whereas LAB from Dosa induced mild cytokine production. After 16S rRNA gene sequencing and phylogenetic analysis, a Yogurt-borne lactic acid bacterium was identified and classified as Lactobacillus delbrueckii subsp. bulgaricus, and it was renamed L. delbrueckii K552 for the further studies. Our data suggest that the newly isolated L. delbrueckii can be used for the treatment of immune deficiency disorders.

  1. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  2. Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types.

    Science.gov (United States)

    Preisner, Ornella; Guiomar, Raquel; Machado, Jorge; Menezes, José Cardoso; Lopes, João Almeida

    2010-06-01

    Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques were used to discriminate five closely related Salmonella enterica serotype Enteritidis phage types, phage type 1 (PT1), PT1b, PT4b, PT6, and PT6a. Intact cells and outer membrane protein (OMP) extracts from bacterial cell membranes were subjected to FT-IR analysis in transmittance mode. Spectra were collected over a wavenumber range from 4,000 to 600 cm(-1). Partial least-squares discriminant analysis (PLS-DA) was used to develop calibration models based on preprocessed FT-IR spectra. The analysis based on OMP extracts provided greater separation between the Salmonella Enteritidis PT1-PT1b, PT4b, and PT6-PT6a groups than the intact cell analysis. When these three phage type groups were considered, the method based on OMP extract FT-IR spectra was 100% accurate. Moreover, complementary local models that considered only the PT1-PT1b and PT6-PT6a groups were developed, and the level of discrimination increased. PT1 and PT1b isolates were differentiated successfully with the local model using the entire OMP extract spectrum (98.3% correct predictions), whereas the accuracy of discrimination between PT6 and PT6a isolates was 86.0%. Isolates belonging to different phage types (PT19, PT20, and PT21) were used with the model to test its robustness. For the first time it was demonstrated that FT-IR analysis of OMP extracts can be used for construction of robust models that allow fast and accurate discrimination of different Salmonella Enteritidis phage types.

  3. Protein Expression Modifications in Phage-Resistant Mutants of Aeromonas salmonicida after AS-A Phage Treatment

    Directory of Open Access Journals (Sweden)

    Catarina Moreirinha

    2018-03-01

    Full Text Available The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells.

  4. Bioorthogonal Chemistry for the Isolation and Study of Newly Synthesized Histones and Their Modifications.

    Science.gov (United States)

    Arnaudo, Anna M; Link, A James; Garcia, Benjamin A

    2016-03-18

    The nucleosome is an octamer containing DNA wrapped around one histone H3-H4 tetramer and two histone H2A-H2B dimers. Within the nucleosome, histones are decorated with post-translational modifications. Previous studies indicate that the H3-H4 tetramer is conserved during DNA replication, suggesting that old tetramers serve as a template for the modification of newly synthesized tetramers. Here, we present a method that merges bioorthogonal chemistry with mass spectrometry for the study of modifications on newly synthesized histones in mammalian cells. HeLa S3 cells are dually labeled with the methionine analog azidohomoalanine and heavy (13)C6,(15)N4 isotope labeled arginine. Heavy amino acid labeling marks newly synthesized histones while azidohomoalanine incorporation allows for their isolation using bioorthogonal ligation. Labeled mononucleosomes were covalently linked via a copper catalyzed reaction to a FLAG-GGR-alkyne peptide, immunoprecipitated, and subjected to mass spectrometry for quantitative modification analysis. Mononucleosomes containing new histones were successfully isolated using this approach. Additionally, the development of this method highlights the potential deleterious effects of azidohomoalanine labeling on protein PTMs and cell cycle progression, which should be considered for future studies utilizing bioorthogonal labeling strategies in mammalian cells.

  5. Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review.

    Science.gov (United States)

    Oh, Jun-Hyun; Park, Mi-Kyung

    2017-12-28

    Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobialresistant Salmonella , new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella , the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella -specific phages, the effectiveness of Salmonella -specific phages as biocontrol agents, and the prospective use of Salmonella -specific phages in the food industry.

  6. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  7. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type

    Directory of Open Access Journals (Sweden)

    Yahya eAli

    2014-03-01

    Full Text Available Lipoprotein Ltp encoded by temperate Streptococcus thermophilus phage TP-J34 is the prototype of the wide-spread family of host cell surface-exposed lipoproteins involved in superinfection exclusion. When screening for other S. thermophilus phages expressing this type of lipoprotein, three temperate phages - TP-EW, TP-DSM20617 and TP-778 - were isolated. In this communication we present the total nucleotide sequences of TP-J34 and TP-778L. For TP-EW, a phage almost identical to TP-J34, besides the ltp gene only the two regions of deviation from TP-J34 DNA were analyzed: the gene encoding the tail protein causing an assembly defect in TP-J34 and the gene encoding the lysin, which in TP-EW contains an intron. For TP-DSM20617 only the sequence of the lysogeny module containing the ltp gene was determined. The region showed high homology to the same region of TP-778. For TP-778 we could show that absence of the attR region resulted in aberrant excision of phage DNA. The amino acid sequence of mature LtpTP-EW was shown to be identical to that of mature LtpTP-J34, whereas the amino acid sequence of mature LtpTP-778 was shown to differ from mature LtpTP-J34 in eight amino acid positions. LtpTP-DSM20617 was shown to differ from LtpTP-778 in just one amino acid position. In contrast to LtpTP-J34, LtpTP-778 did not affect infection of lactococcal phage P008 instead increased activity against phage P001 was noticed.

  8. Bacteriophage prevalence in the genus Azospirillum and analysis of the first genome sequence of an Azospirillum brasilense integrative phage.

    Science.gov (United States)

    Boyer, Mickaël; Haurat, Jacqueline; Samain, Sylvie; Segurens, Béatrice; Gavory, Frédérick; González, Víctor; Mavingui, Patrick; Rohr, René; Bally, René; Wisniewski-Dyé, Florence

    2008-02-01

    The prevalence of bacteriophages was investigated in 24 strains of four species of plant growth-promoting rhizobacteria belonging to the genus Azospirillum. Upon induction by mitomycin C, the release of phage particles was observed in 11 strains from three species. Transmission electron microscopy revealed two distinct sizes of particles, depending on the identity of the Azospirillum species, typical of the Siphoviridae family. Pulsed-field gel electrophoresis and hybridization experiments carried out on phage-encapsidated DNAs revealed that all phages isolated from A. lipoferum and A. doebereinerae strains had a size of about 10 kb whereas all phages isolated from A. brasilense strains displayed genome sizes ranging from 62 to 65 kb. Strong DNA hybridizing signals were shown for most phages hosted by the same species whereas no homology was found between phages harbored by different species. Moreover, the complete sequence of the A. brasilense Cd bacteriophage (phiAb-Cd) genome was determined as a double-stranded DNA circular molecule of 62,337 pb that encodes 95 predicted proteins. Only 14 of the predicted proteins could be assigned functions, some of which were involved in DNA processing, phage morphogenesis, and bacterial lysis. In addition, the phiAb-Cd complete genome was mapped as a prophage on a 570-kb replicon of strain A. brasilense Cd, and a region of 27.3 kb of phiAb-Cd was found to be duplicated on the 130-kb pRhico plasmid previously sequenced from A. brasilense Sp7, the parental strain of A. brasilense Cd.

  9. Assembling filamentous phage occlude pIV channels.

    Science.gov (United States)

    Marciano, D K; Russel, M; Simon, S M

    2001-07-31

    Filamentous phage f1 is exported from its Escherichia coli host without killing the bacterial cell. Phage-encoded protein pIV, which is required for phage assembly and secretion, forms large highly conductive channels in the outer membrane of E. coli. It has been proposed that the phage are extruded across the bacterial outer membrane through pIV channels. To test this prediction, we developed an in vivo assay by using a mutant pIV that functions in phage export but whose channel opens in the absence of phage extrusion. In E. coli lacking its native maltooligosacharride transporter LamB, this pIV variant allowed oligosaccharide transport across the outer membrane. This entry of oligosaccharide was decreased by phage production and still further decreased by production of phage that cannot be released from the cell surface. Thus, exiting phage block the pIV-dependent entry of oligosaccharide, suggesting that phage occupy the lumen of pIV channels. This study provides the first evidence, to our knowledge, for viral exit through a large aqueous channel.

  10. Efficacy and Safety of a Bovine-Associated Staphylococcus aureus Phage Cocktail in a Murine Model of Mastitis

    Directory of Open Access Journals (Sweden)

    Koen Breyne

    2017-11-01

    Full Text Available Overuse of antibiotics is a major problem in the treatment of bovine mastitis, and antibiotic treatment is frequently non-curative, thus alternative treatments are necessary. The primary aim of this study was to evaluate the efficacy of a purified phage cocktail for treatment of bovine Staphylococcus aureus mastitis in a well-defined mouse model. Candidate phages were selected based on their in vitro performance and subsequently processed into an optimally composed phage cocktail. The highest scoring phages were further tested for efficacy and resistance suppression in broth and raw milk, with and without supplemental IgG. As these in vitro results displayed significant decreases in CFU, the cocktail was purified for testing in vivo. Lactating mice were intramammarily inoculated with S. aureus N305 (ATCC 29740, a clinical bovine mastitis isolate commonly used for experimental infection of dairy cows. The phage cocktail was applied via the same route 4 h post-inoculation. Treated mammary glands were graded for gross pathological appearance and excised for bacterial and phage load quantification as well as histopathology. Observation of gross macroscopic and histopathological changes and CFU quantification demonstrated that the phage cocktail treatment significantly improved mastitis pathology and decreased bacterial counts. Phage PFU quantification indicated that the tested phage cocktail treatment was able to maintain high intramammary phage titers without spreading systemically. The in vivo results complement the in vitro data and support our concept of phage therapy as an innovative alternative or supplementation therapy to antibiotics for the treatment of bovine mastitis.

  11. Efficacy and Safety of a Bovine-Associated Staphylococcus aureus Phage Cocktail in a Murine Model of Mastitis.

    Science.gov (United States)

    Breyne, Koen; Honaker, Ryan W; Hobbs, Zachary; Richter, Manuela; Żaczek, Maciej; Spangler, Taylor; Steenbrugge, Jonas; Lu, Rebecca; Kinkhabwala, Anika; Marchon, Bruno; Meyer, Evelyne; Mokres, Lucia

    2017-01-01

    Overuse of antibiotics is a major problem in the treatment of bovine mastitis, and antibiotic treatment is frequently non-curative, thus alternative treatments are necessary. The primary aim of this study was to evaluate the efficacy of a purified phage cocktail for treatment of bovine Staphylococcus aureus mastitis in a well-defined mouse model. Candidate phages were selected based on their in vitro performance and subsequently processed into an optimally composed phage cocktail. The highest scoring phages were further tested for efficacy and resistance suppression in broth and raw milk, with and without supplemental IgG. As these in vitro results displayed significant decreases in CFU, the cocktail was purified for testing in vivo . Lactating mice were intramammarily inoculated with S. aureus N305 (ATCC 29740), a clinical bovine mastitis isolate commonly used for experimental infection of dairy cows. The phage cocktail was applied via the same route 4 h post-inoculation. Treated mammary glands were graded for gross pathological appearance and excised for bacterial and phage load quantification as well as histopathology. Observation of gross macroscopic and histopathological changes and CFU quantification demonstrated that the phage cocktail treatment significantly improved mastitis pathology and decreased bacterial counts. Phage PFU quantification indicated that the tested phage cocktail treatment was able to maintain high intramammary phage titers without spreading systemically. The in vivo results complement the in vitro data and support our concept of phage therapy as an innovative alternative or supplementation therapy to antibiotics for the treatment of bovine mastitis.

  12. Phage inactivation by triplet acetone

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1985-01-01

    The exposure of lambda phage to triplet acetone is studied. The triplet acetone is obtained from aerobic oxidation of isobutanal catalysed by peroxidase. A decrease of lambda phage ability to infect Escherichia coli is reported, perhaps, partially due to the possible production of lesions in the phage genome. (M.A.C.) [pt

  13. Genome Sequence of JangDynasty, a Newly Isolated Mycobacteriophage.

    Science.gov (United States)

    Jang, Casey; Kalaj, Nancy; Hwang, Brian; Hughes, Lorelei; Yang, Connie; Pak, Thomas; Kim, John; Han, Dong Yoon; Tedjakusnadi, Jason; Fernandez, Nicholas; Dean, Natasha; Muthiah, Arun; Sutter, Nathaniel B; Diaz, Arturo

    2018-05-24

    JangDynasty is a bacteriophage that infects Mycobacterium smegmatis mc 2 155. It has a genome length of 70,883 bp, with 124 predicted open reading frames (ORFs), 42 of which have known functions. JangDynasty belongs to cluster O, and like other cluster O phages, it is a siphovirus with a prolate capsid. Copyright © 2018 Jang et al.

  14. Characterizing Phage Genomes for Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Casandra W. Philipson

    2018-04-01

    Full Text Available Multi-drug resistance is increasing at alarming rates. The efficacy of phage therapy, treating bacterial infections with bacteriophages alone or in combination with traditional antibiotics, has been demonstrated in emergency cases in the United States and in other countries, however remains to be approved for wide-spread use in the US. One limiting factor is a lack of guidelines for assessing the genomic safety of phage candidates. We present the phage characterization workflow used by our team to generate data for submitting phages to the Federal Drug Administration (FDA for authorized use. Essential analysis checkpoints and warnings are detailed for obtaining high-quality genomes, excluding undesirable candidates, rigorously assessing a phage genome for safety and evaluating sequencing contamination. This workflow has been developed in accordance with community standards for high-throughput sequencing of viral genomes as well as principles for ideal phages used for therapy. The feasibility and utility of the pipeline is demonstrated on two new phage genomes that meet all safety criteria. We propose these guidelines as a minimum standard for phages being submitted to the FDA for review as investigational new drug candidates.

  15. Characterizing Phage Genomes for Therapeutic Applications.

    Science.gov (United States)

    Philipson, Casandra W; Voegtly, Logan J; Lueder, Matthew R; Long, Kyle A; Rice, Gregory K; Frey, Kenneth G; Biswas, Biswajit; Cer, Regina Z; Hamilton, Theron; Bishop-Lilly, Kimberly A

    2018-04-10

    Multi-drug resistance is increasing at alarming rates. The efficacy of phage therapy, treating bacterial infections with bacteriophages alone or in combination with traditional antibiotics, has been demonstrated in emergency cases in the United States and in other countries, however remains to be approved for wide-spread use in the US. One limiting factor is a lack of guidelines for assessing the genomic safety of phage candidates. We present the phage characterization workflow used by our team to generate data for submitting phages to the Federal Drug Administration (FDA) for authorized use. Essential analysis checkpoints and warnings are detailed for obtaining high-quality genomes, excluding undesirable candidates, rigorously assessing a phage genome for safety and evaluating sequencing contamination. This workflow has been developed in accordance with community standards for high-throughput sequencing of viral genomes as well as principles for ideal phages used for therapy. The feasibility and utility of the pipeline is demonstrated on two new phage genomes that meet all safety criteria. We propose these guidelines as a minimum standard for phages being submitted to the FDA for review as investigational new drug candidates.

  16. Characterization of bacteriophages infecting clinical isolates of Pseudomonas aeruginosa stored in a culture collection

    Directory of Open Access Journals (Sweden)

    C.C.S. Zanetti

    2013-08-01

    Full Text Available Some clinical isolates of Pseudomonas aeruginosa stored in our culture collection did not grow or grew poorly and showed lysis on the culture plates when removed from the collection and inoculated on MacConkey agar. One hypothesis was that bacteriophages had infected and killed those clinical isolates. To check the best storage conditions to maintain viable P. aeruginosa for a longer time, clinical isolates were stored at various temperatures and were grown monthly. We investigated the presence of phage in 10 clinical isolates of P. aeruginosa stored in our culture collection. Four strains of P. aeruginosa were infected by phages that were characterized by electron microscopy and isolated to assess their ability to infect. The best condition to maintain the viability of the strains during storage was in water at room temperature. Three Siphoviridae and two Myoviridae phages were visualized and characterized by morphology. We confirmed the presence of bacteriophages infecting clinical isolates, and their ability to infect and lyse alternative hosts. Strain PAO1, however, did not show lysis to any phage. Mucoid and multidrug resistant strains of P. aeruginosa showed lysis to 50% of the phages tested.

  17. Basics of Antibody Phage Display Technology.

    Science.gov (United States)

    Ledsgaard, Line; Kilstrup, Mogens; Karatt-Vellatt, Aneesh; McCafferty, John; Laustsen, Andreas H

    2018-06-09

    Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.

  18. [Peptide phage display in biotechnology and biomedicine].

    Science.gov (United States)

    Kuzmicheva, G A; Belyavskaya, V A

    2016-07-01

    To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.

  19. Outbreak of bullous impetigo caused by Staphylococcus aureus strains of phage type 3C/71 in a maternity ward linked to nasal carriage of a healthcare worker.

    Science.gov (United States)

    Piechowicz, Lidia; Garbacz, Katarzyna; Budzyńska, Anna; Dąbrowska-Szponar, Maria

    2012-01-01

    We describe an outbreak of bullous impetigo (BI) that occurred in a maternity unit and show phenotypic and genotypic properties and relatedness of isolated Staphylococcus aureus strains. Clinical material was obtained from 11 affected neonates. Additionally, nasal swabs from 67 healthy care workers (HCWs) as well as 107 environmental swabs were investigated. All isolates were screened for exfoliative toxin genes (eta, etb), antibiotic susceptibility and phage typed. Chromosomal DNA was genotyped by MLVF method and PCR/RFLP of coagulase gene were tested. Affected neonates were infected by two clusters of eta-positive S. aureus of phage type 3C/71: (1) MLVF type A isolates resistant only to penicillin, and (2) MLVF type B isolates resistant to penicillin and erythromycin/clindamycin. All isolates were susceptible to methicillin. We found 19 of 67 HCWs to be S. aureus nasal carriers. Two nasal isolates from HCWs were related to the outbreak on the basis of phage typing, PCR detection of eta/etb genes, antibiotyping and genotyping. Additionally, environmental swabs from the maternity unit revealed a 3C/71 S. aureus in the mattress of a baby bed. This is the first documented case of an outbreak of BI caused by phage type 3C/71 eta-positive strain of S. aureus.

  20. The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6.

    Science.gov (United States)

    Ceyssens, Pieter-Jan; Mesyanzhinov, Vadim; Sykilinda, Nina; Briers, Yves; Roucourt, Bart; Lavigne, Rob; Robben, Johan; Domashin, Artem; Miroshnikov, Konstantin; Volckaert, Guido; Hertveldt, Kirsten

    2008-02-01

    Pseudomonas aeruginosa phage YuA (Siphoviridae) was isolated from a pond near Moscow, Russia. It has an elongated head, encapsulating a circularly permuted genome of 58,663 bp, and a flexible, noncontractile tail, which is terminally and subterminally decorated with short fibers. The YuA genome is neither Mu- nor lambda-like and encodes 78 gene products that cluster in three major regions involved in (i) DNA metabolism and replication, (ii) host interaction, and (iii) phage particle formation and host lysis. At the protein level, YuA displays significant homology with phages M6, phiJL001, 73, B3, DMS3, and D3112. Eighteen YuA proteins were identified as part of the phage particle by mass spectrometry analysis. Five different bacterial promoters were experimentally identified using a promoter trap assay, three of which have a sigma54-specific binding site and regulate transcription in the genome region involved in phage particle formation and host lysis. The dependency of these promoters on the host sigma54 factor was confirmed by analysis of an rpoN mutant strain of P. aeruginosa PAO1. At the DNA level, YuA is 91% identical to the recently (July 2007) annotated phage M6 of the Lindberg typing set. Despite this level of DNA homology throughout the genome, both phages combined have 15 unique genes that do not occur in the other phage. The genome organization of both phages differs substantially from those of the other known Pseudomonas-infecting Siphoviridae, delineating them as a distinct genus within this family.

  1. MVP: a microbe-phage interaction database.

    Science.gov (United States)

    Gao, Na L; Zhang, Chengwei; Zhang, Zhanbing; Hu, Songnian; Lercher, Martin J; Zhao, Xing-Ming; Bork, Peer; Liu, Zhi; Chen, Wei-Hua

    2018-01-04

    Phages invade microbes, accomplish host lysis and are of vital importance in shaping the community structure of environmental microbiota. More importantly, most phages have very specific hosts; they are thus ideal tools to manipulate environmental microbiota at species-resolution. The main purpose of MVP (Microbe Versus Phage) is to provide a comprehensive catalog of phage-microbe interactions and assist users to select phage(s) that can target (and potentially to manipulate) specific microbes of interest. We first collected 50 782 viral sequences from various sources and clustered them into 33 097 unique viral clusters based on sequence similarity. We then identified 26 572 interactions between 18 608 viral clusters and 9245 prokaryotes (i.e. bacteria and archaea); we established these interactions based on 30 321 evidence entries that we collected from published datasets, public databases and re-analysis of genomic and metagenomic sequences. Based on these interactions, we calculated the host range for each of the phage clusters and accordingly grouped them into subgroups such as 'species-', 'genus-' and 'family-' specific phage clusters. MVP is equipped with a modern, responsive and intuitive interface, and is freely available at: http://mvp.medgenius.info. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Tetracycline consumption and occurrence of tetracycline resistance in Salmonella typhimurium phage types from Danish pigs

    DEFF Research Database (Denmark)

    Emborg, Hanne-Dorthe; Vigre, Håkan; Jensen, Vibeke Frøkjær

    2007-01-01

    more than doubled at the national level from 12,000-13,000 kg of active compound in 1996-1998 to 29,000 kg of active compound in 2004. Instead, tetracycline-resistant S. Typhimurium phage types became more prevalent. This suggests that the spread of already established or new resistant clones, rather......The aims of the present study were to investigate at the farm-owner level the effect of prescribed tetracycline consumption in pigs and different Salmonella Typhimurium phage types on the probability that the S. Typhimurium was resistant to tetracycline. In this study, 1,307 isolates were included......, originating from 877 farm owners, and data were analyzed using logistic regression. The analysis showed that both the S. Typhimurium phage type (p type...

  3. Characterization and Testing the Efficiency of Acinetobacter baumannii Phage vB-GEC_Ab-M-G7 as an Antibacterial Agent

    Directory of Open Access Journals (Sweden)

    Ia Kusradze

    2016-10-01

    Full Text Available Acinetobacter baumannii is a gram-negative, non-motile bacterium that, due to its multidrug resistance, has become a major nosocomial pathogen .The increasing number of multidrug resistant (MDR strains has renewed interest in phage therapy. The aim of our study was to assess the effectiveness of phage administration in Acinetobacter baumannii wound infections in an animal model to demonstrate phage therapy as non-toxic, safe and alternative antibacterial remedy. Using classical methods for the study of bacteriophage properties, we characterized phage vB-GEC_Ab-M-G7 as a dsDNA myovirus with a 90kb genome size. Important characteristics of vB-GEC_Ab-M-G7include a short latent period and large burst size, wide host range, resistance to chloroform and thermal and pH stability. In a rat wound model, phage application effectively decreased the number of bacteria isolated from the wounds of successfully treated animals. This study highlights the effectiveness of the phage therapy and provides further insight into treating infections caused by MDR strains using phage administration.

  4. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  5. Phase variable expression of a single phage receptor in Campylobacter jejuni NCTC12662 influences sensitivity toward several diverse CPS-dependent phages

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Sørensen, Martine C.H.; Wenzel, Cory Q.

    2018-01-01

    Campylobacter jejuni NCTC12662 is sensitive to infection by many Campylobacter bacteriophages. Here we used this strain to investigate the molecular mechanism behind phage resistance development when exposed to a single phage and demonstrate how phase variable expression of one surface component...... influences phage sensitivity against many diverse C. jejuni phages. When C. jejuni NCTC12662 was exposed to phage F207 overnight, 25% of the bacterial cells were able to grow on a lawn of phage F207, suggesting that resistance develops at a high frequency. One resistant variant, 12662R, was further...... characterized and shown to be an adsorption mutant. Plaque assays using our large phage collection showed that seven out of 36 diverse capsular polysaccharide (CPS)-dependent phages could not infect 12662R, whereas the remaining phages formed plaques on 12662R with reduced efficiencies. Analysis of the CPS...

  6. Phages in the Human Body.

    Science.gov (United States)

    Navarro, Ferran; Muniesa, Maite

    2017-01-01

    Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of bacterial populations in natural ecosystems. Phages invade the human body, just as they do other natural environments, to such an extent that they are the most numerous group in the human virome. This was only revealed in recent metagenomic studies, despite the fact that the presence of phages in the human body was reported decades ago. The influence of the presence of phages in humans has yet to be evaluated; but as in marine environments, a clear role in the regulation of bacterial populations could be envisaged, that might have an impact on human health. Moreover, phages are excellent vehicles of genetic transfer, and they contribute to the evolution of bacterial cells in the human body by spreading and acquiring DNA horizontally. The abundance of phages in the human body does not pass unnoticed and the immune system reacts to them, although it is not clear to what extent. Finally, the presence of phages in human samples, which most of the time is not considered, can influence and bias microbiological and molecular results; and, in view of the evidences, some studies suggest that more attention needs to be paid to their interference.

  7. TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES1

    Science.gov (United States)

    Taylor, Martha J.; Thorne, Curtis B.

    1963-01-01

    Taylor, Martha J. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Curtis B. Thorne. Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86:452–461. 1963.—A second transducing bacteriophage, designated SP-15, was isolated from the same soil-sample culture filtrate that supplied the Bacillus subtilis transducing phage, SP-10, reported earlier from this laboratory. SP-10 and SP-15 differ serologically and in several other respects, but share the ability to propagate on B. subtilis W-23-Sr (streptomycin-resistant) and B. licheniformis ATCC 9945a, and to mediate general transduction in either species when propagated homologously. Attempts to transduce between the species have failed. SP-10 forms plaques readily on both W-23-Sr and 9945a; SP-15 forms minute plaques on W-23-Sr and has shown no evidence of any lytic activity on 9945a. Maximal recoveries of prototrophic colonies from mixtures of SP-10 with auxotrophs of either W-23-Sr or 9945a were obtained only when excess phage was neutralized by post-transduction treatment with specific phage antiserum. Such treatment was not necessary for maximal recovery of transductants effected by SP-15. Unlike SP-10, SP-15 propagated on W-23-Sr did not transduce B. subtilis 168 (indole−). SP-15 transduced B. licheniformis more efficiently than did SP-10. Neither phage was able to transduce B. licheniformis as efficiently as it transduced B. subtilis. The differing influences of multiplicity of infection were compared for the two phages in both species. PMID:14066421

  8. Production and properties of biosurfactants from a newly isolated Pseudomonas fluorescens HW-6 growing on hexandecane

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva-Tonkova, E.; Galabova, D. [Bulgarian Academy of Sciences, Dept. of Microbial Biochemistry, Sofia (Bulgaria); Stoimenova, E.; Lalchev, Z. [Dept. of Biochemistry, Sofia Univ. ' ' St. Kliment Ohridski' ' , Sofia (Bulgaria)

    2006-07-15

    The newly isolated from industrial wastewater Pseudomonas fluorescens strain HW-6 produced glycolipid biosurfactants at high concentrations (1.4-2.0 g 1{sup -1}) when grown on hexadecane as a sole carbon source. Biosurfactants decreased the surface tension of the air/water interface by 35 mN m{sup -1} and possessed a low critical micelle concentration value of 20 mg 1{sup -1}, which indicated high surface activity. They efficiently emulsified aromatic hydrocarbons, kerosene, n-paraffins and mineral oils. Biosurfactant production contributed to a significant increase in cell hydrophobicity correlated with an increased growth of the strain on hexadecane. The results suggested that the newly isolated strain of Ps. fluorescens and produced glycolipid biosurfactants with effective surface and emulsifying properties are very promising and could find application for bioremediation of hydrocarbon-polluted sites. (orig.)

  9. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.

    Science.gov (United States)

    Malik, Danish J; Sokolov, Ilya J; Vinner, Gurinder K; Mancuso, Francesco; Cinquerrui, Salvatore; Vladisavljevic, Goran T; Clokie, Martha R J; Garton, Natalie J; Stapley, Andrew G F; Kirpichnikova, Anna

    2017-11-01

    Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver

  10. Acinetobacter phage genome is similar to Sphinx 2.36, the circular DNA copurified with TSE infected particles.

    Science.gov (United States)

    Longkumer, Toshisangba; Kamireddy, Swetha; Muthyala, Venkateswar Reddy; Akbarpasha, Shaikh; Pitchika, Gopi Krishna; Kodetham, Gopinath; Ayaluru, Murali; Siddavattam, Dayananda

    2013-01-01

    While analyzing plasmids of Acinetobacter sp. DS002 we have detected a circular DNA molecule pTS236, which upon further investigation is identified as the genome of a phage. The phage genome has shown sequence similarity to the recently discovered Sphinx 2.36 DNA sequence co-purified with the Transmissible Spongiform Encephalopathy (TSE) particles isolated from infected brain samples collected from diverse geographical regions. As in Sphinx 2.36, the phage genome also codes for three proteins. One of them codes for RepA and is shown to be involved in replication of pTS236 through rolling circle (RC) mode. The other two translationally coupled ORFs, orf106 and orf96, code for coat proteins of the phage. Although an orf96 homologue was not previously reported in Sphinx 2.36, a closer examination of DNA sequence of Sphinx 2.36 revealed its presence downstream of orf106 homologue. TEM images and infection assays revealed existence of phage AbDs1 in Acinetobacter sp. DS002.

  11. Phages of life - the path to pharma.

    Science.gov (United States)

    Forde, Amanda; Hill, Colin

    2018-02-01

    Bacteriophage (phage) therapy has encountered both enthusiasm and scepticism in the past century. New antimicrobial strategies against lethal pathogens are now a top priority for the World Health Organization, and although compassionate use of phages recently met with significant success, regulated clinical interventions seem unlikely in the near future. The hundredth anniversary of their discovery seems an appropriate time for a revival of phage therapy, particularly as the dilemma of antibiotic resistance grows. Phages are ubiquitous in the environment, on our food and in and on our bodies. Their influence on human health is currently being evaluated, and in this mini-review, we examine data from recent metagenomic studies that propose a role for phages in the structure of the microbiome and in health and disease. We assess evidence for phages as vehicles for gene transfer in the context of antibiotic resistance and discuss challenges and opportunities along the critical path from phage discovery to a patient-focused pharmaceutical intervention. © 2017 The British Pharmacological Society.

  12. Typing of Panton-Valentine Leukocidin-Encoding Phages and lukSF-PV Gene Sequence Variation in Staphylococcus aureus from China.

    Science.gov (United States)

    Zhao, Huanqiang; Hu, Fupin; Jin, Shu; Xu, Xiaogang; Zou, Yuhan; Ding, Baixing; He, Chunyan; Gong, Fang; Liu, Qingzhong

    2016-01-01

    Panton-Valentine leukocidin (PVL, encoded by lukSF-PV genes), a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus has been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE) typing, accessory gene regulator (agr) locus typing and multilocus sequence typing (MLST). Seventy eight (78/1175, 6.6%) isolates possessed the lukSF-PV genes and 59.0% (46/78) of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n = 13) and ΦPVL (n = 12) were the most prevalent among them. While 25 (25/78, 32.1%) isolates, belonging to ST30, and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs) were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages, and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.

  13. Typing of Panton-Valentine Leukocidin-encoding Phages and lukSF-PV Gene Sequence Variation in Staphylococcus aureus from China

    Directory of Open Access Journals (Sweden)

    Huanqiang Zhao

    2016-08-01

    Full Text Available Panton-Valentine leucocidin (PVL, encoded by lukSF-PV genes, a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus (S. aureus have been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec typing, staphylococcal protein A (spa gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE typing, accessory gene regulator (agr locus typing and multilocus sequence typing (MLST. Seventy eight (78/1175, 6.6% isolates possessed the lukSF-PV genes and 59.0% (46/78 of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n=13 and ΦPVL (n=12 were the most prevalent among them. While 25 (25/78, 32.1% isolates, belonging to ST30 and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.

  14. Isolation and Characterization of a Virulent Bacteriophage AB1 of Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Jia Shiru

    2010-04-01

    Full Text Available Abstract Background Acinetobacter baumannii is an emerging nosocomial pathogen worldwide with increasing prevalence of multi-drug and pan-drug resistance. A. baumannii exists widely in natural environment, especially in health care settings, and has been shown difficult to be eradicated. Bacteriophages are often considered alternative agent for controlling bacterial infection and contamination. In this study, we described the isolation and characterization of one virulent bacteriophage AB1 capable of specifically infecting A. baumannii. Results A virulent bacteriophage AB1, specific for infecting a clinical strain A. baumannii KD311, was first isolated from marine sediment sample. Restriction analysis indicated that phage AB1 was a dsDNA virus with an approximate genome size of 45.2 kb to 46.9 kb. Transmission electron microscopy showed that phage AB1 had an icosahedral head with a non-contractile tail and collar or whisker structures, and might be tentatively classified as a member of the Siphoviridae family. Proteomic pattern of phage AB1, generated by SDS-PAGE using purified phage particles, revealed five major bands and six minor bands with molecular weight ranging from 14 to 80 kilo-dalton. Also determined was the adsorption rate of phage AB1 to the host bacterium, which was significantly enhanced by addition of 10 mM CaCl2. In a single step growth test, phage AB1 was shown having a latent period of 18 minutes and a burst size of 409. Moreover, pH and thermal stability of phage AB1 were also investigated. At the optimal pH 6.0, 73.2% of phages survived after 60 min incubation at 50°C. When phage AB1 was used to infect four additional clinical isolates of A. baumannii, one clinical isolate of Stenotrophomonas maltophilia, and Pseudomonas aeruginosa lab strains PAK and PAO1, none of the tested strains was found susceptible, indicating a relatively narrow host range for phage AB1. Conclusion Phage AB1 was capable of eliciting efficient lysis

  15. Heat tolerance of dairy lactococcal c2 phages

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Lykke Marvig; Basheer, Aideh; Neve, H.

    2011-01-01

    -order kinetics with correlation coefficients of 0.96–0.99. D70-values of 12 s and 16.6 min were calculated for the most sensitive and resistant phage, respectively. Release of phage DNA from capsids, and disintegration of phage heads and tails were among the first morphological changes observed for moderately...... thermal inactivated lysates (15% phage inactivation) of the heat tolerant phage P635....

  16. Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis.

    Science.gov (United States)

    Aziz, Ramy Karam; Ackermann, Hans-Wolfgang; Petty, Nicola K; Kropinski, Andrew M

    2018-01-01

    Because of the rise in antimicrobial resistance there has been a significant increase in interest in phages for therapeutic use. Furthermore, the cost of sequencing phage genomes has decreased to the point where it is being used as a teaching tool for genomics. Unfortunately, the quality of the descriptions of the phage and its annotation frequently are substandard. The following chapter is designed to help people working on phages, particularly those new to the field, to accurately describe their newly isolated viruses.

  17. The Staphylococci Phages Family: An Overview

    Directory of Open Access Journals (Sweden)

    Laurence Van Melderen

    2012-11-01

    Full Text Available Due to their crucial role in pathogenesis and virulence, phages of Staphylococcus aureus have been extensively studied. Most of them encode and disseminate potent staphylococcal virulence factors. In addition, their movements contribute to the extraordinary versatility and adaptability of this prominent pathogen by improving genome plasticity. In addition to S. aureus, phages from coagulase-negative Staphylococci (CoNS are gaining increasing interest. Some of these species, such as S. epidermidis, cause nosocomial infections and are therefore problematic for public health. This review provides an overview of the staphylococcal phages family extended to CoNS phages. At the morphological level, all these phages characterized so far belong to the Caudovirales order and are mainly temperate Siphoviridae. At the molecular level, comparative genomics revealed an extensive mosaicism, with genes organized into functional modules that are frequently exchanged between phages. Evolutionary relationships within this family, as well as with other families, have been highlighted. All these aspects are of crucial importance for our understanding of evolution and emergence of pathogens among bacterial species such as Staphylococci.

  18. The isolation and characterization of Stenotrophomonas maltophilia T4-like bacteriophage DLP6.

    Directory of Open Access Journals (Sweden)

    Danielle L Peters

    Full Text Available Increasing isolation of the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia has caused alarm worldwide due to the limited treatment options available. A potential treatment option for fighting this bacterium is 'phage therapy', the clinical application of bacteriophages to selectively kill bacteria. Bacteriophage DLP6 (vB_SmoM-DLP6 was isolated from a soil sample using clinical isolate S. maltophilia strain D1571 as host. Host range analysis of phage DLP6 against 27 clinical S. maltophilia isolates shows successful infection and lysis in 13 of the 27 isolates tested. Transmission electron microscopy of DLP6 indicates that it is a member of the Myoviridae family. Complete genome sequencing and analysis of DLP6 reveals its richly recombined evolutionary history, featuring a core of both T4-like and cyanophage genes, which suggests that it is a member of the T4-superfamily. Unlike other T4-superfamily phages however, DLP6 features a transposase and ends with 229 bp direct terminal repeats. The isolation of this bacteriophage is an exciting discovery due to the divergent nature of DLP6 in relation to the T4-superfamily of phages.

  19. Detailed adsorption mechanism of plasmid DNA by newly isolated cellulose from waste flower spikes of Thypa latifolia using quantum chemical calculations.

    Science.gov (United States)

    Mujtaba, Muhammad; Kaya, Murat; Akyuz, Lalehan; Erdonmez, Demet; Akyuz, Bahar; Sargin, Idris

    2017-09-01

    Current study was designed to use the newly obtained cellulose from waste flower spikes of Thypa latifolia plant for plasmid DNA adsorption. Cellulose was isolated according to a previously described method including acid and base treatment, and cellulose content was recorded as 17%. T. latifolia cellulose was physicochemically characterized via FT-IR, TGA and SEM techniques. Detailed mechanism of plasmid DNA adsorption by newly isolated cellulose was described using chemical quantum calculations. To check the effect of Cu ++ immobilization on the affinity of cellulose for plasmid DNA, copper ions were immobilized onto T. latifolia cellulose. pUC18 plasmid DNA was used for adsorption studies. Membranes prepared with only T. latifolia cellulose and Cu ++ immobilized T. latifolia cellulose revealed different adsorption ratios as 43.9 and 86.9% respectively. This newly isolated cellulose from waste flower spikes of T. latifolia can be utilized as a suitable carrier for plasmid DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Production and Characterization of Tannase from a newly isolated bacillus subtilis

    International Nuclear Information System (INIS)

    Aftab, M. N.; Mukhtar, H.; Haq, I.

    2016-01-01

    The work describes the production and characterization of tannase from a newly isolated Bacillus subtilis. The strain was isolated from the garden soil and was capable of producing tannase at particular temperature (41 degree C) and pH (5) in 24 h. Addition of 10 % glucose as a carbon source and 12% tannic acid as an inducer resulted in the improved rate of enzyme production. The enzyme was purified up to 4.86 fold with 96.25% yield. It exhibited optimal temperature and pH tolerance of 45 degree C and 5, respectively. However, the enzyme was found to be notably more functional in a broad range of temperature (20-80 degree C) and pH (3-10). Furthermore it remained remarkably stable at wide range of pH (3-8) and at a higher salt concentration (3M). The shelf life of enzyme was also prolonged and remained stable up to a maximum of 8 months. (author)

  1. Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production.

    Science.gov (United States)

    Umene, Kenichi; Shiraishi, Atsushi

    2013-06-01

    "Natto", considered a traditional food, is made by fermenting boiled soybeans with Bacillus subtilis (natto), which is a natto-producing strain related to B. subtilis. The production of natto is disrupted by phage infections of B. subtilis (natto); hence, it is necessary to control phage infections. PM1, a phage of B. subtilis (natto), was isolated during interrupted natto production in a factory. In a previous study, PM1 was classified morphologically into the family Siphoviridae, and its genome, comprising approximately 50 kbp of linear double-stranded DNA, was assumed to be circularly permuted. In the present study, the complete nucleotide sequence of the PM1 genomic DNA of 50,861 bp (41.3 %G+C) was determined, and 86 open reading frames (ORFs) were deduced. Forty-one ORFs of PM1 shared similarities with proteins deduced from the genome of phages reported so far. Twenty-three ORFs of PM1 were associated with functions related to the phage multiplication process of gene control, DNA replication/modification, DNA packaging, morphogenesis, and cell lysis. Bacillus subtilis (natto) produces a capsular polypeptide of glutamate with a γ-linkage (called poly-γ-glutamate), which appears to serve as a physical barrier to phage adsorption. One ORF of PM1 had similarity with a poly-γ-glutamate hydrolase, which is assumed to degrade the capsular barrier to allow phage progenies to infect encapsulated host cells. The genome analysis of PM1 revealed the characteristics of the phage that are consistent as Bacillus subtilis (natto)-infecting phage.

  2. Genomic characteristics of vB_PpaP_PP74, a T7-like Autographivirinae bacteriophage infecting a potato pathogen of the newly proposed species Pectobacterium parmentieri.

    Science.gov (United States)

    Kabanova, Anastasia; Shneider, Mikhail; Bugaeva, Eugenia; Ha, Vo Thi Ngoc; Miroshnikov, Kirill; Korzhenkov, Aleksei; Kulikov, Eugene; Toschakov, Stepan; Ignatov, Alexander; Miroshnikov, Konstantin

    2018-02-08

    Bacteriophage vB_PpaP_PP74 (PP74) is a novel virulent phage that infects members of the species Pectobacterium parmentieri, a newly established species of soft-rot-causing bacteria in the family Pectobacteriaceae, derived from potato-specific Pectobacterium wasabiae. vB_PpaP_PP74 was identified as a member of the family Podoviridae by transmission electron microscopy. The phage has a 39,790-bp dsDNA genome containing 50 open reading frames (ORFs). Because of the absence of genes encoding toxins or lysogeny factors, PP74 may be considered a candidate phage for pathogen biocontrol applications. The genome layout is similar to genomes of T7-like phages within the subfamily Autographivirinae, and therefore, functions can be attributed to most of ORFs. However, the closest nucleotide sequence homologs of phage PP74 are unclassified Escherichia phages. Based on phylogenetic analysis, vB_PpaP_PP74 is a sensu lato T7-like phage, but it forms a distant subgenus group together with homologous enterobacterial phages.

  3. Genetically Engineered Virulent Phage Banks in the Detection and Control of Emergent Pathogenic Bacteria

    Science.gov (United States)

    Blois, Hélène; Iris, François

    2010-01-01

    Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host. PMID:20569057

  4. The temperate Burkholderia phage AP3 of the Peduovirinae shows efficient antimicrobial activity against B. cenocepacia of the IIIA lineage.

    Science.gov (United States)

    Roszniowski, Bartosz; Latka, Agnieszka; Maciejewska, Barbara; Vandenheuvel, Dieter; Olszak, Tomasz; Briers, Yves; Holt, Giles S; Valvano, Miguel A; Lavigne, Rob; Smith, Darren L; Drulis-Kawa, Zuzanna

    2017-02-01

    Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7 %) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7-49.5 % identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin, and spanins) and shows 29-98 % homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60 °C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest that the AP3 phage is a promising potent agent against bacteria belonging to the most common B. cenocepacia IIIA lineage strains.

  5. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosacystic fibrosis bacterial isolates

    DEFF Research Database (Denmark)

    Friman, Ville-Petri; Soanes-Brown, Daniel; Sierocinski, Pawel

    2016-01-01

    Recent years have seen renewed interest in phage therapy - the use of viruses to specifically kill disease-causing bacteria – because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here we d...

  6. Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities.

    Science.gov (United States)

    Bull, James J; Christensen, Kelly A; Scott, Carly; Jack, Benjamin R; Crandall, Cameron J; Krone, Stephen M

    2018-01-29

    Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here.

  7. Phage Therapy -- Everything Old Is New again

    Directory of Open Access Journals (Sweden)

    Andrew M Kropinski

    2006-01-01

    Full Text Available The study of bacterial viruses (bacteriophages or phages proved pivotal in the nascence of the disciplines of molecular biology and microbial genetics, providing important information on the central processes of the bacterial cell (DNA replication, transcription and translation and on how DNA can be transferred from one cell to another. As a result of the pioneering genetics studies and modern genomics, it is now known that phages have contributed to the evolution of the microbial cell and to its pathogenic potential. Because of their ability to transmit genes, phages have been exploited to develop cloning vector systems. They also provide a plethora of enzymes for the modern molecular biologist. Until the introduction of antibiotics, phages were used to treat bacterial infections (with variable success. Western science is now having to re-evaluate the application of phage therapy -- a therapeutic modality that never went out of vogue in Eastern Europe -- because of the emergence of an alarming number of antibiotic-resistant bacteria. The present article introduces the reader to phage biology, and the benefits and pitfalls of phage therapy in humans and animals.

  8. Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients

    Directory of Open Access Journals (Sweden)

    Stephanie A. Fong

    2017-09-01

    Full Text Available Introduction:Pseudomonas aeruginosa infections are prevalent amongst chronic rhinosinusitis (CRS sufferers. Many P. aeruginosa strains form biofilms, leading to treatment failure. Lytic bacteriophages (phages are viruses that infect, replicate within, and lyse bacteria, causing bacterial death.Aim: To assess the activity of a phage cocktail in eradicating biofilms of ex vivo P.aeruginosa isolates from CRS patients.Methods: P. aeruginosa isolates from CRS patients with and without cystic fibrosis (CF across three continents were multi-locus sequence typed and tested for antibiotic resistance. Biofilms grown in vitro were treated with a cocktail of four phages (CT-PA. Biofilm biomass was measured after 24 and 48 h, using a crystal violet assay. Phage titrations were performed to confirm replication of the phages. A linear mixed effects model was applied to assess the effects of treatment, time, CF status, and multidrug resistance on the biomass of the biofilm.Results: The isolates included 44 strain types. CT-PA treatment significantly reduced biofilm biomass at both 24 and 48 h post-treatment (p < 0.0001, regardless of CF status or antibiotic resistance. Biomass was decreased by a median of 76% at 48 h. Decrease in biofilm was accompanied by a rise in phage titres for all except one strain.Conclusion: A single dose of phages is able to significantly reduce biofilms formed in vitro by a range of P.aeruginosa isolates from CRS patients. This represents an exciting potential and novel targeted treatment for P. aeruginosa biofilm infections and multidrug resistant bacteria.

  9. Interaction between the genomes of Lactococcus lactis and phages of the P335 species

    Science.gov (United States)

    Kelly, William J.; Altermann, Eric; Lambie, Suzanne C.; Leahy, Sinead C.

    2013-01-01

    Phages of the P335 species infect Lactococcus lactis and have been particularly studied because of their association with strains of L. lactis subsp. cremoris used as dairy starter cultures. Unlike other lactococcal phages, those of the P335 species may have a temperate or lytic lifestyle, and are believed to originate from the starter cultures themselves. We have sequenced the genome of L. lactis subsp. cremoris KW2 isolated from fermented corn and found that it contains an integrated P335 species prophage. This 41 kb prophage (Φ KW2) has a mosaic structure with functional modules that are highly similar to several other phages of the P335 species associated with dairy starter cultures. Comparison of the genomes of 26 phages of the P335 species, with either a lytic or temperate lifestyle, shows that they can be divided into three groups and that the morphogenesis gene region is the most conserved. Analysis of these phage genomes in conjunction with the genomes of several L. lactis strains shows that prophage insertion is site specific and occurs at seven different chromosomal locations. Exactly how induced or lytic phages of the P335 species interact with carbohydrate cell surface receptors in the host cell envelope remains to be determined. Genes for the biosynthesis of a variable cell surface polysaccharide and for lipoteichoic acids (LTAs) are found in L. lactis and are the main candidates for phage receptors, as the genes for other cell surface carbohydrates have been lost from dairy starter strains. Overall, phages of the P335 species appear to have had only a minor role in the adaptation of L. lactis subsp. cremoris strains to the dairy environment, and instead they appear to be an integral part of the L. lactis chromosome. There remains a great deal to be discovered about their role, and their contribution to the evolution of the bacterial genome. PMID:24009606

  10. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S...

  11. A Genotypic Analysis of Five P. aeruginosa Strains after Biofilm Infection by Phages Targeting Different Cell Surface Receptors

    Directory of Open Access Journals (Sweden)

    Diana P. Pires

    2017-06-01

    Full Text Available Antibiotic resistance constitutes one of the most serious threats to the global public health and urgently requires new and effective solutions. Bacteriophages are bacterial viruses increasingly recognized as being good alternatives to traditional antibiotic therapies. In this study, the efficacy of phages, targeting different cell receptors, against Pseudomonas aeruginosa PAO1 biofilm and planktonic cell cultures was evaluated over the course of 48 h. Although significant reductions in the number of viable cells were achieved for both cases, the high level of adaptability of the bacteria in response to the selective pressure caused by phage treatment resulted in the emergence of phage-resistant variants. To further investigate the genetic makeup of phage-resistant variants isolated from biofilm infection experiments, some of these bacteria were selected for phenotypic and genotypic characterization. Whole genome sequencing was performed on five phage-resistant variants and all of them carried mutations affecting the galU gene as well as one of pil genes. The sequencing analysis further revealed that three of the P. aeruginosa PAO1 variants carry large deletions (>200 kbp in their genomes. Complementation of the galU mutants with wild-type galU in trans restored LPS expression on the bacterial cell surface of these bacterial strains and rendered the complemented strains to be sensitive to phages. This provides unequivocal evidence that inactivation of galU function was associated with resistance to the phages that uses LPS as primary receptors. Overall, this work demonstrates that P. aeruginosa biofilms can survive phage attack and develop phage-resistant variants exhibiting defective LPS production and loss of type IV pili that are well adapted to the biofilm mode of growth.

  12. Epidemiological markers of Serratia marcescens isolates causing nosocomial infections in Spain (1981-1991).

    Science.gov (United States)

    Boquete, T; Vindel, A; Martin-Bourgon, C; Azañedo, L; Sáez-Nieto, J A

    1996-12-01

    The distribution of epidemiological markers (serotyping and phage-typing) of Serratia marcescens isolates from nosocomial episodes (63 nosocomial cutbreaks with 475 isolates, and 1208 sporadic cases) received in our laboratory during the period 1981-1991 was studied. The records for 1683 isolates from Spanish hospitals have been analyzed. In relation with the sporadic cases, the predominant types were serotype O6 (13.4%) and serotype O14 (11.4%); polyagglutinable strains accounted for 15.6%; in outbreaks, type O14 is clearly predominant (27.4%). Phage-typing was a good secondary marker, with a 87.9% of typability; the number of lytic patterns was very high, extended patterns (six or more phages) being the most frequent. We have studied the characteristics of S. marcescens isolates causing infections in the nosocomial environment in Spain.

  13. Pseudomonas predators: understanding and exploiting phage-host interactions.

    Science.gov (United States)

    De Smet, Jeroen; Hendrix, Hanne; Blasdel, Bob G; Danis-Wlodarczyk, Katarzyna; Lavigne, Rob

    2017-09-01

    Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.

  14. K. OXYTOCA BACTERIOPHAGES ISOLATION METHODS IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    G. R. Sadrtdinova

    2017-01-01

    Full Text Available The article presents the results of a study related to increasing the efficiency of phage isolation of bacteria of the species K. oxytoca, by developing the optimal composition of the medium used in the work. In scientific research, in almost all methods associated with the isolation of bacteriophages, meat-peptone broth and meat-peptone agar are used as the nutrient basis. The peculiarities of growth and cultivation of microorganisms create certain difficulties for the isolation of phages active against bacteria of the species K. oxytoca. The selection of components and the creation of an environment that would ensure the optimal growth of both the bacterial culture and the reproduction of the virus makes it possible to facilitate the isolation of bacteriophages. The number of bacterial strains used in the work was 7. All strains of cultures were obtained from the Museum of the Department of Microbiology, Virology, Epizootology and Veterinary and Sanitary Expertise of the Federal State Budget Educational Institution of Higher Education “Ulyanovsk State Agrarian University named after P.A. Stolypin”. The studies included 2 main stages. The first stage consisted in isolation of bacteriophages by the method of isolation from the external environment by the method of Adelson L.I., Lyashenko E.A. The material for the studies were samples: soil, sewage sample, fecal samples (2. Only 4 samples. According to the chosen method, the sowing of the putative phagolysate was carried out on meat-peptone agar (1.5% and the agar for isolating bacteriophages (Aph (1.5%. A positive result was the presence on the environment of negative colonies, clearly visible on the matt background of deep growth of bacteria. A negative result is a continuous growth (“lawn” of bacterial culture. As a control, the culture of the microorganism studied was used for the media. In the course of the conducted studies for the first stage, 2 bacteriophages were isolated, active

  15. Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes

    Directory of Open Access Journals (Sweden)

    Jacqueline Zoe-Munn Chan

    2014-10-01

    Full Text Available Two bacteriophages, RPP1 and RLP1, infecting members of the marine Roseobacter clade were isolated from seawater. Their linear genomes are 74.7 and 74.6 kb and encode 91 and 92 coding DNA sequences, respectively. Around 30% of these are homologous to genes found in Enterobacter phage N4. Comparative genomics of these two new Roseobacter phages and twenty-three other sequenced N4-like phages (three infecting members of the Roseobacter lineage and twenty infecting other Gammaproteobacteria revealed that N4-like phages share a core genome of 14 genes responsible for control of gene expression, replication and virion proteins. Phylogenetic analysis of these genes placed the five N4-like roseophages (RN4 into a distinct subclade. Analysis of the RN4 phage genomes revealed they share a further 19 genes of which nine are found exclusively in RN4 phages and four appear to have been acquired from their bacterial hosts. Proteomic analysis of the RPP1 and RLP1 virions identified a second structural module present in the RN4 phages similar to that found in the Pseudomonas N4-like phage LIT1. Searches of various metagenomic databases, included the GOS database, using CDS sequences from RPP1 suggests these phages are widely distributed in marine environments in particular in the open ocean environment.

  16. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents.

    Science.gov (United States)

    Bhunchoth, A; Phironrit, N; Leksomboon, C; Chatchawankanphanich, O; Kotera, S; Narulita, E; Kawasaki, T; Fujie, M; Yamada, T

    2015-04-01

    To isolate and characterize novel bacteriophages infecting the phytopathogen, Ralstonia solanacearum, and to evaluate them as resources with potential uses in the biocontrol of bacterial wilt. Fourteen phages infecting R. solanacearum were isolated from soil samples collected in Chiang Mai, Thailand. The phages showed different host ranges when tested against 59 R. solanacearum strains isolated from Thailand and Japan. These phages were characterized as nine podoviruses and five myoviruses based on their morphology. Podovirus J2 in combination with another podovirus (φRSB2) lysed host cells very efficiently in contaminated soil. J2 treatment prevented wilting of tomato plants infected with a highly virulent R. solanacearum strain. Treatment with J2 effectively reduced the amount of the bacterial wilt pathogen in contaminated soil and prevented bacterial wilt of tomato in pot experiments. Myovirus J6 possessed jumbo phage features, giving a unique opportunity to study its utilization as a biocontrol agent. As exemplified by J2, the phages isolated in this study represent valuable resources with potential uses in biocontrol of bacterial wilt. A rare jumbo phage J6 served as a valuable subject to understand and utilize this new group of phages. © 2015 The Society for Applied Microbiology.

  17. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction

    Directory of Open Access Journals (Sweden)

    Hildegunn eIversen

    2015-02-01

    Full Text Available Enterohemorrhagic E. coli (EHEC is a food-borne pathogen that causes disease ranging from uncomplicated diarrhea to life-threatening hemolytic uremic syndrome (HUS and nervous system complications. Shiga toxin 2 (Stx2 is the major virulence factor of EHEC and is critical for development of HUS. The genes encoding Stx2 are carried by lambdoid bacteriophages and the toxin production is tightly linked to the production of phages during lytic cycle. It has previously been suggested that commensal E. coli could amplify the production of Stx2-phages and contribute to the severity of disease. In this study we examined the susceptibility of commensal E. coli strains to the Stx2-converting phage ϕ734, isolated from a highly virulent EHEC O103:H25 (NIPH-11060424. Among 38 commensal E. coli strains from healthy children below five years, 15 were lysogenized by the ϕ734 phage, whereas lytic infection was not observed. Three of the commensal E. coli ϕ734 lysogens were tested for stability, and appeared stable and retained the phage for at least 10 cultural passages. When induced to enter lytic cycle by H2O2 treatment, 8 out of 13 commensal lysogens produced more ϕ734 phages than NIPH-11060424. Strikingly, five of them even spontaneously (non-induced produced higher levels of phage than the H2O2 induced NIPH-11060424. An especially high frequency of HUS (60% was seen among children infected by NIPH-11060424 during the outbreak in 2006. Based on our findings, a high Stx2 production by commensal E. coli lysogens cannot be ruled out as a contributor to the high frequency of HUS during this outbreak.

  18. PLASMID PROFILES AND PHAGE TYPES OF SALMONELLA-TYPHIMURIUM ISOLATED FROM SUCCESSIVE FLOCKS OF CHICKENS ON 3 PARENT STOCK FARMS

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Olsen, J. E.; Bisgaard, M.

    1992-01-01

    Three-hundred-and-eighty-seven strains of Salmonella typhimurium obtained from successive generations of parent stock originating from three different rearing farms were characterized by phage typing and plasmid profiling. Seventy-six strains representing dominant types were selected for restrict......Three-hundred-and-eighty-seven strains of Salmonella typhimurium obtained from successive generations of parent stock originating from three different rearing farms were characterized by phage typing and plasmid profiling. Seventy-six strains representing dominant types were selected...

  19. Genomic, proteomic, morphological, and phylogenetic analyses of vB_EcoP_SU10, a podoviridae phage with C3 morphology.

    Directory of Open Access Journals (Sweden)

    Mohammadali Khan Mirzaei

    Full Text Available A recently isolated phage, vB_EcoP_SU10 (SU10, with the unusual elongated C3 morphotype, can infect a wide range of Escherichia coli strains. We have sequenced the genome of this phage and characterized it further by mass spectrometry based proteomics, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and ultra-thin section electron microscopy. The genome size is 77,327 base pairs and its genes, and genome architecture, show high similarity to the phiEco32 phage genes and genome. The TEM images reveal that SU10 have a quite long tail for being a Podoviridae phage, and that the tail also changes conformation upon infection. The ultra-thin section electron microscopy images of phages at the stage of replication within the host cell show that the phages form a honeycomb-like structure under packaging of genomes and assembly of mature capsids. This implies a tight link between the replication and cutting of the concatemeric genome, genome packaging, and capsid assembly. We have also performed a phylogenetic analysis of the structural genes common between Podoviridae phages of the C1 and C3 morphotypes. The result shows that the structural genes have coevolved, and that they form two distinct groups linked to their morphotypes. The structural genes of C1 and C3 phages appear to have diverged around 280 million years ago applying a molecular clock calibrated according to the presumed split between the Escherichia - Salmonella genera.

  20. Phages of Listeria offer novel tools for diagnostics and biocontrol

    Directory of Open Access Journals (Sweden)

    Martin J Loessner

    2014-04-01

    Full Text Available Historically, bacteriophages infecting their hosts have perhaps been best known and even notorious for being a nuisance in dairy-fermentation processes. However, with the rapid progress in molecular microbiology and microbial ecology, a new dawn has risen for phages. This review will provide an overview on possible uses and applications of Listeria phages, including phage-typing, reporter phage for bacterial diagnostics, and use of phage as biocontrol agents for food safety. The use of phage-encoded enzymes such as endolysins for the detection and as antimicrobial will also be addressed. Desirable properties of candidate phages for biocontrol will be discussed. While emphasizing the enormous future potential for applications, we will also consider some of the intrinsic limitations dictated by both phage and bacterial ecology.

  1. Unstable lysogeny and pseudolysogeny in Vibrio harveyi siphovirus-like phage 1.

    Science.gov (United States)

    Khemayan, Krit; Pasharawipas, Tirasak; Puiprom, Orapim; Sriurairatana, Siriporn; Suthienkul, Orasa; Flegel, Timothy W

    2006-02-01

    Exposure of Vibrio harveyi (strain VH1114) to V. harveyi siphovirus-like phage 1 (VHS1) resulted in the production of a low percentage of lysogenized clones of variable stability. These were retrieved most easily as small colonies within dot plaques. Analysis revealed that VHS1 prophage was most likely carried by VH1114 as an episome rather than integrated into the host chromosome. In the late exponential growth phase, lysogenized VH1114 continuously produced VHS1 but also gave rise to a large number of cured progeny. The absence of phage DNA in the cured progeny was confirmed by the absence of VHS1 DNA in Southern blot and PCR assays. Curiously, these very stable, cured subclones did not show the parental phenotype of clear plaques with VHS1 but instead showed turbid plaques, both in overlaid lawns and in dot plaque assays. This phenotypic difference from the original parental isolate suggested that transient lysogeny by VHS1 had resulted in a stable genetic change in the cured clones. Such clones may be called pseudolysogens (i.e., false lysogens), since they have undergone transient lysogeny and have retained some resistance to full lytic phage development, despite the loss of viable or detectable prophage.

  2. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  3. A century of the phage: past, present and future.

    Science.gov (United States)

    Salmond, George P C; Fineran, Peter C

    2015-12-01

    Viruses that infect bacteria (bacteriophages; also known as phages) were discovered 100 years ago. Since then, phage research has transformed fundamental and translational biosciences. For example, phages were crucial in establishing the central dogma of molecular biology - information is sequentially passed from DNA to RNA to proteins - and they have been shown to have major roles in ecosystems, and help drive bacterial evolution and virulence. Furthermore, phage research has provided many techniques and reagents that underpin modern biology - from sequencing and genome engineering to the recent discovery and exploitation of CRISPR-Cas phage resistance systems. In this Timeline, we discuss a century of phage research and its impact on basic and applied biology.

  4. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    International Nuclear Information System (INIS)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-01-01

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  5. The genomes and comparative genomics of Lactobacillus delbrueckii phages.

    Science.gov (United States)

    Riipinen, Katja-Anneli; Forsman, Päivi; Alatossava, Tapani

    2011-07-01

    Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.

  6. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2016-12-01

    Full Text Available Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene. Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  7. Genome Sequence of Jumbo Phage vB_AbaM_ME3 of Acinetobacter baumanni

    OpenAIRE

    Buttimer, Colin; O?Sullivan, Lisa; Elbreki, Mohamed; Neve, Horst; McAuliffe, Olivia; Ross, R. Paul; Hill, Colin; O?Mahony, Jim; Coffey, Aidan

    2016-01-01

    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs).

  8. Restoring logic and data to phage-cures for infectious disease

    Directory of Open Access Journals (Sweden)

    Philip Serwer

    2017-08-01

    Full Text Available Antibiotic therapy for infectious disease is being compromised by emergence of multi-drug-resistant bacterial strains, often called superbugs. A response is to use a cocktail of several bacteria-infecting viruses (bacteriophages or phages to supplement antibiotic therapy. Use of such cocktails is called phage therapy, which has the advantage of response to bacterial resistance that is rapid and not exhaustible. A procedure of well-established success is to make cocktails from stockpiles of stored environmental phages. New phages are added to stockpiles when phage therapy becomes thwarted. The scientific subtext includes optimizing the following aspects: (1 procedure for rapidly detecting, purifying, storing and characterizing phages for optimization of phage cocktails, (2 use of directed evolution in the presence of bacteriostatic compounds to obtain phages that can be most efficiently used for therapy in the presence of these compounds, (3 phage genome sequencing technology and informatics to improve the characterization of phages, and (4 database technology to make optimal use of all relevant information and to rapidly retrieve phages for cocktails that will vary with the infection(s involved. The use of phage stockpiles has an established record, including a recent major human-therapy success by the US Navy. However, I conclude that most research is not along this track and, therefore, is not likely to lead to real world success. I find that a strong case exists for action to rectify this situation.

  9. Methods for Isolation, Purification, and Propagation of Bacteriophages of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst

    2017-01-01

    Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque-formin...

  10. Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Li, Zhen; Li, Xiaoyu; Zhang, Jiancheng; Wang, Xitao; Wang, Lili; Cao, Zhenhui; Xu, Yongping

    2016-07-01

    In the present study, we isolated 3 bacteriophages with the ability to control Vibrio splendidus, a bacterium known to cause disease in the juvenile sea cucumber. These bacteriophages were designated as vB_VspS_VS-ABTNL-1 (PVS-1), vB_VspS_VS-ABTNL-2 (PVS-2) and vB_VspS_VS-ABTNL-3 (PVS-3). The ability of the 3 phages to inhibit the growth of V. splendidus VS-ABTNL was tested in vitro using each of the 3 phages individually or in the form of a cocktail of all 3 phages in the proportion of 1:1:1. All treated cultures produced a significant (P sea cucumbers (23 ± 2 g) were randomly assigned to 1 of 6 treatments. Each treatment was housed in 3 PVC tanks (38 cm × 54 cm × 80 cm) with 20 sea cucumbers per tank. Six diets were prepared including an unsupplemented control diet, antibiotic treatment diet, 3 diets containing 1 of the 3 phages individually and a diet containing a cocktail of all 3 phages. After 60 days of feeding, all sea cucumber were challenged with V. splendidus VS-ABTNL by immersion in sea water containing a bacterial concentration of 6 × 10(6) CFU/mL for 2 days. The survival rate of sea cucumbers during the next 10 days was 18% for the unsupplemented diet, 82% for the antibiotic treatment, 82% for the phage cocktail, 65% for phage PVS-1, 58% for phage PVS-2 and 50% for phage PVS-3. There were no significant differences in weight gain, ingestion rate or feed conversion among sea cucumber fed the 4 phage treatments compared with those fed the unsupplemented diet (P > 0.05). The levels of nitric oxide synthase and acid phosphatase of sea cucumbers fed phage-containing diets were significantly (P  0.05) were detected among the 4 phage-fed treatments. An additional study was conducted in which 60 healthy sea cucumbers (23 ± 2 g) were randomly assigned to a control, an untreated group and a test group to investigate the effects of injecting phages by coelomic injection on the survival rate and enzyme activities in the coelomic fluid

  11. Dualities in the analysis of phage DNA packaging motors

    Science.gov (United States)

    Serwer, Philip; Jiang, Wen

    2012-01-01

    The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research. PMID:23532204

  12. Morphological evidence for phages in Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Civerolo Edwin L

    2008-06-01

    Full Text Available Abstract Presumptive phage particles associated with Xylella fastidiosa strain Temecula-1 grown in PW broth were observed by transmission electron microscopy (TEM in ultrathin sections of bacterial cell-containing low speed centrifugation pellets and in partially purified preparations from CsCl equilibrium centrifugation density gradients. Ultrathin-sectioned cell pellets contained icosahedral particles of about 45 nm in diameter. Samples collected from CsCl density gradients revealed mostly non-tailed icosahedral but also tailed particles. The icosahedral particles could be divided into two types: a large type (about 45 nm and a small type (about 30 nm. Filamentous phage-like particles (17 × 120 to 6,300 nm were also observed. The presence of different types of phage-like particles resembling to those in several bacteriophage families provides new physical evidence, in addition to X. fastidiosa genomic information, that X. fastidiosa possesses active phages. This is the first report of phage particles released in X. fastidiosa cultures.

  13. Supersize me: Cronobacter sakazakii phage GAP32

    Energy Technology Data Exchange (ETDEWEB)

    Abbasifar, Reza; Griffiths, Mansel W. [Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada); Sabour, Parviz M. [Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, ON, Canada N1G 5C9 (Canada); Ackermann, Hans-Wolfgang [Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC (Canada); Vandersteegen, Katrien; Lavigne, Rob [Laboratory of Gene Technology, Katholieke Universiteit Leuven, Leuven (Belgium); Noben, Jean-Paul [Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek (Belgium); Alanis Villa, Argentina; Abbasifar, Arash [Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada); Nash, John H.E. [Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, Canada N1G 3W4 (Canada); Kropinski, Andrew M., E-mail: akropins@uoguelph.ca [Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, Canada N1G 3W4 (Canada); Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada)

    2014-07-15

    Cronobacter sakazakii is a Gram-negative pathogen found in milk-based formulae that causes infant meningitis. Bacteriophages have been proposed to control bacterial pathogens; however, comprehensive knowledge about a phage is required to ensure its safety before clinical application. We have characterized C. sakazakii phage vB{sub C}saM{sub G}AP32 (GAP32), which possesses the second largest sequenced phage genome (358,663 bp). A total of 571 genes including 545 protein coding sequences and 26 tRNAs were identified, thus more genes than in the smallest bacterium, Mycoplasma genitalium G37. BLASTP and HHpred searches, together with proteomic analyses reveal that only 23.9% of the putative proteins have defined functions. Some of the unique features of this phage include: a chromosome condensation protein, two copies of the large subunit terminase, a predicted signal-arrest-release lysin; and an RpoD-like protein, which is possibly involved in the switch from immediate early to delayed early transcription. Its closest relatives are all extremely large myoviruses, namely coliphage PBECO4 and Klebsiella phage vB{sub K}leM-RaK2, with whom it shares approximately 44% homologous proteins. Since the homologs are not evenly distributed, we propose that these three phages belong to a new subfamily. - Highlights: • Cronobacter sakazakii phage vB{sub C}saM{sub G}AP32 has a genome of 358,663 bp. • It encodes 545 proteins which is more than Mycoplasma genitalium G37. • It is a member of the Myoviridae. • It is peripherally related to coliphage PBECO4 and Klebsiella phage vB{sub K}leM-RaK2. • GAP32 encodes a chromosome condensation protein.

  14. Shiga toxin-converting phages and the emergence of new pathogenic Escherichia coli: a world in motion

    Science.gov (United States)

    Tozzoli, Rosangela; Grande, Laura; Michelacci, Valeria; Ranieri, Paola; Maugliani, Antonella; Caprioli, Alfredo; Morabito, Stefano

    2014-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) are pathogenic E. coli causing diarrhea, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC are characterized by a constellation of virulence factors additional to Stx and have long been regarded as capable to cause HC and HUS when possessing the ability of inducing the attaching and effacing (A/E) lesion to the enterocyte, although strains isolated from such severe infections sometimes lack this virulence feature. Interestingly, the capability to cause the A/E lesion is shared with another E. coli pathogroup, the Enteropathogenic E. coli (EPEC). In the very recent times, a different type of STEC broke the scene causing a shift in the paradigm for HUS-associated STEC. In 2011, a STEC O104:H4 caused a large outbreak with more than 800 HUS and 50 deaths. Such a strain presented the adhesion determinants of Enteroaggregative E. coli (EAggEC). We investigated the possibility that, besides STEC and EAggEC, other pathogenic E. coli could be susceptible to infection with stx-phages. A panel of stx2-phages obtained from STEC isolated from human disease was used to infect experimentally E. coli strains representing all the known pathogenic types, including both diarrheagenic E. coli (DEC) and extra-intestinal pathogenic E. coli (ExPEC). We observed that all the E. coli pathogroups used in the infection experiments were susceptible to the infection. Our results suggest that the stx2-phages used may not have specificity for E. coli adapted to the intestinal environment, at least in the conditions used. Additionally, we could only observe transient lysogens suggesting that the event of stable stx2-phage acquisition occurs rarely. PMID:24999453

  15. Phage therapy reduces Campylobacter jejuni colonization in broilers

    NARCIS (Netherlands)

    Wagenaar, J.A.; Bergen, van M.A.P.; Mueller, M.A.; Wassenaar, T.M.; Carlton, R.M.

    2005-01-01

    The effect of phage therapy in the control of Campylobacter jejuni colonization in young broilers, either as a preventive or a therapeutic measure, was tested. A prevention group was infected with C. jejuni at day 4 of a 10-day phage treatment. A therapeutic group was phage treated for 6 days,

  16. Isolation and Characterization of a Lytic Bacteriophage (vB_PmiS-TH) and Its Application in Combination with Ampicillin against Planktonic and Biofilm Forms of Proteus mirabilis Isolated from Urinary Tract Infection.

    Science.gov (United States)

    Yazdi, Mahsa; Bouzari, Majid; Ghaemi, Ezzat Allah

    2018-01-01

    Proteus mirabilis is one of the most common causes of urinary tract infection (UTI), particularly in patients undergoing long-term catheterization. Phage vB_PmiS-TH was isolated from wastewater with high lytic activity against P. mirabilis (TH) isolated from UTI. The phage had rapid adsorption, a large burst size (∼260 PFU per infected cell), and high stability at a wide range of temperatures and pH values. As analyzed by transmission electron microscopy, phage vB_PmiS-TH had an icosahedral head of ∼87 × 62 nm with a noncontractile tail about 137 nm in length and 11 nm in width. It belongs to the family Siphoviridae. Combination of the phage vB_PmiS-TH with ampicillin had a higher removal activity against planktonic cells of P. mirabilis (TH) than the phage or the antibiotic alone. Combination of the phage at a multiplicity of infection of 100 with a high dose of ampicillin (246 µg/mL) showed the highest biofilm removal activity after 24 h. This study demonstrates that using a combination of phage and antibiotic could be significantly more effective against planktonic and biofilm forms of P. mirabilis (TH). © 2018 S. Karger AG, Basel.

  17. Production and partial characterization of lipases from a newly isolated Penicillium sp. using experimental design.

    Science.gov (United States)

    Wolski, E; Rigo, E; Di Luccio, M; Oliveira, J V; de Oliveira, D; Treichel, H

    2009-07-01

    The objective of this work was to investigate the lipase production by a newly isolated Penicillium sp., using experimental design technique, in submerged fermentation using a medium based on peptone, yeast extract, NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Lipase activity values of 9.5 U ml(-1) in 96 h of fermentation was obtained at the maximized operational conditions of peptone, yeast extract, NaCl and olive oil concentrations (g l(-1)) of 20.0, 5.0, 5.0 and of 10.0 respectively. The partial characterization of crude enzymatic extract obtained by submerged fermentation showed optimum activity at pH range from 4.9 to 5.5 and temperature from 37 degrees C to 42 degrees C. The crude extract maintained its initial activity at freezing temperatures up to 100 days. A newly isolated strain of Penicillium sp. used in this work yielded good lipase activities compared to the literature. The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. New lipase producers are relevant to finding enzymes with different catalytic properties of commercial interest could be obtained, without using genetically modified organisms (GMO).

  18. Advanced Analysis to Distinguish between Physical Decrease and Inactivation of Viable Phages in Aerosol by Quantitating Phage-Specific Particles.

    Science.gov (United States)

    Shimasaki, Noriko; Nojima, Yasuhiro; Sakakibara, Masaya; Kikuno, Ritsuko; Iizuka, Chiori; Okaue, Akira; Okuda, Shunji; Shinohara, Katsuaki

    2018-01-01

     Recent studies have investigated the efficacy of air-cleaning products against pathogens in the air. A standard method to evaluate the reduction in airborne viruses caused by an air cleaner has been established using a safe bacteriophage instead of pathogenic viruses; the reduction in airborne viruses is determined by counting the number of viable airborne phages by culture, after operating the air cleaner. The reduction in the number of viable airborne phages could be because of "physical decrease" or "inactivation". Therefore, to understand the mechanism of reduction correctly, an analysis is required to distinguish between physical decrease and inactivation. The purpose of this study was to design an analysis to distinguish between the physical decrease and inactivation of viable phi-X174 phages in aerosols. We established a suitable polymerase chain reaction (PCR) system by selecting an appropriate primer-probe set for PCR and validating the sensitivity, linearity, and specificity of the primer-probe set to robustly quantify phi-X174-specific airborne particles. Using this quantitative PCR system and culture assay, we performed a behavior analysis of the phage aerosol in a small chamber (1 m 3 ) at different levels of humidity, as humidity is known to affect the number of viable airborne phages. The results revealed that the reduction in the number of viable airborne phages was caused not only by physical decrease but also by inactivation under particular levels of humidity. Our study could provide an advanced analysis to differentiate between the physical decrease and inactivation of viable airborne phages.

  19. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Science.gov (United States)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  20. Identification of virulence genes carried by bacteriophages obtained from clinically isolated methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Karasartova, Djursun; Cavusoglu, Zeynep Burcin; Turegun, Buse; Ozsan, Murat T; Şahin, Fikret

    2016-12-01

    Bacteriophages play an important role in the pathogenicity of Staphylococcus aureus (S. aureus) either by carrying accessory virulence factors or several superantigens. Despite their importance, there are not many studies showing the actual distribution of the virulence genes carried by the prophages obtained from the clinically isolated Staphylococcus. In this study, we investigated prophages obtained from methicillin-resistant S. aureus (MRSA) strains isolated from hospital- and community-associated (HA-CA) infections for the virulence factors. In the study, 43 phages isolated from 48 MRSA were investigated for carrying toxin genes including the sak, eta, lukF-PV, sea, selp, sek, seg, seq chp, and scn virulence genes using polymerase chain reaction (PCR) and Southern blot. Restriction fragment length polymorphism was used to analyze phage genomes to investigate the relationship between the phage profiles and the toxin genes' presence. MRSA strains isolated from HA infections tended to have higher prophage presence than the MRSA strains obtained from the CA infections (97% and 67%, respectively). The study showed that all the phages with the exception of one phage contained one or more virulence genes in their genomes with different combinations. The most common toxin genes found were sea (83%) followed by sek (77%) and seq (64%). The study indicates that prophages encode a significant proportion of MRSA virulence factors.

  1. Genome Sequence of Jumbo Phage vB_AbaM_ME3 of Acinetobacter baumanni.

    Science.gov (United States)

    Buttimer, Colin; O'Sullivan, Lisa; Elbreki, Mohamed; Neve, Horst; McAuliffe, Olivia; Ross, R Paul; Hill, Colin; O'Mahony, Jim; Coffey, Aidan

    2016-08-25

    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs). Copyright © 2016 Buttimer et al.

  2. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  3. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell

  4. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Directory of Open Access Journals (Sweden)

    Kempashanaiah Nanjundappa

    2011-08-01

    Full Text Available Abstract Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80. Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host

  5. Bacteriological Study of 100 Cases of Pyodermas with Special Reference to Staphylococci, Their Antibiotic Sensitivity and Phage Pattern

    Directory of Open Access Journals (Sweden)

    T V Ramani

    1980-01-01

    Full Text Available One hundred new cases of pyodenna attending King George Hospital, Vishakhapatnam were investigated bacteriologically with antibiotic sensitivity of all the strains isolated and phage typing of coagulm positive staphylocci. Among these 50 had impetigo and 15 each ahd furunculosis and fouiculitis. The remaining included various other clinical entities. Children under 10 years were observed to have high incidence of pyoderma. A total of 88 strains of staphylococci (77 coagulase positive and 11 coagulase negative strains 25 strains of beta haemolytic streptococci and 3 strains of Klebsiella were isolated. Staphylococci were found to be the commonest aetiological agents either single or in association with other organisms. Of the 76 strains of coagulase positive staphylococci 32 strains were not phage typable and among the 44 typable strains 17 (38% belonged to group III and 15 (36.5% to mixed group. Coagulase positive staphylococci showed high sensitivity to garamycin, kanamycin and erythromycin and high resistance to penicillin and streptomycin. Multiple drug resistance was also high among these strains. Coagulase negative staphylococci were found to be more sensitive with less incidence of multiple drug resistance. Most of multiple drug resistant strains belonged to group III phage types. Beta haemolytic streptococci were found to be highly sensitive to all the antibiotics tested.

  6. Mutagenesis of lambda phage by tif-expression or host-irradiation functions is largely independent of damage in the phage DNA

    International Nuclear Information System (INIS)

    Von Wright, A.; Bridges, B.A.

    1980-01-01

    The survival and mutagenesis of UV-irradiated phage lambda, as well as bacterial mutagenesis, are enhanced in tif mutants of Escherichia coli when these strains are grown at 43 0 C (Castellazzi et al., 1972). This was interpreted on the basis of a hypothesis (the SOS hypothesis) according to which the UV-inducible phenomena connected with reactivation and mutagenesis of UV-irradiated bacteriophages (Weigle, 1953; Radman, 1975) are constitutively expressed in tif-bacteria at high temperature (Witkin, 1974). In unpublished experiments with phage T3 we found that the survival of UV-irradiated phage is also better at 43 0 C than at 32 0 C in tif + cells and this made us reexamine the significance and nature of tif expression and examine its effects on both unirradiated and UV-irradiated phage lambda. Our results indicate that tif-induced mutagenesis and possibly reactivation of UV-irradiated phage lambda should be reinterpreted. (orig./AJ)

  7. The phage-host arms race: Shaping the evolution of microbes

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Adi [Weizmann Inst. of Science, Rehovot (Israel). Dept. of Molecular Genetics; Sorek, Rotem [Weizmann Inst. of Science, Rehovot (Israel). Dept. of Molecular Genetics

    2010-10-26

    Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. In this paper, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. Finally, the commonalities between defense mechanisms suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.

  8. Marine phages as excellent tracers for reactive colloidal transport in porous media

    Science.gov (United States)

    Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2016-04-01

    Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and

  9. An improved plating assay for determination of phage titer

    African Journals Online (AJOL)

    RACHEL

    antibiotics to control bacterial infections in swine (Thacker,. 2014). Phage therapy is re-valued by researchers to combat the growing menace of antibiotic-resistant infections (Torres-Barceló and Hochberg, 2016). Determination of phage titer in a sample is a key step in the study of the phage involved. It is very important to.

  10. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  11. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    Directory of Open Access Journals (Sweden)

    Teerapong Yata

    2014-01-01

    Full Text Available Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage, viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage.

  12. Ultraviolet inactivation and photoreactivation of the cholera phage 'Kappa'

    International Nuclear Information System (INIS)

    Samad, S.A.; Bhattacharyya, S.C.; Chatterjee, S.N.

    1987-01-01

    The lysogenic cholera phage, 'Kappa' is some ten to twenty folds more resistant to UV (254 nm) than are most of the T. phages of E. coli, or the cholera phage PL 163/10, or the host V. cholerae strain H218 Sm r , the 37% (D 37 ) and 10% (D 10 ) survival doses being 255.8 J/m 2 and 633.6 J/m 2 respectively. The UV-irradiated 'Kappa' phages could be photoreactivated in the host V. cholerae strain H218 Sm r to a maximum extent of 40%. The removal of the number of lethal hits per phage by the survival-enhancement treatment (photoreactivation) with time followed an exponential relation, the constant probability of removal of lethal hit per unit time being 2.8x10 -2 min -1 . The UV-irradiated phages could also be Weigle reactivated in the host strain of H218 Sm r by a small degree, the maximum reactivation factor (ratio of survivals in UV-irradiated and non-irradiated hosts) being 1.50. (orig.)

  13. Use of Phage Antibodies to Distinguish Closely Related Species of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Timothy Paget

    2000-01-01

    Full Text Available Acanthamoeba are typically identified in the laboratory using culture and microscopic observation. In this paper we describe the isolation and specificity of antibody fragments that can be used for the identification of Acanthamoeba. A phage library expressing a large repertoire (approx. 5×109 of antibody fragments was used to generate two libraries one enriched for bacteriophage that exhibit genus specific binding and the other containing bacteriophage that bind specifically to pathogenic Acanthamoeba. Individual clones were isolated on the basis of binding by ELISA, and then flowcytometry and immunofluorescence were used for further characterisation. Four monoclonal antibodies were isolated, specific for Acanthamoeba at the generic level with clone HPPG6 exhibiting the highest level of binding. Furthermore clone HPPG55 was specific for pathogenic species of Acanthamoeba.

  14. Phage-based surface plasmon resonance strategies for the detection of pathogens

    Science.gov (United States)

    Tawil, Nancy

    MRSA bacteriophages to gold, using several immobilization methods[2]. We found that mixed self-assembled monolayers (SAMs) of L-cysteine and MUA permitted oriented positioning of the phages, thus preserving their biofunctionality and their bacterial lysing efficiency. This was due to the formation of uniform cavity islands on the gold surfaces, permitting an oriented positioning of the phages, thus better exposing their recognition proteins towards the medium containing the bacterial hosts. T4 bacteriophages were then used to detect E. coli, while a novel, highly specific phage was isolated, characterized and used to detect MRSA[3]. We found that our technique, combined with the use of SPR permits label-free, real-time, specific, rapid and cost-effective detection of pathogens, for concentrations of 103 colony forming units/milliliter (CFU/mL), in less than 20 minutes. We then turned our attention towards the differential detection of community-acquired MRSA (CA-MRSA), hospital-acquired MRSA (HA-MRSA), methicillin susceptible S. aureus (MSSA), and borderline resistant oxacillin-resistant S. aureus (BORSA), using SPR[4]. We studied two hundred fifty Staphylococcus aureus clinical isolates to determine their susceptibilities to â- lactam antibiotics. A surface plasmon resonance (SPR) biosensor was used to differentiate among CA-MRSA, HA-MRSA, BORSA and MSSA strains by specifically detecting PBP2a, an altered penicilling binding proteins that confers resistance to S. aureus strains, on whole bacterial cells, without labeling, without recourse to PCR or enrichment steps. We found that the system permits, specific detection of pathogens for concentrations as low as 10 CFU/mL. This approach has the advantages of being simple and rapid, allowing for identification of resistant strains of Staphylococcus aureus up to 48 hours earlier than conventional microbiological techniques. This method could have a significant impact on hospital costs, effective infection control, and

  15. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    International Nuclear Information System (INIS)

    Wood, R.D.; Hutchinson, F.

    1984-01-01

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr + host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage. (author)

  16. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jae; Hartono, Maria Regina; Chan, Weng Heng; Yeo, Suan Siong [Agency for Science, Technology and Research (A*STAR), Jurong Island (Singapore). Inst. of Chemical and Engineering Sciences

    2011-02-15

    The rapidly expanding market for biodiesel has increased the supply and reduced the cost of glycerol, making it an attractive sustainable feed stock for the fuel and chemical industry. Glycerol-based biorefinery is the microbial fermentation of crude glycerol to produce fuels and chemicals. A major challenge is to obtain microbes tolerant to inhibitors such as salts and organic solvents present in crude glycerol. Microbial screening was attempted to isolate novel strain capable of growing on crude glycerol as a sole carbon source. The newly isolated bacteria, identified as nonpathogenic Kluyvera cryocrescens S26 could convert biodiesel-derived crude glycerol to ethanol with high yield and productivity. The supplementation of nutrients such as yeast extract resulted in distinguished enhancement in cell growth as well as ethanol productivity under anaerobic condition. When glycerol fermentation is performed under microaerobic condition, there is also a remarkable improvement in cell growth, ethanol productivity and yield, compared with those under strict anaerobic condition. In batch fermentation under microaerobic condition, K. cryocrescens S26 produced 27 g/l of ethanol from crude glycerol with high molar yield of 80% and productivity of 0.61 g/l/h. (orig.)

  17. Isolation, Genome Phylogenetic Analysis and In vitro Rescue of a Newly Emerging Porcine Circovirus Type 2

    Directory of Open Access Journals (Sweden)

    Weijuan Zhu and Xiaofeng Ren*

    2012-05-01

    Full Text Available Porcine circovirus type 2 (PCV2 is the major causative agent of post-weaning multisystemic wasting syndrome (PMWS. Infection by PCV2 may cause heavy losses in pig industry. In this study, we report the isolation of a newly emerging PCV2 from northeastern China. The complete genome of the PCV2 isolate named PCV2-LJR contains 1766 nucleotides and was compared with reference sequences published in GenBank followed by topology analysis of the resulting phylogenetic tree. The data indicated that the prevalent PCV2 isolates in the northeastern China had close relationship, although various genotypes of PCV2 existed. In addition, by gene recombination and transfection techniques, the PCV2 infectious clone was achieved and was able to rescue virus in vitro determined by indirect immunofluorescence assay and PCR. The obtained biological materials may be used for biological characterization of PCV2.

  18. Impact of gut-associated bifidobacteria and their phages on health: two sides of the same coin?

    Science.gov (United States)

    Mahony, Jennifer; Lugli, Gabriele A; van Sinderen, Douwe; Ventura, Marco

    2018-03-01

    Bifidobacteria are among the first microbial colonisers of the human infant gut post-partum. Their early appearance and dominance in the human infant gut and the reported health-promoting or probiotic status of several bifidobacterial strains has culminated in intensive research efforts that focus on their activities as part of the gut microbiota and the concomitant implications for human health. In this mini-review, we evaluate current knowledge on the genomics of this diverse bacterial genus, and on the genetic and functional adaptations that have underpinned the success of bifidobacteria in colonising the infant gut. The growing interest in functional genomics of bifidobacteria has also created interest in the interactions of bifidobacteria and their (bacterio)phages. While virulent phages of bifidobacteria have yet to be isolated, the incidence of integrated (pro)phages in bifidobacterial genomes are widely reported and this mini-review considers the role of these so-called bifidoprophages in modulating bifidobacterial populations in the human gastrointestinal tract and the implications for existing and future development of probiotic therapies.

  19. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  20. Genome analysis of environmental and clinical P. aeruginosa isolates from sequence type-1146.

    Directory of Open Access Journals (Sweden)

    David Sánchez

    Full Text Available The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and P49 and one clinical (SD9 isolates, with differences in their antibiotic susceptibility profiles have been sequenced and analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the highest number of differences were in "Related to phage, transposon or plasmid" and "Secreted factors" categories. The clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes than in isolates P37 (24 genes, P47 (16 genes and P49 (21 genes. CRISPR elements were found in all isolates and SD9 showed differences in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved, suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be considered in the adaptation processes of isolates to the host and in microevolution studies.

  1. Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria.

    Science.gov (United States)

    Yamada, Takashi

    2013-01-01

    Some phages from genus Inovirus use host or bacteriophage-encoded site-specific integrases or recombinases establish a prophage state. During integration or excision, a superinfective form can be produced. The three states (free, prophage, and superinfective) of such phages exert different effects on host bacterial phenotypes. In Ralstonia solanacearum, the causative agent of bacterial wilt disease of crops, the bacterial virulence can be positively or negatively affected by filamentous phages, depending on their state. The presence or absence of a repressor gene in the phage genome may be responsible for the host phenotypic differences (virulent or avirulent) caused by phage infection. This strategy of virulence control may be widespread among filamentous phages that infect pathogenic bacteria of plants.

  2. Genome Sequences of Four Subcluster L2 Mycobacterium Phages, Finemlucis, Miley16, Wilder, and Zakai

    OpenAIRE

    Herren, Christopher D.; Peister, Alexandra; Breton, Timothy S.; Hill, Maggie S.; Anderson, Marcy S.; Chang, Adeline W.; Klein, Sydney B.; Thornton, Mackenzie M.; Vars, Stacy J.; Wagner, Kasey E.; Wiebe, Paige L.; Williams, Thomas G.; Yanez, Coraima P.; Ackles, Jasanta M.; Artis, Darius

    2017-01-01

    ABSTRACT Four subcluster L2 mycobacteriophages, Finemlucis, Miley16, Wilder, and Zakai, that infect Mycobacterium smegmatis mc2155 were isolated. The four phages are closely related to each other and code for 12 to 14 tRNAs and 130 to 132 putative protein-coding genes, including tyrosine integrases, cro, immunity repressors, and excise genes involved in the establishment of lysogeny.

  3. Phage Display-Derived Cross-Reactive Neutralizing Antibody against Enterovirus 71 and Coxsackievirus A16.

    Science.gov (United States)

    Zhang, Xiao; Sun, Chunyun; Xiao, Xiangqian; Pang, Lin; Shen, Sisi; Zhang, Jie; Cen, Shan; Yang, Burton B; Huang, Yuming; Sheng, Wang; Zeng, Yi

    2016-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the Picornaviridae family and are considered the main causative agents of hand, foot and mouth disease (HFMD). In recent decades large HFMD outbreaks caused by EV71 and CVA16 have become significant public health concerns in the Asia-Pacific region. Vaccines and antiviral drugs are unavailable to prevent EV71 and CVA16 infection. In the current study, a chimeric antibody targeting a highly conserved peptide in the EV71 VP4 protein was isolated by using a phage display technique. The antibody showed cross-neutralizing capability against EV71 and CVA16 in vitro. The results suggest that this phage display-derived antibody will have great potential as a broad neutralizing antibody against EV71 and CVA16 after affinity maturation and humanization.

  4. Complete genome sequences of three Campylobacter jejuni phage-propagating strains

    Science.gov (United States)

    Bacteriophage therapy has the potential to reduce Campylobacter jejuni numbers in livestock, but requires a detailed understanding of phage-host interactions. Some C. jejuni strains are readily infected by certain phages, and are thus designated as phage-propagating strains. Here we report the compl...

  5. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  6. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Science.gov (United States)

    Bar, Hagit; Yacoby, Iftach; Benhar, Itai

    2008-01-01

    Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177

  7. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.D.; Hutchinson, F. (Yale Univ., New Haven, CT (USA). Dept. of Molecular Biophysics and Biochemistry)

    1984-03-05

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr/sup +/ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.

  8. Genetic Variation of Lactobacillus delbrueckii subsp. lactis Bacteriophages Isolated from Cheese Processing Plants in Finland

    Science.gov (United States)

    Forsman, Päivi; Alatossava, Tapani

    1991-01-01

    The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages. Images PMID:16348513

  9. Chemical Strategies for the Covalent Modification of Filamentous Phage

    Directory of Open Access Journals (Sweden)

    Matthew B Francis

    2014-12-01

    Full Text Available Historically filamentous bacteriophage have been known to be the workhorse of phage display due to their ability to link genotype to phenotype. More recently, the filamentous phage scaffold has proved to be powerful outside the realms of phage display technology in fields such as molecular imaging, cancer research and materials and vaccine development. The ability of the virion to serve as a platform for a variety of applications heavily relies on the functionalization of the phage coat proteins with a wide variety of functionalities. Genetic modification of the coat proteins has been the most widely used strategy for functionalizing the virion; however complementary chemical modification strategies can help to diversify the range of materials that can be developed. This review emphasizes the recent advances that have been made in the chemical modification of filamentous phage as well as some of the challenges that are involved functionalizing the virion.

  10. Ligand-directed profiling of organelles with internalizing phage libraries

    Science.gov (United States)

    Dobroff, Andrey S.; Rangel, Roberto; Guzman-Roja, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Bologa, Cristian G.; Oprea, Tudor I.; Brinker, C. Jeffrey; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, to create vaccines, and to engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and/or to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. Here we describe the method for generating and screening the iPhage display system, and explain how to select and validate candidate internalizing homing peptide. PMID:25640897

  11. Evolution of phage display technology: from discovery to application.

    Science.gov (United States)

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Ahmadzadeh, Vahideh; Akbari, Bahman

    2017-03-01

    Phage display technology as a selection-based system is an attractive method for evolution of new biological drugs. Unique ability of phage libraries for displaying proteins on bacteriophage surfaces enable them to make a major contribution in diverse fields of researches related to the diagnosis and therapy of diseases. One of the great challenges facing researchers is the modification of phage display technology and the development of new applications. This article reviews the molecular basis of phage display library, and summarizes the novel and specific applications of this technique in the field of biological drugs development including therapeutic antibodies, peptides, vaccines, and catalytic antibodies.

  12. Nongenetic individuality in the host-phage interaction.

    Directory of Open Access Journals (Sweden)

    Sivan Pearl

    2008-05-01

    Full Text Available Isogenic bacteria can exhibit a range of phenotypes, even in homogeneous environmental conditions. Such nongenetic individuality has been observed in a wide range of biological processes, including differentiation and stress response. A striking example is the heterogeneous response of bacteria to antibiotics, whereby a small fraction of drug-sensitive bacteria can persist under extensive antibiotic treatments. We have previously shown that persistent bacteria enter a phenotypic state, identified by slow growth or dormancy, which protects them from the lethal action of antibiotics. Here, we studied the effect of persistence on the interaction between Escherichia coli and phage lambda. We used long-term time-lapse microscopy to follow the expression of green fluorescent protein (GFP under the phage lytic promoter, as well as cellular fate, in single infected bacteria. Intriguingly, we found that, whereas persistent bacteria are protected from prophage induction, they are not protected from lytic infection. Quantitative analysis of gene expression reveals that the expression of lytic genes is suppressed in persistent bacteria. However, when persistent bacteria switch to normal growth, the infecting phage resumes the process of gene expression, ultimately causing cell lysis. Using mathematical models for these two host-phage interactions, we found that the bacteria's nongenetic individuality can significantly affect the population dynamics, and might be relevant for understanding the coevolution of bacterial hosts and phages.

  13. DNA damage and mutagenesis of lambda phage induced by gamma-rays

    International Nuclear Information System (INIS)

    Bertram, Heidi

    1988-01-01

    Lambda phage DNA was gamma irradiated in aqueous solution and strand breakage determined. Twice as much minor structural damage per lethal hit was found in this DNA compared with DNA from irradiated phage suspensions. The in vitro irradiated DNA was repackaged into infectious particles. Induction of mutations in the cI or cII cistron was scored using SOS-induced host cells. In vitro prepared particles were found to have second-order kinetics for mutagenesis induced by gamma rays indicating two pre-mutational events were necessary to produce a mutation, but bacteria-free phage suspensions ('lys-phage') showed single hit kinetics for mutagenesis after irradiation. Increase in the mutation rate in the phage particles was mainly due to minor lesions, i.e. ssb, als and unidentified base damage. In lys-phage, mutagenesis might be enhanced by clustered DNA damage - configuration not existing in pack-phage. Loss of infectivity was analysed in comparison with structural damage. All lesions contributed to biological inactivation. Minor lesions were tolerated by lambda phage to a limited extent. Major lesions (e.g. dsb) contributed most to infectivity loss and were considered lethal events. (U.K.)

  14. Isolation of a monoclonal antibody from a phage display library binding the rhesus macaque MHC class I allomorph Mamu-A1*001.

    Directory of Open Access Journals (Sweden)

    Nathan Holman

    Full Text Available Monoclonal antibodies that bind to human leukocyte antigen (HLA are useful tools for HLA-typing, tracking donor-recipient chimerisms after bone marrow transplants, and characterizing specific major histocompatibility complexes (MHC on cell surfaces. Unfortunately, equivalent reagents are not available for rhesus macaques, which are commonly used animal as models in organ transplant and infectious disease research. To address this deficiency, we isolated an antibody that recognizes the common Indian rhesus macaque MHC class I molecule, Mamu-A1*001. We induced Mamu-A1*001-binding antibodies by alloimmunizing a female Mamu-A1*001-negative rhesus macaque with peripheral blood mononuclear cells (PBMC from a male Mamu-A1*001-positive donor. A Fab phage display library was constructed with PBMC from the alloimmunized macaque and panned to isolate an antibody that binds to Mamu-A1*001 but not to other common rhesus macaque MHC class I molecules. The isolated antibody distinguishes PBMC from Mamu-A1*001-positive and -negative macaques. Additionally, the Mamu-A1*001-specific antibody binds the cynomolgus macaque MHC class I ortholog Mafa-A1*001:01 but not variants Mafa-A1*001:02/03, indicating a high degree of binding specificity. The Mamu-A1*001-specific antibody will be useful for identifying Mamu-A1*001-positive rhesus macaques, for detecting Mamu-A1*001-positive cells in populations of Mamu-A1*001-negative cells, and for examining disease processes that alter expression of Mamu-A1*001 on cell surfaces. Moreover, the alloimmunization process we describe will be useful for isolating additional MHC allomorph-specific monoclonal antibodies or antibodies against other polymorphic host proteins which are difficult to isolate with traditional technologies.

  15. Changes of the Specific Infectivity of Tracer Phages during Transport in Porous Media.

    Science.gov (United States)

    Ghanem, Nawras; Trost, Manuel; Sánchez Fontanet, Laura; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y

    2018-03-20

    Phages (i.e., viruses infecting bacteria) are considered to be good indicators and tracers for fecal pollution, hydraulic flow, or colloidal transport in the subsurface. They are typically quantified as total virus particles (VLP) or plaque forming units (PFU) of infectious phages. As transport may lead to phage deactivation, VLP quantification can overestimate the number of infectious phages. In contrast, PFU counts may underestimate the transport of total virus particles. Using PFU and tunable resistive pulse sensing-based counting for active and total phages, respectively, we quantified the effect of transport through laboratory percolation columns on the specific infectivity (SI). The SI is defined by the ratio of total VLP to PFU and is a measure for the minimum particle numbers needed to create a single infection. Transport of three marine tracer phages and the coli-phage (T4) was described by colloidal filtration theory. We found that apparent collision efficiencies of active and total phages differed. Depending on the phage properties (e.g., morphology or hydrophobicity), passage through a porous medium led to either an increasing or decreasing SI of effluent phages. Our data suggest that both phage mass recovery and the SI should be considered in quantitative phage tracer experiments.

  16. The Human Gut Phage Community and Its Implications for Health and Disease.

    Science.gov (United States)

    Manrique, Pilar; Dills, Michael; Young, Mark J

    2017-06-08

    In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.

  17. Phage Therapy in the Era of Synthetic Biology.

    Science.gov (United States)

    Barbu, E Magda; Cady, Kyle C; Hubby, Bolyn

    2016-10-03

    For more than a century, bacteriophage (or phage) research has enabled some of the most important discoveries in biological sciences and has equipped scientists with many of the molecular biology tools that have advanced our understanding of replication, maintenance, and expression of genetic material. Phages have also been recognized and exploited as natural antimicrobial agents and nanovectors for gene therapy, but their potential as therapeutics has not been fully exploited in Western medicine because of challenges such as narrow host range, bacterial resistance, and unique pharmacokinetics. However, increasing concern related to the emergence of bacteria resistant to multiple antibiotics has heightened interest in phage therapy and the development of strategies to overcome hurdles associated with bacteriophage therapeutics. Recent progress in sequencing technologies, DNA manipulation, and synthetic biology allowed scientists to refactor the entire bacterial genome of Mycoplasma mycoides, thereby creating the first synthetic cell. These new strategies for engineering genomes may have the potential to accelerate the construction of designer phage genomes with superior therapeutic potential. Here, we discuss the use of phage as therapeutics, as well as how synthetic biology can create bacteriophage with desirable attributes. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Isolation and characterization of a "phiKMV-like" bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia.

    Directory of Open Access Journals (Sweden)

    Zhenhui Cao

    Full Text Available The objective of this study was to investigate the potential of using phages as a therapy against hemorrhagic pneumonia in mink both in vitro and in vivo. Five Pseudomonas aeruginosa (P. aeruginosa strains were isolated from lungs of mink with suspected hemorrhagic pneumonia and their identity was confirmed by morphological observation and 16S rDNA sequence analysis. Compared to P. aeruginosa strains isolated from mink with hemorrhagic pneumonia in 2002, these isolates were more resistant to antibiotics selected. A lytic phage vB_PaeP_PPA-ABTNL (PPA-ABTNL of the Podoviridae family was isolated from hospital sewage using a P. aeruginosa isolate as host, showing broad host range against P. aeruginosa. A one-step growth curve analysis of PPA-ABTNL revealed eclipse and latent periods of 20 and 35 min, respectively, with a burst size of about 110 PFU per infected cell. Phage PPA-ABTNL significantly reduced the growth of P. aeruginosa isolates in vitro. The genome of PPA-ABTNL was 43,227 bp (62.4% G+C containing 54 open reading frames and lacked regions encoding known virulence factors, integration-related proteins and antibiotic resistance determinants. Genome architecture analysis showed that PPA-ABTNL belonged to the "phiKMV-like Viruses" group. A repeated dose inhalational toxicity study using PPA-ABTNL crude preparation was conducted in mice and no significantly abnormal histological changes, morbidity or mortality were observed. There was no indication of any potential risk associated with using PPA-ABTNL as a therapeutic agent. The results of a curative treatment experiment demonstrated that atomization by ultrasonic treatment could efficiently deliver phage to the lungs of mink and a dose of 10 multiplicity of infection was optimal for treating mink hemorrhagic pneumonia. Our work demonstrated the potential for phage to fight P. aeruginosa involved in mink lung infections when administered by means of ultrasonic nebulization.

  19. Phage therapy in the food industry.

    Science.gov (United States)

    Endersen, Lorraine; O'Mahony, Jim; Hill, Colin; Ross, R Paul; McAuliffe, Olivia; Coffey, Aidan

    2014-01-01

    Despite advances in modern technologies, the food industry is continuously challenged with the threat of microbial contamination. The overuse of antibiotics has further escalated this problem, resulting in the increasing emergence of antibiotic-resistant foodborne pathogens. Efforts to develop new methods for controlling microbial contamination in food and the food processing environment are extremely important. Accordingly, bacteriophages (phages) and their derivatives have emerged as novel, viable, and safe options for the prevention, treatment, and/or eradication of these contaminants in a range of foods and food processing environments. Whole phages, modified phages, and their derivatives are discussed in terms of current uses and future potential as antimicrobials in the traditional farm-to-fork context, encompassing areas such as primary production, postharvest processing, biosanitation, and biodetection. The review also presents some safety concerns to ensure safe and effective exploitation of bacteriophages in the future.

  20. Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phage resistance mechanisms.

    Science.gov (United States)

    Guinane, Caitriona M; Kent, Robert M; Norberg, Sarah; Hill, Colin; Fitzgerald, Gerald F; Stanton, Catherine; Ross, R Paul

    2011-04-20

    Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97 mbp) and GC content (34.8%) to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure.

  1. Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phage resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Caitriona M Guinane

    Full Text Available Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97 mbp and GC content (34.8% to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure.

  2. Comparative genomics of a Helicobacter pylori isolate from a Chinese Yunnan Naxi ethnic aborigine suggests high genetic divergence and phage insertion.

    Directory of Open Access Journals (Sweden)

    Yuanhai You

    Full Text Available Helicobacter pylori is a common pathogen correlated with several severe digestive diseases. It has been reported that isolates associated with different geographic areas, different diseases and different individuals might have variable genomic features. Here, we describe draft genomic sequences of H. pylori strains YN4-84 and YN1-91 isolated from patients with gastritis from the Naxi and Han populations of Yunnan, China, respectively. The draft sequences were compared to 45 other publically available genomes, and a total of 1059 core genes were identified. Genes involved in restriction modification systems, type four secretion system three (TFS3 and type four secretion system four (TFS4, were identified as highly divergent. Both YN4-84 and YN1-91 harbor intact cag pathogenicity island (cagPAI and have EPIYA-A/B/D type at the carboxyl terminal of cagA. The vacA gene type is s1m2i1. Another major finding was a 32.5-kb prophage integrated in the YN4-84 genome. The prophage shares most of its genes (30/33 with Helicobacter pylori prophage KHP30. Moreover, a 1,886 bp transposable sequence (IS605 was found in the prophage. Our results imply that the Naxi ethnic minority isolate YN4-84 and Han isolate YN1-91 belong to the hspEAsia subgroup and have diverse genome structure. The genome has been extensively modified in several regions involved in horizontal DNA transfer. The important roles played by phages in the ecology and microevolution of H. pylori were further emphasized. The current data will provide valuable information regarding the H. pylori genome based on historic human migrations and population structure.

  3. A Novel Roseosiphophage Isolated from the Oligotrophic South China Sea

    Directory of Open Access Journals (Sweden)

    Yunlan Yang

    2017-05-01

    Full Text Available The Roseobacter clade is abundant and widespread in marine environments and plays an important role in oceanic biogeochemical cycling. In this present study, a lytic siphophage (labeled vB_DshS-R5C infecting the strain type of Dinoroseobacter shibae named DFL12T, which is part of the Roseobacter clade, was isolated from the oligotrophic South China Sea. Phage R5C showed a narrow host range, short latent period and low burst size. The genome length of phage R5C was 77, 874 bp with a G+C content of 61.5%. Genomic comparisons detected no genome matches in the GenBank database and phylogenetic analysis based on DNA polymerase I revealed phylogenetic features that were distinct to other phages, suggesting the novelty of R5C. Several auxiliary metabolic genes (e.g., phoH gene, heat shock protein and queuosine biosynthesis genes were identified in the R5C genome that may be beneficial to the host and/or offer a competitive advantage for the phage. Among siphophages infecting the Roseobacter clade (roseosiphophages, four gene transfer agent-like genes were commonly located with close proximity to structural genes, suggesting that their function may be related to the tail of siphoviruses. The isolation and characterization of R5C demonstrated the high genomic and physiological diversity of roseophages as well as improved our understanding of host–phage interactions and the ecology of the marine Roseobacter.

  4. Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections.

    Science.gov (United States)

    Bodier-Montagutelli, Elsa; Morello, Eric; L'Hostis, Guillaume; Guillon, Antoine; Dalloneau, Emilie; Respaud, Renaud; Pallaoro, Nikita; Blois, Hélène; Vecellio, Laurent; Gabard, Jérôme; Heuzé-Vourc'h, Nathalie

    2017-08-01

    Bacterial respiratory tract infections (RTIs) are increasingly difficult to treat due to evolving antibiotic resistance. In this context, bacteriophages (or phages) are part of the foreseen alternatives or combination therapies. Delivering phages through the airways seems more relevant to accumulate these natural antibacterial viruses in proximity to their bacterial host, within the infectious site. Areas covered: This review addresses the potential of phage therapy to treat RTIs and discusses preclinical and clinical results of phages administration in this context. Recent phage formulation and aerosolization attempts are also reviewed, raising technical challenges to achieve efficient pulmonary deposition via inhalation. Expert opinion: Overall, the inhalation of phages as antibacterial treatment seems both clinically relevant and technically feasible. Several crucial points still need to be investigated, such as phage product pharmacokinetics and immunogenicity. Furthermore, given phage-specific features, appropriate regulatory and manufacturing guidelines will need to be defined. Finally, randomized controlled clinical trials should be carried out to establish phage therapy's clinical positioning in the antimicrobial arsenal against RTIs.

  5. Differential screening of phage-ab libraries by oligonucleotide microarray technology.

    Directory of Open Access Journals (Sweden)

    Paolo Monaci

    Full Text Available A novel and efficient tagArray technology was developed that allows rapid identification of antibodies which bind to receptors with a specific expression profile, in the absence of biological information. This method is based on the cloning of a specific, short nucleotide sequence (tag in the phagemid coding for each phage-displayed antibody fragment (phage-Ab present in a library. In order to set up and validate the method we identified about 10,000 different phage-Abs binding to receptors expressed in their native form on the cell surface (10 k Membranome collection and tagged each individual phage-Ab. The frequency of each phage-Ab in a given population can at this point be inferred by measuring the frequency of its associated tag sequence through standard DNA hybridization methods. Using tiny amounts of biological samples we identified phage-Abs binding to receptors preferentially expressed on primary tumor cells rather than on cells obtained from matched normal tissues. These antibodies inhibited cell proliferation in vitro and tumor development in vivo, thus representing therapeutic lead candidates.

  6. Escherichia coli O157:H7 bacteriophage 241 isolated from an industrial cucumber fermentation at high acidity and salinity

    Directory of Open Access Journals (Sweden)

    Zhongjing eLu

    2015-02-01

    Full Text Available A novel phage, 241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH  3.7 and salinity ( 5% NaCl were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7 or the 2 O antigen-negative mutants of O157:H7 strain, 43895per (also lacking H7 antigen and F12 (still expressing H7 antigen. However, the phage was able to lyse a per-complemented strain (43895perComp which expresses O157 antigen. These results indicated that phage 241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3 or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage 241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment.

  7. Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh

    Science.gov (United States)

    Sarker, Shafiqul Alam; Sultana, Shamima; Reuteler, Gloria; Moine, Deborah; Descombes, Patrick; Charton, Florence; Bourdin, Gilles; McCallin, Shawna; Ngom-Bru, Catherine; Neville, Tara; Akter, Mahmuda; Huq, Sayeeda; Qadri, Firdausi; Talukdar, Kaisar; Kassam, Mohamed; Delley, Michèle; Loiseau, Chloe; Deng, Ying; El Aidy, Sahar; Berger, Bernard; Brüssow, Harald

    2016-01-01

    Background Antibiotic resistance is rising in important bacterial pathogens. Phage therapy (PT), the use of bacterial viruses infecting the pathogen in a species-specific way, is a potential alternative. Method T4-like coliphages or a commercial Russian coliphage product or placebo was orally given over 4 days to Bangladeshi children hospitalized with acute bacterial diarrhea. Safety of oral phage was assessed clinically and by functional tests; coliphage and Escherichia coli titers and enteropathogens were determined in stool and quantitative diarrhea parameters (stool output, stool frequency) were measured. Stool microbiota was studied by 16S rRNA gene sequencing; the genomes of four fecal Streptococcus isolates were sequenced. Findings No adverse events attributable to oral phage application were observed (primary safety outcome). Fecal coliphage was increased in treated over control children, but the titers did not show substantial intestinal phage replication (secondary microbiology outcome). 60% of the children suffered from a microbiologically proven E. coli diarrhea; the most frequent diagnosis was ETEC infections. Bacterial co-pathogens were also detected. Half of the patients contained phage-susceptible E. coli colonies in the stool. E. coli represented less than 5% of fecal bacteria. Stool ETEC titers showed only a short-lived peak and were otherwise close to the replication threshold determined for T4 phage in vitro. An interim analysis after the enrollment of 120 patients showed no amelioration in quantitative diarrhea parameter by PT over standard care (tertiary clinical outcome). Stool microbiota was characterized by an overgrowth with Streptococcus belonging to the Streptococcus gallolyticus and Streptococcus salivarius species groups, their abundance correlated with quantitative diarrhea outcome, but genome sequencing did not identify virulence genes. Interpretation Oral coliphages showed a safe gut transit in children, but failed to achieve

  8. Genomics of phages with therapeutic potential

    DEFF Research Database (Denmark)

    Zschach, Henrike

    Bacteriophages, viruses that prey on bacteria, have been applied since the 1920’s to treat and prevent bacterial infection. After the discovery of antibiotics, this route was however largely abandoned. Now, with antimicrobial resistance in human-pathogenic bacteria on the rise and a dire need...... for alternatives, phage therapy once again takes center stage. Phage therapy holds the promise of substantial benefits both from the economic as well as the public health perspective but also holds distinct challenges. The aim of this PhD was to address how bioinformatics tools, specifically genomics...... and mathematical modelling, can be applied to move the field towards a future of actual phage therapy in humans. It is composed of three related research projects. The first part of this thesis is an introduction to various topics and methods relevant to the research projects that jointedly make up this Ph...

  9. Identification of the host determinant of two prolate-headed phages infecting lactococcus lactis

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Birgitte; Janzen, Thomas; Schnabl, Jannie; Johansen, Eric

    2003-01-01

    A gene responsible for host determination was identified in two prolate-headed bacteriophages of the c2 species infecting strains of Lactococcus lactis. The identification of the host determinant gene was based on low DNA sequence homology in a specific open reading frame (ORF) between prolate-headed phages with different host ranges. When a host carrying this ORF from one phage on a plasmid was infected with another phage, we obtained phages with an altered host range at a frequency of 10 -6 to 10 -7 . Sequencing of phage DNA originating from 10 independent single plaques confirmed that a genetic recombination had taken place at different positions between the ORF on the plasmid and the infecting phage. The adsorption of the recombinant phages to their bacterial hosts had also changed to match the phage origin of the ORF. Consequently, it is concluded that this ORF codes for the host range determinant

  10. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    Science.gov (United States)

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  11. Phage Genetic Engineering Using CRISPR–Cas Systems

    Directory of Open Access Journals (Sweden)

    Asma Hatoum-Aslan

    2018-06-01

    Full Text Available Since their discovery over a decade ago, the class of prokaryotic immune systems known as CRISPR–Cas have afforded a suite of genetic tools that have revolutionized research in model organisms spanning all domains of life. CRISPR-mediated tools have also emerged for the natural targets of CRISPR–Cas immunity, the viruses that specifically infect bacteria, or phages. Despite their status as the most abundant biological entities on the planet, the majority of phage genes have unassigned functions. This reality underscores the need for robust genetic tools to study them. Recent reports have demonstrated that CRISPR–Cas systems, specifically the three major types (I, II, and III, can be harnessed to genetically engineer phages that infect diverse hosts. Here, the mechanisms of each of these systems, specific strategies used, and phage editing efficacies will be reviewed. Due to the relatively wide distribution of CRISPR–Cas systems across bacteria and archaea, it is anticipated that these immune systems will provide generally applicable tools that will advance the mechanistic understanding of prokaryotic viruses and accelerate the development of novel technologies based on these ubiquitous organisms.

  12. Recombinant lambda-phage nanobioparticles for tumor therapy in mice models.

    Science.gov (United States)

    Ghaemi, Amir; Soleimanjahi, Hoorieh; Gill, Pooria; Hassan, Zuhair; Jahromi, Soodeh Razeghi M; Roohvand, Farzin

    2010-05-12

    Lambda phages have considerable potential as gene delivery vehicles due to their genetic tractability, low cost, safety and physical characteristics in comparison to other nanocarriers and gene porters. Little is known concerning lambda phage-mediated gene transfer and expression in mammalian hosts. We therefore performed experiments to evaluate lambda-ZAP bacteriophage-mediated gene transfer and expression in vitro. For this purpose, we constructed recombinant lambda-phage nanobioparticles containing a mammalian expression cassette encoding enhanced green fluorescent protein (EGFP) and E7 gene of human papillomavirus type 16 (lambda-HPV-16 E7) using Lambda ZAP- CMV XR vector. Four cell lines (COS-7, CHO, TC-1 and HEK-239) were transduced with the nanobioparticles. We also characterized the therapeutic anti-tumor effects of the recombinant lambda-HPV-16 E7 phage in C57BL/6 tumor mice model as a cancer vaccine. Obtained results showed that delivery and expression of these genes in fibroblastic cells (COS-7 and CHO) are more efficient than epithelial cells (TC-1 and HEK-239) using these nanobioparticles. Despite the same phage M.O.I entry, the internalizing titers of COS-7 and CHO cells were more than TC-1 and HEK-293 cells, respectively. Mice vaccinated with lambda-HPV-16 E7 are able to generate potent therapeutic antitumor effects against challenge with E7- expressing tumor cell line, TC-1 compared to group treated with the wild phage. The results demonstrated that the recombinant lambda-phages, due to their capabilities in transducing mammalian cells, can also be considered in design and construction of novel and safe phage-based nanomedicines.

  13. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA.

    Science.gov (United States)

    Dinsmore, P K; Klaenhammer, T R

    1997-05-01

    A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.

  14. Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability.

    Directory of Open Access Journals (Sweden)

    Louis-Marie Bobay

    Full Text Available Phages, like many parasites, tend to have small genomes and may encode autonomous functions or manipulate those of their hosts'. Recombination functions are essential for phage replication and diversification. They are also nearly ubiquitous in bacteria. The E. coli genome encodes many copies of an octamer (Chi motif that upon recognition by RecBCD favors repair of double strand breaks by homologous recombination. This might allow self from non-self discrimination because RecBCD degrades DNA lacking Chi. Bacteriophage Lambda, an E. coli parasite, lacks Chi motifs, but escapes degradation by inhibiting RecBCD and encoding its own autonomous recombination machinery. We found that only half of 275 lambdoid genomes encode recombinases, the remaining relying on the host's machinery. Unexpectedly, we found that some lambdoid phages contain extremely high numbers of Chi motifs concentrated between the phage origin of replication and the packaging site. This suggests a tight association between replication, packaging and RecBCD-mediated recombination in these phages. Indeed, phages lacking recombinases strongly over-represent Chi motifs. Conversely, phages encoding recombinases and inhibiting host recombination machinery select for the absence of Chi motifs. Host and phage recombinases use different mechanisms and the latter are more tolerant to sequence divergence. Accordingly, we show that phages encoding their own recombination machinery have more mosaic genomes resulting from recent recombination events and have more diverse gene repertoires, i.e. larger pan genomes. We discuss the costs and benefits of superseding or manipulating host recombination functions and how this decision shapes phage genome structure and evolvability.

  15. Complete Genome Sequences of 44 Arthrobacter Phages.

    Science.gov (United States)

    Klyczek, Karen K; Jacobs-Sera, Deborah; Adair, Tamarah L; Adams, Sandra D; Ball, Sarah L; Benjamin, Robert C; Bonilla, J Alfred; Breitenberger, Caroline A; Daniels, Charles J; Gaffney, Bobby L; Harrison, Melinda; Hughes, Lee E; King, Rodney A; Krukonis, Gregory P; Lopez, A Javier; Monsen-Collar, Kirsten; Pizzorno, Marie C; Rinehart, Claire A; Staples, Amanda K; Stowe, Emily L; Garlena, Rebecca A; Russell, Daniel A; Cresawn, Steven G; Pope, Welkin H; Hatfull, Graham F

    2018-02-01

    We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae , Myoviridae , and Podoviridae ) are represented. Copyright © 2018 Klyczek et al.

  16. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food

    DEFF Research Database (Denmark)

    Athina, Zampara; Sørensen, Martine Camilla Holst; Elsser-Gravesen, Anne

    2017-01-01

    Poultry meat is the main source of Campylobacter jejuni foodborne disease. Currently, no effective control measures prevent C. jejuni from contaminating poultry meat. However, post-harvest phage treatment is a promising biocontrol strategy that has not yet been explored. Here we identified phages....... A thorough understanding of phage-host interactions is prerequisite to further advance phage application as a post-harvest biocontrol strategy against C. jejuni....

  17. Improved production of isomaltulose by a newly isolated mutant of Serratia sp. cells immobilized in calcium alginate.

    Science.gov (United States)

    Kim, Yonghwan; Koo, Bong-Seong; Lee, Hyeon-Cheol; Yoon, Youngdae

    2015-03-01

    Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production.

  18. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    Science.gov (United States)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  19. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  20. Popping the cork: mechanisms of phage genome ejection

    NARCIS (Netherlands)

    Molineux, I.J.; Panja, D.

    2013-01-01

    Sixty years after Hershey and Chase showed that nucleic acid is the major component of phage particles that is ejected into cells, we still do not fully understand how the process occurs. Advances in electron microscopy have revealed the structure of the condensed DNA confined in a phage capsid, and

  1. Enantioselective hydrolysis of racemic styrene oxide and its substituted derivatives using newly-isolated Sphingopyxis sp. exhibiting a novel epoxide hydrolase activity.

    Science.gov (United States)

    Woo, Jung-Hee; Lee, Eun Yeol

    2014-02-01

    (S)-Styrene oxide, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4-CSO with 99.9 %ee were obtained with a yield of 20.6, 39.3, 28.7 and 26.8 % from 4 mM corresponding racemic substrates using 10 mg cells of a newly-isolated Sphingopyxis sp. at pH 8.0 and 25 °C in 1 ml 100 mM Tris/HCl buffer after 420, 100, 120 and 55 min, respectively. For racemic 2CSO, well-known for one of the racemates that is difficult to obtained in enantiomerically pure form, (S)-2-CSO with 99.9 %ee, 39.3 % yield (theoretical yield 50 %) and enantiomeric ratio of 42.1 was obtained. The newly-isolated strain can thus be used as whole-cell biocatalyst in the production of various (S)-CSO with a chlorine group at different positions.

  2. Characterization of some pneumococcal bacteriophages

    International Nuclear Information System (INIS)

    Porter, R.D.; Guild, W.R.

    1976-01-01

    The growth of pneumococcal phages at high cell and phage densities is enhanced strongly by the substitution of potassium for sodium in the medium. Initial titers of 2 x 10 10 to 4 x 10 10 PFU/ml are readily obtained, and concentrated stocks are stable in a storage buffer described here. The mechanism of the cation effect is obscure. Phages ω3 and ω8 each have linear double-stranded DNA of 33 x 10 6 daltons per particle, with an apparent guanine plus cytosine content of 47 to 49 mol percent, as determined by buoyancy and melting temperature, but with an unusual absorbance spectrum. Efficiency of plating is high if sufficient time is allowed for a relatively slow adsorption, which differs several-fold in rate between the two phages. Morphologically, these and other pneumococcal phages are similar to coliphage lambda but with a longer tail and tail fiber. Upon UV inactivation, ω3 and ω8 have D 37 values of 33 and 55 J/m 2 , respectively, and each shows multiplicity reactivation. A total of 13 ts mutants have been isolated from the two phages, representing only two complementation groups; complementation and recombination occur between ω3 and ω8 mutants. Both phages provoke high-titer antisera with extensive cross-reactivity against a number of newly isolated pneumococcal phages

  3. Characterizing RecA-independent induction of Shiga toxin2-encoding phages by EDTA treatment.

    Directory of Open Access Journals (Sweden)

    Lejla Imamovic

    Full Text Available BACKGROUND: The bacteriophage life cycle has an important role in Shiga toxin (Stx expression. The induction of Shiga toxin-encoding phages (Stx phages increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. METHODOLOGY/PRINCIPAL FINDINGS: The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg(2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. CONCLUSIONS/SIGNIFICANCE: Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC and in the emergence of new pathogenic strains.

  4. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    International Nuclear Information System (INIS)

    Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun

    2015-01-01

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V 2 O 5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V 2 O 5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V 2 O 5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V x O x composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V 2 O 5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing

  5. Stochasticity in the Expression of LamB and its Affect on λ phage Infection

    Science.gov (United States)

    Chapman, Emily; Wu, Xiao-Lun

    2006-03-01

    λ phage binds to E. Coli's lamB protein and injects its DNA into the cell. The phage quickly replicates and after a latent period the bacteria bursts, emitting mature phages. We developed a mathematical model based on the known physical events that occur when a λ phage infects an E.Coli cell. The results of these models predict that the bacteria and phage populations become extinct unless the parameters of the model are very finely tuned, which is untrue in the nature. The lamB protein is part of the maltose regulon and can be repressed to minimal levels when grown in the absence of inducer. Therefore, a cell that is not expressing any lamB protein at that moment is resistant against phage infection. We studied the dynamic relationship between λ phage and E. Coli when the concentration of phage greatly outnumbers the concentration of bacteria. We study how the stochasticity of the expression of lamB affects the percentage of cells that the λ phage infects. We show that even in the case when the maltose regulon is fully induced a percentage of cells continue to persist against phage infection.

  6. Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.

    Science.gov (United States)

    Hobbs, Zack; Abedon, Stephen T

    2016-04-01

    Bacteriophages, or phages, are viruses of members of domain Bacteria. These viruses play numerous roles in shaping the diversity of microbial communities, with impact differing depending on what infection strategies specific phages employ. From an applied perspective, these especially are communities containing undesired or pathogenic bacteria that can be modified through phage-mediated bacterial biocontrol, that is, through phage therapy. Here we seek to categorize phages in terms of their infection strategies as well as review or suggest more descriptive, accurate or distinguishing terminology. Categories can be differentiated in terms of (1) whether or not virion release occurs (productive infections versus lysogeny, pseudolysogeny and/or the phage carrier state), (2) the means of virion release (lytic versus chronic release) and (3) the degree to which phages are genetically equipped to display lysogenic cycles (temperate versus non-temperate phages). We address in particular the use or overuse of what can be a somewhat equivocal phrase, 'Lytic or lysogenic', especially when employed as a means of distinguishing among phages types. We suggest that the implied dichotomy is inconsistent with both modern as well as historical understanding of phage biology. We consider, therefore, less ambiguous terminology for distinguishing between 'Lytic' versus 'Lysogenic' phage types. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2018-02-01

    Full Text Available Bacteriophages of Acidovorax citrulli, the causal agent of bacterial fruit blotch, were isolated from 39 watermelon, pumpkin, and cucumber leaf samples collected from various regions of Korea and tested against 18 A. citrulli strains. Among the six phages isolated, ACP17 forms the largest plaque, and exhibits the morphology of phages in the Myoviridae family with a head diameter of 100 ± 5 nm and tail length of 150 ± 5 nm. ACP17 has eclipse and latent periods of 25 ± 5 min and 50 ± 5 min, respectively, and a burst size of 120. The genome of ACP17 is 156,281 base pairs with a G + C content of 58.7%, 263 open reading frames, and 4 transfer RNA genes. Blast search and phylogenetic analysis of the major capsid protein showed that ACP17 has limited homology to two Stentrophomonas phages, suggesting that ACP17 is a new type of Myoviridae isolated from A. citrulli.

  8. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    International Nuclear Information System (INIS)

    Mahony, Jennifer; Ainsworth, Stuart; Stockdale, Stephen; Sinderen, Douwe van

    2012-01-01

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.

  9. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, Jennifer, E-mail: j.mahony@ucc.ie [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Ainsworth, Stuart; Stockdale, Stephen [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Sinderen, Douwe van, E-mail: d.vansinderen@ucc.ie [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Western Road, Cork (Ireland)

    2012-12-20

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.

  10. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  11. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh

    International Nuclear Information System (INIS)

    Sarker, Shafiqul Alam; McCallin, Shawna; Barretto, Caroline; Berger, Bernard; Pittet, Anne-Cécile; Sultana, Shamima; Krause, Lutz; Huq, Sayeda; Bibiloni, Rodrigo; Bruttin, Anne; Reuteler, Gloria; Brüssow, Harald

    2012-01-01

    The genomic diversity of 99 T4-like coliphages was investigated by sequencing an equimolar mixture with Illumina technology and screening them against different databases for horizontal gene transfer and undesired genes. A 9-phage cocktail was given to 15 healthy adults from Bangladesh at a dose of 3×10 9 and 3×10 7 plaque-forming units and placebo respectively. Phages were detected in 64% of the stool samples when subjects were treated with higher titer phage, compared to 30% and 28% with lower-titer phage and placebo, respectively. No Escherichia coli was present in initial stool samples, and no amplification of phage was observed. One percent of the administered oral phage was recovered from the feces. No adverse events were observed by self-report, clinical examination, or from laboratory tests for liver, kidney, and hematology function. No impact of oral phage was seen on the fecal microbiota composition with respect to bacterial 16S rRNA from stool.

  12. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Shafiqul Alam, E-mail: sasarker@icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); McCallin, Shawna; Barretto, Caroline [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Berger, Bernard, E-mail: bernard.berger@rdls.nestle.com [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Pittet, Anne-Cecile [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Sultana, Shamima, E-mail: shamima@icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); Krause, Lutz, E-mail: ltz.krause@gmail.com [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Huq, Sayeda, E-mail: sayeeda@mail.icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); Bibiloni, Rodrigo, E-mail: Rodrigo.Bibiloni@agresearch.co.nz [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Bruttin, Anne, E-mail: anne.bruttin@rdls.nestle.com [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Reuteler, Gloria, E-mail: gloria.reuteler@rdls.nestle.com [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Bruessow, Harald, E-mail: harald.bruessow@rdls.nestle.com [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)

    2012-12-20

    The genomic diversity of 99 T4-like coliphages was investigated by sequencing an equimolar mixture with Illumina technology and screening them against different databases for horizontal gene transfer and undesired genes. A 9-phage cocktail was given to 15 healthy adults from Bangladesh at a dose of 3 Multiplication-Sign 10{sup 9} and 3 Multiplication-Sign 10{sup 7} plaque-forming units and placebo respectively. Phages were detected in 64% of the stool samples when subjects were treated with higher titer phage, compared to 30% and 28% with lower-titer phage and placebo, respectively. No Escherichia coli was present in initial stool samples, and no amplification of phage was observed. One percent of the administered oral phage was recovered from the feces. No adverse events were observed by self-report, clinical examination, or from laboratory tests for liver, kidney, and hematology function. No impact of oral phage was seen on the fecal microbiota composition with respect to bacterial 16S rRNA from stool.

  13. Phage morphology recapitulates phylogeny: the comparative genomics of a new group of myoviruses.

    Directory of Open Access Journals (Sweden)

    André M Comeau

    Full Text Available Among dsDNA tailed bacteriophages (Caudovirales, members of the Myoviridae family have the most sophisticated virion design that includes a complex contractile tail structure. The Myoviridae generally have larger genomes than the other phage families. Relatively few "dwarf" myoviruses, those with a genome size of less than 50 kb such as those of the Mu group, have been analyzed in extenso. Here we report on the genome sequencing and morphological characterization of a new group of such phages that infect a diverse range of Proteobacteria, namely Aeromonas salmonicida phage 56, Vibrio cholerae phages 138 and CP-T1, Bdellovibrio phage φ1422, and Pectobacterium carotovorum phage ZF40. This group of dwarf myoviruses shares an identical virion morphology, characterized by usually short contractile tails, and have genome sizes of approximately 45 kb. Although their genome sequences are variable in their lysogeny, replication, and host adaption modules, presumably reflecting differing lifestyles and hosts, their structural and morphogenesis modules have been evolutionarily constrained by their virion morphology. Comparative genomic analysis reveals that these phages, along with related prophage genomes, form a new coherent group within the Myoviridae. The results presented in this communication support the hypothesis that the diversity of phages may be more structured than generally believed and that the innumerable phages in the biosphere all belong to discrete lineages or families.

  14. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael; Baik, Seungyun [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Jeon, Hojeong; Kim, Yuchan [Center for Biomaterials, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jungtae [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Kim, Young Jun, E-mail: youngjunkim@kist-europe.de [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany)

    2015-05-15

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V{sub 2}O{sub 5} precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V{sub 2}O{sub 5} precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V{sub 2}O{sub 5} precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V{sub x}O{sub x} composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V{sub 2}O{sub 5} composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure

  15. The True Story and Advantages of RNA Phage Capsids as Nanotools.

    Science.gov (United States)

    Pumpens, Paul; Renhofa, Regina; Dishlers, Andris; Kozlovska, Tatjana; Ose, Velta; Pushko, Peter; Tars, Kaspars; Grens, Elmars; Bachmann, Martin F

    2016-01-01

    RNA phages are often used as prototypes for modern recombinant virus-like particle (VLP) technologies. Icosahedral RNA phage VLPs can be formed from coat proteins (CPs) and are efficiently produced in bacteria and yeast. Both genetic fusion and chemical coupling have been successfully used for the production of numerous chimeras based on RNA phage VLPs. In this review, we describe advances in RNA phage VLP technology along with the history of the Leviviridae family, including its taxonomical organization, genomic structure, and important role in the development of molecular biology. Comparative 3D structures of different RNA phage VLPs are used to explain the level of VLP tolerance to foreign elements displayed on VLP surfaces. We also summarize data that demonstrate the ability of CPs to tolerate different organic (peptides, oligonucleotides, and carbohydrates) and inorganic (metal ions) compounds either chemically coupled or noncovalently added to the outer and/or inner surfaces of VLPs. Finally, we present lists of nanotechnological RNA phage VLP applications, such as experimental vaccines constructed by genetic fusion and chemical coupling methodologies, nanocontainers for targeted drug delivery, and bioimaging tools. © 2016 S. Karger AG, Basel.

  16. Recovery of phage lambda from ultraviolet damage

    International Nuclear Information System (INIS)

    Devoret, R.; Blanco, M.; George, J.; Radman, M.

    1975-01-01

    Recovery of phage lambda from ultraviolet damage can occur, in the dark, through three types of repair processes as defined by microbiological tests: host-cell reactivation, prophage reactivation, and uv reactivation. This paper reviews the properties of the three repair processes, analyzes their dependence on the functioning of bacterial and phage genes, and discusses their relationship. Progress in the understanding of the molecular mechanisms underlying the three repair processes has been relatively slow, particularly for uv reactivation. It has been shown that host-cell reactivation is due to pyrimidine dimer excision and that prophage reactivation is due to genetic recombination (prereplicative). We provide evidence showing that neither of these mechanisms accounts for uv reactivation of phage lambda. Furthermore, uv reactivation differs from the other repair processes in that it is inducible and error-prone. Whether uv-damaged bacterial DNA is subject to a similar repair process is still an open question

  17. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  18. Phage Display Breast Carcinoma cDNA Libraries: Isolation of Clones Which Specifically Bind to Membrane Glycoproteins, Mucins, and Endothelial Cell Surface

    National Research Council Canada - National Science Library

    Yamamoto, Fumiichiro

    2000-01-01

    .... Using blood- group H-expressing glycoprotein fraction as bait, we observed enrichment of phage clones expressing sequences from galectin-3, a lectin with an affinity with the blood-group substance...

  19. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria.

    Science.gov (United States)

    Ghai, Rohit; Mehrshad, Maliheh; Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco

    2017-01-01

    Low-GC Actinobacteria are among the most abundant and widespread microbes in freshwaters and have largely resisted all cultivation efforts. Consequently, their phages have remained totally unknown. In this work, we have used deep metagenomic sequencing to assemble eight complete genomes of the first tailed phages that infect freshwater Actinobacteria. Their genomes encode the actinobacterial-specific transcription factor whiB, frequently found in mycobacteriophages and also in phages infecting marine pelagic Actinobacteria. Its presence suggests a common and widespread strategy of modulation of host transcriptional machinery upon infection via this transcriptional switch. We present evidence that some whiB-carrying phages infect the acI lineage of Actinobacteria. At least one of them encodes the ADP-ribosylating component of the widespread bacterial AB toxins family (for example, clostridial toxin). We posit that the presence of this toxin reflects a 'trojan horse' strategy, providing protection at the population level to the abundant host microbes against eukaryotic predators.

  20. Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages.

    Science.gov (United States)

    Cowley, Lauren A; Beckett, Stephen J; Chase-Topping, Margo; Perry, Neil; Dallman, Tim J; Gally, David L; Jenkins, Claire

    2015-04-08

    Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles. The typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types. Sequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type.

  1. Bacteriophage Isolated from Sewage Eliminates and Prevents the Establishment of Escherichia Coli Biofilm

    Directory of Open Access Journals (Sweden)

    Karla Veloso Gonçalves Ribeiro

    2018-03-01

    Full Text Available Purpose: Biofilm growth exerts a negative impact on industry and health, necessitating the development of strategies to control. The objective of this work was study the lytic activity of the phage isolated from the sewage network in the formation and degradation of Escherichia coli biofilms. Methods: E. coli cultures were incubated in 96-well polystyrene microplates under controlled conditions to evaluate the biofilm formation. The E. coli cultures and established biofilms were treated with the suspensions of the vB_EcoM-UFV017 (EcoM017 bacteriophage obtained from sewage for 24 hours. The E. coli bacterial density was measured using absorbance at 600 nm and the biofilms were measured by crystal violet staining. Polystyrene coupons were used as support for Scanning Electron Microscopy and Confocal Microscopy to evaluate biofilm formation. Results: The E. coli strains formed biofilms in polystyrene microplates after 48 hours’ incubation. The highest EcoM017 phage titer, in the prevention and degradation experiments, reduced the bacterial growth and the quantity of biofilm formed by E. coli in 90.0% and 87.5%, respectively. The minimum dose capable of reducing the biofilms of this bacterium was 101 PFU/mL after 24 hours. The preformed E. coli biofilm mass was reduced 79% post exposure to the phage in the degradation assay. Microscopic analysis confirmed the results obtained in the plates assays. Conclusion: The EcoM017 phage prevented biofilm formation and degraded the E. coli-established ones. The EcoM017 phage isolated from sewage can reduce bacterial attachment and lyse the E. coli associated biofilm cells, offering biotechnological potential applicability for this phage.

  2. Production of a phage-displayed single chain variable fragment ...

    African Journals Online (AJOL)

    Purpose: To develop specific single chain variable fragments (scFv) against infectious bursal disease virus (IBDV) via phage display technology. Methods: Purified viruses were initially applied for iterative panning rounds of scFv phage display libraries. The binding ability of the selected scFv antibody fragments against the ...

  3. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    Directory of Open Access Journals (Sweden)

    Andrey A Filippov

    Full Text Available BACKGROUND: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. CONCLUSIONS/SIGNIFICANCE: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  4. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay.

    Science.gov (United States)

    Qiu, Yu-Lou; He, Qing-Hua; Xu, Yang; Bhunia, Arun K; Tu, Zhui; Chen, Bo; Liu, Yuan-Yuan

    2015-08-05

    In this study, using mycotoxin deoxynivalenol (DON) as a model hapten, we developed a nanobody-based environmental friendly immunoassay for sensitive detection of DON. Two nanobodies (N-28 and N-31) which bind to anti-DON monoclonal antibody (MAb) were isolated from a naive phage display library. These nanobodies are clonable, thermally stable and mycotoxin-free products and can be served as coating antigen mimetics in heterologous immunoassay. The half inhibition concentration (IC50) of the immunoassay developed with N-28 and N-31 was 8.77 ± 0.41 ng mL(-1) and 19.97 ± 0.84 ng mL(-1), respectively, which were 18- and 8-fold more sensitive than the conventional coating antigen (DON-BSA) based immunoassay. In order to better understand the molecular mechanism of antigen mimicry by nanobody, the 3D structure of "nanobody (N-28) - anti-DON MAb" complex was presented and verified by molecular modeling and alanine-scanning mutagenesis. The results showed that hydrogen bond and hydrophobic interaction formed between Thr 102 - Ser 106 of N-28 and CDR H3 residues of anti-DON antibody may contribute to their binding. This novel concept of enhancing sensitivity of immunoassay for DON based on nanobody may provide potential applications in a general method for immunoassay of various food chemical contaminants. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Treatment of in vitro enterohemorrhagic Escherichia coli infection using phage and probiotics.

    Science.gov (United States)

    Dini, C; Bolla, P A; de Urraza, P J

    2016-07-01

    To assay the combination of phage and probiotics against EHEC in vitro on infected Hep-2 cells. Phage and probiotics treatments on EHEC O157:H7-infected Hep-2 cells were assayed individually or combined. The effect of freeze-drying on phage and probiotic antimicrobial activity was also studied. While treatment with phage alone increased cell detachment caused by EHEC infection, the treatments with MM alone or in combination with phage proved to effectively diminish cell damage caused by EHEC infection. Combined treatment showed a decrease in apoptotic cell count of 57·3% and a reduction in EHEC adhesion to cell monolayer of 1·2 log CFU. The simultaneous use of phage and probiotics showed no antagonistic effect, and freeze-drying did not affect their antipathogenic activity. The combination of phage and probiotics has great potential for reducing the number of pathogens adhered to epithelial cells during EHEC O157:H7 infection and attenuating the cytotoxic effect derived from it. Further in vivo assays are needed for assessing the actual effectiveness of the treatment. This study presents a freeze-dried formulation of phage and probiotics capable of controlling EHEC infections and reducing epithelial cell damage in vitro. © 2016 The Society for Applied Microbiology.

  6. Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain.

    Science.gov (United States)

    Zago, Miriam; Orrù, Luigi; Rossetti, Lia; Lamontanara, Antonella; Fornasari, Maria Emanuela; Bonvini, Barbara; Meucci, Aurora; Carminati, Domenico; Cattivelli, Luigi; Giraffa, Giorgio

    2017-09-01

    In this study the presence and functionality of phage defence mechanisms in Lactobacillus helveticus ATCC 10386, a strain of dairy origin which is sensitive to ΦLh56, were investigated. After exposure of ATCC 10386 to ΦLh56, the whole-genome sequences of ATCC 10386 and of a phage-resistant derivative (LhM3) were compared. LhM3 showed deletions in the S-layer protein and a higher expression of the genes involved in the restriction/modification (R/M) system. Genetic data were substantiated by measurements of bacteriophage adsorption rates, efficiency of plaquing, cell wall protein size and by gene expression analysis. In LhM3 two phage resistance mechanisms, the inhibition of phage adsorption and the upregulation of Type I R/M genes, take place and explain its resistance to ΦLh56. Although present in both ATCC 10386 and LhM3 genomes, the CRISPR machinery did not seem to play a role in the phage resistance of LhM3. Overall, the natural selection of phage resistant strains resulted successful in detecting variants carrying multiple phage defence mechanisms in L. helveticus. The concurrent presence of multiple phage-resistance systems should provide starter strains with increased fitness and robustness in dairy ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species

    DEFF Research Database (Denmark)

    Szymczak, Paula; Janzen, Thomas; Neves, Ana Rute

    2017-01-01

    lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed....... thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had...... the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires...

  8. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by 'Dickeya solani'.

    Directory of Open Access Journals (Sweden)

    Evelien M Adriaenssens

    Full Text Available The bacterium 'Dickeya solani', an aggressive biovar 3 variant of Dickeya dianthicola, causes rotting and blackleg in potato. To control this pathogen using bacteriophage therapy, we isolated and characterized two closely related and specific bacteriophages, vB_DsoM_LIMEstone1 and vB_DsoM_LIMEstone2. The LIMEstone phages have a T4-related genome organization and share DNA similarity with Salmonella phage ViI. Microbiological and molecular characterization of the phages deemed them suitable and promising for use in phage therapy. The phages reduced disease incidence and severity on potato tubers in laboratory assays. In addition, in a field trial of potato tubers, when infected with 'Dickeya solani', the experimental phage treatment resulted in a higher yield. These results form the basis for the development of a bacteriophage-based biocontrol of potato plants and tubers as an alternative for the use of antibiotics.

  9. Phage Therapy Approaches to Reducing Pathogen Persistence and Transmission in Animal Production Environments: Opportunities and Challenges.

    Science.gov (United States)

    Colavecchio, Anna; Goodridge, Lawrence D

    2017-06-01

    The era of genomics has allowed for characterization of phages for use as antimicrobials to treat animal infections with a level of precision never before realized. As more research in phage therapy has been conducted, several advantages of phage therapy have been realized, including the ubiquitous nature, specificity, prevalence in the biosphere, and low inherent toxicity of phages, which makes them a safe and sustainable technology for control of animal diseases. These unique qualities of phages have led to several opportunities with respect to emerging trends in infectious disease treatment. However, the opportunities are tempered by several challenges to the successful implementation of phage therapy, such as the fact that an individual phage can only infect one or a few bacterial strains, meaning that large numbers of different phages will likely be needed to treat infections caused by multiple species of bacteria. In addition, phages are only effective if enough of them can reach the site of bacterial colonization, but clearance by the immune system upon introduction to the animal is a reality that must be overcome. Finally, bacterial resistance to the phages may develop, resulting in treatment failure. Even a successful phage infection and lysis of its host has consequences, because large amounts of endotoxin are released upon lysis of Gram-negative bacteria, which can lead to local and systemic complications. Overcoming these challenges will require careful design and development of phage cocktails, including comprehensive characterization of phage host range and assessment of immunological risks associated with phage treatment.

  10. Isolation and characteristics of minute plaque forming mutant of cyanophage AS-1

    International Nuclear Information System (INIS)

    Amla, D.V.

    1981-01-01

    Minute plaque forming mutant (m) of cyanophage AS-1 infecting unicellular blue-green algae was isolated spontaneously and after mutagenic treatment. Compared to wild type m mutant formed small plaques, adsorption rate was slow and the burst-size was significantly decreased with prolonged eclipse and latent period. The plaque forming ability of mutant phage was sensitive to pH, heat, EDTA shock, distilled water and photosensitisation with acriflavine whereas ultraviolet sensitivity of free and intracellular phage was identical to the parent. The spontaneous reversion frequencies of mutant phage to wild type were between 10 -5 to 10 -3 and appeared to be clonal property. Reversion studies suggested possibilities of frame-shift or base-pair substitution for m mutation. (author)

  11. Serovars of Salmonella isolated from Danish turkeys between 1995 and 2000 and their antimicrobial resistance

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hansen, H.C.; Jørgensen, J.C.

    2002-01-01

    , florfenicol, or amoxycillin with clavulanic acid, only 24 isolates were resistant to two or more compounds in various combinations of up to six compounds; one Salmonella Havana isolate was resistant to six compounds. Six isolates were serovar Typhimurium, but none of them belonged to phage type DT104....

  12. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe.

    Science.gov (United States)

    Fillol-Salom, Alfred; Martínez-Rubio, Roser; Abdulrahman, Rezheen F; Chen, John; Davies, Robert; Penadés, José R

    2018-06-06

    Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a universal class of mobile genetic elements.

  13. Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae.

    Science.gov (United States)

    Campos, Javier; Martínez, Eriel; Marrero, Karen; Silva, Yussuan; Rodríguez, Boris L; Suzarte, Edith; Ledón, Talena; Fando, Rafael

    2003-12-01

    The main virulence factor of Vibrio cholerae, the cholera toxin, is encoded by the ctxAB operon, which is contained in the genome of the lysogenic filamentous phage CTX phi. This phage transmits ctxAB genes between V. cholerae bacterial populations that express toxin-coregulated pilus (TCP), the CTX phi receptor. In investigating new forms of ctxAB transmission, we found that V. cholerae filamentous phage VGJ phi, which uses the mannose-sensitive hemagglutinin (MSHA) pilus as a receptor, transmits CTX phi or its satellite phage RS1 by an efficient and highly specific TCP-independent mechanism. This is a novel type of specialized transduction consisting in the site-specific cointegration of VGJ phi and CTX phi (or RS1) replicative forms to produce a single hybrid molecule, which generates a single-stranded DNA hybrid genome that is packaged into hybrid viral particles designated HybP phi (for the VGJ phi/CTX phi hybrid) and HybRS phi (for the VGJ phi/RS1 hybrid). The hybrid phages replicate by using the VGJ phi replicating functions and use the VGJ phi capsid, retaining the ability to infect via MSHA. The hybrid phages infect most tested strains more efficiently than CTX phi, even under in vitro optimal conditions for TCP expression. Infection and lysogenization with HybP phi revert the V. cholerae live attenuated vaccine strain 1333 to virulence. Our results reinforce that TCP is not indispensable for the acquisition of CTX phi. Thus, we discuss an alternative to the current accepted evolutionary model for the emergence of new toxigenic strains of V. cholerae and the importance of our findings for the development of an environmentally safer live attenuated cholera vaccine.

  14. Isolation and characterization of specific bacteriophage Va1 to Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Carla Fernández Espinel

    2017-04-01

    Full Text Available Vibrio alginolyticus is associated with diseases in aquaculture. The misuse of antibiotics has led to the search for alternatives in the treatment of bacterial diseases, among them the application of bacteriophages that infect and destroy bacteria selectively. In this way, a highly lytic V. alginolyticus bacteriophage, termed Va1, was isolated, with the aim to evaluate its physical chemical parameters. For this purpose, different temperature, pH, chloroform exposure and host range conditions were evaluated. The temperature stability of phage Va1 showed higher titers at 20 and 30 °C decreasing from 40 °C. With respect to pH, the highest titers for the bacteriophage were between 5 and 8, and chloroform exposure reduced viability of the Va1 phage by 25%. The one-step curve determined that the latency period and the burst size were 20 minutes and 192 PFU / infective center respectively. Under the transmission electron microscope, the Va1 phage showed an icosahedral head and a non-contractile tail, belonging to the Podoviridae family. In conclusion, Va1 phage presents potential characteristics for use in phage therapy.

  15. Lactococcus bacteriophages isolated from whey and their effects on commercial lactic starters

    Directory of Open Access Journals (Sweden)

    Maria Raquel de Godoy Oriani

    2004-08-01

    Full Text Available The incidence of phages of lactic acid bacteria in milk industry and their effects on acidification ability of commercial lactic acid starters were studied. Cheese whey samples (33 samples were collected from 17 factories. A total of 16 bacteriophages were isolated (12 specific for Lactococcus lactis, 3 for L. diacetylactis and one capable of lysing both species. The results showed that 10% reduction in acidification tests was not good indication of phage in the sample. The majority of samples showed reduction higher than 10%, although only 65% were phage positive. The isolated phages were quite stable and showed no reduction in infectivity even after 20 daily replications. A pool of bacteriophages was prepared from isolates and inoculated in 12 commercial lactic starters. After 8 hours of incubation, only 2 showed reduced acidification. Bacterial strains isolated from commercial starters were tested regarding the phage resistance. Considerable difference in phage sensitivity was observed among different starters (BD, D, O and L. diacetylactis. Five bacteriophages showed no infectivity on any isolates but one was infective for most of isolates.Para ampliar conhecimentos sobre a incidência de bacteriófagos de bactérias lácticas na indústria de leite do Estado de São Paulo e a sua influência sobre a capacidade acidificante de fermentos lácticos disponíveis em nosso mercado, o presente trabalho foi conduzido com o intuito de esclarecer a real situação dos laticínios no Estado. Foram coletadas 33 amostras de soro de queijo em 17 laticínios. Foram isolados 16 bacteriófagos, 12 específicos para Lactococcus lactis, 3 para L. diacetylactis e um capaz de lisar ambos os microrganismos. Os experimentos mostraram que, uma diminuição de 10% na acidez em presença de soro suspeito, ao contrário do estabelecido na literatura, não reflete a veracidade da presença de bacteriófagos na amostra, uma vez que a maioria apresentou redução acima

  16. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Directory of Open Access Journals (Sweden)

    Roja Rani Pallavali

    Full Text Available Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS, Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100% were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence

  17. Reduced disease in black abalone following mass mortality: Phage therapy and natural selection

    Science.gov (United States)

    VanBlaricom, Glenn R.

    2014-01-01

    Black abalone, Haliotis cracherodii, populations along the NE Pacific ocean have declined due to the rickettsial disease withering syndrome (WS). Natural recovery on San Nicolas Island (SNI) of Southern California suggested the development of resistance in island populations. Experimental challenges in one treatment demonstrated that progeny of disease-selected black abalone from SNI survived better than did those from naïve black abalone from Carmel Point in mainland coastal central California. Unexpectedly, the presence of a newly observed bacteriophage infecting the WS rickettsia (WS-RLO) had strong effects on the survival of infected abalone. Specifically, presence of phage-infected RLO (RLOv) reduced the host response to infection, RLO infection loads, and associated mortality. These data suggest that the black abalone: WS-RLO relationship is evolving through dual host mechanisms of resistance to RLO infection in the digestive gland via tolerance to infection in the primary target tissue (the post-esophagus) coupled with reduced pathogenicity of the WS-RLO by phage infection, which effectively reduces the infection load in the primary target tissue by half. Sea surface temperature patterns off southern California, associated with a recent hiatus in global-scale ocean warming, do not appear to be a sufficient explanation for survival patterns in SNI black abalone. These data highlight the potential for natural recovery of abalone populations over time and that further understanding of mechanisms governing host–parasite relationships will better enable us to manage declining populations.

  18. Reduced disease in black abalone following mass mortality: Phage therapy and natural selection

    Directory of Open Access Journals (Sweden)

    Carolyn S Friedman

    2014-03-01

    Full Text Available Black abalone, Haliotis cracherodii, populations along the NE Pacific ocean have declined due to the rickettsial disease withering syndrome (WS. Natural recovery on San Nicolas Island (SNI off Southern California suggested the development of resistance in island populations. Experimental challenges in one treatment demonstrated that progeny of disease-selected black abalone from SNI survived better than did those from naïve black abalone from Carmel Point (CP in mainland coastal central California. Unexpectedly, the presence of a newly observed bacteriophage infecting the WS rickettsia (WS-RLO had strong effects on the survival of infected abalone. Specifically, presence of phage-infected RLO (RLOv reduced the host response to infection, RLO infection loads, and associated mortality. These data suggest that the black abalone: WS-RLO relationship is evolving through dual host mechanisms of resistance to RLO infection in the digestive gland via tolerance to infection in the primary target tissue (the post-esophagus coupled with reduced pathogenicity of the WS-RLO by phage infection, which effectively reduces the infection load in the primary target tissue by half. Sea surface temperature patterns off southern California, associated with a recent hiatus in global-scale ocean warming, do not appear to be a sufficient explanation for survival patterns in SNI black abalone. These data highlight the potential for natural recovery of abalone populations over time and that further understanding of mechanisms governing host-parasite relationships will better enable us to manage declining populations.

  19. Reduced disease in black abalone following mass mortality: phage therapy and natural selection.

    Science.gov (United States)

    Friedman, Carolyn S; Wight, Nathan; Crosson, Lisa M; Vanblaricom, Glenn R; Lafferty, Kevin D

    2014-01-01

    Black abalone, Haliotis cracherodii, populations along the NE Pacific ocean have declined due to the rickettsial disease withering syndrome (WS). Natural recovery on San Nicolas Island (SNI) of Southern California suggested the development of resistance in island populations. Experimental challenges in one treatment demonstrated that progeny of disease-selected black abalone from SNI survived better than did those from naïve black abalone from Carmel Point in mainland coastal central California. Unexpectedly, the presence of a newly observed bacteriophage infecting the WS rickettsia (WS-RLO) had strong effects on the survival of infected abalone. Specifically, presence of phage-infected RLO (RLOv) reduced the host response to infection, RLO infection loads, and associated mortality. These data suggest that the black abalone: WS-RLO relationship is evolving through dual host mechanisms of resistance to RLO infection in the digestive gland via tolerance to infection in the primary target tissue (the post-esophagus) coupled with reduced pathogenicity of the WS-RLO by phage infection, which effectively reduces the infection load in the primary target tissue by half. Sea surface temperature patterns off southern California, associated with a recent hiatus in global-scale ocean warming, do not appear to be a sufficient explanation for survival patterns in SNI black abalone. These data highlight the potential for natural recovery of abalone populations over time and that further understanding of mechanisms governing host-parasite relationships will better enable us to manage declining populations.

  20. Phage FR38 Treatment on Sprague Dawley Rat Inferred from Blood Parameters and Organ Systems

    Directory of Open Access Journals (Sweden)

    DEWI SARTIKA

    2012-09-01

    Full Text Available The ability of phage FR38 to lysis indigenous Salmonella P38 from feces of diarrheal patient has been studied. However, effects of phage FR38 on organ system were not revealed as yet. This study was conducted to observe the effect of phage FR38 on blood chemistry, kidney functions, and liver functions. Twelve Sprague-Dawley rats were used as a model for this study that were divided into two groups; (i control and (ii treated group with phage FR38. For treated phage group, each rat was administered by 5 ml/kg bw of 1.59•107 pfu/ml of phage intragastric. The blood parameters were analysed on day 16. The results revealed that body and organs weight, erythrocyte, hematocrit, hemoglobin, leukocyte, total protein, creatinine, SGOT, and SGPT of phage treatment rats were not significantly different with the control rats on day 16 (P > 0.05. Therefore, this study showed was no effect of phage FR38 on body weight, blood chemistry, kidney and liver functions of the rat (P > 0.05.

  1. Phage FR38 Treatment on Sprague Dawley Rat Inferred from Blood Parameters and Organ Systems

    Directory of Open Access Journals (Sweden)

    DEWI SARTIKA

    2012-09-01

    Full Text Available The ability of phage FR38 to lysis indigenous Salmonella P38 from feces of diarrheal patient has been studied. However, effects of phage FR38 on organ system were not revealed as yet. This study was conducted to observe the effect of phage FR38 on blood chemistry, kidney functions, and liver functions. Twelve Sprague-Dawley rats were used as a model for this study that were divided into two groups; (i control and (ii treated group with phage FR38. For treated phage group, each rat was administered by 5 ml/kg bw of 1.59-107 pfu/ml of phage intragastric. The blood parameters were analysed on day 16. The results revealed that body and organs weight, erythrocyte, hematocrit, hemoglobin, leukocyte, total protein, creatinine, SGOT, and SGPT of phage treatment rats were not significantly different with the control rats on day 16 (P > 0.05. Therefore, this study showed was no effect of phage FR38 on body weight, blood chemistry, kidney and liver functions of the rat (P > 0.05.

  2. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    electrophoresis (PFGE) using the restriction enzyme Xba I, Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance...... patterns. Seven different multiresistant clones were identified, The most common clones were four isolates of DT104 and three isolates of DT193, TWO Of the three S typhimurium DT104 from 1994 and 1995 were sensitive to all the antimicrobials tested whereas the remaining isolate from 1994 was resistant......A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S...

  3. Phenotypic resistance and the dynamics of bacterial escape from phage control

    DEFF Research Database (Denmark)

    Bull, James J.; Vegge, Christina Skovgaard; Schmerer, Matthew

    2014-01-01

    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages...... mathematical models of these processes and suggest how different types of this 'phenotypic' resistance may be elucidated. We offer preliminary in vitro studies of a previously characterized E. coli model system and Campylobacter jejuni illustrating apparent phenotypic resistance. As phenotypic resistance may...

  4. Analysis of Lactobacillus Products for Phages and Bacteriocins That Inhibit Vaginal Lactobacilli

    Directory of Open Access Journals (Sweden)

    Lin Tao

    1997-01-01

    Full Text Available Objective: Bacterial vaginosis is associated with an unexplained loss of vaginal lactobacilli. Previously, we have identified certain vaginal lactobacilli-released phages that can inhibit in vitro other vaginal lactobacilli. However, there is no apparent route for phages to be transmitted among women. The purpose of this study was to identify whether certain Lactobacillus products commonly used by women release phages or bacteriocins that can inhibit vaginal lactobacilli.

  5. Identification of operator sites of the CI repressor of phage TP901-1: evolutionary link to other phages

    International Nuclear Information System (INIS)

    Johansen, Annette H.; Broendsted, Lone; Hammer, Karin

    2003-01-01

    The repressor encoded by the cI gene of the temperate Lactococcus lactis subsp. cremoris bacteriophage TP901-1 has been purified. Gel-retardation and footprinting analyses identified three palindromic operator sites (O R , O L , and O D ). The operator site O R is located between the two divergent early promoters P R and P L , O L overlaps the transcriptional start of the lytic P L promoter, and O D is located downstream of the mor gene, the first gene in the lytic gene cluster. The function of O L was verified by mutational analysis. Binding was found to be specific and cooperative. Multimeric forms of the repressor were observed, thus indicating that the repressor may bind simultaneously to all three operator sites. Inverted repeats with homology to the operator sites of TP901-1 were identified in phage genomes encoding repressors homologous to CI of TP901-1. Interestingly, the locations of these repeats on the phage genomes correspond to those found in TP901-1, indicating that the same system of cooperative repression of early phage promoters has been inherited by modular evolution

  6. Transport of Escherichia coli phage through saturated porous media considering managed aquifer recharge.

    Science.gov (United States)

    Zhang, Wenjing; Li, Shuo; Wang, Shuang; Lei, Liancheng; Yu, Xipeng; Ma, Tianyi

    2018-03-01

    Virus is one of the most potentially harmful microorganisms in groundwater. In this paper, the effects of hydrodynamic and hydrogeochemical conditions on the transportation of the colloidal virus considering managed aquifer recharge were systematically investigated. Escherichia coli phage, vB_EcoM-ep3, has a broad host range and was able to lyse pathogenic Escherichia coli. Bacteriophage with low risk to infect human has been found extensively in the groundwater environment, so it is considered as a representative model of groundwater viruses. Laboratory studies were carried out to analyze the transport of the Escherichia coli phage under varying conditions of pH, ionic strength, cation valence, flow rate, porous media, and phosphate buffer concentration. The results indicated that decreasing the pH will increase the adsorption of Escherichia coli phage. Increasing the ionic strength, either Na + or Ca 2+ , will form negative condition for the migration of Escherichia coli phage. A comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca 2+ than monovalent Na + . As the flow rate increases, the release of Escherichia coli phage increases and the retention of Escherichia coli phage in the aquifer medium reduces. Changes in porous media had a significant effect on Escherichia coli phage migration. With increase of phosphate buffer concentration, the suspension stability and migration ability of Escherichia coli phage are both increased. Based on laboratory-scale column experiments, a one-dimensional transport model was established to quantitatively describe the virus transport in saturated porous medium.

  7. “French Phage Network”—Second Meeting Report

    Science.gov (United States)

    Torres-Barceló, Clara; Kaltz, Oliver; Froissart, Rémy; Gandon, Sylvain; Ginet, Nicolas; Ansaldi, Mireille

    2017-01-01

    The study of bacteriophages (viruses of bacteria) includes a variety of approaches, such as structural biology, genetics, ecology, and evolution, with increasingly important implications for therapeutic and industrial uses. Researchers working with phages in France have recently established a network to facilitate the exchange on complementary approaches, but also to engage new collaborations. Here, we provide a summary of the topics presented during the second meeting of the French Phage Network that took place in Marseille in November 2016. PMID:28430166

  8. Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2017-03-01

    Full Text Available In exploring bacterial resistance to bacteriophages, emphasis typically is placed on those mechanisms which completely prevent phage replication. Such resistance can be detected as extensive reductions in phage ability to form plaques, that is, reduced efficiency of plating. Mechanisms include restriction-modification systems, CRISPR/Cas systems, and abortive infection systems. Alternatively, phages may be reduced in their “vigor” when infecting certain bacterial hosts, that is, with phages displaying smaller burst sizes or extended latent periods rather than being outright inactivated. It is well known, as well, that most phages poorly infect bacteria that are less metabolically active. Extracellular polymers such as biofilm matrix material also may at least slow phage penetration to bacterial surfaces. Here I suggest that such “less-robust” mechanisms of resistance to bacteriophages could serve bacteria by slowing phage propagation within bacterial biofilms, that is, delaying phage impact on multiple bacteria rather than necessarily outright preventing such impact. Related bacteria, ones that are relatively near to infected bacteria, e.g., roughly 10+ µm away, consequently may be able to escape from biofilms with greater likelihood via standard dissemination-initiating mechanisms including erosion from biofilm surfaces or seeding dispersal/central hollowing. That is, given localized areas of phage infection, so long as phage spread can be reduced in rate from initial points of contact with susceptible bacteria, then bacterial survival may be enhanced due to bacteria metaphorically “running away” to more phage-free locations. Delay mechanisms—to the extent that they are less specific in terms of what phages are targeted—collectively could represent broader bacterial strategies of phage resistance versus outright phage killing, the latter especially as require specific, evolved molecular recognition of phage presence. The

  9. Aptamer-Phage Reporters for Ultrasensitive Lateral Flow Assays.

    Science.gov (United States)

    Adhikari, Meena; Strych, Ulrich; Kim, Jinsu; Goux, Heather; Dhamane, Sagar; Poongavanam, Mohan-Vivekanandan; Hagström, Anna E V; Kourentzi, Katerina; Conrad, Jacinta C; Willson, Richard C

    2015-12-01

    We introduce the modification of bacteriophage particles with aptamers for use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ∼100 times lower than those of previously reported IgE assays.

  10. Synergistic Interaction Between Phage Therapy and Antibiotics Clears Pseudomonas Aeruginosa Infection in Endocarditis and Reduces Virulence.

    Science.gov (United States)

    Oechslin, Frank; Piccardi, Philippe; Mancini, Stefano; Gabard, Jérôme; Moreillon, Philippe; Entenza, José M; Resch, Gregory; Que, Yok-Ai

    2017-03-01

    Increasing antibiotic resistance warrants therapeutic alternatives. Here we investigated the efficacy of bacteriophage-therapy (phage) alone or combined with antibiotics against experimental endocarditis (EE) due to Pseudomonas aeruginosa, an archetype of difficult-to-treat infection. In vitro fibrin clots and rats with aortic EE were treated with an antipseudomonas phage cocktail alone or combined with ciprofloxacin. Phage pharmacology, therapeutic efficacy, and resistance were determined. In vitro, single-dose phage therapy killed 7 log colony-forming units (CFUs)/g of fibrin clots in 6 hours. Phage-resistant mutants regrew after 24 hours but were prevented by combination with ciprofloxacin (2.5 × minimum inhibitory concentration). In vivo, single-dose phage therapy killed 2.5 log CFUs/g of vegetations in 6 hours (P 6 log CFUs/g of vegetations in 6 hours and successfully treating 64% (n = 7/11) of rats. Phage-resistant mutants emerged in vitro but not in vivo, most likely because resistant mutations affected bacterial surface determinants important for infectivity (eg, the pilT and galU genes involved in pilus motility and LPS formation). Single-dose phage therapy was active against P. aeruginosa EE and highly synergistic with ciprofloxacin. Phage-resistant mutants had impaired infectivity. Phage-therapy alone or combined with antibiotics merits further clinical consideration. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  11. Phage display as a promising approach for vaccine development

    OpenAIRE

    Aghebati-Maleki, Leili; Bakhshinejad, Babak; Baradaran, Behzad; Motallebnezhad, Morteza; Aghebati-Maleki, Ali; Nickho, Hamid; Yousefi, Mehdi; Majidi, Jafar

    2016-01-01

    Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mamm...

  12. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    Science.gov (United States)

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  13. Assessment of the microscreen phage-induction assay for screening hazardous wastes (1989)

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1989-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage Lambda in Escherichia coli WP2s(Lambda), was used to test 14 crude (unfractionated) hazardous industrial-waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons of the mutagenic activity of these waste samples in Salmonella and their ability to induce prophage Lambda indicate that the phage-induction assay was a more-sensitive indicator of genetic damage for this group of wastes. All but one of the wastes that were mutagenic to Salmonella were detected by the phage-induction assay, and 5 wastes not mutagenic to Salmonella were genetically active in the phage assay. The enhanced ability of the phage-induction assay to detect genotoxic activity may be related to the constituents comprising these waste samples. Partial chemical characterizations of the wastes showed high concentrations of carcinogenic metals, solvents, and chlorinated compounds, most of which are detected poorly by the Salmonella assay.

  14. Computational Modelling of Large Scale Phage Production Using a Two-Stage Batch Process

    Directory of Open Access Journals (Sweden)

    Konrad Krysiak-Baltyn

    2018-04-01

    Full Text Available Cost effective and scalable methods for phage production are required to meet an increasing demand for phage, as an alternative to antibiotics. Computational models can assist the optimization of such production processes. A model is developed here that can simulate the dynamics of phage population growth and production in a two-stage, self-cycling process. The model incorporates variable infection parameters as a function of bacterial growth rate and employs ordinary differential equations, allowing application to a setup with multiple reactors. The model provides simple cost estimates as a function of key operational parameters including substrate concentration, feed volume and cycling times. For the phage and bacteria pairing examined, costs and productivity varied by three orders of magnitude, with the lowest cost found to be most sensitive to the influent substrate concentration and low level setting in the first vessel. An example case study of phage production is also presented, showing how parameter values affect the production costs and estimating production times. The approach presented is flexible and can be used to optimize phage production at laboratory or factory scale by minimizing costs or maximizing productivity.

  15. Statistical optimization for enhanced yields of probiotic Bacillus coagulans and its phage resistant mutants followed by kinetic modelling of the process.

    Science.gov (United States)

    Pandey, Kavita R; Joshi, Chetan; Vakil, Babu V

    2016-01-01

    Probiotics are microorganisms which when administered in adequate amounts confer health benefits to the host. A leading pharmaceutical company producing Bacillus coagulans as a probiotic was facing the problem of recurring phage attacks. Two mutants viz. B. co PIII and B. co MIII that were isolated as phage resistant mutants after UV irradiation and MMS treatment of phage sensitive B. coagulans parental culture were characterized at functional and molecular level and were noted to have undergone interesting genetic changes. The non-specific genetic alterations induced by mutagenesis can also lead to alterations in cell performance. Hence, in the current study the parental strain and the two mutants were selected for shake flask optimization. Plackett-Burman design was used to select the significant culture variables affecting biomass production. Evolutionary operation method was applied for further optimization. The study showed wide variations in the nutritional requirements of phage resistant mutants, post exposure to mutagens. An increment of 150, 134 and 152 % was observed in the biomass productions of B. coagulans (parental type) and mutants B.co PIII and B.co MIII respectively, compared to the yield from one-factor-at-a-time technique. Using Logistic and modified Leudeking-Piret equations, biomass accumulation and substrate utilization efficiency of the bioprocess were determined. The experimental data was in agreement with the results predicted by statistical analysis and modelling. The developed model may be useful for controlling the growth and substrate consumption kinetics in large scale fermentation using B. coagulans .

  16. Use of lambda pMu bacteriophages to isolate lambda specialized transducing bacteriophages carrying genes for bacterial chemotaxis.

    Science.gov (United States)

    Kondoh, H; Paul, B R; Howe, M M

    1980-09-01

    A general method for constructing lambda specialized transducing phages is described. The method, which is potentially applicable to any gene of Escherichia coli, is based on using Mu DNA homology to direct the integration of a lambda pMu phage near the genes whose transduction is desired. With this method we isolated a lambda transducing phage carrying all 10 genes in the che gene cluster (map location, 41.5 to 42.5 min). The products of the cheA and tar genes were identified by using transducing phages with amber mutations in these genes. It was established that tar codes for methyl-accepting chemotaxis protein II (molecular weight, 62,000) and that cheA codes for two polypeptides (molecular weights, 76,000 and 66,000). Possible origins of the two cheA polypeptides are discussed.

  17. An improved plating assay for determination of phage titer | Yang ...

    African Journals Online (AJOL)

    In this study, an improved plating assay was developed for detection of the number of recombinant phage Cap-T7 present in a test solution at a certain dilution point by counting the plaque forming units. The data demonstrated that the improved plating assay is fast, useful, and convenient for the determination of the phage ...

  18. Complete Genome Sequences of Mycobacteriophages Clautastrophe, Kingsolomon, Krypton555, and Nicholas

    OpenAIRE

    Chung, Hui-Min; D’Elia, Tom; Ross, Joseph F.; Alvarado, Samuel M.; Brantley, Molly-Catherine; Bricker, Lydia P.; Butler, Courtney R.; Crist, Carson; Dane, Julia M.; Farran, Brett W.; Hobbs, Sierra; Lapak, Michelle; Lovell, Conner; Ludergnani, Nicholas; McMullen, Allison

    2017-01-01

    ABSTRACT We report here the complete genome sequences of four subcluster L3 mycobacteriophages newly isolated from soil samples, using Mycobacterium smegmatis mc2155 as the host. Comparative genomic analyses with four previously described subcluster L3 phages reveal strong nucleotide similarity and gene conservation, with several large insertions/deletions near their right genome ends.

  19. Safety analysis of a Russian phage cocktail: From MetaGenomic analysis to oral application in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    McCallin, Shawna, E-mail: semccallin@yahoo.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Alam Sarker, Shafiqul, E-mail: sasarker@icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); Barretto, Caroline, E-mail: Caroline.Barretto@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Sultana, Shamima, E-mail: shamima@icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); Berger, Bernard, E-mail: bernard.berger@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Huq, Sayeda, E-mail: sayeeda@mail.icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); Krause, Lutz, E-mail: ltz.krause@gmail.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Bibiloni, Rodrigo, E-mail: Rodrigo.Bibiloni@agresearch.co.nz [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Schmitt, Bertrand, E-mail: bertrand.schmitt@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Reuteler, Gloria, E-mail: gloria.reuteler@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Brüssow, Harald, E-mail: harald.bruessow@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)

    2013-09-01

    Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb, including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure. - Highlights: • We analyzed the composition of a commercial Russian phage cocktail. • The cocktail consists of at least 10 different phage genera. • No undesired genes were detected. • No adverse effects were seen upon oral application in a small human clinical trial.

  20. Safety analysis of a Russian phage cocktail: From MetaGenomic analysis to oral application in healthy human subjects

    International Nuclear Information System (INIS)

    McCallin, Shawna; Alam Sarker, Shafiqul; Barretto, Caroline; Sultana, Shamima; Berger, Bernard; Huq, Sayeda; Krause, Lutz; Bibiloni, Rodrigo; Schmitt, Bertrand; Reuteler, Gloria; Brüssow, Harald

    2013-01-01

    Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb, including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure. - Highlights: • We analyzed the composition of a commercial Russian phage cocktail. • The cocktail consists of at least 10 different phage genera. • No undesired genes were detected. • No adverse effects were seen upon oral application in a small human clinical trial

  1. Antimicrobial resistance of Escherichia coli isolated in newly-hatched chickens and effect of amoxicillin treatment during their growth.

    Science.gov (United States)

    Jiménez-Belenguer, Ana; Doménech, Eva; Villagrá, Arantxa; Fenollar, Alejandro; Ferrús, Maria Antonia

    2016-08-01

    The use of antimicrobials in food animals is the major determinant for the propagation of resistant bacteria in the animal reservoir. However, other factors may also play a part, and in particular vertical spread between the generations has been suggested to be an important transmission pathway. The objective of this paper was to determine the resistance patterns of Escherichia coli isolated from newly-hatched chickens as well as to study the antibiotic pressure effect when amoxicillin was administered during their growing period. With this aim, meconium from 22 one-day-old Ross chickens was analysed. In addition, during their growth period, amoxicillin treatments at days 7, 21 and 35 were carried out. Results showed a high number of E. coli-resistant strains were isolated from the treated one-day-old chickens, and were the highest for β-lactams group, followed by quinolone and tetracyclines. After treatment with amoxicillin, the highest percentage of resistances were detected for this antibiotic compared to the others analysed, with significant differences in resistance percentages between control and treated broilers detected in relation to ampicillin, cephalothin, streptomycin, kanamycin, gentamicin, chloramphenicol and tetracycline. Differences in resistances to ciprofloxacin and nalidixic acid between control and treated animals were not observed and there was lack of resistance for amikacin and ceftriaxone. These results suggest the possibility of vertical transmission of resistant strains to newly-hatched chicks from parent flocks, and seem to indicate that the treatment with amoxicillin increased the resistance of E. coli to other antibiotics.

  2. [Screening serum response special antibodies of U251 cell line from surface display phage antibody library].

    Science.gov (United States)

    Yu, Min; Tan, De-Yong; Qian, Wei; Lai, Jian-Hua; Sun, Gui-Lin

    2004-05-01

    U251 cell is a sensitive cell line to serum, which stops at G0 phase of cell cycle in no-serum medium, and recovers growth when the serum is added into no-serum medium. The cell can express corresponding proteins in different phase of cell cycle. Therefore it is very signification for the study of cell cycle regulation mechanism that explores these proteins. In this paper, the mouse antibody phage display library was added into the bottle in which the serum starvation U251 cells had been cultured, and the special antibody phages were absorbed. Then the absorbed antibody phages were amplified by adding E. coli TG1 and helper phage M13K07. Amplified antibody phages were added into bottle in which the serum cultured cell after serum starvation (follow named as serum recovered cells) were incubated, so that the cell absorbed the no-special antibody phages for the serum starvation cell and the special antibody phages were in supernatant. The remaining no-special antibody phages in the supernatant were discarded by repeating above program 3-4 times. The pure special antibody phages were gotten, and amplified by adding the host cell E. coli TG1 and helper phage M13K07. Then the host bacterium infected special antibody phage was spread on the plate medium with ampicillin, and the monoclonal antibody phages were gotten. Using same as above program, the monoclonal antibody phages absorbed specially for serum recovered U251 cells were obtained when the serum recovered cells instead of serum starvation cells and serum starvation cells instead of serum recovered cells. In this study, ninety-six positive monoclonal antibody phages that absorbed specially the serum starvation cells and eighty-two positive monoclonal antibody phages that absorbed specially the serum recovered cells were obtained. By using cell immunochemistry assay, two special signification antibodies were obtained. one (No.11) was the strong response in serum starvation cells, the other (No.2) was the strong

  3. Survival and mutagenesis in UV-irradiated phage: Multi-hit kinetics of mutation induction and lack of indirect induction by infection with UV-irradiated phage of error-prone repair

    International Nuclear Information System (INIS)

    Krauss, G.; Mennigmann, H.D.; Kaplan, R.W.

    1980-01-01

    The paper is concerned with the question of whether Weigle-reactivation (WR) and Weigle-mutagenesis (WM) can be indirectly induced by infection with UV-irradiated phage. Experiments neither with phage lambda of Escherichia coli nor with phage kappa of Serratia marcescens show such induction. In this respect phage DNA differs from F'-DNA or Hfr-DNA; possible explanations are discussed. In both systems clear plaque mutations can also be induced by UV without irradiation of the host cells; they appear, in unirradiated and irradiated host cells, with an increase in frequency which is greater than proportional to the UV dose. It is concluded that mutation induction of phage in the unirradiated host cells is due to a low level constitutive mutagenic repair; this could either be due to 'spontaneous' induction of the mutagenic SOS function or it could be a mechanism different from this one. Host irradiation would give rise to additional activity by the induced SOS function leading to WR and WM. It is further concluded that deviation of the induction kinetics from a linear dose-dependence is not due to the necessary induction of SOS functions. (author)

  4. Genomic Characterization of a Novel Phage Found in Black Abalone (Haliotis cracherodii) Infected with Withering Syndrome

    Science.gov (United States)

    Closek, C. J.; Langevin, S.; Burge, C. A.; Crosson, L.; White, S.; Friedman, C. S.

    2016-02-01

    Withering syndrome (WS), caused by the bacterium Candidatus Xenohaliotis californiensis, a Rickettsia-like organism (RLO), infects many species of abalone. Black abalone (Haliotis cracherodii), one of two endangered species of abalone, has experienced high population losses along the California coast due to WS. Recently, we observed reduced pathogenicity and mortality events in RLO-infected abalone when a novel bacteriophage (phage) was also present. To better understand phage-bacterium dynamics and develop more informative diagnostic tools, we sequenced the genome of the novel phage associated with the RLO responsible for WS. Metagenomic sequencing libraries were prepared with extracted genomic DNA from two experimentally infected H. cracherodii and phage sequences were enriched using hydroxyapatite chromatography normalization. Normalized libraries were individually barcoded and sequenced with Illumina MiSeq. Raw sequence reads were processed using VIrominer and de novo assembly produced one single phage-like contig (35.7Kb) from the experimentally infected abalone. This highly divergent genome had closest homology with a virus associated with abalone shriveling syndrome (SS). Of the 34 predicted ORFs, overlapping homology with the SS virus ranged from 20-72%, demonstrating the phage sequenced is genetically distinct from any known phage. The phage-like sequences represented a significant portion of the total reads sequenced ( 2 million of the 12 million paired-end reads; 17%) and we obtained 94,000X coverage across the novel phage genome. Beyond characterization of this novel phage, which appears to reduce pathogenicity of the RLO, the genome enabled us to develop quantitative PCR and in situ hybridization assays as diagnostic tools. These tools allow us to detect and quantify this phage in the endangered H. cracherodii.

  5. Phage and bacteria support mutual diversity in a narrowing staircase of coexistence

    DEFF Research Database (Denmark)

    Härter, Jan Olaf Mirko; Mitarai, Namiko; Sneppen, Kim

    2014-01-01

    arms race will typically favor high growth rate, but a phage that infects two bacterial strains differently can occasionally eliminate the fastest growing bacteria. This context-dependent fitness allows abrupt resetting of the 'Red-Queen's race' and constrains the local diversity.......The competitive exclusion principle states that phage diversity M should not exceed bacterial diversity N. By analyzing the steady-state solutions of multistrain equations, we find a new constraint: the diversity N of bacteria living on the same resources is constrained to be M or M+1 in terms...... of the diversity of their phage predators. We quantify how the parameter space of coexistence exponentially decreases with diversity. For diversity to grow, an open or evolving ecosystem needs to climb a narrowing 'diversity staircase' by alternatingly adding new bacteria and phages. The unfolding coevolutionary...

  6. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage

    Directory of Open Access Journals (Sweden)

    Kuhn Andreas

    2011-09-01

    Full Text Available Abstract Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.

  7. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    Science.gov (United States)

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...infection can be detected as early as one hour after exposing as few as 105 CFU bacteria to the stressor. We predicted that similar responses could be used... bacteria to form confluent growth and for phage-induced plaques to appear. Techniques that permit faster detection of species-specific bacteria /phage

  8. Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13

    International Nuclear Information System (INIS)

    Brandenburger, A.; Godson, G.N.; Glickman, B.W.; Sluis, C.A. van

    1981-01-01

    To elucidate the relative contributions of targeted and untargeted mutations to γ and UV radiation mutagenesis, the DNA sequences of 174 M13 revertant phages isolated from stocks of irradiated or unirradiated amber mutants grown in irradiated (SOS-induced) or unirradiated (non-induced) host bacteria, have been determined. Differences in the spectra of base change mutations induced in the various conditions were apparent, but no obvious specificity of mutagenesis was detected. In particular, under the present conditions, pyrimidine dimers did not seem to be the principal sites of UV-induced base substitution mutagenesis, suggesting that such mutagenesis occurs at the sites of lesions other than pyrimidine dimers, or is untargeted. (U.K.)

  9. CRISPR Diversity in E. coli Isolates from Australian Animals, Humans and Environmental Waters.

    Directory of Open Access Journals (Sweden)

    Maxim S Sheludchenko

    Full Text Available Seventy four SNP genotypes and 54 E. coli genomes from kangaroo, Tasmanian devil, reptile, cattle, dog, horse, duck, bird, fish, rodent, human and environmental water sources were screened for the presence of the CRISPR 2.1 loci flanked by cas2 and iap genes. CRISPR 2.1 regions were found in 49% of the strains analysed. The majority of human E. coli isolates lacked the CRISPR 2.1 locus. We described 76 CRISPR 2.1 positive isolates originating from Australian animals and humans, which contained a total of 764 spacer sequences. CRISPR arrays demonstrated a long history of phage attacks especially in isolates from birds (up to 40 spacers. The most prevalent spacer (1.6% was an ancient spacer found mainly in human, horse, duck, rodent, reptile and environmental water sources. The sequence of this spacer matched the intestinal P7 phage and the pO111 plasmid of E. coli.

  10. Detection of sulfur mustard adducts in human callus by phage antibodies

    NARCIS (Netherlands)

    Bikker, F.J.; Mars-Groenendijk, R.H.; Noort, D.; Fidder, A.; Schans, G.P. van der

    2007-01-01

    As part of a research program to develop novel methods for diagnosis of sulfur mustard exposure in the human skin the suitability of phage display was explored. Phage display is a relative new method that enables researchers to quickly evaluate a huge range of potentially useful antibodies, thereby

  11. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion

    Directory of Open Access Journals (Sweden)

    Atiya Techaparin

    Full Text Available Abstract The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v, respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ at 40 °C were achieved using the Box-Behnken experimental design (BBD. The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.

  12. 'Synthetic lipase' production from a newly isolated Sporidiobolus pararoseus strain by submerged fermentation

    Directory of Open Access Journals (Sweden)

    Alessandra Smaniotto

    2012-12-01

    Full Text Available The lipase produced by a newly isolate Sporidiobolus pararoseus strain has potential catalysis ability for esterification reactions. In order to improve its synthetic activity, this work aimed at optimizing 'synthetic lipase' production by submerged fermentation of a conventional media based on peptone, yeast extract, NaCl and olive oil using experimental design technique. According to the results obtained in the first experimental design (2(4-1, yeast extract and NaCl concentrations were tested to further optimization by response surface methodology. The maximum 'synthetic lipase' activity obtained was 26.9 U/mL in the optimized media (5.0, 6.8, 7.0 and 1.0% (wt/v of peptone, yeast extract, NaCl and olive oil, respectively, representing a 6.36-fold increase compared to the initial medium. The time course of 'synthetic lipase' production in the optimized condition was evaluated in terms of synthetic activity, protease activity, biomass and total carbon and the maximum synthetic activity was observed during the stationary phase of growth.

  13. Effect of heavy metals ondecolorization of reactive brilliant red by newly isolated microorganisms

    International Nuclear Information System (INIS)

    Nosheen, S.; Arshad, M.

    2011-01-01

    This study involves aerobic decolorisation of reactive azo dye reactive brilliant red 2KBP by newly isolated microbial strains (two bacterial and one fungal strain) in presence of heavy metals including cobalt chloride, ferric chloride, zinc sulphate, copper sulphate and nickel chloride. Many heavy metals are necessary for microbial growth and are required in very small amounts however at higher levels they become toxic. So was the objective of present work to check the effect of concentration of heavy metals on the potential of microbial strains to decolorize azo dyes. All the heavy metals under consideration were added in range of 0.5 gl-1-2.5gl/sup -1/. All heavy metals showed inhibitory effect on decolorization capacity of bacterial as well as fungal strain .At optimum conditions bacterial strains named as B1 and B2 removed 84% and 78% while fungal strain decolorized 90.4% of dye. Cobalt and nickel showed greater inhibitors on% decolorization of dyes than Zinc and iron. Fungal strain showed greater negative effect. Heavy metals might affect enzyme activities and thus reducing removal of dye. (author)

  14. Complete Genome Sequences of Mycobacteriophages Clautastrophe, Kingsolomon, Krypton555, and Nicholas

    Science.gov (United States)

    Chung, Hui-Min; D’Elia, Tom; Ross, Joseph F.; Alvarado, Samuel M.; Brantley, Molly-Catherine; Bricker, Lydia P.; Butler, Courtney R.; Crist, Carson; Dane, Julia M.; Farran, Brett W.; Hobbs, Sierra; Lapak, Michelle; Lovell, Conner; McMullen, Allison; Mirza, Sohail A.; Thrift, Noah; Vaughan, Donald P.; Worley, Grace; Ejikemeuwa, Amara; Zaw, May; Albritton, Claude F.; Bertrand, Sarah C.; Chaudhry, Shanzay S.; Cheema, Vzair A.; Do, Camilla; Do, Michael L.; Duong, Huyen M.; El-Desoky, Dalia H.; Green, Kelsey M.; Lee, Rhea N.; Thornton, Lauren A.; Vu, James M.; Zahra, Mah Noor; Stoner, Ty H.; Garlena, Rebecca A.; Jacobs-Sera, Deborah; Russell, Daniel A.

    2017-01-01

    ABSTRACT We report here the complete genome sequences of four subcluster L3 mycobacteriophages newly isolated from soil samples, using Mycobacterium smegmatis mc2155 as the host. Comparative genomic analyses with four previously described subcluster L3 phages reveal strong nucleotide similarity and gene conservation, with several large insertions/deletions near their right genome ends. PMID:29122864

  15. Viruses in the marine environment: community dynamics, phage-host interactions and genomic structure

    OpenAIRE

    Lara de la Casa, Elena

    2014-01-01

    There are an estimated 1030 viruses in the world oceans, the majority of which are phages (viruses that infect bacteria). Extensive research has demonstrated the significant influence of marine phages on microbial abundance, community structure, genetic exchange and global biogeochemical cycles. In this thesis, we contribute to increase the knowledge about the ecological role of viruses in marine systems, but also we aimed to provide a better understanding about the interactions between phage...

  16. Metagenomic Analysis of Therapeutic PYO Phage Cocktails from 1997 to 2014

    DEFF Research Database (Denmark)

    Villarroel, Julia; Larsen, Mette Voldby; Kilstrup, Mogens

    2017-01-01

    in the two cocktails. One of these showed no similarity to publicly available phage genomes. Representatives of phages targeting E. faecalis, E. faecium, E. coli, Proteus, P. aeruginosa and S. aureus were found in both cocktails. Finally, we estimated larger overlap of the PYO2000 cocktail to PYO97 compared...

  17. Selection of phage-displayed peptides for the detection of imidacloprid in water and soil.

    Science.gov (United States)

    Liu, Zhiping; Liu, Jianfeng; Wang, Kai; Li, Wenhui; Shelver, Weilin L; Li, Qing X; Li, Ji; Xu, Ting

    2015-09-15

    Imidacloprid is the most widely used neonicotinoid insecticide in the world and shows widespread environment and human exposures. A phage clone designated L7-1 that selectively binds to imidacloprid was selected from a commercial phage display library containing linear 7-mer randomized amino acid residues. Using the clone L7-1, a competitive enzyme-linked immunosorbent assay (ELISA) for imidacloprid was developed. The half-maximum signal inhibition concentration (IC50) and the limit of detection (LOD) of the phage ELISA for imidacloprid were 96 and 2.3 ng ml(-1), respectively. This phage ELISA showed relatively low cross-reactivity with all of the tested compounds structurally similar to imidacloprid, less than 2% with the exception of 6-chloronicotinic acid, a metabolite of imidacloprid that showed 11.5%. The average recoveries of the phage ELISA for imidacloprid in water and soil samples were in the ranges of 74.6 to 86.3% and 72.5 to 93.6%, respectively. The results of the competitive phage ELISA for imidacloprid in the fortified samples agreed well with those of a high-performance liquid chromatography (HPLC) method. The simple phage-displayed peptide technology has been proven to be a convenient and efficient method for the development of an alternative format of ELISA for small molecules. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Identification and characterisation of the proteins bound by specific phage-displayed recombinant antibodies (scFv) obtained against Brazil nut and almond extracts.

    Science.gov (United States)

    de la Cruz, Silvia; Madrid, Raquel; García-García, Aina; Alcocer, Marcos; Martín, Rosario; González, Isabel; García, Teresa

    2018-03-01

    Almonds and Brazil nuts are widely consumed allergenic nuts whose presence must be declared according to food labelling regulations. Their detection in food products has been recently achieved by ELISA methods with recombinant antibodies (scFv) isolated against complete Brazil nut and almond protein extracts. The screening of phage-scFv libraries against complete protein extracts confers a series of advantages over the use of purified proteins, as recombinant proteins might alter their native folding. However, using this strategy, the nature of the target detected by phage-displayed antibodies remains unknown, and requires further research to identify whether they are nut allergens or other molecules present in the extract, but not related to their allergenic potential. Electrophoretic, chromatographic, immunological and spectrometric techniques revealed that the Brazil nut (BE95) and almond (PD1F6 and PD2C9) specific phage-scFvs detected conformational epitopes of the Brazil nut and almond 11S globulins, recognised by WHO/IUIS as Ber e 2 and Pru du 6 major allergens. Circular dichroism data indicated that severe heat treatment would entail loss of epitope structure, disabling scFv for target detection. The presence of important Brazil nut and almond allergens (Ber e 2 and Pru du 6) in foodstuffs can be determined by using phage-display antibodies BE95, PD1F6 and PD2C9 as affinity probes in ELISA. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Photoreactivation of cells and phages inactivated by UV of ecological wave-lengths

    International Nuclear Information System (INIS)

    Samojlova, K.A.; Yanovska, Eh.; Vizdalova, M.; Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav)

    1979-01-01

    It has been found that the photoreactivity of infusoria Paramecium caudatum and bacteria Escherichia coli is high and practically similar if they are irradiated with short-wave (254 nm) and mean-wave (300-315 nm) UV radiation. The cells damaged with long-wave (315-400 nm) UV rays are not photoactivated. The latter is caused by the appearance of nonphotoreactivated damages since the phages jrradiated with the same UV rays are reactivated extremely weakly in the intact cells of bacteria (phage T7) or are not reactivated at all (phage lambdasub(c1 857))

  20. Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay.

    Science.gov (United States)

    Sorsa-Leslie, Tarja; Mason, Helen D; Harris, William J; Fowler, Paul A

    2005-09-26

    We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF). A synthetic single-chain antibody (Tomlinson J) phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs) forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4-7). The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. This study demonstrates that the combination of bioassay and phage display technologies is a powerful tool in the

  1. Is phage therapy acceptable in the immunocompromised host?

    Science.gov (United States)

    Borysowski, Jan; Górski, Andrzej

    2008-09-01

    Over the last decade, bacteriophages (bacterial viruses) have emerged as the major alternative to antibiotics in the treatment of antibiotic-resistant infections. While a considerable body of evidence has accumulated for the efficacy and safety of phage therapy in immunocompetent patients, data remain relatively scarce regarding its use in the immunocompromised host. To our knowledge, the present article is the first to summarize all findings, of both experimental and clinical studies, that may be relevant to the employment of phage therapy in immunocompromised patients. The available data suggest that bacteriophages could also be an efficacious and safe therapeutic modality in such patients.

  2. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    Science.gov (United States)

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  3. Improved Fab presentation on phage surface with the use of molecular chaperone coplasmid system.

    Science.gov (United States)

    Loh, Qiuting; Leong, Siew Wen; Tye, Gee Jun; Choong, Yee Siew; Lim, Theam Soon

    2015-05-15

    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Molecular Characterization of Multidrug-Resistant Salmonella enterica subsp. enterica Serovar Typhimurium Isolates from Swine

    OpenAIRE

    Gebreyes, Wondwossen Abebe; Altier, Craig

    2002-01-01

    As part of a longitudinal study of antimicrobial resistance among salmonellae isolated from swine, we studied 484 Salmonella enterica subsp. enterica serovar Typhimurium (including serovar Typhimurium var. Copenhagen) isolates. We found two common pentaresistant phenotypes. The first was resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (the AmCmStSuTe phenotype; 36.2% of all isolates), mainly of the definitive type 104 (DT104) phage type (180 of 187 ...

  5. Restriction of phage T4 internal protein I mutants by a strain of Escherichia coli

    International Nuclear Information System (INIS)

    Black, L.W.; Abremski, K.

    1974-01-01

    Phage T4 internal protein I(IPI), a small (ca, 10,000 MW), basic protein injected into the host with the phage DNA, is not required for infection of most hosts, but mutants defective in IPI are restricted by at least one naturally occurring strain of Escherichia coli, CT 596 (CT). Phages lacking IPI (IPI - ) appear to inject their DNA and bind it to the membrane of CT cells as well as wild-type phage T4 does, but shutoff of host protein synthesis, initiation of T4 protein synthesis, and cell killing are abnormal in the IPI - mutant infected CT host. The injection of IPI appears to be important in allowing T4 DNA to carry out early steps involved in takeover of this host. Restriction of IPI - phage growth by CT cells appears to be due, at least in part, to a defective prophage it harbors which renders the host resistant to successful infection by phage T4 which lack IPI or rII functions. Bacteria cured of this prophage can be infected by mutants defective in these functions. The resistance of CT cells to other coliphages, and the question of T-even phage internal protein diversity are discussed. (U.S.)

  6. [A STUDY OF THE ISOLATED BACTERIOPHAGE ΦAB-SP7 ADSORPTION ON THE CELL SURFACE OF THE AZOSPIRILLUM BRASILENSE SP7].

    Science.gov (United States)

    Guliy, O I; Karavaeva, O A; Velikov, V A; Sokolov, O I; Pavily, S A; Larionova, O S; Burov, A M; Ignatov, O V

    2016-01-01

    The bacteriophage ΦAb-Sp7 was isolated from the cells of the Azospirillum brasilense Sp7. The morphology, size of the gram-negative colonies, and range of lytic activity against other strains and species of the genus Azospirillum was tested. The isolated phage DNA was examined using electrophoretic and restriction analysis, and the size of the genome were established. The electron microscopy. resuIts show that the phage (capsid) has a strand-like form. The electron microscopy study of the bacteriophage ΦAb-Sp7 adsorption on the A. brasilense Sp7 bacterial surface was performed.

  7. The factors affecting effectiveness of treatment in phages therapy, mini review

    Directory of Open Access Journals (Sweden)

    Mai Huong eCHATAIN-LY

    2014-02-01

    Full Text Available In recent years, the use of lytic bacteriophages as antimicrobial agents controlling pathogenic bacteria has appeared as a promising new alternative strategy in the face of growing antibiotic resistance which has caused problems in many fields including medicine, veterinary medicine and aquaculture. The use of bacteriophages has numerous advantages over traditional antimicrobials. The effectiveness of phage applications in fighting against pathogenic bacteria depends on several factors such as the bacteriophages/target bacteria ratio, the mode and moment of treatment, environmental conditions (pH, temperature ..., the neutralization of phage and accessibility to target bacteria, amongst others. This report presents these factors and the challenges involved in developing phage therapy applications

  8. Study of the phage production efficiency in the bacteria lysis processes

    International Nuclear Information System (INIS)

    Vidania Munoz, R. de; Garces, F.; Davila, C. A.

    1979-01-01

    In this work we present a search for the best production conditions of λvir andλ clear phages In E coli K12 and E coli C 6 00 infected cells respectively. By keeping fixed some parameters of the process as the bacterial and phage generation times and (he bacterial burst side, we have finder that the lysis yield is strongly dependent on the multiplicity and in a lesser degree on the infection time. It appears from the experimental results that other variables are important, as infection efficiency and approach time from phages to bacteria. We will try to describe the lysis phenomenon by a numerical model on the bases of the se experimental results. (Author) 11 refs

  9. Bacteriophage T4 Infection of Stationary Phase E. coli: Life after Log from a Phage Perspective

    Directory of Open Access Journals (Sweden)

    Elizabeth Martin Kutter

    2016-09-01

    Full Text Available Virtually all studies of phage infections investigate bacteria growing exponentially in rich media. In nature, however, phages largely encounter non-growing cells. Bacteria entering stationary phase often activate well-studied stress defense mechanisms that drastically alter the cell, facilitating its long-term survival. An understanding of phage-host interactions in such conditions is of major importance from both an ecological and therapeutic standpoint. Here, we show that bacteriophage T4 can efficiently bind to, infect and kill E. coli in stationary phase, both in the presence and absence of a functional stationary-phase sigma factor, and explore the response of T4-infected stationary phase cells to the addition of fresh nutrients 5 or 24 hours after that infection. An unexpected new mode of response has been identified. Hibernation mode is a persistent but reversible dormant state in which the infected cells make at least some phage enzymes, but halt phage development until appropriate nutrients become available before producing phage particles. Our evidence indicates that the block in hibernation mode occurs after the middle-mode stage of phage development; host DNA breakdown and the incorporation of the released nucleotides into phage DNA indicate that the enzymes of the nucleotide synthesizing complex, under middle-mode control, have been made and assembled into a functional state. Once fresh glucose and amino acids become available, the standard lytic infection process rapidly resumes and concentrations of up to 1011 progeny phage (an average of about 40 phage per initially-present cell are produced. All evidence is consistent with the hibernation-mode control point lying between middle mode and late mode T4 gene expression. We have also observed a scavenger response, where the infecting phage takes advantage of whatever few nutrients are available to produce small quantities of progeny within 2 to 5 hours after infection. The scavenger

  10. Corruption of phage-display libraries by target-unrelated clones: Diagnosis and countermeasures

    Science.gov (United States)

    Thomas, William D.; Golomb, Miriam; Smith, George P.

    2010-01-01

    Phage display is used to discover peptides or proteins with a desired target property—most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior, and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phage (TUPs), that lack the target behavior. Many TUPs are propagation-related; they have mutations conferring a growth advantage, and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus strand origin. The founder’s infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. PMID:20692225

  11. Interaction of the phage-xanthomonas campestris (Pammel) Dowson at the eletronic microscopy level, Virazole effect and radioautographic study of the phage action on the host

    International Nuclear Information System (INIS)

    Sittolin, I.M.

    1982-04-01

    A bacteriophage from the cabbage tissue infected with Xanthomonas campestris is described. The infection process is studied through a negative staining technique (PTA) and ultrathin section. The effect of Virazole, an antivirus agent, is tested. Radioautography showed that the phage presented a reasonable domain on the bacterial host genome since the beginning of the treatment. Sorological reactions indicated the induction of specific antibodies for the phage. (M.A.C.) [pt

  12. X-ray inactivation and reactivation characteristics of the phage 'kappa'

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.; Samad, S.A.; Mandal, J.C.; Chatterjee, S.N.

    1991-01-01

    Vibrio cholerae temperate phage 'kappa' was inactivated by X-ray (60 kV) in a dose dependent manner, the inactivation dose leading to 37% survival (D 37 ) in PBS, pH 7.4 being 0.36 kGy. The phages were significantly protected against X-ray irradiation when histidine or cysteine or both were present in PBS or when phages were irradiated in nutrient broth. The maximum protection was offered when histidine (10.0 nM) and cysteine (10.0 nM) were both present in PBS (dose enhancement factor being 4.17). The X-irradiated 'kappa' phages also underwent a small but significant Weigle reactivation and also Weigle mutagenesis in the UV-irradiated V. cholerae host H218Sm r . The Weigle factor (WF) or the frequency of clear plaque mutants increased with increasing UV dose, attained a maximum at the UV dose of 2.4 Jm -2 and thereafter decreased gradually with further increase of UV dose. The X-ray dose (D)-survival (S) curves could be empirically described by the equation S=exp-(aD+bD 2 ) where 'a' and 'b' are constants depending on the irradiation conditions and good agreement between the theoretical curves and experimental data was obtained. (author). 1 5 refs., 2 fig., 1 tab

  13. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808.

    Science.gov (United States)

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-12-24

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  14. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808

    Directory of Open Access Journals (Sweden)

    Patricia eMunsch-Alatossava

    2013-12-01

    Full Text Available The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lb. delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimise the risks associated with the appearance and attack of phages in the manufacture of yoghurt, and Swiss or Italian type hard cheeses, which typically use thermophilic LAB starter cultures containing Lb. delbrueckii strains among others. This mini review article summarises the present data concerning (i the special features, particle structure and components of phage LL-H and (ii the structure and properties of lipoteichoic acids (LTAs, which are the phage LL-H receptor components of Lb. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of Lb. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  15. Thermal-Stability and Reconstitution Ability of Listeria Phages P100 and A511

    Directory of Open Access Journals (Sweden)

    Hanie Ahmadi

    2017-12-01

    Full Text Available The study evaluated the thermal-stability of Listeria phages P100 and A511 at temperatures simulating the preparation of ready-to-eat meats. The phage infectivity after heating to 71°C and holding for a minimum of 30 s, before eventually cooling to 4°C were examined. Higher temperatures of 75, 80, and 85°C were also tested to evaluate their effect on phages thermal-stability. This study found that despite minor differences in the amino acid sequences of their structural proteins, the two phages responded differently to high temperatures. P100 activity declined at least 10 log (PFU mL-1 with exposure to 71°C (30 s and falling below the limit of detection (1 log PFU mL-1 while, A511 dropped from 108 to 105 PFU mL-1. Cooling resulted in partial reconstitution of P100 phage particles to 103 PFU mL-1. Exposure to 75°C (30 s abolished A511 activity (8 log PFU mL-1 and both phages showed reconstitution during cooling phase after exposure to 75°C. P100 exhibited reconstitution after treatment at 80°C (30 s, conversely A511 showed no reconstitution activity. Heating P100 to 85°C abolished the reconstitution potential. Substantial differences were found in thermal-stability and reconstitution of the examined phages showing A511 to be more thermo-stable than P100, while P100 exhibited reconstitution during cooling after treatment at 80°C which was absent in A511. The differences in predicted melting temperatures of structural proteins of P100 and A511 were consistent with the observed differences in thermal stability and morphological changes observed with transmission electron microscopy.

  16. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef.

    Science.gov (United States)

    Cui, Haiying; Yuan, Lu; Lin, Lin

    2017-12-01

    In recent years, phages used for the reduction of pathogenic bacteria have fostered many attentions, but they are liable to lost bioactivity in food due to the presence of acidic compounds, enzymes and evaporite materials. To improve the stability of phages, a chitosan edible film containing liposome-encapsulated phage was engineered in the present study. The characteristics of liposome-encapsulated phage and the chitosan film containing liposome-encapsulated phage were investigated. The encapsulation efficiency of phages in liposome reached 57.66±0.12%. Besides, the desirable physical properties of chitosan film were obtained. The chitosan film embedded with liposome-encapsulated phage exhibited high antibacterial activity against Escherichia coli O157:H7, without the impact on the sensory properties of beef. Hence, chitosan film containing liposome-encapsulated phage could be a promising antibacterial packaging for beef preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    Science.gov (United States)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  18. Degradation of polyisoprene rubber by newly isolated Bacillus sp. AF-666 from soil.

    Science.gov (United States)

    Shah, A A; Hasan, F; Shah, Z; Mutiullah; Hameed, A

    2012-01-01

    Various microorganisms were screened for their ability to degrade polyisoprene rubber (natural rubber latex gloves). Strain AF-666, newly isolated from a soil sample, was selected as the best strain having the ability to grow on polyisoprene containing plates. The strain identified as Bacillus sp. AF-666, was found to degrade polyisoprene rubber, both on basal agar plates (latex overlay) as well as in liquid medium. Qualitative analysis of degradation was done through scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy SEM showed changes in surface morphology, like appearance of pits and cracks, and marked difference in transmittance spectra of test and control due to changes in the functional groups, was detected through FTIR. CO2 evolution as a result of rubber degradation, was calculated gravimetrically by Sturm Test. About 4.43 g/1 of CO2 was produced in case of test, whereas, 1.57 g/1 in case of control. The viable number of cells (CFU/ml) was also higher in test than in control. Present study may provide an opportunity for further studies on the applications of biotechnological processes as a tool for rubber waste management.

  19. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    Science.gov (United States)

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  20. Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages

    NARCIS (Netherlands)

    Murphy, James; Bottacini, Francesca; Mahony, Jennifer; Kelleher, Philip; Neve, Horst; Zomer, Aldert; Nauta, Arjen; van Sinderen, Douwe

    2016-01-01

    Genome sequencing and comparative analysis of bacteriophage collections has greatly enhanced our understanding regarding their prevalence, phage-host interactions as well as the overall biodiversity of their genomes. This knowledge is very relevant to phages infecting Lactococcus lactis, since they

  1. Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus.

    Science.gov (United States)

    Botka, Tibor; Růžičková, Vladislava; Konečná, Hana; Pantůček, Roman; Rychlík, Ivan; Zdráhal, Zbyněk; Petráš, Petr; Doškař, Jiří

    2015-08-01

    Exfoliative toxin A (ETA)-coding temperate bacteriophages are leading contributors to the toxic phenotype of impetigo strains of Staphylococcus aureus. Two distinct eta gene-positive bacteriophages isolated from S. aureus strains which recently caused massive outbreaks of pemphigus neonatorum in Czech maternity hospitals were characterized. The phages, designated ϕB166 and ϕB236, were able to transfer the eta gene into a prophageless S. aureus strain which afterwards converted into an ETA producer. Complete phage genome sequences were determined, and a comparative analysis of five designed genomic regions revealed major variances between them. They differed in the genome size, number of open reading frames, genome architecture, and virion protein patterns. Their high mutual sequence similarity was detected only in the terminal regions of the genome. When compared with the so far described eta phage genomes, noticeable differences were found. Thus, both phages represent two new lineages of as yet not characterized bacteriophages of the Siphoviridae family having impact on pathogenicity of impetigo strains of S. aureus.

  2. Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures.

    Science.gov (United States)

    Thomas, William D; Golomb, Miriam; Smith, George P

    2010-12-15

    Phage display is used to discover peptides or proteins with a desired target property-most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phages or peptides (TUPs), that lack the target behavior. Many TUPs are propagation related; they have mutations conferring a growth advantage and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus-strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus-strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus-strand origin. The founder's infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  4. Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands.

    Directory of Open Access Journals (Sweden)

    M Lisa Phipps

    Full Text Available Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1 ensure efficient display; 2 maximize the ability to select high affinity ligands; and 3 minimize the effect of the display context on binding. The "helper cell" packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report on the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands.

  5. [Construction of human phage antibody library and screening for human monoclonal antibodies of amylin].

    Science.gov (United States)

    Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong

    2012-06-01

    To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.

  6. Combinatorial synthesis and screening of cancer cell-specific nanomedicines targeted via phage fusion proteins

    Directory of Open Access Journals (Sweden)

    James W. Gillespie

    2015-06-01

    Full Text Available Active tumor targeting of nanomedicines has recently shown significant improvements in the therapeutic activity of currently existing drug delivery systems, such as liposomal doxorubicin (Doxil/Caelyx/Lipodox. Previously, we have shown that isolated pVIII major coat proteins of the fd tet filamentous phage vector, containing cancer cell-specific peptide fusions at their N terminus, can be used as active targeting ligands in a liposomal doxorubicin delivery system in vitro and in vivo. Here, we show a novel major coat protein isolation procedure in 2-propanol that allows spontaneous incorporation of the hydrophobic protein core into preformed liposomal doxorubicin with minimal damage or drug loss while still retaining the targeting ligand exposed for cell-specific targeting. Using a panel of 12 structurally unique ligands with specificity towards breast, lung, and/or pancreatic cancer, we showed the feasibility of pVIII major coat proteins to significantly increase the throughput of targeting ligand screening in a common nanomedicine core. Phage protein-modified Lipodox samples showed an average doxorubicin recovery of 82.8% across all samples with 100% of protein incorporation in the correct orientation (N-terminus exposed. Following cytotoxicity screening in a doxorubicin-sensitive breast cancer line (MCF-7, three major groups of ligands were identified. Ligands showing the most improved cytotoxicity included: DMPGTVLP, ANGRPSMT, VNGRAEAP, and ANDVYLD showing a 25-fold improvement (p < 0.05 in toxicity. Similarly DGQYLGSQ, ETYNQPYL, and GSSEQLYL ligands with specificity towards a doxorubicin-insensitive pancreatic cancer line (PANC-1 showed significant increases in toxicity (2-fold; p < 0.05. Thus, we demonstrated proof-of-concept that pVIII major coat proteins can be screened in significantly higher throughput to identify novel ligands displaying improved therapeutic activity in a desired cancer phenotype.

  7. Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia

    Science.gov (United States)

    Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J.; Tucci, Joseph

    2018-01-01

    The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases. PMID:29495355

  8. Radiosensitivity of the induction of early enzymes by. gamma. -irradiated T7-phages

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, E

    1975-01-01

    The radiosensitivity of the ability of the bacteriophage T7 to produce polymerase and lysozyme during its reproduction cycle is investigated. B-cells of Escherichia coli were infected with /sup 60/Co-..gamma..-irradiated T7 phages. From the extracts of the cells opened by ultrasonic waves, the amount of enzymes produced is determined with the aid of special enzyme tests. The fraction of inactivated phages able to produce RNA polymerase is higher than the fraction with intact DNA double strands and higher than the fraction able to inject DNA. The lowest fraction is that of inactivated phages producing lysozyme.

  9. Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity.

    Science.gov (United States)

    Brüssow, Harald

    2007-08-01

    Bacteriophages and protists are major causes of bacterial mortality. Genomics suggests that phages evolved well before eukaryotic protists. Bacteria were thus initially only confronted with phage predators. When protists evolved, bacteria were caught between two types of predators. One successful antigrazing strategy of bacteria was the elaboration of toxins that would kill the grazer. The released cell content would feed bystander bacteria. I suggest here that, to fight grazing protists, bacteria teamed up with those phage predators that concluded at least a temporary truce with them in the form of lysogeny. Lysogeny was perhaps initially a resource management strategy of phages that could not maintain infection chains. Subsequently, lysogeny might have evolved into a bacterium-prophage coalition attacking protists, which became a food source for them. When protists evolved into multicellular animals, the lysogenic bacteria tracked their evolving food source. This hypothesis could explain why a frequent scheme of bacterial pathogenicity is the survival in phagocytes, why a significant fraction of bacterial pathogens have prophage-encoded virulence genes, and why some virulence factors of animal pathogens are active against unicellular eukaryotes. Bacterial pathogenicity might thus be one playing option of the stone-scissor-paper game played between phages-bacteria-protists, with humans getting into the crossfire.

  10. Advances in phage display technology for drug discovery.

    Science.gov (United States)

    Omidfar, Kobra; Daneshpour, Maryam

    2015-06-01

    Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.

  11. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA Mediated Orthopaedic Device Related Infections.

    Directory of Open Access Journals (Sweden)

    Sandeep Kaur

    Full Text Available Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA, treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA. Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection.

  12. Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq.

    Directory of Open Access Journals (Sweden)

    Xiao-Zhe Huang

    Full Text Available BACKGROUND: Gram-negative multidrug-resistant (MDR bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38 and randomly selected non-MDR counterparts (n = 41 isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3 plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01. Various large plasmids (~52 to 100 kb from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA, β-lactam (bla(TEM1, bla(AMPC, bla(CTX-M-15, bla(OXA-1, bla(VIM-2 and bla(SHV, sulfamethoxazole/trimethoprim (sul/dfr, tetracycline (tet and chloramphenicol (cat resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary

  13. A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis.

    Science.gov (United States)

    Schwarzer, David; Buettner, Falk F R; Browning, Christopher; Nazarov, Sergey; Rabsch, Wolfgang; Bethe, Andrea; Oberbeck, Astrid; Bowman, Valorie D; Stummeyer, Katharina; Mühlenhoff, Martina; Leiman, Petr G; Gerardy-Schahn, Rita

    2012-10-01

    Bacteriophage phi92 is a large, lytic myovirus isolated in 1983 from pathogenic Escherichia coli strains that carry a polysialic acid capsule. Here we report the genome organization of phi92, the cryoelectron microscopy reconstruction of its virion, and the reinvestigation of its host specificity. The genome consists of a linear, double-stranded 148,612-bp DNA sequence containing 248 potential open reading frames and 11 putative tRNA genes. Orthologs were found for 130 of the predicted proteins. Most of the virion proteins showed significant sequence similarities to proteins of myoviruses rv5 and PVP-SE1, indicating that phi92 is a new member of the novel genus of rv5-like phages. Reinvestigation of phi92 host specificity showed that the host range is not limited to polysialic acid-encapsulated Escherichia coli but includes most laboratory strains of Escherichia coli and many Salmonella strains. Structure analysis of the phi92 virion demonstrated the presence of four different types of tail fibers and/or tailspikes, which enable the phage to use attachment sites on encapsulated and nonencapsulated bacteria. With this report, we provide the first detailed description of a multivalent, multispecies phage armed with a host cell adsorption apparatus resembling a nanosized Swiss army knife. The genome, structure, and, in particular, the organization of the baseplate of phi92 demonstrate how a bacteriophage can evolve into a multi-pathogen-killing agent.

  14. Emergence of new Salmonella Enteritidis phage types in Europe? Surveillance of infections in returning travellers

    Directory of Open Access Journals (Sweden)

    Andersson Yvonne

    2004-09-01

    Full Text Available Abstract Background Among human Salmonella Enteritidis infections, phage type 4 has been the dominant phage type in most countries in Western Europe during the last years. This is reflected in Salmonella infections among Swedish travellers returning from abroad. However, there are differences in phage type distribution between the countries, and this has also changed over time. Methods We used data from the Swedish infectious disease register and the national reference laboratory to describe phage type distribution of Salmonella Enteritidis infections in Swedish travellers from 1997 to 2002, and have compared this with national studies conducted in the countries visited. Results Infections among Swedish travellers correlate well with national studies conducted in the countries visited. In 2001 a change in phage type distribution in S. Enteritidis infections among Swedish travellers returning from some countries in southern Europe was observed, and a previously rare phage type (PT 14b became one of the most commonly diagnosed that year, continuing into 2002 and 2003. Conclusions Surveillance of infections among returning travellers can be helpful in detecting emerging infections and outbreaks in tourist destinations. The information needs to be communicated rapidly to all affected countries in order to expedite the implementation of appropriate investigations and preventive measures.

  15. VTEC O157 subtypes associated with the most severe clinical symptoms in humans constitute a minor part of VTEC 0157 isolates from Danish Cattle

    DEFF Research Database (Denmark)

    Roldgaard, Bemt Bjørn; Scheutz, Flemming; Boel, Jeppe

    2004-01-01

    -positive VTEC 0 157 isolates (63 of bovine origin and 86 from human clinical cases) isolated between 1987 and 2001. All were analysed by vtx-PCR-RFLP and phage typing. The vtx-PCR-RFLP showed that isolates carrying the vtx2 gene was more than four times as prevalent among the human clinical isolates (55...

  16. Phages of Lactobacillus casei/paracasei: response to environmental factors and interaction with collection and commercial strains.

    Science.gov (United States)

    Capra, M L; Quiberoni, A; Reinheimer, J

    2006-02-01

    To investigate the influence of several environmental factors on the viability and cell-adsorption for two Lactobacillus casei/paracasei bacteriophages (PL-1 and J-1). Both phages showed a remarkably high specificity of species, sharing similar host spectra. Two phages and four sensitive strains were used to conform five phage/strain systems. Each showed a particular behaviour (burst size: ranging from 32 to 160 PFU/infective centre; burst time: 120-240 min and latent time: 5-90 min). For both phages, the viability was not significantly affected from pH 4 to 11 (room temperature) and from pH 5 to 10 (37 degrees C). Adsorption rates were not influenced by calcium ions, but decreased after the thermal inactivation of cells. Adsorption rates were high between 0 and 50 degrees C with maximum values at 30 degrees C and pH 6. System PL-1/Lact. paracasei A showed noticeable differences in comparison with the others, being times required to reach 90% of adsorption of 4 h and lower than 45 min, respectively. The data obtained in this work demonstrated that environmental parameters can influence the viability and cell adsorption rates of Lact. casei/paracasei phages. The extent of this influence was phage dependent. This work contributes to the enlargement of the currently scarce knowledge of phages of probiotic bacteria.

  17. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells

    Directory of Open Access Journals (Sweden)

    Muyrers Joep PP

    2003-01-01

    Full Text Available Abstract Background The phage protein pairs, RecE/RecT from Rac or Redα/Redβ from λ, initiate efficient double strand break repair (DSBR in Escherichia coli that has proven very useful for DNA engineering. These phage pairs initiate DSBR either by annealing or by another mechanism that is not defined. Results Here we report that these proteins also mediate single strand oligonucleotide repair (ssOR at high efficiencies. The ssOR activity, unlike DSBR, does not require a phage exonuclease (RecE or Redα but only requires a phage annealing protein (RecT or Redβ. Notably, the P22 phage annealing protein Erf, which does not mediate the same DSBR reactions, also delivers ssOR activity. By altering aspects of the oligonucleotides, we document length and design parameters that affect ssOR efficiency to show a simple relationship to homologies either side of the repair site. Notably, ssOR shows strand bias. Oligonucleotides that can prime lagging strand replication deliver more ssOR than their leading complements. This suggests a model in which the annealing proteins hybridize the oligonucleotides to single stranded regions near the replication fork. We also show that ssOR is a highly efficient way to engineer BACs and can be detected in a eukaryotic cell upon expression of a phage annealing protein. Conclusion Phage annealing proteins can initiate the recombination of single stranded oligonucleotides into endogenous targets in Escherichia coli at very high efficiencies. This expands the repertoire of useful DNA engineering strategies, shows promise for applications in eukaryotic cells, and has implications for the unanswered questions regarding DSBR mediated by RecE/RecT and Redα/Redβ.

  18. Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites.

    Science.gov (United States)

    Huang, Johnny X; Bishop-Hurley, Sharon L; Cooper, Matthew A

    2012-09-01

    The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens.

  19. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease.

    Science.gov (United States)

    Ivanov, Yury V; Shariat, Nikki; Register, Karen B; Linz, Bodo; Rivera, Israel; Hu, Kai; Dudley, Edward G; Harvill, Eric T

    2015-10-26

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) are widely distributed among bacteria. These systems provide adaptive immunity against mobile genetic elements specified by the spacer sequences stored within the CRISPR. The CRISPR-Cas system has been identified using Basic Local Alignment Search Tool (BLAST) against other sequenced and annotated genomes and confirmed via CRISPRfinder program. Using Polymerase Chain Reactions (PCR) and Sanger DNA sequencing, we discovered CRISPRs in additional bacterial isolates of the same species of Bordetella. Transcriptional activity and processing of the CRISPR have been assessed via RT-PCR. Here we describe a novel Type II-C CRISPR and its associated genes-cas1, cas2, and cas9-in several isolates of a newly discovered Bordetella species. The CRISPR-cas locus, which is absent in all other Bordetella species, has a significantly lower GC-content than the genome-wide average, suggesting acquisition of this locus via horizontal gene transfer from a currently unknown source. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crRNA), some of which have homology to prophages found in closely related species B. hinzii. Expression of the CRISPR-Cas system and processing of crRNAs with perfect homology to prophages present in closely related species, but absent in that containing this CRISPR-Cas system, suggest it provides protection against phage predation. The 3,117-bp cas9 endonuclease gene from this novel CRISPR-Cas system is 990 bp smaller than that of Streptococcus pyogenes, the 4,017-bp allele currently used for genome editing, and which may make it a useful tool in various CRISPR-Cas technologies.

  20. Potential effect of some environmental factors on the phage removal during wastewater treatment. Study in vitro

    International Nuclear Information System (INIS)

    Benhyahya, M.; Bohatier, J.; Laveran, H.; Ettayebi, M.; Senaud, J.

    2000-01-01

    Great quantities of enteric viruses and bacteriophages are included in wastewaters. They represent a contamination risk of natural water systems. But this viral burden is greatly reduced in the sewage treatment plants by the combined action of numerous environmental factors. To study water quality, some groups of bacteriophages as E. coli phages and Bacteroides fragilis phages have been proposed as model viruses. On an other hand, somatic and, in particular, F-specific coliphages have several morphological, structural and chemical composition ressemblances with the enteric viruses. Two different bacteriophages (øX-174 and MS2) were used as virus models in this in vitro study to evaluate the viral adsorption on suspended clay particles. Distilled sterile water was used as reactional medium to avoid the possible interactions with the considered substrates, the kaolinite (K) and the montmorillonite (M). Phage behaviour in the water and in the recommended diluent for phages, the saline peptone, was first compared. K and M suspensions were used at 300 mg/l for a contact time of 5, 30 and 60 min. In other series K and M suspensions were prepared at 600, 300 and 100 mg/l then used to determine the phage adsorption capacity in a fixed time 30 min. Results show that the phage titers for all samples were constant in the organic diluent. They were lower in the distilled sterile water and decrease with the time. Distilled water favours most likely the grouping of virions and leads aggregates formation. The adsorption of øX-174 and MS2 onto K or M particles was instantaneous and independent of the duration contact. The clay concentration had a slight significant influence on the phage adsorption rate. Using the same phages we have studied, in a second stage, the potential effect of the dissolved matters in a filtered polluted effluent, that of sunlight radiations and that of the protozoan Tetrahymena pyriformis on the phage removal. No soon significant phage inactivation was

  1. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.

    Science.gov (United States)

    Wang, Jianglin; Yang, Mingying; Zhu, Ye; Wang, Lin; Tomsia, Antoni P; Mao, Chuanbin

    2014-08-06

    A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Damages induced in lambda phage DNA by enzyme-generated triplet acetone

    International Nuclear Information System (INIS)

    Menck, C.F.; Cabral Neto, J.B.; Gomes, R.A.; Faljoni-Alario, A.

    1985-01-01

    Exposure of lambda phage to triplet acetone, generated during the aerobic oxidation of isobutanal by peroxidase, leads to genome lesions. The majority of these lesions are detected as DNA single-strand breaks only in alkaline conditions, so true breaks were not observed. Also, no sites sensitive to UV-endonuclease from Micrococcus luteus were found in DNA from treated phage. The participation of triplet acetone in the generation of such DNA damage is discussed. (Author) [pt

  3. Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages.

    Science.gov (United States)

    Tangney, Mark; Fitzgerald, Gerald F

    2002-04-23

    Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.

  4. Transcriptome Analysis of a Bloom-Forming Cyanobacterium Microcystis aeruginosa during Ma-LMM01 Phage Infection

    Directory of Open Access Journals (Sweden)

    Daichi Morimoto

    2018-01-01

    Full Text Available Microcystis aeruginosa forms massive blooms in eutrophic freshwaters, where it is constantly exposed to lytic cyanophages. Unlike other marine cyanobacteria, M. aeruginosa possess remarkably abundant and diverse potential antiviral defense genes. Interestingly, T4-like cyanophage Ma-LMM01, which is the sole cultured lytic cyanophage infecting M. aeruginosa, lacks the host-derived genes involved in maintaining host photosynthesis and directing host metabolism that are abundant in other marine cyanophages. Based on genomic comparisons with closely related cyanobacteria and their phages, Ma-LMM01 is predicted to employ a novel infection program that differs from that of other marine cyanophages. Here, we used RNA-seq technology and in silico analysis to examine transcriptional dynamics during Ma-LMM01 infection to reveal host transcriptional responses to phage infection, and to elucidate the infection program used by Ma-LMM01 to avoid the highly abundant host defense systems. Phage-derived reads increased only slightly at 1 h post-infection, but significantly increased from 16% of total cellular reads at 3 h post-infection to 33% of all reads by 6 h post-infection. Strikingly, almost none of the host genes (0.17% showed a significant change in expression during infection. However, like other lytic dsDNA phages, including marine cyanophages, phage gene dynamics revealed three expression classes: early (host-takeover, middle (replication, and late (virion morphogenesis. The early genes were concentrated in a single ∼5.8-kb window spanning 10 open reading frames (gp054–gp063 on the phage genome. None of the early genes showed homology to the early genes of other T4-like phages, including known marine cyanophages. Bacterial RNA polymerase (σ70 recognition sequences were also found in the upstream region of middle and late genes, whereas phage-specific motifs were not found. Our findings suggest that unlike other known T4-like phages, Ma-LMM01

  5. Improved Soluble ScFv ELISA Screening Approach for Antibody Discovery Using Phage Display Technology.

    Science.gov (United States)

    Tohidkia, Mohammad R; Sepehri, Maryam; Khajeh, Shirin; Barar, Jaleh; Omidi, Yadollah

    2017-09-01

    Phage display technology (PDT) is a powerful tool for the isolation of recombinant antibody (Ab) fragments. Using PDT, target molecule-specific phage-Ab clones are enriched through the "biopanning" process. The individual specific binders are screened by the monoclonal scFv enzyme-linked immunosorbent assay (ELISA) that may associate with inevitable false-negative results. Thus, in this study, three strategies were investigated for optimization of the scFvs screening using Tomlinson I and J libraries, including (1) optimizing the expression of functional scFvs, (2) improving the sensitivity of ELISA, and (3) preparing different samples containing scFvs. The expression of all scFv Abs was significantly enhanced when scFv clones were cultivated in the terrific broth (TB) medium at the optimum temperature of 30 °C. The protein A-conjugated with horseradish peroxidase (HRP) was found to be a well-suited reagent for the detection of Ag-bound scFvs in comparison with either anti-c-myc Ab or the mixing procedure. Based on our findings, it seems there is no universal media supplement for an improved expression of all scFvs derived from both Tomlinson I and J libraries. We thus propose that expression of scFv fragments in a microplate scale is largely dependent on a variety of parameters, in particular the scFv clones and relevant sequences.

  6. Exploiting Nanobodies in the Detection and Quantification of Human Growth Hormone via Phage-Sandwich Enzyme-Linked Immunosorbent Assay

    Directory of Open Access Journals (Sweden)

    Hossam Murad

    2017-05-01

    Full Text Available BackgroundMonitoring blood levels of human growth hormone (hGH in most children with short stature deficiencies is crucial for taking a decision of treatment with extended course of daily and expensive doses of recombinant hGH (rhGH or Somatropin®. Besides, misusing of rhGH by sportsmen is banned by the World Anti-Doping Agency and thus sensitive GH-detecting methods are highly welcome in this field. Nanobodies are the tiniest antigen-binding entity derived from camel heavy chain antibodies. They were successfully generated against numerous antigens including hormones.MethodsA fully nanobody-based sandwich ELISA method was developed in this work for direct measurement of GH in biological samples.ResultsTwo major characteristics of nanobody were exploited for this goal: the robust and stable structure of the nanobody (NbGH04 used to capture hGH from tested samples, and the great ability of tailoring, enabling the display of the anti-GH detector nanobody (NbGH07 on the tip of M13-phage. Such huge, stable, and easy-to-prepare phage-Nb was used in ELISA to provide an amplified signal. Previously, NbGH04 was retrieved on immobilized hGH by phage display from a wide “immune” cDNA library prepared from a hGH-immunized camel. Here, and in order to assure epitope heterogeneity, NbGH07 was isolated from the same library using NbGH04-captured hGH as bait. Interaction of both nanobodies with hGH was characterized and compared with different anti-GH nanobodies and antibodies. The sensitivity (~0.5 ng/ml and stability of the nanobody-base sandwich ELISA were assessed using rhGH before testing in the quantification of hGH in blood sera and cell culture supernatants.ConclusionIn regard to all advantages of nanobodies; stability, solubility, production affordability in Escherichia coli, and gene tailoring, nanobody-based phage sandwich ELISA developed here would provide a valuable method for hGH detection and quantification.

  7. Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium.

    Science.gov (United States)

    Gino, Efrat; Starosvetsky, Jeanna; Kurzbaum, Eyal; Armon, Robert

    2010-04-15

    Groundwater wells containing large concentrations of ferrous iron face serious clogging problems as a result of biotic iron oxidation. Following a short time after their start off, wells get clogged, and their production efficiency drop significantly up to a total obstruction, making cleanup and rehabilitation an economic burden. The present study was undertaken to test an experimental combined treatment (chemical and biological) for future prevention or rehabilitation of clogged wells. Sphaerotilus natans (an iron-oxidizing bacterium) freshly isolated from a deep well was grown to form biofilms on two systems: coupons and sand buried miniature wedge wire screen baskets. A combined chemical-biological treatment, applied at laboratory scale by use of glycolic acid (2%) and isolated bacteriophages against Sphaerotilus natans (SN1 and ER1-a newly isolated phage) at low multiplicity of infection (MOI), showed inhibition of biofilm formation and inactivation of the contaminant bacteria. In addition to complete inactivation of S. natans planktonic bacteria by the respective phages, earlier biofilm treatment with reduced glycolic acid concentration revealed efficient exopolysaccharide (EPS) digestion allowing phages to be increasingly efficient against biofilm matrix bacteria. Utilization of this combined treatment revealed clean surfaces of a model stainless steel wedge wire screen baskets (commonly used in wells) for up to 60 days.

  8. Phenotypic and antibiogram pattern of V. cholerae isolates from a tertiary care hospital in Mumbai during 2004-2013: a retrospective cross-sectional study.

    Science.gov (United States)

    Torane, V; Kuyare, S; Nataraj, G; Mehta, P; Dutta, S; Sarkar, B

    2016-11-25

    Cholera is a major gastroenteric disease with reports on fluctuation and resistance. Hence, the objective is to determine the trend in seasonality, resistance pattern, prevalent biotypes, serotypes and phage types between 2004 and 2013 among Vibrio cholerae isolates. A retrospective cross-sectional study. A single-centre study was carried out at a tertiary care hospital in a metropolitan city (Mumbai) of a developing country (India). Records of stool specimen cultures of patients with suspected cholera from January 2004 to December 2013 were analysed. The organisms were identified as per standard protocol. Antimicrobial susceptibility testing was performed as per Clinical Laboratory Standard Institute. Biotyping, serotyping and phage typing were carried out. From the confirmed cases of cholera, demographic and laboratory details were noted. Descriptive analysis was used and the data were presented in the form of percentages. Vibrio cholerae was predominant in males and was isolated from 9.41% (439/4664) of stool specimens. Variability was found in terms of the gross appearance of stool specimens, seasonal trend and antibiotic resistance pattern. The antimicrobial susceptibility showed a waxing and waning pattern for most of the antibiotics (ampicillin, cefuroxime, chloramphenicol, tetracycline) tested, while for a few others the strains were either uniformly sensitive (gentamicin, norfloxacin) or resistant (trimethoprim-sulfamethoxazole, nalidixic acid). All isolates belonged to subgroup O1 and biotype El Tor. The most common serotype was Ogawa. The predominant phage type was T2 (old scheme) and T27 (new scheme). The predominant biotype, serotype and phage type were El Tor, Ogawa and T27 phage, respectively. The changing trends in antimicrobial resistance pattern over the years necessitate continued epidemiological and microbiological surveillance of the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  9. Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization.

    Directory of Open Access Journals (Sweden)

    Maia Merabishvili

    Full Text Available Staphylococcus aureus phage ISP was lyophilized, using an Amsco-Finn Aqua GT4 freeze dryer, in the presence of six different stabilizers at different concentrations. Stability of the lyophilized phage at 4 °C was monitored up to 37 months and compared to stability in Luria Bertani broth and physiological saline at 4 °C. Sucrose and trehalose were shown to be the best stabilizing additives, causing a decrease of only 1 log immediately after the lyophilization procedure and showing high stability during a 27 month storage period.

  10. Construction and Selection of Affilin® Phage Display Libraries.

    Science.gov (United States)

    Settele, Florian; Zwarg, Madlen; Fiedler, Sebastian; Koscheinz, Daniel; Bosse-Doenecke, Eva

    2018-01-01

    Affilin ® molecules represent a new class of so-called scaffold proteins. The concept of scaffold proteins is to use stable and versatile protein structures which can be endowed with de novo binding properties and specificities by introducing mutations in surface exposed amino acid residues. Complex variations and combinations are generated by genetic methods of randomization resulting in large cDNA libraries. The selection for candidates binding to a desired target can be executed by display methods, especially the very robust and flexible phage display. Here, we describe the construction of ubiquitin based Affilin ® phage display libraries and their use in biopanning experiments for the identification of novel protein ligands.

  11. Isolation, Characterization, and Application of Bacteriophage LPSE1 Against Salmonella enterica in Ready to Eat (RTE Foods

    Directory of Open Access Journals (Sweden)

    Chenxi Huang

    2018-05-01

    Full Text Available Salmonella infection is an important foodborne consumer health concern that can be mitigated during food processing. Bacteriophage therapy imparts many advantages over conventional chemical preservatives including pathogen specificity, natural derivation, potency, and providing a high degree of safety. The objective of this study aimed to isolate and characterize a phage that effectively control Salmonella food contamination. Out of 35 isolated phages, LPSE1 demonstrated a broad Salmonella host range, robust lytic ability, extensive pH tolerance, and prolonged thermal stability. The capacity for phage LPSE1 to control Salmonella Enteritidis-ATCC13076 in milk, sausage, and lettuce was established. Incubation of LPSE1 at 28°C in milk reduced recoverable Salmonella by approximately 1.44 log10 CFU/mL and 2.37 log10 CFU/mL at MOI of 1 and 100, respectively, as relative to the phage-excluded control. Upon administration of LPSE1 at an MOI of 1 in sausage, Salmonella count decreased 0.52 log10 at 28°C. At MOI of 100, the count decreased 0.49 log10 at 4°C. Incubation of LPSE1 on lettuce reduced recoverable Salmonella by 2.02 log10, 1.71 log10, and 1.45 log10 CFU/mL at an MOI of 1, 10, and 100, respectively, as relative to the negative control. Taken together, these findings establish LPSE1 as an effective weapon against human pathogenic Salmonella in various ready to eat foods.

  12. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis.

    Directory of Open Access Journals (Sweden)

    Emmanuel Dias-Neto

    2009-12-01

    Full Text Available Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i the counting of transducing units and (ii the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges.We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU, with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs approximately 250-fold for generating 10(6 ligand sequences.Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall, qPhage plus pyrosequencing is superior to TU-counting plus Sanger

  13. Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis.

    Science.gov (United States)

    Hayhurst, Andrew; Happe, Scott; Mabry, Robert; Koch, Zephyr; Iverson, Brent L; Georgiou, George

    2003-05-01

    Brucella melitensis is a highly infectious animal pathogen able to cause a recurring debilitating disease in humans and is therefore high on the list of biological warfare agents. Immunoglobulin genes from mice immunized with gamma-irradiated B. melitensis strain 16M were used to construct a library that was screened by phage display against similarly prepared bacteria. The selected phage particles afforded a strong enzyme-linked immunosorbent assay (ELISA) signal against gamma-irradiated B. melitensis cells. However, extensive efforts to express the respective single chain antibody variable region fragment (scFv) in soluble form failed due to: (i) poor solubility and (ii) in vivo degradation of the c-myc tag used for the detection of the recombinant antibodies. Both problems could be addressed by: (i) fusing a human kappa light chain constant domain (Ck) chain to the scFv to generate single chain antibody fragment (scAb) antibody fragments and (ii) by co-expression of the periplasmic chaperone Skp. While soluble, functional antibodies could be produced in this manner, phage-displaying scFvs or scAbs were still found to be superior ELISA reagents for immunoassays, due to the large signal amplification afforded by anti-phage antibodies. The isolated phage antibodies were shown to be highly specific to B. melitensis and did not recognize Yersinia pseudotuberculosis in contrast to the existing diagnostic monoclonal YST 9.2.1.

  14. Phage-based magnetoelastic sensor for the detection of Salmonella typhimurium

    Science.gov (United States)

    Lakshmanan, Ramji S.

    In recent years, food-borne illness have garnered the attention of mainstream America with calls now coming from the media for more inspections to ensure the safety of our food supply. Food borne illness from the ingestion of S. typhimurium has been of great concern due to its common occurrence in food products of daily consumption. Annually approximately 80 million cases of food poisoning are reported in the United States alone. The ever growing need for rapid detection of pathogenic microorganisms present in food, environmental and clinical samples has invoked an increased interest in research efforts towards the development of novel diagnostic methodologies. Currently, the detection of bacteria in contaminated food relies on conventional microbiological methods that are time consuming and manpower intensive. This study presents the results of the characterization of a phage-based magnetoelastic biosensor for the detection of Salmonella typhimurium . This affinity-based biosensensor is comprised of a magnetoelastic material as the transducer and filamentous phage as the bio-recognition element. Magnetoelastic materials are ferromagnetic amorphous alloys that change dimensions in the presence of a magnetic field. This effect in combination with the reverse effect (inverse magnetostriction) is utilized in a typical sensor application. A time varying magnetic field causes these sensors to oscillate at a characteristic resonance frequency. The characteristic resonance frequency is dependent on the initial dimensions and physical properties of the material. These materials are of particular interest owing to their unique capability to perform remote (without direct wire contacts to the sensor) sensing, making in-vivo detection and detection in closed containers possible. The phage-immobilized magnetoelastic biosensor was characterized for specificity; dose response in water, spiked apple juice and in spiked milk; selectivity; and longevity. The sensor's sensitivity is

  15. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer

    International Nuclear Information System (INIS)

    Wang, Wenhui; Chen, Xilei; Li, Tao; Li, Yanmei; Wang, Ruixue; He, Dan; Luo, Wu; Li, Xiaokun; Wu, Xiaoping

    2013-01-01

    Fibroblast growth factor 8b (FGF8b) is the major isoform of FGF8 expressed in prostate cancer and it correlates with the stage and grade of the disease. FGF8b has been considered as a potential target for prostate cancer therapy. Here we isolated 12 specific FGF8b-binding phage clones by screening a phage display heptapeptide library with FGF8b. The peptide (HSQAAVP, named as P12) corresponding to one of these clones showed high homology to the immunoglobulin-like (Ig-like) domain II(D2) of high-affinity FGF8b receptor (FGFR3c), contained 3 identical amino acids (AVP) to the authentic FGFR3 D2 sequence aa 163–169 (LLAVPAA) directly participating in ligand binding, carried the same charges as its corresponding motif (aa163–169) in FGFR3c, suggesting that P12 may have a greater potential to interrupt FGF8b binding to its receptors than other identified heptapeptides do. Functional analysis indicated that synthetic P12 peptides mediate significant inhibition of FGF8b-induced cell proliferation, arrest cell cycle at the G0/G1 phase via suppression of Cyclin D1 and PCNA, and blockade of the activations of Erk1/2 and Akt cascades in both prostate cancer cells and vascular endothelial cells. The results demonstrated that the P12 peptide acting as an FGF8b antagonist may have therapeutic potential in prostate cancer. - Highlights: ► A novel FGF8b-binding peptide P12 was isolated from a phage display library. ► The mechanisms for P12 peptide inhibiting cell proliferation were proposed. ► P12 caused cell cycle arrest at G0/G1 phase via suppression of Cyclin D1 and PCNA. ► P12 suppressed FGF8b-induced activations of Akt and MAP kinases. ► P12 acting as an FGF8b antagonist may have therapeutic potential in prostate cancer

  16. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenhui; Chen, Xilei; Li, Tao; Li, Yanmei; Wang, Ruixue; He, Dan; Luo, Wu [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); Li, Xiaokun [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035 (China); Wu, Xiaoping, E-mail: twxp@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035 (China)

    2013-05-01

    Fibroblast growth factor 8b (FGF8b) is the major isoform of FGF8 expressed in prostate cancer and it correlates with the stage and grade of the disease. FGF8b has been considered as a potential target for prostate cancer therapy. Here we isolated 12 specific FGF8b-binding phage clones by screening a phage display heptapeptide library with FGF8b. The peptide (HSQAAVP, named as P12) corresponding to one of these clones showed high homology to the immunoglobulin-like (Ig-like) domain II(D2) of high-affinity FGF8b receptor (FGFR3c), contained 3 identical amino acids (AVP) to the authentic FGFR3 D2 sequence aa 163–169 (LLAVPAA) directly participating in ligand binding, carried the same charges as its corresponding motif (aa163–169) in FGFR3c, suggesting that P12 may have a greater potential to interrupt FGF8b binding to its receptors than other identified heptapeptides do. Functional analysis indicated that synthetic P12 peptides mediate significant inhibition of FGF8b-induced cell proliferation, arrest cell cycle at the G0/G1 phase via suppression of Cyclin D1 and PCNA, and blockade of the activations of Erk1/2 and Akt cascades in both prostate cancer cells and vascular endothelial cells. The results demonstrated that the P12 peptide acting as an FGF8b antagonist may have therapeutic potential in prostate cancer. - Highlights: ► A novel FGF8b-binding peptide P12 was isolated from a phage display library. ► The mechanisms for P12 peptide inhibiting cell proliferation were proposed. ► P12 caused cell cycle arrest at G0/G1 phase via suppression of Cyclin D1 and PCNA. ► P12 suppressed FGF8b-induced activations of Akt and MAP kinases. ► P12 acting as an FGF8b antagonist may have therapeutic potential in prostate cancer.

  17. Analysis of the first temperate broad host range brucellaphage (BiPBO1 isolated from B. inopinata

    Directory of Open Access Journals (Sweden)

    Jens Andre Hammerl

    2016-01-01

    Full Text Available Brucella species are important human and animal pathogens. Though, only little is known about mobile genetic elements of these highly pathogenic bacteria. To date, neither plasmids nor temperate phages have been described in brucellae. We analysed genomic sequences of various reference and type strains and identified a number of putative prophages residing within the Brucella chromosomes. By induction, phage BiPBO1 was isolated from B. inopinata. BiPBO1 is a siphovirus that infects several Brucella species including B. abortus and B. melitensis. Integration of the phage genome occurs adjacent to a tRNA gene in chromosome 1 (chr 1. The bacterial (attB and phage (attP attachment sites comprise an identical sequence of 46 bp. This sequence exists in many Brucella and Ochrobactrum species. The BiPBO1 genome is composed of a 46,877 bp double-stranded DNA. Eighty-seven putative gene products were determined, of which 32 could be functionally assigned. Strongest similarities were found to a temperate phage residing in the chromosome of Ochrobactrum anthropi ATCC 49188 and to prophages identified in several families belonging to the order rhizobiales. The data suggest that horizontal gene transfer may occur between Brucella and Ochrobactrum and underpin the close relationship of these environmental and pathogenic bacteria.

  18. Probing ADAMTS13 substrate specificity using phage display.

    Directory of Open Access Journals (Sweden)

    Karl C Desch

    Full Text Available Von Willebrand factor (VWF is a large, multimeric protein that regulates hemostasis by tethering platelets to the subendothelial matrix at sites of vascular damage. The procoagulant activity of plasma VWF correlates with the length of VWF multimers, which is proteolytically controlled by the metalloprotease ADAMTS13. To probe ADAMTS13 substrate specificity, we created phage display libraries containing randomly mutated residues of a minimal ADAMTS13 substrate fragment of VWF, termed VWF73. The libraries were screened for phage particles displaying VWF73 mutant peptides that were resistant to proteolysis by ADAMTS13. These peptides exhibited the greatest mutation frequency near the ADAMTS13 scissile residues. Kinetic assays using mutant and wild-type substrates demonstrated excellent agreement between rates of cleavage for mutant phage particles and the corresponding mutant peptides. Cleavage resistance of selected mutations was tested in vivo using hydrodynamic injection of corresponding full-length expression plasmids into VWF-deficient mice. These studies confirmed the resistance to cleavage resulting from select amino acid substitutions and uncovered evidence of alternate cleavage sites and recognition by other proteases in the circulation of ADAMTS13 deficient mice. Taken together, these studies demonstrate the key role of specific amino acids residues including P3-P2' and P11', for substrate specificity and emphasize the importance in flowing blood of other ADAMTS13-VWF exosite interactions outside of VWF73.

  19. Modular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery

    International Nuclear Information System (INIS)

    Comeau, Andre M.; Bertrand, Claire; Letarov, Andrei; Tetart, Francoise; Krisch, H.M.

    2007-01-01

    Among the most numerous objects in the biosphere, phages show enormous diversity in morphology and genetic content. We have sequenced 7 T4-like phages and compared their genome architecture. All seven phages share a core genome with T4 that is interrupted by several hyperplastic regions (HPRs) where most of their divergence occurs. The core primarily includes homologues of essential T4 genes, such as the virion structure and DNA replication genes. In contrast, the HPRs contain mostly novel genes of unknown function and origin. A few of the HPR genes that can be assigned putative functions, such as a series of novel Internal Proteins, are implicated in phage adaptation to the host. Thus, the T4-like genome appears to be partitioned into discrete segments that fulfil different functions and behave differently in evolution. Such partitioning may be critical for these large and complex phages to maintain their flexibility, while simultaneously allowing them to conserve their highly successful virion design and mode of replication

  20. On the lack of host-cell reactivation of UV-irradiated phage T5

    International Nuclear Information System (INIS)

    Chiang, T.; Harm, W.

    1976-01-01

    Previously reported experiments have shown that host-cell reactivation (HCR) of UV-irradiated phage T1 in excision-repair proficient Escherichia coli cells is inhibited by superinfection with phage T5. Theoretical considerations have led to predictions concerning the dependence of repair inhibition on the multiplicity of superinfecting T5 phage and on the UV fluence to which they were exposed. These predictions have been supported by experimental results described in this paper. The fluence dependence permitted calculation of the relative UV sensitivity of the gene function responsible for repair inhibition; it was found to be about 2.3% that of the plaque-forming ability of phage T5. The T5-inhibitable step in excision repair occurs early in the infective cycle of T1. Furthermore, experiments involving the presence of 400 μg/ml chloramphenicol showed that HCR inhibition of T1 is caused by a protein produced after the FST segment of T5 (i.e. the first 8% of the T5 genome) has entered the host cell. A previously described minor T1 recovery process, occuring in both excision-repair-proficient and -deficient host-cells, is inhibited by T5 infection due to a different substance, which is most likely associated with the 'second-step-transfer' region of T5 DNA (involving the remainder of the genome). Superinfection with T4v 1 phage resulted in HCR inhibition of T1, resembling that observed after T5 superinfection. The discussion of these results suggests that inhibition of the bacterial excision repair system by T5 or T4 infection occurs at the level of UV-endonucleolytic incision, and that lack of HCR both in T-even phages and in T5 can be explained in the same manner

  1. Phenotypic and antibiogram pattern of V. cholerae isolates from a tertiary care hospital in Mumbai during 2004–2013: a retrospective cross-sectional study

    Science.gov (United States)

    Torane, V; Kuyare, S; Nataraj, G; Mehta, P; Dutta, S; Sarkar, B

    2016-01-01

    Objectives Cholera is a major gastroenteric disease with reports on fluctuation and resistance. Hence, the objective is to determine the trend in seasonality, resistance pattern, prevalent biotypes, serotypes and phage types between 2004 and 2013 among Vibrio cholerae isolates. Design A retrospective cross-sectional study. Settings A single-centre study was carried out at a tertiary care hospital in a metropolitan city (Mumbai) of a developing country (India). Methods Records of stool specimen cultures of patients with suspected cholera from January 2004 to December 2013 were analysed. The organisms were identified as per standard protocol. Antimicrobial susceptibility testing was performed as per Clinical Laboratory Standard Institute. Biotyping, serotyping and phage typing were carried out. From the confirmed cases of cholera, demographic and laboratory details were noted. Descriptive analysis was used and the data were presented in the form of percentages. Results Vibrio cholerae was predominant in males and was isolated from 9.41% (439/4664) of stool specimens. Variability was found in terms of the gross appearance of stool specimens, seasonal trend and antibiotic resistance pattern. The antimicrobial susceptibility showed a waxing and waning pattern for most of the antibiotics (ampicillin, cefuroxime, chloramphenicol, tetracycline) tested, while for a few others the strains were either uniformly sensitive (gentamicin, norfloxacin) or resistant (trimethoprim-sulfamethoxazole, nalidixic acid). All isolates belonged to subgroup O1 and biotype El Tor. The most common serotype was Ogawa. The predominant phage type was T2 (old scheme) and T27 (new scheme). Conclusions The predominant biotype, serotype and phage type were El Tor, Ogawa and T27 phage, respectively. The changing trends in antimicrobial resistance pattern over the years necessitate continued epidemiological and microbiological surveillance of the disease. PMID:27888174

  2. Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids

    DEFF Research Database (Denmark)

    Castillo, D.; Higuera, G.; Villa, M.

    2012-01-01

    Flavobacterium psychrophilum causes rainbow trout fry syndrome (RTFS) and cold water disease (CWD) in salmonid aquaculture. We report characterization of F. psychrophilum strains and their bacteriophages isolated in Chilean salmonid aquaculture. Results suggest that under laboratory conditions ph...... together with the bacteria in a ratio of 10 plaque‐forming units per colony‐forming unit. While we recognize the artificial laboratory conditions used for these protection assays, this work is the first to demonstrate that phages might be able protect salmonids from RTFS or CWD....

  3. Butyric acid production from red algae by a newly isolated Clostridium sp. S1.

    Science.gov (United States)

    Lee, Kyung Min; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Sang, Byoung-In; Um, Youngsoon

    2015-09-01

    To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required. A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5-2 g levulinic acid/l and recovered from HMF inhibition at 0.6-2.5 g/l, resulting in 85-92% butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l. Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.

  4. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.

    Science.gov (United States)

    Fatemi, Farnaz; Amini, Seyed Mohammad; Kharrazi, Sharmin; Rasaee, Mohammad Javad; Mazlomi, Mohammad Ali; Asadi-Ghalehni, Majid; Rajabibazl, Masoumeh; Sadroddiny, Esmaeil

    2017-11-01

    The most common techniques of antibody phage display are based on the use of M13 filamentous bacteriophages. This study introduces a new genetically engineered M13K07 helper phage displaying multiple copies of a known gold binding peptide on p8 coat proteins. The recombinant helper phages were used to rescue a phagemid vector encoding the p3 coat protein fused to the nuclear matrix protein 22 (NMP22) ScFv antibody. Transmission electron microscopy (TEM), UV-vis absorbance spectroscopy, and field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) analysis revealed that the expression of gold binding peptide 1 (GBP1) on major coat protein p8 significantly enhances the gold-binding affinity of M13 phages. The recombinant bacteriophages at concentrations above 5×10 4 pfu/ml red-shifted the UV-vis absorbance spectra of gold nanoparticles (AuNPs); however, the surface plasmon resonance of gold nanoparticles was not changed by the wild type bacteriophages at concentrations up to 10 12 pfu/ml. The phage ELISA assay demonstrated the high affinity binding of bifunctional bacteriophages to NMP22 antigen at concentrations of 10 5 and 10 6 pfu/ml. Thus, the p3 end of the bifunctional bacteriophages would be able to bind to specific target antigen, while the AuNPs were assembled along the coat of virus for signal generation. Our results indicated that the complex of antigen-bacteriophages lead to UV-vis spectral changes of AuNPs and NMP22 antigen in concentration range of 10-80μg/ml can be detected by bifunctional bacteriophages at concentration of 10 4 pfu/ml. The ability of bifunctional bacteriophages to bind to antigen and generate signal at the same time, makes this approach applicable for identifying different antigens in immunoassay techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Phage or foe: an insight into the impact of viral predation on microbial communities.

    Science.gov (United States)

    Fernández, Lucía; Rodríguez, Ana; García, Pilar

    2018-05-01

    Since their discovery, bacteriophages have been traditionally regarded as the natural enemies of bacteria. However, recent advances in molecular biology techniques, especially data from "omics" analyses, have revealed that the interplay between bacterial viruses and their hosts is far more intricate than initially thought. On the one hand, we have become more aware of the impact of viral predation on the composition and genetic makeup of microbial communities thanks to genomic and metagenomic approaches. Moreover, data obtained from transcriptomic, proteomic, and metabolomic studies have shown that responses to phage predation are complex and diverse, varying greatly depending on the bacterial host, phage, and multiplicity of infection. Interestingly, phage exposure may alter different phenotypes, including virulence and biofilm formation. The complexity of the interactions between microbes and their viral predators is also evidenced by the link between quorum-sensing signaling pathways and bacteriophage resistance. Overall, new data increasingly suggests that both temperate and virulent phages have a positive effect on the evolution and adaptation of microbial populations. From this perspective, further research is still necessary to fully understand the interactions between phage and host under conditions that allow co-existence of both populations, reflecting more accurately the dynamics in natural microbial communities.

  6. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities

    Science.gov (United States)

    Friman, Ville-Petri; Buckling, Angus

    2014-01-01

    The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085

  7. Impact of reducing and oxidizing agents on the infectivity of Qβ phage and the overall structure of its capsid.

    Science.gov (United States)

    Loison, Pauline; Majou, Didier; Gelhaye, Eric; Boudaud, Nicolas; Gantzer, Christophe

    2016-11-01

    phages infect Escherichia coli in the human gut by recognizing F-pili as receptors. Infection therefore occurs under reducing conditions induced by physiological agents (e.g. glutathione) or the intestinal bacterial flora. After excretion in the environment, phage particles are exposed to oxidizing conditions and sometimes disinfection. If inactivation does not occur, the phage may infect new hosts in the human gut through the oral route. During such a life cycle, we demonstrated that, outside the human gut, cysteines of the major protein capsid of Qβ phage form disulfide bonds. Disinfection with NaClO does not allow overoxidation to occur. Such oxidation induces inactivation rather by irreversible damage to the minor proteins. In the presence of glutathione, most disulfide bonds are reduced, which slightly increases the capacity of the phage to infect E. coli in vitro Such reduction is reversible and barely alters infectivity of the phage. Reduction of all disulfide bonds by dithiothreitol leads to complete capsid destabilization. These data provide new insights into how the phages are impacted by oxidizing-reducing conditions outside their host cell and raises the possibility of the intervention of the redox during life cycle of the phage. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Large palindromes in the lambda phage genome are preserved in a rec/sup +/ host by inhibiting lambda DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Shurvinton, C.E.; Stahl, M.M.; Stahl, F.W.

    1987-03-01

    A large palindrome carried by phage lambda has been shown to prevent growth of the phage on a rec/sup +/ strain of Escherichia coli. The phage do form plaques on recBC sbcB strains, but the palindrome is not stable - deletions that either destroy the palindrome or diminish its size overgrow the original engineered palindrome-containing phage. The authors have prepared stocks of lambda carrying a palindrome that is 2 x 4200 base pairs long. lambda phage were density labeled by UV induction of lysogens grown in minimal medium containing (/sup 13/C) glucose and /sup 15/NH/sub 4/Cl. These phage stocks are produced by induction of a lysogen in which the two halves of the palindrome are stored at opposite ends of the prophage and are of sufficient titer (10/sup 9/ phage per ml) to enable one-step growth experiments with replication-blocked phage. They find that the large palindrome as well as a lesser palindrome of 2 x 265 base pairs are recovered intact among particles carrying unreplicated chromosomes following such an infection of a rec/sup +/ host. they propose that DNA replication drives the extrusion of palindromic sequences in vivo, forming secondary structures that are substrates for the recBC and sbcB gene products.

  9. A Genetic Approach to the Development of New Therapeutic Phages to Fight Pseudomonas Aeruginosa in Wound Infections

    Directory of Open Access Journals (Sweden)

    Elena Pleteneva

    2012-12-01

    Full Text Available Pseudomonas aeruginosa is a frequent participant in wound infections. Emergence of multiple antibiotic resistant strains has created significant problems in the treatment of infected wounds. Phage therapy (PT has been proposed as a possible alternative approach. Infected wounds are the perfect place for PT applications, since the basic condition for PT is ensured; namely, the direct contact of bacteria and their viruses. Plenty of virulent (“lytic” and temperate (“lysogenic” bacteriophages are known in P. aeruginosa. However, the number of virulent phage species acceptable for PT and their mutability are limited. Besides, there are different deviations in the behavior of virulent (and temperate phages from their expected canonical models of development. We consider some examples of non-canonical phage-bacterium interactions and the possibility of their use in PT. In addition, some optimal approaches to the development of phage therapy will be discussed from the point of view of a biologist, considering the danger of phage-assisted horizontal gene transfer (HGT, and from the point of view of a surgeon who has accepted the Hippocrates Oath to cure patients by all possible means. It is also time now to discuss the possible approaches in international cooperation for the development of PT. We think it would be advantageous to make phage therapy a kind of personalized medicine.

  10. A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells.

    Science.gov (United States)

    Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A

    2014-08-01

    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.

  11. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile.

    Science.gov (United States)

    Hargreaves, Katherine R; Otieno, James R; Thanki, Anisha; Blades, Matthew J; Millard, Andrew D; Browne, Hilary P; Lawley, Trevor D; Clokie, Martha R J

    2015-05-27

    The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile "mobilome," which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Molecular and Morphological Characterization of Fasciola spp. Isolated from Different Host Species in a Newly Emerging Focus of Human Fascioliasis in Iran

    Science.gov (United States)

    Shafiei, Reza; Sarkari, Bahador; Sadjjadi, Seyed Mahmuod; Mowlavi, Gholam Reza; Moshfe, Abdolali

    2014-01-01

    The current study aimed to find out the morphometric and genotypic divergences of the flukes isolated from different hosts in a newly emerging focus of human fascioliasis in Iran. Adult Fasciola spp. were collected from 34 cattle, 13 sheep, and 11 goats from Kohgiluyeh and Boyer-Ahmad province, southwest of Iran. Genomic DNA was extracted from the flukes and PCR-RFLP was used to characterize the isolates. The ITS1, ITS2, and mitochondrial genes (mtDNA) of NDI and COI from individual liver flukes were amplified and the amplicons were sequenced. Genetic variation within and between the species was evaluated by comparing the sequences. Moreover, morphometric characteristics of flukes were measured through a computer image analysis system. Based on RFLP profile, from the total of 58 isolates, 41 isolates (from cattle, sheep, and goat) were identified as Fasciola hepatica, while 17 isolates from cattle were identified as Fasciola gigantica. Comparison of the ITS1 and ITS2 sequences showed six and seven single-base substitutions, resulting in segregation of the specimens into two different genotypes. The sequences of COI markers showed seven DNA polymorphic sites for F. hepatica and 35 DNA polymorphic sites for F. gigantica. Morphological diversity of the two species was observed in linear, ratios, and areas measurements. The findings have implications for studying the population genetics, epidemiology, and control of the disease. PMID:25018891

  13. Molecular and Morphological Characterization of Fasciola spp. Isolated from Different Host Species in a Newly Emerging Focus of Human Fascioliasis in Iran

    Directory of Open Access Journals (Sweden)

    Reza Shafiei

    2014-01-01

    Full Text Available The current study aimed to find out the morphometric and genotypic divergences of the flukes isolated from different hosts in a newly emerging focus of human fascioliasis in Iran. Adult Fasciola spp. were collected from 34 cattle, 13 sheep, and 11 goats from Kohgiluyeh and Boyer-Ahmad province, southwest of Iran. Genomic DNA was extracted from the flukes and PCR-RFLP was used to characterize the isolates. The ITS1, ITS2, and mitochondrial genes (mtDNA of NDI and COI from individual liver flukes were amplified and the amplicons were sequenced. Genetic variation within and between the species was evaluated by comparing the sequences. Moreover, morphometric characteristics of flukes were measured through a computer image analysis system. Based on RFLP profile, from the total of 58 isolates, 41 isolates (from cattle, sheep, and goat were identified as Fasciola hepatica, while 17 isolates from cattle were identified as Fasciola gigantica. Comparison of the ITS1 and ITS2 sequences showed six and seven single-base substitutions, resulting in segregation of the specimens into two different genotypes. The sequences of COI markers showed seven DNA polymorphic sites for F. hepatica and 35 DNA polymorphic sites for F. gigantica. Morphological diversity of the two species was observed in linear, ratios, and areas measurements. The findings have implications for studying the population genetics, epidemiology, and control of the disease.

  14. A novel Pseudomonas aeruginosa bacteriophage, Ab31, a chimera formed from temperate phage PAJU2 and P. putida lytic phage AF: characteristics and mechanism of bacterial resistance.

    Directory of Open Access Journals (Sweden)

    Libera Latino

    Full Text Available A novel temperate bacteriophage of Pseudomonas aeruginosa, phage vB_PaeP_Tr60_Ab31 (alias Ab31 is described. Its genome is composed of structural genes related to those of lytic P. putida phage AF, and regulatory genes similar to those of temperate phage PAJU2. The virion structure resembles that of phage AF and other lytic Podoviridae (S. enterica Epsilon 15 and E. coli phiv10 with similar tail spikes. Ab31 was able to infect P. aeruginosa strain PA14 and two genetically related strains called Tr60 and Tr162, out of 35 diverse strains from cystic fibrosis patients. Analysis of resistant host variants revealed different phenotypes, including induction of pigment and alginate overproduction. Whole genome sequencing of resistant variants highlighted the existence of a large deletion of 234 kbp in two strains, encompassing a cluster of genes required for the production of CupA fimbriae. Stable lysogens formed by Ab31 in strain Tr60, permitted the identification of the insertion site. During colonization of the lung in cystic fibrosis patients, P. aeruginosa adapts by modifying its genome. We suggest that bacteriophages such as Ab31 may play an important role in this adaptation by selecting for bacterial characteristics that favor persistence of bacteria in the lung.

  15. Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8.

    Science.gov (United States)

    Zhang, Yongmei; Xu, Ping; Han, Shuai; Yan, Haiqin; Ma, Cuiqing

    2006-12-01

    A bacterium designated as HS8 was newly isolated from soil based on its ability to degrade isoeugenol. The strain was identified as Bacillus subtilis according to its 16S rDNA sequence analysis and biochemical characteristics. The metabolic pathway for the degradation of isoeugenol was examined. Isoeugenol-diol, for the first time, was detected as an intermediate from isoeugenol to vanillin by a bacterial strain. Isoeugenol was converted to vanillin via isoeugenol-diol, and vanillin was then metabolized via vanillic acid to guaiacol by strain HS8. These metabolites, vanillin, vanillic acid, and guaiacol, are all valuable aromatic compounds in flavor production. At the same time, the bipolymerization of isoeugenol was observed, which produced dehydrodiisoeugenol and decreased the vanillin yield. High level of vanillic acid decarboxylase activity was detected in cell-free extract. These findings provided a detailed profile of isoeugenol metabolism by a B. subtilis strain for the first time, which would improve the production of valuable aromatic compounds by biotechnology.

  16. W-reactivation of phage lambda in X-irradiated mutants of Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Martignoni, K D; Haselbacher, I [Muenchen Univ. (Germany, F.R.). Strahlenbiologisches Inst.

    1980-07-01

    The survival of UV irradiated phage lambda was increased on X-irradiated E.coli K-12 host cells over that on unirradiated cells. The frequency of c mutants among the surviving phages was increased to a similar extent by the X-ray exposure of the host cells as by UV light. This W-reactivation of phage lambda occurred in uvrA, polA, and recB mutants besides the wild type at about equal X-ray doses, but at a reduced reactivation efficiency compared with the wild type. W-reactivation was undetectable in recA mutants. While maximal UV induced W-reactivation occured 30 min after irradiation, the maximal X-ray induced reactivation was found immediately after irradiation. Chloramphenicol (100 ..mu..g/ml) and nitrofurantoin (50 ..mu..g/ml) inhibited W-reactivation of phage lambda if added before irradiation of the host cells, indicating the necessity of protein synthesis for W-reactivation.

  17. Assessment of the Effects of Various UV Sources on Inactivation and Photoproduct Induction in Phage T7 Dosimeter

    NARCIS (Netherlands)

    Fekete, A.; Vink, A.A.; Gaspar, S.; Berces, A.; Modos, K.; Ronto, Gy.; Roza, L.

    1998-01-01

    The correlation between the biologically effective dose (BED) of a phage T7 biological dosimeter and the induction of cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts ((6-4)PD) in the phage DNA was determined using seven various UV sources. The BED is the inactivation rate of phage T7

  18. Assessment of the Microscreen phage-induction assay for screening hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1987-09-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  19. Phage induction by UV and mitomycin C in Pseudomonas mori, the pathogen of bacterial blight of mulberry

    International Nuclear Information System (INIS)

    Sato, Mamoru

    1979-01-01

    Phage induction by ultraviolet radiation (UV) and mitomycin C (MMC) in some lysogenic strains of Pseudomonas mori, the pathogen of bacterial blight of mulberry, was examined. Among 5 strains tested, in the strains S 6804 and S 6805, phage was induced by both UV and MMC, and in the strain M 5, only by MMC. In the strains S 6807 and S 6808, it was not induced by both these inducers. The rate of phage production in the strain 6805 was highest when it was exposed to UV (15 W UV lamp, 40 cm) for 5 seconds, by which about 90% of the bacteria were killed, and decreased rapidly by further extending the exposure time. The bacteria suspended in 0.02 M magnesium solution were more sensitive in responding to UV than those suspended in nutrient broth, but after the UV treatment, nutrient broth was more favorable than magnesium solution for phage production. The MMC added to nutrient broth induced phage production at the concentration from 0.5 to 5 μg/ml. The strains induced by either UV or MMC their temperate phages after about 3 hours of latent period. The phage induction by UV was almost completely suppressed by 40 minute exposure to fluorescent light (a 15 W fluorescent lamp, 10 cm) or by 5 minute exposure to sunlight, given within 45 minutes after the UV treatment, i.e. within 1/4 of the latent period. Thus, the photoreversion of the UV effect on phage induction was observed in Ps. mori as well as in Ps. pyocyanea and E. coli. (Kaihara, S.)

  20. Phage display peptide libraries: deviations from randomness and correctives

    Science.gov (United States)

    Ryvkin, Arie; Ashkenazy, Haim; Weiss-Ottolenghi, Yael; Piller, Chen; Pupko, Tal; Gershoni, Jonathan M

    2018-01-01

    Abstract Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications. PMID:29420788

  1. [Isolation and identification of the temperate bacteriophage from isolated strains of Streptococcus suis serotype 2].

    Science.gov (United States)

    Ma, Yuling; Lu, Chengping; Fan, Hongjie

    2008-04-01

    A PCR assay was developed to study the distributional characteristics of phage integrase gene in Streptococcus suis serotype 2 (SS2). A 323bp distinct DNA target can be amplified in 25 strains of virulent SS2, while can not be amplified in avirulent strain T15, 5 strains of other serotypes (SS1, SS7, SS9) and strains of group C Streptococcus strains from pigs, which suggested that the phage integrase gene may be related to the pathogenicity of SS2 and can be consider as a detection factor of the virulent gene of SS2. The sequencing and restriction endonuclease analysis of the PCR products were also done. Comparisons between the sequences of phage integrase gene with that of SS2 strain, showed a high homology with SS2 China strains 98HAH33, 05ZYH33 and North American strain 89-1591. Complete cell lysis was observed with SS2 virulent strains but not with avirulent strain T15 after the induction by mitomycin C. Electron microscopy analysis of the lysate from SS2 virulent strains HA9801 and ZY05719 revealed the presence of phage particles. The induced phage, named SS2-HA and SS2-ZY, both have a small isometric nucleocapsid approximately 50 nm in diameter and have no tail and is therefore a member of the Tectiviridae family. The phage integrase gene sequence of phage SS2-HA and SS2-ZY shared high homologue identities with virulent SS2 strains, which suggested that the phage integrase gene of SS2 has high specify. The temperate phage and phage integrase gene can only detected from SS2 virulent strains but not from avirulent strain, and the detection of phage integrase gene was related to the virulence-associate factors of SS2, such as the muramidase-released protein gene (mrp), which suggested that the temperate phage of SS2 may be related to the pathogenicity of SS2.

  2. Removal of phages and viral pathogens in a full-scale MBR: Implications for wastewater reuse and potable water.

    Science.gov (United States)

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2016-09-01

    The aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period. Significant mean log reductions of 3.9-5.6 were also observed for all three phage groups monitored. Concentrations of bacteria and phages did not vary significantly according to season (P < 0.05; Kruskal-Wallis), though recorded levels of norovirus (GI) were significantly higher during autumn/winter months (P = 0.027; Kruskal-Wallis). Log reduction values for norovirus and adenovirus following MBR treatment were 2.3 and 4.4, respectively. However, both adenovirus and norovirus were detected at low levels (2000 and 3240 gene copies/L, respectively) post chlorination in single samples. Whilst phage concentrations did correlate with viral pathogens, the results of this study suggest that phages may not be suitable surrogates, as viral pathogen concentrations varied to a greater degree seasonally than did the phage indicators and were detected on a number of occasions on which phages were not detected (false negative sample results). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bad Phages in Good Bacteria: Role of the Mysterious orf63 of λ and Shiga Toxin-Converting Φ24B Bacteriophages

    Directory of Open Access Journals (Sweden)

    Aleksandra Dydecka

    2017-08-01

    Full Text Available Lambdoid bacteriophages form a group of viruses that shares a common schema of genome organization and lifecycle. Some of them can play crucial roles in creating the pathogenic profiles of Escherichia coli strains. For example, Shiga toxin-producing E. coli (STEC acquired stx genes, encoding Shiga toxins, via lambdoid prophages (Stx phages. The results obtained so far present the evidence for the relation between the exo-xis region of the phage genome and lambdoid phage development, however molecular mechanisms of activities of the exo-xis genes' products are still unknown. In view of this, we decided to determine the influence of the uncharacterized open reading frame orf63 of the exo-xis region on lambdoid phages development using recombinant prophages, λ and Stx phage Φ24B. We have demonstrated that orf63 codes for a folded protein, thus, it is a functional gene. NMR spectroscopy and analytical gel filtration were used to extend this observation further. From backbone chemical shifts, Orf63 is oligomeric in solution, likely a trimer and consistent with its small size (63 aa., is comprised of two helices, likely intertwined to form the oligomer. We observed that the deletion of phage orf63 does not impair the intracellular lambdoid phage lytic development, however delays the time and decreases the efficiency of prophage induction and in consequence results in increased survival of E. coli during phage lytic development. Additionally, the deletion of phage orf63 negatively influences expression of the major phage genes and open reading frames from the exo-xis region during prophage induction with hydrogen peroxide. We conclude, that lambdoid phage orf63 may have specific functions in the regulation of lambdoid phages development, especially at the stage of the lysis vs. lysogenization decision. Besides, orf63 probably participates in the regulation of the level of expression of essential phage genes and open reading frames from the exo

  4. Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS-1.

    Science.gov (United States)

    Kim, J H; Choresca, C H; Shin, S P; Han, J E; Jun, J W; Park, S C

    2015-02-01

    The potential control efficacy of Aeromonas phage PAS-1 was evaluated against Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) model in this study. The phage was co-cultured with the virulent A. salmonicida subsp. salmonicida strain AS05 that possesses the type III secretion system (TTSS) ascV gene, and efficient bacteriolytic activity was observed against the bacteria. The administration of PAS-1 in rainbow trout demonstrated that the phage was cleared from the fish within 200 h post-administration, and a temporal neutralizing activity against the phage was detected in the sera of phage-administrated fish. The administration of PAS-1 (multiplicity of infection: 10 000) in A. salmonicida subsp. salmonicida infected rainbow trout model showed notable protective effects, with increased survival rates and mean times to death. These results demonstrated that Aeromonas phage PAS-1 could be considered as an alternative biological control agent against A. salmonicida subsp. salmonicida infections in rainbow trout culture. © 2013 Blackwell Verlag GmbH.

  5. The Prevalence of Brucella Biotypes Isolated From Sterile Body Fluids of Patients With Brucellosis in Kashan, Iran in 2013

    Directory of Open Access Journals (Sweden)

    Erami

    2016-07-01

    Full Text Available Background Brucella species are classified based on their pathogenic and genetic properties and hosts. Considering the significance of identifying different biotypes of Brucella from the epidemiological point of view and lack of such information in the city of Kashan, Iran. Objectives This study was designed to determine the biotypes and strains of Brucella isolated from patients with brucellosis. Methods This was a descriptive study of 206 samples obtained from patients with suspected brucellosis in 2013 in Kashan. BACTEC 9050 culture media was employed to test the samples. Suspected colonies of Brucella were identified through morphology, staining, and biochemical tests. The biotypes were identified by the Razi Research Institute. Lysis tests with the Tbilisi (Tb phage were performed, the need for CO2, SH2 production, sensitivity to basic fuchsin and thionin stains, and the reaction of all the samples to specific antiserum A and M